
EventMinder: A Personal Calendar Assistant That Understands
Events

by

Dustin Arthur Smith

Bachelor of Science in Computer Science
Wake Forest University, 2005

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

@ Massachusetts Institute of Technology 2007. All rights reserved.

Author
nd Sciences

Sentember, 2007

Certified by
Henry Lieberman

Research Scientist
Program in Media Arts and Sciences

Thesis Supervisor

Accepted by
Prof. Deb Roy

Chairperson, Departmental Committee on Graduate Students
Program in Media Arts and Sciences

MASSACHUSETS INSTITTE
OF TECHNOLOGY

SEP 1A 2007 '0

LIBRARIES

EventMinder: A Personal Calendar Assistant That Understands Events
by

Dustin Arthur Smith

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on September, 2007, in partial fulfillment of the
requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

Calendar applications do not understand calendar entries. This limitation prevents them
from offering the range of assistance that can be provided by a human personal assistant.
Understanding calendar entries is a difficult problem because it involves integrating many
types of knowledge: commonsense knowledge, about common events and the particular in-
stances in the world, and user knowledge about the individual's preferences and goals.

In this thesis, I present two models of event understanding: ROMULUS and JULIUS.
ROMULUS addresses the problem of how missing information in a calendar entry can be
filled in by having an event structure, goal knowledge, and past examples. This system
is able to learn by observing the user, and constrains its inductive hypothesis by using
knowledge about common goals specific to the event. Although this model is capable of
representing some tasks, its structural assumptions limit the range of events that it can
represent.

JULIUS treats event understanding as a plan retrieval problem, and draws from the
COMET plan library of 295 everyday plans to interpret the calendar entry. These plans
are represented as a set of English activity phrases (i.e., "buy a cup of coffee"), and so
the planning problem becomes a natural language understanding problem concerned with
comprehending events. I show two techniques for retrieving plans: the first matches plans
by their generalized predicate-argument structure, and the second retrieves plans by their
goals. Goals are inferred by matching the plans against a database of 662 common goals, by
computing the conceptual similarity between the goals and components of the plan.

Combining the strengths of ROMULUS and JULIUS, I create a prototype of a personal
assistant application, EVENTMINDER, that is able to recognize users' goals in order to
propose relevant alternatives and provide useful recommendations.

Thesis Supervisor: Henry Lieberman
Research Scientist
Program in Media Arts and Sciences

EventMinder: A Personal Calendar Assistant That Understands Events

Dustin Arthur Smith

The following people served as readers for this thesis:

Thesis Reader
-

Thesis Reader

- -in Minsky

Professor of Mecfd'a Arts and Sciences
Professor of Electrical Engineering and Computer Science

Profram in Media Arts and Sciences

Erik T. Mueller
Research Staff Member

IBM Thomas J. Watson Research Center

Acknowledgements

Many people inspired and helped me finish this thesis and am grateful for each

of them.

Firstly, my advisor, Henry Lieberman, deserves special recognition. From consis-

tently being available for a lengthy discussion to running to the store to buy premium

paper to meet the impending deadline, Henry has helped this thesis to come together

in a hundred of ways. Few advisors give such complete attention to their advisees; not

just giving advice about the research itself, but how to be an innovative researcher

and have fun doing so.

This thesis hugely benefited from the attention of two outstanding readers: Erik

T. Mueller and Marvin Minsky. Erik possesses the gift of being able to think about

and articulate complicated ideas succinctly and clearly, and applied his talents to

untangle conceptual snags in earlier drafts. Marvin Minsky has influenced the way

I think about the mind and Al more than any other person, and it was Marvin's

original and brilliant ways of addressing these hard problems that inspired me to join

the AI community. Marvin is always thinking about the biggest and most important

ideas facing humankind, and the ambition of his goals and progress towards them

(made possible by remarkable intelligence and incredible self-mastery) has set him in

a class of his own.

At the lab, several friends and colleagues have helped me address ideas in this

thesis, including: Barbara, Bo, Catherine, Elan, Hugo, Ian, Moin, Rob, Scotty. Other

lab faculty who helped me along the way: Deb, Pattie and Ted. Nathan Artz was

particularly helpful with programming parts of EVENTMINDER.

I am extremely fortunate to have a large and supportive family. My sister Erin

Smith and grandfather Joseph Dorsey were amazingly helpful and gave excellent

comments on earlier drafts. I extend much love and many thanks to my parents

Sharon and Eric, and Art and Janis; and siblings, Alexis, Allison, Erin and Roy.

Finally, I wish to disclose that this research effort was particularly challenging

because of its scope. Readers will note that this thesis is multipurpose and has many

ideas peripheral, but related, to the central research narrative of inferring goals from

plans. This is because each step of the project presented new ideas and opportunities,
and some of them were too alluring to ignore or abandon, so they appear in this text.

The main problem I faced, as a researcher, was finishing an old idea while neglecting

new promising directions; an uncomfortable challenge that requires suppressing cu-

riosity. The fortunate implication of being your own adversary is that-one way or

the other-you're certain to win.

Contents

Abstract 3

1 Introduction 13
1.1 An Automated Personal Assistant for Event Management 13

1.2 A User Scenario . 14

1.3 Romulus and Julius: Two approaches to the problem 19

2 Romulus 21

2.1 Extracting details from the user's calendar entry 22

2.2 Mapping slot values to components of a generic event model 23
2.2.1 The problems of representing an event or plan 23

2.2.2 A slot-filler object representation of generic events 25

2.2.3 Filling in missing slot values 27

2.3 Application: A Mixed-Initiative User Interface 33

2.3.1 Related Work in User Interfaces 33

2.4 Assessing Romulus . 34

2.4.1 Structural Limitations . 35
2.4.2 Assertional Limitations . 35

3 Julius 37
3.1 Framing the problems . 38

3.1.1 Representing Plans in English 39

3.2 Retrieving Plans by Generalized Predicate-Argument Structure 39

3.2.1 Background: The Lexical-Semantics of Events 40

3.3 Retrieving Plans . 46

3.3.1 Retrieving Plans . 46

3.4 Finding alternative plans based on original goals 47

4 Inferring Goals from Plans 49
4.1 Indexing and Retrieving Plans by Goals.... 49

4.1.1 Parsing natural language descriptions of plans.... 49

4.1.2 Representing Goals.................. 51
4.2 Computing Similarity between Goals and Plans........ 54

4.2.1 Computing semantic similarity with SVD....... 54

5 Evaluation 57

5.1 Creating a M etric . 57
5.1.1 Collecting a human-annotated gold standard 57

5.2 T he R esults . 59

6 Conclusion 61
6.1 Joining Romulus and Julius. 61
6.2 Extending the Calendar................... 62

6.2.1 Recognizing problems with the plan........... 62
6.3 Future Directions. 63

6.3.1 Integration with a cellphone to "close the loop" 63

A Supplementary Material 67
A.1 The Need for Background Knowledge............ 67
A.2 The Roles of Goals in Problem Solving 68
A.3 The problem of underspecification............... 69

B Accompanying Data 71
B .1 O M CS Plan Set . 71
B.2 ETS Plan Set.......................... 74

B.3 Example Goal Annotation................ 75

List of Figures

1-1 Free text entry into the application. 15
1-2 Filling in missing information . 15
1-3 Browsing by plan-level goals. 16
1-4 Retrieving locations from a goal-driven search 16
1-5 Searching plans high-level goals . 17
1-6 Retrieving plans by searching high-level goals 18
1-7 A list of local bars. 18

2-1 A fixed set of question answered by the event representation 26
2-2 The set of slot names in the slot-filler object with their types and ex-

am ple values. 26

2-3 A dependency graph for knowledge in ROMULUS. 28

2-4 Classification for travel method prediction 34

3-1 An example sentence with its semantic roles labeled according to FrameNet's

fram e sem antics. 41

3-2 An example of an annotation with FRAMENET. 43

3-3 An example of diathetical alternation, the "causative/inchoative alter-

nation," where in this transformation direct object becomes the subject

of the transitive verb......... 43

4-1 Representing goals . 51

5-1 Web-based survey for obtaining a gold corpus. 58

6-1 A list of events lacking commonsense. 62

12

Chapter 1

Introduction

1.1 An Automated Personal Assistant for Event Manage-

ment

Consider the differences between a personal assistant who has been hired to manage

your schedule and an electronic calendar: A human personal assistant proactively

manages your agenda and offers many types of assistance, whereas modern calendar

software has been designed to passively collect and display your event entries. The

difference is that the human understands the event and the calendar does not. My
goal in this thesis is to build an automated personal assistant that can understand

events in order to provide assistance the way a human personal assistant would.

Calendar software is useful for this goal because it can tell what a user plans to

do at some future times. However, its usefulness is limited because of not including
enough details about those events. For example, "lunch with Jim" does not tell us
who Jim is nor where the event will take place.

What is required to understand events? A personal assistant brings general

Commonsense Knowledge to the situation and understands, for example, that
lunches take place around noon and typically at restaurants, cafeterias and delis.
Also, over time, your assistant learns specific details about your preferences and

habits, i.e., that you prefer restaurants near the office during the week and that

you dislike Mediterranean food. We'll refer to this additional information as User
Knowledge.

Many types of assistance can only be achieved by also understanding why the

user is doing a certain task. In fact, as we will see in 2.2.3, goal knowledge can be

used to infer missing values from the user's event. Here is an incomplete list of ways

in which knowledge of the user's goals can be used to solve problems (see Appendix

A.2 for others):

Goal-based categorization. Suppose you mentioned that you are having lunch

with your boss but you did not specify the location. The differences between

choosing "restaurants" and not "kitchens" or "offices," could come from the

User Knowledge about the goals you are currently pursuing.

Prioritizing Plans. There is a conflict between two plans; which one is more im-

portant to you? Again your User Knowledge could help you compare those

goals.

Suggesting Alternative Plans. If your dinner plan falls through, what are some

other similar plans? This also depends on your goals, which in this example

could be satiating hunger, socializing, developing a trusting business relation-

ship, ...

Where would all of this knowledge come from? Most modern calendar programs

have a standardized structure for representing events that is defined by the iCalendar

standard' and include slots for the ATTENDEES, LOCATION, and DURATION of the

events (but no WHY2). However, few users would have enough time to include enough

specific additional details! If the calendar is to acquire this information to understand

the plan, it must do so automatically-using both commonsense world knowledge and
examples learned from observing the user.

1.2 A User Scenario

EVENTMINDER runs as a web application. First, the user has the option of entering

a new event or viewing the entire calendar at once. Here is an example interaction

with EVENTMINDER, our prototype of a calendar program that understands events

and its user's goals:

1 http://www.ietf .org/rfc/rfc2445.txt
2 iCalendar does have a field called PRIORITY, which is related to goals.

A potential client, Chris, is visiting you next week, and you add "dinner

with Chris next Friday at All Asia" to your calendar program.

Figure 1-1: The user adds a new event to the calendar.

EVENTMINDER parses your calendar entry and extracts key components;

for example, it recognizes that Chris fills the slot ATTENDEE and All Asia

fills the DESTINATIONLOCATION slot:

Dinner C with Chris \ at All Asa Cafe [3J

Friday from 05:59PM 1% to 06:57PM 1%
Duration: about 1 hour

Figure 1-2: EVENTMINDER has filled in the missing information, including the times, and
matched "All Asia" to the restaurant in its database.

EVENTMINDER fills in missing information about your plan, guessing a starting
time, duration, and where you are leaving from. It presents you with a list of nearby

restaurants. The interface maintains its interactivity, allowing the user to override

the suggestions. Any change will initiate a cascade, changing old values and causing

its dependences to be updated. EVENTMINDER recognizes that dinners take place

at restaurants in order to present relevant locations to you. When the user selects a

location, EVENTMINDER infers their plan level goals for selecting that location.

EVENTMINDER infers your goals for selecting All Asia as a restaurant,

and you filter its possible inferences by selecting your real goals: "to hear

music", "drink alcohol" and "eat asian food."

Why did
F

F
F
I
Er
r~

you choose All Asia Cafe?
drink booze
eat food
pay by credit card
save money
dine with a group of people
hear music
eat spicy food
eat asian food
close to return ocaion
Other

Guess or goals.

Figure 1-3: EVENTMINDER infers which goals are relevant based on the properties of the

location you have selected, and allows the user to search for alternatives by specifying goals.

EVENTMINDER finds one location with that matches this unlikely combi-

nation of criteria: Kapow!

Dinner , with Chris -2 results-
- 2 results -

Today from 05:59PM C to (All Asia Cafe (0.602 miles)
Duration: about 1 hour Kap (.810 mie

Figure 1-4: The goal-driven query returns a list of qualifying restaurants.

In addition to specifying the goals specific to your current plan (eating

dinner), EVENTMINDER can guess the high-level goals that motivated your

decision to have lunch in the first place. At the top of figure 1-5, the user

selects the goals related to the event, and clicks Search by Goals.

Why did you choose dinner with Chris?
F to eat

lJ to entertain
F to work

Plan Actions
Infer goals or goals.

odinner with clients at nice restaurant
adinner with clients at nice restaurant

m eat the food
= go to nice restaurant [1]
" invite the clients to nice restaurant
= make reservations
= order some food

*py te bl
m tell your clients to "try the chowder"

[+1
All Asia cafe is 0.601677577402812 miles away.

If you travel by foot 4, it will take about 9 4 minutes.

Figure 1-5: EVENTMINDER shows the possible high level goals behind the plan "dinner with
clients at nice restaurant," the most similar plan to the "dinner with Chris next Friday at
All Asia" and allows the user to search for alternative plans.

The result is a list of alternative plans related to the goal that the system

has inferred from the plan. The user selects "drinks with client:"

And EVENTMINDER, recognizing that this plan takes place at bars, dis-

plays a list of bars sorted by distance to your inferred origin: The Media

Lab.

[t end a rock concert
attend a rock concert t nice restaurant
dinner with your client
dinner with your girlfriend urant [!]drinks with your clientk ts to nice restaurant
go see a film
go to a baseball game onS
go toamovie

*tel Iyou r clients to 'by th~e chowder"

Figure 1-6: Plans that match the user's high-level goal descriptions.

drink QA with Chris Q- Mirace of Science Bar + Grill0.594 mile
- 25 results -

Today from 06:35PM (E. t Blue Room (0.276 miles)
Duration: about 1 hour Cambridge Brewing Company (0.276 miles)

Amelia's Trattoria (0.456 miles)
Tommy Doyle's Irish Pub (0.549 miles)

r~ drink booze X Middlesex Lounge (0.589 miles)
Mirade of Sciencelar + Grill (0.594 miles)

~ eat food X All Asia Cafe (0.0 miles)
F pay by credit Q Crossroads Irish Pub (0.635 miles)
r close to return BarLola (0.734 miles)
r Other B-Side Lounge (0.736 miles)

Armani Cafe (0.756 miles)
Guess or search by goals. The Middle East (0.759 miles)

ZuZu (0.760 miles)
Sonsie (0.776 miles)

Why did you choose di Bouchee (0.783 miles)
Bouchee (0.783 miles)r to eat MIth Rj nr 2r1, , Mrtinis fn 7o miiacl

Figure 1-7: EVENTMINDER presents the user with a list of local bars.

1.3 Romulus and Julius: Two approaches to the problem

Before EVENTMINDER could help to provide general assistance to the user, there are

two main problems that it had to solve:

1. Constructing a rich plan representation from the user's natural language calen-

dar entry;
2. Inferring the goals of the plan.

In chapters 2 and 3, two different approaches manifest in two systems: ROMULUS

and JULIUS (two predecessors to modern Gregorian calendars). The main difference

between them is their sources of knowledge; ROMULUS focuses on user knowledge and

goal knowledge, while JULIUS focuses on commonsense and goal knowledge. ROMU-

LUS solves problems related to very specific decisions, like finding out exactly which

restaurant you will go to for lunch, but is limited to a narrow range of plans such

as: dining out, having drinks, seeing concerts, and going to nightclubs. JULIUS on

the other hand has a large range of possible events and is extensible by not having

fixed assumptions about the plan's structure. The application EVENTMINDER is a

combination of both of these models.

The first system, ROMULUS, assumes a generic structure that describes the com-

ponents of an event and how they are related. The fundamental assumption is that

missing values can be inferred from the structure of the event model and completed

examples of past events. The system learns, by observation, the user's preferences

using inductive learning techniques in order to infer the missing values and learn

goal-based representations of categories. Goals are represented as predicates that

reference specific features of the target concepts; thus background knowledge about

goals is used to constrain the inductive task in accordance with the explanation-based

learning approach. In other words, the "concept learning" task is transformed into

the "goal learning task," and the user is permitted to explore suggestions by goals

instead of categories. ROMULUS uses specific knowledge of local restaurants, bars

and nightclubs, and thus was limited to the set of events that involved these types of

locations.

In chapter 3 the second system, JULIUS, is described. JULIUS's plan knowledge

is broader and covers a larger range of common activities. It uses a library of 295

plans represented in English, many of which were collected from volunteers, which

can be easily extended. This background knowledge is used to infer the goals using a

corpus-based approach in order to suggest alternative plans that cover a much wider-

range of problems. JULIUS, however, does not have detailed knowledge about specific

locations, so it can not solve the same fine grained problems as ROMULUS.

In chapter 4, JULIUS's technique of inferring goals from this natural language plan

corpus is explained in detail and evaluated, making inroads for some of the problems

using English to represent plans and inferring goals from free text.

Both models are not mutually exclusive. While ROMULUS excels at learning the

user's preferences and how they are associated with specific plan level goals, JULIUS

has knowledge about a larger range of goals. In chapter 5, I discuss how these models

are combined to produce EVENTMINDER, and then draw general conclusions about

this research effort.

Chapter 2

Romulus

This chapter addresses the language problem of underspecification in event de-

scriptions and provides a solution by drawing from linguistics and machine learning.

The problem arises when important details which are often left out of verbal expres-

sions and is pervasive in human communication, including event descriptions. This

chapter shows how events can be represented as slot-filler objects where the structure

of the event and background knowledge is used to infer missing values. In addition,

this chapter highlights the importance of goals in category learning.

In the next sections, each of the components of ROMULUS is explained along with

a more general framing of the problems each component was built to solve. After the

user creates a new calendar entry, such as "lunch with Gina", the system does the

following:

1. Extracts slot values from the user's calendar entry (Section 2.1)

2. Uses the slot values to fill in components of a generic event model (Section 2.3)
3. Infers missing values in the event model using examples from user's event history

(Section 2.4)

ROMULUS assumes a generic representation of an event and uses both inductive

and deductive inference to fill in missing slot values. The structural assumptions in

ROMULUS prohibit the model from representing all types of events, and this problem

lead to the more general, case-based approach of JULIUS (Chapter 3).

2.1 Extracting details from the user's calendar entry

The first task is to get as much useful information from the user's calendar entry as

possible. A user may describe a lunch with a client, Larry, in several ways, varying

the amount of specified detail:

" Lunch

" Lunch with Larry

" Lunch with Larry today at noon

" Lunch with Larry today at MC Squared from 12 to 1

Given the user's input, the system must extract the components from the calendar

entry and recognize that, for example, "MC Squared" is the LOCATION.

In general, the solution for this problem is semantic role labeling, a procedure

that involves extracting the sentence's predicates ("have lunch") and the arguments

for each predicate (e.g., "Larry", "Today", "noon"), and describing their interrela-

tions by assigning each a semantic role (ATTENDEE, DATE and TIME). The specific

labels of the semantic roles come from the underlying lexical-semantic theory, which

is usually a function of the predicate.

Although automated semantic role labeling has been recently made possible by

advances in corpus-based computational linguistics [13] and the availability of seman-

tic role lexicons [17, 23, 16], the labeling process is too computationally expensive for

this application as it would require loading large probability tables into memory at

the start of the application. (Later, in section 3.1, JULIUS uses semantic role labeling

to preprocess a large batch of data offline.)

Instead, a rule-based technique is used to parse the calendar entry and makes

certain assumptions about the input. It anticipates that the calendar entry begins

with an activity phrase and that the rest of the sentences contains a fixed set of

other possible arguments (including: ATTENDEES, DESTINATIONLOCATION, START-

DATETIME and ENDDATETIME), delineated by slot name-specific prepositions (e.g.,
"with", "from"', "at"). The dates and times are extracted using a remote call to

the "quick add" component of Google's Calendar API' that correctly parses a large

variety of date expressions into starting and ending date/times.

http://www.google.com/support/calendar/bin/answer. py?hl=en&answer=36604

A critic may anticipate that the text from users' calendar entries will be too

cryptic to be parsed correctly. This is indeed a real problem, but I believe it will

be irrelevant as the capabilities for offering assistance through automation improve.

When the only assistance the calendar provides is a memory aid, an abbreviated

description is sufficient; however, when the system provides useful services through

understanding the event, the user will likely be inclined elaborate their calendar

entries.

2.2 Mapping slot values to components of a generic event

model

Now that the slot values from the user's event entry have been extracted and labeled,
representing those parts in the event model is trivial. The difficult problem is handling

underspecification, a problem that arises from the fact that people assume shared

knowledge and do not specify it in their communications (see A.3 for a detailed

example).

The missing knowledge must be filled in; however, before doing so we must recog-

nize which knowledge is missing. Missing knowledge is specified by the event model,
which is a slot-filler object that was designed to answer a set of questions about com-

mon events. The event model makes assumptions about the structure of the typical

event, including: what slot names are used, the values they can take on, and how

they are interrelated.

In the rest of this chapter:

" Section 2.2.1 explains the general problem of representing an event or plan

* Section 2.2.2 explains the assumptions about how ROMULUS represents events

" Section 2.2.3 explains how missing values are filled in using different sources of

knowledge

2.2.1 The problems of representing an event or plan

"Questions arise from a point of view-from something that helps to struc-

ture what is problematical, what is worth asking, and what constitutes an

answer (or progress). It is not that the view determines reality, only what

we accept from reality and how we structure it. I am realist enough to

believe that in the long run reality gets its own chance to accept or reject

our various views."-Alan Newell in Artificial Intelligence and the Concept

of Mind (from [27]).

Suppose you are in some situation S-i.e., you are in downtown Boston around

noon and you have various active goals, such as to satiate hunger, read a Masters'

thesis and go back home. In the classical planning tradition, your goals could be

represented as a set of situations S' in which each goal has been met (also known as

the goal state) [15]. Accordingly, a valid plan is a sequence of actions that can be

taken to change the situation from S to S'. Thus the plans you construct will contain

a sequence of actions that you believe will lead to effects that ultimately meet your

goals.

If you have already solved the problem before, the solution is as simple as re-

trieving and reusing the old plan. Because the exact situation never happens twice,
old plans should be generalized before they match new goal and situation states.

Consider the following scenario:

Imagine that you have just learned how to fish and have caught your first catfish

off a pier in Galveston, Texas. Now, you are given a chance to fish for salmon on a

boat off southern Alaska.

How much of the catfish-fishing episode can you transfer to the new situation?

Clearly there is some generalization involved in human problem solving, but this leads
us to specific questions common to case-based reasoning like:

* What components of the plan are fixed and which are not?

" In what other situations is the plan similar enough to be retrieved? Does the

plan still match if you are fishing at night or eating a catfish stew? Can the

"fishing for catfish" script be re-applied in a different situation, like "soliciting

campaign donations" where the assertions differ but some relations remain the

same?

" How are plans re-used so that important differences are not abstracted and

unessential distinctions can be viewed as the same? How do the mechanisms that

transfer CATFISH-+SALMON and BOAT-*PIER avoid mistakes like BAIT-MCAPTAIN?

Cognitive scientists have developed the notion of schemas [34], a computationally

androgynous concept that connotes structures of mental events. AI theories have

lead to representations called frames [27] and scripts [35], which describe sequential

structures that are re-used to solve common problems, by containing slot names which

are filled by specific types of values or other frames and can have default values. For

example, the "eat at restaurant" script would have slot names RESTAURANT and

TABLE which would bind the slot names to the specific instances from the current

situation.

When should two problems share the same script and when should they be sepa-

rate plans? There seems to be a key trade-off between the number of schemas/plans/scripts

and the complexity and roles of the slot names. Should the "eat at restaurant" script

be broken into more specific sub-scripts: "eat at fancy restaurant", "eat a buffet",
"eat fast food," or should it be a part of an extremely general script "event" that

contains upper-ontological slot names like LoCATION, TIME and ACTIVITY?

In other words, at what level of detail should we represent events? To this, we

turn to psychology (the human mind is the best planning software to date) where one

theory [46] posits that people maintain the most general level of description sufficient

for the current tasks at hand; and, when the model ceases predict accurately, one

breaks the event/plan representation into a set of smaller units. To concretize this

theory: if two plans/events share the same set of questions in the context of a problem

being solved, then they should belong to the same script.

Hardly satisfying, this theory replaces the original question with another (that

is nearly the same!): what tasks are we trying to solve? With the goal of creating

an automated personal assistant for event management, we can define a fixed set of

tasks we would like to answer related to this problem.

2.2.2 A slot-filler object representation of generic events

In the traditional commonsense reasoning approach [7], the problem of designing a

representation is based around the types of questions the application aims to solve.

When the event pertains to "eating lunch", the model should answer many of the

questions in figure 2-1.

An alternative to assuming a fixed representation is the incremental approach,
where the model gradually expands from a simple representation to answer new ques-

Where am I going to eat? Where have I gone in the past in similar situations?
Are there any new restaurants I would like to try? With whom am I going?
What is their relationship to me? Why am I going? When should I leave? From
where should I leave? How far away is it? How long will it take to get there?
Can I take the subway? What will I do afterwards? How long do these events
usually take? Where am I going afterwards? How long will it take to get from
there to the next place, and how should I travel?

Figure 2-1: The fixed set of questions ROMULUS is designed to answer.

Slot Name Value Type Three Examples
ACTIVITY Nominal lunch, lunch, dinner
DESTINATIONLOCATION Locationt Legal Seafood, Home, Stefani's Pizza
STARTINGLOCATION Locationt Home, Home, The Media Lab
DISTANCE Real (miles) 0.2, 0.0, 2.4
TRAVELMETHOD Nominal foot, foot, bus
TRAVELTIME Real (minutes) 6, 0, 18
STARTDATETIME DateTime 12:30, 2:00, 18:00

Figure 2-2: Example slot names and values from RoMULUS's event representation.

tLocation includes both Attribute-Values and Nominals, and for the three example val-
ues, only the attribute 'Name' is listed.

tions (the way people are capable of doing). With this power comes great responsi-

bility. There are a large number of ways in which the model can grow, and so the

system would need a reflective mechanism to oversee and direct the plan debugging.

An example of such an architecture is the Emotion Machine [29, 38], where reflective

critics detect general classes of problems [37], such as "missing causal dependencies"

and "invalid knowledge structures" and engage specific learning mechanisms to fix

them.

Limiting ROMULUS to this set of questions, a slot-filler object was built accord-

ingly. Each of these questions can be answered by looking up slot values, which

includes those listed in figure 2-2.

The event model specifies what slot names are used, the values they can take on,
and how they are interrelated. For example, the slot STARTINGLOCATION specifies

where you originate, DESTINATIONLOCATION specifies where you are going, and DIS-

TANCE specifies the distance between the two locations. The locations are represented

as a set of attribute-value pairs (Name=Denny's; Latitude=42.365023; Longitude=-

71.096969...) and a set of nominal values to specify their properties ("fastfood, open

late,..."). DISTANCE is represented as a real number. The structure of the event dic-

tates that DISTANCE is function of the latitude and longitude of two locations.

When specifying the values of the slots, values can be represented as nominal

values (properties), real numbers, date/times, and feature-lists (set of nominal values).

Each data type can take on a certain range of values. Complex values, like Locations
and People, require knowledge of particular instances. For locations, this is achieved

by using a database of restaurants, nightclubs and bars in the Boston area from

Citysearch2 , which supplies details about commercial locations.

Although the assumptions that went into building this event model do not extend

to all kinds of events (see 2.3), this model has some merits. In particular, it can fill in
missing values by using a combination of inductive learning techniques and deductive

inference.

2.2.3 Filling in missing slot values

Once the user input has been parsed, the next task is to fill in the missing information

about the event.

Even when the user has specified a slot's value, that value must be reformulated

or used to retrieve another more detailed representation. For example, when spec-

ifying a Location or Person sub-frame, EVENTMINDER must use the text from the

calendar entry to search for the corresponding object, involving a process of lexical-

semantic mapping. When the calendar entry includes "MC Squared", this specifies a

corresponding Location object (sub-frame) that must be retrieved from background

knowledge to fill in the DESTINATIONLOCATION slot. This retrieval process depends

on the slot name (DESTINATIONLOCATION in this case) in order to find the right

sub-frame for the label ("MC Squared" could be the name of a person-perhaps a

hip-hop musician) 3 .

What happens when the slot value is missing? For example, when the user forgets

to mention the starting time of a given "lunch"?

2 http://boston.citysearch.com

3 The types of semantic labels, in turn, depend on the type of slot-filler object and that is specified by
the predicate ("have lunch"); for ROMULUS, however, only one type of slot-filler object is available: the
default event model.

Missing values are inferred by looking at previous complete event objects from

the user's history. Each missing slot value can be presented as an inductive inference

problem: by looking at its dependent slots from the event model and past examples

of those values. There are relationships and constraints between the various slots

of the event model, for example, when the DESTINATIONLOCATION is changed, it

affects the DISTANCE, which may influence the TRAVELMETHOD and consequently

the TRAVELTIME.

These influential relationships are roughly related to the temporally successive

progression of events within the event model (i.e., causation or correlation). These

can be represented as directed acyclic graph, where an edge from a -> b implies that

a "has some influence upon" b. Knowing one value (type of Location) can help guess

the other (type of attendee).

Straveldistance narr ie
location

val e f m

trav el-distance-depart

People trav el-time-depart

end-time trav el-method-depart

duration

Dining Dependency Graph

Figure 2-3: The dependencies between the slot values of ROMULUS's event model. For
example, the category of people "client" would occupy the value of the people node and
would be used to induce the category "fancy restaurants" for the location node.

How do we find missing values? If the event model contains all of the knowledge

dependencies between the instances of knowledge, we can fill in missing values with

enough prior examples of specific dining events (and if it is not complete, we can still

approximate them). We can break the graph into subgraphs where each bipartite

pairing is a separate induction problem. The entire graph can be used to chain

inference problems when values are also missing in their dependencies. The input-

output pairings are typical inputs for machine learning problems: given a series of

input-output pairs, (X1...zX, Y)1...i, approximate the function f((x)) -- y. How do we
learn the function f((x)) -> y? That depends on the data type of the values in the
function's range:

1. If the target node, y, is a real value (e.g., distance, duration, speed), use
regression to approximate its value.

2. If the target node is a nominal value (e.g., method-of-travel), use classifica-
tion to guess its value.

3. If the target node is a set of nominal values (e.g., location, people), infer
possible goals from the category descriptions to suggest alternatives.

Instance-based learning techniques are used for regression and classification, where
the value (the function's output) is approximated by looking at the nearest neighbors
from previous examples of the function's inputs. Learning locations or people presents
a more challenging problem, because they can be represented at different abstraction
levels. For example, at what description level would you want for your lunch restau-
rant recommendations: "a restaurant", "a Mexican restaurant" or "Anna's Taque-
ria"? I assume the intermediate level descriptions would be most useful to the user,
and that categories should be learned instead of particular instances. How do we
move from a set of example instances to a category?

Conceptual clustering: A Naive Approach

In this model, the target locations (restaurants, bars, nightclubs, and other places
specified by the user), are all represented as nominals: a set of attributes. Our goal is
to learn a concept description that describes the types of locations that the user may
want to visit. This requires the ability to generalize several instances into a category
that extends to cover more instances that were not in the examples.

Clustering is an unsupervised learning technique for grouping example obser-
vations into a smaller number of groups. (If the category labels are available at the
beginning of the task, the learning process is instead a classification task, where the
goal is to approximate a function that places instances into predefined categories).
A common approach to clustering is to treat each item's attributes as dimensions

and the items themselves as points in a multi-dimensional object description space,
and then use an inter-object similarity metric, such as Euclidean distance, to uncover

boundaries between group regions. A problem with most similarity metrics is that

the descriptions of the clusters are lost in the process, and are left to be retrieved by

a post-clustering process or human, whose task is to ascribe meaning to the groups

that the clustering process has accumulated. Without any description, the system

cannot reflect and communicate about the groups it has learned, and must resort to

examples or prototypes to communicate or assimilate new knowledge.

There is an approach to clustering called concept learning that aims to group

items into categories while also maintaining a description of the resulting categories

[26]. A category with a description is referred to by this community as a concept.

This is a requirement of our approach, because we want to be able to search for

alternative records using declarative statements (e.g., queries in SQL) that describe

the presence or absence of attributes.

In ROMULUS, suppose you have observations of the last 20 places the user went for

lunch. Our concept learning task it to induce a set of categories (types of restaurants)

that partitions a set of discrete observations (examples of past restaurants).

To put each location on equal footing, the set of nominal values from each location

is transformed into a binary feature vector ({0, 1}n) that has a length n, the number of

unique nominal values in the data set, and where a value of 1 denotes the presence of

the attribute and 0 its absence. The concept learning task is to generate a description

of general categories to group the examples into. Valid descriptions are {0, 1, ?},
where ? matches both 1 and 0. The extension of {?}" includes all of the locations in

the data set.

To solve a clustering problem, one must first define how many clusters are needed

(or the similarity threshold at which to stop clustering). Alternatively, one could use

a hierarchical clustering technique to produce clusters at all levels of detail, resulting

in a dendrogram. This is appropriate for our problem, because the attributes of our

locations are also described at varying abstractions. Ideally, we want our concept

learning process to produce descriptions like this:

Locations

Restaurants Bars

Cheap, Fast and Nearby Expensive and Fancy Sports bars Pool halls

Unfortunately, there were many problems with this approach that make it infea-
sible with only a few examples. Instead of learning a "Cheap and Fast" category, we
would get a description like:

Cheap A Visa A Discover A Delivery A KidFriendly A (Italian V Sushi)

This description draws from many irrelevant features, and would cause the EVENT-
MINDER to overlook relevant locations in its recommendation (i.e., by only showing

restaurants that accepted Discover cards).

To address this issue, one could naively ignore all features that have low infor-
mation content, a property typically defined by the inverse of the times that feature
appeared in the data set. This would introduce real-values to our cluster descriptions,
which violates the aforementioned commitment to preserving a binary feature vector
as the concept description.

Before we risk perverting this data further, what is the real problem? The prob-

lem is that of feature selection: in some circumstances the features may be relevant

to the category, while in others they are not. If you were planning a romantic dinner,
you would not want to be recommended a restaurant on the basis of the fact that
they accept a certain credit card. In another situation, such as taking clients out to
dinner, that same credit card feature may be salient because you are charging the bill

on your company's card. The problem of selecting the appropriate features changes

depends on the active goals of the user and details of the situation.

In other words, just like the adjectives "nearby" and "heavy," which are always

relative to something else, features of slot names should be described relationally

because they are only relevant in certain contexts. This notion has appeared in cog-

nitive science research that studies how people learn categories [25, 33]. In a recent

shift between methodological paradigms, some researchers have advocated abandon-

ing "categories in a vacuum" tasks, which entail classifying and clustering arbitrary

items into groups. Listen to Eleanor Rosch, the founder of prototype theory, comment

on this problem [33]:

"No matter how abstract and universal a concept may appear to be, that

concept actually occurs only in specific, concrete situations. Real situations

are information rich complete events... Context effects tend to be studied

in psychological research only as negative factors, artifacts that invalidate

somebody's experiment or theory. But it may be that contexts or situations

are the unit that categorization research really needs to study." -Eleanor

Rosch, 1999

In order to suggest relevant features, it helps to know the user's goals. Users

cannot be treated as static profiles, because their intentions (the goals they are ac-

tively pursuing) change frequently. This problem will arise in rich domains like event

modeling where a number of different goals are involved.

Explanation-based category learning with goal knowledge

One step towards relational-features involves learning the goals for selecting the prop-

erties rather than the sets of features (categories) themselves. This way, categories

can be dynamically constructed by the user selecting goals, which combine sets of

properties to produce category descriptions.

A similar idea was proposed in [43] by Stepp and Michalski who suggested that
goals could be used to constrain the feature selection in clustering. In order to do so,
we need to consider the relationship between properties and goals. To achieve this,
we create a mapping from goals to logical combinations of properties, such as:

Be-healthy -+ Seafood V Vegetarian V Health food

Avoid-eating-meat -> Vegetarian V , Meat

And additional background knowledge specifying the inheritance structures:

IsA(Sushi, Seaf ood)

IsA(Seaf ood, Meat)

This way we could infer the user's goals from specific restaurants they have

visited. Constraints between goals can be used to reduce the hypothesis space in

inductive learning. For example, if the user visits both a sushi restaurant and a

vegetarian restaurant, the system could deduce that their goal is to Be-healthy, not

Avoid-eating-meat. This would allow the system to suggest other healthy restau-

rants, including those that serve meat.

This approach would be classified as explanation-based learning [9], a genre of

machine learning where the hypothesis space of the inductive task is constrained

to concepts that can be deduced from some domain theory of background knowl-

edge.

2.3 Application: A Mixed-Initiative User Interface

Returning to the interface of EVENTMINDER, the user is able to see and change the

values inferred by ROMULUS and, in the case of categories, view example instances

that match the description (see 1.2 for an example). The user is always allowed

to override the system's suggestions-consistent with the principles behind mixed-

initiative interfaces [14], where the assumptions that guide the system's automation

are second to the user's input.

While in debugging mode, the reasons behind the inferred missing slot values can

be observed by clicking on a magnifying glass icon next to each form field. This will

show how the details behind how the system has made its inductive inference.

2.3.1 Related Work in User Interfaces

Many calendar-based personal assistants have been proposed but few have addressed

the full complexity of the issue. The best of these approaches are able to learn by

observing the user's calendar entries [30], but still do not comprehend the user's goals

or provide knowledge of particular instances, such as nearby locations. In addition,
these learning personal assistants typically rely depend on a fixed model of the event,

travelmethodarrive

ependencyj

dependenc trauelethodrrive
rr)

endjdate

travel-method-arrive dependency graph

traveLditance.arrtve 0.163317412630669 p.886493773000624 l875198978640465

'oo Au 14 20A7:0 Mon Aug 13 22:34:00 Fri Jul27 19:00:00
nddt0 -0400 007 -400 2

travetlthotarrve car subway car
traveLtime_arrive 5 14 5

Figure 2-4: The TRAVELMETHOD of the current event, in blue, is predicted from past
examples (the columns to the right of the blue column), to infer the relationship between
inputs (rows in red) and the current node (gray). The current node has influence upon
TRAVELTIME, so that row is also displayed (orange).

as ROMULUS did, and thus cannot change their behavior and assistance to the specific

task.

EVENTMINDER contributes the ability to browse by goals instead of categories,
a feature which bolsters the learning process (see section 2.2.3) and has been found

to be preferred by users. In a study comparing a goal-based interface for browsing

television programs with a traditional history-based recommendation system [36],
viewers preferred the goal-based system, especially when they could browse by goals

explicitly (TV shows were presented and categorized by goal). Although this program

proved useful at matching users with their goals, there was a larger learning curve

over the preference based system, presumably (the experimenters speculated) because
it forced people to articulate their goals.

2.4 Assessing Romulus

In this section, I describe the contributions and problems of ROMULUS. I use Wood's

useful distinction between structural and assertional knowledge [45] to describe two

categories of problems in ROMULUS. These terms were used to develop a distinc-

tion between the internal semantics of a knowledge representation structure (struc-

tural) and the particular claims that knowledge was asserting about the world (asser-

tional). For example, with this distinction, the two assertions Kissed(John, Mary)

and Action(Kiss, John, Mary) are recognized as equivalent assertions but different

structures.

2.4.1 Structural Limitations

One main problem with this model is that its commitment to a single, albeit general,
plan limited its applicability to all of the kinds of events a person would typically

describe in their calendar. Different kinds of plans implicate different problems and

questions, and there does not exist one fixed set of questions for planning tasks.

As proposed earlier, two events should share the same plan if they involve the

same set of questions. A problem with ROMULUS is that assumptions were made

about a typical event's structure and which problems related to all events were im-

portant to solve. It did not work for all types of plans: "Walk the dog" involves

motion but no set destination; "take a vacation" extends many days and contains

many sub-events; and "pay electric bill" does not involve a location.

2.4.2 Assertional Limitations

A lot of the capabilities of the system came from its ability to learn the user's pref-

erences. The system met the user halfway by providing an exhaustive list of example

values for locations (assuming their task involved restaurants, bars, or nightclubs)

from which to choose, supplying a data point for learning the goals by observation to

suggest alternative goal-based categories.

There are pros and cons associated with learning the user's preferences. The

main advantage is that the system is flexible and not committed to the assumptions

in the background knowledge. If the user wants to eat lunch at 4:00PM every day,
the system would detect and accommodate this behavior. Or, if the user had a new

type of event that the system did not know of, it would learn this new class of events.

The downside is that the system is slow to accumulate this knowledge and requires

several training examples to produce the appropriate inferences.

With enough examples the learning algorithm should be able to predict useful slot

values; but, this is not feasible from the standpoint of the event planning application.

A large range of events implies a number of learning values, and users may be annoyed

with an interface that had to learn slowly from their examples.

Several measures can be taken to speed up the learning process, for example,
by using background knowledge (such as goals, as presented earlier) to constrain the

hypothesis space, and limit the relevant features. In the same fashion, knowledge from

other components of the event could be used to reduce the number of features. For

example, if you are not bringing children along with you to the event, then it does

not matter whether the DESTINATIONLOCATION is children-friendly or not. The

additional user interaction of active learning [3] can be used to suggest possible

"near miss" examples [44] to the user (those near the generalization boundaries) in

order to expedite the learning process.

Amassing the appropriate knowledge for this representation is difficult. While

slot values were learned from instances (e.g., of particular people, restaurants, tennis

courts, etc), I faced a knowledge acquisition bottleneck while obtaining a suitable

selection of instance knowledge, and their corresponding goals. This was exacerbated

by the fact that the system ambitiously sought to be relevant to a wide range of

events.

I was unable to derive this goal knowledge automatically from the OpenMind

Commonsense (OMCS) corpus [40]. The knowledge I desired would map specific

slot values, such as "sushi restaurants," to goals, such as "eat healthy." This is the

type of knowledge OMCS typically harbors, but the restaurant category-goal domain

was too specific that it could not be found in its 700,000 statements. I suspect this

would be remedied with increased contributions.

Chapter 3

Julius

"Experience is the teacher of all things." -Julius Caesar

While ROMULUS tried to put too much into a single representation, JULIUS con-

structs its representation out of a case-library of pre-existing plans. This way it is

more flexible, allowing different types of plans.

This model presents a new look at planning, where plans are represented in

English, and events are denoted by predicate argument structure. Unifying these

complementary perspectives on the same problem provides a solution for knowledge

acquisition and representing events (with lexical-semantic structure). In this chapter,
I address the specific issue of plan retrieval and show two techniques for retrieving ap-

propriate plan from a library of 295 plans: the first matches plans by their generalized

predicate-argument structure, and the second retrieves plans by their goals. Goals

are inferred by matching the plans against a database of 662 plans, by computing the

conceptual similarity between the goals and components from the plan.

JULIUS and offer a solution to ROMULUS'S main problem by extending domain-

coverage by using a plan representation that is easy to acquire. The system does the

following:

1. Parse the user's calendar entry and retrieve a similar plan;
2. Infer the goals of that plan;

3. Retrieve alternative plans for the given goals;

4. Recognize and, when possible, execute actions in the plan.

The next chapter (4) describes the goal inference process in more detail.

3.1 Framing the problems

The planning problems addressed by JULIUS can be cast within case-based reasoning

(CBR) framework. CBR systems involve a cycle of case retrieval, reuse, revision, and

retention [24]. The problems faced by EVENTMINDER include plan retrieval from

both natural language statements and goals, and plan execution when the system

can recognize opportunities to execute actions.

One of the defining characteristics of CBR is that plans/cases can contain repre-

sentations and knowledge that is specific to only the current case, so that each case

can have its own representations and knowledge. In an unconstrained problem like

event planning, it appeared necessary to partition the problem-solving space into sep-

arate parameterized plans, each with their own problem type, defined by the specific

knowledge they involve. The knowledge at the plan-level (i.e., the specific kinds of

restaurants you go to for lunch) should be tailored to the individual user and learned

from observation, while the commonsense mappings between goals and general plans

(i.e., that you eat a meal around noon, possibly at a restaurant) is culturally defined

and thus accessible from a shared body of commonsense knowledge. This is reflected

by the two complementary architectures RoMULUS and JULIUS.

This is consistent with the notion of hierarchical planning, where plans are con-

structed at varying granularities, solving the problem by first constructing a vague

plan and then gradually filling in specific details. This is not done only for efficiency

reasons; in many cases it is necessary to postpone the details until later in the plan's

execution. For example, although a plan of dining at a restaurant may involve the

event "sit down at your table," this sub-goal should be left vague until you known

which table you will be sitting at-a piece of information that you will not know until

you are at the restaurant [12].

3.1.1 Representing Plans in English

The plan library is comprised of a collection of plans in English sentences'. The
decision to use natural language as the knowledge representation comes from many
motivations: they are easy to author and can be collected from volunteers [40, 39, 2];
they are understandable by people; and, perhaps most importantly, the technical
challenges presented by using natural language intersect with a number of research
communities-providing a large foundation to build upon and a large group to benefit
from contributions. This plan representation and its justifications are similar to the
commonsense narratives use by Singh [38], which were ultimately to be constructed
automatically from English statements.

The plans begin as a collection of short plans consisting of English activity prepo-
sitions (e.g., "travel to the airport", "have lunch with colleagues"), typically with an
activity verb that can take an argument, a direct object or indirect object [19]. These
were derived from two corpora: 272 plans derived from OMCS and a smaller hand-
crafted ETS library of 23 plans.

The activity phrases of each plan had two types of interrelationships to specify
action orderings and part-of relationships. Analogous to objects having sub-parts
arranged in space, plans have sub-plans arranged in time [47]. This is reflected in the
assertions by the PartOf(x, y) relationship (where PartOf(x, y) <- HasA(y, x)). If
a plan is not a part of any other plan, it is considered a "root plan." All root plans
have been decomposed into flat plan structures by expanding all of its HasA(x, *)
until a flat list of sub-plans has been produced. Combining both OMCS and ETS,
results in COMET 2 , a library of 295 plans with an average of 13 steps per plan.
Examples from these plan sets can be found in Appendix B.

3.2 Retrieving Plans by Generalized Predicate-Argument Struc-

ture

The goal here is to retrieve plans from an English assertion. This task is simplified

because our plans are already represented in English; however, some generalization is

All resources used in this thesis can be obtained from http://web.media.mit.edu/-dustin/
eventminder/

2 COMET C OMCS U ETS -OMCS n ETS

still required.

I use background lexical-semantic knowledge from WORDNET and VERBNET

to generalize the predicate-argument structure and retrieve plans. First, I present a

survey of lexical-semantic resources and how they may be used to construct repre-

sentations from English propositions, such as those in each step from each plan in

COMET.

3.2.1 Background: The Lexical-Semantics of Events

Verbs play a large role in determining the semantic (and possibly syntactic) organiza-

tion of a sentence; and, because verbs typically describe changes, they are associated

with the semantics of actions and events3 . The predicate of a sentence includes a

verb phrase, that makes some true/false statement about the sentence's subject and

objects, called its arguments. So the sentence "John threw the ball to Bill" would

have throw as the predicate. Similarly to the logical notion of predicate:

throw(John, ball, Bill)

Predicate-argument extraction involves identifying the predicates and their

arguments of a sentence. Semantic role labeling is the task of 1) finding the

frame for the sentence's predicates, 2) for each slot type for each predicate, find

the corresponding slot values (arguments) in the sentence. The type of frames and

slots are specified by the underlying semantic theory. This task has recently been

automated through advances in computational linguistics [13] and the availability of
lexical-semantic lexicons [17, 23, 11, 16], some of which specify predicate-argument

relationships for a lexical-semantic theory. Here, for example, is a sentence that has

its slot names annotated according to FRAMENET:

Semantic frames and their slot types are typically much more general than their

corresponding predicates and arguments; and, there is no consensus on the types of

slot names for each language (assuming that similar knowledge structures and word-

concept mappings exist between same-language subjects in the first place). Compet-

ing theories are rampant, as Gildea et al [13] explain:

3 Actions C Events. Though similar, an action involves an actor, or doer; an event is a more general class
of situational changes.

IGiving

AgentjTheme
Manr

Rosy asked Fred to pass the butter quickly.

Figure 3-1: Annotating a short sentence with FRAMENET'S slot names. Image taken from
Erk and Pad6 2007 [10].

"At the specific end of the spectrum are domain-specific.. .or verb-specific

[slot] roles such as EATER and EATEN for the verb eat. The opposite end of

the spectrum consists of theories with only two "proto-roles" or "macro-

roles": PROTO-AGENT and PROTO-PATIENT (Van Valin 1993; Dowty

1991). In between lie many theories with approximately 10 roles, such

as Fillmore's (1971) list of nine: AGENT, EXPERIENCER, INSTRUMENT,
OBJECT, SOURCE, GOAL, LOCATION, TIME, and PATH."

To the computer scientist, slot names could be thought of as data types and the

analogous relationship for predicate-argument is frame-slot name. To stay consistent

in terminology, I will stay with the frame/slot terminology used earlier in the thesis.

These semantic frames already correspond to events, so we can easily connect event

to plan. Making this association, the question of "at what abstraction level should

plans be represented?" from 2.2.2 is the same question as "at what abstraction level

should semantic frames be represented?"

There are four English verb lexicons: VERBNET [17], FRAMENET [23], WORD-

NET [11] and PROPBANK [16]. Each of these has a different approach to verb classi-

fication, and thus each will have different ontological commitments [8] to the under-

lying event representation. Ultimately all resources, except FRAMENET, were used

in JULIUS.

WordNet

Fellbaum and Miller's WORDNET [11] project is a machine-readable dictionary that

categorizes words by part-of-speech and sub-divides them further into synsets (short

for "synonym sets"), such that words and synsets have a many-to-many mapping.

There are several denotational relationships between words (e.g., antonyms) and

synsets (e.g., subsumers, a semantic taxonomy that supports conceptual inheritance).
Unfortunately, WORDNET has the tendency to partition words into seemingly ar-

bitrary synsets, even when they have similar meanings and may share underlying

knowledge structures. For example, WORDNET makes a distinction between the word

"head" as the top of something, the leader of an organization (and 30 other senses

of the word's noun form), even though they are conceptual related-problematically

giving equivalent treatment to both disjoint homonyms and semantically overlapping

word senses such as polynyms [20].' To get a flavor of its complexity, WORDNET has

44 different senses of the verb "give" and 11 senses of "book" nouns. WORDNET does

not contain relationships between verbs and arguments; however, it has the largest

coverage of the English language with 11,448 verbs as of version 3.0, with each verb

having an average of 2.1 senses.

FrameNet

The FRAMENET project [231 was constructed around Charles Fillmore's linguistic

theory of frame semantics. Frame semantics suggests that predicates and other com-

ponents of speech reference prototypical frame situation representations. Here is an

example sentence that has been annotated by FRAMENET using the SHALMANESER

shallow-semantic parsing toolchain [10]:

As of this thesis' publication, the authors of the FRAMENET project have defined

887 semantic frames, with 4,547 completed lexical units (e.g., words) and twice that

counting nearly-completed annotations of lexical units. FRAMENET is a linguistic

and cognitive theory at once, forcing the annotators to make distinctions between

similarities in meaning versus similarities in syntactic expression.

PropBank

PROPBANK [16] is an extension of the one-million word Penn TREEBANK WSJ corpus

where its verbs and their arguments have been hand annotated according to Levin's

4 The meaning of lexical units (e.g., words) depend heavily on background knowledge and the context in
which they originated. In fact, many lexical units have several distinct meanings: a property known
as homonymy (e.g., brown bear; to bear), or different but related meanings, a more common property,
polysemy (e.g., financial bank; I wouldn't bank on it).

Figure 3-2: The statementv "leave the party" after shallow semantic parsing into
FRAMENET's frame semantics.

diathetically alternated verb classes [18]. In 1993, Beth Levin categorized 3,104 verbs

according to the ways they can be syntactically expressed. Verbs not only define
the predicates that are involved with the sentence, but govern the generation of
a valid sentence. Levin's technique, known as diathetical alternation, involves
transforming verb-argument examples into "meaning preserving" sentence templates,
called syntactic frames, to contrast those which result in well-formed sentences from
those that do not.

While FRAMENET conflated syntactic and semantic similarity into the role of the
frame, the practice of labeling verbs by their correct syntactic frames can be more
clearly defined-at least when it is easy to recognize an ungrammatical sentence
(donning the sentence with the conventional asterisk (*) prefix). For example, the
two verbs hit and break, despite having similar core arguments (AGENT, TARGET

and INSTRUMENT) and meanings, can use different syntactic frames:

1. (a) Joan broke the mailbox with her car.
(b) The mailbox broke.

2. (a) Joan hit the mailbox with her car.
(b) *The mailbox hit.

Figure 3-3: An example of diathetical alternation, the "causative/inchoative alternation,"
where in this transformation direct object becomes the subject of the transitive verb.

The fundamental underlying assumption to this approach is that patterns of syntactic
expressions reflect the underlying semantic organization, and knowing the syntactic

organization will help to understand the semantic. Levin compared the verbs using

79 alternations, which laid the foundation for clustering verbs by their asterisks to

produce an arrangement of verb groupings. Levin clustered them into a two-tiered

category structure: first, groups of verbs were formed with the same syntactic frames

and then these were put into larger groups by their semantic similarity. For exam-

ple:

Verbs of change of possession
GIVE VERBS: feed, give, lease, lend, loan, pass, pay, peddle, refund, tender, rent...
CONTRIBUTE VERBS: administer, contribute, disburse, donate, extend, forfeit, proffer...

Verbs of removing
REMOVE VERBS: abstract, cull, delete, discharge, disgorge, dislodge, dismiss, disengage...
BANISH VERBS: banish, deport, evacuate, expel, extradite, recall, remove

Table 3.1: Examples from Levin's two-tier verb classification [18].

PROPBANK annotates the location of the verb's arguments in a sentence and

each argument's general type; adapting an annotation scheme where arguments are

consistent within each verb sense. This makes the corpus an ideal resource for training

and evaluating computational linguistic tools [1]. Arguments are annotated ARGO,
ARG1...ARGN for each verb sense, and a variety of adjunct tags (ARGM-TMP spec-

ifies the time, ARGM-LOC the location, ARGM-DIR the direction, & cetera) can

be used to supplement any predicate. Apart from the adjuncts, the argument labels

are inconsistent across verbs: ARGO is 85% the agent, 7% the experiencer, 2% the

theme, and so on [22], as PROPBANK remains neutral to any underlying semantic

theory.

VerbNet

Designed to improve upon WORDNET'S treatment of verb polysemy and some of

the problems with Levin's classes, VERBNET [17 was constructed as a corpus of

cross-categorized Levin classes and annotated argument roles.

A problem with the 3,104 verbs that Levin classified is that some appeared to be

members of multiple classes, resulting in 4,194 verb-class pairings [6]. This supports

the conclusion that there are separate syntactic and semantic frames at work (con-

firming an early speculation of Minsky [27]), so that verb-classes and verb-meanings

may have a many-to-many relationship. The authors of VERBNET [17] dealt with

these overlapping verb classes by introducing intersective Levin classes [6] permit-

ting verbs to be cross-categorized (reference many semantic frames), where they can

sometimes be disambiguated by the type of syntactic frame they appear within.

Hear Dang et al contrast VERBNET [6] to WORDNET:

"Whereas each WORDNET synset is hierarchically organized according to

only one [implicit] aspect [chosen by the annotator], Levin recognizes that

verbs in a class may share many different semantic features, without des-

ignating one as primary."

VERBNET associates the arguments with one of 41 thematic roles, such as Ac-
TOR, AGENT, INSTRUMENT, LOCATION, and provides a mapping from verbs to

WORDNET synsets, although there are often many synsets for each verb class.

A Comparison of FrameNet, PropBank and VerbNet

Each of these resources has their strengths and shortcomings. When given the sen-

tence "lunch with Larry", each of the lexicons provides different descriptions of the slot

names for the various types of arguments. This is tricky, because the meaning of noun

"lunch" implicitly refers to the predicates eat(lunchFOOD) or have(lunchEVENT)-

Listed are the core arguments for the corresponding semantic frame for each re-

source:

VerbNet Lunch would be classified into verb class dine-39.5 along with banquet,
breakfast, brunch, dine, feast, graze, luncheon, nosh, picnic, snack, sup.

1. AGENT Something that is animate [Self,Larry]

2. PATIENT Something that is comestible [Lunch]

FrameNet Lunch belongs to the Ingestion frame along with breakfast, consume,

devour, dine, down, drink, at, feast, feed, gobble, gulp, gulp, guzzle, have, imbibe,
ingest, lap, lunch, munch, nibble, nosh, nurse, put away, put back, quaff, sip,
sip, slurp, slurp, snack, sup, swig, swig, swill, tuck.

1. INGESTIBLES: entities being consumed by Ingestor [Lunch]

2. INGESTOR: The person eating, drinking or smoking [Self,Larry]

PropBank Lunch belongs to the dine.02 roleset, describing the "dine-out" predi-

cate.

1. ARGO: An eater or diner [Self,Larry]

PROPBANK was the only resource that recognized that a sense of lunch denotes

an event; the other two resources considered it to mean the activity of eating (e.g.,
Larry lunched on some Vegemite.). This is not a serious mistake, because one activity

of a lunch plan includes the activity of eating, and this could be thought of as a type

of meronymy, where an event is described by one of its parts. Another example would

be "eat a steak" for the plans "have a dinner at a steakhouse" or "cook and eat a

steak for dinner."

3.3 Retrieving Plans

How are plans retrieved to solve problems? This question was raised earlier in 2.2.1

in the catfish example. In ROMULUS plan retrieval was not a problem: there was

only one type of "plan" representation 5, the slot-filler object, that was ever retrieved.

The problems with this approach were evident; namely, the model was not flexible to

apply to a wide range of situations.

If both models can coexist, why do they have different goal representations? The

categories of goals are at different resolutions of detail: ROMULUS represents plan

level goals that could be thought of as sub-goals from within a larger plan (e.g., "save

money", "eat seafood"). JULIUS, on the other hand, represents much more general

goals. In a full cognitive architecture, I imagine these would be integrated.

3.3.1 Retrieving Plans

JULIUS uses two ways to retrieve plans: by words and by goals.

The first approach takes the user's calendar entry, parses the semantic compo-

nents and retrieves plans that match in those components. This is simplified because

the plans are already expressed in natural language, but sometimes the predicates

or arguments must be generalized. If a text match of the plan yields results, those

plans should be used. However, if for example there are no plans that describe brunch

in the corpus, "have brunch" should most similarly match plans for eating lunch or

5 I hesitate to label it as such, because it did not explicitly represent actions.

dinner. This can be done by looking up the predicate's VERBNET role and matching

plans which have that argument.

The predicate is sometimes not enough to match a plan. If no plans match the
generalized predicate, then plans are retrieved by a search for the arguments. If

multiple plans match the generalize predicate, the arguments can be used to filter
the possible plans. If both match, we are faced with questions like: Is a lunch with
a client more similar to a "dinner with client", "lunch with friend" plan? Instead of

attempting to answer this question, in these cases, I would present the user with a
list of options.

The Given an input sentence, this is achieved by the following procedure that gen-
eralizes the predicate and arguments and searching, with a back-off technique:

1. Annotating the slot names of the sentence, yielding a verb, v, and arguments
A = a ... a,

2. Search for plans that are described by verb v and arguments A.

3. If no plans are found, generalize the verb into its VERBNET verb class, and
search for plans.

4. If no plans are found and |Al > 1, remove a, from A, and search for plans that
are described by verb v and arguments A.

This algorithm is first applied to root plans only, and, if no plans are found, this
constraint is removed and plans can be retrieved by their parts.

3.4 Finding alternative plans based on original goals

In classical planning, it is common to retrieve plans by the sorts of goals they are
capable of achieving. However, because our goals are represented in natural language,
we must first infer the goals from the natural language statements in order to do
this.

Finding alternative plans based on the original plan's goals is a two-step process.

First, goals must be inferred from the original plan. Secondly, a mechanism must

retrieve other plans that match those same goals.

What kind of things are goals? Goals are the end states in which the problem has

been solved. Goals can differ as to level of detail. For example, a plan to dine-out

may include the goals "save money, eat spicy food" and other types of goals that

are related to the problem. On the other hand, more general goals like "eat" and

"entertain" may be satisfied by other alternative plans.

In order to suggest alternative plans, we need a diverse library of common plans

and a way to connect these to the goals. Using the COMET plan dataset, I was able

to compute similarities using SVD.

This problem is the central focus of the thesis. The next two chapters (Chapter

4 and 5) are devoted to explaining and evaluating my approach.

Chapter 4

Inferring Goals from Plans

The previous chapters focused on the two approaches for inferring goals from

plans. The first technique, from ROMULUS, operates on the plan level, and infers goals

from example categories that the user has selected. JULIUS uses high-level goals from

a large database of plans, using background general commonsense knowledge.

Both take different approaches to representing and inferring the goal knowledge.

ROMULUS uses logical representations of goals and uses deduction for inference, while

JULIUS takes a corpus-based approach and infers goals using statistical techniques.

The main benefit of the deductive approach is accuracy, while the main benefit of the

corpus-based technique is that it is easier to extend its coverage.

In this section, I explore the corpus-based approach for goal inference from plans
in basic English. In section 4.1, I describe the nature of the data sets, in 4.2, the

algorithm, and in 4.4, the evaluation.

4.1 Indexing and Retrieving Plans by Goals

4.1.1 Parsing natural language descriptions of plans

Beginning with 295 plans in English, the goal is to match the plans against a large

library of goals. The raw plans can be thought of as a set (some are in a sequence) of
action-phases or sub-plans, each represented as an English proposition. The proposi-

Raw Plan Post-Parsed
drink beer with a friend [drinkeat 39 i [beer with a friend]]

go out to a bar [goescape5l.12 [[OUt(?AM-DIR)l [to a bar(Location,A4)]]
buy a round of drinks [buygetl3.5.1 [a round of drinks(ThemeA1)]]

talk to you friend [talklecture37.111 [to you friend(RcipientA2)
pay for your drink [paygivel3.11 [for your drink(?,A3)]]
get a taxi home [getconvert-26.6-2 [a taxi home(?,Al)]]

Table 4.1: From Propositions to Semantic Roles: Example plan before and after seman-
tic parsing. Prediates are classified into their VERBNET verb classes, and arguments are
annotated with both VERBNET and PROPBANK labels (some only have PROPBANK labels).

tions themselves are no good (they are simply strings to the computer), and we need

understand the richer event semantics behind each step.

I have automated the first stage of this process by using natural language pro-

cessing tools to:

1. Identify the syntactic parts-of-speech for each sentence [TreeTagger]

2. Generate a parse tree for each sentence [Charniak Parser]

3. Extract the PROPBANK arguments for each predicate in each sentence [SwiRL,
shallow semantic parser]

4. Map each predicate and semantic role to the VERBNET corpus [SemLink]

An example of a plan before and after this process is depicted in figure 4.1.

The result is a set of general predicate-argument structure, which is used to infer
the goals from the plan, match the plans against English descriptions, and map each

step to the system's functions and parameters.

Of the 4,344 steps in the plan, there are 3,538 unique propositions (strings).
Semantic role labeling reduced the number of predicates to 185 distinct VERBNET

frames. Although frames could not be found for 417 (9.6%) of the steps. 8,255
arguments were found (a mean of 1.9 per predicate). Originating from the PROPBANK
verb-specific argument labels, in the conversion to VERBNET semantic roles, 870 of

the 8,255 (10.5%) were lost their labels. In total, the number of mislabeled (including

unlabeled) arguments in the sentence is much greater; 10.5% does not account for

mistakes that came from deriving PROPBANK's predicate-argument structures from

the original sentences.

4.1.2 Representing Goals

In the context of a calendar application, the goals I sought were were at the level

of detail immediately above plans. To help you understand this, take the example
activity, "talk with clients." There are a lot of possible associated goals.

Figure 4-1: Possible goals for "talk with clients."

The green bar on this graph is the ideal granularity of goals that we want to
deal with, where the descriptions tend to be one step more general than the activity

itself.

Where do goals like this come from? No available resource was perfect for this de-
sired goal specificity, but two came close enough to be useful: OMCS and 43THINGS.
Both repositories came collected goals from volunteers through a web-based inter-
face.

In the following sections, I describe the types of goals these two repositories

contain and the steps I took to process these goal descriptions.

Goal Statement Counts
run a marathon 165
find a lost item 164
maintain good health 162
exercise 152
buy products 151
drive a car 147
go jogging 146
talk to someone 143
learn languages 142
make people laugh 142
send an e-mail 135
read the book 131
kill 128
buy a house 124
kiss 122

Table 4.2: The top 25 goals from OMCS.

OMCS Goals

Goals from OMCS were extracted by taking the left hand side of the MotivationOf (x, y)

relations in CONCEPTNET. The goals were filtered removing nonsense sentences

and goals that were too low-level and contained simple actions (e.g., "pick up a

cup").

43Things Goals

"Between the thought and action, between motion and the act, falls the

shadow." -T.S. Eliot in The Hollow Men

The goal statements were obtained from the website http://ww.43things.

com which is a website/cultural phenomenon where a community has formed around

entering goals into a website. Figure 4.1.2 lists the 15 most common goals from

43THINGS.

Like T.S. Eliot's shadow, many of the goals on 43THINGs are daydreams-fantasy

plans stemming from imagining unlimited resources ("live forever," "sail around the

world"), perhaps serving the purpose of preemptive problem solving or generating

motivational goals [32]. Another group of goals, perhaps a sub-set of the first type,

Table 4.3: The top 25 goals from 43THINGS.

involve changing the person's self-models, like learning new skills ("learn French")
and abandoning old habits ("stop procrastinating").

Most of the goals in 43THINGS are positive and forward-looking. They describe
goals related to the things that people want to do, and this is not the same set of
goals describing the things that people actually do-the things they would enter into
their calendar. Consequently, for example, few goals are found to be relevant to to
the goal "have a meeting with your boss" while many goals were relevant to the plan
"have lunch with your friends."

Pre-processing goals

Goal statements were stemmed using the Porter stemmer and stop-words were re-
moved from the list, then duplicate goals were removed. This, for example, would
result in the two goals "make more money" and "make money" being merged. There

were 909 unique goals after stemming and stop word removal.

Although the stemming merged most of the goals, there were a lot of redundant

goal statements, and so goals were clustered by their SVD similarity (explained in

the next section).

Goal Statement Counts
stop procrastinating 2986
lose weight 2815
write a book 2423
fall in love 2104
be happy 1909
read books 1825
drink water 1787
take pictures 1780
get married 1623
learn spanish 1501
save money 1464
see the northern lights 1444
buy a house 1411
get a tattoo 1387
travel the world 1351

The clustering problem requires defining a similarity metric and a threshold or

number of groups to form. A good clustering is one that minimizes inter-cluster simi-

larity and maximizes intra-cluster similarity. Truncated singular value decomposition

(described next in 4.2) was used to assess between-group similarity, where each goal

was mapped into AnalogySpace derrived from the OMCS corpus. SVD permits

each item to be represented as a vector, and thus when goals are merged into the

same group, the group's vector position can be represented as the normalized sum of

all its members. One problem is with this is that noise, from outliers in the groups,
which accumulates and attracts other unrelated members. For example, after the

grouping of goals "get out"... "get up" acquired the goal "get out more", it caused

it to merge with conceptually dissimilar the "get more exercise"'... exercise more"

group. To remedy this, I augmented the similarity metric with a size penalty that

penalized the groups for getting further from the average size.

911 + 92
sim(g, g92) = 9192 - * penalty

n gcGoalsV

I picked threshold = 2.0 the lowest similarity boundary to stop clustering, and

penalty = 0.05, to maximize the coherent clusters. This resulted in 662 unique groups

of goals, some of which were still conceptually identical to others.

4.2 Computing Similarity between Goals and Plans

Each plan is represented as a set of annotated semantic components. The task is to

compute their pairwise similarity between each goal in the goal corpus, so that the

most common goals could be added.

4.2.1 Computing semantic similarity with SVD

An important component of associating goals with plans is computing the conceptual

similarity between a goal and the components of a plan. A robust and efficient

technique for computing conceptual similarity using the principal component analysis

technique of truncated singular value decomposition (SVD) was proposed by Rob

Speer [42].

This technique transformed the representation of the CONCEPTNET semantic
network [21] into a giant matrix AMxN that maps the concepts (rows) to their proper-
ties (columns). Because concepts originate in the 3-tuple form (Relation, Concept1, Concept2),
they must be decomposed into binary relations: (Conceptl, Relation) and (Relation, Concept2).

For example, the assertion (CapableOf, bird, fly), would form properties pi = (bird, capableOf)

and P2 = (capableOf, fly). Consequently the row corresponding to concept ci = bird

would have a 1 in the column for property P2, and c2 = fly would have a 1 for

Pi.

The linear algebraic technique of singular value decomposition (SVD) is way

of reducing the dimensionality of a large matrix so that many operations, such as

computing the similarity between two concepts (two rows in A), can be performed ef-

ficiently. Efficient similarity computation over a large data set presents an ideal appli-

cation for information retrieval problems, where documents are clustered or retrieved

by their similarity. The SVD decomposition for any such matrix is a factorization of

the form:

SVD(A) UZVT

The decomposition of A yields two unitary matrices U and VT, and a diago-

nal matrix E. UMxM is the eigenvectors of ATA and VNxN is the eigenvectors of
AAT.

In the smaller matrix, similarity can be computed by taking the row associated

with each concept in question (now a vector) and taking their dot product. On the

OpenMind Commons data set, M = 16, 775 and N = 9, 414, and 50 singular values
were found.

An interesting property of decomposition is that the principle components of the

matrix, derived from larger patterns in the data, have their own meanings apart from
the original 24 relationships that structured the assertions in OMCS. For example,
the most significant dimension represents a good/bad dichotomy.. An in-depth expla-

nation of this SVD approach and some preliminary analysis of the dimensions can be

found in [42].

Another useful aspect of this approach is that similarity can easily be computed

between constellations of concepts. This is achieved by adding each concept's vector

and normalizing the product. In JULIUS, this makes it possible to analyze various

components of the event and see subsets are most relevant to retrieving goals, an

experiment done in the next chapter.

Chapter 5

Evaluation

In the previous chapter, I presented a technique for inferring goals from plans
that are represented as basic English sentences. In this chapter, I evaluate five related
approaches for goal inference against the data collected from 19 people.

5.1 Creating a Metric

In order to use this measure, we need some binary metric to determine whether a
goal is relevant to the plan or not. To obtain such a gold standard, I turned to
people.

5.1.1 Collecting a human-annotated gold standard

Subjects were recruited to participate in a web-based survey with a - chance of25

earning $20. The participants were required to input at least 3 goals for 15 plans that
were randomly chosen from the corpus. The survey had an auto-completion feature
that showed other goals in the database as the user's added the goal; but they were
allowed to add their own entries as well (see figure 5-1).

Of the 31 participants, 19 completed the survey and attritional data were re-
moved. Most participants exceeded the 3-goal minimum and in average 4.1 goals

were entered per plan, with the most (91/19 = 4.8) for the plan "read" and the least

(3.4) for "lunch at cheap restaurants with colleagues." See figure 5.1.

Figure 5-1:

Table 5.1: Listed are the total number of goals entered by
the study.

the 19 participants who completed

In this evaluation, I sought to find out which components of a sentence were most

useful for retrieving target goals using the SVD analysis to compute between-group

similarity. This exploration compared various partitions of the plan to see if lexical-

semantic relations could help in goal recognition. Each plan was partitioned in the

following ways:

1. G1 one group for each step of the plan.

2. G2 one group for each verb.

3. G3 one group for each VERBNET verb class.

What a~ re oe qpal" of th~e .tivty play football?

hmm IIAdd CoaIl

haveft u4d

Ihwlv . v

hv fr

Plan Total Goals Entered Identified
read 91 60
fish 87 57
dinner with girlfriend at restaurant 86 51
ski 85 53
sing 84 45
run in a marathon 81 47
ride a bicycle 80 53
play football 78 47
drink beer with your client 76 28
dinner with clients at nice restaurant 74 20
write a term paper 74 44
go to a baseball game 73 42
play poker 72 48
cook a curry 67 35
lunch at cheap restaurant with colleagues 65 37

Grouping Plan Average Positions In Top 10 Top 10 Average Positions
G1 269.72 2.5 4.6
G2 270.08 2.4 4.5
G3 270.55 2.2 2.2
G4 270.64 2.1 5.0
G5 270.90 1.9 4.3

Table 5.2: Goal retrieval Results

4. G4 one group for each argument's VERBNET role.

5. G5 one group for each argument's PROPBANK role.

Each plan was divided into groups according to the above structure. Then a

ranked similarity list was formed between all groups and each of the unique 662
groups of goals.

Group Average Position The average position of each gold goal in the list. The

lower the number, the more similar the goal.

An aggregate similarity list for each plan was formed by averaging or summing

the similarity for each goal between each of the plan's lists. This produced a single

list for each plan. From this list, other a plan level analysis used the metrics:

Plan Average Positions The average position of gold goals for all groups.

Number in Top 10 The average number of gold goals in the top 10 goals per plan:

|retrieved n relevant\

Top 10 Average Positions The average positions of the goals in the top 10 list per

plan.

I did not use the precision/recall metrics because the collected gold goal data

was so sparse that it does not completely cover the reasonable goals for each plan.

Instead, the "Numer in top 10" yields a similar measure to precision, but where the

number of retrieved documents is cut off at 10.

5.2 The Results

These data suggest that the G1 division, at best, is capable up 1/4 of the same results

in the top 10.

60

Chapter 6

Conclusion

In this thesis I have contributed:

1. Two models for understanding events in a calendar interface, and an integration

of the two in an application.

2. A novel technique for inferring goals automatically from plans, by combining

semantic parsing with goal and commonsense knowledge-bases.

In 6,1, I describe the problems of integrating both models and the motivation for

doing so. In 6.2, I explain some of the other features of EVENTMINDER's interface.

In 6.3, I outline future directions for EVENTMINDER and goal inference.

6.1 Joining Romulus and Julius

A reconciliation of both models is easily justified on theoretical grounds, as goals can

have different meanings depending on the context of their use.

For example, people would recognize the plan eating dinner at home to have the

characteristic plan-level goal of "to save money." However, JULIUS would not make

such a claim because one of plan's associated steps is "buy groceries," and there are

many unrelated plans that do not involve any financial task and are thus (in the

system's eyes) more deserving of the goal "to save money." The system, if capable,
would justify this conclusion: "if you really wanted to save money, you should play

Frisbee, watch the sunset or take a walk."

We can characterize this mistake as a problem of scope. The goal description,
"save money," was conditioned upon the plans that involve eating food. Within the

local plan space of eating meals (perhaps dinners), dining at home is indeed more
frugal to the alternatives of eating at restaurants, ordering take out, etc. And within
this space of cheap meals, there are possible plans "go to a lecture" -containing the
possibility of completely free meal, that should not be considered because of other
reasons (dependent upon external factors; uncertainty, etc).

6.2 Extending the Calendar

Some of the types of assistance provided by EVENTMINDER were mentioned in the
scenario but not explored earlier in this thesis.

In 6.2.1, I show how a rule-based system, the Critic-Selector model, can be used

to recognize problems in plans and react in specific ways by learning or changing
the way plans are retrieved. In 6.2.2, I briefly demonstrate of how sentence level
predicate-arguments can bind to processes and data, so that EVENTMINDER can

execute actions in the plan it is developing.

6.2.1 Recognizing problems with the plan

The vernacular connotation of the word commonsense means "not making stupid mis-
takes," i.e., by using common knowledge. We could imagine that a user of EVENT-
MINDERwould be frustrated if they saw these events on their calendar:

" A dinner that starts at 6:00AM [31]
" A five-hour long lunch
" An meeting that begins before it ends
" Taking a plane to get to lunch

Figure 6-1: A list of events lacking commonsense.

Our system must recognize and, if possible, correct these anomalous events before
they provoke the user or cause the system to behave the wrong way.

The Critic-Selector Model for Debugging Plans

The critic-selector model, proposed by Minsky [29] and implemented by Singh [38]

is part of a 6-layer agent-based cognitive architecture that is controlled by rules at

each of the six layers. Recognizing patterns in their subordinate layer, critics detect

problem states and activate context-sensitive selectors which manage the activity of

agents (they turn on/off resources).

One of the novel and powerful aspects of this model its development of the reflec-

tive layer (also known as metacognition [4, 5]), which detects and reacts to problems

in the deliberative sub-layer. The planning problems are dealt with by switching

representations and engaging a host of specific learning methods (to achieve, in many

cases, "one-shot learning").

The error correction of EVENTMINDER could be thought of as a series of reflective

critics with very simple selectors. Given an example plan P and a set of goals g
inferred to be active:

1. If CRITIC finds a problem in plan P, then:

(a) SELECTOR finds similar plans to P in goal-space g, or:

(b) SELECTOR proposes anti-goal, g, and finds similar plans to P in goal-space

g A -g.

Like the earlier problem of goal-driven classification, we could change the repre-

sentation of the plan space depending on the active goals (feature selection).

6.3 Future Directions

6.3.1 Integration with a cellphone to "close the loop"

A little knowledge goes a long way in a personal assistant-consider a cellphone that

knows when you are in a movie theater: one bit of information (InMovieTheater(User))

should stifle its ring. Classifying the type of event is difficult because there are a lot

of possible things you could be doing at any given time or place.

If a cellphone knew what a user was doing at a given time, it could anticipate
how they would use the device. If the user were going to meet John at Legal Sea
Foods at 7:00PM for dinner, an anticipatory cellphone interface could:

" Alert the user to upcoming events on their schedules.
" Direct the traveling user toward their destination or transportation (e.g., subway

stations, garages, etc)
" Predict the people the user will call so those peoples' number can be dialed by

pressing a single button.
" Courteously turn down the cellphone's ringer during movies, conferences, nice

dinners and the like.

" Facilitate multi-step problem solving, such as using a single command to find the
nearest taxi company, send them a pick-up request with your current location
and photo, and establish a credit card transaction.

A lot of researchers have recognized the potential of using cellphones as intelligent
personal assistants. Cellphones are the computer people don't seem to mind carrying
with them at all times. This has led to the research agenda of pervasive computing,
and many have attempted to create context-aware devices, typically by trying to
classify the data collected by the cellphone's sensors to labeled examples of fine-
grained activities like "picking something up" and "climbing up stairs." There are
many problems with this approach: obtaining training data is difficult (users don't
want to annotate their schedules for the program), the learning task is very noisy and
leads to poor accuracy, and the physical actions the cellphone attempts to recognize
are too fine-grained to map to typical cellphone services.

The idea I propose is simple: use the semantic knowledge when it already exists
from the user's calendar! Of course the widely used calendars like Microsoft Outlook
and Apple's iCal do not have a lot of rich background knowledge about the events,
but they could easily be extended. They currently have optional fields for specifying
this information as free-text fields, but they do not fill in missing values nor connect
the labels to background web services and address books. Where fields should map to
GPS coordinates and Who labels to people's phone numbers and Bluetooth IDs.

To close the loop, putting EventMinder on a cellphone serves the additional
purpose of collecting more accurate information about the user. The cellphone can
record how long the user spent at a given location and use that to update it's model

about the duration of the user's common events. In other words, this could be used

for recognizing planning mistakes and learning by modifying earlier plans.

66

Appendix A

Supplementary Material

A.1 The Need for Background Knowledge

In the scenario in section 1.2, the decisions made by EVENTMINDER the assistant

brought a lot of knowledge to bear. Here is a description of some of the types of

knowledge involved:

Knowledge about the user's goals. The user scheduled the event to accommo-

date some goals; what are they?

Knowledge about common plans What types of plans should we consider: from

the ambitious and vague (i.e., "entertain guests") to common minutiae (i.e.,
"pick up the cellphone")? How many common events should we represent? How

should we represent them and what questions do we need events to answer?

Knowledge about taxonomic instances. How do we move from general knowl-

edge, for example that lunches often take place at restaurants, to knowledge

of specific nearby restaurants? Is this knowledge stored locally or acquired as

needed (e.g., through a web service)?

Knowledge about ways to fail. Any intelligent system should anticipate mistakes

and should possess negative expertise (a term coined by Minsky [28]): ways to

detect and correct common mistakes [41, 29]. Without a taxonomy of common

errors, the system would have to learn quickly from its mistakes-or detect

mistakes before they happen; and, users will be repelled from a system that

does not learn from one or a very few mistakes. A reflective system is one that

can identify the type of mistake and then select and engage the appropriate

learning mechanism.

Knowledge about natural language Lexical-semantic knowledge, or some simi-

larly powerful communication medium, is necessary for converting representa-

tions into something that can be understood by people. Particularly when the
plans are theirs!

A.2 The Roles of Goals in Problem Solving

The concept of a goal is useful for thinking about sophisticated problem solving sys-

tems. Here are several reasons why. The axes along which these categories were

drawn does not distinguish between the system's particular implementation (hu-

man/machine) or, in the case of software, its creator's engineering objectives (cogni-

tive architecture/application):

Planning. In planning, goals allow the problem to be represented independently from

the particular means of achieving a solution. The classical planning formalism is:

given a situation and goal state, find a sequence of actions to move between the
states. An alternative formulation of goals is as a sequence of changes, veering
away from the start state. Goals are useful here for retrieving pre-constructed

plans (known as plan retrieval) and plan recognition. Plan selection equally
involves the situation and the goal state descriptions, where the task is to select
an operator that has preconditions that match the (sub-)situation and effects
that result in the (sub-)goal. Plan recognition is the opposite of planning, where

the actions are known, and the inference problem is finding the possible plans

and goals of those actions.

Categorization. In order for plans to be re-used, they must be generalized so they
can work in new situations. Plans that are re-used must be tailored to the new

situation, a procedure called plan adaptation. This process replaces the spe-

cific representations in the original plan with more abstract descriptions that

may extend to new instances. Commonly re-used plans, known as scripts or

schemas, can be represented as structures that have slots or equivalently, accept

parameters. Causal relationships between elements of these scripts specify de-

pendencies between category members or the agent's active goals. For instance,
in the context of a transportation problem, a taxi can be seen as a member of
either "expensive" or "fast" categories, depending on the agent's current goals.

Central control. If all of intelligent behavior is centered around problem solving,
what determines the problems that should be solved? Goals. What are the

highest-level goals and where do they come from? Of course in animals, many

of these many of these come pre-installed by natural selection (e.g., what Dan

Dennett calls the 4-fs: fight, flee, feed, and mate), and in humans they can

be developed through social relationships (privileged relationship roles, what

Marvin Minsky calls Imprimers.).

Profiling. Intelligent problem solvers must be able to accomplish multiple goals de-

spite many limitations. For instance, embodied agents must solve problems

sequentially and must heed to their bodies demands and those of nature. Simul-

taneous goals that use the same resources must be scheduled and postponed,
and conflicts between goals should be resolved to avoid irony. Computer pro-

grams that assist humans in general domains (like event planning) by learning

the person's preferences, will need to capture multiple caricatures of the user in

a variety of situations to deal with their changing active goals, or intentions.

A.3 The problem of underspecification

People communicate efficiently by assuming shared context and background world-
knowledge to compress the verbal messages we impart. Take for example the com-

monsense assertion: "females have long hair." A lot of details are left implicit:

* Females: What kind of females? Zebras, ducks and boats? No, human females.

Babies? No, adult human females. At MIT? In Soviet Russia?

o Hair: Facial hair? Underarm hair? No, hair on their heads!

* Long: How long is long? Longer than what? Presumably, the hair on the heads

of adult male humans.

One problem with this sentence is that it is under-specified; the sentence assumes
a shared-context to parse its intended meaning. An open research problem is to

develop a way to automatically expand the context to produce longer statements
like: "adult female humans have longer hair on their heads than adult male humans
in America on planet Earth in the later 20th century." Doing this requires parsing
the sentences and resolving semantic ambiguities using many sources of background
knowledge.

1 This underspecification problem is different from the over-generalization problem, where assertions are
generally true but have a few exceptions (not all females have long hair), which suggests that default
assumptions must be treated as tentative. The first problem is mostly a communication problem, while
the second is a problem of maintaining internal consistency among descriptions of particular instances.

Appendix B

Accompanying Data

Listed are a few examples from each data set. COMET is a concatenation

of OMCS and ETS. All data can be retrieved from http: //web. media. mit. edu/

-dustin/eventminder/.

B.1 OMCS Plan Set

Four plans from the OMCS plan set:

GO TO A MOVIE

buy a movie ticket

buy popcorn

buy the tickets

call a friend to see if they want to go

decide which movie appeals to you

decide which movie you want to see

eat popcorn

go home afterwards

go to the bathroom

unzip your pants

wash your hands

leave

leave home

leave the house

leave the movie theater

leave the movie theatre

leave the theater

look at the movie listings to see what movies are playing

select a movie

walk out of the theater

watch the credits

PLAY SOCCER

celebrate if you won

congratulate the other team

flip a coin

get dressed properly

go the field and find out the game plan

jog
join a team

kick the ball

swing your leg backward

leave the field

loose your head

put away the ball

realize that you should call it football

shower

swap shirts

take off your shoes

walk home

walk off the field

BUY CHRISTMAS PRESENTS

burn them

carry them to a car

cash your Christmas Club Check

decide what to buy

get in line

give them to people

have a budget

make a budget

make a Christmas list

make a list

pay for them

pay off your credit cards

think about what your friends like

transport them home

wrap them

wrap them in wrapping paper and put them under the tree

wrap the presents

SHOP

compare different products

consume

decide what purchases you want to make

drive to the store

enter a shop

examine goods available for purchase

find somewhere to shop

get money

go to the mall

go to the store

look around

pay for the goods you are purchasing

pay for the items

pay for the things you bought

pay for your purchases

paying

search for item

take your shopping home

try on clothes

B.2 ETS Plan Set

Four plans from the Event Test Set:

DINNER AT YOUR HOME WITH FRIENDS

invite your friends to your house

cook a big meal

eat the food

talk with your friends

LUNCH AT CHEAP RESTAURANT WITH COLLEAGUES

find a cheap nearby restaurant

get directions to the restaurant

walk to the restaurant

order your meal

eat your meal

talk to your colleagues

pay for your meal

return to the office

LUNCH AT CHEAP RESTAURANT WITH COLLEAGUES

find a cheap nearby restaurant

get directions to the restaurant

take the subway to the restaurant

order your meal

eat your meal

talk to your colleagues

pay for your meal

return to the office

MEETING WITH A CLIENT

reserve a room at the time of the meeting

invite clients to the room

go to the room

talk with the clients

DEMO FOR SPONSORS

find out the location of the meeting

find out the time of the meeting

go to the demo

give your presentation

DINNER AT A STEAKHOUSE WITH YOUR FAMILY

find a steakhouse

go to the steakhouse

eat a dinner

return to home

B.3 Example Goal Annotation

SLEEP

rest

sleep

go to bed

go to sleep

relax

be sleeping the night before

stay in bed

RUN TWENTY-SIX MILES

exercise

you could go for a jog

run a marathon

play sports

go running

playing football

are competing

GO OUTSIDE FOR AN EVENING

you could go for a jog

go for a walk

go running

have clothes to clean

take a walk

go for a drive

go outside for an evening

go to the laundromat

walk

WATCH A MOVIE

read a newspaper

you're watching a movie

read a book

go to a movie

see the movie

go to a play

watching television

see your favorite show

watch a musician perform

watch TV

use a television

enjoy the film

listen to some music

use your vcr

watch a television show

go to a sporting event

see a particular program

BE INVOLVED IN AN ACCIDENT

kill

buy a house

go to work

know if you're healthy

have a physical exam

BUY A BEER

wait on-line

a shop

buy him a present

not buy hamburgers

ATTEND A LECTURE

read a newspaper

read a book

study your subject

study

examine

visit a museum

go to school

learn about a subject

PLEASE YOUR PARENTS

propose to a woman

a party

surprise someone

give gifts

please your parents

COMFORT A FRIEND

talk

kiss someone

communicate

are helpful

TAKE FINALS

pass a course

go to school

get good grades

pass the class

GO TO AN OPERA

go to a movie

go to a play

watch a musician perform

go to a concert

go to a sporting event

see the band

enjoy the film

WIN A BASEBALL GAME

play

play sports

run a marathon

have a game to play

are competing

win the baseball game

LEARN SOMETHING NEW

learn how

read a newspaper

study

examine

learn about a subject

study your subject

learn new things

learn about science

find information

EAT LUNCH

eat it

eat lunch

eat your breakfast

have something to do during lunch

eat dinner

food

bring home some fish

not buy hamburgers

cook dinner

go to a restaurant

maintain good health

make sure you are healthy

buy fresh fruits and vegetables

eat an apple

WRITE A PROGRAM

remember

programs

working

add each number

a computer program

calculate things quickly

80

Bibliography

[1] CARRERAS, X., AND ARQUEZ, L. Introduction to the conll 2005 shared task:

Semantic role labeling, 2005. 44

[2] CHKLOVSKI, T., AND GIL, Y. Improving the design of intelligent acquisition

interfaces for collecting world knowledge from web contributors. In K-CAP '05:

Proceedings of the 3rd international conference on Knowledge capture (New York,
NY, USA, 2005), ACM Press, pp. 35-42. 39

[3] COHN, D., ATLAS, L., AND LADNER, R. Improving generalization with active

learning. Mach. Learn. 15, 2 (1994), 201-221. 36

[4] Cox, M. T. Metacognition in computation: A selected research review. Artifi-

cial intelligence 169, 2 (Oct 2005), 104-141. 63

[5] Cox, M. T. Metareasoning, monitoring and self-explanation. AAAI-07: Pro-

ceedings of the First International Workshop on Metareasoning in Agent-based

Systems (Mar 2007), 46-44. 63

[6] DANG, H. T., KIPPER, K., PALMER, M., AND ROSENZWEIG, J. Investigat-

ing regular sense extensions based on intersective Levin classes. In Proceedings

of the Thirty-Sixth Annual Meeting of the Association for Computational Lin-

guistics and Seventeenth International Conference on Computational Linguistics

(San Francisco, California, 1998), C. Boitet and P. Whitelock, Eds., Morgan

Kaufmann Publishers, pp. 293-299. 44, 45

[7] DAVIS, E. Representations of commonsense knowledge. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA, 1990. 25

[8] DAVIS, R., SHROBE, H., AND SZOLOVITS, P. What is a knowledge represen-

tation? AI Magazine 14, 1 (May 1993), 17-33. 41

[9] DEJONG, G., AND MOONEY, R. Explanation-based learning: An alternative

view. 33

[10] ERK, K., AND PADO, S. Shalmaneser - a flexible toolbox for semantic role
assignment. In Proceedings of LREC 2006 (Genoa, Italy, 2006). 41, 42

[11] FELLBAUM, C., AND MILLER, G., Eds. WordNet. The MIT Press, 1998. 40,
41

[12] GEORGEFF, M. P. Reasoning about plans and actions. In Exploring artificial

intelligence: survey talks from the natl. conf. on AI, H. E. Shrobe, Ed. Morgan
Kaufman, 1988. 38

[13] GILDEA, D., AND JURAFSKY, D. Automatic labeling of semantic roles. Asso-
ciation for Computational Linguistics (Aug 2002). 22, 40

[14] HORVITZ, E. Principles of mixed-initiative user interfaces. 33

[15] KAMBHAMPATI, S., AND SRIVASTAVA, B. Universal classical planner: An algo-
rithm for unifying state-space and plan-space planning. In Proc. of 3rd European

Workshop on Planning (EWSP) (1995). 24

[16] KINGSBURY, P., AND PALMER, M. From treebank to propbank, 2002. 22, 40,
41, 42

[17] KIPPER, K., DANG, H. T., AND PALMER, M. Class-based construction of a
verb lexicon. In AAAI/IAAI (2000), pp. 691-696. 22, 40, 41, 44

[18] LEVIN, B. English Verb Classes and Alternations: a preliminary investigation.
University of Chicago Press, Chicago and London, 1993. 43, 44

[19] Liu, H. Semantic understanding and commonsense reasoning in an adaptive
photo agent. Master's thesis, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, 2002. 39

[20] Liu, H. Semantic understanding and commonsense reasoning in an adaptive
photo agent. 42

[21] Liu, H., AND SINGH, P. Conceptnet: A practical commonsense reasoning

toolkit. 55

[22] LOPER, E., Yi, S.-T., AND PALMER, M. Combining lexical resources: Mapping

between propbank and verbnet. In Proceedings of the 7th International Workshop

on Computational Linguistics (Tilburg, the Netherlands, 2007). 44

[23] LOWE, J., BAKER, C., AND FILLMORE, C. A frame-semantic approach to

semantic annotation, 1997. 22, 40, 41, 42

[24] MANTARAS, R. L. D., MCSHERRY, D., BRIDGE, D., LEAKE, D., SMYTH,
B., CRAW, S., FALTINGS, B., MAHER, M. L., Cox, M. T., FORBUS, K.,
KEANE, M., AAMODT, A., AND WATSON, I. Retrieval, reuse, revision and

retention in case-based reasoning. The Knowledge Engineering Review, 1-2 (Nov

2005). 38

[25] MARKMAN, A. B., AND Ross, B. H. Category use and category learning.

Psychological bulletin 129, 4 (Jul 2003), 592-613. 31

[26] MICHALSKI, R. S., AND STEPP, R. Clustering. AI Encyclopedia (Jun 1986).

30

[27] MINSKY, M. A framework for representing knowledge. In Readings in Cognitive

Science: A Perspective from Psychology and Artificial Intelligence, A. Collins
and E. E. Smith, Eds. Kaufmann, San Mateo, CA, 1988, pp. 156-189. 24, 25, 44

[28] MINSKY, M. Negative expertise. International Journal of Expert Systems 7, 1
(1994), 13-19. 67

[29] MINSKY, M. The Emotion Machine. Simon and Schuster, 2006. 26, 63, 67

[30] MITCHELL, T. M., CARUANA, R., FREITAG, D., McDERMOTT, J., AND

ZABOWSKI, D. Experience with a learning personal assistant. Communications

of the A CM 37, 7 (1994), 80-91. 33

[31] MUELLER, E. T. A calendar with common sense. In IUI '00: Proceedings of

the 5th international conference on Intelligent user interfaces (New York, NY,
USA, 2000), ACM Press, pp. 198-201. 62

[32] MUELLER, E. T., AND DYER, M. G. Daydreaming in humans and computers.

In Proc. of the 9th IJCAI (Los Angeles, CA, 1985), pp. 278-280. 52

[33] ROSCH, E. Reclaiming concepts. Journal of Consciousness Studies 6, 11-12 (Sep

1999), 61-77. 31, 32

[34] RUMELHART, D. E., SMOLENSKY, P., MCCLELLAND, J. L., AND HINTON,
G. E. Schemata and sequential thought processes in pdp models. In Readings

in Cognitive Science: A Perspective from Psychology and Artificial Intelligence,
A. Collins and E. E. Smith, Eds. Kaufmann, San Mateo, CA, 1988, pp. 224-249.

24

[35] SCHANK, R. C., AND ABELSON, R. P. Scripts, plans, goals and understanding.

In Readings in Cognitive Science: A Perspective from Psychology and Artificial

Intelligence, A. Collins and E. E. Smith, Eds. Kaufmann, San Mateo, CA, 1988,
pp. 190-223. 25

[36] SETTEN, M. V., VEENSTRA, M., NIJHOLT, A., AND VAN DIJK, B. Goal-
based structuring in recommender systems. Interacting with Computers 18, 3
(Aug 2006), 432-456. 34

[37] SINGH, P. The panalogy architecture for commonsense computing. 26

[38] SINGH, P. EM-ONE: An Architecture for Reflective Commonsense Thinking.

PhD thesis, MIT Department of Electricial Engineering and Computer Science,
2005. 26, 39, 63

[39] SINGH, P., AND BARRY, B. Collecting commonsense experiences. In K-CAP

'03: Proceedings of the 2nd international conference on Knowledge capture (New
York, NY, USA, 2003), ACM Press, pp. 154-161. 39

[40] SINGH, P., LIN, T., MUELLER, E. T., LIM, G., PERKINS, T., AND ZHU,

W. L. Open mind common sense: Knowledge acquisition from the general
public. Lecture Notes in Computer Science 2519 (2002), 1223-1237. 36, 39

[41] SINGH, P., AND MINSKY, M. An architecture for combining ways to think. 67

[42] SPEER, R. Learning common sense knowledge from user interaction and prin-

cipal component analysis. Master's thesis, Department of Electrical Engineering

and Computer Science, Massachusetts Institute of Technology, 2007. 54, 55

[43] STEPP, R. E., AND MICHALSKI, R. S. Conceptual clustering of structured

objects: a goal-oriented approach. Artif. Intell. 28, 1 (1986), 43-69. 32

[44] WINSTON, P. H. Learning structural descriptions from examples. In Readings in

Knowledge Representation, R. J. Brachman and H. J. Levesque, Eds. Kaufmann,
Los Altos, CA, 1985, pp. 141-168. 36

[45] WOODS, W. A. What's in a link: Foundations for semantic networks. In

Representation And Understanding: Studies in Cognitive Science, D. G. Bobrow

and A. M. Collins, Eds. Academic Press, New York, NY, 1975, pp. 35-82. 34

[46] ZACKS, J. M., SPEER, N. K., SWALLOW, K. M., BRAVER, T. S., AND

REYNOLDS, J. R. Event perception: a mind-brain perspective. Psychological

bulletin 133, 2 (Mar 2007), 273-93. 25

[47] ZACKS, J. M., TVERSKY, B., AND IYER, G. Perceiving, remembering, and

communicating structure in events. Journal of experimental psychology General

130, 1 (Mar 2001), 29-58. 39

