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Abstract

A number of constitutive theories have arisen describing materials which, by nature,
exhibit a non-local response. The formulation of boundary value problems, in this
case, leads to a system of equations involving higher-order derivatives which, in turn,
results in requirements of continuity of the solution of higher order. Discontinuous
Galerkin methods are particularly attractive toward this end, as they provide a means
to naturally enforce higher interelement continuity in a weak manner without the need
of modifying the finite element interpolation.

In this work, a discontinuous Galerkin formulation for boundary value problems
in small strain, non-local linear elasticity is proposed. The underlying theory cor-
responds to the phenomenological strain-gradient theory developed by Fleck and
Hutchinson within the Toupin-Mindlin framework. The single-field displacement
method obtained enables the discretization of the boundary value problem with a
conventional continuous interpolation inside each finite element, whereas the higher-
order interelement continuity is enforced in a weak manner. The proposed method
is shown to be consistent and stable both theoretically and with suitable numerical
examples.

Thesis Supervisor: Professor Rad'l Radovitzky
Department of Aeronautics and Astronautics

3



4



Acknowledgments

I would like to thank my advisor, Prof. Raul Radovitzky, for his guidance, patience,
and support. I am also greatly thankful to my advisor for making my stay at MIT

fun, challenging and for getting me into using and appreciating open-source software.
I am thankful for the support of the DoE through the CalTech ASC Center for

Simulation of Dynamic Response of Materials under contract 82-1052904.
I would always be grateful to my undergraduate advisors Prof. M.S Sivakumar

and Dr. C.V.Krishnamurthy at IIT Madras for inspiring and making me believe that
i am capable of doing research.

I am grateful to my program co-directors, Prof. Jaime Peraire and Prof. Robert
Freund for starting and running the most amazing program at MIT.

I would like to thank my graduate administrators, Laura Rose and Laura Koller for
essentially making me not worry about any paper work at MIT. My great appreciation
to Brian, our lab administrative assistant for feeding me with Indian food during our
group meetings.

I shall always be grateful to Dr. Ludovic Noels, University of Liege-Belgium,
for 'baby-sitting' me from time to time, for always being there on Yahoo messenger
to help me out, and for being one of the most important source of motivation and
inspiration at MIT.

Words would do no justice-to the help, motivation and of-course all the football
videos ,espresso shots and loads of debugging help from my labmates, Dr. Antoine
Jeruselam and Dr. Nayden Kambuchev. I am grateful to my labmates Sudhir and
Ganesh for not eating my "Mexican-beauty" pizzas in the group meetings. I am
thankful to all my office mates at building 41 for putting up with me for two years.

All this would not have been possible but for the sacrifices, encouragement and
motivation from my parents, my sister Rohini and my family back in India and in

the US.
I would like to thank my friends at MIT - Ashish, Anshuman, Chetan, Deep,

Dipanjan, Harish, Pranava, Sangeeth, Sandeep, Vikas and the entire sangam-brothers
gang for making my stay at MIT fun and memorable.

Finally, I would like to thank my friends Adarsh, Krishna, Shankar, Srevatsan and
Satyashree for suggesting to me that I cite their respective publications in atleast my

acknowledgments and for being there when I needed you guys the most.

5



6



Contents

1 Introduction 13

2 A low order discontinuous Galerkin method for finite hyperelasticity 17

2.1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Discontinuous Galerkin formulation . . . . . . . . . . . . . . . . . . . 18

2.3 Finite Element Implementation . . . . . . . . . . . . . . . . . . . . . 24

2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 A discontinuous Galerkin formulation for linear nonlocal elasticity 31

3.1 Toupin-Mindlin strain-gradient theory of linear elasticity . . . . . . . 31

3.2 Discontinuous Galerkin formulation . . . . . . . . . . . . . . . . . . . 36

3.3 Theoretical stability and convergence . . . . . . . . . . . . . . . . . . 44

3.3.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3 Convergence Rate . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Finite Element Implementation . . . . . . . . . . . . . . . . . . . . . 50

4 Numerical tests and examples 59

7



4.1 Tension Test . . . . . . . . . . . . . . .

4.2 Bi-material tensile test . . . . . . . . .

4.3 Clamped Beam under bending loading

4.4 Size effects under torsion . . . . . . . .

. . . . . . . . . . . . 60

. . . . . . . . . . . . 61

. . . . . . . . . . . . 65

. . . . . . . . . . . . 68

5 Conclusions

A Strain Gradient Constitutive Relations

B Derivation of the upper bound of the bilinear form

C Convergence Analysis- discontinuous Galerkin method

D Implementation of second order derivatives of the element shape

functions

E Analytical solutions for 1-D strain gradient problems

73

83

85

91

95

99

E.1 Uni-axial tensile load . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

E.2 Bi-material subjected to uni-axial tensile load . . . . . . . . . . . . . 100

8



List of Figures

2.1 Convergence Analysis of the discontinuous Galerkin method applied to

the cantilever beam problem in small deformation. The plot shows the

error v/s mesh size h for 3 - 1.5, 3,15 . . . . . . . . . . . . . . . . . 27

2.2 Convergence Analysis of the discontinuous Galerkin method applied

to the cantilever beam problem in large deformation. The error in

tip deflection E v/s mesh size h for # = 1.5,3,15 and the continuous

G alerkin case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Comparison of linear interpolation and quadratic interpolation for dis-

continuous Galerkin method for beta = 1.515 and continuous Galerkin

m ethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Schematic description of the Body BO, and the discretization Boh . . 37

3.2 Interface Element with the two adjacent tetrahedra . . . . . . . . . . 54

3.3 Data structure for Storing facet information . . . . . . . . . .. . . . . 55

4.1 Tensile test problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

9



4.2 comparison of u; along z axis of mesh 1 in 4.4 subjected to an tensile

load and the analytical solution for the unidimensional tensile load

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Bi-material tensile loading test . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Tensile test problem discretization employed (a) mesh 1 ;(b) mesh 2;

(c) m esh 3; (d) mesh 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Displacement profile for a bi material specimen subjected to tensile load 64

4.6 Strain profile for a bi material specimen subjected to tensile load . . . 64

4.7 Convergence analysis: L2 norm of the displacement error v/s mesh size 65

4.8 Comparison of numerical and analytical results of strain profile along

the z axis for three different values of .66

4.9 Bending problem illustration . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 Plot of stiffness ratio to the ratio of length of the beam to the length

scale param eter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 Description of the problem setup for torsional loading of a prismatic

beam of square cross-section . . . . . . . . . . . . . . . . . . . . . . . 70

4.12 An illustration of the mesh used in the torsion example . . . . . . . . 71

4.13 Plot of torsion stiffness ratio -y to the ratio of thickness of the beam to

the length scale parameter . . . . . . . . . . . . . . . . . . . . . . . . 71

E.1 Comparison of strain profile in the domain for the the variation of 1 103L

10



List of Tables

2.1 Geometric and material properties for beam bending problem . . . . 26

4.1 Tensile test material properties . . . . . . . . . . . . . . . . . . . . . 61

4.2 Bi-material tensile test material properties . . . . . . . . . . . . . . . 62

4.3 Bending test material properties . . . . . . . . . . . . . . . . . . . . . 67

4.4 Torsion test geometric and material properties . . . . . . . . . . . . . 69

11



12



Chapter 1

Introduction

A number of constitutive theories have arisen describing materials which, by nature,

exhibit a non-local response. As-in, the stress at a material point is not just a function

of strain at that particular point, as assumed in conventional theories, but also a

function of strain in its local neighborhood, leading to the name non local or strain

gradient theories. Cosserat, first proposed the couple stress theory , where in addition

to the displacement u an independent rotation quantity 0 is also defined. The couple

stresses are then introduced as the work conjugate of spatial gradient of 0. Later

Toupin [29] and Mindlin [30, 20] proposed a general theory theory which took into

account not only micro-curvature but also gradients of normal strain. The initial

theories proposed were for linear elastic materials. Later, several theories have been

developed to take into account plastic flow theories (Fleck and Hutchinson[10, 22],

Anand et al. [17]), crystal plasticity, crack growth (Smyshlyaev [38]) and several

other microscopic behaviors exhibited by materials [19, 39, 37].

The formulation of boundary value problems, in the presence of higher order
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gradients, leads to a system of equations involving higher-order derivatives which,

in turn, makes the problem hard to solve both analytically and computationally.

Computational difficulties arises in the solution scheme owing to the presence of

higher order derivatives which in-turn require the solution field to be at least C'

continuity over the solution domain i.e. both the displacements and the first order

derivatives should be continuous along the inter-element interface.

Zienkiewicz and Taylor [28] introduced a C' continuous element, but its shape

and the number of degrees of freedom needed per element puts serious limitations on

its usability and scalability. A mixed type elements have been previously proposed,

where at each node apart from the displacements an extra rotation angle 6 [41, 15, 16]

or the couple stress is stored as nodal DOF. More recently, meshless Galerkin methods

has been applied to problems with strain gradient effects in two dimensions.[14, 35].

Standard patch tests and benchmark problems have been tested on some of these

methods, but rigorous mathematical proofs of rate of convergence, consistency and

stability have not been demonstrated.

Discontinuous Galerkin methods are particularly attractive toward this end, as

they provide a means to naturally and in a consistent way to enforce higher order

inter-element continuity in a weak manner. Discontinuous Galerkin methods where

first developed to solve neutron transport problem [33], has now been successfully

applied to solve numerous elliptic and hyperbolic problems occurring in fluids and

solid mechanics.[2, 8, 6, 36, 25, 27, 18]

In the context of elliptical problems Brezzi et al. [6] proposed a discontinuous

galerkin method to solve the scalar poisson equation. Arnold et al. [1] presented a

14



detailed study of DG methods for second order elliptic equations. With the con-

text of higher order elliptic equations Engel et al. [8] proposed the continuous-

discontinuous(C/DG) Galerkin method, where the displacements across element in-

terfaces are continuous whereas the jump in derivatives are penalized to impose

C' continuity across the elemental interface. They proposed a C/DG formula-

tion and implementation in one dimensions for Bernoulli-Euler beam bending and

Toupin-Mindlin strain gradient theory, and a formulation and implementation in

two-dimension for poission-kirchoffs plate theory. This sparked several related work

toward's development of discontinuous galerkin methods for plate,shell theory prob-

lems and damage problems [40, 21]. Discontinuous Galerkin method has been devel-

oped for Reissner-Mindlin plates [2], Timoshenko beams [7], shells [12, 11] and for

Kirchoff-Love shells [24]. Susanne et al. [4] developed rigorous stability and conver-

gence results for a continuous-discontinuous galerkin method motivated from Engel

et al. [8] toward's solving scalar fourth order elliptic equations in two-dimensions.

In this work, a discontinuous Galerkin formulation for boundary value problems

in small strain, non-local linear elasticity is proposed. The underlying theory cor-

responds to the phenomenological strain-gradient theory developed by Fleck and

Hutchinson [10] within the Toupin-Mindlin framework. The single-field displacement

method obtained enables the discretization of the boundary value problem with a

conventional continuous interpolation inside each finite element, whereas the higher-

order inter element continuity is enforced in a weak manner. The proposed method

is shown to be consistent and stable both theoretically and with suitable numerical

examples.

15



In Chapter 2, the formulation and numerical examples of discontinuous Galerkin

method for finite hyperelasticity with emphasis on alleviating the problem of locking

which arises in low order finite element interpolation schemes. In Chapter 3, the

formulation, analytical properties and finite element implementation of discontinuous

Galkerin method for nonlocal linear elasticity is presented and to conclude in Chapter

4 results, conclusions and recommendation for future work are made.

16



Chapter 2

A low order discontinuous Galerkin

method for finite hyperelasticity

2.1 Motivation

It is well established numerically and analytically that a higher order scheme have

a better convergence rate when compared to lower order schemes [28]. However the

advantage of a low order scheme is that it is relatively less expensive than the higher

order schemes. Elements which employ linear interpolation are by far the most used

and computationally an inexpensive method to get an approximate solution. When

it comes to modeling incompressible materials and plasticity, finite element method

exhibits locking [13]. In a conventional finite element method, this leads to decrease

in convergence rate. It is also well established that the effects of locking are more

prominent in linear elements in comparison to quadratic elements [13]. Several meth-

ods have been proposed to alleviate the problem of locking including mixed formu-

17



lation [9, 34], under integration [28] and they work very well. In this work we try

to demonstrate one of the several advantages of employing a discontinuous Galerkin

formulation developed for non-linear elasticity [25] intrinsically avoids the problem of

locking. We choose a linear tetrahedral element, so as to clearly demonstrate that a

discontinuous Galerkin formulation clearly eliminates locking. Firstly, we develop the

discontinuous Galerkin formulation based on the work of Noels et al. [25, 26], where

the discontinuous galerkin formulation is derived from the weak form, secondly dis-

cuss some of the implementation issues and finally numerical examples are presented

towards this end.

2.2 Discontinuous Galerkin formulation

The governing equations along with the boundary conditions for a large static defor-

mations of elastic bodies in equilibrium is given by,

VoP + poB = 0 in Bo (2.1)

p = p on aDBO (2.2)

P.N= Ton &NBO (2.3)

where, Bo C R' is the region occupied by the body in its reference configuration, P is

the first Piola-Kirchhoff stress tensor, poB represents body forces per unit reference

volume, Vo is the gradient operator in the reference frame, p is the corresponding

deformation mapping of the deformation of material particles, N is the unit normal

18



to the surface in the reference configuration and : and T are the boundary conditions

applied on the displacement ODBO and traction &NBO parts of the boundary, respec-

tively. Also, its worthing noting that, aBO = aDBO U ONBO and &DBO n aNBO = 0

For the constitutive law a general class of hyperelastic material models are con-

sidered for which stress can be computed from a strain energy density function

W = W(F) given by:

P aw (2.4)
aF

where, F = Vop is the deformation gradients. As a direct consequence of Material

frame indifference it can be easily shown that the strain energy density function W

depends only on the right Cauchy-Green deformation tensor, that is W = W (C) and

where C is given by FTF.

The first step towards the development of a discontinuous Galerkin formulation is

discretization of the BO into smaller domains Q' such that

E

BO ~ BOh =JQ (2.5)
e=1

Here E is the total number of sub-domains present in the body, e is an index which

runs over all the elements and Boh an approximation for Boh represents the the

body the union of Q' represent. Since mesh generation, inter element interpolation

and integration schemes are well developed for conventional finite element meshes

(Tetrahedral & Hexahedral in 3-d), we are going to consider a decomposition of BO

into tetrahedral elements (Q') for implementation purposes. But the mathematical

19



formulation presented in this section will hold good for any type of domain decompo-

sition. Let subscript I correspond to the boundary between two sub-domains. Then

a = &DQ0 U &NQ 0 U OI E and &IBOh = 1 Q \&B Once the domain has been

decomposed, the appropriate spaces for the test and trial functions have to be chosen

in order to construct the solution. In a discontinuous Galerkin method we allow for

discontinuities in the solution space along the internal surfaces (OIBoh). That is, the

field variables and the test function can have a jump along the interface of any two

elements. Now, like in any finite element formulation it is essential to introduce a

finite-dimensional piecewise polynomial approximation ph, 6Wh for the displacement

field W and test function 6W at all points inside the body Boh which exist in the

following spaces:

Xkh Ph C L2 (Boh) I [IhlEpk(Q) V'EBOh} (2.6)

with Xk = {6 X (2.7)

The weak form of equilibrium equation (2.1) is obtained by multiplying equation with

a test function (6p,), and integrating in the domain (Boh).

E E

Sf 6ph? hdVo ±+ f 6hpoBdVo = 0 V 6w E (2.8)
e 0 e 0

20



Integrating the first term of equation(2.8) by parts

E E

- jPh: VhdVo + E I ah - Ph - NdSo
e 90 e 0
E

+ E jhpPoBdV V 6p ( Xc
e 90

(2.9)

We now separate the internal boundary terms(&iQ8) and the external boundary

terms(aDQe U &NQe) in (2.9) using Neuman boundary condition (2.3) and from the

definition of the test function space Xc (2.7) leading to-

E

0 = - Eo

E

Ph VO&PdVO + E n 6Wh - Ph - NdSo

E

+ i

aenaOGNBo
Ph 'TdSO+ 6WhpOBdV V

e 0B

It is appropriate to introduce the jump [9] and the mean (.) operators defined

on the space of functions which can have multiple values on the interior boundary

TR(aIBOh) = He1 1 (L2 (9,1Q))

] , (e) : [TR(&IBoh)]i or 2 _ [L 2 (IBOh)] 1 or 2 _I] ,+ _,-, (0 __ + [.+ 0-

(2.11)

In above expressions, the bullet represents any field,

.±= lim 0 (X ± eN-)
6-0+

V X c &IBoh

and N- is the outward normal of aQe. The primary idea of discontinuous Galerkin

21
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6 p E Xk

(2.12)
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method is that, we allow for discontinuity on Ph and 6 h along the elemental interface

QIBho. The discontinuity along internal element interface is written as a flux term

[26].

E

1 L o 6 Wh - Ph - NdSo -+ - [6jhp -h (P-, P+, N-) dS (2.13)
e Qnj 'I0 Oh B 8BOh

where, h (P-, PI, N-) is the inter-element flux term. Although we have an option

in choosing any arbitrary flux term, in order to satisfy consistency of the weak for-

mulation the flux should atleast satisfy the following properties [26].

h(P,P,N) = P-N (2.14)

h(P, P, N-) = -h(P ,P-,N+) (2.15)

Using equation(2.13), equation (2.10) can be expressed as:

E

0 = - Ph: VOWOhdVO - j o6 Wh -h (P-, Pi, N-) dSo

E E ('6

+ 1Jn:NBO S ' TdSO SIhpOBdV V 6(p E Xh

The stability of the weak form depends on the choice of flux. A wide repertoire of

fluxes have been listed and their stability and convergence issues have been discussed

by Arnold et al. [1]. For the following choice of flux, stability of the weak form has

22



been numerically and analytically demonstrated by Noels et al. [25]

h (P-, P+, N-) = (Ph) -N- + 1 9 N-. K+CI - ON- (2.17)

where C is the mean tangent stiffness at the interface, Q is an appropriate stability

parameter chosen such that the scheme is stable and h, is the characteristic length of

the mesh

= min ( (2.18)
hS q&Qe- V e+

substituting (2.17) into the weakform (2.16), we get

0 = jP : V OdVo - ' ' -6WdSo

J Oh " BOh

+ Di6 - (P) -N-dS0 + [oh ] N- C . h[] N-dSo
aj BOh aj BOh h

(2.19)

This is the final form of the discontinuous Galerkin formulation for non-linear elas-

ticity. The stability, consistency and convergence of the above formulation is shown

in Noels et al. [25]. This formulation also exactly corresponds to whats known as the

Interior Penalty method. We have essentially derived the same formulation using the

idea of an inter-element flux [5], instead of going through a more rigorous derivation.
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2.3 Finite Element Implementation

The weak form as obtained in equation (2.19) can be easily implemented with little

effort into a regular finite element code. Essentially the first two terms in the right

hand side of equation (2.19) correspond to the terms arising from a standard Galerkin

formulation. In order to perform integration over the internal surface an interface

element very similar in notion to the ones used in cohesive elements for fracture is

introduced [25]. A Newton-Raphson based solution procedure is setup to solve the

system of non-linear algebraic equations given by

fint(x) + f'(x) = fext(X). (2.20)

Here fint is the internal force contributions that come from each volume element and

is expressed as

fj"l = P.Na,xdV, (2.21)a e

f'(x) is the interal force contributions from the interface elements and is expressed

as

falI = / (P) -N-NadSoN-IB~ (2.22)
I -- CK : Xb] 0 N- N-NaNdSo
JaIBOh Ih C

At each iteration a linearized form equation (2.20) is solved and the nodal displace-

ments are updated. The linearization of the left hand side of equation (2.20) results

24



in the tangent stiffness matrix (K'-) given as .

ntfint + fI')
Kiakb = _(Pa Jia) (2.23)

&Xkb

Rewriting equation (2.20) using the tangent stiffness matrix we obtain the linearized

balance equation and the update equation.

K'-1 AU = fext - (fiil + f;-1 ) (2.24)

U = UN1 + AUi (2.25)

Finally, in order to solve equation (2.24) we must compute the tangent stiffness of the

system. we only present the stiffness terms that arise from the interface terms, the

volume term being straightforward. We first make an approximation of the stiffness

matrix contribution arising from the internal interface terms. From (2.19) its clear

that the forces depend on the stresses and the material moduli. Therefore the stiffness

matrix involves all the degrees of freedom of the two adjacent tetrahedral. But for

large values of 3 the displacement jumps are small, therefore the stiffness term arising

from the stress term is going to be very small [25]. Using this approximation, the

interface stiffness matrix is given as:

K -=EX = k KBh JJLNaN~NbN-dS (2.26)
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with a plus sign for the combinations + y+ and - i- and with a minus sign for

other combinations. This approximation helps us to simplify the implementation but

at the time the stability of the scheme is not affected [25].

2.4 Numerical Results

In this section we will demonstrate with the help of a beam bending problem that even

a linear tetrahedral at nearly incompressible poisson's ratio does not exhibit locking.

In this calculation the material model corresponds to a NeoHookean model extended

to the compressible range. The strain energy density function given as follows

W= (log J- ) logJ+ 11 (1 -3) (2.27)

where A and y are the material parameters, J = det ((F)) and I, = tr(C). The

material parameters and the geometric characteristics of the beam used in calculations

are listed in Table (2.1). In order to study the stability and convergence of the method

Table 2.1: Geometric and material properties for beam bending problem

Properties values

Length L = 1m

Height h = 0.1m
Initial Young modulus Eo = 200GPa

Initial Poisson ratio vo = 0.4999

in the first example we consider a prismatic beam with uniform cross-section whose

geometric and material properties are listed in Table 2.1. The beam is clamped rigidly

at one end and a force of 1OkN applied at the other. Using classical beam theory
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U-

the tip deflection 6 = 4(L 3 /h 4)(F/Eo) is computed to be 2mm. The error in the

tip deflection between numerical solution and analytical is plotted as a function of

mesh size for three different values of 3 and is compared with the continuous Galerkin

case. The tip displacement error remains a constant in the continuous Galerkin case,

Error on displacement small deformation nu = 0.4999

-0t

LI

-+-C

1.5

3
15

10

0.1000 mesh size 1.0000

Figure 2.1: Convergence Analysis of the discontinuous Galerkin method applied to

the cantilever beam problem in small deformation. The plot shows the error v/s mesh

size h for / = 1.5,3,15

whereas the error decreases with a slope equal to one for the discontinuous Galerkin

formulation. The stabilization parameter 0 has no effect on the rate of convergence,

but for a large value of /, the solution becomes less accurate and approaches the

continuous Galerkin solution. The same' convergence behavior is demonstrated for

large deformations as well. To demonstrate the convergence behavior under large

deformation's we consider use the same boundary value problem as described for

27



the small deformation bending problem but a load of 1MN is applied on the right

face, perpendicular to the length of the beam. In order to compute the error, we

assume the fine mesh solution obtained using a quadratic element in a discontinuous

Galerkin formulation to be the accurate solution and the error is computed with

respect to this value. Figure (2.2) shows a very similar convergence pattern as to

Error on displacement Large deformation nu = 0.4999

UCG

3

15

10

0.1000 mesh size 1.0000

Figure 2.2: Convergence Analysis of the discontinuous Galerkin method applied to

the cantilever beam problem in large deformation. The error in tip deflection E v/s

mesh size h for # = 1.5, 3,15 and the continuous Galerkin case

the small deformation bending convergence. A comparison of the rate of convergence

for linear and quadratic elements is studied for two different values of stabilization

parameter / and for the continuous Galerkin formulation. From Figure (2.3) it is

evident that for the same mesh size the quadratic elements have higher accuracy and

28



-- DG; deg 1; 1.5
-- DG; deg 1;4 15

-- DG; deg 2; [ 1.5
--- DG; deg 2;$ 15

CG; de
CG; dc

~g 1 - --. -

.g2

g22

10 102
Mesh size [mm]

Figure 2.3: Comparison of linear interpolation and quadratic interpolation for dis-

continuous Galerkin method for beta = 1.515 and continuous Galerkin method

also the fact that the rate of convergence is higher for the quadratic elements when

compared to the linear elements. To conclude., discontinuous Galerkin formulation

does not exhibit locking and the convergence rate is not affected by Poisson's ratio.
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Chapter 3

A discontinuous Galerkin

formulation for linear nonlocal

elasticity

3.1 Toupin-Mindlin strain-gradient theory of lin-

ear elasticity

In this section we present the linear elastic strain gradient theory developed by Toupin

[29] and Mindlin [30]. In this theory the strain energy density function W per unit

volume depends on the symmetric small strain measure ij = - (ui,j + ujj) and the

higher order strain measure rlijk = Uk,ij. The strain energy density is assumed be of
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the form as given in equation (3.1)

W = W (Eij, r1ijk) (3.1)

The Cauchy stress o-ij is the work conjugate of the strain measure Eij whereas the

higher order stress measure Tijk is the work conjugate of the higher order strain

measure Tijk and following from (3.1)

o w (3.2)
aegy

Tijk = (3-3)
a0 lijk

By employing the idea of virtual work the governing equations and the essential

boundary conditions can be obtained in strong form [29, 30, 10]. Following the same

procedure as shown by Fleck and Hutchinson [10], the internal virtual work statement

can be written as

6W dV = B(O-j6Eij + ijki77ijk) dV

JBO bk6udV + j N UdS + JMB TOUk,lfnldS

where, ONBO corresponds to the boundary where traction tk is specified, aMBO corre-

sponds to the boundary where double stress traction Tk is specified and bk is the body

force acting per unit volume. Tractions Ek and double stress traction Tk are the nat-
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ural boundary conditions of the problem and the corresponding essential boundary

conditions are the displacement ik specified on the surface &DBO and the gradient of

displacement projected along the normal to the surface niUk,i on the surface &TBO.

It is worth noting that ONBO U ODBO = 9BO, 9NBo n 9DBo = aMBO U &TBO = Bo

and BBo n 9TBO = 0.A schematic description of the different boundary conditions

is illustrated in figure (3.1). Applying Gauss divergence theorem to the internal work

terms in equation (3.4), we obtain

f (Uij6Eij + Tijk6?ijk) dV = - (Oik - Tijkji 6ukdV + ni (Oik - TijkJ) 8ukdS
Bo B0 J B0

+ InfTijk6Uk,idS
JaBo

(3.5)

Here in equation(3.5), aBo is the surface of the body, ni is the unit normal to the

surface of the body. However its worth noting that SUk vanishes at all points on the

surface aDBO, reducing equation (3.5) into

J (Uij6Eij + Tijknijk ) dV - (9ik - Tijkjg 6UkdV + ni (cik - TijkJ) 8ukdS
BOJ B0 a NBo

+ J njijkSUk,idS
JOB0

(3.6)

It has to be noted that 6 Uk,i is not independent of of 6 Uk on the surface(&Bo) of Body

(B) [10, 201. So, in order to correctly identify the boundary conditions the gradient

of the virtual applied displacement on the surface is split into two components, the
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normal gradient component, niD6uk and the surface gradient component, Dj6 uk.

6 Uk,i = (6 il - nini) (Uk),j + nin (uk),

(3.7)
= Dj6Uk + nfD6Uk

substituting equation(3.7) in equation (3.5)

(0-ij oers+ TijkOrjk) dV = - (O'ik - 'Tijk,j)i 6ukdV +
LNBo

ni (Uik - Tijk,j) SukdS

+ j njTijk (6il - ning) 6Uk,ldS +
8BO I&Bo

njTijknjnf 6 Uk,jdS

(3.8)

The surface gradient term on the right hand side of equation (3.8) can be further

simplified using integration by parts1 and followed by applying the surface divergence

theorem2
.

I BOnjTijk ( 6 1 - nini) 6Uk,dS

(6j - nini) (nfjrijk6 Uk) ,j dS -
JBo

(Jim - ninm) ni,,m (njniFijk) tUkdS

(6 i1 - ninl) (nrijk) ,1 6UkdS

- I (6 il - ninl) (njTijk) ,1 6ukdS
'8BO

It should be noted in equation (3.9), that 3 Uk will vanish on the surface e3DBO and

in equation (3.8) 6 Uk,lnl vanishes on 9TBO, thus from equation (3.9) , the internal

'0 : Vov V= . (O.v) - (V'.4).v where VWis the surface gradient operator
Vf,V8 . (O.v) dS = f8 (V8.n) n.$.vdS [30]

3It is noted here that the surface is assumed to be smooth and that there are no edges.
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virtual work terms now become

(oijEEij + TijkJrlijk) dV

(Jim - ninm)rni,m(

ik ~ Tijk,j)i JUkdV + ni (rik - Tijk,j) 6UkdS
BO JaNBO

(njniTijk) 6ukdS - INBO (6 ji - nini) (njTijk) , 6ukdS
ONBO

+ f njTijknjnl6Uk,1dS

(3.10)

using equation (3.10), the principle of virtual work equation (3.4) , is satisfied if the

following local conditions hold true:

0 = 6k + (cxik - Tjik,j),i (3.11)

which represents the governing differential equation in strong form

(3.12)

is the traction boundary condition on the surface &NBO and

k ninjTijk (3.13)

is the applied double stress traction rk on DBM. It is assumed that the body has a

smooth surface 9BO so that there are no edges, since the presence of edges will result in

an additional integral term over the edge [10]. The governing balance equation (3.11)

can be uniquely solved along with the six boundary conditions in (3.11) and (3.13) if
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the strain energy density function used is convex with respect to both Eij and ?7ijk [22].

The boundary value problem resulting from the virtual work statement correspond

to the non local linear elastic theory proposed by Toupin [29] and Mindlin[30], which

can be summarized as follows

0 = bk + (Uik - Tjik,j) in BO (3.14)

(9W
aij= - in BO (3.15)a~ij

8W
Tijk = W in BO (3.16)

197]ijk
1

6ij= (ui,j + uj,j) in Bo (3.17)

tlijk = Uk,ij in Bo (3.18)

tk = ni (Jik - OjFijk) + nirijjk (Dpnp) - Di (nrijkT ) on aNBo (3.19)

rk - ninjTijk on iM Bo (3.20)

Uk = ukon aDBo (3.21)

niUk,i = Duk,i on 9TBO (3.22)

In the next section we will develop the discontinuous Galerkin formulation for the

boundary value problem described by equation (3.14, 3.19, 3.20 -3.22) and establish

stability and convergence properties.

3.2 Discontinuous Galerkin formulation

The preceding formulation of the boundary value problem in strong form is taken

as a basis for the formulation of a discontinuous Galerkin weak form approximation
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2 3

noMvo

Bo
c)DBo

Figure 3.1: Schematic description of the Body BO, and the discretization Boh

within the context of a finite element framework. The fist step in the development of

a discontinuous Galerkin formulation is the decomposition of the domain (Bo) into

smaller sub-domains (Qe) such that Ue 1 Qe = Boh ~ Bo. As the mesh size (h) is

decreased, the body modeled by the meshes becomes closer to the actual geometry of

the body. The next step is to define the spaces for the trial (Uk) and the test functions

(W), which are C' continuous

{Uh C CO (Boh) c L2 (Boh) IUkhI EPk(Qe) VeB} C UI (Boh) (3.23)

Where Uf (Boh) = le H 2 (Qe) for k > 1. It should be clear that this choice of inter-

polation and trial spaces allow for C' jump discontinuities at the internal boundaries
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between elements & = [ueE~iaQe]5 . The corresponding constrained space for the

test function is

U = {U E UC5 UgaBO} C Uf (B.) (3.24)

U = {U E U1u6Ia=BO} (3.25)

We start with the equilibrium equation (3.14) and multiply with a test function

wE ULf and impose equilibrium in a weak sense

E

Wk (bk + (Jik - Tjik,j),) dV = 0 V w E Uf (3.26)
e=1 e

From now on it will be assumed that the test functions belong to the constrained

space (3.24). Applying integration by parts followed by Gauss divergence theorem

E E E

E J Wk (Jik - Tjik,j) nidS - Wk,iikdV - k,ijjikd
e=1 e=1 e e=1 e(3.27)

E E

+ Wk,iTjrinjdS + E j WkbkdV = 0
e=1 Qea e=1 D

The integrals over the boundary of each element(0Qe) can be written as a summation

of integrals over the internal interfaces and a summation over the external boundaries
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E E E

E i~ ena~ Wk (Jik - jik,j) ridS - Ij Wk,iOikdV - Wk,ijTjikdV
e=1 e=1 e e=1

E E E

Wk,ijikfjldS + L WkbkdV + Wk,iTjiknjdS
e=1 

e = 1 e e=1
E

+ i Wk (Jik - Tjik,j) n dS = 0
e=1

(3.28)

Now defining a jump operator [*] = + - e- and a mean operator (e) = (+ + e--),

the first term of equation (3.28) can be expanded as follows.

E

e=1 gQngQIC
Wk (uik ~ Tjik,j) ridS= - j k+ (jik - TFjik,j) n$

+ wk (Jik - Tjik,j nT) dS

J Wk (ck - Tjikj) n dS

= - TWk1I (Jrik - T-jik,j) ry dS

- (Wk) T~ik - Tjik~J1 ri dS

(3.29)

where . denotes quantities on either side of the interface element, n- is the outward

normal of the bottom tetrahedron. Here we have used the fact that on the interele-

ment interface n- = -n+, the definition of the jump and mean operator and using

the relation [abj = [a (b) + (a) [b]. The last term in equation (3.29) can be neglected

because only compatibility of displacements needs to be enforced. In the first term

[Wk = 0,since the space of interpolation and trial functions are assumed to be CO

continuous in the whole domain (3.24). The second interelement boundary term in
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equation (3.28) can be written as:

E

e=1 '90enaQC
Wk,iTjikn dS =+wkn+ kiTJ.kn)

= - [Wk,iTjikj njdS= j ()

k~i Tji n S ~ (Wk,i) Tjikj -dS
J W~ (rjik ni n

(3.30)

The last term of equation (3.30) can be neglected because only compatibility of dis-

placement gradients needs to be enforced. The mean higher order stress (Tjik) can be

expressed as a flux term 'rjiki- following the work of Brezzi et al. [5, 6] , Arnold et

al. [1], Noels et al [26].

Ez J Wk,iTjiknjdS ~~ - j wJ dS
e=1 gQ7ne aij Q

(3.31)

Inserting equation (3.29), (3.30), (3.31) into equation (3.28) we obtain

IWk]Tikl JdSE Wk,igikdQ + E 1 Wk,ijjikdQ +

- j Wk (Uik - -bjikj) bi=dS

-jWk,i (Tiknj) dS - le WkbkdQ = 0. (3.32)

For the sake of convenience the superscript on the normal is dropped, but it should

be noted that when we refer to the normal of an internal surface, it corresponds to

the outward normal of the oriented interelement boundary surface. Following the
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procedure established in the previous section, the boundary integral terms occurring

on the boundary OQ in equation (3.32) can be written as.

j Wk,i (Tjiknj) dS + J Wk (o9ik - '7jik,j) nidS

= j Wk [ninjTijk (Dpnp) - Dj (nriTijk) + (uik - Tjik,j) ni] dQ (3.33)

+ I niTinjfWk,InIdQ

From the first term in the right hand side of the first term in equation (3.33),

fa Wk (ninjTijk (Dpnr) - Dj (niir jk) + (9ik - Tjik,j) ni ) dQ constitutes the weak enforce-

ment of the traction boundary condition tk. The conjugate of this traction condition

is the displacement (Dirichlet) condition. Since the displacement boundary condition

can be enforced strongly, this term reduces to an integral over the Neumann boundary

(ONBo). The second term in the right hand side of equation (3.33) faQ niTjikriwk,inIdQ

constitutes the weak enforcement of the higher order traction boundary condition Tk

and its conjugate boundary condition is the normal component of the displacement

gradient (njuij = Dui) on the surface. In the single field displacement method pro-

posed, displacement gradient cannot be specified independently and therefore higher

order Dirichlet boundary condition need to be enforced weakly. Which is equivalent

of imposing a boundary flux term rjikrlj on &TBO. It is also worth noting that the

internal surface flux term and the external surface flux term are very similar in form.
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The boundary terms now are given by

Wki (riknj) dS + I Wk (uik - Tjik,j) nidS

Wk (nlrijTjk (Dpnp) - Dj (nriTjk) + (Uik - TJik,j) ni) dQ

niWk,lfnTjikfjdQ + rkWk,jnfdQ
{OaM

niWk,inlji kjdQ + rkWk,lindQ= WktkdQ +
ON STC JM

Substituting equation (3.34) into the weak form we obtain

I: Wk,iUikdQ + If Wk,igjTjikdQ +

WktdS - LTQ niWk,lnlITjjkdQ -

f [ QWkij TiiknjdS

( TkWk,jnIdQ

-El WkbkdQ = 0
e O

(3.35)

We will now direct attention towards the definition of the flux term in the discontin-

uous Galerkin formulation. The flux term will be defined such that the discontinuous

Galerkin formulation is consistent and stable. Following [25], first we define the nu-

merical flux on the internal surface 042 as

Tjiknlj = (Thik) nj + nj K ) Up,qj nr

where 3 is a stabilization parameter and h is the characteristic length of the mesh.

h =min ( I _0_1__le-QIVI &gge+)
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(3.36)
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The flux term on the external boundary aTQ is given as

I3 Jjikqrp (.8
7-jiknj = Tjiknn + nj h (nsup,snq - Dupnq) nr (3.38)

and h on the external boundary of the mesh is given by

|Ge|h = (3.39)

here Dup is the externally specified normal component of the displacement gradient. It

is interesting to note that the idea of imposing boundary conditions in a weaksense was

introduced by [23]. This flux term is similar in notion to the average flux introduced

by Bassi and Rebay [3] for fluids and the stabilization term is of the quadratic type.

Inserting the specific form of the flux term into the equilibrium equation we obtain

the stable discontinuous Galerkin formulation for nonlocal linear elasticity

0 = ( WkiikdQ + WkjTjikdQ - WktkdS - e WbkdQ
e e e eJN Qe De

+ f W,j [riik) nj + n < q T p, nr dS - Wk,lnrtlkdS
JaI0 .h IaM

- Wklnhlj [Tiknj + n h (nupsnq - Dupnq) nrIj dS

V Wk E Uf (3.40)

Equation (3.40) is the final weak form of the nonlocal linear elasticity problem along

with the Dirichlet boundary condition ui = 7i on &DBO which is enforced strongly. In

the next section, the theoretical stability and convergence properties of the discon-
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tinuous Galerkin method will be demonstrated.

3.3 Theoretical stability and convergence

In this section we will demonstrate that the discontinuous Galerkin formulation for

non local elasticity has the necessary properties essential for numerical convergence.

The consistency and the stability of the method as well as the convergence rate are

demonstrated.

3.3.1 Consistency

Let us consider the exact solution to the physical problem u E H 2 (Bho) . In particular,

this solution belongs to C'(Bho), therefore one has the following properties-

kj = 0 on DiBo (3.41)

?7ijk = Uk,ij in Bo (3.42)

(Tijk) = Tijk in Bo (3.43)
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Applying Gauss divergence theorem to equation (3.40) and using equations (3.41,

3.42, 3.43 we obtain-

I kbkd + QkhkdS + Qk,ln kdS + iTQ Wk,lhlJ'ini h i sup,snqmrdS

-aQ WkiknidS - LOh WkUik,idQ + j Wk,iTjiknjdS - j Wkjik,jnidS

-- j k,i (Tjik) 'ijdS + Wk,ijTjikdQ + j Wk,i j (Tjik) 'jdSJ Q 3  J BOh fQ

+ Wk,inininj h sup,snqnrdS

(3.44)

In the above expression, canceling the interelement jump term, decomposing the

boundary terms in the right hand side into mutually independent conditions as we

did in the previous section and taking into account the spaces to which the test

functions belong, we obtain

J kbk + NQ Wk (tk - ik) dS + Lm Q Wk,inl (rk - k) dS

+ Wk,l'Tfiii'j (nsup,s'nq - rsitp,snq) nrdS (3.45)

--- JBOh Wkgik,idQ + j Wk,ijTjikdQ
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From the above equation it is clear that the strong form of the equilibrium equation

is recovered, thus showing the consistency of the scheme.

o = bk + (ujk - Tjik,j),j in Boh

tk = ni (cik - 9j7ijk) + ninj7ijk (Dpnp) - Di (njTijk) on &NBO

rk = ninTijk

Pls = nsP,s on O9MBO

(3.46)

(3.47)

(3.48)

(3.49)

consistency leads to orthogonality, As the formulation is consistent, the exact solution

(u) will also satisfy equation (3.45), therefore we have

a (Uh - U, 6u) = a (Uh, 6u) - a (u, 6u) = a (uh, 6 u) - b(6u) = 0

3.3.2 Stability

Before we proceed to analytically demonstrate the stability of the proposed numerical

scheme it will be necessary to define an energy norm I|| e I| : UIf (Bo) -+ R+

IIV 12_ - 22
= VCij klVk,l 2 + VJijklmnVn,lm 2

L
2 (g2e) L

2 (g2e)

1
e

Jijklmn

h

(3.51)2

L 2 (aoen(lIBh)
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with the abuse of notations

CijklVkl J VBi,jCijkVk,,dQ (3.52)

Z JijkmnVn, L2 (Pe) B Vk,ij lijklmnVn,lmdQ (3.53)

2
1 ijkm n,l nm -B Vk,ij n- Vn,il n- dS (3.54)Z h L2 (aoenl8Bh) LBh

where the positive semi-definite nature of C and J has been used.

Expression (3.51) is the norm in the constrained space because if |||vii| is equal to

zero, then the three contributing terms on the right hand side of the equation are

also zero. The only other non trivial case for which |l|vii can possibly go to zero

is when Vh is piecewise linear or constant. A constant vh will correspond to a rigid

body motion, which is not allowed in the constrained space. For the case of piecewise

linear Vh, the jump in derivative of displacement across the interface [vkjW is non zero

and therefore (3.51) does not vanish and hence proving (3.51) is in-fact a norm. In

order to prove the stability of the method the upper bound of the bilinear a(u, 6u)

and lower bound for the energy norm a(u, u) need to be computed.

The upper bound of the bilinear form is established in (Appendix -B with the

result

ia(u, w) 12 < Ck (p) 11 1U1 112 11 Wi 112 (3.55)
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In this expression Ck is a constant dependent only on the degree of polynomial in-

terpolation k. The lower bound of the bilinear form is obtained from the relation

2

a(u, u) = VCijkl Uk,1L20e
e

e

jikqrp
h

k. q 2
ulJjikqrp ZUp,qr L2

(ne)
e

2r

qUpj nr + I
L

2
(O8efn8IBh) ro

In Appendix (B.7), we show that

a (u, u) > 1:1
e

e

VCijkl
2

Uk,1 L2 (Qe)

jikqrp
h

i12+ x : jikqrp Up,qr L2 (Q,5)

2

Up,qj nr
L2 (aQefnaIBh)

(3.57)

Ck Jjikqrp Up,qr L2 e 2 [Up,q jikqrp T L 2 (agenoIBh)

It follows using the E-inequality 4, that the right hand side of equation (3.57) is

bounded below by the expression

2

e

C k2)

2
- E) zz jzkqrp Up,qr L2

(Qe-)

2

er n L 2 (aoefnaIBh)

Let C2(0) = min (1- E,0 - (Ck2/E) ). This will become positive if 3 > C 2 / and

4 VC > 0 : |abi < -a 2 + ;b2orVe > 0 : Jabj < Ea2 + 1b2
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njdS

(3.58)

NUk,jl (-jik}

+ 0

( 2



E < 1. Therefore, C2(13) > 0 and the bilinear form satisfies

a(u, u) > C2 (3)1|uI12 > 0 V u E Uh(Bo)

The above relation basically

empty set.

guarantees that the Null set in the solution space is the

3.3.3 Convergence Rate

If u E U{ be the exact solution of the problem

in Uf by

LB

, we define uk the interpolation of u

(u - Uk)a .6udV = 0 V6u E U (3.60)

The error is then defined as e = Uh - u E Uf. It is assumed here that the imposed

boundary condition on the dirichlet boundary is zero and strictly enforced. The Error

corresponding to the interpolated solution ek is then ek = Uh - uk E C Uf. The

bilinear form (B.1) are by definition linear and by using the results obtained from the

upper and lower bounds of the bilinear (3.55,3.59) we obtain-

C 2 IIe k

K

<_

a (Uh - Uk, Uh - Uk) = a (Uh - u + u - uk, Uh - uk)

a (Uh - U, Uh - uk) + a (U- uk, Uh - uk)

CIIIU -uuk 1h U - =C J C 1 _ -Uk IlekII,
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Here we have used equation (3.50) to show that a (Uh - u, Uh - uk) = 0. The error

bounds of I||U - uk|| have been derived in Appendix (C) equation(C.5). Thus, it can

be shown that the norm of the error in the energy norm is given by

|| e| = Ch k- 1 UlHk-1(8-e) (3.62)
e

This expression demonstrates that the order of convergence is one order smaller than

the polynomial approximation of the displacement field u.

3.4 Finite Element Implementation

In this section, the final form of the discontinuous Galerkin formulation obtained in

equation (3.40) is taken as the starting point for the finite element implementation.

The discontinuous Galerkin framework for strain gradient laws can be implemented

within the framework of a conventional finite element solution scheme. For definite-

ness and ease of mesh generation, we adopt a standard 10-node quadratic tetrahedral

element with second order polynomial interpolation (k = 2). In a linear finite element

solution procedure, a stiffness matrix Kiakb is assembled by taking into account the

contributions from all the volume elements and this is used to solve a linear set of

equations

KiakbUkb = fia. (3.63)

Here Ukb is the nodal displacements and fia is the applied external forces on the sys-

tem. In the discontinuous Galerkin formulation for strain gradient elasticity, apart
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from the regular finite elements over the volume of the domain, it is required to com-

pute the integrals over interelement surfaces (DQe n rBo) and part of the boundary

where higher order Dirichlet condition is imposed (9Qe n &MBo). In our implemen-

tation, assembly process to obtain the global stiffness matrix is from the volume

elements Ksak is followed by the assembly of contributions from the internal inter-

face element and the assembly of contributions from the external boundary interface

elements.

The conventional assembly process to obtain the global stiffness matrix is now

performed over the volume elements then over all the internal interface element Kakb

and finally over all the boundary interface elements Kgkb.

Kiakb = K b + 1 K[ kb + E K (3.64)
e I B

Note that the summations here imply an assembly of local stiffness matrices into the

global stiffness matrix.

The contributions to the stiffness matrix from the volume elements comprises

the conventional low-order virtual work of the low-order stress doing work on the

low order strain. But for the strain gradient formulation, the virtual work of the

high-order stress acting on the high-order strain must be considered L, Wk,i 3TikdQ.

The implementation of the high-order term requires the computation of the second

derivatives of the shape functions inside the element. The derivation of the second

derivatives of the shape functions Na,ij for an iso-parametric tetrahedral element is

provided in Appendix D. The second derivatives of the interpolated displacement and
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the displacement and the test function field can then be written as

10

Uijk S Najk Uai (3.65)
a=1

10

WiJk = NaJiWai, (3.66)
a=1

where Uai, Wai correspond to the nodal values of displacements and test function

respectively. With this the higher order volume element's stiffness term can be ex-

pressed as fo Na,ijJjikmnlNb,mndQ. The contribution to the global stiffnes matrix

from each volume element then follows as

Kavabl = j (Na,ij JjikmnlNb,mn + Na,iCikimNb,m) dQ. (3.67)

The contribution to the global stiffness matrix from the surface terms in equation

(3.40) is most suitably implemented by recourse to the so-called interface elements.

The main advantage of performing the surface integral using an interface element

is that they can be naturally added to any finite element code s a different type

of element without major modifications to the element stiffness matrix computation

, assembly and solver. Interface elements have been previously employed in a C

discontinuous Galerkin formulation for solids [25].

In this case, the formulation allows for discontinuities in the displacement field

itself. This requires splitting up of the mesh in a way that each element has its own

nodes which are not shared with any other volume element. Among the implica-

tions of that formulation is an explosion of the number of degrees of freedom in the

52



computational mesh and thus, in the over all computational cost.

However in the formulation for nonlocal elasticity presented in this work. the

discontinuous Galerkin method's concept is exploited for the purpose of enforcing the

interelement C1 continuity requirement in a weak manner, whereas CO continuity is

enforced strongly, i.e. , the displacement field is assumed continuous at the interele-

ment boundaries. Consequently, the mesh nodes are shared between adjacent volume

element.An interface element is shown in the figure (3.2). At each and every internal

inter-element boundary an interface element is inserted. In addition to the nodes

present on the interelement boundary, these interface elements require information

about the adjacent tetrahedra and suitable data structures to hold it. The necessary

information arises from a consideration of the quantities involved in the surface inte-

gral terms in equation (3.40). Specifically, [uiJj , ( ijk) , TwiJj and ni on the interface

element. The jump in the derivative of the displacement at an interface element is the

difference in derivative of the displacement computed by the two tetrahedra which lie

adjacent to a interface element.

[UijJ = (NgjUa - ZNo-,Ua (3.68)

and similarly for the derivatives of displacements, the derivatives of test functions

i = N+jWia - ( Na7 Wia (3.69)
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Following similar arguments, the mean high-order stresses can be expressed as

(Tiik) 2E rpN ,,qrUap + (Jikqrp Naqr Ua) . (3.70)
a-+ al

Observing equations (3.68-3.70) it becomes evident that the limiting values of the first

2 9

-N

14

6 3.

12 00I

131

S ~

Figure 3.2: Interface Element with the two adjacent tetrahedra

and second derivatives of the shape functions and of the higher order elasticity tensor

Jijkpqr are required at the integration points of the interelement boundary. In our

implementation, the limiting values of the shape functions at the surface quadrature

points are also computed and stored during the conventional evaluation of the shape

functions at the volume interpolation points. The total storage requirement for a

tetrahedra is equal to the number of quadrature points in the bulk (N) plus the

number of faces(Nacet) times the number of quadrature points on the surface (N).

In our case N = 4 and Nc = 6 and for a tetrahedra Nfacet = 4. In order to do this,
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each interface element requires the connectivity of the two adjacent tetrahedra and

the nodes they share with the tetrahedron.

In our implementation we make intensive use of the Boundary representation of

solids (B-Rep) to efficiently generate these data structures from the mesh topology.

The advantage of using a B-Rep data structure is that no modification is required to

the geometric description of the body, the B-Rep array takes in the coordinate table

and connectivity table and creates linked list data structures of all the tetrahedra ,

facets and edges present in the mesh [31, 32]. At each interface the connectivity of

Facet

*Nodes[6]

*Top Tetrahedral

*Bottom Tetrahedral

* Next Facet

*Previous Facet

Figure 3.3: Data structure for Storing facet information

all the nodes present in the two adjacent tetrahedra is needed to access the shape

functions and their derivatives on the interface element. This is made possible by

knowing the relative mapping of the nodes which lie on the interface to the adjacent

tetrahedra and the global ID of the adjacent tetrahedra.

The geometry of the interface element required to compute the normals and to

define the domain on which the surface integrals are computed is interpolated from
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the surface element using the standard surface shape functions.

This information is extracted from the facet data structure, figure (3.3), which

is generated by the B-Rep. In the interface element, the interpolation of position,

the evaluation of Gauss integration weights and the computation of normals are done

using the the standard surface shape functions of the interface element Na ( ), a E

[1, n], where = (1, 2) are the natural coordinates. The outer unit normal n-

corresponding to element Q'- is given by

" - ~G 1 (() x G2 (()(371n- ( x) = G (3.71)
JG1 ()X G2 ( )|

in which
n

Ga () = = Na,a () Xa (3.72)
a=1

are the covariant base vectors, a E [1, 2]. The limiting values of the volume stresses,

displacements and shape functions at the interelement boundaries ± required to com-

pute the mean stresses and gradient of displacement and gradient of test function

jumps; are obtained directly from the interpolation of volume element fields evalu-

ated on the surface element integration points.

The preceding expressions for the various quantities involved in the surface terms

of the weak form: f, [Wk, ((Tjik) nj + nj K3Juikp Up,]j n,) dS lead to the con-

tribution of the interface element to the stiffness matrix given by the expressions

Ka+( = + IJ ,,Ngqr + Jikr N nr dS (3.73)
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K j N J PN;-, - Kjjikqrp NC;-nr) dS (3.74)

KNa Ngn + r 4kqrp Ng n dS (3.75)

akb 2 Jj bqrq r1q

Klg--N= -j N ( kqrPNgqnh - n) K3Jjkrp NC;-n) dS (3.76)

where +(-) represents the nodes on the top (bottom) tetrahedron. Directing atten-

tion towards the application of boundary conditions in the discontinuous Galerkin

formulation, the essential boundary condition on the displacement Tk is enforced

strongly on ODBO by simply eliminating appropriate nodal degrees of freedom and

imposing the value of the displacement, just as in a conventional finite element pro-

gram. The low order traction boundary condition tk contributes to the external

applied force array fak on &NBO:

fak =j NaikdS (3.77)

also in a conventional fashion. The double stress traction ?k on 9MBO contributes to

the externally applied force array fak

ak= Na,lnlikdS (3.78)

It should be noted that in contrast to the low order traction boundary condition
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which involves the values of the shape functions, the gradients of shape functions

appear in the expression for the case of higher order boundary conditions. As a

result all the volume element nodes adjacent to the boundary OMBO and not just

the subset lying on the surface carry contributions of the externally applied force

array. From the final form of the weak form obtained in equation (3.40), the normal

component of the displacement gradient Duk specified on the external surface OTBO

will contribute terms both to the stiffness matrix Kb and to the external force

array fje. The elemental stiffness matrix for a specified normal component of the

displacement gradient is given by

KikbP = - Na,inin i [fj JiikqrpNb,qr + n 3 jikqrp nsN,nnr dS (3.79)

whereas the corresponding contributions to the external force array is given by

f e = - f Na,inininj Dupn/3 nkrdS (3.80)
JoecOTBO h

The preceding expressions of various contributions to the force arrays and stiffness

matrix from the surface terms was implemented as part of the assembly process of

the interface elements in our research finite code.

This concludes the discussion of the finite element implementation of the dis-

continuous Galerkin formulation for strain gradient elasticity. In the next chapter,

numerical convergence tests and verification examples are presented.

58



Chapter 4

Numerical tests and examples

In this section, a number of numerical tests are conducted for the purpose of ver-

ifying the numerical properties of the discontinuous Galerkin formulation and for

demonstrating size effect in strain gradient constitutive laws. To this end, the ex-

act analytical solution of two simple unidimensional problems in nonlocal elasticity

are derived and used for comparison with the numerical simulation. A simple linear

constitutive law relating both high and low order stresses and strains of the form

Uij 0 Cijkl Ekl (4.1)

Tijk = Jijklmn 7llmn (4.2)

are employed. The length scale parameter 1 is engulfed in the higher order stiffness

matrix Jijklmn .The expression for Jijklmn is explicitly written in appendix A. The

closed form solution of the unidimensional problems used as a basis for verification of

the numerical methods are derived in Appendix E. Although the example problems
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are unidimensional the numerical tests are conducted with the full three-dimensional

implementation in our research finite element code.

4.1 Tension Test

In this example, a prismatic bar with a rectangular cross-section as shown in fig-

ure (4.1) is subjected to simple tension by applying constraints at the left end and

displacement boundary condition at the right end. The geometric dimensions and

the material model properties are given in table (4.1). In addition to the standard

low order boundary conditions, higher order boundary conditions are necessary at all

points on the boundary. Just as is the case with the homogeneous low order natu-

ral boundary condition the high order homogeneous natural boundary condition is

automatically specified.

F

Figure 4.1: Tensile test problem

rk = 0 (4.3)

This example constitutes a patch test consisting of a constant stress state, and thus,

does not exhibit any gradient (size) effects. The analytical solution for the problem is
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Figure (4.2) shows a comparison of the length-wise distri-

Table 4.1: Tensile test material properties
Properties values

Length L= lm
Height h =0.1m

Young modulus E = 70GPa
Poisson ratio v = 0.3

Nonlocal constants a, = a 2 = a3 = a4 = 1
Length scale parameter 1 = 0.lm
Stabilization parameter 1= 10

x 104

.1 AnalytiXa

.7-

5

4-

3-

.2-

Mesh Y1.iXntya

0 0.1 0.2 0.3 0.4 0.5 0.0 0.7 0.8 0.9

z

Figure 4.2: comparison of u, along z axis of mesh 1 in 4.4 subjected to an tensile
load and the analytical solution for the unidimensional tensile load problem

bution of the displacement field uz. It can be observed in this figure that the numerical

solution matches exactly the analytical solution, as required for convergence.
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4.2 Bi-material tensile test

The numerical properties of the discontinuous Galerkin formulation are studied in the

presence of gradient effects. To this end, we consider a prismatic beam made up of two

materials as illustrated in figure (4.3) with a uniform square cross-section subjected to

a tensile load. The geometric dimensions and material properties are listed in table

(4.2). The analytical solution for this problem is derived in Appendix (E) where

the nonlocal features of the solution are also discussed. The simulations are run for

E 1 E2

Figure 4.3: Bi-material tensile loading test

different mesh sizes as illustrated in Figure 4.4. The displacement field uz along the

z axis is compared with the analytical solution for different mesh sizes in Figure 4.5.

It can be observed that even for a very coarse mesh the error in displacement is

very small. The normal strain component along the z axis Ezz is plotted for various

mesh sizes and compared with the analytical solution in figure (4.6). In order to

assess the convergence properties in a quantitative manner, the L2 norm of error in

the displacement is computed using the nodal displacement values obtained from the

finite element solution and the analytical solution. The plot of is presented in figure

(4.7). It is seen that the rate of convergence is two. The resulting strain field
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Figure 4.4: Tensile test problem discretization employed (a)
mesh 3; (d) mesh 4.

(b)

N a c e

Face d

ace

Face d

(d)

mesh 1 ;(b) mesh 2; (c)

Table 4.2: Bi-material tensile test material properties
Properties values

Length L = lm
Height h = 0.1m

Young modulus E, = 70GPa, E2 = 280GPa

Poisson ratio vi = 0.3, v2 = 0.3
Nonlocal constants a, = a2 = a3 = a4 = 1

Length scale parameter 1 = 0.im
Stabilization parameter / = 10
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Figure 4.5: Displacement profile for a bi material specimen subjected to tensile load
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Figure 4.6: Strain profile for a bi material specimen subjected to tensile load
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Convergence analysis: L2 norm of the displacement error v/s mesh size
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exhibits size effects i.e. a dependence on the size of the specimen subjected to a

simple tensile load. The presence of the gradient terms smooths the strain field in the

problem domain in comparison to the local linear elastic constitutive laws. The effect

of the size parameter on the strain profile is studied by running simulations varying the

length scale parameter 1 with all other geometric and material properties remaining

the same. For this purpose, the fine mesh shown in figure (4.4-d) is employed. The

-. .... .-. ..-. ... -- -- --- - --- -- ---

................- ...... .

------........ -. ----.----.--.-

I I ~ I

-- 0.05 (Analytical)
- 0.1 (Analytical)
- - -- 0.2 (Analytical)

+ 0.05 (Numerica)
- 0.1 (Numerical)
+ 0.2 (Numerical)

----- - Linear Elasticity

I I I I

U.L2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z

Figure 4.8: Comparison of numerical and analytical results of strain profile along the

z axis for three different values of

effect of varying is shown in figure (4.8). As the ratio of 1 is decreased the strainvrigL soL

profile approaches the case of linear elasticity and when this ratio is increased the

difference between the maximum and minimum strains in the domain is decreases

until it becomes a constant in the domain.
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4.3 Clamped Beam under bending loading

F

h a b

h

Figure 4.9: Bending problem illustration

In this section the effect of length scale parameter on the bending stiffness of a

cantilever beam is demonstrated. The presence of gradient terms in the constitutive

relation helps to smooth the strain field and thus affects the bending stiffness [14].

To this end, we consider an uniform prismatic beam with a rectangular cross-section

which is entirely clamped at one end and subjected to a bending force at the other

end. The higher order conditions are the tractions set to zero, equation (4.3). The

geometry and the material properties of the beam are listed in table (4.3). In classical

Table 4.3: Bending test material properties
Properties values

Length L = lm
Height h= 0.1m

Young modulus E = 70GPa
Poisson ratio V = 0.3

Nonlocal constants al = a2 = a3 = a4 = 1
Stabilization parameter = 10

linear elasticity for thin beams the tip deflection (6) corresponding to an applied load
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Figure 4.10: Plot of stiffness ratio to the ratio of length of the beam to the length
scale parameter

(F) is given by

(4.4)

where E is the elastic moduli of the beam, I is the moment of inertia of the cross-

section, L is the length of the beam. Rearranging equation (4.4) the bending stiffness

can be expressed as

F 3EI
Ke = - =

6 LV

here Ke refers to the linear elastic thin beam bending stiffness. The effect of the

gradient term can be studied by plotting the ratio of stiffness in the linear elastic

case(Ke) to the stiffness exhibited by the beam with the gradient terms (F/6) , and
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this ratio is defined as the stiffness ratio and indicated with the symbol y.

Ke6

F (4.6)

Stiffness ration 7 is plotted with respect to the ratio of (1/L), 1 being the size factor

and L being the length of the beam (4.10). All the dof's are restrained along face

a in figure (4.9) and a force is applied to all nodes on face b. As the the length

scale parameter 1 increases and becomes comparable to the length of the beam L, the

bending stiffness of the beam increases.

4.4 Size effects under torsion

In this section, the size effect of the strain gradient law is once again demonstrated

with a torsion example. A prismatic bar of uniform square cross-section is subjected

to a pure torsional load, which are specified using the appropriate boundary conditions

figure (4.11). The geometric and material properties of the beam is given in table

(4.4). To study the effect of size effect on the shear moduli of the nonlocal linear elastic

Table 4.4: Torsion test geometric and material properties
Properties values

Length L = lm
Height h =0.lm

Young modulus E = 70GPa
Poisson ratio v = 0.3

Nonlocal constants a, = a2 = a3 = a4 = 1
Angle of twist 0 = 1'

Stabilization parameter 0 10

material we plot the ratio of the shear moduli as obtained in the linear elastic case
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to the strain gradient elastic case (-y). In order to carry out the numerical simulation

a uniform tetrahedral mesh as illustrated in figure (4.12). The torsion problem is

simulated for the material length scale parameter varying from 104 - 10-1. This

variation in '- is plotted against the ratio of width of the beam to the length scale

parameter: figure (4.13). Observing figure (4.13) its seen that the, shear moduli of

hh

L 
h

Figure 4.11: Description of the problem setup for torsional loading of a prismatic
beam of square cross-section

the beam increases as the size parameter is increased when keeping all other geometric

and material parameters constant.

This concludes the discussion on the Numerical results, in the next chapter con-

clusions and future work is presented.
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Figure 4.12: An illustration of the mesh used in the torsion example
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Figure 4.13: Plot of torsion stiffness ratio 1 to the ratio of thickness of the beam to
the length scale parameter
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Chapter 5

Conclusions

In this work an implementation of low order discontinuous Galerkin method for non

linear hyperelasticity was developed in three dimensions and convergence properties

where studied with suitable examples.

A discontinuous Galerkin formulation for nonlocal linear strain gradient law was

formulated and implemented in three dimensions. The stability and convergence of

the discontinuous Galerkin formulation were derived analytically and demonstrated

with suitable numerical examples. The size effect exhibited by strain gradient laws

where demonstrated with the help of suitable numerical examples. It is found that the

formulation proposed provides a versatile approach for the discretization of the higher

order theories and will provide a better platform to handle non-linearities which will

arise in the case of plasticity and problems involving crack propagation.

In extending this work firstly on the implementation side, the present implementa-

tion can only handle a very trivial higher order boundary condition corresponding to

the case of double stress traction being zero at all points on the boundary. Routines
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to handle the higher order essential and natural conditions have to be implemented.

On the formulation side, the next logical extension of the work would be to adapt the

discontinuous Galerkin formulation for small deformation strain gradient plasticity

and then explore the extension to finite strain gradient elasticity and plasticity.

Possibilities exist in extending the formulation for explicit problems and study

the effect of the DG formulation on critical time step and stability of time stepping

algorithms. It is still not clear as to how the effect of nonlocal terms will affect the

parallelization of the finite element codes and more work is needed in the direction

for explicit problems. On the analytical side of the problem, more efforts are needed

to compute posteriori error estimates for problems with strain gradient laws. On the

geometric side, most of the mesh node numbering optimization codes to minimize

bandwidth of the stiffness matrix take into account only the volume elements, it will

be interesting to develop mesh node numbering optimization codes that take into

account the interface elements as well.
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Appendix A

Strain Gradient Constitutive

Relations

The strain gradient constitutive relations used here are taken from Wei Y. and

Hutchinson J.W. [39], Fleck and Hutchinson [10] The strain gradient constitutive

relation is expressed as

aw
Tijk -

Dr7ijk
(A.1)

the strain gradient constitutive relation in a linear form can be written as

W = IAc6ijj + IEijEij + it (c, Pi( +)
2 ('ik7j

(2) +(2) (
C2?ijkT/ijk + C3771ijkrijk +

From the strain energy density function the higher order stress can be written in

terms on strain gradients as

Tijk ~ Jijklmn'?I7mn (A-3)
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Where Jijklmn is given as

4
Jijklmn = 2E12 S ()2 T( (A.4)

where TImn 's are given by

ijkpqr 6 ip j + 6iq~jp) 6 kr + (Ejp 6 kq + 6 jq6 kp) 6 ir + ( 6 ip~kq + 6 iq6 kp) 6jr

-! f ( 6 ij 6 kr + 6 jk 6 ir + 8 ki 6 jr + 6 kijr) 6 pq} (A.5)
15

ij p r 1 2 e{ qej p + ejk eir -I- ekei +1- ejkpiqrg } ( A .6)

1
15 {( 6i 6q + 66jp + 6kijp) 6kq + 6j-i- 6 ir - i kq + 60iqjg) rp}

7(2) 1

ijkpqr = fB eikqpr + jkqeipr + eikpCjqr + ejkpeiqr}

1 12(A.6)
+ 2 2(6ipog + 6iqgojp) 6kr - (6jp6k g + 6j gokp) 6ir - (6ipokg + 6iqgokp) 6jr}

T =pq -- {2eikqejp, -| e jkqeip, - eikpe j, -| ejkpeiq,}

8 {(6ipoj k + 6jpo i ) 69 r -+ (6iq j -+ 6j qoi ) 6p r} ( A .7)

+ {2 ( 6ip6 jq + 6iq6jp) 6 kr - (6jp6 kq + 6jq'Skp) 6 ir - ( 6 ip~kq + 6 iq~kp) 6 jr}12

ijkpqr = { 6ik'j + 6jk6ip) 6 qr + ( 6 ik6 jq + 6jk6 iq) 6 pr} (A.8)
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Appendix B

Derivation of the upper bound of

the bilinear form

The bilinear a(u, w) form for the non-local linear elastic problem is

a(u, w) LOh wkiUkdQ + j wkij hkdQ

+ kk,i Tjik) nj + n Jjikqrp )Up,q nr dS

(B.1)

and b(w) given by

b(w) = WkbkdQ + WktkdS JM Qwk,inirkdS (B.2)
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Using triangular inequality on equation (B.1)

|a(u,w)|
Wk,iBnhd + f Wk,ijsgikdQ + j k,j (jik) nrdSBoh B Oh aj O

+ II Boh
Wk,i n K fikqrp

(B.3)

Up,q rirdS

Applying Cauchy-Schwartz inequality to the first term of (B.3) we have

I Wk,iO ikdQ
Boh

SE
le

WkiO kdQ

(B.4)

I I VCijkl Wk,1 L2
(S2e) Cijkt

Similarly, applying Cauchy-Schwartz inequality to the higher order stress term

IBOh Wk,igjTjkdQ
2

(B.5)

Wk,ij 
L2

(Qe)
cijkqrp Up,qr L

2
(Qe)

The quadratic term can be bounded by

IjWk,i~j nj13l iqr

h Wk,i TIw n
e i

Up,qj rdS

L2 (aoena Bh)

jikqrp
h Up,q n,

L2(aQenariBh)
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JaIBOh
(B.6)

Uj L2 (Qe)

VJjikqrp

: - Wki~idQ
ee



and, finally the consistency term.

2

h-lJj ikqrp (up,qr) L2&elIh r8 n 7
2 e L2 4QniB)Wki jirp lL2 (a~2ena&Bh)

, I Ih.lJjikqrp (up,qr) 2 h ~Wk,ij VJjikqrp n

- 0 O jikqrp Up,qr 22(e 11h Wk,i1I lJjikqrp ni 1L2 (E9Qena&Bh)

(B.7)

Substituting (B.4)-(B.7) into (B.3) we obtain

I Wa(u, w) I N0ijkl Wk,1 L2 (.e) "C L 2 (.e)
e

e VJjikqrp Wk,ij 1L
2(Q e) 1 Jjikqrp Up,qr 1 L( e

V ~ikqrp
Zhj

+ 0 E Jjkqrp Wkjn

e L 2 (8a2ef&iBh)

Lpq 2r

L2 (O.7en49IBh)

+ C Jjiqrp Up,qr L2 ( e)hs W J n L2(oeno1Bh)

< C1 () Cijkl h8
2 WkL2(,ie] jjIL2q. L e he

+ C1 (/3) Ell -IJijkqrp Wk,i L2 2() elJijkqrp Up,qr L2 (Qe)

+ C1 (W) E
e

e

=jkqrp

2h Wk, n L2
L2(a~7en8i Bh)

Jjikqrp Up,qr L2Q 1 hs1

eljikqrp

2h
Up,q27 2

B

L 2(au2efliBh)

jjikqrpn L 2(OgenaiBh)

(B.8)
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with C'(3) = max (1, 13, v/'Ck). This essentially gives us

la(u, w)|

C1 (/3)
Cijkl Wk, () N ijkl 2(e)

e

+ Jijkqrp Wk,ij 11 2 (Qe) VJijkqrp Up,qrL2qe

Wk,i fL)
L2

(aQefaiBh)

=jkqrp

2h
Upq 2re )

L2 (aQeflOiBh)

S~ ~ 22~i+ Jjikqrp Up,qr hI 2 I L[WE J jikqrp n L2 (gQaenIBh)

(B.9)

The idea here is to get an expression for the upper bound of the bilinear a (u, w) in

terms of the energy norm of u and w so we collect terms depending on u and w and

we obtain,

ja(u, w)jI
VCijkl~ ,j L 2 (Qe) + JjikqrpUp,qr L 2 (Qe)

Jjikqrp f[Up~qj

L2(aoe nai Bh)-

L2(e+ JjikqrpWp,qr L 2 (Qe)

LWp2qe nB
L2(6,)efl49IBh)l
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jkqrp

2h
e

+

I
-F

VCijklWi,j

Jjikqrp

2h

(B.10)



Squaring both sides of the equation (B.10) and applying Cauchy-Schwartz inequality

to (B.10) we get-

[ CijklUij (e + 1 JjikqrpUp,qr L2 (e)

+

[
+

Jjikqrp

2h

CijklWij 2(e) + JjikqrpWp,qr L2 (Qe)

Jjzkqrp

2h

noting that a 2 + b2 > 2ab we obtain.

2
VCijklUi,j L2 (0-e)

2

+ VJjikqrpUp,qr L2 (Q-)

x

(B.12)
2

+~ jikqrp~p,qr L(e

±
Jjikqrp

2h

2

L2(genalIBh)l

Equaution (B.12) can be expressed using 3.51 as,

ja(u, w) 2 < Ck ('3) II 112 2 IwI 12
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Ia(u, w) 2
C2 ,3 <SE

e
2

1 Upq n

L2(agenaBh~)-

x

(B.11)

2

fWpqj nl
L2(aQenaiBh)_

a(u, W) 12
902 (3) < E

e [1
+

tljikqrp

2h

2

[Up,] nr -
L2(agenaBh~)-

2

CijklWi'j 
L 2 (Qe)

(B.13)
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Appendix C

Convergence Analysis-

discontinuous Galerkin method

Using the definition of energy norm (3.51), the energy norm for error in the interpo-

lated spaces can be written as

u - ukI -- V 

+ 1
e

J_ h

2

V ([u - uk) 9 n -

L2(&aQena&Bh)

2
1k) 1L2

(qO) +1
2

L2 (QO)

(C.1)
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We have dropped the tensor indices for the sake of brevity .The first term of (C.1)

can be bounded by

\/VC: V (u k) 2 2
L2 (qO) - L2(QO)

C| IV (u - uk) 2
(C.2)

< C| (u - 1uk) H(o)

< C 2 h2k UHk+1(2 )

Here we have assumed positive definiteness of C, applied the property I|a.bl <

||all |b|l,the definition of the Sobolev space 11u,|fHo(Q.) < fu1H1(O) and the basic

error estimates of interpolation theory. Similarly the second term of the right hand

side of (C.1) can be shown to become

2

V2(U -k) L2 (00) SC2 2k-2 Hk+1(Q)

Additionally we employ the inverse inequality the inverse inequality' and the positive

IIVIHm(no) < Cihj'-m V1IH1( 0o)'
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1VM ;> 1 ]CI > 0 :



definiteness of J to obtain (C.3). Now the third term of (C.1), one has:

2

E-: FT ([u - u k (9 n-2
e L2(agenar Bh)

J2
:V(u -uk) 9 n 2

e L 2
(aeiBh)

e3 he-- V (u - uk) 0 n 2(oIBh) (C.4)

C11u - uk),a 12 E C5 Iu ~ uk, 2 <ge

k2 2a~e) L5 u kH(ae)

e e 22 2

5- u - uk)~ 2 ((ie) 2 LH2+(e)
e eQ 1 (U Uk) 11 2(ay)+Z ECh (2k 2 (de

e e e

Combining the last three results the energy norm of the error can be written as

|1112 = ECh 2k-2 JuI(ne) (C.5)
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Appendix D

Implementation of second order

derivatives of the element shape

functions

The Finite element interpolated displacement inside each element is given as,

U= NaUai (D.1)
a

where N is the shape function and U are the nodal displacements. Differentiating

with respect to the spatial coordinate system

(9z; 1 E Uai
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where k are the isoparametric mapped space. From this the derivative of shape

function can be written as

&Na
Dxj

a Na atk

k=1 x3

(D.3)

Taking the second derivative,

aX3 DXk

3 9Na &&
a Uai

1=1

ONa) ai
agi axj

DNa a2g,
+ a aX2a1 Uai

oi 9xj8x a9k

(a 2Na

alia~m I
a9 1 a9m
ax9j aXk

The second derivative of shape function can thus be written as

3 3 (2Na
aitam )

ai am
axj Dxk

aNa a 2 
1

ali aXjaxk

For a 10 node tetrahedral element 2 will have 30 terms and 9 2 Nwill have 90 terms.wil haeC02ers

Going to a cubic element will produce a horrible number of derivatives to compute.

To compute &21, we start with computing (, which can be obtained by solving the
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SXk

aNa a2e,
+ a x xk Uai (D.4)

a 2Na

ax DXk
(D.5)

a n

n 3

ax1 1=1
n 3



following linear equations.

/

IXa
a 51

5 ya ONa
a a

Za
a

aNa ONa
xa a W3 9Ll 1 0 0a O x Oy Ox

a a62 a a63 ax ay az

Na ONa 2 O O2L 0 0 1
a 196 Za O\ x y z

a a S

A
(D.6)

Ox ay Oz

C2 aC2  2 =
Ox ay Oz

2x3 2y z3
Ox ay OxZ

Z N

Eaa

Ma

aNa
Za

a

DNa

a

5 Ya ONa
a 9

aMa

a O09

-1
DNa

Xa

ONaa k5Ya-
a 9 3

DNa

a

can thus be written as,
ax3--

=A (D.8)
Oxi

where Zg = (A- 1)j , is the inverse of A. Now, starting with the first derivative of

the coordinate transformation, the second derivative can be computed as-

DXk (i OXk

m1 (A Xk
3 3 3 - B

= -LLLAn 0 AojAmk
m=1 o=1 n=1 m
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"no can be computed starting from An0,

Ano= E na " (D.10)
a=1

differentiating with respect to j the expression obtained is,

&Ano  n a2Na
=~ E Xna a~aj(D. 1)

If the mid-nodes of the tetrahedral are inserted at the mid points of the corner nodes

then the term Ano in (D.11) would go to zero thus making the second derivative of

the jacobi of the coordinate mapping equal to zero.
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Appendix E

Analytical solutions for 1-D strain

gradient problems

E.1 Uni-axial tensile load

The analytical solution is derived for a uniform linear elastic strain gradient prismatic

beam of length L subjected to tensile load. The beam is clamped at one end x = 0 and

subjected to a displacement load at the other end. The Youngs moduli is E and the

length scale parameter is 1, the governing differential equation for static equilibrium

of the beam is

E (U,2 -l 2u,)XXX ) = 0 (E.1)

The general solution to the above ODE is given as

u(x) = Aix + A2 + B1 sinh ( + B 2 + cosh ( (E.2)
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An unique solution can be obtained by applying the boundary conditions, since the

governing equilibrium equation is fourth order, four boundary conditions have to be

enforced and which are

u(0) = 0 (E.3)

u(L) = 6 (E.4)

u"(L) = 0 (E.5)

u"(0) = 0 (E.6)

(E.7)

It is worth noting that the boundary conditions (E.5)and (E.6) correspond to the

double stress traction being zero. Substituting the boundary conditions in equation

(E.3) and (E.6) into the balance equation (E.1), the displacement field for the problem

can be obtained as

x
u(x) = -J , x [0, L] (E.8)

L

E.2 Bi-material subjected to uni-axial tensile load

An analytical solution is presented for a bimaterial, consisting of two dissimilar linear

elastic strain gradient solids. The bimaterial is subjected to tensile loading applied

in the form of a displacement boundary condition. The Youngs moduli of the two

material being E+ and E- respectively. The internal length scale 1 and the nonlocal

constants ci, c2, c3, c4 are taken to be the same on both sides. We reduce the governing
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differential equations into one dimension and the resulting equation is given as

E (Uxx -12 uXXXX) = 0 (E.9)

The general solution to the above ordinary differential equation is

U+()= At(+ A+ + B+ sinh + B+ cosh V < 0 (E.10)

u-() = A-+A+Bi sinh + B2 cosh V ;> 0 (E.11)

An unique solution can be obtained by using the interface and boundary conditions.

The interface conditions being, continuity of displacements, continuity of first derivate

of displacement, continuity of tractions and continuity of higher order tractions.

[u(O)] = 0 (E.12)

[u,2 (0)] = 0 (E.13)

[Eux (0) - El 2u, 22 (0)] = 0 (E.14)

[El 2uI2 (0)] = 0 (E.15)

101



The boundary conditions being

U -2

UL2
2Q~

ux X

L
2)

uxx (L)2

= 0

=0

=0

The particular solution satisfying all these conditions are

U
a

, Bl3U =,-BI Ce B

LU B
2a'

/3-U, B2a
=tanh ()

21

= [ttanh (L) 3U (E.21)
2U1 a

3-U (E.22)
Y

where a = ; (1+ p) - l tanh (L) - , 3= and y =Ej

The strain profile across the length of the domain is plotted for various values of

, figure (E.1). For very small values of -, the strain profile is close to the linearelstciy outonan orlagevlus f tebimaera smpe eavs ikL

elasticity solution and for large values of -L the bi-material sample behaves like aL

homogeneous medium under static loading conditions.
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Figure E.1: Comparison of strain profile in the domain for the the variation of L
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