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Abstract

A new approach is proposed for finding all solutions of systems of nonlinear equations
with bound constraints. The zero finding problem is converted to a global optimiza-
tion problem whose global minima with zero objective value, if any, correspond to
all solutions of the initial problem. A branch-and-bound algorithm is used with Mc-
Cormick's nonsmooth convex relaxations to generate lower bounds. An inclusion
relation between the solution set of the relaxed problem and that of the original non-
convex problem is established which motivates a method to generate automatically
reasonably close starting points for a local Newton-type method. A damped-Newton
method with natural level functions employing the restrictive monotonicity test is
employed to find solutions robustly and rapidly. Due to the special structure of the
objective function, the solution of the convex lower bounding problem yields a nons-
mooth root exclusion test which is found to perform better than earlier interval based
exclusion tests. The Krawczyk operator based root inclusion and exclusion tests are
also embedded in the proposed algorithm to refine the variable bounds for efficient
fathoming of the search space. The performance of the algorithm on a variety of test
problems from the literature is presented and for most of them the first solution is
found at the first iteration of the algorithm due to the good starting point generation.
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Chapter 1

Introduction

One of the most challenging problems arising in many science and engineering appli-

cations is the solution of systems of nonlinear equations. This is expressed mathe-

matically as finding x E RI such that

f(x) = 0 (1.1)

where f : R' -+ R" is the function describing a certain model. Also, quite often the

model under consideration is only valid on a subset of R', usually in an n dimensional

box formed by the physical bounds on the variables x. Such a box X C R' is described

as

X = {x E Rn: xL < X<XU} (1.2)

where xL E R" and xU E R" are, respectively, the lower and upper bounds on x. The

algorithm presented in this thesis finds all solutions of (1.1) in a given box X C Rn

using an approach similar to a branch-and-bound method for global optimization.

A vast literature exists on techniques for solving systems of nonlinear equations.

Many of the existing methods can be broadly classified into following three major

headings:

1. Newton type methods,

2. Interval methods, and

13



3. Continuation methods.

In this chapter relevant theoretical background and literature reviews about each

of them will be presented highlighting their roles, if any, in the branch-and-bound

algorithm proposed in this thesis.

1.1 Newton-type Methods

All Newton type methods for solving a system of equations defined by (1.1) require

computation of the Newton direction dk for iteration k, given by the solution of

following system of linear equations:

J(xk)dk = -f (xk) (1.3)

where xk is the estimate for the solution at iteration k and J(xk) is the Jacobian

matrix of f evaluated at xk. Newton's method takes the full Newton step at iteration

k, giving the next iterate as

xk+1 k +ka.OXk± =Xk +dk (1.4)

1.1.1 Local Convergence of Newton's Method

In general, Newton's method achieves a superlinear convergence but the convergence

is confined locally [20]. Local convergence means that corresponding to each isolated

solution x* of (1.1) there exists a scalar c > 0 defining a neighborhood N(x*) of x*

as

N(x*) = {x E R' : |x - x*1I <4c} (1.5)

such that all starting points located in NE(x*) will generate a sequence of iterates

converging to the solution x*. In the Euclidean norm N(x*) is a hypersphere in R"

centered at x*, having radius E. Moreover, often the step dk is "too large" making

Newton's method unstable, eventually leading to convergence failure. Another po-

tential disadvantage is that this step may totally ignore the domain of admissible

14



solutions, which is not desirable.

1.1.2 Damped-Newton Method

Attempts have been made to increase the neighborhood of convergence by use of

step length control strategies such as line search which leads to the damped-Newton

method. This, instead of taking the full Newton step, calculates a stepsize ak E (0, 1]

at each iteration and the next iterate is given by

xk+1 =k +ak d. (1.6)

The stepsize a k is chosen to decrease an appropriate merit or level function relative

to xk. The overall effect is that taking a smaller stepsize rather than full Newton step

almost eliminates the instability problem with Newton's method.

A common choice for merit function T(x) is the squared Euclidean norm of f(x):

n

T(x) = I|f(x) = Ef (x). (1.7)

Line search obtains the stepsize ak by solving the following one dimensional mini-

mization problem:

min T(x) = min I|f(xk + akdk)||2. (1.8)
akE(0,1] ake(0,1]

Using nonlinear optimization theory it can be shown that with the proper choice of

stepsize, the damped-Newton method will converge for any initial guess in the level

set

N = {x E R' : I|f(x)I| ; 0} (1.9)

provided 3 is chosen such that:

1. No is a compact subset of the domain of f,

2. f is twice continuously differentiable on an open set containing NO, and

3. the Jacobian matrix J(x) is nonsingular on N,3.

15



It is anticipated that the set No is much larger than the neighborhood of convergence

for Newton's method, and hence this is called global convergence.

1.1.3 Natural Level Functions

Computational experience shows that even for mildly ill-conditioned problems the

damped-Newton method produces extremely small stepsizes leading to very slow con-

vergence. As pointed out by Deuflhard [3] this happens because, for ill conditioned

problems, the Newton direction

dk = J(Xk)-lf(xk) (1.10)

and the steepest descent direction of the merit function (1.7)

-VT(xk) = -2J(x k)Tf (Xk) (1.11)

are almost orthogonal so that enforcing descent of the merit function leads to very

small stepsizes. This can be verified by computing the cosine of the angle between

the two directions as,

cos(dk, -VT(xk)) = f(xk)Tf(xk)> 1 (1.12)
IJ(xk)-If(Xk)H IIJ(xk) Tf(xk)| - cond(J(xk))*

It is highly probable that above expression for the cosine of the angle between dk and

-VT(xk) attains its lower bound of (cond J(xk))- 1 , explaining the slow convergence

of the damped-Newton method. This observation motivated Deuflhard [3] to propose

the following merit function

TJ(x) = |lJ(xk)-If(x)I2 (1.13)

known as the natural level function, for which the steepest descent direction is par-

allel to the Newton direction, avoiding the orthogonality problem with the damped-

Newton method. Moreover, this merit function is invariant under affine transforma-
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tions and hence convergence, when it occurs, is fast.

1.1.4 Restrictive Monotonicity Test

As is evident from (1.13), the natural level function is changing at each iteration and

so descent arguments can no longer be used to prove global convergence. Indeed,
it is quite easy to construct a counterexample in which the iteration will just move

back and forth between two points for ever without converging [1]. This led Bock

et al. [2] to propose the restrictive monotonicity test (RMT) which essentially is

an alternative stepsize selection strategy to exact or approximate line search using

natural level functions. To formalize RMT following proposition is needed.

Proposition 1.1.1 (Quadratic Upper Bound). If dk is the Newton direction,

then

2IIJ(x)- 1 f xk + adk)|| (1 - ca + o-(a)||jdkI)J k~ fxI (1.14)

where,

||Jx' (Jk x + sdk ) - J3k)
w(a) = sup sdk . (1.15)

O<s<;a s||dk

In light of proposition (1.1.1), if we choose a stepsize 0 < ak < 1 such that

a k1Id k|| ! min Ild ,|k|| (1.16)
(W(ak)

for some r/ < 2, then a descent condition similar to the Armijo rule holds for natural

level functions. (1.16) is known as Restrictive Monotonicity Test.

The Fortran subroutine (NWTSLV) implementing the damped-Newton method

has been developed [24] that combines the RMT method with sparse linear algebra

[4], making it suitable for large-scale problems. On a wide range of test problems, this

RMT code has demonstrated a dramatic improvement in robustness over the previous

codes based on Newton's method. Although in terms of speed of convergence RMT

often takes a large number of steps, convergence is slow and steady rather than

17



grinding to halt as is the case for the basic damped-Newton method in face of ill-

conditioning.

Although these efforts have significantly enlarged the region of convergence, find-

ing a close enough starting point still remains a nontrivial task, as real industrial

problems are large, highly nonlinear and ill-conditioned and often exhibit a very

small neighborhood of convergence. In practice, a large amount of time on projects

is spent by engineers trying to get a suitable starting point using a variety of ad hoc

strategies. An important contribution of the algorithm proposed in this thesis is the

development of a reliable technique to generate automatically starting points which

are in a sense reasonably close to the solution sought.

1.2 Interval methods

This section will provide a brief introduction to interval arithmetic, with emphasis on

the aspects relevant to the nonlinear equation solving addressed in this thesis. For a

more detailed and complete discussion the reader is referred to the classic literature

on interval based methods by Neumaier [19].

A real interval number, or simply, an interval X can be defined by X = [xL, xU

{x E R : xL X } , where xL XU E R and xL < U. The set of all such real

intervals is denoted by ER. A real number x E R can also be represented as a degener-

ate (or thin) interval X = [x, x] EIR. An interval vector is analogous to real vectors

where real numbers are replaced by intervals. Thus, an interval vector represents an

n dimensional box and is denoted by X = (Xi)1 ign = (X 1, X 2, ... , Xn) E llR" where,

Xi E fR, 1 < i < n.

Some useful definitions related to intervals are enumerated below. In all the defini-

tions an interval number is denoted by X = [xL, xU] and an interval vector is denoted

by X =(Xi)1<ign.

1. (Midpoint): For the interval number X = [xL, XU] the mid-point is the number

Y E R such that Y = (xL + XU)/2. For an interval vector X = (Xi)1 i<n E fRn

it is R E Rn such that R = (T1, Y2, ... , Yn).

18



2. (Width): The width of an interval number X is w(X) E R defined as w(X) =

XU - xL. For an interval vector X, width w(X) E R, is w(X) = maxi<<n w(X ).

3. (Absolute Value): The absolute value |Xi E R of an interval is JXJ = max(|xLI, xU).

1.2.1 Interval Arithmetic

Since interval analysis treats intervals as numbers, arithmetic operators can be de-

fined with these numbers as an extension of real arithmetic. For two intervals

X = [xL, xU] and Y = [yL yU] E fIR the elementary interval arithmetic operations

op E {+, -, x, } are defined as

X op Y = {x op y: x E X,y G Y}. (1.17)

This leads to following formulae for elementary interval operations in terms of the

corresponding end points

X + Y = [xL +yL, xU + yU],

X -Y = [xL _ yU,xU Y L,

X x Y = [min(x L XLyU XU YL XU yU), max(xL yLxL yU U yL )xU yU

X +. Y = [XL , XU] X [1/yU I 1L), 0 0 [yL, YU].

When these operations are performed on a computer, rounding problems are likely

to arise in exact computations of the end points. Steps can be taken to ensure that

the result is a superset and not a subset of the accurate result. This is done by using

rounded-interval arithmetic [19][Chapter 1].

1.2.2 Interval Valued Functions

Given a real-valued continuous function f : R' --+ R the image of an interval X E 1R"'

is defined as,

f(X) = {f(x) : x E X} = min f (x), max f (x)] (1.18)
L xEX xEX J
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which is an interval. Hence this mapping can be viewed as an interval-valued mapping

F : IR" -- RR. Note that f being a continuous function optimized over a compact

set X guarantees the existence of max and min in (1.18) and also that every value

between the two extrema is attained. However, exact computation of the RHS in

(1.18) requires solving two global optimization problem which cannot in general be

done with a finite computation. Hence, computationally inexpensive techniques are

used to obtain an estimate of f(X) using interval analysis. An example of an interval

valued function that is cheap to compute is a rational interval function whose interval

values are defined by a specific finite sequence of interval arithmetic operations.

Inclusion Function

An interval valued function F : R" -> ER is an inclusion function for f : Rn -+ R

over an interval X C Rn if

f (Z) c F(Z), VZ C ER : Z C X. (1.19)

Hence, the interval valued inclusion function evaluated at Z contains the image of Z

under f for all Z C X.

Inclusion Monotonic Function

An interval valued mapping F: ER" --+ R is inclusion monotonic if

Y c Xj, V i = 1, 2, 3, ... , n => F(Y) C F(X) (1.20)

i.e., the interval value of a subset is a subset of the interval value of the host set.

The image function f is inclusion monotonic, as are all the interval arithmetic opera-

tors (as they are images), and rational interval functions by finite induction. However

not all interval valued functions are inclusion monotonic.

20



1.2.3 Interval Extensions of Functions

Given a function f : R" -+ R its interval extension is an interval valued function

F : ]JR' -+ R with the property

f (x) = y = [y, y] = F([x, x]), Vx E Rn (1.21)

where the interval valued function F is evaluated at the degenerate interval [x, x]

corresponding to the point x. (The domain and property may be restricted to X C

Rn). It is noteworthy that there is not a unique interval extension for a given function.

Also, if F : TR" --+ RR is an inclusion monotonic interval extension of f : Rn -+ R,
then

f(X) c F(X),VX E hIR. (1.22)

Hence, inclusion monotonic interval extensions are of particular interests in interval

analysis.

Natural Interval Extension

One of the easiest ways to compute an inclusion monotonic interval extension of real

rational functions is by the natural interval extension which is obtained simply by

replacing x by the interval X and the elementary real operations by the corresponding

interval arithmetic operations. Also, if a unary continuous intrinsic function O(x)

appears in the sequence of elementary operations, the image of any interval X is

given by

1(X) = {O(x) : x E X} = min #(x), max #(x)]. (1.23)

For most of the intrinsic functions supported by compilers, the min and max are easy

to compute and so the image can be used in natural interval extensions. For instance,

for a monotonically increasing function (e.g., exp(x), log(x), V/) if X = [XL' XU]

'1(X) = {(x) : x E X} = [#(xL),I5(XU)] (1.24)
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and an obvious result also holds for monotonically decreasing functions. For a positive

integer p, exponentiation of the interval X = [xL xU] is defined as

[(xL, (XU)p] if XL > 0 or p is odd

XP = [(xU)p, (XL)p] if xU < 0 and p is even (1.25)

[0,X|P] if 0 E X and p is even.

It is not hard to confirm that this definition yields the exact range of the functions

whose interval extensions are computed. However, this is not true in general. In

fact, the interval extensions F(X) encloses all values of f(x) for x E X but the

quality (tightness) of this enclosure depends on the form in which F(X) is expressed

and evaluated. For example, consider the function f(x) = x 1 (x 2 - x 3), x E R3

defined over the three-dimensional box X = X1 x X2 x X 3 E [R 3 . The natural

interval extension is F(X) = X1 x (X 2 - X 3) which for X1 = X2 = X3 = [1, 2]

evaluates to [-2,2] and is precisely the image of X under f. However, expressing

the same function as f(x) = (x 1x 2 - X1X3) results in the natural interval extension

F(X) = X 1 x X2 - X 1 x X3 evaluating to [-3,3] for the same box and so is an

overestimate of the image of X under f. Such overestimations usually happen when an

interval variable occurs more than once in an expression. This is called the dependence

problem and occurs because interval arithmetic essentially treats each occurrence of a

variable independently rather than recognizing their dependencies. Natural interval

extensions are widely used to approximate (overestimate) the range of real-valued

rational functions on a given box and it will be seen later that they serve as a key

component in evaluation of the convex relaxation of functions.

1.2.4 Interval-Newton Operator

For an interval box X c Rn, a point x E X and a continuously differentiable function

f :X -+ Rn, the interval-Newton operator N(x, f, X) is defined by the following system
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of linear interval equations:

J(f, X) (N(x, f, X) - x) = -f(x) (1.26)

where J(f, X) is the interval extension of the Jacobian matrix of f over X. It can be

shown [17] that a solution of f(x) = 0 in X, if any, will also be contained in N(x, f, X).

This suggests the iteration

Xk+1 = Xk nN(xkf,Xk), (1.27)

known as the interval-Newton iteration. Different interval-Newton methods differ in

the way N(xk, f, Xk) is determined from equation (1.26) and thus in the tightness with

which the solution set of (1.1) is enclosed in N(xk, f, Xk). Schnepper and Stadtherr

[22], for example, computed Nk(x, f, X) component by component using an interval

Gauss-Seidel-like procedure. Various kinds of preconditioning is also done to obtain

a tighter enclosure.

Root Inclusion and Exclusion Tests

While the iteration scheme given by (1.27) can be used to enclose a solution tightly,

what is most significant is its power to provide an existence and uniqueness test

popularly known as a root inclusion test [19]. It states that if N(xk, f, Xk) C Xk then

Xk contains exactly one solution of f(x) = 0 and furthermore Newton's method with

real arithmetic will converge to that solution starting from any point in Xk. Also if

N(xk, f, Xk) n Xk = 0 then there is no root in Xk. This so called root exclusion test is

another significant result of the interval-based method which helps fathom a large part

of the search space in the interval-Newton/generalized bisection method. However, If

none of the two holds then no conclusion can be drawn and the inclusion test could

be repeated on the next interval-Newton iterate Xk+1, assuming it to be sufficiently

smaller than Xk. Or else, one could also bisect Xk+1 and repeat the inclusion test

on the resulting interval. This is the basic idea of the interval-Newton/generalized
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bisection method. Assuming that f(x) = 0 has finite number of real solutions in

specified initial box, a properly implemented interval-Newton/generalized bisection

method can find with mathematical certainty any and all such solutions to any pre-

specified tolerance, or can determine that there is no solution in the given box [7].

1.2.5 Krawczyk's Operator

Although the interval-Newton operator has the potential to produce the tightest

enclosures of solutions, its computation is often cumbersome due to the invertibil-

ity requirements for an interval matrix. If the interval extension of the Jacobian

J(f, X) contains a singular matrix, the interval-Newton operator N(x, f, X) becomes

unbounded and lot of preconditioning and other strategies are required to avoid the

involved computational instability. This motivated Krawczyk [19] to derive the fol-

lowing interval operator known as Krawczyk's operator

K(x, f, X) = x - Yf(x) + (I - YJ(f, X))(X - x) (1.28)

where, Y E R"'" is a linear isomorphism used for preconditioning, I E Rn>n is a

n x n identity matrix, and J(f, X) is an interval extension of the Jacobian matrix of

f over X.

As per Neumaier [19] the invertibility of the interval matrix is avoided in Krawczyk's

operator at the cost of a relaxed enclosure of solutions compared to the interval-

Newton operator. Nevertheless, similar root inclusion and exclusion tests hold for

the enclosures obtained using Krawczyk's operator, i.e., if K(x, f, X) C X then there

is a unique zero of f(x) in X (Krawczyk root inclusion test). Furthermore, solutions

of f(x) = 0 in X, if any, are contained in the intersection K(x, f, X) n X and if

this intersection is the empty set (0) then no root is contained in X (Krawczyk root

exclusion test). For the inclusion test an ideal pre-conditioner matrix Y is the inverse

of the Jacobian matrix evaluated at the solution. However, in the interval type

methods, the solution is not known a priori and hence Y is usually approximated

by taking the inverse of the midpoint of the interval matrix J(f, X). In the proposed
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algorithm, once a solution is found by a point Newton-type method, the Krawczyk

operator is used only to check the uniqueness of the obtained solution in the present

box X. Hence, excellent preconditioning is achieved by using the inverted Jacobian

matrix at a solution, making the inclusion test quite effective. Also, since K(x, f, X)

is evaluated at a solution point the second term in equation (1.28) vanishes leaving

the following simplified form:

K(x, f, X) = x + (I - YJ(f, X))(X - x). (1.29)

If the root inclusion test is positive the current box can be fathomed based on the

uniqueness result. Moreover, the intersection relation itself helps to fathom a good

part of the search space not containing any solution. For the exclusion test, the inverse

of mid-point of the Jacobian interval matrix J(f, X) is used as the pre-conditioner Y.

1.3 Continuation Methods

Another important class of methods for solving systems of nonlinear equations is

continuation or homotopy continuation methods. This is an incremental loading type

of method where a single parameter (say t) family of problems is created such that

the solution for (t = 0) is known. Starting from t = 0, a sequence of problems is

solved with t being incremented in small steps untill t = 1, when the solution sought

is obtained.

For illustration consider the system of equations defined in (1.1). Embedding it into

a convex linear global homotopy gives:

H(x, t) = tf(x) + (1 - t)g(x) = 0 (1.30)

Where t E R is the scalar homotopy parameter, H : R" x R -+ R", and g : R -+ R"

is a vector function selected such that the solution to g(x) = 0 is known or easily

determined.

The above choice of g(x) helps because solving H(x, 0) = 0 is the same as solving
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Table 1.1: Different homotopies for various choices of g(x).

Homotopy g(x) H(x, t)
Newton homotopy f(x) - f(x0 ) f(x) - (1 - t)f(x0 )
Fixed-point homotopy x - x 0  tf(x) + (1 - t)(x - x0 )
Scale-invariant affine homotopy Vf(x0 )(x - x0 ) tf(x) + (1 - t)Vf(x0 )(x - x0 )

g(x) = 0 and solutions of H(x, 1) = 0 correspond to the solutions of f(x) = 0. Hence,

by incrementing t in small steps starting from t = 0 an x - t curve satisfying equation

(1.30) is obtained and its points of intersection with t = 1 gives the solutions of (1.1)

sought. Three main choices of g(x) discussed by Wayburn and Seader [10] lead to

three respective homotopies as listed in Table 1.1 (x0 is the given starting point).

Seader et al. [23, 8, 6] have successfully applied homotopy based continuation meth-

ods for solving nonlinear equations. Although this method is frequently used to find

multiple solutions of arbitrary systems of nonlinear equations, mathematical guaran-

tees that all solutions will be found exist only in some special cases. Furthermore,

an important drawback of the continuation-based methods is that variable bounds

cannot be handled directly and hence they have limited application for the class of

bound constrained problems addressed in this thesis.

1.4 Thesis Summary

In recent years, a global optimization reformulation of the root finding problem has

been used successfully by Maranas and Floudas [15] to find all solutions of systems

of nonlinear equations. These ideas exploit developments in the deterministic global

optimization literature. In the proposed algorithm, an approach similar to [15] is used

and the original problem is reformulated to a nonconvex optimization problem with

the objective function taken as a suitable norm of f(x). Chapter 2 will detail this

global optimization reformulation and develop relevant theory leading to the proposed

branch-and-bound algorithm. The algorithm will be formally stated in Chapter 3 with

a brief discussion on its implementation. Test results of the performance of algorithm
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on a variety of problems from the literature are presented and analyzed in Chapter

4. The thesis ends with concluding remarks and a brief discussion on the scope of

future work in Chapter 5.
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Chapter 2

Global Optimization Formulation

The root finding problem described by (1.1) can be reformulated as the following

global optimization problem over the admissible domain X c R"

min|1f(x)H| (2.1)
xEX

where 11.11 can be any vector norm. Numerical considerations dictate that the 1-norm

is the best choice in the presented algorithmic framework, as will be discussed later

in this Chapter. This results in the following optimization problem:

n

min Ifidx). (2.2)

If the optimal value of the above optimization problem is zero, any corresponding x

will be a solution of (1.1). In fact, the global optimal solutions with zero optimal

value of (2.2) are equivalent to the admissible solution set of (1.1). However, in gen-

eral (2.2) is a nonconvex program and a local solver cannot guarantee convergence

to a global optimal solution. Hence, for such problems, one strategy is to construct

a convex relaxation of the objective function and solve the resulting convex program

to generate a lower bound on the global optimal value. Likewise, for nonconcave

maximization problems there is the concept of a concave relaxation of the objective

function used to upper bound the global maximum. Convex and concave relaxations
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are quite commonly used in the global optimization algorithms and given an elemen-

tary function, a variety of techniques are known for constructing these relaxations as

elaborated in the section that follows.

2.1 Convex and Concave Relaxations

Let C C Rn be any convex set. The convex relaxation of a function f : C -+ R on C

is a convex function u : C -- R such that

u(x) f(x),Vx E C. (2.3)

Analogously, the concave relaxation of f : C -+ R on C is a concave function o: C

R such that

o(x) > f (x), Vx E C. (2.4)

Hence the convex relaxation of a function is a pointwise underestimator on its domain

of definition and the concave relaxation is a pointwise overestimator.

Minimizing the convex relaxation on C will yield a lower bound on the minimum

and/or infimum of f on C and maximizing the concave relaxation on C provides an

upper bound on the maximum and/or supremum of f on C. Both the minimization of

a convex relaxation and maximization of a concave relaxations are convex programs

and hence are of particular interest in global optimization algorithms. The quality of

these bounds will depend on how tight the relaxations are. Exact bounds are provided

by the so called convex and concave envelopes of f on C.

2.1.1 Convex and Concave Envelopes

The convex envelope fc(x) : C --+ R of a function f : C -- R is the pointwise

supremum of all possible convex relaxations of f on C and the concave envelope

fc(x) : C --+ R of f : C -+ R is the pointwise infimum of all possible concave

relaxations of f on C. The convex envelope qx(x) of any univariate concave function

#(x) on an interval X = [xL xU] is given by the secant to the univariate concave
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function at the endpoints of the interval. Mathematically,

x(X) = (X ) + U XL) - XL). (2.5)
xU - xL

In fact, the convex envelope of any multivariate concave function on a simplex is given

by the affine function that coincides with the multivariate concave function at all the

vertices of the simplex. However, in general the convex envelope of a multivariate

concave function on a multi-dimensional interval is not an affine function. Bilinear

functions are a frequently occurring nonconvex term in optimization problems. The

convex and concave envelopes of a bilinear function q(x, y) = xy on the interval X x Y

are given, respectively, by the pointwise maximum and minimum of two planes as

follows:

Oxxy(x, y) max{yLX XLY-XL L YUX +U UYU1 (2.6)

Oxxy(x, y) min{yL XU -XU L yU XLy L U(27)

2.1.2 Relaxations of the Sum & Difference of Two Functions

Given the convex and concave relaxations of two functions fi(x) and f2(x) on a

nonempty convex set C C R' it is possible to construct convex and concave relax-

ations for their sum, difference and product over C. Suppose that convex functions

cu(x), cu(x) and concave functions c'(x), co(x) on C satisfying

cu(x) fi(x) co(x), Vx E C (2.8)

cu(x) f2(x) co(x), Vx E C (2.9)

are known. The results for the relaxations of the sum and difference of the two

functions follow immediately as:

u+(x) cu (x) + cu(x) 5 fi(x) + f2(x) co(x) + co(x) o+ (x), Vx E C (2.10)

u-(x) cu(x) - c'(x) fi(x) - f2(x) 5 c'(x) - cu(x) o_(x), Vx E C. (2.11)
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It can be easily seen that functions u+(x) and u_(x), being the sum of two convex

functions, are convex and o+(x) and o-(x), being the sum of two concave functions,

are concave. The inequality relations in (2.10) confirm that u+(x) and o±(x) are valid

convex and concave relaxations, respectively, for the sum of the two functions over

C. By symmetrical arguments, in light of (2.11), u_(x) and o-(x) are valid convex

and concave relaxations, respectively, for the difference of the two functions.

2.1.3 Relaxations of the Product of Two Functions

To compute a relaxation of the product fi(x)f 2(x) on C in addition to cu(x), c2(x)

and co(x), co(x) satisfying (2.8) and (2.9) we also need numbers ff, fu, f2L, ff such

that

Cc{x :fl 5 f(x) ff, ff 5 f2(x) 5ff}. (2.12)

From the convex envelope of a bilinear function it is known that

fl(x)f2(x) ;> max{ff2L fi(x) + fi' f2(x) - fL ff, f2 fi(x) + f Uf2(x) fiU f2U}, Vx E C.

(2.13)

Now defining,

a, (x) =- minf f cu (x), f2LcO(x)}I

a2(X) = min{fj% "(x), fu c(x)}

it can be verified that the functions al (x), a2 (x), i1 (x) and 02(x) are convex on C.

Also, it follows from (2.13) that

fi(x)f2(x) > max{a1(x) + a2(X) - fLf 2L ,31 (x) + 32(x) - ff2fU}, Vx E C. (2.14)

Each argument in the max function on the RHS of (2.14) is convex and the maximum

of two convex functions is convex making it a valid convex relaxation of fi(x)f2(x)
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on C. The concave relaxation is obtained from the concave envelope of the bilinear

function in a similar manner:

fi(x)f2(x) min{ff fi(x) + ff f2(x) - ff ff, ff fi(x) + fl 'f2(x) - ff f'f}, Vx E C.

(2.15)

Again defining,

71 (x) max{f 2 c1(x),ffcy(x)}

72(X)-= max{f fc"(x), ff'c'(x)}

6i(x) = max{f2 c'(x), f2 c'(x)}

52(X)=- max{fflc2"(x), f c"(x)}

the functions 7yi (x), -72 (x), J, (x) and 62 (x) can be shown to be concave on C and it

follows from (2.15) that

fl(x)f2(x) min{71(x) + 72(x) - ff ff, Ji(x) + 62(x) - f'f2 '}, Vx E C. (2.16)

Each argument in the min function on the RHS of (2.16) is concave and the minimum

of two concave functions is concave which makes it a valid concave relaxation of

fl(x)f2(x) on C.

2.2 McCormick's Convex Relaxation

McCormick [16] has proposed a method for constructing convex and concave relax-

ations of a function F[f(x)] defined by the composition of a multivariate function

f(x) with a univariate function F(z). The following theorem, known as McCormick's

composition theorem, enables the construction of convex and concave relaxations of

the composition.

Theorem 2.2.1 (McCormick's Composition Theorem). Let C C R" be any

nonempty convex set. Consider the composite function F o f where f : C -+ R is
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continuous, and let f(C) c [a, b]. Suppose that a convex function cu(x) and a concave

function co(x) satisfying

cu(x) f(x) c"(x), Vx E C (2.17)

are known. Let e : [a, b] -+ R be a convex relaxation of F on [a, b] and let E : [a, b] -- I R

be a concave relaxation of F on [a, b]. Let zmin be point at which e attains its infimum

on [a, b] and let Zmax be point at which E attains its supremum on [a, b]. If the above

conditions hold, then

u(x) = e[mid{cu(x), co(x), zmin}] (2.18)

is a convex relaxation of F o f on C and,

o(x) = E[mid{cu(x), c(x), zmax}1 (2.19)

is a concave relaxation of F o f on C, where the mid function selects the middle value

of the three scalars.

The theorem requires prior knowledge of a and b such that f(C) C [a, b]. This

can be done by taking the natural interval extension of f on a box X D C and

using fLand f U for a and b, respectively. This makes the relaxations dependent on

the strength of the interval extensions and so a weak interval extension may result

in weak relaxations. Hence, due care should be taken while writing the function

expression to minimize the dependence problem discussed in section (1.2.3).

2.2.1 Factorable Functions

Let C C R" be any nonempty convex set. McCormick defined a factorable function

f : C -+ R as a function that can be formulated as a finite sequence of factors

defined as binary additions, binary multiplications or univariate intrinsic functions of

previously defined factors, so that

Vi = xi, Vi = 1, 2,3 ,...,n
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and fori 1, n+2, ... , N

Vi =V1 +Vk, j, k < i

or

Vi =VjVk, j, k < i

or

vi = F(v), j < i

where F is any univariate intrinsic function and f evaluates to VN. It is similar

to the class of functions for which natural interval extensions can be calculated.

Subtraction and division operations can be handled by introducing univariate negative

and reciprocal intrinsic functions. Most of the functions that are implementable as

a computer program are factorable in the above sense. There are usually several

different representations of a given function as factors, and different representations

may yield different convex and concave relaxations. For example, x2 can be treated

as a univariate intrinsic function or as a binary multiplication to yield two different

relaxations.

As discussed in section (2.1.1), if the interval extensions and convex and concave

relaxations of two functions are known on a given interval, the corresponding relax-

ations for their sum, difference and product can be computed. In order to construct

convex and concave relaxations of a factorable function f on C, given an interval

vector (box) X D C, set the first i = 1, 2, 3, ... , n convex and concave relaxations as:

ci = xi

ci0 = xi

and the interval extensions i = 1, 2, 3, ... , n as

Vi = Xi.
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Assuming convex and concave relaxations are known for all univariate intrinsic func-

tions from which f is composed, each factor i = n + 1, . . . , N can be augmented

with expressions defining its concave and convex relaxations, using the rules for uni-

variate intrinsic functions, binary addition and binary multiplication. Each factor

i = n + 1, ... , N can also be augmented with the expression for its natural inter-

val extension in order to propagate the bounds needed in the expressions for the

relaxations. This in fact defines a sequence of statements that can be executed by a

computer program in order to evaluate simultaneously:

1. f at x,

2. the required convex and concave relaxations at x, and

3. the natural interval extension of f on the box X.

Hence, the relaxations can be easily implemented as a computer program using the

operator overloading features of modern programming languages. The running time

required will be a small fixed multiple of the running time required to evaluate the

original factorable representation of the function.

2.2.2 Nonsmoothness of McCormick's Relaxation

It is evident that, due to the frequent occurrence of min, max and mid terms in

the expressions for evaluating McCormick's relaxations, these relaxations are usually

nonsmooth and so convex optimization methods assuming differentiability cannot

be applied to solve the resulting convex program. However, nonsmooth optimization

techniques employing subgradients of the objective function can be applied. Recently,

a method to compute subgradients of McCormick's convex relaxations has also been

developed [21] which works in a very similar manner to the way in which automatic

differentiation computes the gradient of a smooth function [5]. This enables the

resulting convex program to be solved using nonsmooth optimization methods such

as bundle methods [14, 11] and the variable metric method [12]. The Fortran codes

[13] implementing the variable metric method (PVARS) and the proximal bundle
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method (PBUNS), work quite well on McCormick's nonsmooth functions and have

been used in the implementation of the presented algorithm. The McCormick's convex

relaxation of the objective function in (2.2) is computed to obtain the lower bounding

convex program, the solution of which gives a root exclusion test as well as a reliable

technique to generate a starting point for a point Newton-type iteration automatically.

2.3 Nonsmooth Root Exclusion Test

Consider the nonconvex minimization problem (2.2). By constructing McCormick's

convex underestimator u(x) of the objective function over X C R', the following

convex program

min u(x) (2.20)
xEX

can be formulated and solved to lower bound the optimal value of (2.2). Since this

convex program is obtained using McCormick's convex underestimators, it will be

referred to as McCormick's convex program subsequently in this thesis. Before pro-

ceeding further the following result is needed.

Proposition 2.3.1. Let f : X C R" -+ R' be any factorable function defined on an

n-dimensional box X. Then, the McCormick's convex relaxation u(x) underestimating

the vector 1-norm IIf(x)|I of f(x) is nonnegative on X.

Proof : Let cy(x) and c?(x) respectively denote the convex and concave relaxations

of function fi(x) over X for i = 1, 2, 3,... , n. Thus,

cy(x) 5 fi(x) c'(x), Vx E X, i = 1, 2, ... , n. (2.21)

Also suppose that the numbers fA and f7 are known (e.g. from natural interval

extensions) such that

fL 5 fz(x) < fu, Vx E X, i = 1, 2, ... , n. (2.22)

To construct the convex relaxation ui(x) of If (x)l over X we observe that the uni-
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variate outer function is F(z) = jzj which being convex is its own convex relax-

ation and attains its minimum value at zi,min = mid{ff, ff,0} over [ff, ff] for

i = 1, 2,3, ... , n. Hence, using McCormick's composition theorem the convex under-

estimator of Ifi(x)l over X will be given by

ui(x) = Imid{c (x),c?(x), zi,min}I ; 0, i = 1, 2,... , n. (2.23)

Now, the convex relaxation u(x) for the 1-norm of f(x) can be obtained by adding the

individual convex underestimators ui(x), as summation of convex functions preserves

convexity. Hence,
n n

u(x) = ui(x) < 1f(x)I, Vx E X.
i=1 i=1

Using (2.23), all the terms involved in the left summation above are nonnegative

thereby making u(x) nonnegative. l

The proposition above is proved only for 1-norm of f(x) but can be easily gener-

alized to any norm. It asserts that the optimal value of the convex program (2.20) is

nonnegative. Thus, if (2.20) is solved and its optimal value is found to be positive,

then based on the underestimating property of the convex relaxation, it is concluded

that no solution to (1.1) exists in X. This so called root exclusion test provides a

rigorous method to verify that no admissible solution to f(x) = 0 exists and proves

extremely useful to debug poorly formulated process models and/or simulation prob-

lems. As will be seen in the next chapter, this test is used to fathom a large part of

the search space in the proposed branch-and-bound algorithm for solving systems of

nonlinear equations.

2.4 Automatic Generation of Starting Points

If the optimal value of (2.20) is found to be zero, it does not necessarily imply that an

admissible solution of (1.1) exists. Nevertheless, the solution point found can be used

as an automatically generated starting point for a local Newton-type iteration to find
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a solution of (1.1), if one exists. The following proposition motivates this choice of

starting point.

Proposition 2.4.1. Let f : X C R" --+ R' be any continuous function defined on an

n-dimensional box X and let the sets S and U be defined as

S = {x E X: f(x) = 0}

U = {x E X: u(x) = 0}

(2.24)

(2.25)

where, u(x) is the McCormick convex relaxation of the 1-norm ||f(x)||1 of f(x) over

X. Then, S c conv(S) C U c X, where conv(S) denotes the convex hull of the set

S.

Proof: Let k E conv(S). Using Caratheodory's theorem, there exist scalars Aj > 0

and x3 E S for j = 1, 2, 3,... , n + 1, such that

n+1

X = ZAjXj
j=1

and
n+1

1 A3 = 1.
j=1

Again, any x* E S will also be a zero optimal solution of the optimization problem

min |f(x)j 1
xEX

= min lfi(x)i.
XEX

Using the nonnegativity and underestimating property of u(x), it follows that

0 < u(x*) 5 Ifi(x*)I = 0, Vx* E S

=- u(x*) = 0, Vx* E S.

Again nonnegativity and convexity of u(x) gives

n+1
0 < u() = u ( Ajxj)

j=1

Aju(xj) = 0
n+1

j=1
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=> u(k) = 0 => X E U => conv(S) c U.

Hence, the desired set inclusion relation is obtained. E

As per the above proposition, the automatically generated starting point will lie

in the set U which contains the convex hull of the desired solution set S. If the

number of admissible solutions to (1.1) is small as compared to the space dimension

n (a reasonable expectation for engineering problems), then conv(S) will be a smaller

set relative to X. Also, if U is not much larger than conv(S), any of the points in

U is likely to be close to an admissible solution of (1.1). In fact, the difference of

these two sets bear a close relation with the tightness of the convex relaxation u(x).

Continuing with the notations used in the proof of Proposition 2.3.1, let cy(x) and

ci(x) be convex and concave relaxations of fi(x), respectively, and ui(x) denotes the

McCormick convex relaxation of fi(x)I for i = 1, 2, 3,. , n . The convex relaxation

u(x) of I1f(x)JI| will be
n

u(x) = ui(x). (2.26)
i=1

By definition x* E U => u(x*) = 0. Nonnegativity of ui(x) together with (2.26) imply

that fori = 1, 2, 3, ... ,n

ui(x*) = 0 => Imid{c(x*), c?(x*), zi,min}I = 0 (2.27)

Now, assuming that at least one admissible solution of f(x) = 0 exists, the following

necessary condition

fL 5 0 < fU, Vi = 1, 2, 3, ... , n. (2.28)

will always hold true over X. This implies,

Zi,min = mid{ff, f7 , 0} = 0, Vi = 1, 2, 3, ... , n. (2.29)

Also, by construction cY(x*) c?(x*) and in light of above assumption only one of
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the following holds true:

c!(x*) 5 0 < c'(x*) (2.30)

0 < c!'(x*) < c?(x*) (2.31)

cy(x*) 5 c(x*) < 0 (2.32)

The last two inequality relations (2.31) and (2.32) imply ui(x*) y 0 leaving (2.30)

which clearly asserts ui(x*) = 0 as per (2.27). Hence , the set U can be alternatively

described as

U = {x* E X : cu(x*) 5 0, - c(x*) 5 0, i = 1, 2, 3,. ,} (2.33)

This characterization of U further advocates the choice of starting point to be a point

lying inside it. The concave cy(x*) and convex ciu(x*) relaxations of the functions

fi(x) at any point in x* E U are opposite in sign for i = 1, 2, 3,... , n, making it

likely for x* to be close to a point in the solution set S. Moreover, U being the

solution set of a convex program, it is expected to be a convex set, as confirmed

by the above characterization (2.33), where it is represented by convex inequality

constraints involving convex functions.

Furthermore, even if no admissible solution of equation (1.1) exists, there is the

possibility that in the computed natural interval extension of f(x) over X, f" 5 0 and

fju > 0 Vi = 1, 2, 3, ... , n. Hence, the natural interval extension will not be able to

detect the nonexistence of a root. Moreover, in this case zi,min = 0, Vi = 1, 2, 3, ... , n.

Assume that for any 1 < i < n either c(x) > 0 or c?(x) < 0, Vx E X. Thus,

u(x) > 0, Vx E X and the nonsmooth exclusion test can detect nonexistence of root.

In the proposed branch-and-bound algorithm, the nonsmooth solver PVARS [13]

is used to solve the McCormick's convex program. Assuming that S is nonempty over

the current box X, the solver is supposed to find a point in set U with an optimal

value of zero. It can be easily deduced that, in theory, the set U is invariant for any

choice of 1, 2 or oo norms of f(x). However, numerical solvers rely on pre-specified
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tolerances and thresholds for termination and so, numerically there is a larger set U

enclosing the real set U within which the nonsmooth solver is likely to converge. The

convex underestimators are expected to be flat around the convex hull of the solution

set S and will be further flattened on squaring thereby making the enclosing set U

larger. Hence, the most obvious choice of squared Euclidean norm of f(x) as the

objective function is not suitable on account of above numerical consideration. Out

of the other two choices, the 1-norm is preferred over the infinity-norm to make the

exclusion test more effective. In the infinity-norm only one of the functions out of

fi(x), i = 1, 2,3, ... , n will be contributing to the optimal value of the underestimating

convex program, making it a poor choice compared to the 1-norm where all the n

functions will make their contribution.

Before proceeding to the next Chapter, which describes and formalizes the steps

of the proposed branch-and-bound algorithm, the theoretical developments made so

far in this thesis will be illustrated with the help of the following example.

2.5 Illustrative Example

Example 1. Global minima of the Himmelblau function:

fh(x1, x 2) = x1 + x2 - 11 = 0,

f 2 (Xi, x 2 ) = x1 + x2 - 7 = 0,

(x1 , x 2) E X = [-6, 6]2.

The Himmelblau function is defined as the squared-Euclidean norm of the above

system of equations and hence is nonnegative. Thus, the global minima of the Him-

melblau function are equivalent to the roots of above system of equations. In order to

construct the McCormick's convex relaxation of the 1-norm of f(x) it is observed that

the natural interval extensions of both fi and f2 over X contain 0 and hence the min-

imum of the outer modulus function 1.1 is attained at 0. The following intermediate
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Figure 2-1: Plot of f(x) I (Left) of Example 1 and its
(Right)

steps can also be easily verified:

c'(x1, x2) = x1 + x2 - 11,

c'(x1,x 2) = X2 + 25,

ui(x1,x 2) = Imid{x2 + x 2

0
0

X2 -10 -10

10

X I

McCormick convex relaxation

- 11, x 2 + 25, 0}1,

cu"(x 1, x2) = X1 + x2 -7,

c"(x 1 ,x2) = x1 + 29,

u 2 (x 1 ,x 2 ) = Imid{xi + x2 - 7, x1 + 29, 0}1.

Hence the McCormick's convex relaxation u(Xi, x 2 ) of If(x1, x 2 )Ill over X is given by

u(Xl, x 2 ) = Imid{x1 + x 2 - 11, x2 + 25, 0} + Imid{x, + x2 - 7, x, + 29, 0}. (2.34)

Figure 2-1 shows the plot of IIf(x)HI1 and its McCormick's convex relaxation u(x1, x 2).

There are four points at which IIf(x) I11 touches the z = 0 plane marking the four roots

of the system of equations in Example 1. The convex relaxation constructed using
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Figure 2-2: Plot of conv (S) and set U corresponding to the system of equations in
Example 1

McCormick's procedure is nonnegative on X and is flat in the convex hull defined by

the four roots. The convex hull of the solution set S for above system of equations and

the solution set U of the associated McCormick convex program are shown in Figure

2-2. U contains the conv(S) with a close overlap as stated in Proposition 2.4.1. The

automatically generated starting point (AGIG) (-3, 3) obtained by solving the non-

soomth convex program is quite close to one of the solutions (-3.77931, -3.283185)

and RMT based damped-Newton iterations starting from the former easily converges

to the latter. All four roots (Table B.1) of this problem were found in 31 iterations

of the B&B algorithm (first row in Table A.1). Another related problem, addressed

in Chapter 4 is to find all stationary points of the Himmelblau function.

None of the algorithms proposed in the literature, with the exception of Wilhem

and Swaney [25] whose algorithm finds a single solution, has embedded Newton's

method within a branch-and-bound framework for solving systems of nonlinear equa-

tions. The proposed algorithm does this by integrating RMT based damped-Newton

iterations with the convex lower bounding strategy. This is motivated by the auto-

matic generation of a reasonably close starting point as a result of solving the convex

lower bounding problem and hence often leads to fast convergence to a solution using

the point Newton-type method. The efficacy of this feature is evidenced from the fact
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that the first solution to most of the test problems is found at the very first iteration

of the algorithm. This approach is particularly helpful when only one admissible root

of f(x) is required. In the next chapter the branch-and-bound algorithm for solv-

ing systems of nonlinear equations is detailed based on the theoretical developments

made so far in the previous chapters.
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Chapter 3

Branch-and-Bound Algorithm for

Systems of Nonlinear Equations

This chapter describes the branch-and-bound algorithm for finding all solutions of

systems of nonlinear equations (1.1) in a given box X E R" (defined by the variable

bounds). To exploit the interval algebra discussed in Section 1.2, the box X E RI is

often denoted alternatively as an interval vector of n interval variables as

X = (X1 , X 2 , X 3 ,... , Xn) (3.1)

where, Xi = [xe, xV] is the ith interval with x and xV, respectively, being the lower

and upper bound on the ith variable xi for i = 1, 2,3,... , n. The ith interval-element

Xi of the interval-vector X is also denoted by X(i). Likewise, the ith element of a real

vector x is denoted by x(i).

The intuitive idea of the branch-and-bound algorithm is to search X c R" exhaus-

tively for solutions using a bisection strategy and fathom portions of X based on

certain criteria.
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3.1 Overview

The algorithm starts with a stack N of nodes initialized to the given box X (in which

the solutions of (1.1) are sought), the solution set S which is initially empty and the

iteration counter k set to 1. Each node Xi E N will have two associated attributes,

namely, the solution field Xi.s and the solution flag Xi.f. By default, Xi.s will be set

to a point lying inside the node Xi (usually the mid-point) and X.f is set to zero. If

a solution has been found in the box Xi E N it will be stored in its solution field Xi.s

when its solution flag X.f is set to one, indicating that a solution has been found

in this node. The algorithm requires two tolerance parameters as input, namely (1)

the size tolerance Esi,, and (2) the feasibility tolerance oE. The size tolerance Csize

limits the smallest size of the box to be examined, which essentially means that this

algorithm can distinguish solutions which are Esize apart in R' in terms of the distance

metric chosen to define the box size. Also, the nonsmooth solver will terminate at

a certain tolerance and hence may not locate the exact zero value of the convex

program even if it exists. The feasibility tolerance cf limits the highest optimal value

of the convex program below which the node will not be fathomed based on the root

exclusion test.

At each iteration, a node is popped off of the stack. Since the stack is a LIFO

container, the popped node will be the last one to be pushed in. If its size is smaller

than 6 size, it is fathomed. Now, there are various ways of measuring the box size.

The simplest one is the length of diagonal given by

d(X) = IIxU _ L12. (3.2)

Another approach suggested by Schnepper [22] is to use the scaled diameter of the

box as a size metric defined as

d(X) = max {(x4 - XL)/max(xufl, xfI, 1)}. (3.3)
1<i<n

Using this size metric the algorithm may not be able to distinguish between roots
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which are Esize apart in some dimension. One may decide based on the problem

which size metric to choose.

If a node is not fathomed due to small size its solution flag is checked. If a solution

has been found, the Krawczyk root inclusion test is applied to check the uniqueness

of the contained solution. If the inclusion test is positive the current box is fathomed.

Otherwise, the box is bisected along a suitably chosen coordinate into two disjoint sub-

boxes, such that the solution lies exactly in one of them (i.e., not on the boundary of

division). If the solution happens to lie on the bisection boundary, the bisecting plane

is shifted either upwards or downwards along the bisected coordinate by a suitable

amount (usually by a small chosen fraction of the interval width along the bisection co-

ordinate of the box) to ensure that the solution is contained in exactly one of the sub-

boxes. When a box X = (X 1 , X 2 , X 3 , .. . , Xn) is bisected, the resulting sub-boxes are

XL = (X 1 , X 2 ,... ,[XL q],..., Xn) and Xu = (X 1 , X 2 ,..., [74, X].. Xn), where

Xq = [,4 ], is the mid-point of the interval Xq and q is the coordinate chosen

for bisection. The bisection coordinate can be chosen in two ways. A simpler and more

intuitive way is to choose the coordinate with the widest interval. Another approach

is to choose the direction having largest scaled diameter [22] such that q satisfies

d(Xq) = d(X), where d(X) is defined according to (3.3). The latter scheme performs

better (especially when the initial box widths vary widely in different coordinates)

and has been used in the proposed algorithm.

To facilitate the bisection scheme discussed above, the algorithm uses a subroutine

Divide. This subroutine takes as input a parent node X and returns two disjoint child

nodes XL and XU obtained by division (usually bisection) of X such that the point in

its solution field X.s is contained in exactly one of them. It also sets the solution field

and flag of the child nodes to their default values. The subroutine maxdim returns

the bisection coordinate of the parent interval vector X in q using an user defined size

metric. Also, equating any two nodes Y and X using Y = X copies information stored

in all the fields of X to the respective fields of Y. Using these notations and those

discussed at the beginning of the chapter, a pseudo code for the subroutine Divide
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can be written as:

[XL, XU] = Divide(X){

XL = X, Xu = X, q = maxdim(X)

q= (X + XU)/2

XL(q) = [x, , q], Xu(q) = [Xq, X,]

if (x(q)= Yq)

77 = 0.1(X U - x )

XL(q) = [XL, q + 77], Xu(q) = [Xq + 77,<X ]

XU.s = mid(Xu), Xu.f = 0

end if

}

Once bisected, the sub-box not containing the solution is pushed first, followed by

the one which contains the solution and the iteration counter is increased by two to

account for the newly generated two nodes. This ensures that in the next iteration

the node containing the solution is again popped and this process will continue unless

the solution containing node is fathomed either based on the inclusion test or the size

metric. With the decreasing box size due to bisection at each iteration, the inclusion

test will become more effective in the subsequent iterations and eventually the solution

containing node will be fathomed based on the root inclusion test. Otherwise, even in

the worst case it cannot escape the size-based fathoming, though after a much larger

number of iterations.

If the current node does not contain a known solution, a simple interval-based root

exclusion test is performed which is positive if the natural interval extension F of f

over the current node Xi does not contain 0 and the node is fathomed. Otherwise,

Krawczyk operator based interval root exclusion test, discussed in Section 1.2.5, is

applied and if positive the current node is fathomed. If both these tests fail to fathom

the current node Xj, then McCormick convex relaxation of I f(x) 1 is constructed over
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Xi and the lower bounding convex program is solved using any nonsmooth solver (viz.

PVARS [13]) and the obtained optimal point x* is stored in its solution field. If the

optimal value of the convex program is positive the current node is fathomed based

on the nonsmooth root exclusion test. If the optimal value of the nonsmooth convex

program is zero, then starting from x* RMT based damped-Newton iterations are

applied. The RMT solver is set to a convergence tolerance of ENewton and will converge

if I If(x) 112 < ENewton in a given maximum number of iterations. If a solution is found

the bisection process explained in the previous paragraph for a solution containing

node is performed. Otherwise, the node is bisected by calling the subroutine Divide

with the current node such that the automatically generated starting point x* lies in

exactly one of the two nodes obtained after the bisection. The resulting nodes are

pushed onto the stack N with the one containing x* being the last node to be pushed

in and the iteration counter is increased by two.

This heuristic ensures that at any iteration of the algorithm, there will be only

one, if any, solution containing node which lies at the top of the stack. Also, due to

the bisection of nodes at each iteration, the McCormick convex relaxations become

tighter and tighter and even "closer" starting points are obtained, resulting in quick

convergence of the RMT based damped Newton method. As stated earlier, except

for some of the test problems, a solution is obtained at the very first iteration of the

algorithm and a partial, if not full, credit to this does go to the generation of good

starting points. Algorithm 3.2.1 formalizes the steps of the proposed branch-and-

bound algorithm for finding all solutions of nonlinear system of equations.

3.2 Branch-and-Bound Algorithm

Based on the description of various stages of the branch-and-bound (B&B) algorithm

for solving systems of nonlinear equations, the algorithm can be formalized as follows:

Algorithm 3.2.1. Branch-and-Bound Algorithm for Solving Systems of Non-

linear Equations

1. (Initialization): Set X.f := 0, X.s = mid(X), N = {X}, S = 0,k = 1.
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2. (Termination): If (N = 0) then print the solution set S. Terminate.

3. (Node Selection): Pop and delete the node Xi from the top of stack N.

4. (Fathoming Based on Size): If (d(Xi) < Esize) then goto 2.

5. (Krawczyk Root Inclusion Test): If (Xi.f = 1) then [Xi contains a known

solution]

e 2* := Xi.s. Compute K(R*, f, Xj).

" If (K(R*, f, Xj) C Xj) then goto 2.

" Xi =K(R*, f, Xi) n Xi.

* [Xk Xk±1] = Divide(Xi).

" If (R* E Xk) then

- Push Xk±1 followed by Xk onto the stack N.

" Else

- Push Xk followed by Xk+1 onto the stack N.

* k = k + 2. Goto 2.

6. (Krawczyk Root Exclusion Test): Compute the natural interval extension

F(f, Xj) of f over Xi.

* If (0 0 F(f, Xj)) then goto 2 [Xi does not contain a solution].

* Else

- * := Xi.s. Compute K(R*, f, Xi).

- If (K(* I f, Xi) n Xi = 0) then goto 2. [Xi does not contain a solution]

- Xi = K(R*, f, Xi) n Xi.

- Set Xi.s = mid(Xi).

7. (Automatic Starting Point Generation): Construct the McCormick convex

relaxation u(x) of ||f(x)|I1 over Xi and solve the resulting nonsmooth convex

program using any nonsmooth solver. Let,
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. x* E argminxsxEu(x).

9 Set Xi.s = x*.

8. (Nonsmooth Root Exclusion Test): If (u(x*) > ef) then goto 2 [Xi does

not contain a solution].

9. (RMT Based Damped-Newton Iterations): Apply a maximum of maxiter

RMT iterations (NWTSLV) starting from x*. Let niter ( maxiter) be the

number of iterations taken by NWTSLV so that I If(:*) 12 ENewton where, R*

stores the resulting solution.

[ R*, niter ] = NWTSLV(x*, f, maxiter, ENewton).

If (niter < maxiter) [NWTSLV Converged] then set X.f = 1 and Xi.s =

S = S U {*}, goto 5.

10. (Branching):

* [Xk , Xk+1] = Divide(Xi).

* If (x* E Xk) then

- First push Xk±1 followed by Xk onto the stack N.

" Else

- First push Xk followed by Xk±1 onto the stack N.

* k = k + 2. Goto 2.

3.3 Implementation

This section will highlight the significant implementation details of the branch-and-

bound algorithm presented in the previous section. The implementation is primarily

done in C++ with extensive interfacing to Fortran subroutines already available for

intermediate steps of the algorithm.
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3.3.1 McCormick Convex Relaxation and its Subgradinets

C++ classes for the computation of McCormick's relaxations and AD tools for com-

puting its subgradients need to be developed. An algorithm for subgradient prop-

agation in McCormick's function has recently been developed at the PSEL and a

C++ code for the same has been written by Benoit Chachuat [21] which is available

as a shared library libMC. This shared library has a main class called McCormick

with associated bounds, the convex and concave relaxations and their subgradients

as its members which are propagated as discussed in Section 2.2.1. This shared li-

brary forms a key component of the algorithm and is used extensively for the final

implementation. Given a function, an interval and a point inside the interval, its

McCormick relaxation and subgradient can be computed using the above library as

discussed below.

Calculation of a McCormick Relaxation

Suppose one is interested in calculating the value of the McCormick relaxation of

the real-valued function f(x, y) = x(exp(x) - y)2 for (x, y) E [-2, 1]2, at the point

(x, y) = (0, 0). First, the variables x and y are defined. This is done as follows:

McCormick X( -2., 1., 0. );

McCormick Y( -2., 1., 0. );

Essentially, the first line means that X is a variable of class McCormick, that it

belongs to the interval [-2,1], and that its current value is 0. The same holds for

the McCormick variable Y. Once x and y have been defined, the McCormick's convex

and concave relaxations of f(x, y) at (0,0) are simply calculated as

McCormick Z = X*pow(exp(X)-Y,2);

In particular, the value of the McCormick's convex underestimator and the Mc-

Cormick's concave overestimator of f(x, y) on [-2, 1]2 at (0,0) are obtained as

double Zcvx = Z.cvo;

double Zccv = Z.cco;
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Calculation of a Subgradient of a McCormick Relaxation

The calculation of a subgradient of a McCormick relaxation requires that the number

of variables be specified. For the previous example, the problem has two variables (x

and y), so we shall define

McCormick: :np(2);

Then, the variables x and y are declared as before, except that the component index

is now specified for the variables. For example, if x and y are considered to be

components 0 and 1, respectively, we write

McCormick X( -2., 1., 0., 0 );

McCormick Y( -2., 1., 0., 1 );

The McCormick's convex and concave relaxations of f(x, y) at (0,0), as well as a

subgradient of these relaxations, are simply calculated as

McCormick Z = X*pow(exp(X)-Y,2);

Finally, a subgradient of the McCormick's convex underestimator of f(x, y) on [-2, 1]2

at (0, 0) is obtained as

const double* dZcvx = Z.dcvdp();

Alternatively, the components of this subgradient can be obtained separately as

double dZcvxX = Z.dcvdp(0);

double dZcvxY = Z.dcvdp(1);

Analogously, a subgradient of the McCormick's concave overestimator of f(x, y) on

[-2, 1]2 at (0, 0) is obtained as

const double* dZccv = Z.dccdp();

double dZccvX = Z.dccdp(0);

double dZccvY = Z.dccdp(1);

Note that whenever a McCormick relaxation is differentiable at a point, then the

components of the subgradient correspond to the partial derivatives of the relaxation

at that point.
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3.3.2 Nonsmooth Convex Solver

As already stated, the Fortran subroutine for the variable metric method PVARS

written by Luskan and Vlcek [13] has been used to solve the nonsmooth convex

program obtained by computing the McCormick convex relaxation of the objective

function. Apart from the other arguments that PVARS requires, it also requires a

Fortran subroutine called FUNDER with the following syntax:

SUBROUTINE FUNDER(N,XP,F,G)

where,

N = Space dimension

XP(N) = Double precision vector specifying an estimate of the solution

F = Double precision value of the objective function at point XP

G(N) = Double precision vector of subgradients at the point XP

This is required to input the value of objective function and its subgradient at the

required points to the solver PVARS.

However, unlike other nonsmooth convex functions, McCormick's convex functions

do require, apart from the point of computation, the interval box over which it is

computed for evaluation of its value and subgradients. Hence the objective function

cannot be evaluated only by the arguments specified in FUNDER and indeed the

lower and upper bounds on the variable needs to be specified. Furthermore, things

become even more complicated because the McCormick classes are written in C++

while FUNDER needs to be a Fortran subroutine. To overcome this a C++ function

objmcc is written with the following syntax:

objmcc(N,XP,F,G,XL,XU);

where, the lower and upper bounds on the variable point XP[N] is passed in the

double precision array XL[N] and XU[N] respectively. The subroutine FUNDER is

called from C++ code with the desired syntax which in turn calls objmcc with two

additional variables specifying the bounds. The double precision array specifying the
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bounds are contained in two globally declared arrays whose values can modified only

in the main program. Hence, the information contained in them can be used by

FUNDER to call objmcc with the required additional variables.

For instance, for the problem in example 1, these functions can be written as:

Global double* XL = new double[N];

Global double* XU = new double[N];

extern "C" void FUNDER(N,XP,F,G){

objmcc(N,XP,F,G,XL,XU);

}

objmcc(N,XP,F,G,XL,XU)

{

McCormick:np (N);

McCormick* X = new McCormick[N];

McCormick* f = new McCormick[N];

for(i=0; i<N; i++){

McCormick Element = X(XL[i],XU[i],XP[i],i);

X[i] = Element;

}

f [0] = pow(X[0] ,2)+X[1]-11.0;

f[1] = pow(X[1],2)+X[0]- 7.0;

McCormick Z = 0.0;

for(i=O;i<N;i++) Z = Z+abs(f[i]);

F = Z.cvo;

G = Z.dcvdp();

}

3.3.3 RMT-Based Damped-Newton Solver

The RMT-based damped-Newton solver NWTSLV coded in Fortran is used in the

implementation of the algorithm. A detailed discussion on the input parameters and
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on how to use this solver is documented in the DAEPACK manual on NWTSLV.

Apart from other parameters that NWTSLV requires, it also requires a residue eval-

uator subroutine to compute the residuals of the original system of equations. The

residual evaluator subroutine has the following syntax:

SUBROUTINE RESO(ICODE,N,X,F,RPARAMS,IPARAMS)

where,

ICODE = Integer parameter to be used by NWTSLV (both input and output)

N = Space dimension

X(N) = Real array of dimension N containing the estimate of solution

F(N) = Real array of dimension N containing the residual evaluated at X.

RPARAMS = Real parameter array

IPARAMS = Integer parameter array

Nevertheless, once this residue evaluator is provided, there are symbolic components

in DAEPACK [24] which can be used to compute Jacobian matrix, its sparsity pat-

tern and the interval extensions, automatically, making it practically suitable for the

proposed implementation. For the problem in example 1, the residual evaluator is

written as:

SUBROUTINE RESO(ICODE,N,X,F,RPARAMS,IPARAMS)

IMPLICIT NONE

INTEGER ICODE, N, IPARAMS(1)

DOUBLE PRECISION X(N), F(N), RPARAMS(1)

F(1) = X(1)**2+X(2)-11.0

F(2) = X(2)**2+X(1)- 7.0

RETURN

END

3.3.4 Interval Computation Tools

To take into account the involved interval analysis, C++ classes for interval com-

putation were developed separately and the required arithmetic operators (+, -, x,
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etc.) were overloaded for interval computation. DAEPACK is used to compute the

Jacobian matrix and also its interval extension, required for the root inclusion test.

Since the current version of DAEPACK cannot compute the interval extension of the

Jacobian with its sparsity pattern being taken into account, the full Jacobian matrix

is used for interval computations. As detailed in the DAEPACK manual on Auto-

matic Code Generation it requires a specification file for computing the Jacobian of a

system of equations defining the residual. A forward mode automatic differentiation

is used with the post multiplier matrix set to the unity matrix. To enforce the dimen-

sion of Jacobian matrix to be N x N the argument AD-SEED-NUMBER is set equal

to N in the specification file used for computing the derivative by DAEPACK. This

form of storage of the output Jacobian matrix facilitates its direct manipulation from

the calling C++ program for inversion and other interval arithmetic computations.

To solve a system of nonlinear equations by the proposed B&B algorithm the user

needs to modify the following files as per the instructions given below:

resO.f : Code the equation describing the nonlinear system in this Fortran file as

described in Section 3.3.3.

objmcc.cc : Code the same nonlinear system to compute the McCormick's con-

vex relaxation of the objective function (1-norm of f) and its subgradients, as

detailed in Section 3.3.2.

jiead.spec : This is the specification file used by DAEPACK for computing the

Jacobian matrix of the system of equation in resO.f. Ensure that the parameter

ADSEED-NUMBER in this specification file is set to N i.e., the number of

equations in the system. (N = 2 for the system of equation in example 1).

main.cc : This is the main calling program where all initialization of the stack and

other variables are done. The global variables containing the lower and upper

bounds can be set and modified only from the main program to be used by all

other participating functions.

A makefile is also written to run the program by typing make at the command prompt.
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Chapter 4

Computational Results

In this chapter, a number of test problems from the literature are addressed to measure

the efficacy of the proposed branch-and-bound algorithm in finding all solutions of

systems of nonlinear equations. The computational times reported are on a Intel

Pentium 4 (3.4 GHz) processor with a size-tolerance of 10- and feasibility tolerance

of 10-6. For the RMT code NWTSLV parameters maxiter and ENewton were set to

20 and 10- respectively. The performance of the algorithm is judged on the basis of

the performance parameters tabulated and explained in Table 4.1. The test problems

are presented in the next section and the performance of the algorithm on them is

shown in Table A. 1 of the Appendix A.

Table 4.1: Performance parameters of the branch-and-bound algorithm.

Parameter
n
'Si
NIT
NITF
Sz
INCLT
KEXT
NSEXT
NWTF
MSD
CPU

Description

Space dimension
Cardinality of the solution set S
Branch-and-bound iterations before termination of the algorithm

Branch-and-bound iterations before the first solution is found
Number of nodes fathomed based on node size

Number of nodes fathomed by the Krawczyk root inclusion test
Number of nodes fathomed by the Krawczyk root exclusion test

Number of nodes fathomed by nonsmooth root exclusion test
Number of times RMT based damped-Newton method failed
Maximum stack depth reached prior to termination of the algorithm
CPU time taken by the algorithm in seconds
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4.1 Test Problems

Example 2. Stationary points of the Himmelblau function [15].

4x, + 4x1x 2 + 2x - 42x 1 - 14 = 0

4x + 4x 1x 2 + 2xi - 26x 2 - 22 = 0

-5.0 < x1 < 5.0

-5.0 < x 2 < 5.0.

This system of equations results from the problem of finding the stationary points

of the Himmelblau function discussed in Chapter 2. All nine solutions (Table B.2)

were obtained in 113 B&B iterations with the first solution being reported at the first

iteration. The iteration count is only a fraction (almost one third) of those reported

in [15], taking into account the fact that here the iterations count the actual number

of nodes visited in the branch-and-bound tree, unlike in [15] where it is increased by

one (instead of two) at each bisection.

Example 3. Multiple steady states of a CSTR reactor [8].

1
x - -(T - Tf) =0

150
1.34 x 101 x exp( 8  = 0

1 + 1.34 x 109 x exf-8.284T

0 < x < 1.0

100 < T < 500.

This example solves the energy and mass balance equations governing the opera-

tion of a CSTR in terms of fractional conversion x and reactor effluent temperature

T, with the reactor feed temperature TJ as a parameter. Three solutions were found

in 43 B&B iterations as shown in Table B.3. Again the first solution was reported at

the very first iteration.
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Example 4. Production of synthesis gas in an adiabatic reactor [8].

x1  x 3  x 6-- +X2+ =0
2 2 X7

2
X3 + X4+2x5 - 2 = 0

XI + X2 + X5 -- = 0
7

x 1 + x2 + x3 + x 4 + x5 - 1 = 0

400x 1x3 - 178370x 3x5 = 0

x1x3 - 2.6058x 2x 4 = 0
13492 x

-28837x 1 - 139009x 2 - 78213x 3 + 18927x 4 + 8427x5 + - 10690- = 0
X;7  X;7

0 xi < 1.0 , i = 1, 2, 3, 4, 5.

0 < X6 < 5.0

0 < X7 < 5.0.

The above system of equations represent three atom balances, a mole fraction

constraint, two equilibrium relations, and an energy balance equations. The only

solution to this problem, as shown in Table B.4, was found at the first iteration.

However, it took 57 iterations to fathom the whole search space.

Example 5. Badly scaled system of equations [15].

10000X1x2 - 1 = 0

exp(-x 1 ) + exp(-x 2 ) - 1.001 = 0

5.490 x 10-6 < X1  4.553

2.196 x 10~3 < X2 < 18.210.

Only one solution (Table B.5) to this problem was found in 17 iterations which is

nearly a quarter of the number of iterations reported in [15]. Once again the solution

was found in the first iteration of the algorithm and the remaining 16 iterations were

taken to fathom the whole search space based on the various root exclusion/inclusion
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tests.

Example 6. Robot kinematic problem [15].

0.004731X1X3 - 0.3578X2x3 - 0.1238x1 + 17 - 0.001637X2 - 0.9338X4 - 0.3571 = 0

0.2238x1X3 + 0.7623X2X3 + 0.2638x, - x7 - 0.07745x2 - 0.6734X4 - 0.6022 = 0

1618 + 0.3578x, + 4.731 x 10-3X2 = 0

-0.7623x, + 0.2238X2 + 0.3461 = 0

2 2 1x, + 12 =0

2 + 21 0x3 + 14

X2 +X2 115 ± 6 0
X2 +X21
7 +8 -1=0

-1.0 < xi 1.0, i=1,2,...,8.

All 16 solutions to this problem were found in 2235 iterations which is almost half

of the number of iterations reported in [15] to solve this problem. Again the first

solution was found in one iteration of the algorithm and the total iteration count is

less than that reported in [15]. The obtained solution is shown in Table B.6.

Example 7. Brown's almost linear system [71.

2x,+ X2 + 13 + X4 + X - 6 = 0

x1 + 2X2 + X3 + X4 + X - 6 = 0

X1 + x2+2x3 +X4 + X5 - 6 = 0

X1 + X2 + x3+2x4 + X - 6 = 0

x1x2X3x4x5 - 1 = 0

-2.0 < xi < 2.0, i = 1, 2, 3, 4,5.

Two solutions (Table B.7) to this problem were found in 523 iterations with one

of them being obtained at the first iteration. For this problem, the minimum value
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of a choosen for the convex lower bounding the last nonconvex expression using

the aBB procedure [15] should be 16 as dictated by the range of eigenvalues of the

corresponding Hessian matrix. Hence, iteration counts reported for a less than 16

in [15] are not matched by the proposed algorithm. Nevertheless, the results are

comparable with those in [15] for appropriate values of a .

Example 8. Problem 4 from [9].

x log(x) + 0.36787 = 0

0.2 < x < 0.5.

As shown in Table B.8, the two admissible solutions obtained after 37 B&B it-

erations are quite close to each other. Had the roots not been so close, even lesser

number of iterations is expected because, in this case, the root inclusion test can-

not successfully fathom the solution containing nodes unless it is smaller than 0.01

(approx. separation between the roots) units in size. This requires more bisections

thereby increasing the iteration count.

Example 9. Problem 5 from [9].

481.6282 - x(533.2807 - x(166.197 - x(21.1115 - x(1.1679 - 0.023357)))) 0
exp(x)

0 < x < 20.

Five real solutions (Table B.9) are found in 137 iterations which is only a frac-

tion of the number of iterations reported in [9] to solve this problem using interval-

Newton/generalized bisection method with natural interval extensions. Writing the

expression in nested form (Horner's Scheme), instead of expanded power form, im-

proves the quality of interval computations and hence the effectiveness of the exclusion

and inclusion tests.
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Example 10. Chemical equilibrium under a stoichiometric feed condition [6].

-1.674 + x(2.511 + x(14.7 44 5 + x(x - 7.79075))) = 0

0.1 < x < 0.9.

This equation represents the equilibrium conversion of nitrogen and hydrogen to

ammonia starting with 3 moles of hydrogen and 1 mole of nitrogen at the reaction

conditions of 250 atm and 5000C. The variable x is the number of moles of nitrogen

reacted at equilibrium, which, for the basis of 1 mole of nitrogen also represents,

the fractional conversion of nitrogen. Only one real solution 0.27759 is found in 7

iterations.

Example 11. Chemical equilibrium under a non-stoichiometric feed condition [6].

0.00850239 + x(-0.1816915 + x(0.699096 + x(x - 1.3))) = 0

0.0 < x < 0.5.

Similar to the preceding example, the above equation results from a chemical

equilibrium problem involving synthesis of ammonia from nitrogen and hydrogen, this

time though, under a non-stoichiometric feed condition. The feed gas contains 0.5

moles of nitrogen, 0.8 moles of hydrogen and 0.3 moles of ammonia. The temperature

and pressure is maintained at 298.15 K and 0.00243 atm respectively, such that the

chemical equilibrium constant is 604500 atm-2. The variable x represents the number

of moles of nitrogen reacted at equilibrium which can never be more than 0.5 as

stated by the associated variable bound. Only one real solution 0.0586546 is found

in 7 iterations.

Example 12. Kinetics in a stirred reactor [6].

2T log(T) + 25.432796T - 21000 = 0

500 < T < 600.
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This equation results after applying a logarithmic transformation to a badly scaled

equation governing the operation of a CSTR. T is the reactor temperature measured

in the absolute scale. The only feasible root 551.7738K is found in just 3 iterations.

Example 13. Adiabatic flame temperature [6].

AH + a(T - 298) + -(T 2 - 2982) + ( - 2983) = 0
2 3

A H = -57798, a = 7.256, 3 = 2.298 x 10-3, -Y = 0.283 x 10-6

3000 < T < 5000.

This cubic equation in temperature T expressing the adiabatic energy balance,

computes the temperature of an adiabatic flame. 4305.31K is the only feasible root

found in 3 iterations of the B&B algorithm.

Example 14. Gas volume using Beattie-Bridgeman equation [6].

1.251 x 10-6 + x(-5.422539 x 10-4 + x(0.011658361 + x(x - 0.22411958))) = 0

0 < x < 0.9.

This fourth order polynomial equation is obtained by the application of Beattie-

Bridgeman equation of state to study the molar volume of gaseous methane at differ-

ent temperature and pressure. Two feasible solutions 0.00242793 and 0.17496723 are

obtained in 23 iterations of the B&B algorithm.

Example 15. Fractional conversion in a reactor [6].

x 2 (1.0 - x 1 ) - (1.0 - 1.25x 1 ) = 0

X2- exp(0.8x 2 - 1.691954) = 0

0 < x1 < 0.9

0 _ X2 < 0.9.

This system of equations results while trying to determine the fractional conversion

of the limiting reactant in a reactor. At the very first iteration of the algorithm,
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the only feasible solution (0.7573962471, 0.2195130556) is found. It took two more

iterations to fathom the whole search space making the total iteration count 3.

Example 16. Flow in a smooth pipe (A) [6].

ax, + bx 2 - c = 0

x - x = 0

a = 240, b = 40, c = 200.

0 < x, 1.0

0 < x2 K 1.0.

The above system of equation represents the mechanical energy balance for a fluid

flowing in a smooth pipe and finds the average velocity x1 . The second equation is
7/4

just to eliminate the fractional power term x1 , representing the skin friction, from

the original equation by introducing an extra variable x2 . The x2 term in the first

equation reflects the changes in kinetic energy of the fluid. The only feasible solution

found in 13 iterations of the B&B algorithm is (0.8425243284, 0.7409165365).

Example 17. Flow in a smooth pipe (B) [6].

This solves the previous problem with a different parameter value of a, b and c.

The result is tabulated in Table 4.1.

Table 4.2: Parameter value and solution for Example 17.

a b c X1 X2 NIT
46.64 67.97 40 0.5656503851 0.368942896 21

Example 18. Batch distillation at infinite reflux [6].

1+005X 64
x - (1 + )6( 0 .9 0 )63 = 0

0.95
0 < x < 18.
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The above equation is derived from an equation governing the batch distillation

of a binary mixture using total reflux. The original equation is transformed using a

change of variables. Two feasible solutions 1.111111481 and 0.03962623025 are found

in 17 iterations.

Example 19. Volume from the virial equation of state [6].

-4242149.1 + V(74944.6341 + V(V - 471.34)) = 0

100 < V < 500.

This cubic equation results from the calculation of the specific volume V of a gas

using the virial equation of state. The only feasible solutions is 212.9580159 which is

reported at the very first iteration of the B&B algorithm. The algorithm terminated

after 21 iterations and the remaining 20 iterations were taken to fathom the search

space.

Example 20. Volume from the Redlich-Kwong equation of state [6].

-0.00064834321 + V(0.015878415 + V(V - 0.172326)) = 0

0 < V < 1.0.

Like the virial equation of state, the Redlich-Kwong equation of state also relates

the state variables namely pressure (P), volume (V) and temperature (T). The above

cubic equation results from the calculation of the specific volume V of a gas using

the Redlich-Kwong equation of state. Though, the only feasible solutions 0.075709 is

reported at the very first iteration of the B&B algorithm, termination occurred only

after the iteration count reached 15.

Example 21. Sinkage depth of a sphere in water [6].

x- 3X2 + 2.4 = 0

0 < x < 5.0.
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This third order polynomial equation is obtained as a result of finding the sinkage

depth x of a sphere in water. Two feasible solutions 1.1341378 and 2.6610819 are

obtained in 13 iterations. By decreasing the lower bound on the variable x the third

solution -0.7952197 reported in [6] is also obtained.

Example 22. Rosenbrock functions [18].

10(X 2 - x2) = 0

1 - x = 0

This function has only one zero at (1, 1). The solution is located in the first

iteration and another 4 B&B iterations were required to fathom the entire search

space. Due to the simple form of the functions, natural interval extensions were

able to compute the exact range of the functions, which made the interval extension

based exclusion test very effective. As a result the nonsmooth exclusion test was not

performed at all.

Example 23. Freudenstein and Roth function [18].

-13 + x1 + ((5- x2 )x2 - 2)X 2 = 0

-29 + x, + ((x 2 + 1)X2 - 14)X 2 = 0

(X1, i 2) E [0, 6]2.

The algorithm terminated in 39 iterations while the only feasible solution (5,4) is

found in 17 iterations.
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Example 24. Beale function [18].

1.5 - xi(1 - x 2 ) = 0

2.25 - x1(1 - x2) = 0

2.625 - x,(1 - x2) = 0

(x 1, x 2 ) E [0, 3]2.

This system of equations has three equations in two unknowns. So three distinct

pairs of equations can be formed and solved. The three test cases A, B and C are

studied using the pairs formed by first and second, second and third and third and

first equations respectively. In all the cases only one feasible solution (3, 0.5) is found.

Example 25. Powell's singular function [18].

x 1 + lOx 2 = 0

V 5(X3 - x 4 ) = 0

(x 2 - 2x 3 )2 = 0

V 10(x1 - X4)2 = 0

(X1, 7X2, X3, X4) E [0,71]4.

The only root lies at the origin where the Jacobian is singular. This weakens the

inclusion test and hence the node which contains the solution cannot be fathomed

unless its size becomes less than the minimum box-size limit. This explains the

comparatively larger number of B&B iterations taken to solve this problem.
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Example 26. Wood's function [18].

10(x 2 - x1) = 0

V/IO9-(X4 - X3)=

V/Oi(x 2 + x4 - 2) = 0
1
1(x2 - x 4 ) = 0

(Xl, X2, X3, X4) E [0, 2]4.

The original Wood's function is an over defined system of six equations in four

variables. Four of them are linear and two are nonlinear equations. Two out of the

four linear equations in the system are removed to form the above system of four

equations in four unknowns. The B&B algorithm terminated in 13 iterations and

successfully found the only feasible solution (1, 1, 1, 1).

Example 27. Broyden tridiagonal function [18].

(3 - 2xi)xi - xi-1 - 2xj±1 + 1 = 0

xO Xn+1 = 0

Xj E [-2, 2], i= 1, 2, 3,... ,n.

This system of equations is solved for n = 2, 4 and 6 (designated by cases A, B

and C respectively) and in each of these cases two feasible solutions are found. The

iteration count for termination of the algorithm increases with the increase in the

dimensionality n. Solutions obtained for each of the three cases are shown in Table

B.10, Table B.11 and Table B.12, respectively.
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Example 28. Broyden banded function [18].

xj(2+5X2) + 1- E (1 +X) = 0
jEJi

Ji = {j : j # i, max(1, i - mi) <; j min(n, i + m)}

m, = 5,mu = 1

Xi E - ,1], i = 1, 2, 3, . .. , n.

The B&B algorithm is applied on the above system of equations with n = 2, 5 and

9 (designated by cases A, B and C respectively). One feasible solution is found in all

the three cases and are shown in Table B. 13, Table B. 14 and Table B. 15, respectively.

Example 29. Extended Rosenbrock function [18].

10(x2 - Xi_ 1 ) = 0

1 - x 2i- 1 = 0

i = 1, 2, 3, . .. , n/2

Xi E [-2, 2], i = 1, 2, 3, . .. ,n.

The above system of equation generalizes the system of two equations shown in

Example 22 for any even n. This is solved for n = 10, 50 and 100 using the B&B

algorithm. In all the cases the algorithm converged in 5 iterations and only one

feasible solution is found where all the variables are unity.

Example 30. Circuit design problem with extraordinary sensitivities to small pertur-
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bations [15].

(1 - xlx 2 )x 3 [ exp {x5(glk - 93kX710-3 - 95kX81 0 -3 1]

-95k + 94kX2 = 0,

(1 - X1 2 )X 4 [ exp {X6(gk - 92k - 93kX710-3 + g4kx910 3) - 1]

-95kX1 + g4k = 0,

k = 1, 2, 3, 4.

x 1x3 - X2 X4 = 0

xiE[010], i=1,2,3,...,9.

where,

k= 1 2 3 4

91k 0.4850 0.7520 0.8690 0.9820

92k 0.3690 1.2540 0.7030 1.4550

93k 5.2095 10.0677 22.9274 20.2153

94k 23.3037 101.7790 111.4610 191.2670

95k 28.5123 111.8467 134.3884 211.4823

This set of equation results while trying to solve a circuit design problem with ex-

traordinary sensitivities to small perturbations. With maxiter of NWTSLV set to 20

no solutions were reported to be found for this problem. However, on increasing the

maxiter to 100 resulted in convergence of NWTSLV to the desired solution (Table

B.16) at the ninth B&B iteration. The value of other output parameters for this

problem, shown in Table A. 1 is for maxiter set to 100.

Although, with this change, the B&B algorithm was able to find the solution, the

nonsmooth exclusion test does not seem to work well on this example and the search

space was not fathomed fully even after 20000 B&B iterations. McCormick convex

relaxation happens to be flat over a sizable part of the domain and even when the box

size becomes small, the relaxation does not becomes positive over the box. Because

of the exponential terms and multiple occurrence of the same variable the natural
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interval extensions are very loose resulting in the flat relaxation using McCormick's

procedure.

In [15] the problem is solved using aBB convex relaxation with a value as low

as 0.1. It can be easily deduced by computing the natural interval extension of the

Hessian of the last equation (which is the least nonconvex among the equations in

the above system) that the value of a should at least be 0.5. Furthermore, rigorous

aBB yields an a value of the order of 107. So, the iteration counts reported in [15]

will be much more higher when an appropriate value for a is used.

Example 31. Hydrocarbon combustion process [15].

x 1x 2 + X1 - 3x 5 = 0

2x 1 x 2 + x 1 + 3R1ox2 + x 2xi + Ryx 2 x3 + Rox 2x 4 + Rsx 2 - Rx 5 = 0

2x 2 x3 + Ryx2x3 + 2Rx! + R6x3 - 8x 5 = 0

Rox2x4 + 2x - 4x 5 = 0

x 1x 2 + x 1 + R1ox2 + x2x2 + R 7x 2x3 + R 9x 2x 4 + Rsx2 + R 5x2

+R 6x3 + x4 - 1 = 0

Xi E [0.0001, 100], i = 1, 2, 3, 4, 5.

where,

R R5  R6 R7 R8 R9  R10

10 0.1930 4.106x 10- 4 5.451x 10- 4 4.497x 10- 7  3.407x 10- 5 9.615 x 10-7

This example addresses the equilibrium of the products of a hydrocarbon combustion

process with the problem being formulated in the element variable space. The B&B

algorithm found the only feasible solution (Table B.17) at the first iteration. However,

like the previous example the McCormick's convex relaxation happens to be flat over

a big portion of the search space. This happens because of loose natural interval

extension due to the frequent occurrence of the same variable in the equations which

enhances the dependence problem of natural interval extension. As discussed in
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Chapter 1, the dependence problem of natural interval extensions lead to overly large

bound estimation of the function range even for smaller boxes leading to flattening

of the convex relaxation. Even expressing the equations in Horner's form does not

achieve any significant improvement in the natural interval extension. Hence, the

search space could not be fathomed fully even in 20000 B&B iterations.

4.2 Performance Analysis

Table A. 1 shows the performance of the proposed branch-and-bound (B&B) algorithm

on all the test problems discussed in the preceding section. Some of the test problems

(e.g., 27, 28, 29, etc.) can be decomposed into smaller blocks and can be very easily

solved block-by-block. However, for testing the performance of the algorithm, they

were not block decomposed at any stage to preserve the difficulty level.

As evident from Table A.1 the first solution is found at the very first iteration of

the algorithm for most of the test problems. This is due to the combined effect of

the good starting point generation and the increased region of convergence of the

damped-Newton method through the use of RMT with natural level function. Also,

the efficacy of the proposed nonsmooth exclusion test is evidenced by the fact that

it successfully fathoms nodes which are left unfathomed by Krawczyk root exclusion

test, since the former is performed only if the latter fails. The Krawczyk operator

based root inclusion test also has an important contribution in reducing the number

of B&B iterations, in lack of which, the only way to fathom the solution containing

node is based on the size metric, leading to a significant increase in the number of

iterations as well as processing time.

In the proposed algorithm two root exclusion tests and one root inclusion test are

operating simultaneously to extract the best out of them in cutting down the iteration

count and hence the CPU time. However, to illustrate their individual effects, all the

test problems were solved by switching off each of these two exclusion tests and the

inclusion test. B&B iterations (NIT) and the CPU times taken for all the three

cases are presented in Table A.2. To force convergence in finite time, an upper limit
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of 20000 on the maximum number of B&B iterations is imposed. NIT values for

problems on which the algorithm terminated without converging are mentioned as

NC (Not Converged) in the results table.

4.2.1 B&B Without Krawczyk Root Exclusion Test

When the Krawczyk root exclusion test is switched off, the iterations count remains

almost the same for most of the problems except for Example 25 where it is nearly

doubled. This means that the nodes which were fathomed by the Krawczyk exclusion

test are also successfully fathomed by the proposed nonsmooth exclusion test. For

some of the problems, there is a small increase in the iterations because the nonsmooth

exclusion test was not positive for some of the nodes which were earlier filtered by the

Krawczyk exclusion test. Hence, subsequent bisections are required to have a tight

enough convex relaxation before successful fathoming by the nonsmooth exclusion

test. Nevertheless, a small increase in the iterations indicates that such nodes are

small in number and usually convex relaxation on the nodes were tight enough not

to require too many subsequent bisections to be fathomed by the proposed exclusion

test.

Barring a few exceptions, the CPU times taken by the algorithm increases on

switching off this exclusion test and the increase is quite significant for some of the

problems (e.g., 6, 13, 14, 23, 24, 25 etc.). In some cases (e.g., 5, 8, 9, 12, 17 and

19) the CPU time decreased also but by a small amount. If the nonsmooth solver

takes a larger number of iterations to solve the lower bounding convex program it

will overwhelm the time saved in avoiding the computation of Krawczyk operator.

As a result, the overall processing time will increase and this increment will further

depend on the number of nodes on which the convex program is solved. In most of

the presented test cases, as the node count (B&B iterations) does not increase much

on switching off the Krawczyk exclusion test, it can be inferred that the additional

number of nonsmooth convex program solved were nearly the same as the number of

nodes fathomed by the Krawczyk exclusion test when it was turned on. Hence, for

most practical cases, the proposed nonsmooth exclusion test is nearly as effective as
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the Krawczyk exclusion test and is computationally preferable as well.

4.2.2 B&B Without Nonsmooth Root Exclusion Test

Turning off the nonsmooth root exclusion test leads to a dramatic increase in the

number of B&B iterations as well as the CPU time (except for the examples 30 and

31 for which the algorithm did not converge in 20000 iterations). If NSEXT denotes

the number of nodes fathomed by the nonsmooth exclusion test when all features of

the algorithm were turned on, then on turning it off, the increase in the B&B iteration

(NIT) will at least be 2xNSEXT. However, the observed increment in NIT is much

more than this lower limit for most of the test problems. This demonstrates the

prowess of the proposed nonsmooth root exclusion test as compared to the Krawczyk

exclusion test. The increase in NIT is specially significant in problems of higher

dimension and/or those with higher cardinality of the solution set S (e.g., 4, 5, 6, 7,

9, 27 and 28). In fact, without the nonsmooth exclusion test, for the robot kinematic

problem having as many as 16 solutions in a small volume of [-1, 1]8, the whole search

space could not be fathomed and the algorithm terminated when the maximum limit

of 20000 on NIT is achieved.

Consider those NSEXT nodes that were fathomed by the nonsmooth exclusion

test. With the latter being turned off, all these nodes will now filter down to that

stage of the B&B algorithm where RMT iterations are started, escaping the interval-

based Krawczyk exclusion tests. As no solution is contained in those nodes the RMT

iterations will eventually fail to find a solution and will end up only in increasing

the processing time. Furthermore, since the convex lower bounding problem is no

longer solved, the starting points are also not generated automatically for the RMT

iterations. Hence, in this case, the RMT iterations are started from the mid-point of

the box which also leads to more failures of NWTSLV for some of the test problems.

These increased failure of the RMT iteration (NWTSLV), leads to a dramatic increase

in the CPU time for most of the test cases. However, for some problems (e.g., 12, 13,

22 and 29) there is no change in the iteration count because the nonsmooth exclusion

test was not performed on any of the nodes and so switching it off does not effect the
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performance parameters.

For examples 30 and 31 the fall in CPU time has nothing to do with the efficacy of

the nonsmooth exclusion test. Because of the upper ceiling on the number of iterations

(NIT = 20000), nodes generated by the bisection of the nodes which were earlier

fathomed by the nonsmooth exclusion test, are not processed fully by the algorithm

anymore. For these problems, the volume of the original search space being processed

by the algorithm with the nonsmooth exclusion test turned on is considerably higher

than what is being processed when it is turned off. This is reflected in a dramatic

decrease in the CPU time in the latter case. Had the algorithm been allowed to

run till whole of the domain being fathomed, there would have been a tremendous

increase in the number of iterations leading to a proportionate increase in the CPU

time as in all the other cases.

With the nonsmooth exclusion test switched off, the remaining steps of the B&B

algorithm closely approximates the Krawczyk-interval/bisection method for solving

nonlinear equations but with the difference that RMT iterations are also applied on

the boxes. Thus, even if it takes too many iterations to fathom the search space,

solutions, if any, were found robustly and rapidly. As emphasized earlier, an added

advantage of having the solution known a priori is excellent preconditioning of the

Krawczyk's operator which makes the root inclusion test quite effective. Moreover,

the intersection relation in the Krawczyk exclusion and inclusion tests leads to better

refinement of the regions where the solutions are likely to lie.

4.2.3 B&B Without Krawczyk Root Inclusion Test

When the root inclusion test is switched off, there is a significant increase in the B&B

iterations. However, the increment is fixed depending upon the dimensionality n of

the problem, the cardinality of its solution set S and last, but not the least, on the

initial box-size. If a solution is found in a box, then with the inclusion test being

switched off, the box can only be fathomed when its size becomes smaller than the

threshold box-size limit (Esize) by subsequent bisection. This leads to the generation of

an exponential number of nodes and so the iteration count will increase dramatically.
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The increase in iteration count will also depend on how large a box the inclusion test

fathomed when it was switched on. For example, in problems 24, 25 and 26, the

nodes in which a solution was found was fathomed based on the size metric and not

by the inclusion test even when the test was turned on. Hence, one may expect no

change in the number of iterations when the inclusion test is turned off. But, the test

also helps in reducing the box size by intersecting it with the Krawczyk operator as

discussed in Chapter 3 which explains the increment in NIT for these problems.

The CPU time shows an increase for all the test problems. The nodes generated

by bisection of the solution containing nodes are not easily fathomed by the exclusion

tests, especially when the solution lies near the boundary of bisection. Hence, such

nodes will experience the relatively expensive computational steps of the algorithms

such as calculation of the Krawczyk operator, solution of nonsmooth convex program

and even the RMT iterations (in case both these tests fail to fathom the node). Hence,

the increase in the processing time will depend on the number of nodes generated and

the amount of computationally expensive steps that each such node undergoes. The

increase in B&B iterations as well as the CPU time is particularly significant in the

solution of the extended Rosenbrock function (Examples 29 A, B and C) where the

problems are relatively bigger in size and the inclusion test, when on, was able to

fathom a large volume of the search space.

Having seen the effect of switching off various inclusion and exclusion tests from

the proposed B&B algorithm, it seems that the combined effect of all of them work-

ing together is considerably better than any of them used in isolation, both in terms

of iteration counts and processing time. Furthermore, the obtained test results also

illustrate that the proposed nonsmooth exclusion test outperforms the Krawczyk op-

erator based exclusion test when used in isolation. However, their combined effect

yields the best performance and is better than either of the two acting independently.
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Chapter 5

Conclusion and Future Work

McCormick's convex relaxation seems very promising for convex lower bounding of

nonconvex programs because of its capability to produce relatively tighter relaxations.

This is particularly helpful in the solution of systems of nonlinear equations using a

global optimization approach as investigated in this thesis. In this formulation, due to

the special structure of the objective function, nonnegativity of the McCormick convex

relaxation can be established leading to a root exclusion test. This nonsmooth root

exclusion test has a significant edge in performance over the interval-based Krawczyk

root exclusion test as demonstrated by a number of test problems discussed in Chapter

4. Another important contribution is the set inclusion relation asserted by proposi-

tion 2.4.1 providing a technique for automatic generation of starting points for point

Newton-type iterations.

A distinguishing feature of the proposed algorithm is that by embedding the RMT

based Newton-type method in a branch-and-bound framework, a solution can be lo-

cated at the very first iteration for most of the test problems. This is further exploited

to fathom the search space more efficiently using the Krawczyk's root inclusion test

by checking the uniqueness of the known solution in the given box.

Rigorous global convergence is guaranteed by the design of the algorithm itself.

The bisection strategy combined with various inclusion and exclusion tests and the

allowed minimum box-size limit ensures that the algorithm will convergence finitely.

However, the key question is the high computational effort required for large prob-
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lems where special concerns arise for solving the nonsmooth convex program and the

amount of branching and partitioning required. The efficiency of the algorithm also

depends on the range specification of the variables. Overly large bounds on variables

not only lead to weaker interval extensions and bad relaxations, but also make the

interval based inclusion and exclusion tests ineffective until sufficient contraction on

variable bounds is achieved by successive bisection.

Natural interval extensions are used for estimating the function ranges required

for constructing the convex relaxations using McCormick's method. As seen in some

of the test examples, the dependency problem associated with natural interval exten-

sions leads to overly large interval bounds on the function ranges. This causes the

McCormick's convex relaxation to be almost flat over a large part of the domain of

its definition and weakens the nonsmooth exclusion test. Hence, one is motivated to

use the Taylor-model interval extensions [9] instead of the natural interval extensions

for better estimation of the function ranges leading to comparatively tighter convex

relaxations. However, unlike with natural interval extensions, bounds propagation

using the Taylor-model interval extension for computing McCormick's relaxation will

require the knowledge of the function derivatives and hence will be computationally

more expensive. However, the overall performance may be faster if it can cut down

the iteration counts significantly.

Another important scope for future work is motivated by the convexity of set

U. As established earlier that, for zero optimal value of the lower bounding convex

program, the solution set U is a convex set which contains all solutions of (1.1).

Hence it would be desirable to prevent the point Newton-type iterations from leaving

the set U. This can be done utilizing the convexity of U and using the separating

hyperplane theorem. If the Newton-type iterate generates a point outside U then

a separating hyperplane which separates this point from U can be constructed by

solving another convex program and it can be imposed as a constraint or "cutting

plane" to further restrict the admissible domain. This will potentially cut down the

iteration counts for Newton-type methods significantly though at the expense of the

involved computational efforts.
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Appendix

Performance Tables for the

Branch-and-Bound Algorithm
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Table A.1: Performance of the B&B algorithm on the test problems.

Ex. In Is [NIT [NITF [ SZ I JNCLT I KEXT NSEXT NWTF MSD CPU(S)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24A
24B
24C
25
26
27A
27B
27C
28A
28B
28C
29A
29B
29C
30
31

2
2
2
7
2
8
5
1
1
1
1
1
1
1
2
2
2
1
1
10
1
2
2
2
2
2
4
4
2
4
6
2

9
10
50

100
9
5

31
113
43
57
17

2235
523
37
137
7
7
3
3

23
3

13
21
17
21
15
13
5

39
27
35
23
123
13
27
121
477

15
35
61
5
5
5

NC
NC

0
0
0
0
0
0
2
0

,__ _L J J _ _ _ ,_ ___,J ,___,_ , , _ __ _ , ,__ _ _ _ _ _ _ _ _
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10
31
7
9
5

413
50
3

11
3
0
1
1
8
1
6
7
6
2
3
4
2
7
8

10
8

47
5
4

10
35
5
6

14
2
2
2

1938
4975

2
17
12
19
3

723
209

12
53
0
3
0
0
2
0
1
3
1
8
4
1
0
6
4
4
2

11
0
8

49
202
2

11
16
0
0
0

8028
4998

0
10
4
2
2

51
214
4

33
0
1
0
0
1
0
2
1
0
3
0
0
0

14
8
3
7
3
4
3

50
223

1
6

10
0
0
0

9839
9838

6
9
9
27
7

49
32
11
10
4
3
2
2
8
2
6

10
8
8
8
5
3
6

14
16
12
59
6
6
8

16
7

12
21
3
3
3

166
63

0.01503
0.08087
0.03568
0.38239
0.03384
3.93381
1.16246
0.02197
0.10800
0.00246
0.00415
0.00200
0.00187
0.00839
0.00191
0.00856
0.01457
0.00446
0.01302
0.00402
0.00448
0.00321
0.04899
0.02917
0.01982
0.02230
0.11957
0.02003
0.03113
0.30441
1.37043
0.00641
0.09240
0.54033
0.00739
0.14038
0.82233
199.205
50.5877



Table A.2: Performance of the B&B algorithm with one of its
switched off.

different features

NIT CPU(S)
Ex. KEXT OFF NSEXT OFF INCLT OFF KEXT OFF NSEXT OFF INCLT OFF

1 31 39 271 0.02273 0.02157 0.08718
2 117 161 589 0.08922 0.09839 0.16702
3 43 79 215 0.06802 0.06866 0.08733
4 57 9675 223 0.47569 11.7817 0.49463
5 17 111 73 0.01982 0.10864 0.06693
6 2353 NC 4097 5.18078 28.6136 5.32686
7 545 10527 739 1.31617 10.3111 1.25520
8 43 67 51 0.02551 0.04981 0.02690
9 137 257 229 0.09176 0.15303 0.12845
10 7 7 27 0.00343 0.01984 0.00648
11 7 13 29 0.00435 0.00904 0.00885
12 3 3 31 0.00179 0.01708 0.00705
13 3 3 47 0.00283 0.00236 0.01013
14 35 29 51 0.02418 0.01454 0.01419
15 5 3 51 0.00307 0.01844 0.01598
16 13 19 61 0.01122 0.01348 0.02779
17 21 33 59 0.01364 0.02079 0.02694
18 17 23 59 0.00577 0.00971 0.01463
19 21 39 51 0.01165 0.02784 0.02110
20 15 25 29 0.00537 0.01242 0.00789
21 13 19 63 0.00452 0.00790 0.01664
22 5 5 67 0.00408 0.00707 0.02548
23 51 53 101 0.05537 0.06434 0.07441

24A 27 53 65 0.02702 0.03997 0.11748
24B 35 47 69 0.02807 0.03901 0.02824
24C 27 83 69 0.19316 0.30068 0.02824
25 287 173 123 0.30730 0.10276 0.10074
26 15 17 93 0.02062 0.01916 0.08846

27A 27 51 135 0.03011 0.05628 0.07100
27B 125 537 353 0.33809 0.48194 0.35421
27C 489 5703 829 1.22779 5.87245 1.45260
28A 15 19 63 0.00796 0.01085 0.02135
28B 35 681 171 0.08664 0.66921 0.13175
28C 61 3049 315 0.62469 4.49951 0.84279
29A 5 5 341 0.01633 0.00505 0.22033
29B 5 5 1825 0.16394 0.07638 10.6647
29C 5 5 3759 0.86887 0.40601 135.078
30 NC NC NC 200.852 106.720 203.328
31 NC NC NC 55.6053 18.3440 49.8362
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Appendix B

Solutions of the Test Problems

Table B.1: Solutions of Example 1

#S xI x 2

1 3 2
2 -3.77931025 -3.28318599
3 -2.80511808 3.13131251
4 3.58442834 -1.84812652

Table B.2: Solutions of Example 2

#S X1 X2
1 3 2
2 -3.77931025 -3.28318599
3 -2.80511808 3.13131251
4 3.58442834 -1.84812652
5 -3.07302575 -0.08135304
6 -0.27084459 -0.92303855
7 -0.12796134 -1.95371498
8 3.38515418 0.07385187
9 0.08667750 2.88425470
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Table B.3: Solutions of Example 3

#S x T(K)
1 0.001580 300.37
2 0.3326 347.89
3 0.98302 445.45

Table B.4: Solution of Example 4

#S x1 X2 x 3  X4 X5 X6 X7
1 0.32287 0.0092235 0.046017 0.61817 0.0037168 0.57671 2.977863451

Table B.5: Solution of Example 5

#S x1 X2

1 0.0000145067 6.89335287

Table B.6: Solutions of Example 6

x 1

0.67155
0.67155
0.67155
0.67155
0.67155
0.67155
0.67155
0.67155
0.16443
0.16443
0.16443
0.16443
0.16443
0.16443
0.16443
0.16443

x 2

0.74095
0.74095
0.74095
0.74095
0.74095
0.74095
0.74095
0.74095

-0.98638
-0.98638
-0.98638
-0.98638
-0.98638
-0.98638
-0.98638
-0.98638

x 3

0.95189
0.95189
0.95189
0.95189

-0.65159
-0.65159
-0.65159
-0.65159
-0.94706
-0.94706
-0.94706
-0.94706
0.718452
0.718452
0.718452
0.718452

x 4

-0.30643
-0.30643
-0.30643
-0.30643
-0.75857
-0.75857
-0.75857
-0.75857
-0.32104
-0.32104
-0.32104
-0.32104
-0.69557
-0.69557
-0.69557
-0.69557

x5
-0.96381
-0.96381
0.96381
0.96381

-0.96254
-0.96254
0.96254
0.96254

-0.99823
-0.99823
0.99823
0.99823

-0.99796
-0.99796
0.99796
0.99796

x 6

0.26658
-0.26658
0.26658

-0.26658
-0.27112
0.27112

-0.27112
0.27112
0.05941

-0.05941
0.05941

-0.05941
0.06377

-0.06377
-0.06377
0.06377

X7
0.40464
0.40464
0.40464
0.40464

-0.43757
-0.43757
-0.43757
-0.43757
0.41103
0.41103
0.41103
0.41103

-0.52780
-0.52780
-0.52780
-0.52780

X8

-0.91447
0.91447

-0.91447
0.91447
0.89918

-0.89918
0.89918

-0.89918
-0.91162
0.91162

-0.91162
0.91162

-0.84936
0.84936
0.84936

-0.84936
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Table B.7: Solutions of Example 7

#S x1  X2 X3 X4 X5

1 1 1 1 1 1
2 0.916 0.916 0.916 0.916 1.418

Table B.8: Solutions of Example 8

#S x
1 0.3652473891
2 0.3705177763

Table B.9: Solutions of Example 9

#S x
1 5.214649094
2 1.440978037
3 10.00823395
4 14.75389597
5 18.58437612

Table B.10: Solutions of Example 27A

#S x1 X2

1 -0.4532892 -0.3854050
2 1.6455966 0.2604066

Table B.11: Solutions of Example 27B
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#S x1 X2 X3 X4
1 -0.5545767 -0.6394204 -0.5907007 -0.4152683
2 1.8002386 -0.0405013 -0.4625116 -0.3874338



Table B.12: Solutions of Example 27C

#S x1 X2 x 3  X4 X5 X6
1 -0.5685882 -0.6761748 -0.6871807 -0.6649009 -0.5958543 -0.4163735
2 1.8284628 -0.1005822 -0.5752215 -0.6434210 -0.5915113 -0.4154422

Table B.13: Solution of Example 28A

#S X1 X2

1 -0.4273046 -0.42730462

Table B.14: Solution of Example 28B

#S x1 x 2  X3 X4 X5
1 -0.4283028 -0.4765965 -0.5196377 -0.5588619 -0.5588619

Table B.15: Solution of Example 28C

Variable Value
X1 -0.42830
X2 -0.47659
X3 -0.51965
X4 -0.55809
X5 -0.59250
X6 -0.62450
X7 -0.62321
X8 -0.62226
Xg -0.58799
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Table B.16: Solution of Example 30

Variable Value
X1 0.899999
X2 0.449987
X3 1.000005
X4 2.000064
X5 7.999975
X6 7.999710
X7 5.000035
X8 0.999988
Xg 2.000050

Table B.17: Solution of Example 31
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#S x1 x 2  x3 x 4  X5
1 0.0034301 31.32700 0.0683498 0.8595291 0.0369624
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