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Abstract

In this thesis, we study primal solutions for general optimization problems. In par-
ticular, we employ the subgradient method to solve the Lagrangian dual of a convex
constrained problem, and use a primal-averaging scheme to obtain near-optimal and
near-feasible primal solutions. We numerically evaluate the performance of the scheme
in the framework of Network Utility Maximization (NUM), which has recently drawn
great research interest. Specifically for the NUM problems, which can have concave
or nonconcave utility functions and linear constraints, we apply the dual-based de-
centralized subgradient method with averaging to estimate the rate allocation for
individual users in a distributed manner, due to its decomposability structure.

Unlike the existing literature on primal recovery schemes, we use a constant step-
size rule in view of its simplicity and practical significance. Under the Slater con-
dition, we develop a way to effectively reduce the amount of feasibility violation at
the approximate primal solutions, namely, by increasing the value initial dual iter-
ate; moreover, we extend the established convergence results in the convex case to
the more general and realistic situation where the objective function is convex. In
particular, we explore the asymptotical convergence properties of the averaging se-
quence, the tradeoffs involved in the selection of parameter values, the estimation
of duality gap for particular functions, and the bounds for the amount of constraint
violation and value of primal cost per iteration. Numerical experiments performed on
NUM problems with both concave and nonconcave utility functions show that, the
averaging scheme is more robust in providing near-optimal and near-feasible primal
solutions, and it has consistently better performance than other schemes in most of
the test instances.
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Chapter 1

Introduction

1.1 Motivations and Literature Review

Over the past few decades, there have been many powerful computational tools to

generate approximate solutions for nonlinear programming problems. In particular,

to solve the large-scale and structured optimization problems, Lagrangian dual for-

mulation together with the subgradient method has been efficiently used and is one

of the most popular schemes in the field of computational optimization. Based on

the fundamental framework, we develop the dual subgradient scheme with primal-

averaging for our study in the thesis.

1.1.1 Duality and Subgradient Method

Firstly, why do we use duality to solve the optimization problems?

The Lagrange relaxation and dual formulation can not only efficiently generate

near-optimal solutions for the convex problems, but also provide good lower bounds on

the optimal cost of the original optimization problems in the nonconvex case (see M.

Diir [10]). Especially for the structured problems arising in the network applications,

the dual problem has at least the following advantages:

* The dual problem is always convex regardless of the primal, hence its optimal



solution can be found.

* The dual problem typically has a smaller dimension and simpler constraints

than its primal.

* The dual formulation can decouple the primal problem of certain structures and

thus can be implemented distributively.

Secondly, why do we use subgradient methods?

The subgradient method, which relies strongly on the convexity properties of the

dual problem, is used as the dual function is typically nondifferentiable (cf. the gra-

dient method applied to differentiable functions; see Bertsekas [2]). As such, dual

subgradient method may not always guarantee a direction of descent, but wander

around and reduce the distance to the optimal solution at each iteration. A diminish-

ing stepsize is essential for the convergence of subgradient methods. With a constant

stepsize, while the gradient algorithm can converge asymptotically (i.e., in the limit

when the number of iterations increases to infinity) to the optimal value provided

that the stepsize is sufficiently small, the subgradient algorithm can only approach

the best value within some range of the optimal value which is proportional of the

stepsize (see Bertsekas, Nedi6 and Ozdaglar [4] or Bertsekas [2]). In short, we cannot

guarantee convergence of the subgradient method with a constant stepsize.

Then, why do we use the constant stepsize in our analysis?

* It is easy to implement and can be constructed at minor cost.

* It can track the system variations and set termination conditions more efficiently

than other stepsize rules.

* It has practical importance.

There has been much literature on the subgradient method and its extensions since

Shor first introduces it in [24]. For example, Bertsekas, Nedid, and Ozdaglar study



the convergence properties under different stepsize rules in [4]; Nedid and Bertsekas

propose and analyze the incremental subgradient method in [21]; Nemirovski discusses

cutting plan methods and mirror descent in [3]. For a general reference on subgradient

methods, see the notes of Boyd [5].

1.1.2 Approximate Primal Solutions

Finally, why do we use an average sequence?

In spite of its widespread popularity, the dual subgradient method may not nec-

essarily solve the primal problem, which is of our main concern. Some reasons are

stated as the following:

* The exact dual solution may not be obtained with a constant stepsize (recall

that the dual problem converges within some error level), not to mention the

convergence in the primal space.

* When the original problem is nonconvex, the duality gap usually exists and to

solve the dual is no longer equivalent to the primal, which may make it difficult

to set termination criteria to generate near-feasible and near-optimal primal

solutions.

* In general, the dual cannot solve linear programs, since the solutions to the La-

grangian relaxed problems are normally infeasible in the original linear program

(see Larsson and Liu [16]).

* The dual function is typically nonsmooth at an optimal dual solution, therefore

an optimal primal solution is usually a nontrivial convex combination of the

extreme subproblem solutions.

In order to efficiently tackle these problems and directly recover the primal so-

lutions from the subgradient information generated in dual subgradient methods, a

primal-averaging scheme is firstly proposed for linear primal problems by Shor [24].



Subsequently, Larsson and Liu [16] implement and numerically test two averaging

schemes for the linear minimum cost multicommodity network flow problem. These

results are generalized to a more flexible choice of step lengths and extended to the

deflected subgradient method by Sherali and Choi [26] for linear problems. This uti-

lization of ergodic sequence for primal convergence is explored in the case of general

convex programs by Larsson, Patriksson and A. Str6mberg [17], and the two schemes

proposed (with different combinations of step lengths and weights) are investigated

in an application to traffic equilibrium assignment under road pricing, which shows

promising results.

Unlike these previous work which almost exclusively focus on the asymptotic be-

havior of the primal sequence under diminishing stepsize rules, Nedid and Ozdaglar

[22] recently propose and analyze the dual subgradient methods with averaging un-

der the constant stepsize rule, so as to generate approximate primal solutions for

convex optimization problems. Moreover, in their work, the convergence properties

per iteration, including bounds for feasibility violation and estimate of primal cost,

are obtained under the Slater condition. To complement these theoretical analyses,

we numerically test and evaluate the proposed scheme in the application of network

utility maximization (NUM) problems, which we make a brief review below.

1.1.3 Network Applications

The framework of NUM proposed by Kelly, Maulloo and Tan [14] has many applica-

tions, for instance, network rate allocation, user behavior models, and the Internet

congestion control in communication networks. Due to the special structure of this

model, dual subgradient methods have been used with great success in developing

decentralized cross-layer resource allocation mechanisms (see Chiang et al. [8]).

In modeling NUM problems, the objective is to maximize utility functions which

represent the level of user satisfaction or quality of service (QoS) at the the allocated

rate. For the elastic traffic flows where the users can adjust their transmission rate

gradually, concave utility functions are used. Some practical examples include tra-

ditional data services, such as file transfer and e-mail. Concavity is also guaranteed



when the source rate is large enough, due to the law of diminishing marginal util-

ity. This class of concave NUM problem can be efficiently solved by the canonical

distributed algorithm proposed by Low and Lapsley [19].

However, even though concavity is widely assumed in the NUM problem, noncon-

cave utilities that model inelastic flows have become increasingly important. These

models have found applications in delay and rate sensitive services, such as voice ser-

vice and streaming video. Unlike the concave case, inducing the primal convergence

for the nonconcave NUM is a difficult nonconvex optimization problem and is not

widely studied. Currently, there are three different approaches in previous work to

solve the nonconcave NUM.

Approach 1 (Rate-allocation scheme with self-regulation property) This ap-

proach enforces certain regulating properties locally without central admission

control to provide distributed heuristics. However, the solution is suboptimal

and the algorithm works only for a specific class of sigmoidal utilities; particu-

larly, sigmoidal with only one inflexion point (see Lee et al. [18]).

Approach 2 (Sum-of-squares (SOS) method) This method uses SOS to effi-

ciently compute global optimum for objectives that can be transformed into

polynomial utilities. However, it is centralized and only numerically tested for

some functions, without being theoretically proved (see Fazel et al. [11]).

Approach 3 (Optimality conditions) This approach determines the optimality

conditions in which the canonical distributed algorithm for convex case is still

applicable for the nonconvex problem. However, this condition cannot be sat-

isfied in many cases (see Chiang et al. [9]).

Due to the limitations of these recent approaches and the unexplored aspects in

existing literatures, our work is motivated.



1.2 Scope of the Thesis

In this thesis, our goal is to study primal solutions recovered in the dual subgradient

with primal-averaging scheme, for general optimization problems. We numerically

evaluate performance of the averaging scheme in the Network Utility Maximization

(NUM) framework. We examine the established theoretical analysis in the convex

case and develop an effective way to reduce infeasibility of the approximate primal

solutions. We extend the insights from behaviors of the convex implementation to

the nonconvex case, and further explore convergence properties of the approximate

primal sequence when the duality gap is possibly positive. We compare the averaging

scheme with other models in solving nonconcave NUM problems and computationally

demonstrate the advantages of our scheme.

1.3 Thesis Outline

The organization of the thesis is as follows.

In Chapter 2, we present the primal optimization problem and its dual counter-

part. We introduce the dual subgradient method and primal-averaging scheme. Then

we present a distributive algorithm in the specific framework of NUM, which serves

as the model for our numerical experiments.

In Chapter 3, we study convergence properties of the averaged primal sequence

in terms of feasibility violation and primal cost per iteration, and further explore

its ability to reduce infeasibility by controlling initial parameters. We numerically

investigate the performance of the scheme in NUM framework with concave utilities;

moreover, we discuss the effects of system parameters (i.e. the value of constant

stepsize and initial dual iterate) upon convergence properties of the system.

In Chapter 4, we extend the convergence analysis to the nonconvex case and

provide modified bounds on the amount of primal cost. We implement and compare

the averaging scheme with other models.

Finally, in Chapter 5, we summarize our work and discuss future developments.



Chapter 2

Model Formulation

In this chapter, we present the basic model and framework that are used for further

development. In Section 2.1, we start by introducing the notations that will be used

throughout the thesis. In Section 2.2, we formulate the dual subgradient scheme

applied to the general optimization problem. In Section 2.3, we introduce the primal-

averaging method. Based on the general formulation, we use the dual decomposition

method to build a distributive model for the specific NUM application in Section 2.4.

Assumptions for further theoretical analysis are also stated.

2.1 Notation and Preliminaries

For any vector x E Rn, we use xx to indicate its ith component, and we write x =

(x1, -.. , x). We view x as the column vector and its transpose xT as a row vector

with the same components. The inner product of the vectors x and y is defined as

xTy = E= xiyi. In some situations, we may also use xk E nR to denote a vector in

the sequence {Xk}, according to the context.

Unless otherwise stated, we use I xJJ to denote the L-2 norm, which is |IxII = V .

L-1 norm and L-oo norm are also used occasionally, i.e. lxJi1 = •i Ixil and llxlloo =

maxl<x< Inxil, respectively. Note that I xIloo < JIxll < IlxIl1.

For any p E Rm , we define its projection on the nonnegative orthant R as +



which is the component-wise maximum of vectors IL and 0, namely

[p]+ = [max(0, •i), • ,max(0, im)]

In this case, we can see that [p]+ >2 /.

The function of a single variable defined on the interval I is strictly concave if, for

all a, b E I with a - b and all A E (0, 1), we have

f[(1 - A)a + Ab] > (1 - A)f (a) + Af(b).

The function is concave if we also allow equality in the above expression. Strictly

concave function has no linear parts and has a unique global maximum.

Given a concave function q(y) : Rm -- R, we denote a vector d E R m as the

subgradient of q at the point i E Rm if

q(i) + dT(u -i) > q(u) Vyc E Rm.

The set of all subgradients of q at

denoted by dq(ii).

iE Rm is called the subdifferential and is

2.2 General Model

2.2.1 Primal and Dual Formulation

Consider the following generic optimization problem, which is referred to as a primal

problem (P):

minimize

subject to

f(x)

g(x) < 0
x e X,

(2.1)

where f : Rn -+ R is the objective function, g(x) = (gi, g2, .. ,g n) and each

gj(x) : Rn - R, j = 1,.. - - - , m is one of the m inequality constraint functions.



X C RI is a nonempty closed convex set. A point x in the domain of the problem is

feasible if it satisfies the constraints g(x) < 0. The primal optimal value is denoted

as f*, which is assumed to be finite and is achieved at an optimal (feasible) solution

x*, i.e. f* = f(x*).

If both the objective and constraint functions are convex, the problem is a convex

optimization problem. Otherwise, the problem is nonconvex. In the following chapters,

we assume that the convexity of g(x) always holds, and (P) is convex (nonconvex) if

f(x) is convex (nonconvex).

To recover the primal optimal solution, we use the Lagrange duality theory to

relax the primal problem of Equation (2.1) by its constraints, and the Lagrangian

function is

L(x, j) = f(x) + 1 'Tg(x).

The dual function is then defined as

q(p) = minxx L(x, ) (2.2)

= minx~x{f(x) + TJg(x)},

where tL e Rm is the Lagrange multiplier. Equation (2.2) is concave regardless of

the convexity of the primal problem, as it is a piecewise linear function of I. Thus,

we can maximize the dual function to obtain a tightest lower bound of the optimal

primal optimal cost f*. This is defined as a dual problem, which is always a convex

optimization problem (D):

maximize q(p) (2.3)

subject to IL E Rm.

The dual optimal solution is denoted as p*, at which the dual optimal value (also

the tightest lower bound) is obtained, i.e. q* = q(p*). This is in fact the Weak Duality

Theorem, i.e. q* < f*. Note that when q* = f*, duality gap is zero.



2.2.2 Dual Subgradient Method

We denote the dual feasible set as M = f{p I 2 0, -oo < q(p) < oo}, the dual

optimal value as q* and the dual optimal set as M*. For every fixed p E M, we have

the solution set for the dual function of Equation (2.2):

X(p) = arg min{f(x) + IT'g(x)}. (2.4)
XEX

Assumption 2.1 The convex set X is compact (i.e. closed and bounded).

According to Weierstrass Theorem (see Bertsekas [2]), if Assumption 2.1 and the

continuity of f(x) and gj(x) hold, it follows that X(p) is nonempty, i.e., there exists

at least one optimal solution x, E X(p). Note that the vector x, is unique if f(x) is

strictly convex, otherwise there may be multiple solutions.

The subgradient method is used to solve the dual problem. From the definition of

q, we can see that g(x,) is readily obtained as a subgradient of q at I. As such, a

sequence of dual feasible points can be generated iteratively by

Ak+1 = [Ak + agk]+  for k = 0, 1, .. , (2.5)

where a > 0 is a constant stepsize and p0o 2 0 is an initial dual iterate. The

subgradient iterate gk is

gk = 9(Xk), (2.6)

where the corresponding primal feasible iterate is given by any solution of the set,

Xk = xtk E arg min {f(x) + Lg(x)}. (2.7)
xEX

As the subgradient method can usually generate a good estimation of the dual

optimal solutions within a number of iterations, approximate primal solutions are

obtained accordingly. The constant stepsize a is a simple parameter to control, and

by choosing an appropriate value of a, the algorithm can approach the optimal value

arbitrarily close within a finite number of steps.



For further development, we state the following assumptions which hold through-

out the analysis.

Assumption 2.2 (Slater Condition) There exists t E R', such that

gj(.)< 0 j= 1,... ,m.

A point satisfying Assumption 2.2 is called a Slater point or an inner point.

Assumption 2.3 (Bounded Subgradients) There exists L > 0, L E R, such that

I gkJl < L Vk > 0.

Under Assumption 2.1, if we let L = maxxEx 11g(x)jI, Assumption 2.3 can be

satisfied.

The dual subgradient schemes can be applied efficiently to the network optimiza-

tion problems, due to their decomposable structures. In Section 2.4, we define this

general model in a specific network setting, where the objective is to maximize utility

functions [cf. min f(x) of Equation (2.1)].

2.3 The Averaging Scheme

Although the dual subgradient method can generate near-optimal dual solutions with

a sufficiently small stepsize and a large number of iterations (which is hard to be

satisfied), it does not directly provide primal solutions which are of our interest. In

some cases, it may even fail to produce any useful information (see reasons discussed

in Section 1.1.2).

Thus, it motivates us to apply an averaging scheme to the primal sequence {xk) for

approximate primal optimal solutions. In particular, for the sequence of primal vec-



tors {Xk} C X generated in the dual subgradient scheme, we define another sequence

{ik} as the averages of the previous vectors x0 , - -- , k-1, namely,

k-1

Xk = kZxi E X
i=O

The

ties are

Vk > 1. (2.8)

average sequence {ik} provides approximate primal solutions, whose proper-

explored both theoretically and numerically throughout the thesis.

2.4 Network Utility Maximization Framework

Network Utility Maximization (NUM) problem has recently been used extensively to

analyze and design distributive resource allocations in networks. We formulate the

NUM model with the dual subgradient method, so as to set a platform to test the

performance of the averaging scheme and verify our theoretical analysis.

Consider a network with L undirectional links of capacity l E L and S sources of

transmitting rate x,, where cl and s E S. We have

S(1) = {s E S 1l E L(s)}, for each link 1

and

L(s) = {l E L I s e S(1)}, for each source s,

where S(1) denotes the set of sources that are on link 1, and L(s) denotes the set

of links that source s uses. The connection of 1 and s can also be expressed compactly

as an incident matrix A E RLxS, where each component is

if 1 E L(s) or s E S(l)

otherwise.
Als, s= 1,

1 0,



The general problem of NUM is formulated as

E, Us(x,)

EsES(I) Xs • C1

O<x.8 _M.

Vl = 1, ... ,L (2.9)

Vs = 1,.- ,S,

where x E Rs , c E RL and M, < oo00 is the maximum transmission rate. The

constraint set can be expressed as a matrix form of Ax < c. As x, is bounded, x E X

is a compact set (cf. Assumption 2.1), which also guarantees the existence of X (Y) in

Equation (2.4). Here, if Ms is not specified in the problem, we can set it as

M, = M = max {c }.
1<l<L

The following example demonstrates topologies which are used in our numerical

experiments.

Example 2.1 (Network Topology)

Let L = 2, S = 3, we have a simple 2-link and 3-user network with link capacity

c = (1, 2), as shown in Figure 2-1.

x2 - , x3

c2

X1
xi `Ak`

Figure 2-1: A simple line topology with 2 links and 3 users.

Besides the line topology, we consider also a tree network topology with 4 links

and 4 users as in Figure 2-2.

maximize

subject to

0



x3

Figure 2-2: A tree topology with 4 links and 4 users.

The primal objective function in NUM is called the utility function, which repre-

sents the degree of satisfaction of the user when it acquires a certain amount of the

resource (see Lee et al. [181). We make some basic assumptions on the utility func-

tions, though there are many other forms depending on the different network systems

they model.

Assumption 2.4 (Utility Functions)

1. U (0) = 0.

2. Each U,(x,) is a monotonically increasing function.

3. U(x) is the sum of U,(x,) (additivity and separability), where U, may or may

not be the same for each of the S sources.

Therefore, the primal problem is to maximize the total utility over a compact

set, subject to the coupling linear constraints [cf. (P) where we minimize f(x)]. If

the utility functions are concave, it is a convex optimization problem with zero du-

ality gap. In a more realistic setting, the utility functions can be nonconcave and

then the NUM problem becomes nonconvex. Note that in NUM, we consider convex

(nonconvex) optimization and maximization of concave (nonconcave) utility functions

interchangeably. We will discuss both the convex and nonconvex cases in details in



the numerical experiments.

The linear constraints in Equation (2.9) can be decoupled as

L(x, p)
- Z~a ·s) + 1x:·'

- (IEL(s)=E[US(xs)+ - ( c t -• +l)] +•

Z [L8(x 8, [58)]+

8 1

Cd cl/

where I' E RL is the multiplier or link price in the network. We denote the

aggregate link price of source s as [ 8 = EIEL(s) 11i. The Lagrange dual function is

then

q(p) = max L(x,It)

= [max L.(x,, [5')] + cipt,
S 1

which is equivalent to solving a subproblem at each source s distributively:

q(M) = max {U,(x,) - px}.
0<xý<M$

(2.10)

At the higher level, the master dual problem is

maximize q(Ip)

subject to

where q(y) = ., q.(I) + CT1 .

The dual variable It is updated iteratively at each iteration k by the subgradient

method introduced in Equation (2.5), except that it can be solved locally at each link

1, i.e.

Mi(k + 1) = [pi(k) + a{xl[p(k)] - cl}]+ Vl, Vk = 0,1,---.



where xt = EsES(I) x, is the aggregate rate at link 1. At each iteration k, the

primal iterate x,(k) = x,[p•(k)] can be obtained parallelly at all sources by

x,[a'(k)] = arg max [U,(x,) - p1 (k)x,] Vs,
0<- <Ms

which is the solution of the subproblem in Equation (2.10). Collectively, we have

x(k) = (xl, ... ,xs) and p(k) = (pi, - - - ,I L) at iteration k.

The NUM problem in Equation (2.9) is a special case of the general optimization

problem in Equation (2.1). To avoid confusion, we convert the NUM problem into

the more general form of a minimization problem, by setting

maxo<xs5 M, ,E U,(x,) = -min<, M, E,[-U(x,) (2.11)]
(2.11)

= - minx, • f ,(x,).

Now we deal with a convex function f(x) = E, f,(x,). The (linear) constraints

g(x) remain unchanged. As maximizing a concave function is equivalent to minimizing

a convex function, we have the same iterate pair {Xk, k) (so is {~k}) in the two

formulations, and the objective values are just negative of each other. We use this

converted form in the numerical experiments.



Chapter 3

Approximate Primal Sequence in

the Convex Case

In the previous chapter, we formulated the basic primal and dual problems of interest,

and introduced the averaging scheme in dual subgradient methods as a means to

recover near-feasible and near-optimal primal solutions.

Based on the model, we start with the convex optimization problems in this chap-

ter. In Section 3.1, we study the convergence properties of the averaged primal

solutions. We further investigate its ability to reduce the amount of feasibility viola-

tion by varying the value of system parameter. In Section 3.2, we conduct numerical

experiments in the NUM framework to test the theoretical results. We explicitly

compare the performance of the proposed averaging scheme with ordinary dual sub-

gradient scheme, in terms of feasibility and optimality. From the theoretical insights

and computational results, we also show the effects of system parameters, namely,

initial dual iterate and stepsize on the quality of approximate primal solutions.

3.1 Convergence Analysis

In the following analysis, we let Assumptions (1) to (4) defined in Chapter 2 hold and

focus on the cases in which both f(x) and g(x) are convex.



3.1.1 Properties of Approximate Primal Sequence

Intuitively, the averaged primal solution ik generated in Equation (2.8) is expected

to have some convergence properties the original sequence lacks. It turns out there

are many far-reaching benefits introduced by the averaging scheme.

The following proposition by Nedi6 and Ozdaglar [22] provides bounds on the

feasibility violation, as well as the primal cost of the running averages, which is the

basis for our further investigation. Note that, the bounds are given per iteration,

which can provide a practical stopping criteria for the iterations. We include the

proof for completeness.

Proposition 3.1 (Nedid and Ozdaglar [22]) Consider the convex problems defined

in the form of (P). Let the dual sequence {(pk) be generated by the subgradient method

of Equation (2.5). Let the vectors Xk for k > 1 be the averages in Equation (2.7).

Under the assumptions that f(x) and g(x) are convex and X is a convex compact set,

we have the following bounds, for all k > 1:

(a) An upper bound on the amount of constraint violation of the vector ik,

Ig(Gk)+ll < •k (3.1)

(b) An upper bound on the primal cost of Xk,

S2 k-1
f(ik) f*+ + lg(x . (3.2)

i=0

If we have I Igk < L, Vk > 0 (Assumption 2.3), we can further have

x1oll2 aL2
f(^k) < f* + 2k + (3.3)2ka 2

(c) and a lower bound on the primal cost of xk,

f(k) f* - 11119(k)+ (3.4)

32



where I* is a dual optimal solution, and f* is the primal optimal value.

Proof. (a) (Feasibility) According to the dual iteration in Equation (2.5) of the

subgradient method, for all k > 0, we have

I'k+1 = [k + CYgk]+

> Ak + agk.

it follows that

ag(xk) = agk

2 Ik+1 -1k-

We have xk E X for all k according to Equation (2.7). It follows that ^k E X

since the set X is convex and averaging is a convex operation.

As the constraint function g(x) is convex, we have

k-1

g(1k) k< E CgXi)
i=0

k-1

E og(xi)kaO
1

1 (Pk - Po)

< Lk
- ka Vk > 1.

Since all the /k is nonnegative, we have g(ck) + <

violation is bounded:

l9(-k)+ 1 k I

kCi.ka Thus the constraint

Vk> 1.

By the definitions of dual function in Equation (2.5)(b) (Optimality - upper bound)



and primal iterate in Equation (2.7), we have

f (xi) + •u g(xi) = q(pi) < q*,

where q* is a dual optimal solution. Under the assumption of convexity and Slater

condition, we have q* = f* (see Bertsekas [2]).

Together with the condition that f(x) is convex and Xk e X, we can obtain

1k-1

f(Xik) < f (xi)
i=0
k-I

i=O
1k-1

k= q(i)
i=O

+ 1Tg(Xi)} -
k-1

-k E i g(xi)
i=O

k-1

i=O

1 k-1

_ -i= (xi).
i=O

By applying the nonexpansiveness property of projection to the dual iterate, we

have the following relation for every i > 1,

IIw++1112  = II[/t + ags]+ - [01+112
Sl-I11 + ag ll2

• Il1l1 2 + 2a*p g(xi) + a2 2g(x) 112.

Thus, by plugging in --uTg(xi) and summing over 0,... , k - 1, we can obtain an

upper bound for the primal cost:

-i • Lil2 -l p+1112 + a2llg(xk)112
f(Pk) q* + •E 2a

i=O

II.L0112 _ JI 112
= q* + 2ka

1f o ll 2  aL2
= f*+2+2ka 2

k-1

+ Z 1Ig(x)i12

i=O



(c) (Optimality - lower bound) By the definition of the primal and dual optimal

values, for any x E X, we have

f(x) + (,1*)Tg(x) > f(x*) + (L*)Tg(x*)

= q(p*).

As Xk E X for all k > 1, we can use the above relation to get a lower bound for

each iterate Xk:

f(-'4) = f(&k)+ (PL*)T'g(xk)- (-*)Tg(ik)

> q(**)- ()Tg('k)

_ q(,*) -

_ i* - 110*111g(k) ll.

As the duality gap is zero in the convex optimization problems, we can interchange

q* with f* in the above results.

These bounds on the feasibility and optimality measurements of the approximate

primal solution Xk can be easily obtained if we have bounds on the norms of dual

iterate 1(11k I, dual optimal |IIL* l and subgradient lig(xk) l, which are available from the

simulations. Thus, these bounds can provide us with practical information to estimate

optimal solutions, which the original primal sequence without averaging lacks.

Finally, we note that the upper bound for the constraint violation 19g(ik)+ I sug-

gests that the infeasibility of the averaged primal sequence is always bounded and

it can be reduced in the order of 1/k as the iteration continues. This observation

implies that, by increasing the number of iterations, we can reduce the amount of

feasibility violation to a certain level accepted by the system. As congestion control

is one of the most important requirements for rate allocation in network applications,

the ability of the averaging scheme to reduce infeasibility is of practical significance.

In fact, further investigations reveal a more powerful means to directly control the

amount of feasibility violation of the approximate primal vectors, i.e., the infeasibility

can be reduced by increasing the initial dual iterate Mo, which is discussed next.



3.1.2 Infeasibility Reduction

One of the drawbacks of the dual subgradient scheme is that it usually yields infeasible

primal solutions (see reviews in Section 1.1.2), and we try to remedy this. We show

below that the averaging scheme can effectively suppress and control the feasibility

violation in the initialization of system.

Proposition 3.2 Let t be a primal vector satisfying the Slater condition in As-

sumption 2.1. Let L be the bound of subgradient as in Assumption 3. For any stepsize

a > 0, if we set the initial dual iterate po sufficiently large, in particular,

f(z) - q* + aL2/2
() minl<jm{-gj(t)} ,

we can eliminate the infeasibility of approximate primal solutions xk from the

beginning of iterations, i.e. IIg(ik)+ll = 0 for all k > 1.

Proof. By the nonexpansiveness of projection and the definition of dual iteration

in Equation (2.5), for all k > 1, we have

14k+1 _ *112 = Ilk + CfgkI+ - [*1112

SI1k + gk -_p*112

= IMk - 1* 112 + 2ag'(1k - A*) + &2 g9k 12.

Using the definition of subgradient, we have

gk' (k - P*) _ q(jik) - Y*.

By the boundedness of subgradient, we can obtain

II/k+1 -_*112 •< lJlk - *112 - 2a(q* - q(pk)) + a2L2 . (3.6)

Now we consider the following two cases for any constant stepsize a,



Case 1:
2(q* - q(luk))0<a<

L2

Under this stepsize (sufficiently small), we can see that the sum of the last two

terms in Equation (3.6) is negative, and it follows that

[[/•k+l - * 11 < 1I1k - * 11. (3.7)

It implies that, if a is sufficiently small, the distance of dual iterates to the optimal

value p* is reduced at each iteration. Thus, /k can eventually converge to the level
aL2

set arbitrarily which is close to q*, i.e. {/p > 0 1 q(/p) < q* - }.
2

Case 2:

2(q* - q(11k))
S L2

This is the case when a is relatively large and A/k may typically experience an

oscillatory behavior without converging. Equivalently, we can express the expression

of a above in terms of a level set, i.e.

aL2

Ek Qa = -{ > 01 q(p) q*- } Vk.
2

According to the definition of dual function q(/L), for any nonnegative vector i in

this level set, we have

aL 2

q* - - < q(y)
2 -

= inf:Ex{f(x) + pLTg(x)}

= f(x,) + pTg(x,)

< f(2) + LT g(.).

It follows that
m

j=1
aL 2

_ f() - q* + 2
2



As gj(2) < 0 for all j, we have

minjl<jmI-gj(x)} j _ --Ig(W)
(j=1 aL 2

< f(.) -q* +

m

Recall that 0l0oo = maxl<jmj, |[II|1 --= j and IL[Io • IolioI)1, we can have
j=1

max f(t) - q* + aL2/2 (3.8)
ljm - minl<jm{-9gj(t)}

Since we have each dual iterate Ak E Q, for all k, every component of the vector

1k can satisfy the upper bound of Equation (3.8).

Thus, for any given stepsize a, if we set each component of the initial dual suffi-

ciently large, in particular,

f(2) - q* + aL 2/2
(LO)j Ž mini<j<m{-gjr()} V

then we have (u~o)j > max (Pk)i for each component of the dual vector, and it
1<i<m

follows that

o0 2 Ž k Vk = 0, 1, --

Now, if the constraint functions are convex, as assumed throughout the thesis, we

have
k-I

i=O
k-i

i=0
k-1

i=O

= (/k - o0)

< 0.



Therefore, we can obtain jjg(ck)+jj = 0 for all the iterations k.

Further Observation and Discussion

The above result suggests that, at a given stepsize a, if we set uo sufficiently large at

the initialization, the infeasibility of {k)} in the averaging scheme can be reduced to

zero even from the beginning of iterations (with the possible loss of accuracy for the

approximate primal cost). It gives us the idea of reducing feasibility violation of the

averaged primal solutions by increasing the parameter to, which is a nice property

that the original primal sequence {Xk) does not posses. In effect, in the case that

IIg(Gk)+-I = 0 for all k > 0, we can further deduce the following properties of {(k}:

1. {f(^k)} converges downward from above, i.e., there exists a k' > 0, such that

f(+k') <f(k) for all k.

2. The upper bound of f(xk) becomes looser as Po increases.

3. The lower bound becomes f(^k) > q* if IIg(Gk)+jI = 0 for all k > 0.

4. Each component of {fk} (cf. data flow in the NUM framework) converges up-

ward from below.

An intuitive explanation can be, when uo > Pk for all k (it is practically unlikely

that yo = Yk for all k), x([) is a decreasing function throughout the domain (see Lee,

Mazumdar and Shroff [18], and simulation results in Section 4.2.3). It follows that

f(xo) > f(xk) if f(x) is monotonically decreasing (this is often the case in network

problems). Therefore, no matter how oscillatory the original primal iterates are, the

running averages of the previous iterates and the primal cost tend to have certain

trends.

In contrast, by reducing [o, we can expect different trends of the sequences gen-

erated in the averaging scheme.



In the NUM problem, if we set Ito = 0, we can observe the following properties of

the averaged sequences generated in the simulation:

1. The feasibility violation is bounded by |1g(k)+ , and is reduced at the

rate of 1/k approximately.

k-1

2. The upper bound of primal cost becomes f(ik) _ q* + a E 2ig(xi) ll2
i=O

3. {f(Gk)} converges upward from below, i.e., there exists k' > 0, such that

f(^k+k') > f(Gk) for all k.

Similarly, we can make some intuitive explanations for the above claims. If each

constraint function gy(x) is affine (or linear) in x, which is usually the case in network

flow problems, we can have

k-1

g(Xk) = X Xi)
i=0

k-1

==gk 1 ).
i=O

Since •Igk+ g9k [• k + agk]+ = Ik+1, it follows that

k-1

(ik) k E g(xi)
i=0

< [(• k - /k-1) + (Lk-1 - Lk-2) + + (A 1 - 0)
ka

As g("k)+ essentially maintains the nonnegative components while increasing its

negative components to zero, and the relation Pk + agk = 11k+1 holds only for the

nonnegative components of gk, we can have g(k)+ 1 k > >0 if most components ofka
g(^k) are nonnegative.

If po = 0, it follows that /k > po for all k > 1, since the nontrivial dual vector /k

must have some positive components for k > 1, i.e. (Pk)j > 0 for some j. Thus, we



have imax = i(/.to), where xz(p) is a nonincreasing function. As every gj(x) is linear,

it implies that |Ig(lmax)I+I has the largest amount of infeasibility. Thus, under dual

subgradient methods, 11g(00k)+1 decreases as the iterations carry on. It is clear that

the upper bound is tightest when we set L0o = 0.

The explanation for the trend of f(xk) is similar to the previous case. Note that

IIIo112 k-1
as the upper bound f(^k) : q* + - ' ~i ( 112 can suggest, the value of

i=O

po = 0 also affects the estimate of primal cost. Therefore, there is always a trade-off

at the selection of 'po.

These trends of different sequences are to be illustrated in the plots of the numer-

ical experiments.

3.2 Applications to Concave NUM

To test the theoretical results and demonstrate the behaviors of the averaging scheme,

we investigate its performance in the framework of Network Utility Maximization

(NUM). With the distributive model built specifically for NUM in Chapter 2.4, we

can test the scheme with instances of different concave utility functions and topologies.

We also compare it with the ordinary dual subgradient system without averaging.

3.2.1 Concave Utility Functions

In NUM, the network flow is elastic if the sources can adjust their transmission data

rate gradually in response to congestion levels within the network. It can tolerate

packet delays and losses gracefully (see Shenker in [25]).

We can model this class of services with concave utility functions, which turns

out to be convex optimization problems. Moreover, the application of Lagrangian

dual method to the network flow problems with separable utility functions gives rise

to highly parallelizable algorithms. Thus, we can focus on individual utility func-

tions (which are scalar functions) and combine them for homogenous or heterogenous



systems. We illustrate different concave utilities below.

Example 3.1 We plot the functions that

model elastic flows, as shown in Figure 3-1.

strictly convex.

U(x)

U(x)

U(x)

U(X)

are typical concave utilities in NUM to

Note that functions (Fl) to (F3) are

1 - e- kx k > 0.

x k, O<k< 1.

log(kx + 1), k > 0.

kx, k > 0.

1

0.8

= 0.6

3 0.4

0.2

U(x)=1-e - x

0 5

U(x)=x0. 05

5
x

U(x)=x

1

x
U(x)=Iog(lOx+1)

Figure 3-1: Examples of concave utility functions.

3.2.2 Models and Algorithms

We implement and compare two (distributive) schemes: a basic dual subgradient

scheme (abbreviated as DS) and a modified scheme with the averaging techniques
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(F2)

(F3)

(F4)
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(abbreviated as DSA). Note that DSA is essentially a dual subgradient scheme with

primal-averaging method and we summarize its algorithm below.

Algorithm for DSA

1. Initialize the system by setting a nonnegative yo and an appropriate stepsize a.

2. For each user s, compute the primal iterate at iteration k:

xs(,Uk) = arg minxx{f(x) + Y4g(x)}, wheref 1 k = yl(k).

3. For each link i, update the dual iterate at iteration k:

Mi,(k + 1) = max[0, IL(k) + axl(Auk) - c ].

4. Repeat steps 2 to 3 if N iterations have not been completed.

5. Otherwise, compute .k using Equation (2.8).

6. Evaluate the performance parameters [i.e. g(xk), f(Xk), g(xk), f(k)], at the

master level.

To conform to the theoretical analysis, we focus on the numerical measurements

per iteration instead of the asymptotical convergence. Thus the maximum number of

iterations is preset to N in the experiment. Essentially, when the utility function of

each user is concave, the aggregate objective function is concave.

3.2.3 Numerical Results

In this section, we provide computational results to demonstrate the performance of

the DSA systems. In the experiment, we first convert the original NUM to a convex

minimization problem as in Equation (2.11). Thus the figures are generated for the

convex version, i.e. f(x) = -U(x), while the data in tables is converted back to the

original utility maximization problem. Typically, we run the simulations in a fairly

small number of iterations, e.g. N = 40, and investigate properties of the averaged



primal sequence per iteration. The following parts discuss different aspects of the

scheme.

Varying a - Performance Comparison of DS vs. DSA

Consider the 3-user, 2-link line topology in Figure 2-1, with link capacity c = (1, 2).

In a homogeneous system system, we assume that each user is modeled with the same

utility function (F2). This optimization problem is formulated as:

maximize 3E=1 U,(x) = 3=1 X. 05

subject to xl + x2 < 1

xl + x3 < 2

0 < xl,Z2, X3 < 2.

we can also express the constraints in the matric form as

101 2

Due to the small number of flows and links, we use an exhaustive search to obtain

the global optimum which can be used to check against the simulated solution:

U* = 2.9538, at x* = (0.4145, 0.5855, 1.5855).

To compare the performance of the two schemes with and without averaging, we

first set the initial dual iterate wo = 0 and vary the stepsize from 0.03 to 2. At

each test instance, we evaluate the amount of constraint violation and value of primal

cost in the two schemes, as recorded in Table 3.1. The quantity a/b denotes the two

extreme values between which the parameter oscillates, when the system becomes

unstable as k approaches N. A single quantity (i.e. value of the last iterate at N)

in the table implies that the corresponding sequence converges smoothly. We also

compare the estimated cost value in each scheme with the optimal utility (in the last

two columns).

Figures 3-2 to 3-5 illustrate the convergence properties of difference sequences



a 1g19+11 1h+11 U U U/U* 6/U*
0.03 0 0.0743 2.9538 2.9604 1.0000 1.0022
0.04 0/0.4511 0.0550 2.9336/2.9703 2.9589 0.9932/1.0056 1.0017
0.05 0/0.4750 0.0435 2.9310/2.9724 2.9579 0.9923/1.0063 1.0014
0.06 0/0.5065 0.0358 2.9275/2.9750 2.9573 0.9911/1.0072 1.0012
0.07 0/0.5503 0.0305 2.9227/2.9783 2.9568 0.9895/1.0083 1.0010
0.08 0/0.6109 0.0266 2.9151/2.9825 2.9561 0.9869/1.0097 1.0008
0.09 0/0.6394 0.0230 2.9026/2.9855 2.9536 0.9827/1.0107 0.9999
0.1 0/0.6730 0.0200 2.8898/2.9888 2.9516 0.9783/1.0119 0.9993
0.2 0/1.1742 0.0072 2.6905/3.0231 2.9460 0.9109/1.0235 0.9974
1 0.04/0 0 2.4145/3.1058 2.9453 0.8174/1.0515 0.9971
2 0.0199/0 0 2.3278/3.1058 2.9446 0.7881/1.0515 0.9969

Table 3.1: Performance comparisons of DS and DSA schemes towards k = N, with
-0 = 0 and a varying from 0.03 to 2.

in the two schemes. From the simulation plots, we can seen that the DS scheme

converges smoothly only at a sufficiently small a (e.g. 0.03) and sufficiently large N.

A little perturbation of stepsize (even as close as a = 0.04) results in oscillations of

{xk}. The estimated primal cost f(xk) (i.e. U in the table)and constraint infeasibility

11g(xk)+ll (i.e. II1g+1 in the table) have the same behaviors. As the stepsize becomes

larger, the fluctuation is more severe and it is harder to retrieve useful information

from the simulation results. Figure 3-4 shows that the aggregate data rates of users

in DS is prone to exceed the capacity of the link (it oscillates between being feasible

and infeasible), and there is no tendency of the scheme to decrease the amount of

congestion when iterations continues.

In contrast, the averaged primal sequence {Ik} in DSA is robust to the change of

stepsize. As a increases, f (k) (corresponding to U in the table) still converges within

an error level of f* [cf. Equation (3.2)]. Even at a large stepsize a = 2, the estimated

is within 0.31% error of the optimal value. Also, the infeasibility jIg(^k)jlj (i.e.

11^+11 in the table) in DSA can always diminish to zero as k increases to infinity. Note

that when we set ILo = 0, the constraint violation is closest to the upper bound in

Proposition 3.1(a).



Varying /o - Infeasibility Reduction in DSA

In this part, we fix the stepsize at a = 0.03 and vary go, in order to test its effect

on the infeasibility of -k. Note that (p0o)l denotes the value of each component of the

initial dual vector.

Numerical results in Table 3.2 show the reduction in the infeasibility of averaged

primal sequence in DSA when to is increased. In fact, the congestion can be elimi-

nated at each averaged primal iterate Ak provided that to is large enough, as shown

in Proposition 3.2. As q* is not readily available before the simulation, we can start

with p = 0 and slowly increase it to reduce the amount of constraint violation.

Figures 3-6 to 3-7 illustrate the trends of convergence for different sequences in

DSA, which agree with our discussion in Section 3.1.2.

Other testing instances (e.g. at a larger a) also show that, unlike DSA, increasing

/lo in DS cannot improve the feasibility of the ordinary primal sequence {xk}. Thus,

by adjusting the value of initial dual vector, we can have control over the amount of

congestion in the DSA scheme, which is another advantage the averaging technique

introduces to the recovery scheme for primal optimal solutions.

S( o))1 I1+`11 U U/lU*
0 0.0743 2.9604 1.0022

0.02 0.0536 2.9585 1.0016
0.04 0.0360 2.9566 1.0010
0.06 0.0193 2.9547 1.0003
0.08 0.0026 2.9527 0.9996
0.1 0 2.9508 0.9993

Table 3.2: Performance measurement of DSA scheme towards k = N, with a =
0.03 and go varying from 0 to 0.1. Note that there is no relation between ~o and
convergence of Xk in DS.

Simulation Results versus Theoretical Bounds

In this part, we check how the theoretical bounds in Proposition 3.1 predict the

performance of DSA with different parameters.



Figure 3-8 compares the simulation results of the amount of feasibility violation

against its theoretical bound, at different combinations of Po and a. It shows that if

po = 0, the two curves almost coincide and infeasibility decreases approximately at

the rate of 1/k. The increase of uo can accelerate the decrease of feasibility violation.

In all of the test instances, the amount of infeasibility is well bounded by the trendline

with a rate of 1/k.

Figure 3-9 compares the experimental value of the primal cost per iteration with

its theoretical bounds. The lower bound is always tight if we use P* in the calculation;

in practice, it can be replaced with bounds on Pk (see Nedi6 and Ozdaglar [22]). If

jL0 is not zero, the upper bound of f( k) is looser. Thus, there is always a tradeoff

between reducing infeasibility IIg(lk)+ll and estimating the optimal value f(Pk) at the

choice of po. We can also view tradeoffs between accuracy of approximate solutions

and number of iterations at the selection of stepsize.

From the observations in the numerical experiments, we can see that the averaging

scheme can considerably improve the performance of approximate primal solutions.

Its robustness to a large range of stepsizes, as well as its ability to control the amount

of infeasibility (cf. congestion in NUM), are advantageous in the practical applications.

3.3 Summary

In this chapter, we have studied the convergence properties of approximate primal

solutions, which are generated in the dual subgradient with averaging scheme (DSA).

We have further discovered its effectiveness in reducing infeasibility of the system,

by controlling the value of initial dual vector. Finally, we have seen from the numer-

ical experiments conducted in the concave NUM framework, that the DSA scheme

performs better than the DS approach in most scenarios.

Therefore, we can conclude that the DSA scheme can provide a consistently good

estimate of the primal solution for the convex optimization problems.
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Figure 3-2: Three data flows {xk} of DS scheme without averaging, with a increasing

from 0.03 to 2 and po = 0. Oscillation is present when stepsize is slightly larger than

0.03 and becomes more severe as it grows.
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Figure 3-3: Three data flows {xk} of DSA scheme with averaging, with a increasing
from 0.03 to 2 and po = 0. Convergence is guaranteed even when the stepsize is
relatively large.
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(a) Feasibility violation at a = 0.03.

(c) Feasibility violation at a = 0.1. (d) Feasibility violation at a = 2.

Figure 3-4: Comparison of feasibility violations in
increasing from 0.03 to 2 and /io = 0. As a increases,
to zero while I[g(xk)+±j oscillates more severely.

DS and DSA schemes, with a
g(xk))+I[ consistently decreases

(b) Feasibility violation at a = 0.06.
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Figure 3-5: Comparison of primal costs in DS and DSA schemes, with a increasing
from 0.03 to 2 and u0 = 0. As a increases, f(^k) consistently converges to a near-
optimal solution while f(xk) oscillates more severely.
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Figure 3-6: Infeasibility reduction for rate allocations of the DSA scheme, with po
increasing from 0 to 0.01 and a = 0.03. Note that the trends of convergence for the
approximate primal sequence are different when Mo changes.
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Figure 3-7: Trends of convergence for the feasibility violation and primal cost of Xk
in DSA, with fixed a = 0.03 and increasing o-.
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Figure 3-8: Comparison of experimental result with the theoretical bound for the
feasibility violation in DSA, with different combinations of a and 0o. The trendline
with rate 1/k is also plotted.
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Figure 3-9: Comparison of experimental result with theoretical bounds for the value
of primal cost in DSA, with different combinations of a and po.
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Chapter 4

Approximate Primal Sequence in

the Nonconvex Case

In this chapter, we extend the results in convex minimization problems to general

nonlinear optimization problems, which can be nonconvex. In Section 4.1, we first

prove convergence of the averaged primal sequence generated in dual subgradient

methods, and provide bounds for the value of primal cost in the existence of a duality

gap. In Section 4.2, we investigate performance of the averaging scheme in the frame-

work of NUM with nonconcave utilities. We show that in the nonconvex setting, the

averaging scheme can still effectively reduce the amount of infeasibility; we also check

its ability to recover the primal optimal solutions approximately. We compare its

performance with other approaches in solving nonconcave NUM problems, and show

that there are considerable benefits by employing the averaging scheme.

4.1 Convergence Analysis

In previous analysis, we make the assumption that both the objective function f(x)

and the constraint set g(x) are convex, which results in a convex minimization prob-

lem. However, in a general setting, this assumption may not hold true, and we are

faced with nonconvex optimization problems. It is intrinsically difficult to solve this

class of problems, since we can hardly use the standard analyzing methods such as



Karush-Kuhn-Tucker conditions or duality theorem to identify the optimal primal

solutions as in the convex case.

Depending on the convexity of objective and constraint functions, there are several

types of nonconvex problems which have found different practical applications. Here,

we focus on the category of minimizing nonconvex objective with a convex constraint

set. An example is the congestion control of inelastic traffic such as the Internet. In

the following sections, we analyze the properties of approximate primal solutions for

this class of nonconvex problems, and carry out numerical experiments to verify our

results and gain deeper insights of the system.

4.1.1 Convergence of Approximate Primal Sequence

Recall that the averaging scheme is built upon the dual subgradient method with a

constant stepsize. We apply it to a general nonlinear optimization problem which

can be either convex or nonconvex, and analyze the convergence properties of the

approximate primal solution in the nonconvex setting.

For the averaged primal sequence {fk} of Equation (2.8), we can show that it

always converges under the condition that X is compact (cf. Assumption 2.1), re-

gardless of the convexity of primal problem and properties of dual iterates. The

following proposition proves this result.

Proposition 4.1 Let X be a compact set (cf. Assumption 2.1). Let the approx-

imate primal sequence {xk} be the running averages of the primal iterates given in

Equation (2.8). Then {(k} can converge to its limit *.ý

Proof. To prove the convergence, we first show that {(k} is a Cauchy sequence, i.e.,

for any e > 0, there is a K E N such that 11ik' - xk i < e, for any k, k' > K.

1k-1
Given that kk = Z xi for all k > 1, we have

i=O



k

Xk+1 k+ Z i
i=0

k 1
k1

k 1 k-1 1

k+Hence, k+1 ~k
i=ok 1

II~k' - XkII = I1xk' - Xk'-1 + · + Xk+1 -X kIIk II + k'+ II

S1 + 1

xk X2k -

k+1

Without loss of generality, we assume that k' > k (the result immediately follows that

when k' = k). As X is a compact convex set, we haveturnk,s the X, and llest integer larger

under the boundedness assumption of the sequences, where M ich 0. By appyindepg the

above expression iteratively, we have

xk'-1 - Ik'-11 + + Xk 1 1
k' k 1

< 2M(k' - k)

- k+1

Thus, for any arbitrary e > 0, we can let k -1 < e. In other words, for

any k satisfying k = k(e) ' K = [2M(k' - k) _ 1], it follows that

where [x] is defined as the ceiling function which returns the smallest integer larger

or equal to x. Note that (k' - k) is the relative index number, which is independent

of k and can take any non-negative integer number. Thus, K is well defined and {xk}



is a Cauchy sequence.

Since the Cauchy sequence {fk} is also bounded, we say that it has a subsequence

b, converging to L (to be defined later). For any e > 0, we choose K E N so that

there exist n, m > K satisfying i-n - imIll < e/2. Thus, there is a bk = ýmk, such

that mk > K and Ilbmk - LII < e/2. We have

IIXn - LII = l|•n - bk + bk - LII

< IIX, - bkJl + Ilbk - LII

< in - im1 + E/2
< e/2 + E/2

Since e can be arbitrarily small, the sequence {fk} converges to L asymptotically.

Thus, we can denote L as the limit of the sequence {ik}, i.e. L = *.

Thus, the approximate primal sequence in the dual subgradient scheme with

primal-averaging always converges. The distance of ik to ^* can be controlled by

the number of iterations.

4.1.2 Properties of Nonconvex Optimization

It follows next to check whether such an approximate primal vector in the converging

sequence is near-feasible and near-optimal to the global optimal. Note that under

the condition that g(x) is convex, Proposition 3.1(a) and Proposition 3.2 hold for any

nonlinear objective function f(x). However, the bounds of primal cost for the vector

Xk need to be modified.

As it is intrinsically difficult to trace the properties of general nonconvex opti-

mization problems, we first make the following assumption for the group of problems

we focus on.



Assumption 4.1 (Nonconvex Problem)

n

1. The objective function is separable, i.e. f(x) = fi(xi).
i=l

2. The constraint g(x) is linear; in the matrix form, we can have Ax < c.

3. There are 0 < r < n nonconvex functions in the n local objective functions of

the form fi(xi) : R -+ R, thus the objective function is nonconvex.

Clearly, nonconvex optimization problems under this assumption are decompos-

able. Recall that NUM problem has a structure satisfying these assumptions. Thus,

in the following analysis, we consider min f(x) interchangeable with max U(x). We

discuss the conditions under which the previous convergence results under convexity

still hold, and next we show the new bounds when the duality gap is strictly positive.

Optimality Condition for Zero Duality Gap

It is important to note that even for nonconvex problems, the duality gap can be zero.

In this case, the results in Proposition 3.1 still hold, since we have f* = q*. Chiang

et al. [9] discuss the conditions for global convergence of NUM. We present it below

(with slight modifications) and it can be readily extended to optimization problems

with the structure under Assumption 4.1.

Proposition 4.2 (Chiang et al. [6]) For problems with the structure of NUM frame-

work, if the primal solution x(p) generated in the dual subgradient method is contin-

uous at the dual optimal solution y*, the duality gap is zero.

Proof. In NUM, the dual function is convex (possibly nondifferentiable). At the

dual optimal solution p* = (0*, ... , p*), we have the optimality condition:

[Oq(p*)]T(p - L*) < 0 Vy > 0.

As the problem is dual decomposable, we consider each component of the dual

solution by letting ftE = p* + 6 and ~*= - + 5, where 6 > 0 is arbitrarily small.



Now we consider two cases for each component of the nonnegative vector /p.

Case 1: Ijl > 0.

As ft, > /pt, the subgradient at ~ is negative and E x*(is*)
sES(1)

< cl. Similarly, as

* < i*, the subgradient at IL is positive and x : (p' *) 2 cl.
sES(1)

Given that x(1 ) is continuous at p* and 6 is sufficiently small, we have

sES(l)

Case 2: zl, = 0.

Now consider fg only, we can have sEs(l) x(T(s*) < cl from previous discussion.

Under continuity, it follows that

E x(s "*) I s ci.
sESi)

The complementary slackness is hence satisfied,

E
SES(l)

;*)3*] IL = 0

Together with the definitions of dual function, primal optimal and weak duality,

we have

q* = q(p*)

= maxx L[x(1*), l*]

= Za U [(* =(*)] + E 1 u[ec1 - oES(I) X*al(yA*)]
= ES u•[xO(•S*)]
< U*

< q*.

Therefore, it follows that U* = q* and there is no duality gap.



This result suggests that continuity of x(y) at p* is a sufficient condition for

optimality. As discussed in Chiang et al. [9], if we can bound the range of /* so

as to exclude the discontinuous points, we can guarantee the continuity of x(ft) and

thus eliminate the duality gap. However, we are not going into details of this method

here, as it is problem-specific to check the continuity condition. In our approach,

we simply apply the averaging scheme to any problem (either convex or nonconvex),

and we are interested in evaluating the performance of approximate primal solutions.

Specifically, if the continuity condition is met, Proposition 3.1 holds and the bounds

is illustrated in Figure 4-1. In next part, we discuss the situation when the duality

gap is positive.

f*+ +-2ka 2
ff -) lf lq*

Figure 4-1: Illustration of bounds for the value of objective function at an approximate
primal solution, in the nonconvex case under the continuity condition which implies
zero duality gap.

Bounds with Duality Gap

When the condition for zero duality gap is no longer satisfied (cf. Proposition 4.2),

the previous algorithms solving the dual problem may produce infeasible primal so-

lutions and the system may not converge at all, since solving the dual problem is not

equivalent to solving the primal problem any more.

Now we consider the case when the duality gap is positive. We first present some

definitions for further analysis.



Definition 4.1. Let X C ]IR be convex and compact, and let f :X -+ R be lower

semicontinuous on X. A function f : X -+ R is called the convex envelope of f

on X if it satisfies

1. f (x) is convex on X.

2. f(x) < f(x) for all x E X.

3. There is no function f(x) : X --+ R, satisfying the first

f(2) < f (t) for some point t E X.

In other words, we have f(x) > f(x) for all x E X. Thus,

convex relaxation for the original function f(x).

two conditions and

f(x) is the tightest

Definition 4.2. Let f be a real-valued function defined on some convex set X. We

can measure its lack of convexity by the number

p(f) = sup{f(E aixi) - E fif(xi)},

where ai E [0,1] with E ai = 1, and xi E X. It can be seen that p(f) = 0 if and

only if f is convex.

We prove the following Lemmas using these definitions.

Lemma 4.1. For any function f(x), its convex envelope and lack of convexity are

related by

0 < f(x) - f (x) • p(f) Vx E X.

Proof. For any function f(x) satisfying Definition 4.1(1) and (2), we have f(x) <

f(x) and the following holds due to convexity,

f(E~iaxi) _ EZaf(xi)
SE Zaf (xi) Vx E X.



By Definition 4.1(3), we have f(x) > f(x), where f(x) is the tightest underestimation

of f(x). Thus, at some ti where f (E aiti) > E ai f(,7i) [i.e. the nonconvex portion

of f(x)], we have f(-E ait) = Z a f(ti).

As we can write x = E aixi for any x E X, it follows that

sup(f(z) - f(x)) = sup{f( E ax) - f(ECazix)}
= sup{f(E a xi) - E aif(zx)}

= p(f).

Thus, we can have 0 < f(x) - f (x) 5 p(f), for all x E X.

Lemma 4.2. Let Assumption 4.1(1) hold [i.e. f(x) = 1= f (xi)]. Then, we have

f(x) = E 1 fi(x,), and moreover, f(x) - f(x) 5 E, p(fy).

Proof. See Theorem IV.8, Horst and Tuy [13], for the proof that f(x) = E\i= fA(x).

It then follows that

sup{f(x) - J(x)) = sup{E(, fS(xi ) -f Ei fj(xi)}

= sup{Ez1[fV(xi) - f(xi)]}

< EZ1 sup{f i(xi) - f.i(X)}

,5 En P(fi)_

Thus, f(x) - f(x) < sup{f(x) - f(x)} < E•• p(f).

Lemma 4.3 For any function f(x) with an optimum, we have f*(x) > q*(Y) >

q*() = f*. Moreover, if Assumption 4.1(2) holds [i.e., g(x) is linear], we have

f*(x) > q*((p) = q*(I) = f*.

Proof. We have q(p) as the dual of the convex envelope f(x), thus q* = f*. By the



definitions of dual function and convex envelope, we have

q(p1 ) = maxx{f(x) + iiTg(x)}

> maxx{ f(x) + T'g(x)}

Under the linearity assumption of g(x), it is proved in Horst and Tuy [13] that

4(p) = q(p) for any p. By applying Weak Duality Theorem to f(x), we can obtain

the above expression.

Note that the duality gap is defined as r = f* - q*, and for any general function,

we have f* - q* < f* - f* < p(f). Under the condition of linear constraints, we

can have 7 = f* - q* = f* - f* • p(f). In this case, duality gap is the same as the

difference between original function and the convex envelope at optimal.

In the next proposition, we provide per-iterate bounds for the amount of con-

straint violation and value of primal cost of the average vectors Xk, to the nonconvex

optimization problems where f(x) is nonconvex, g(x) is convex and X is a nonempty

compact convex set. Note that this is a more general setting than problems under

Assumption 4.1. Relation of the bounds is illustrated in Figure 4-2.

Proposition 4.3 Let the bounded subgradient assumption hold. Let the dual se-

quence {/Lk} be generated by the subgradient method of Equation (2.5). For the aver-

aged primal sequence defined in Equation (2.7), we have the following results for all

k> 1:

(a) An upper bound on the amount of constraint violation of the vector xk as

( +l < II I__II
-- ko•



(b) An upper bound on the primal cost of ^Sk as

I1•oll 2  aL2
f(2k) < q* + +  + p(f). (4.1)2ka 2

(c) and a lower bound on the primal cost of Xk as

f(•k) _ q*- II1* l11llg(k)+ll ,

where p(f) is the lack of convexity for f(x).

Proof.

(a) The proof follows the same argument as in the proof of Proposition 3.1(a).

(b) Let f(x) be the convex envelope of f(x). Since ^k E X and q* < q*, by Lemma

4.1 and Proposition 3.1(b), we have

f(^k) f( k)+ P(f)IIoll2 aL2

< q* + +  + p ( f ) .2ka 2

(c) The proof follows the same argument as in Proposition 3.1(c), except that we

cannot replace q* with f*, since q* < f* in the nonconvex case.

Note that if f(x) is separable, we have p(f) = E', p(fi) = r maxi p(fi) by Lemma

4.2, where r < n is the number of nonconvex functions fi(xi). We can further estimate

the duality gap for individual functions with special structures, which is discussed in

the following section.

4.2 Applications to Nonconcave NUM

In this section, we test the theoretical results in the NUM framework with nonconcave

utility functions. We observe how the DSA scheme performs in various test instances

and contrast it to other approaches in solving nonconcave NUM problems.
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Figure 4-2: Illustration of bounds for the value of objective function at an approximate
primal solution, in the nonconvex case with positive duality gap.

4.2.1 Nonconcave Utility Functions

In addition to elastic flows which can adjust the transmission data rates gradually in

response to congestion levels of the network, there exist other types of traffic which

are not elastic. Some examples include voice, streaming video and audio services.

Based on the specific service requirements, we can take different forms of the utility

functions. In particular, we use smooth and concave functions to model elastic traffic,

and nonsmooth or nonconcave utilities for inelastic flows. It is also common to have

a mixture of inelastic and elastic data flows.

In last chapter, we have discussed performance of the averaging scheme in elastic

application. In the inelastic traffic, however, the nonconcavity of utility functions

results in nonconvex optimization problems which are significantly more difficult to

solve. Moreover, of the three approaches tackling nonconcave NUM reviewed in Chap-

ter 1, only the rate control scheme with self-regulation provides a distributive algo-

rithm for suboptimal solutions. There is a scarcity of methods to solve such problems.

Considering its robustness in introducing convergence properties, we evaluate the

averaging scheme in the nonconcave NUM. We focus on some typical nonconcave

utilities, in particular, sigmoidal and quadratic functions.

1 ......



Example 4.1 (Nonconcave Utilities)

Sigmoidal utility function is typically used in nonconcave NUM, with the general

form:

() c ea(-b) - d}. (4.2)

The parameters a and b control the shape and position of the sigmoid functions.

We set d to ensure U(0) = 0, and c = such that U(oo) = 1. If

normalization is not necessary, we can let c = 1. We illustrate sigmoidal utilities with

different parameters in Figure 4-3.

X

Figure 4-3: Sigmoidal functions with different parameters.

Note that the sigmoidal function has an inflection point xo, at which "f W = 0.

When x < zx, d2f 2  > 0, it is on the convex portion; when x > xo, d 2 < 0, it is on

the concave portion. Also note that, parameter a controls the shape of the sigmoidal

function while b determines the position of the inflection point.

The simple quadratic function U(x) = x2 can model nonconcave utilities as well.

It is useful when the bottleneck link capacity limits sources to their convex region of

a sigmoidal utility.

Based on the formulations, we can estimate the duality gap for specific nonconcave

utility functions. The following propositions demonstrate the procedures to obtain

the estimation.

SD



Sigmoidal function and concave envelope

(a) Sigmoidal function and its concave enve- (b) Quadratic function and its concave enve-
lope. lope.

Figure 4-4: Illustration of lack of concavity p(f) for two typical nonconcave utility
functions.

Proposition 4.4 Let U(x) be the normalized sigmoidal function of Equation (4.2).

Let p(f) be the lack of concavity in Definition 4.2. If we let a = 1, the duality gap is

not greater than 1/2.

Proof. First, we can define the concave envelope of U(x) [cf. Figure 4-4(a)] as

t() = 0 < x < X'
S (x) x>x'

where t is the slope of tangent of the straight line from origin with the sigmoidal

curve, and x' is the coordinate on x-axis of the intersection point. We can calculate

x' by solving U(x) = xU'(x). It follows that t = U'(x'). Note that while the gradient

t can be obtained by solving the nonlinear problem with computational tools such as

Newton's method, it is very difficult to get a theoretical formulation.

Second, we calculate the lack of concavity by

p(f) = max {tx - U(x)},
O<x<x'

where we denote the solution as x.

Quadratic function and concave envelope

IR, x

0

0



By setting its derivative to zero, we have

t = U'() (ac)y where y = e - a(x - b)
(1 + y)2

After rearranging, we get a quadratic function y2 + (2 - ac/t)y + 1 = 0. Note

that in the sigmoidal function, U(b) • 1/2, and t must fall in the range of [0, b) [cf.

Figure 4-4(a)]. Thus, we must have y > 1. In particular, the solution is

y =1 [ac - 2t + V(ac)(ac- 4t)].

t can be obtained once y is known,

In y+b
a

1 In [ac - 2t + (ac)(ac - 4t) + b.
a 2t

Third, we can obtain the lack of convexity by evaluating p(f) at 2,

p(f) = t - U(t)

= tb + cd + t In 2t I2a dac - 2t + V(ac)(ac - 4t) ac + V(ac)(ac - 4t)

Note that the last two terms of the above expression are negative. If ab is relatively

large, we have c = + - 1 and d = b 0. In fact, when ab = 5, Ic - 11 < 1%

and when ab = 7, Ic - 11 < 0.1%. Thus, eab grows very fast and we can approximate

c ; 1 and d - 0. Even though we cannot get a closed-form solution for t, we can try

to estimate the lack of concavity (an upper bound of the duality gap) as below.

Assume that a = 1, which holds for our testing examples. At x = b, the function

value is . - --2, which is slightly below half of the maximum function value. Note

that x' > b, which falls in the concave region of U(x). If b is relatively large, the

shape of the sigmoidal is "flat" and the gradient t at x' gets close to L. Therefore,

we can estimate t

As mentioned before, c P 1 and d P 0 in most cases. Substituting these values

into the expression of p(f), we can obtain p(f) < - 1/b < 12 ~ -2 /b



Even though the result is obtained by estimation, it agrees with the experimental

results in our experience, i.e., the duality gap in the sigmoidal function is always

(much) less than half of its maximum value.

Proposition 4.5 Let the normalized quadratic function be U(x) = x2 , 0 < x < 1.

Let p(f) be the lack of concavity of Definition 4.2. Then the duality gap is not greater

than 1/4.

Proof. From the illustration in Figure 4-4(b), it is straightforward to see that the

concave envelope is the line relaxation connecting the two end points, i.e. U(x) = x.

Thus we have

p(f) = max { - x2}.
O<x<l

By setting &p(f) = 1 - 2x = 0, we have t = 1/2 and thus p(f) = 1/4. Thus, the

duality gap for a quadratic function is at most one quarter of its function value.

Example 4.2 (Price-based Data Rate Allocation)

To show that different types of utility functions respond to the network price and

adjust the data rate differently, we plot the price-based rate allocation x(y) for: (1)

logarithmic; (2) sigmoidal; and (3) quadratic functions, as shown in Figure 4-5.

These curves imply elasticity level of the data flows. We can see that for the

concave function, x(p) has a continuously differentiable curve and it decreases to zero

smoothly throughout its domain; for the sigmoidal function, the primal vector can be

adjusted gradually according to the dual feedback only up to a certain level, and there

is a discontinuity at the L,,ma; and for the convex function, the allocated rate is either

at the maximum value or zero. The discontinuity in the nonconcave case implies that

it is where the instability and excessive congestion of the system originate from.



Continuity/discontinuity of x(p) for different functions
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Figure 4-5: Illustration of price-based rate allocation x(y), for different types of utility
functions. Discontinuity can be observed in the nonconcave case.

4.2.2 Models and Algorithms

We compare the averaging scheme to the rate control algorithm with a self-regulation

heuristic, which takes a different approach in tackling the issue of instability from

nonconcavity of utility functions. We denote the models tested in the numerical

experiment with the following abbreviations.

DS canonical distributed algorithm in NUM using the standard dual subgradient

method (see Low and Lapsley in [19]).

DSA distributive dual subgradient methods with the proposed averaging scheme (see

Chapter 2).

SR rate control algorithm with self-regulation property (see below for a brief descrip-

tion and Lee et al. [18] for details).

SRA modified self-regulation scheme combined with the averaging method.

We first present the "self-regulating" properties in the SR scheme.
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Properties of SR

1. Each user satisfies the "self-regulating" policy.

2. Each user s has thresholds of tolerance th8 and 6,, such that if it consecutively

receives net utility less than or equal to 68 by transmitting data for th8 iterations,

it stops sending data. Note that if we consider a homogenous system, we can

define the same th and 6 for all users.

3. Link 1 allocates a received rate (we can consider it as the final output data rate)

to each user s E S(1) by

I= if ZieS(I) Xi C1

S fs(ZIt) if EiES(I) x > c1,

where x, is the transmission data rate of user s (we can consider it as the primal

iterate before its feasibility is checked), tj is a vector for the transmission rate

of users in S(1), and we can choose fsr as the continuous function

SEiEs(l) Xic

We can see that the SR scheme is essentially built upon the DS algorithm, with

the additional properties to (locally) turn off users which cause system congestions

due to the discontinuity in rate allocation. As such, if the continuity condition for

zero duality gap is satisfied, SR reduces to standard DS, since the self-regulation

policy is not executed; otherwise, it converts the original nonconvex problem with

positive duality gap into a smaller (fewer users) problem with zero duality gap (the

continuity condition of Proposition 4.2 is satisfied in the new problem). Essentially,

the SR algorithm generates a suboptimal solution to the original nonconvex problem,

which is optimal for the new problem.

Note that congestion control is the first criteria in the SR algorithm (a practical

example is the multi-class services in the Internet); thus, property 3 is to externally



impose congestion control if the estimated primal solution is still infeasible. All the

rate allocations at output are guaranteed to be feasible under the self-regulation.

In the experiment, we implement SR to compare with the performance of proposed

DSA scheme. To alleviate the possible system oscillations, we also consider apply-

ing the averaging method to SR as an additional technique to impose convergence

properties to the system. Thus, the combined scheme SRA is simply to compute the

by-product Sk during the process of self-regulation, as described below.

Algorithms for SR and SRA

1. Set the thresholds th8 and 6,.

2. Initialize Po and a.

3. Compute x,[p's(k)] and its net utility L,(x,, p'), for each user s; if it receives

net utility less than or equal to 6 for th, iterations consecutively, this user s is

turned off locally, i.e., we assign zero data rate to it afterwards and continue

the algorithm with the remaining users.

4. Update pI(k) for each link 1.

5. Repeat steps 3 to 4 if N iterations have not completed; otherwise, get the tem-

porary sequence of {xk} without applying property 3 of self-regulating.

6. (for SR) Check the congestion level at each link 1 and impose feasibility to the

data rate by applying property 3.

7. (for SRA) Compute :k by running averages of the temporary primal iterates

{xk}; and apply property 3 to the averaged sequence to ensure feasibility.

8. Evaluate the performance parameters for {zxk} (k in SRA) at the master level.

4.2.3 Numerical Results

In the experiment, we consider the 3-user 2-link line topology and 4-user 4-link tree

topology introduced in Example 2.1. Our test instances include homogeneous (same



source utilities) and heterogeneous (different source utilities) systems. Note that the

objective function is concave if any of the source utility is concave.

We summarize the nonconcave utilities used in the experiment in Table 4.1, and

plot the price-based rate allocations in Figure 4-6.

Type Notation Function M I Imax X(/L-max)
Sigmoidal S1 U(x) = 1/[1 + e-( - 5)] - 1/(1 + e5) 15 0.22 0 - 5.7

S2 U(x) = 1/[1 + e-( -1)] - 1/(1 + el) 15 0.25 0-1.21
S3 U(x) = 1/[1 + e-(x-s)] - 1/(1 + e8) 15 0.2 0 - 9

Quadratic Q U(x) = x2  2 2 0-2

Table 4.1: Nonconcave utilities and the corresponding range of discontinuity for price-
based rate allocation x(p), at Amax.

Similar to the convex case, we first convert the maximization problems to the

general form of minimizing the negative of utilities. In the tables, the estimated cost

is changed back to the positive value [i.e. U(x) = -f(x)]. Typically, we run the

simulation for N = 50 times and evaluate the performance of approximate solutions

at each iteration.

Example 4.3 (Homogeneous system; line topology; sigmoidal utilities)

Consider a homogeneous system with the sigmoidal function S1, which is tested

with three sets of link capacity,

max E3=1 S1(x,)

s.t. X1 + x2 < Cl

X1 + X3 < C2

0 < -X 1,X 2 ,X 3 • max(c1,c2).

(a) c = [4; 8]. The global optimal is

x* = [0; 4; 8], U* = 1.2081.

In the simulation, we vary the parameters for the two pairs of systems (namely,
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Figure 4-6: Illustration of dual-based primal x(p) for corresponding function.

DS/DSA and SR/SRA) and compare the performance of approximate primal solu-

tions.

Table 4.2 shows the numerical results in DS [ljg(xk)+ll, f(Xk)] and DSA [ljg(Pk)+ll,

f(ik)] at different t and a. The quantity (.0o)z denotes the value of each component

of the initial dual vector.

Figure 4-7 shows the infeasibility reduction in DSA and the trend of convergence

for {xk}, under an increasing yo and a fixed stepsize. We can see that when Ao = 0,

the congestion level is relatively high in the nonconcave system (it is still 0.3521 at

N) and it can be effectively reduced to zero when lo is increased to 0.2.

We make the following observations on different parameters in DS/DSA schemes:

* a affects the quality of primal cost f(x). If the stepsize is too small, it takes

a longer time to converge to a certain level of the optimal solution; if it is too

(0.25,1.21)

(0.25, 0)

I
0



(MO) a g]IIg I 1I u(Xk) U(k)
0 0.01 0/2.4749 0.3227 0.9459/1.7530 1.2455

0.02 0/10.981 0.2611 0.7686/2.5696 1.0410
0.03 0/11.2701 0.2046 0/2.5942 0.8203

0.1 0.01 0/2.4740 0.1194 0.9459/1.7529 1.2366
0.02 0/10.5865 0.0375 0.7488/2.5223 1.0142
0.03 0/11.855 0.0467 0/2.6672 0.8108

0.17 0.01 0/2.4763 0 0.9459/1.7532 1.2004
0.02 0/10.9809 0 0.7686/2.5696 1.0181
0.03 0/11.8550 0 0/2.6672 0.8392

0.2 0.01 0/2.4034 0 0.9459/1.7419 1.1953
0.02 0/10.5865 0 0.7488/2.5223 0.9889
0.03 0/10.956 0 0/2.5475 0.7893

Table 4.2: Simulation results of Example 4.3(a), in the DS and DSA schemes.

large, the DS system is more likely to be unstable and the amount of oscillation

is in proportion of a. As seen from the table, even at small a = 0.01, instability

exists (the quantity a/b implies it oscillates between the two values) for Xk.

* •lo can control the infeasibility (congestion level) of Xk, as proved in Proposition

2. At the same a, increase of 0o can reduce the congestion level, at possible loss

of accuracy in the primal cost. For instance, at a = 0.01, when (yPo)l increases

from 0 to 0.17, infeasibility is eliminated and the estimated primal cost 1.2004

is very close to the global optimal 1.2081. However, uo has no influence on Xk.

* As number of iterations N increases, amount of infeasibility Ijg(^k)+*l decreases,

similar to concave NUM in DSA.

Table 4.3 shows the simulation results in SR/SRA. As congestion control is the

first criteria to be satisfied under SR, infeasibility of the estimated primal solutions

is always reduced to zero. Besides the system variables a, po and N as in DS/DSA,

there are two other uncertain parameters in SR, i.e. threshold of tolerance 6 and th.

We set 6 = 0 throughout the experiment. We make the following observations on the

effect of th in SR/SRA:



* th determines how many consecutive iterations of negative utility it allows before

shutting down the suer. If it is too small, a user (at its transient phase) may

be switched off wrongly; if it is too large, it may take very long to converge

or even oscillate without converging. As the appropriate value of th is rather

problem-specific, the selection of th adds more uncertainty to the system.

* In this example, if th < 7 (out of 50 iterations), the system first switches off user

1 and then user 2, which leads to a wrong solution; however, when th > 7, SR

becomes oscillatory (x2 alternates between two values) while SRA can stabilize

the iterates. It may be deceiving to see the optimal values of XN on the bold

rows of Table 4.3. A close look on the actual iterates during simulation reveals

that the system is oscillating between correct and wrong points, as shown in

Figure 4-8.

(/o)I a th zXN, Oscillate? JN U(xN) U(XN)
0 0.01 5 (0,0,8), - (0.1582,1.0534,7.8418) 0.9459 0.9516

10 (0,0,8), - (0.1582,1.8076,7.8418) 0.9459 0.9721
0.02 5 (0,0,7.9999), - (0.1591,1.192,7.8409) 0.9516 0.9543

10 (0,4,7.9999), 0 (0.2709,3.7281,7.7291) 1.2081 1.1463
0.1 0.01 5 (0,0,8), - (0,0.9019,7.8903) 0.9459 0.9503

10 (0,0,8), - (0,1.1614,7.8903) 0.9459 0.9679
0.02 5 (0,0,8), - (0.122,1.0499,7.8231) 0.9459 0.9503

10 (0,0,8), 0 (0.2413,3.7587,7.7017) 0.9459 1.1498
0.17 0.01 5 (0,0,8), - 0,0.7564,7.7503) 0.9459 0.9407

10 (0,0,8), - (0,1.5086,7.7503) 0.9459 0.9561
0.02 5 (0,0,7.9999), - (0,1.5503,7.8751) 0.9459 0.9640

10 (0,4,7.9999), 0 (0.1249,3.8751,7.7496) 1.2081 1.1725

Table 4.3: Simulation results of Example 4.3(a), in the SR and SRA schemes.

Simulation results in this example show that DS/DSA has a better performance

than SR/SRA, as for the latter, the system either converges to a wrong solution

(more than enough users are shut down) or oscillates without converging. It can be

explained by the discontinuity of x, at ,,max of Figure 4-6. In SR, as xl (Pm)) violates

in both constraints, the system shuts down xl first. However, as x can take any value



from 0 to 6 at /-max = 0.2, it results in oscillation for the remaining users: when

th is small, x2 may be shut down wrongly; when th is large, x2 oscillates between 0

and 6 without converging. As such, x2 = 4 can never be reached in a deterministic

manner. In SRA, the estimates make use of the past information of iterates and

evolve gradually, which provides a more trustful estimate in most cases.

This example reveals some advantages of employing the averaging method:

* It can stabilize the oscillations in DS and SR, and utilize the past information

to generate a good estimate.

* Feasibility violation can be readily controlled by Po, at a possible loss of the

cost approximation.

* It is robust to the change of stepsize; in other words, it works fairly well in a

large range of a.

* As the update of values at each iteration is gradual, it is less prone to make

mistakes than SR which may shut down a user wrongly.

(b) c = [8; 7]. The global optimal is

x* = [0; 8; 7], U* = 1.82.

Table 4.4 shows the simulation results at a = 0.01. Due to the self-regulation

property in SR, xl is turned off after a few iterations in order to suppress congestion.

In contrast, feasibility of X^k in DSA is ensured by setting /to = 0.2 at the initialization

of experiment. In this case, SR can provide the best approximate primal solution,

while the primal sequences in DSA and SRA converge with a certain level of error.

(c) c = [14; 15]. The global optimal is

X* = [6.7705; 7.2295; 8.2295], U* = 2.6992.

The duality gap in this problem is zero even though all the local utilities are

nonconcave, since the primal solution x(p) at the optimal is continuous (cf. Figure 4-

6) and it satisfies the continuity condition of Proposition 4.2. Thus, SR has the same



I IDSA SR SRA
xl 0.6099 0 0.3914
X2 7.1331 7.9999 7.5971
x3  6.2687 6.9926 6.6086
UN 1.6668 1.8192 1.7537

Table 4.4: Simulation results of Example 4.3(b). All the approximate primal optimal
solutions are feasible.

outputs as DS; and at an appropriate stepsize (e.g. a = 0.01), DS/DSA and SR/SRA

can converge to the optimum/near-optimum.

DS DSA SR SRA
a=0.01 - po = 0.1 th=8 po= 0.1

Xl 6.7705 6.7345 6.7705 6.7345
X2 7.2295 7.2409 7.2295 7.2409
x3 8.2295 8.1387 8.2295 8.1387
UN 2.6992 2.6922 2.6992 2.6922

Table 4.5: Simulation results of Example 4.3(c), a nonconcave NUM with zero duality
gap.

Example 4.4 (Heterogenous system; linear topology; sigmoidal and quadratic

utilities)

Now we consider a nonconcave objective function combined with the sigmoidal

and quadratic functions, in which the users at each link have different utilities. The

problem is formulated below with link capacity c = [1; 2].

max S2(xi) + Q(x 2) + Q(x 3)

s.t. x1 + x2 < 1

1 + a 3 < 2

0 < Xl,X2, 7 3 < 2

The global optimal is

X* = [0; 1; 2], U* = 5.



Table 4.6 compares the performance of approximate primal solutions in different

schemes. The primal iterates are illustrated in Figure 4-9 (we set a = 0.1 in all test

instances). We vary the parameters until we obtain a converged solution or a typical

output. Note that the convergence of {(k} is always guaranteed (cf. Proposition 4.1).

We make the following observations:

* In DSA, when 0to = 0, the amount of constraint violation is large and it seems

to decrease as a increases. To eliminate congestion at any given a, we increase

the initial value of dual iterate (cf. Proposition 3.2). When each component

of /0o is 2, infeasibility is reduced to zero and the value of primal function is

optimal. Thus, the DSA scheme can reach the global optimal for this nonconvex

problem.

* In SR and SRA, feasibility always holds true. In SR, user 1 is first turned off,

since its maximum willingness to pay is •max = 0.25, at which x2 and x3 are 2

(see Table 4.1). As xl is on both links, its allocated data rate must be set to

zero to avoid system congestion. On link 2, x3 can take the rate of 2 which is

the link capacity, i.e. ~l=2 = max = 2. On link 1, however, it is hard to obtain

X2 = 1 due to the discontinuity (x can take any value of 0 - 2 at the same price

-= 2). If th is small, it may switch off user 2 completely; if th is large, the

system becomes oscillatory without converging.

* SR can provide suboptimal solutions for sigmoidal utilities with only one inflec-

tion point, thus it goes wrong when a quadratic function is present. If we apply

averaging to it, the system instability can be alleviated, and the approximate

primal solution has a better performance in SRA.

Note that to does not have any established relation with the feasibility of SR; in

contrast, if we increase (yo)1 in DSA or SRA, constraint violation can be decreased

continuously.

As seen from these examples, the averaging method can usually provide an ef-

fective remedy for the system instability that prevails in nonconvex optimization



DSA, (Ao)i = 0 DSA, (0o)1 = 2 SR, (yIo)l = 0 SRA, (IA)I = 0
a +111, U/U* I1 +11, U/U* U/U* U/U*

0.01 1.2157, 1.6082 0, 1 1/0.8 0.9768
0.03 1.0830, 1.6032 0, 1 1/0.8 0.9720
0.05 0.8010, 1.4211 0, 1 0.8/1 0.9535
0.07 0.5614, 1.2637 0, 1 0.8/1 0.9635
0.09 0.4418, 1.1936 0, 1 0.8/1 0.9623
0.1 0.4020, 1.1715 0, 1 0.8/1 0.9611
0.2 0.2040, 1.0707 0, 1 1/0.8 0.9569
0.4 0.1265, 1.0349 0, 1 0.8/1 0.9553
0.6 0.0894, 1.0179 0, 1 1/0.8 0.9535
0.8 0.0566, 1.0016 0, 1 0.8/1 0.9535

Table 4.6: Simulation results
U denotes U(xk).

of Example 4.4. Note that 119+11 denotes IIg( k)+ll and

problems.

Example 4.5 (Heterogenous system; tree topology; inelasti/elastic flows)

(a) Consider the tree topology with 4 users and 4 links in Figure 2-2. The nonconcave

objective function consists of 4 inelastic flows,

max Sl(xi) + S2(x 2) + S3(x3 ) + S4(x 2)

s.t. x1 + x2 + 3 < 5

x1 + x2 < 4

X3 + X4 _ 3

X2 + x 4 < 1

0 < xl,x 2,x 3 ,x 4 < 5.

The global optimal is

x* = [4; 0; 1; 1], U* = 0.4939.

We test it in the DSA, SR and SRA schemes. Table 4.7 presents the numerical

results from DSA scheme. Figure 4-10 illustrates the typical outputs (approximate

data flows) in these schemes. We make the following observations:



N o1 II9(N)*+li U(iN) U( CN)/U* 1
50 0 0.7010 0.5964 1.2075 3.7000 0.4166 0.8000 1.2746

0.25 0 0.3695 0.7481 3.3000 0.0816 0.7000 0.8959
100 0 0.3574 0.5442 1.1018 3.8500 0.2083 0.9000 1.1443

0.25 0 0.4267 0.8639 3.6500 0.0408 0.8500 0.9517
200 0 0.1787 0.5183 1.0494 3.9250 0.1042 0.9500 1.0721

0.25 0 0.4588 0.9289 3.8250 0.0204 0.9250 0.9759

500 0 0.0715 0.5035 1.0194 3.9700 0.0417 0.9800 1.0289
0.25 0 0.4795 0.9708 3.9300 0.0082 0.9700 0.9903

Table 4.7: Simulation results of Example 4.5(a) in the DSA scheme, with fix a =

0.007.

* In DSA, constraint violation reduces as the number of iterations increases [cf.

Proposition 4.1(a)], where the amount of infeasibility decreases at the order

of 1/k. When we increase 'o to 0.25, all the primal iterates are feasible. We

observe from the table that DSA can provide a feasible and near-optimal Xk

(e.g., relative error of f (~k) is less than 3% in the last test instance).

* In this problem, oscillations always exist in the SR system, regardless of a. This

can be explained by the discontinuity of x(yi) at optimal solution. In SR, it first

correctly shuts down x2 ; however, for the remaining three users, the optimality

is achieved at (x*, xz, x*) = (4, 1, 1), with each component falling within the

range of discontinuity (cf. Table 4.1). Thus, SR cannot get the exact value of x*

in the dual subgradient method, which results in system instability. SRA can

lessen the oscillation but cannot guarantee a "good" approximation of primal

solution.

* DSA consistently performs better than SR in such situations when any compo-

nent of the optimal solution falls within the discontinuity region of x(p').

(b) Now consider a system supporting both elastic and inelastic flows. Under the

same network topology, users 1 and 3 have the sigmoidal utility functions S1 and

S3, respectively. Users 2 and 4 have logarithmic functions with the form of U(x) =

c[log(ax + b) + d], where d = - log b and c = 1og(a+b)+s under normalization. We

assign (a, b) = (20, 1) to user 1 and (a, b) = (10, 1) to user 3. The link capacity is



DSA SR SRA

a 0.01 0.01 0.001 0.01 0.001
ao 0.13 0.13 0 0.13 0

6.7720 7.2972/11.2598 10.9384 10.7357 10.0589
XN 1.7524 1.3726/2.6138 3.0560 2.6184 2.8544

6.4589 0 0 0.5093 1.0688
5.1993 4.0188/4.3862 3.9440 4.3528 4.1456

U(XN) 3.8572 3.6264/3.8834 3.8898 3.8798 3.8851

Table 4.8: Performance comparison of Example 4.5(b), for the mixed traffic flow
problem.

c = [15; 14; 13; 7].

We evaluate the performance of each scheme in generating feasible and near-

optimal primal solutions. In each test, we run the simulation for N = 100 iterations.

Typical results are summarized in Table 4.8. We make the following observations:

* In DSA, at a = 0.01 and go = 0, the convergence of data flow is smooth but

the amount of constraint violation is as high as 0.1497 at N = 100. Thus, we

increase go to 0.13 while keeping the same stepsize, and infeasibility of all the

primal iterates is diminished.

* In SR, at a = 0.01 and guo = 0.13 in which DSA converges, it firstly turns

down user 3 under self-regulation property; however, the remaining users cause

system oscillation and instability. Only when the stepsize is decreased to a very

small stepsize a = 0.001 (and i 0 = 0), SR converges to a better primal cost

(3.8898) than DSA (3.8572), as shown in Figure 4-11.

* In SRA, we apply the averaging method to the SR iterates and the oscillation

can be smoothed out. See Figure 4-12.

From the discussions, we can say that for general nonconcave NUM problems, the

averaging scheme can consistently provide good approximations of the primal solution

with much less stringent requirements of system parameters than other schemes.



4.2.4 Other Issues

An interesting observation in the nonconvex problems is that there may be multiple

solutions for the same suboptimal/optimal value [e.g. in Example 4.5(b), different

schemes converge to different (feasible) primal solutions with very close primal cost,

as seen in Table 4.8]. This leads to the issue of fairness, which is an important

measurement for quality of service in multiuser environment of network utilization

(see Korilis and Lazar [15] or Mazumdar et al. [20]). Some of its characteristics are:

* No user is denied access to the network.

* Any user is entitled to as much network utilization as any other user.

* On the onset of congestion, users that heavily load the network should be re-

stricted more than the users that do not overload it.

Regarding the models in solving general optimization problems, if we take the

factor of fairness into consideration, self-regulation scheme is not a good candidate

in providing fair services. In SR, congestion control is achieved by shutting down

users that cause instability of the system, so as to reach a suboptimal solution. By

assigning zero data rate to certain users in the network, the system may achieve a

higher overall utility than otherwise; however, it does not satisfy the requirement of

fairness to keep every user in the network and is intuitively "unfair" to the user that

is turned off.

On the other hand, the averaging scheme (e.g. DSA, SRA) ensures the user with

positive data allocation if it is not zero from the start of simulation. As such, the

averaging scheme is "fairer" in the recovery of primal solutions.

Thus, in network flow control framework, the high-level goal can be defined as

"the regulation of input traffic in a way that maintains an efficient tradeoff between

high network utilization and quality of service". Nevertheless, fairness cannot be

easily quantified. Hence, we will not go into details on this issue in the thesis.



4.3 Summary

In this chapter, we have developed some convergence properties of the averaging

scheme (DSA) for nonconvex optimization problems, by extending the results in the

convex case. In particular, we have shown theoretically that the convergence of

the approximate primal sequence is always guaranteed. We have further explored

its feasibility and optimality in the presence of duality gap, and we have provided

bounds for the value of primal cost.

Moreover, we have numerically tested the performance of DSA and other schemes

in nonconcave NUM. Such systems with sigmoidal or quadratic utility functions typ-

ically exhibit oscillatory behavior and excessive congestion. The simulation results

in various test instances show that, the averaging scheme can consistently provide

near-feasible and near-optimal primal solutions while other approaches may easily

fail.



Feasibility violation (DSA)

iteration (k)

(a) IIg(ik)'l as different to.

Primal cost (DSA)

f*.,
-1.2081

0 10 20 30 40 50
iteration (k)

(b) f(-k) at different io.

Figure 4-7: Trend of convergence for feasibility violations and primal cost of Xk in
Example 4.3(a), with fixed a = 0.01 and increasing po.
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Figure 4-8: Comparison of approximate primal solutions (data flows) in DS/DSA and
SR/SRA schemes, with typical values of parameters in Example 4.3(a).

D

--



k k

(a) (DSA) a = 0.1, •0 = 0. The solution is
infeasible.

2

1.5

44,e

-s-- s 8=

i! " Ti Ii IiHf " i
0 1 I0 4 50A. i

0 10 20 30 40 50

k

(c) (SR) a = 0.1, po = 0, th = 5.

(b) (DSA) a = 0.1, po = 2.

-0-- s = 2

0 10 2 0 3 40 0

0 10 20 30 40 50

k

(d) (SRA) a = 0.1, po = 0, th = 5.

Figure 4-9: Comparison of approximate primal solutions (data flows) in DSA and
SR/SRA schemes, with typical values of parameters in Example 4.4. Solutions are
feasible unless otherwise stated.
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Figure 4-10: Comparison of approximate primal solutions in DSA and SR/SRA
schemes, with typical values of parameters in Example 4.5(a). Solutions are feasible
unless otherwise stated.
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Figure 4-11: Comparison of approximate primal solutions
with typical values of parameters in Example 4.5(b). th =

in DSA and SR schemes,
5 in SR.
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Figure 4-12: Approximate primal solutions the SRA scheme in Example 4.5(b). Com-
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Chapter 5

Conclusions

In this thesis, we have investigated a primal-averaging scheme in the application of

dual subgradient methods to recover near-feasible and near-optimal primal solutions,

for general optimization problems. We have chosen the constant stepsize rule in view

of its simplicity and practical significance. Based on the convergence properties of

approximate primal solutions that are theoretically analyzed by Nedi6 and Ozdaglar

[22] for convex problems, we have further developed a way to effectively reduce the

amount of feasibility violation in approximate primal solutions. In particular, this

can be done by controlling the value of initial dual iterate, which is a nice prop-

erty that the averaging scheme possesses. Moreover, to complement the theoretical

analysis, we have implemented a distributive algorithm under the averaging scheme

for structured network utility maximization (NUM) problems, and computationally

tested the feasibility and optimality of the averaged primal solutions. We have also

discussed the effects of different system parameters, namely the stepsize value and

initial dual iterate, upon the tradeoffs in solution accuracy, computational complexity

and convergence trends. It has shown that the averaging scheme is more robust to

the change of parameters and has a better performance than the dual subgradient

scheme without averaging, which easily causes system instability.

From the promising numerical results and theoretical insights in the convex case,

we have extended our analysis to problems with nonconvex objective functions. We

have provided modified bounds on the value of primal cost when the duality gap is



positive. In the nonconcave NUM framework where the network congestion prevails,

we have specifically estimated bounds of duality gaps for sigmoidal and quadratic

utilities. We have evaluated and compared the performance of averaging scheme with

other models (in particular, the self-regulation heuristic) in various test instances

of nonconcave NUM. From the simulation results, we have seen that the averaging

scheme can consistently generate good estimations of the primal optimal solution in

most situations.

In conclusion, we believe that the averaging scheme holds promise as a more ro-

bust and tractable technique to introduce convergence properties and recover primal

optimal solutions compared to other existing schemes.Its ability at infeasibility re-

duction is particularly attractive in the nonconvex optimization, where congestion

always exists due to discontinuity of primal solution at the optimal dual. For future

work, we can further explore the far-reaching benefits in the averaging scheme, such

as convergence analysis of the primal sequence itself, other practical applications than

NUM and optimization of Slater point in the prediction of the theoretical bound.
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