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Abstract

Active leg prostheses can lead to more natural and less energy consuming gait pat-

terns for amputees than passive prostheses can, because they provide a better approx-

imation of the functions of the human leg. Active prostheses use motors to supply

torques for added force and greater control at the joints (replacing the functions of

normal limb musculature). The necessary amount of torque to apply must be closely

correlated with gait characteristics. To properly control an active prosthesis, it is

necessary to determine whether one is walking at a stable or varying velocity, on level

ground, stairs, or a hill or ramp, and in the latter cases whether one is ascending or

descending. In all cases, it is essential to detect transitions between gaits as early

as possible, ideally before the foot makes contact with the ground, in order for the

control system to adjust accordingly. In this thesis, a sensor system for a lower leg

prosthesis is described, and a method for determining the gait transitions from this

system are presented. The sensor system consists of an inertial measurement unit

comprising three accelerometers and three rate gyroscopes installed on the prosthetic

limb and a set of strain gauges on the limb to detect changes in force. Using this

instrumented prosthesis, data are collected while an amputee participant transitions
from level ground to stair ascent/descent. These data are then processed using an

intent recognition method based on a hybrid discrete-continuous physical model of

human walking. This method is evaluated for accuracy and robustness for real-time

use.
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Chapter 1

Introduction and Rationale

1.1 Active leg prostheses

The traditional leg prosthesis is passive in nature: it acts as a conduit for the energy

applied to it by the amputee's body, but does not provide any additional force of its

own. The muscles in a healthy natural limb can apply a nonconservative motive force

at the ankles to help power the body forward; this is not possible for a conventional

prosthesis. As a result, the motion of such a prosthesis is awkward in nature and can

require significant additional energy expenditure on the wearer's part. [4, 7] Though

the use of passive springs on the ankle to store and release energy on each step can

reduce expenditure somewhat [11], a potentially more effective method is the use of

an actuator to apply a torque at the ankle and/or knee. Only recently have advances

in engineering and embedded systems made such an active prosthesis feasible for

production. Two active knee prostheses, the Rheo Knee and C-leg, have proved more

metabolically efficient than an equivalent passive prosthesis [8], suggesting that an

active ankle prosthesis could be similarly effective.

One problem in the development of an active prosthesis is determination of a

control policy: what quantity of torque to apply at each motorized degree of freedom

at each time. The function of the ankle varies significantly with the type of terrain:

there is substantially greater energy absorption in stair descent than in level-ground

walking, and conversely, greater energy expenditure in stair ascent than in either



descent or level-ground walking [5]. As such, it becomes necessary to provide current

data on the amputee's gait to the active prosthetic control system. Thus, a portable

gait analysis system must be developed to supply this needed data to the motor

control system.

1.2 Gait data collection methods

A common method for gait analysis is the use of visual motion-capture data to de-

termine information; this requires specific equipment that can only be practically be

applied in a laboratory setting and is infeasible for a portable gait analysis system.

The use of electromyography (EMG), the detection of the state of a subject's muscles

using electrical signals, to determine the current state of the subject's gait is one

possibility for a portable gait analysis system, but there are numerous problems with

EMG that make its use impractical. The equipment required for EMG is complex and

uncomfortable, involving time-consuming preparation every time an EMG-equipped

prosthesis is put on or taken off, and the signal-to-noise ratio of EMG data is relatively

low.

Inertial measurement units (e.g., gyroscopes and accelerometers), by contrast, are

known to detect motion efficiently, a necessity in a small embedded system with

low bandwidth availability. A prosthesis-mounted IMU is also much less physically

obtrusive than an electromyographic recorder. Systems of inertial sensors have been

used effectively in general gait analysis [9, 10, 1, 13], and an accurate method for

determining gait from IMUs alone would be less expensive than one requiring both

IMUs and EMG data.

1.3 Methods for analysis of gait data

The main focus of this thesis is detection of gait transitions. Specifically, the aim of

the work described herein is to determine when the prosthesis wearer is about to start

climbing or descending stairs, ideally before the first step hits the ground. There are



several potential methods for detecting transitions from the raw output of the motion

sensors examined in this thesis; these include a qualitative, rule-based approach to

the problem and the use of a hybrid model of detection.

1.3.1 Rule-based analysis

The first method is an attempt to directly draw conclusions about gait types from the

kinetic data itself. In simple cases (such as distinguishing standing from sitting), the

distinctions are clear and no computationally intensive algorithms are necessary; the

orientations of the legs and magnitudes of accelerations can describe such situations

easily. The effectiveness of this approach lessens, however, when attempts are made

to use it on gait cycles in real time, as the qualitative differences in the motion data

for changes in gait modes only become apparent after the first step. Therefore, for

an active prosthesis to change its control policy on the first step (as a human leg

does), the use of more advanced algorithms becomes necessary. Nevertheless, these

rule-based methods may still provide valuable simplifications of the detection process.

The logic methods examined depend on proper calibration of the IMU system,

and use both direct outputs (linear acceleration, angular velocity) and results that

can be determined from the outputs using basic physics (e.g., linear position and

velocity and angular orientation). Force detection, using either the strain gauges or

dedicated force sensors, greatly enhances the capability of such rule-based analysis as

it provides direct evidence of the exact times of heel-strike and toe-off for each step.

1.3.2 Hybrid estimation

A more advanced method for gait detection is that of hybrid estimation [6], which

combines estimation techniques to predict the future trajectories of both continuous

and discrete variables. A major method for estimation of continuous variables is the

Kalman filter, which works well in eliminating noise and predicting future state along

a single trajectory; the hybrid model uses a hidden Markov model to predict which

of several discrete state trajectories is to be followed and multiple Kalman filters to



track the most probable future continuous state trajectories.

A particular problem to the gait-estimation application of hybrid estimation is

development of a physical model within which the hybrid methods may be applied.

In particular, an early attempt has been made to use expectation-maximization (EM)

to estimate the parameters of a hybrid model [3]. EM for hybrid models is still largely

experimental, but has potential to greatly improve the efficacy of hybrid models where

the parameters of a system are unknown.

A notable obstacle to the implementation of hybrid estimation in this particular

case is the lack of explicit control commands to the prosthetic limb; the direction

to be taken must instead be computed from the motion of the limb, and this thesis

intends to determine whether such detections can be made well enough to produce

an accurate hybrid model of gait.

1.4 Overview of thesis

The remainder of this thesis is structured as follows:

" Chapter 2 contains further background information on the gait estimation

problem and the underlying mathematics of the method of hybrid estimation.

" Chapter 3 describes the hardware used and the trials conducted.

" Chapter 4 details both data analysis methods used: the rule-based analysis

and the hybrid-estimation-based method.

" Chapter 5 describes the results of the various data analysis methods and dis-

cusses their significance towards future goals in this research.



Chapter 2

Background

Hybrid estimation is built upon the Hidden Markov Model, a method for estimation

of discrete modes, and the Kalman filter, a method for noise reduction and estimation

of continuous variables. In this chapter, these basic methods are described and their

combination to form a hybrid Markov observer is explained.

2.1 Hidden Markov Models

A Hidden Markov Model can be used to model the state of an indirectly observed

discrete variable. The HMM consists of the set of possible hidden modes, the set of

values of observed variables, the set of probabilities that the system will transition to

each mode given the mode at the previous time interval, and the set of probabilities

that each observed value will result from a given hidden mode. There are three basic

problems in the theory of hidden Markov models: the determination of the likelihood

of an observation sequence given the HMM's parameters, the determination of the

most likely hidden mode sequence given an observation sequence and the HMM's pa-

rameters, and the adjustment of the HMM's parameters to best fit a given observation

sequence. [12] For an intent recognition problem such as gait mode determination,

the most pertinent of these problems is the second, hidden mode estimation, for which

the Viterbi algorithm is the standard technique.

In essence, the Viterbi algorithm is a dynamic programming method: it tracks the



probabilities of all modes at the previous timestep, from which the mode probabilities

of the current timestep can then be derived. As described in [6], there are two phases

in the calculation of the believed mode at a given timestep: the intermediate belief

state is a probability based on the previous final belief state and the HMM's transition

probabilities, and the final belief state is a normalization of the intermediate belief

state based on the observed variables and the HMM's observation probabilities. For

each hidden mode mi in the hidden mode set M, the intermediate belief b(.k) [mi] at

time k is as follows:

b(-k)[m;] = E PT(mimj)b(k-1)[m }

and the final belief b(k)[mi] is:

EmjEM b(.k) [rjPo(yd,(k) in)

where PT and Po represent the transition and observation probabilities respectively

and Yd,(k) is the observed discrete state at time k.

In the full Viterbi algorithm, the most likely trajectory over many timesteps is

determined by calculating the belief state for the final timestep in this manner, then

backtracking over the most likely previous transitions to the beginning of the time

period analyzed. For real-time estimation, this is unnecessary, as only the most

current state is of interest, so the backtracking steps are omitted.

2.2 Kalman Filters and the Probabilistic Hybrid

Automaton

A Probabilistic Hybrid Automaton (PHA) combines an HMM estimating the discrete

mode with Kalman Filters to estimate the values of continuous variables. The variant

of the PHA used in this thesis work is substantially different from the theoretical

underpinnings in [6], most notably in the lack of a control input and the resultant



elimination of the Kalman filters as redundant on relatively non-noisy observations.

The theoretical basis for the PHA is described here; the particular modifications to

the model are detailed in chapter 5.

The continuous variables in the PHA are estimated directly using Kalman filters,

with each discrete mode having its own associated Kalman filter to track the projected

trajectory of the continuous variables given that it is the current mode. Briefly, the

Kalman filter estimates the evolution of continuous variables as a function of the

previous continuous state, the control input, and Gaussian process noise, given the

control input and a noisy observation whose value is a function of the current state and

Gaussian observation noise. In the basic Kalman filter, these functions are linear in

all inputs; the extended Kalman filter, used in the PHA, uses arbitrary differentiable

functions. The output of the Kalman filter is in the form of a mean and covariance

for both the estimated state and the measurement residual.

The discrete modes of the PHA are estimated using the Hybrid Markov Observer

(HMO), whose behavior is defined by similar equations to the basic HMM:

h(.k)[xi] = PT(miJ|Ij,(k-1))h(k_1)[i]

h~k [ -i = h(-k) [ i]PO(yc,(k)|1As)
Ej h (.k) [:kjIPO(Ye, (k) 150

Here ik is an estimate of both discrete and continuous state based on the Kalman

filters associated with mode m. The key difference is in the makeup of the transition

and observation probability functions: in the basic discrete HMM they are simply pa-

rameters of the model, but in the HMO they are functions of the estimated continuous

state. The transition function is a multivariate integral of the Gaussian probability

of the estimated continuous state over the region where the mode's guard conditions

are met; the observation function is the probability of the observed value within the

residual Gaussian.

(Note that the input variables u are present in the original theoretical work; they

are absent here because the PHA described is a pure observer and does not provide

any input to the system.)
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Chapter 3

Experimental Overview

3.1 Hardware

For purposes of the data collection trials, sensors were attached to a standard passive

ankle prosthesis. The prosthesis used is an Ossur LP Vari-Flex with an inertial

measurement unit affixed to the toe area and strain gauges attached to the metal

shank of the leg.

The inertial sensor used is the commercial MicroStrain 3DM-GX1 unit, which in-

cludes three angular rate gyroscopes and three orthogonally mounted DC accelerom-

eters. It outputs linear acceleration in three dimensions, angular velocity in three

dimensions, and an orientation vector computed from the raw sensor outputs.

The purpose of the strain gauges on the prosthesis is to detect axial compression

force, mediolateral torque, and anterior-posterior torque. The strain gauges are used

primarily to detect the times of foot-strike and foot-off; since their output values are

dependent upon the design of the prosthesis used, conclusions drawn from them may

not necessarily be usable on a prosthesis of a different design.

Finally, a hand-held button was constructed specifically for the trial and used by

the subject to manually mark gait mode transitions; these markers are used in much

the same way as the foot event times derived from the strain gauges.

The sensors interface with a wearable PC/104-based computer for purposes of

recording data. A photograph of the hardware system in its entirety is included as



Figure 3-1: The sensor-equipped prosthesis and PC/104 wearable computer used in
trials.

figure 3.1.

3.2 Software

Data from the IMU and strain gauges is recorded by the PC/104 running the Mat-

lab kernel. Matlab and Simulink were used extensively in data processing, and the

estimation/detection programs described in later chapters were written in Matlab as

well.

3.3 Trial description

One trial was carried out in order to collect data of the gait types to be detected.

The subject, a healthy male bilateral transtibial amputee (height: 1.8 m, weight: 78

kg, age: 41) wore the sensor prosthesis on his right leg and a conventional non-sensor

'MAN



prosthesis on his left leg.

The experiments were approved by MIT's Committee on the Use of Humans as

Experimental Subjects (COUHES). The participant volunteered for the study and

was permitted to withdraw from the study at any time and for any reason. Before

taking part in the study, the participant read and signed a statement acknowledging

informed consent.

3.3.1 Experimental protocol

The subject was recorded standing still, walking on level ground, and repeatedly

ascending and descending the staircase in the Media Lab lobby. The subject walked

at a steady, self-selected pace throughout the walking portions of the trial. A total of

five ascents and five descents were recorded, each of which contains two level-ground-

to-stairs and stairs-to-level transitions (at the ends of the staircase and at the landing

midway up). The trial also included a long level-ground segment at the start and brief

level-ground segments between ascents and descents as the subject turned around.

The complete trial lasted approximately five minutes.
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Chapter 4

Methods of Data Analysis

4.1 Rule-Based Analysis

4.1.1 Linear acceleration

The initial attempt at rule-based data analysis was to use double integration on the

linear acceleration data in the z (vertical) dimension to determine a value for the foot's

vertical position relative to its position at the start of the step. From this value, it

was hoped, a net upward or downward motion could be detected, thus determining

whether the step was ascent, descent, or level motion.

Unfortunately, this apparently straightforward method proved problematic. Sim-

ply integrating the raw output of the accelerometer corrected for gravity produced

wildly varying results, with net motion of over 10 cm in both directions calculated on

all three step types. Even after compensating for potential drift by resetting velocity

to zero on each step, the variation in the calculated position was still too great to draw

any meaningful conclusions (see figure 4.1.1), and the attempts to use integration of

linear acceleration data were reluctantly abandoned.

Further methods of data analysis focused on the angular outputs of the IMU:

orientation and angular velocity.



4.1.2 Orientation and angular velocity

The IMU used computes orientation internally by integrating the raw outputs of

the angular velocity sensors; the resulting orientation values are relatively accurate,

although noticeable drift was present during some portions of the trial.

There were several notable patterns in the angular velocity that differed among

level-ground, stair ascent, and stair descent; see figures 4.1.2, 4.1.2, 4.1.2.

These patterns could not be consistently quantified, however, and it was decided

that a model-based approach would be of greater use.

4.1.3 Data from strain gauges

The strain gauges clearly delineate periods when the heel and toe are on the ground

based on the presence or absence of force on the prosthesis. Precise times of heel-

strike, toe-strike, heel-off, and toe-off could be extracted from the strain data, and

these were used both to organize the data into discrete steps and in the detection of

gait mode itself.

Each of the three gait modes analyzed showed a distinct pattern in the presence

and sequence of these gait events. When walking on level ground, there are distinct

heel-strike, toe-strike, heel-off, and toe-off events in that order; when walking down

stairs, the subject's prosthetic foot struck the ground flat, leading to simultaneous

heel-strike and toe-strike events followed by a distinct heel-off and toe-off; and when

ascending stairs, the subject's heel almost never touched the ground at all, so only

toe-strike and toe-off events were recorded.

The strain gauges provided consistent outputs of zero during the swing phase,

so they are of little use in mid-step detection. As the heel and toe events were

sufficient for classification among the appropriate states while in stance, the strain

values themselves were not used after the extraction of event times.



4.2 Modifications of the Hybrid Estimation Method

for Gait Estimation

There are several aspects of the gait estimation problem that required modifications

to the basic hybrid estimation method described above. Firstly, in the gait estimation

problem there is no control input; the estimator can only passively observe the gait

data but cannot affect future gait. The control input variables in the hybrid model

can thus be eliminated.

Secondly, the continuous state measurements in hybrid estimation are assumed to

be noisy, requiring the use of Kalman filters to estimate the continuous state. In this

case, the noise in the orientation and angular velocity measurements was found to

be sufficiently low that Kalman filters did not offer significant improvements. So as

a simplification to the hybrid model, the Kalman filters were eliminated and instead

simple Gaussian models were used to calculate probabilities for the continuous state

in each mode.

Finally, as the object of this research is to determine the gait mode before the

foot strikes the ground, estimation on each step is stopped after a fixed time (0.5 and

1.0 seconds were used) and the estimated mode reported.

4.2.1 Three-Dimensional Gaussian Modeling

The cyclic nature of the gait data reduces the effectiveness of a simple two-dimensional

Gaussian of pitch angle and angular velocity in differentiating gait modes, as the

variation within a gait cycle is as great as that between different types of gait cycles.

One attempt to alleviate this problem used the time since the last toe-off as the third

dimension in a Gaussian model of the data. In this method four segments of each

gait cycle (swing, heel on ground, foot flat, toe on ground) were used as separate

modes for each of the three gait types, making for a total of twelve modes, each with

a three-dimensional Gaussian model. (In fact some of these twelve modes did not

occur in the data and were unused.)



See figure 4.2.1 for a block diagram of the three-dimensional modeling method.

4.2.2 Time-Slice Two-Dimensional Gaussian Modeling

An alternative approach retained two-dimensional Gaussian models but split the

data points into time slices by elapsed time since last toe-off. Thus a separate two-

dimensional Gaussian for each mode was generated for 0.1 seconds since toe-off, 0.2

seconds since toe-off, and so on. Since the foot contact events occurred at consistent

times in the gait cycle, the separate modes for gait cycle phases were eliminated for

this method and only the three gait type modes were used.

See figure 4.2.2 for a block diagram of the time-slice method. Plots of some of the

time-slice Gaussians generated using the entire training set are included as figures

4.2.3-4.2.3.

4.2.3 Parameter estimation

A full expectation-maximization method for estimating the parameters of the hybrid

model, as described in [3] was considered. However the presence of mode labels

in the training data made much of EM, which determines the parameters and the

modes without labels, superfluous. It was therefore decided to use simple maximum-

likelihood estimation to determine the parameters of the Gaussians.

In the three-dimensional Gaussian variant, the Gaussian for each gait mode is

the mean and covariance of the values of the vector [0t]T for each timestep in the

training set with the given mode.

In the two-dimensional variant, the Gaussian for each gait mode and each value

of t, the elapsed time since toe-off, is the mean and covariance of the values of the

vector [ 64]T, for each timestep in the training set with the given mode and value of t.

For purposes of this thesis, reasonable manually selected observation and mode

transition probabilities were used to inform the hidden Markov model. More sys-

tematically determined values for these probabilities would be preferable, but since

the training data was abnormal in the high frequency of gait mode transitions, any



transition probabilities determined using the training data would be heavily biased.
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Figure 4-5: Strain gauge data patterns

(at 100 Hz)

Pitch anee
MicroStrain IMU

Pitch anqular
velocity (')

Prosthesis Foot event
Strain Gauges times

(at 10 Hz)

Sampling,
Step parsing

Pitch angle (0),
Pitch angular ,
velocity (99

Time since last,
toe-off (t)

Gaussian models
of (0, 9', t)

Figure 4-6: Block diagram of three-dimensional modeling method



(at 100 Hz)

Pitch angle (),
MicroStrain IMU

Pitch angular
velocity (0)

Prosthesis Foot event
Strain Gauges times

(at 10 Hz)

Pitch ange() Gaussian models

Pitch angular of (0, 0') at

velocity (0') timeslice tSampling,
Step parsing

Figure 4-7: Block diagram of time-slice modeling method

.hUb

Figure 4-8: Time-slice Gaussian at t=0.0 seconds

-a



Figure 4-9: Time-slice Gaussian at t=0.5 seconds
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Chapter 5

Results and Discussion

5.1 Results

5.1.1 Rule-based method

As discussed in the previous chapter, there was no clear rule-based method for dis-

tinguishing the three gait types.

5.1.2 Hybrid estimation

The three-dimensional Gaussian method, in preliminary testing, failed to discern

among the gait types; further work on the method was abandoned following the

development of the time-slice method, which performed well in initial tests.

The time-slice method was then tested more thoroughly on the data set using

tenfold cross-correlation; the success rate was 72%, with 157 of the 218 steps correctly

identified within 0.5 seconds. Neither extending the window to 1 second nor changing

the number of testing sets for cross-correlation changed this result.

The confusion matrix is as follows:

Level Ascent Descent

Level 73 14 11

Ascent 7 52 3

Descent 26 0 32



Interestingly, most of the failures seemed to occur in the first and last stair descent

periods, which were largely misidentified as level-ground walking. The other descents,

as well as all the ascents and level-ground periods, were more consistently identified

correctly.

5.2 Discussion

Although the time-slice Gaussian detection method was successful in a majority of

cases, the issues with the first and last descents raise concerns about its reliability.

The reason for the discrepancy in the descent results is as yet unclear; it may be a

simple error in the data or involve a gait feature in the middle three descents that is

absent from the first and last. A comparison of a descent step incorrectly identified

as level-ground (figure 5.2) with a correctly identified descent step (figure 5.2) and

a correctly identified level-ground step (figure 5.2) shows that it resembles the level-

ground step more closely than the correctly identified descent; the correctly identified

descent has a sharp W-shaped curve in the angular velocity towards the beginning of

the step, while both the incorrectly identified descent and the level-ground step have

a more gradual curve. More extensive testing on multiple subjects will be necessary

to determine the true nature of this problem and whether it is possible to overcome

it.

Once these issues are resolved, potential next steps include adaptation to real-time

operation and integration of the detection system into a control policy. A real-time

version of time-slice Gaussian detection should be fairly straightforward to adapt,

given that the method does not use any knowledge of future state to predict the

present state. Once the real-time conversion is complete, use of the results of this

detection method to select an appropriate control policy should also be a straight-

forward adaptation but may require additional modification to the detection code

depending upon the control hardware and software used in the active prosthesis.

Beyond the scope of this thesis are other detection methods considered but not

developed. In particular, model-free methods such as the support vector machine [2]



Step 195 - Pitch Angular Velocity

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 5-1: Angular velocity of descent step misidentified as level-ground.

Step 193 - Pitch Angular Velocity

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 5-2: Angular velocity of correctly identified descent step.



Step 214 - Pitch Angular Velocity

0.2 0.4 0.6 0.8 1 1.2

Figure 5-3: Angular velocity of correctly identified level-ground step.



could also provide a basis for a real-time gait detection system, and a comparison

of such methods with the hybrid time-slice Gaussian method would be valuable as

well. Additional problems for future work include estimating additional gait modes,

such as ramp ascent and descent, whose distinguishability from level-ground and stair

ascent and descent has yet to be determined.

Despite the minor problems with reliability, the hybrid gait estimation method

discussed herein is generally an effective method and has strong potential for use in

the next generation of active prostheses.
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