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Abstract

This thesis consists of two parts. In the first part of the thesis, we prove an index
theorem for Dirac operators of conic singularities with codimension 2. One immedi-
ate corollary is the generalized Rohklin congruence formula. The eta function for a
twisted spin Dirac operator on a circle bundle over a even dimensional spin manifold
is also derived along the way.

In the second part, we study the moduli space of monopoles with singularities
along an embedded surface. We prove that when the base manifold is Kahler, there is
a holomorphic description of the singular monopoles. The compactness for this case
is also proved.
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Chapter 1

Introduction.

The work in this thesis is part of a project, in which we want to define Seiberg Witten

Knot Floer Homology. More explicitly, this thesis studies the four dimensional analog

of this question: given a triple (X, E, S), where X is a closed oriented four manifold,

E is an embedded surface, and S is a Spin' structure on X\E, restricted to the circle

bundle P of E is torsion, can we define an appropriate monopole moduli space for this

pair? The natural strategy is to study Seiberg Witten theory on the complement.

Since here the base manifold is open, the asymptotic behavior of the monopoles

might depend on the metric. And we choose to use the incomplete metric which is

the restriction of a smooth metric on X. For the Spin' connection, we look at the

ones which have nontrivial holonomy around the small circles linking the surface. In

this thesis we compute the formal dimension of the moduli space defined under an

appropriate Sobolev space, and prove that when the base manifold X is Kahler, the

moduli space is compact with a holomorphic description.

The first part of the thesis is to find a proper space so that the Dirac operator is

Fredholm and to compute the index. On an open manifold, the Fredholm property and

index for Dirac operators certainly depends on the metric at the end of the manifold.

If the metric is complete, it has been studied by [9], [15]. For incomplete metric,

the situation is more sophisticated. For instance, the Dirac operators are no longer

essentially selfadjoint and particular closed extensions have to be chosen. Some special

cases of incomplete metrics have been carried out in the literature. If the metric has



isolated conical point, i.e., M = M1 UN U, with dMI = N, U = (0, 1) x N, and

gl u = dr 2 + r29N for some smooth metric gN on N, the analysis has been initiated by

Cheeger[7] who treated the case for signature operator. And for the Dirac operator,

the index is calculated by Chou in [8]. Their analysis was extended to the more

general case by Bruning and Seeley in [5], [4], [3]. To construct closed extensions

such that the operator D is Fredholm, boundary conditions have to be imposed along

the singular point. The following facts have been shown by the above authors. Let

D denote the L 2 closure of {q5 L2 , Do E L2, E COO}, then D is selfadjoint if

and only if there is no eigenvalue of DN such that Jui < 1, (DN is the associated

self adjoint Dirac operator on N), which is also equivalent to that D is equal to the

usual L2 space. Thus the existence of the low eigenvalues makes the sections in D

do not decay enough(or even have some singularities along the singular point) such

that they do not sit inside L . The L 2 closed extensions of D are parametrized by

the subspaces of +a l<½ker(DN - s). For any subspace S c G1 < iker(DN - s) and

its orthogonal complement S -, the corresponding closed extensions Ds and Ds± are

adjoint to each other. All these extensions are Fredholm and their indices can be

calculated explicitly.

In this thesis, we consider another special case of incomplete metrics, for which

the Dirac operator is singular along a codimension 2 submanifold. More specifically,

let B be a codimension 2 submanifold of a closed even dimensional manifold M. S

is a spinor bundle on M\B, whose positive part S+, when restricted to the tubular

neighborhood of B, is the pull back of some spin bundle on B. (we will see later that

this is equivalent to that S can not be extended to a spin bundle over M.) Denote the

normal bundle of B by N, and the associated circle bundle by P. w is a connection

form of P. We are interested in the metric which is the restriction of a smooth metric

on the entire M. Thus the Dirac operator D + looks like

1 F
Or + + - + H,2r r

where F is a family of first order differential operator on the fiber S' over B, H is



essentially a family of first order differential operators along B. Because S is the pull

back spin structure from B, it makes sense ( which will be proved in Chapter 2) that

F has eigenvalue 0 with the eigenspace being infinite dimensional, thus some APS

type boundary conditions must be imposed along B to make D + Fredholm.

Define Dom(D+ax) = {fb E L2(S+), E2 (S(S-)}. Notice that Dom(Dax) is

not the usual L(S + , M\B), intuitively it is because that that the Dirac operator D + has

holonomy -1 along the small circles linking B, so it has some singularities along E.

An important aspect of the behavior of the spinors in Dom(Dm+ax) is given by the

following lemma, which will be proved in Chapter2.

Lemma 1.0.1. There is a bounded linear operator

R: r Dom(Dmax) - L2 (B; SB)

The the range is (L 2 1 nH+) (L2 n H-). Here r is the distance function to B, which
2 2

is extended to the entire M by 1, H i are the spectral subspaces associated to DB.

Just as the manifold with boundary case, we need to put some boundary conditions

along B. Write Po for the projection

Po : L2 1 (SB) - L2 (SB)2 
2

with image H- and kernel H +. This is just the APS boundary condition. We can also

consider a slightly different boundary condition, given by a commensurate projection

P, which is defined as in [12]:

Definition 1.0.2. Two projections P1, P2 : L2 ,(SB) -- L2 
1 (SB) are called com-

2 2

mensurate if the difference

P1 - P2 : L 2(SB) - L 2 1(SB)
2 2

is compact.

The following index theorem in Chapter 2.



Theorem 1.0.3. Let M be a 2n-dimensional closed manifold, B be a submanifold

with codimension 2. Let S + be a spinor bundle on M\B, which can not be extended

to M as a spinor bundle, D + be the Dirac operator on S + . M\B has the induced

metric from M, r is the distance function near B as above. Let P be a projection

commensurate with Po, W± be the kernel of the composition map

r Dom(Dmax) -L2 1 (SB) - L 2 1 (SB),
2 2

then on W + , D + is Fredholm. Furthermore, if we take the projection to be Po, the

index of D + is

S 1 - coshe 1
Ind(D+) = (M) + A (B )  2cos - -dimKer(DB).

\B J 2 sinh 2

If we replace the above projection P by any projection P1 such that ker(P1 ) G Im(P 2)

L2 (SB) for some projection P2 commensurate with Po, D + is again Fredholm. In
2

particular, if we project to the negative spinors, we have that D + is Fredholm and

with index

d(D+) = A(M) + A(B) + coIndKer(D ).
M\BB 2 sinh + 2

In the second part of this thesis we define a singular moduli space for the Seiberg

Witten equations over X\E and a Spinc structure S, whose restriction to the circle

bundle P(associated to the normal bundle N over E) is determined by a torsion line

bundle. The Spine extension of S to X is not unique, however, when coupled with a

special Spin' connection Ak -+ i'w(which has trivial holonomy), (S, Ak + i w) extends

uniquely to a Spine pair (Sx,Ax) on X, such that c(S+)(E) = 2k + n, k E Z and

n = E - E is the intersection number of E. Fix a reference connection Ak + icw,

Ak has holonomy exp(i2(c - )Tr) along the fibers. We consider the configuration

space Ck(detailed definition in Chapter 3.) with spinors singular along E and the

connections having nontrivial holonomy. For the kahler case, we see that there is a

holomorphic description of the singular monopoles. We will also show the compact-



ness for Kahler case using a variational argument. More specifically, the following

properties are proved in Chapter 3.

Theorem 1.0.4. Let X be a closed Kahler surface, E be a holomorphically embedded

curve. S is a Spin e structure on X, which restricted to the circle bundle of E is

torsion. Then for any sequence (Ai, ai) E Ck which are solutions to the Seiberg-

Witten equations, there exists a subsequence, still denoted by (Ai, ai), and a sequence

of gauge transformation gi E G', such that gi - (Ai, ai) converges in Ck.





Chapter 2

An Index Theorem for Dirac

Operators with Conic Singularities.

In this chapter we will prove the index theorem stated in the introduction. Since

local analysis on M is well understood, we first focus our attention to the tubular

neighborhood of B. For the isolated conic situation, where the metric g = dr2 + r2gp

near the singular point, with P being the cross section, the eigenspaces for the Dirac

operator Dr on P defined with respect to metrics r2gp remain the same for different

r. For the metric we are working with, it only collapses along the fibers, i.e., the

metric is dominated by the form g = dr2 + r2W B + 7r*gB. Thus a priori the eigenspaces

for Dr vary with r. Fortunately, as analyzed in Section 2.1.3., we can find another

subspaces decomposition of L 2(Sp), Sp is the induced spin bundle on P, which is

independent of r, and allows us to use separation of variables to reduce the local

analysis near B to the global analysis on P.

2.1 Dirac Operators on Circle bundles.

2.1.1 Review of Spin Geometry.

In this section, we collect some basic facts on spin manifolds and Dirac operators.

For details the reader may refer to [14] or [2].



An orientable manifold X is called a spin manifold if its second Stiefel-Whitney

class w2 (X) is zero. Suppose X is equipped with a Riemannian metric, and let

Pso,~(X) be the bundle of oriented orthonormal tangent frames. Let Spinn denote

the spin group, which is the connected two-fold covering of SO, for n > 2. A

spin structure on X is a principal Spinn bundle Pspi,,,(X) together with a Spin,

equivariant map p: Pspi ---- Pso (X) which commutes with the projection onto X.

The condition w2 (X) = 0 is equivalent to the existence of a spin structure. In fact

using the Cech cohomology, we can easily see that the topological obstruction cocycle

to the globalization of the local two-fold covering map

Pspin, (X) = Spin, x U - Pson(X) u = SO= x U,

where U is a small neighborhood, is exactly w2 (X) E H 2(X, Z2).

Let Cl, denote the Clifford algebra of Rn with its standard inner product, and also

denote the complexified Clifford algebra Cl- = ClI ®R C. The Spin representation of

the Spin group Spinn is, by definition, the restriction of the algebra representation p

of Cl, to Spinn C Cln. The Spin group Spinn has only one irreducible representation

if n is odd and two irreducible representations A± if n is even. These two irreducible

representation A of Cl2k:

A : Cl2k End(C2k),

End(C2k) is the group of endomorphisms of C2k.

When restricted to Spin2k, A breaks into two irreducible representations A•

corresponding to the (±) eigenspace of multiplication by the complex volume form

w = ikele 2, . - ,e2k, where {el, - . , e2k} is the orthonormal basis of R2k.

Suppose now that X is a spin manifold of dimension n and Pspini (X) -- Pso", (X)

is a spin structure on X. Then from the spin representation p of Spinw, we can form

the associated complex vector bundle

S(X) = PSpvn (X) xp V,



where V is the representation space of p. This is called the bundle of spinors. If

n = 2k, then the above equation breaks into two pieces:

S(X) = PSpinn(X) XA V

= PSpin (X) x A+ V+ G PSpin (X) x A- V = S+ G S-

The section of S(X) are called spinors, and the sections of S+(S - ) are called

positive(negative) spinors. A local section e = {el,... , en} of Pson(X) can be lifted

up to Pspinn(X) and then embedded into PSpinn, as a local section = {¢1,' , N}.

This section 0 is a local orthonormal basis of the bundle S(X).

Let Cl(X) denote the associated bundle of Clifford algebras. This is the bundle

over X whose fiber at each point x is the Clifford algebra of the tangent space T*(X)

with its given metric. This bundle carries a natural unitary connection V, induced

from the principal SOn bundle, and characterized by the condition that V acts as a

derivation on the algebra of sections F(Cl(X)), i.e., V(a -. ) = (Va) . / + a - (V3)

for all a, 3 E F(Cl(X)), where - is the Clifford multiplication.

We can easily see that S(X) is a bundle of modules over Cl(X).

Lifting the Riemannian connection on Pson (X) to Pspin,,(X) via the Lie algebra

isomorphism, we have an associated connection V on S(X) whose action on the spinor

basis q = {f1,... , ON} can be described as follows. Let e = {el, -- - , e,} be a local

section of Pso,, (X) and VT the Riemannian connection on the tangent bundle T(X).

Suppose that {wij} are the one forms defined by

VTei = Z wijej,
j=1

Then

V0 2 = w jccj" -
i<j

It can be also be shown that V acts as a derivation with respect to module multipli-

cation, i.e.,

Vs(a . ¢)(V) = ) ¢+ * (VO)



for all ac F(Cl) and all 4 E F(s).

The Dirac operator D: Cc(S) -- C"(S) is defined by

n

DO = e- Ve,,
i=1

where {el,' " , eC} is a local orthonormal basis on X and 0 E C"(S). This is a first

order elliptic differential operator with symbol oy,(D) = r-" for rj E T*(X).

We also include the famous Weitzenbock formula here:

Theorem 2.1.1. (Lichnerowicz- Bochner- Weitzenbock Formula)

1
D2o = V*V ± + Iso,

4

where s is the scalar curvature of X.

The Dirac operator is a formally self adjoint elliptic differential operator of first

order. If the manifold M is closed, then D has discrete real spectrum.

2.1.2 Spin structures on circle bundles.

In this section, we look at spin structures on a circle bundle P over a closed manifold

B, dimB = 2m - 2. A spin structure is called extendable if it can be extended to

a spin structure on the disk bundle bounded by P, otherwise called nonextendable.

Let ( E TP be the infinitesimal generator of the S' action on P, iw E i 1 l(P) is a

connection 1-form on P such that dwJ E 7r*tQ2(B). Let Pso(2m-2)(P) consists those

frames on P having ( as the first vector.

We will see that S is nonextendable is equivalent to that S is the pull back of a

spin bundle over B. More precisely, pull back means the follows: let 0 : Ppin(B) ---

Pso(B) be a spin structure over B, then 7*0 : T*Pspin(N) -- 7r*Pso(N) = Pso(B) is

a 8(2m - 2) : Spin(2m - 2) - SO(2m - 2) equivariant map. Extending the structure

group to Spin(2m - 1) by

7r : *PSpin(B) XSpin(2m-2) Spin(2m - 1) -- PSO(2,-r2) XSO(2mT-2) SO(2m - 1)



gives a spin structure on P, here ý := 7*r x (2m,-2) 6(2m - 1).

The S' action on P induces an S1 action on Pso(P), the orthogonal bundle on P.

For any spin structure 7 : Pspin(P) - Pso(P), it is called projectable if the action lifts.

Otherwise it is called nonprojectable. See [1]. The relationship between projectable

spin structures and spin structures on B is shown in [1], and we include it below.

Any projectable spin structure on P is the pull back of some spin structure

on B: let q : PSpin(P) - PSO(P) be projectable. We can identify Pso(B) with

Pso(2 m•_2)(P)/S 1 . Now -l(PSO( 2m-2)/S' is a Spin bundle over SO(B), and 7r induces

a corresponding Spin structure on B.

Conversely, any spin structure on B induces a projectable spin structure on P

via pull back as above. The corresponding spinor bundle is just the pull back of the

spinor bundle on B. Let SB = S+ e( S- be the spinor bundle on B, Sp = 7*SB be

the corresponding spin bundle on P.

We conclude the discussion on projectable spin structures by remarking that pro-

jectable spin structures are exactly the nonextendable ones. First let us take a look at

spin structures on the circle S1 . There are two different structures up to isomorphism,

the trivial one C1 = S1 x Spin(l), and the nontrivial one C2 = ([0, 2w] x Spin(l))/ ,

where - identifies 0 and 2r while interchanges the two elements of Spin(l). Let D

be the disk with S' as its boundary. Since the disk is simply connected it can only

have one spin structure. Thus only one spin structure on S 1 extends to the disk. The

tangent vector to the boundary S' together with the outer unit normal vector forms

a orthogonal frame which is a loop in the frame bundle on the disk, whose lift to the

spin bundle does not close up. Thus the induced spin structure on the boundary S1

is the nontrivial one. So the nontrivial spin structure on S' extends to the disk, and

the trivial one does not extend.

Now given a projectable spin structure on P, from the previous discussion, it is

the pull back of some spin structure. Hence when restricted to any fiber S1 , it induces

a trivial spin structure, which does not extend to the corresponding disk. Thus the

projectable spin structures do not extend to the disk bundles. On the other hand, if

a spin structure S on P does not extend, then when restricted to the fiber, it does



not extend neither. Thus restricted to any chart U x S' C P, with U C B being a

small ball, S is isomorphic to the trivial spin structure, and the S1 action lifts, so S

is projectable.

2.1.3 r invariants of the perturbed Dirac operators on circle

bundles.

In this section we consider the Dirac operator for the nonextendable spin bundle S

on a circle bundle P over a spin manifold B. From the last section we know that S

is the pull back of some spin bundle SB over B, i.e., S = 7T*SB. We will calculate the

eta function of the perturbed Dirac operator, which is going to be needed later for

the index calculation. Recall that L is the line bundle associated to P.

Define the metric g, on P by g, := r2 w + r*gB, gB is a Riemannian metric

on B. Let Ar be the Dirac operator on Sp defined with respect to the metric g,.

The action of S1 on Pso(2m-1) (P) can be lifted to Pspin(2m-1)(P), and it induces an

isometric action on L 2(Sp), where the inner product on L 2(Sp) is defined with respect

to the metric gl = W0 w + 7*gB. Let L( be the differential of the representation the

Lie group S' on L 2(Sp), we have the following decomposition:

L 2(Sp) = +kGZVk,

Vk is the eigenspace of Le with eigenvalue ik, k E Z.

In section 4 of [1], it is proved that there is an isometry Qk(which preserves the

splitting of the bundle) from L2 (SB 0 L-k) to Vk, such that

1 r(
Ar= - A ,+Ah- y()Y(w*dw).r 4r

with Av= 7($)LC, Ah Vk= Qk o Ak o Q-k 1, Ak being the twisted Dirac operator on

L2 (SB 0 L-k), and 7y is the Clifford multiplication.

In the rest of this section we will consider the perturbed Dirac operator defined

by A, = 'A, + Ah, whose spectrum is much easier to analyze, and we will calculate



the eta function in this section. This perturbed operator also plays an essential role

in the next section when we are trying to analyze the Dirac operator on M\B, the

main reason is that the perturbed term is of order r, which is not going to affect the

index we want, but make the analysis much easier.

Now with respect to the bundle splitting Sp = 7r*S+ E 7r*S , the Clifford multi-

plication 7y(1) is given by

(-i 0
0 i

and the horizontal part Ah is

Ah = h

So -y( ) anticommutes with Ah. Let qk,a = a 0 / E L2 (Sp) be a unit norm

common eigenspinor of L( and Ah for eigenvalues ik and a respectively.

If a = 0, k # 0, then a = 0, - 0, and a E 0, 0 E 0 are linearly independent and

using them as a basis for the two dimensional space they span, A, is represented by

the matrix

Ak,a k/r a
a -k/r

If a = 0, let Vk,o be the space spanned by the common eigenspinors of L( and Ah for

eigenvalues ik and 0 respectively, then for 0 = a ( D E Vk,o, a is the eigenvector of Ar

with eigenvalue k which has multiplicity dimKer(Ak S+®L-k), while / is eigenvector

of Ar with eigenvalue -k of multiplicity dimKer(AkISB®L-k).

If k = 0, Vo is isometric to L 2 (SB), and Ar = A, + Ah = DB on V0, Vo = V0o,a, a

runs through all the eigenvalues of DB.

To sum up, L 2 (Sp) can be decomposed into direct sum of



L 2 (SP) = (Vk,a) Vk,O Vo
k#O,a#0 k#O (2.1.1)

= H 1 e H 2

HI is the sum of the first two blocks, and H2 is the third. Accordingly, A, can be

decomposed into

k
A, = eAk,a ( DBT'

(2.1.2)

and k has multiplicity dim(Ker(Ak S+®Lk)) + dim(Ker(A_-klS•L-k).

Remark: The Hilbert spaces HI, H2 are independent of r.

Due to the decomposition above, we can calculate the eta function 7/A,(S) of Ar.

By definition, 7A,(S) = >\ m> n ,A m,x is the multiplicity of A. On Vk,a, A, has

-+ +2 a as eigenvalues with same multiplicities, so they have no contributions

to 1IA,(S). On Vo, since B is even dimensional, fa has same multiplicity, so no

contributions to the eta function. On Vk,o, we have

mk = dim(Ker(Ak S+®L-k)) + dim(Ker(Ak S•®Lk)).

m-k = dimKer(AkIS-0L-k) + dim(Ker(A-k S+0Lk ,

IAr(S) m k (2.1.3)

By Atiyah-Singer index theorem, mk - mk = fBA(B)(ch(Lk) - ch(L-k)).

Define
ekx -_ -kx

k>1

-2 ((s - (2i - 1)) 2i -

i>1 (2i - 1)!

Here ((s) is the Riemann-Zeta function. Noticing that ((-(2n - 1)) =

with B, being the n-th Bernoulli number, and the Taylor expansion

x
coth -

2 -i>
i>0

(-1)i-Bi 2i(2i)!

(-1)n- 1 Bn
2n



we have that
1 x 1

f,(x) |s=o= -2(- coth - ). (2.1.4)2 2 x
Hence

A (S) = A(B) fs(e).

and the eta invariant of A is

r'A(0) = -2 A(B)(1 coth • )

Here e is again the Euler class of the normal bundle on B. Since ((s) has the only

simple pole at 1 with residue 1, 'rA(s) has simple poles only at 2, 4, 6, .. with residue

1. When B is a Riemann surface, this eta function has been calculated in [18].

2.2 An Index Theorem for Dirac Operators on Com-

plements of the Submanifolds.

In this chapter, we will prove our index theorem for the Dirac operators on the

complements of the codimension 2 submanifolds.

2.2.1 The Dirac operator on the cone.

Let C(P) = (0, 1) x P be the finite cone on P with metric g = dr 2 + g, 9r is the

metric on P defined in the last section. 0, denote the unit radial tangent vector

field. Our orientation convention is that if e1, .., C2~-1 is an oriented orthonormal

frame on P, then dr, el, .. , e2m-1 will give an orientation on C(P). Let Sc) be the

positive(negative) spinor bundle on C(P), and let D + denote the Dirac operator on

Sc+(p). y7() : S + -- S- gives an identification of S + and S- as spinor bundles when

restricted to P. In particular S + gives a spin bundle on P with Clifford multiplication

defined as

Y(ei) = (d,)-8 c(P)(ei), i = 1,.., 2m - 2.
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The Dirac operator D + and A, is related in the following way(cf[12]):

D+0 = 7(0r)(Oro - Hq4 + Ar) (2.2.1)

H is the mean curvature of {r} x P in C(P), and can be computed as follows: let

-, vl,... , v2 -1 be an oriented orthonormal frame on P, such that vi = 7*wi, {wi} is

an oriented orthonormal frame on B. Obviously [0{, vj] = 0, and [0,, ] = --. Thus

< Vor, >=< Va >= , and < V,,,, vi >=< Va&vi, vi >= 0, we

have H = 1

So (2.2.1) becomes

1
D+0 = 7(,r)(8,r + 1cr + Ari) (2.2.2)

2r

For any cross section q in Sc(P) {r}xP, we can extend it to a global section on

Sc(p) by parallel transport along radial geodesics, and still denote it by 0. So H1, H2

can be extended to L2 (SP), and

L2 (SP)) = (Hi e H 2) 0 L((0, 1), rdr). (2.2.3)

Define Dom(D+max) = { E L 2 , D+0 E L2}.

In this section, we will prove the following:

Lemma 2.2.1. There exists a bounded linear operator R : ri Dom(Dmax) 7*L 2 1 (B SB).
2

The range is 7r*(L 2 n H + ) G 7r*(L 2 n H-). Here r is the distance function to B,
2

which is extended to the entire M by 1, H± are the spectral subspaces associated to

DB.

We first focus our attention to APS boundary condition on B. The show that the

general case follows easily from this special one. We still use W + to denote the kernel

of the following composition map:

r2Dom(Dmax) - L2 1(SB) - L2 1(SB).
2 2



Recall that P0 is the projection map to the nonnegative eigenspaces of DB. In this

section, we prove the following:

Theorem 2.2.2. With domain W +, D + is Fredholm.

Define D+0 = (a,)(0,0 + 1-0+ AO), which is just a perturbation of D + of order

0(r) near B. We will show later in this chapter that the Fredholm property of Do+

will guarantee the Fredholm property of D+, and the two has the same index.

2.2.2 Construction of a boundary parametrix.

On C(P) = (0, 1) x P, any spin section can be written as the direct sum of three

different parts as in (2.1.1),

-= •0k,a G Ok,0 0O,a - V1 @ V2

we will construct the boundary parametrix according to the decomposition.

First, we want to solve D0+0 = V, for , E L2(S() then construct the bound-

ary parametrix of Do+ based on the three components of 0.

Case I:

Given k # 0, a 0, Dk+a =r + + Ak,a. It has two fundamental solutions

Kv± (a r)) -)) a ( a r))
01(7') = al' , 2(r)--[al

K,_ a r)),_ ( a r))

with v±= k 1 1, and K, 1, are generalized Bessel functions with order v, and

their asymptotic behavior has been studied extensively in the literature. The following

two specific formulas for K& and I,

K(z) = F(v + z)( z)" C costdt

o (t2 + z2)v±+

1 1 (z)k
I,(z) = (2 z)v E4k!( k

2 5 k!F(v + k + 1)k=0
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give the estimates for K,(r) and I,(r) when r is small:

1 1Kv(<) I CF r()( r)-V < Cr-V

I-(r) < C(2r)"/F(v + 1) < Cr"

for some constant C independent of v. the Wronskian for the fundamental system is

W(01(r), 02 (r)) = det 02
= a (K_,+ + K• I_)

(2.2.4)

With the given fundamental system 01(r), 02(r), the solution of the inhomoge-

neous equation Dk,aO = 4 can be calculated by the method of variation of constants.

Since q E L2 ((0, 1), rdr & C2),

Ok,a = C02(T) + C (T)01(T) + C2(r) 2(r)

where c is constant, and

ciIr)cI (r) f W( (s), 2 (s)-W ( (s), 2 S)))dS

= rW(0 (S), 02(S))SdS

r

(2.2.7)
W(q 1 , ,)sds

Define

Qk,a = C1(r7) 1 (T) + C2 (T) 2 (r)

Case II:

(2.2.5)

(2.2.6)

W(1 ( S ) , 02(S) - 1 W ( 0
1 S ) , (s)))dS



For k > 1, Do = r, + - + , define

Qk,o (r) =- r(k+) j sk+ (s)ds,

For k < -1, define

Qk,o0(r) = r-(k+ ) I Sk-+ -(s)ds, k < -1

Case III: When k = 0, T =r+ + a,
O, v,=a,+2·+a

rea(sr)s f (s)ds a > 0
Qo,af = r-2

Qo,af = -r-2
J ea(s-r)2f (s)ds a <

Formally, we write our boundary parametrix to be

Q = eQk,a E Qk,o G QO,a-

The following lemma makes sure that Q is well defined:

Lemma 2.2.3. For 0 E L 2(Sc(p)), there exists a constant C independent of k, a,

such that

1. II Qk,O'k,o II (r) : (2k + 2)- 111 Vk,o 5jL2((O,r),rdr), k> 1 or k < -1.

2. I1 Qo,a• o,a II () II c o,a IL2((0,1),rdr) -

3. II Qk,aV)k,a II (r) - C 1'k,a L2 .

Proof. The first part follows from the Cauchy Schwartz inequality, so does the second

part when a = 0. For part 3, when jal < 1, by using the asymptotic behavior of

K,(r) and I,(r) near r, Cauchy Schwartz inequality gives that II Qk,a/k,a I (r) (

|al(2k + 2)-2(I bk,a IIL2((0,1),rdr)

When Ial 2 1, we can use the Hankel transform to get the desired bound:

k> 1 (2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)



E Co"((O, 1), rdr 0 C2), Q

1
((r + +2r

k+1
+ 2 = -( k_ 2)h + al.

r

Now recall that for g E Co(R+), Hankel transform is defined by

H,(g)(A) - f0JJ,(Ar)g(r)rdr,

where J, is the Bessel function of order v and v > -1. Also we have the Plancherel

I g(r) 12 rdr =
0Oc

I H,(g)(A) 2 AdA.

k2±k+ 1If we denote A,, = -2 o+ -2 r,, then

Hv (A,, g) = A2H,, (g).

v+lH, (O - )= AH,+li
r

From the above facts, and applying H,_ to (2.2.14), we get

A2H , _ (g) + a2H,_ (g) = AH+, (h) + aH , _ (1)

AH,_ (h) aH,_ (1)

A + ia A + ia

(A2  a2 ) g 2(Rrdr) 2 2 , + /1 2 (R rdr)
(2 + a2) 1 g 'L(R+,•dr) -- L2(R+,rdr) -• lL2(R+,rdr) .

k/r

a

We have

a

-k/r
(2.2.12)

k2 -k+ 1
4 1S-r)g (2.2.13)

equality:

S0O

Let -= (

(A + ia)H,_(g) =

ka f= Since

SQklaa'O : Since



The same inequality holds for f. So

I1 a¢ JIL2_<11 '0 IL2(R+,rdr) •

and 11 IL2<1 |2 ) 1L2.

The above argument also applies to the second part when a - 0, by letting k = 0

above and noting that la| has a lower bound now since a is the eigenvalue for the

Dirac operator DB, which is a self adjoint elliptic operator on closed manifold B.

With all these estimates at hand, we are ready to prove Theorem 2.2.2.

Proof of lemma 2.2.1: In the tubular neighborhood, write ¢ = e0k,a E

Ck,0 q 0O,a = 1 6 2 as usual. From Lemma 2.2.3 and Lemma 2.2.4, we see that

Ir 1L2(Sp,g,) goes to zero as r goes to 0. As for 02, we have 0(r) = r½ 2 E

L2((0, 1), V0), dr?(r) + DBs(r) = r½D+o2 e L2 ((0, 1), Vo)), so up to the isometry

Q in Section 2.1.2, b E L2(SBx(o,1)), here SBx(o,1) = 7r*SB is the pull back bundle

over B x (0, 1) from SB, with r : B x (0, 1) - B, and 9, + DB is an elliptic operator

on SBx(O,1). Now from the following lemma, we have the restriction map R with the

corresponding range as claimed. Q. E. D.

Let X be a compact manifold with boundary OX. Let D : C"(E) -+ C"(E) be

a first order elliptic operator. Near the boundary, D has the form

D = at + B,

here B is a first order elliptic self-adjoint operator on E OX. And we write a collar

neighborhood of OX as (-1, 0] x OX. Define Dmax = {q E L 2 I Do E L 2}, and let

Dmin denote the closure of smooth section which vanish on OX with respect to the

L2 norm. Let H' C L2 be the positive and nonnegative spectrum of B. Then we

have the following lemma, which is due to Furutani and Booss.

Lemma 2.2.4. The restriction of smooth sections extends to define a bounded linear



operator

R: Dmax -- L2 1 (Y; E y).
2

The kernel of this map is Dmin and the range is L nH- e L2  n H + .

2 2

Proof. Let D* denote the adjoint of D. Then integration by part gives

/x < DO, > - < OD* >= f o < 00 > "

Thus for any EC L2 (OX, E OX), by Sobolev restriction we have that there is a
2

SE L (X, E) extending V and the extension can be chosen so as to define a bounded

linear operator. Applying the equality to C E Dmax and 4 we see that the left hand

side of the equality is well defined and thus defines the right hand side. Thus the

restriction of 3 E Dmax lies in L2 1 (OX, E O OX).
2

From APS we know that if C E Dmax and R(q) H-,, then R(q) C Hi.
2 2

If 4 E H+, then
2

3(t)eBtq = 3(t)E CeAt E Dmax,
A>O

here we view the above a section on (-1, 0] x OX and / is a cutoff function which is

1 near t = 0 and zero near t = -1.

Remark 2.2.5. For any EC W +, O = qo + r- e(4B), such that 00 E Li(S + , M\B),

iB E Li (SB), and e(OB) is the L1 extension of 'B to M\B. This fact can be seen
2

easily from the proof of Lemma 2.2.1: since we are projecting to the nonnegative

eigenspaces, we know that R(r½4) E HI for any 4 E W +, so the extension map is
2

well defined.

The estimates also give us the following

Lemma 2.2.6.

Q : Co((0, 1), H) -- C"((0, 1), H; P)

is a linear operator such that

D+Q = Id



QD+o , for e C"R(R+, H; P), (r) = O, r> 1,

and there exists constant C such that

Q QL) 2((O,1),rdr0H)• C 11 4fL2((O,1),rdr0H)

Proof. D+Q = Id follows from the construction of Q. Let 0 = E@k,a ( Ok,O G 0,a,

SD+. Then ' k,O (dr + + kI)k,o If k < -1, from the construction,

(QV'k,o)(1) = 0, on the other hand, Ok,0(1) = 0 from the assumption, thus QOk,o = Ok,O

since they both solve the same ODE. If k > 1,

Qk,_o-- r- (k+) Sck+ , o(s)ds - cr-(k+) - (k+1) Sk+ k,o(s)ds.

But Q&k,o G L2((0, 1), rdr), so c = 0, thus Q4'k,o(1) = 0, and Q7Pk,o = k,o. The same

argument applies to qk,a and qO,a, thus if 0(1) = 0, QDO+ = 0.

Let 0 < e < 1, then for any bump function 0 < X < 1, such that X = 1 for

0 < r < <, and x = 0 for r > e, we have the following:

Lemma 2.2.7. Let Q acting in L2 ((0, 1), rdr), then there exists a constant such that

xQ + 1Qx < Ce.

Here e, X are as above.

Proof. From the lemma above, Q ||< C. Using Cauchy Schwartz inequality,

xQ 1-< x L2((o,1)) Q •< Ce. Similarly for QX. Here the norm means the L 2

operator norm. O

Proof of Theorem 2.2.2 To show that D + is Fredholm, we will use our boundary

parametrix to construct a global right and left paremetrices. Choose q, C E Co(-e, e)

such that I = 1 near 0 and I = 1 near suppq, choose 0, V) e Co(X) such that

q + ' = 1 and I = 1 in a neighborhood of suppip. Let Qi be an interior parametrix



for D + with

DObQi = 0 + Ri (2.2.14)

-QijD = b + Li (2.2.15)

with Ri, Li compact smoothing operators in L2 (S+), L 2 (S-), respectively. Define

R := OQ + VQiV (2.2.16)

From Lemma 3.6, we know that

R: L2(S - ) - Dom(D+)

Now

+ -O +n-DR = I + bQ + -OrQO + R+
2

When the support of 0 is sufficiently small, from Lemma2.2.4, we have

(2.2.17)

(2.2.18)

s=OQO + -rQO <2

and we can write

DR = I + S1 + R i

since Ri is compact and
1
2

This implies

DR(I + S1)-1 = I + Ri(I + SI)

Next we can see that with Lemma 2.2.7.,

n-
RD = QT T+Q 0+ rqo + Li2

+ 4'Q + Li= I+ -22
(2.2.19)



and again, we have
r 1

S2= Q + <
2 2'

and

RD = I + S2 + Li

(I+ S2)-1 RD = I + (I + S2)-1Li.

Thus we find operators AR and AL such that DAR = I + DR and ALD = I + DL,

DR and DL are compact operators. Notice that ALDAR = AR + DLAR, on the other

hand ALDAR = AL + ALDR, we have C = AR - AL = ALDR - ARDL is compact,

ARD = (AL + C)D = I + CD + DR. So we find a bounded operator AR : L 2 _ W +

such that ARD - I and DAR - I are compact respectively, which says D is Fredholm.

Q. E. D.

Lemma 2.2.8. Let g be a bounded smooth function on M\B, then

D+ := D+ + g

is a Fredhiom operator on W +, and

Ind(D+) = Ind(D+ ).

Proof. Define D + = D + + tg, t E [0, 1]. Let X be the bump function in Lemma 2.2.5.,

then 11 txgQ 11 + I] QtXg ]1< Cc from the Cauchy Schwartz inequality. Thus we can

still use Q to construct a boundary ary parametrix of D+ to prove that Dt+ is Fredholm

in W + , just as in Theorem 2.2.2. And Ind(D + ) = Ind(D + ) = Ind(D + ) = Ind(D + )

follows immediately.

Remark: we conclude this section by remarking that instead of L 2, D + is also

Fredholm with the same index on the following domain: {f E LP , D-+ E LP, P(O) =

0}, for some p > 2. To see this, first observe that on this domain, D+ has finite

dimensional kernel since p > 2 and D+ has finite kernel on W+. Next, for a sequence



D+q V •b in L P, we have D+O converges in L2 , thus there exists C E W + , such that

D+O= b. Since ~ E LP, we know that L ' . More over q E LP(U), here U is
1

the tubular neighborhood of E, from Remark 2.2.5., we can write = o + r-2 e(C (B)

o0 E LP since 0 e L', also e(OB) E L (S+, M\B), from Sobolev multiplication we

have r 2e('B) E L P, thus q c L P, and D + has closed image. Finally, D + has finite

dimensional cokernel: let V e Lq lie in the cokernel of D + , with I + 1 = 1. From
P q

local regularity we have V E C"(S-), and D-4 = 0. By solving D-> = 0 in U and

from all the estimates above, we see that V E L2 (U), thus 0 E L 2 , so V) lies in the

cokernel of W + . Thus D + is Fredholm on the above domain.

2.3 Index of D .M\B

The index of D + will be calculated in this section. We first consider the case when

the metric near B is of the form go = dr 2 + r 2W 0 L +F*gB, then show that the Dirac

operator associated with any general metric is just a bounded perturbation of the one

with go, and the index remains equal from lemma 2.2.8. Also we will first focus on

the APS boundary conditions, the generall case follows immediately.

Let

A + = D -D +, A- = D+D - .

Since in the tubular neighborhood the operator is a combination of singular regular

operator and product operator, from [5], we know that (A± + A)-'~ are trace class

for large m. And the nonzero eigenvalues of A + and A- coincide. Thus

tr(A + + A)-m _ tr(- + A)-m = -mindD+.

To get the expansion of (A±+ +A)-m, we will construct a parametrix for (/A±+A)-'m

As usual, we construct a boundary parametrix, and then patch it with the canonical

interior one. Let P" be the interior pseudodifferential parametrix for (/A + A)->



In the tubular neighborhood Co,I(P), trPjl has expansion

trPf (r, r; x, x; A)rdrdx = Zp -(r, x)A-2rdrdx,: r (0, 1),: x C P.

Recall that we have the decomposition (2.1.1):

L2(Sp) = e(Vk,a) Ekez Vk,O E oaO (VO,a),

and dimKer(Ar) = dimVo,o = dimKer(DB).

On Vk,a 0 L 2((0, 1), rdr),

A+ = - r2 _1- •r 1 1
4r2 + 2

k2 k
k k2

+ a2

After changing a basis, obviously we can write it as

1 1 1
-r + +
r 4r2 r2

k 2 + k 0

0 k2 - k

Under the same basis,

1 1 1
-lr + +r 4r2 r2

k2- k 0

0 k2 + k

Both are with boundary condition (r00)(r) = 0. So on

A)-m = 0.

(2.3.4)

Vk,a, tr(A+ + A)- m _ tr(A- +

Given a $ 0, on Vo,±a 0 L 2 ((0, 1), rdr), A ± = -i0 - !r + - + a2 , with the same

boundary condition

(rT 0,a) (0) = 0, a>0 (2.3.5)

(2.3.6)
1 1

(r•r(r + - + a)0o,a)(0) = 0, a < 0.
2r

Thus we get tr(A+ + A)-m - tr(A- + A)-m = 0

(2.3.1)

(2.3.2)

(2.3.3)



On ekCeZ\o} Vk,0,
S= -&2 +k2 k+ I.

with boundary conditions (r2')(0) = 0, this is just the conical operator considered

in [5], where the following facts have been proved.

1. The kernels for (A± + z 2)- 1 with the above boundary conditions are

eDl (zr) K, (zr)

Noting that

(A± + z2)-m 1 (
(m - 1)! 2z

let rz = C, define

2 m - 2  
m I(+K()-

(r - 1( 2(

m-2

m - 1 2(()K (

0O

V, 0 are smooth functions, vanishing near r = 0, V) - 1 near suppo.

Let u7(r, () ~ C l, oj(r)(-j , ( -3 +oc. From the pointwise expansion of boundary

parametrix on H3 and the interior parametrix, we have

u~(1,~)
J

j (1, x)dx( - .
'PF

Due to (4.6), (4.7), (4.8),

(r, () = 2m-22U(1, ()

(2.3.7)

(2.3.8)

Of 2m-2

p (1, x)dx.JP

(2.3.9)

(2.3.10)

tr(0(A± + Z2)-mo) =



tr (An + Z2 )-m z E(r)cxT(r)(rz) Trdr + jiPj)z j
3 X

+ E z-k-1 k k(k) (0 ( )d(
k=O

+ z-k-la log z7 0(k) !
k=0

To construct a parametrix for (A± + A)- m, we patch the interior parametrix Pi±

with the boundary parametrix above. From [5], the remainder term does not affect the

asymptotics of the trace. Thus we can use this parametrix to compute the expansion.

z- 2mind(D+) = Z(j i(P+ - p))z - j

3

+ E z-k-1 6  k 1((k) ())(0, ))d± o M310 r(o (r) (r Z) + - 1i(r)(rOz))rdr
k=O

+ z-k-1alog z ,> 1 (0) -(0 ) (0)/k!

So the terms in z-2m log z coming from A+ and A- must cancel:

thus a+m = .2m. Hence (4.11) becomes:

ind(D+) = (p _ p2 m))

2m-2 (2.3.12)

+ (r- (27m• -2) (0, () (2m2) (0), ())d(
S (2m - 2)!

Since pm - p-, vanishes in the tubular neighborhood, we can drop i in the first



integral. Now it remains to compute the second integral above. Define

(w) =(2m-1) (0, ()d(.
h±(w) =i (2m - 1)!

It has been shown in [5] that the integral is just the analytic continuation of h+(w) -

h_(w), i. e., it is equal to Reso(h+ - h_)(2m - 1), where ReSkh(wo) is the coefficient
of (w - wo)-k in the Laurent expansion of the meromorphic function h(w).

Thus

Ind(D+) = i(P2m _ -p 2 m) + Reso(h+ - h )(2m - 1).

F(~W+)F(m - 1 - )2 2h±(w) =
4 VF (m)

F(, + w+3 m)
b (1 + - 3 + )

Define ( function of A, as follows:

C (z) = I b± 1 _
Z../ / ,
b#O

Let z = (w+ 1-2m)/2, then h±(w) = 4-(ml)- ) b

is analyzed in [7]:

F(±-z)+1) This expressionr(v±t-Z)

: 1F(± + Z- z) = Qj(z)((j -1- 2z) + R(z),
b 0 j=o

R(z) is analytic in Re(z) < 1, R(O) = 0. So if (4(s) - (_(s) only has simple poles, we

only need the linear parts of Qy to get Reso(h+ - h_)(2m - 1). From [7], we have

Qj(z) = O(z 2),j odd

2Qj(z) = -z-Bj,jJ even > 0

Bj is the j-th Bernoulli number, we have B2 =1 which we are going to use in our

From [7],

(2.3.13)

I

"r•/ , , -t k



computations.

So Reso(h+ - h_)(2m - 1) is the 0-th residue at 0 of the difference function of

the following two functions:

r(z + m)r(-z - 1)
4 ýf (m - 1)!

r(z + m)r(-z- -)

4vr(m - 1)!

N/2

•(-1 - 2z) - E k-Bkz(+(2k - 1 - 2z)),
k=1

N/2
_(-1 - 2z) - k-Bk (2k - 1 - 2z)).

k=1

If f is analytic and g has a simple pole at 0, then Reso(fg)(0) = f(0)Resog(0) +

f'(0)Resig(0), from this and noting that r'•(m) = _ 1

and F'(-!) = -2v-,

Reso(h+ - h_)(2m - 1) =

-y is Euler's constant,

Reso(C+ - 5-)(-1)2
1
4 '(-1)k BkReSl ((+

k>1

1 IF'(-)
+ 2

1
- dimVo0 o2

- (-)(2k - 1)

(2.3.14)m-l1

+ - 7))Res( - _)(-1)
j=1



while ((+ - (_)(z) is given by the following:

((+ -(_)(z) = E( 
11z

bOO 2

bO

=2
b50

b-Z
b$0

b |-z ((1 +

b -z E
k_0

11 z)
|b- -|2

1)-- (1-2b
)-Z)

2b

2k + 1) (2b)-2k-1
-Z

= 2-2k 2k + 1)
k>O

E
bO0

b I-z-2k-1 signb

-- 2-2k (-z)(-z -1) ... (z - 2k)
k__..2 ( -L 1I 7]

k>O ) j

A(Z + 1) + 2- 2k (-t)(-t - 1) -.(t - 2k)
Ar>l(z + 1) + (2k + 1)! A( + 2k + 1)

k>1

here WAr(z) is the 77 function of the operator Ar on Nr.

From (4.13), we have

= A, (0) + E
k>1

2- 2k 1 ReSlrA(2k )2k(2k + 1)

Res,((+ - (_)(2k - 2 2 (2k + 2j- 1R 22-2 j + 1- 1 ) 1ReslrLA(2j + 2k)(2j +1-1I

Lastly we can get the explicit index formula by using the calculation for ?JA(8) in

Section 2:

Reso(h+ - h_)(2m - 1) = 1
27A(S) -2

1
2>11>1

-21 ReSlrlA (21)
21(21+ 1)

1 1 B ._
4 E (-1) (-1)2-2

1>1 i>1,i+j=l

1
dim Vo,o

2

21-J 1) Resl177AL(21)

(2.3.17)

Ar ( + 2k + 1)

Reso(,+ - (_)(-1)

For k > 1,

(2.3.15)

(2.3.16)1) = -E
j>0



And we can write the first three terms explicitly:

1 1
2qA = (-2)2 2

=

>1
1>1

f A(B)e21- 1

(21 - 1)! ((-(21- 1))

31 f A(B)e21-1
(21)!

1 e 1A(B)(- coth -
2 2e

In the third equality above we used equation (2.1.4).

For the sum of the middle two terms in Reso(h+ - h_)(2m - 1), we claim it is

equal to (- + 1). To see this, note thateqa to 2sinh e 2

-1 (- 1)iBi
1>1 i+j=l,i>1

21 -
1)2- 2j 2j + ReSlrlA(21)

_1 E (-1)'-Bi -2j (-2) B A(B)e 21- 1

S2
4 L i (2i - 2)!(2j + 1)!121 i+j=1

(-1)i-1 Bi(2i - 1) 2-2j-1 fB(B)e21-1

1>1 i+j=l (2i)! (2j + 1)!

thus the sum of the middle two is

2 L
)B/

e ecoth -) (sinh -) =2 2
cosh ~cosh(22 sinh

1

e

Note dimV0 ,0 = dimKer(DB), we have

Reso(h + -h_)(2m - 1) =-L/ 1 - coshA(B) 2
2 sinh 2

1
- -dim Ker(DB).

2

Combining this with (4.12), we have

S /B 1 - cosh
Ind(D+) = WD+ + A(B) 1 s h 2

xB 2 sinh 42

1
- -dim Ker(DB)

2

Since D + is the Dirac operator on a spin bundle, we know that WD+ = A(X).

(2.3.18)

(-1)1-1
-/_..,-/1

/

d 1A(B) (de 2



Thus

1-coshe 1
Ind(D+) A(M) + A(B) Cosi 2 dim Ker(DB) (2.3.19)

f B 2 sinh 2 2

Now suppose (M, g) is an arbitrary smooth Riemann metric on M, (p, rn) be a

point near B, p E B, n is a unit normal vector. Denote by A, the shape operator

of the submanifold B in the direction n. Then the metric g is of the following form

near B, which is proved in [13]:

Lemma 2.3.1. Let R denote the Riemann curvature (0, 4) tensor of (M, g). Then

for Ul, U2 E T(p,rn)M, we have

exp*g(uI, ua) = g(u 1, U 2) - 2g(Anm,ul, 7,U2)r
2

+ {g(A7wur, A•,m*U2) + R(*1ui, n, r*U2 , n) + 2 -R(T*U1, n, KU2, n)
3

2 1
2%R(-2, n, Kul, n) + -R(Kul, n, KU2 , n)}r 2 + O(r 3 )3 3 (2.3.20)

Here exp is the exponential map, go is the model metric we used in the previous

sections, and K is the projection to the vertical tangent space.

Given a Riemannain metric g, the following Koszul formula is helpful if one wants

to calculate the Levi-Civita connection:

Lemma 2.3.2. Koszul Formula (cf [19])

Let (M, g) be a Riemannian manifold, V is the Levi-Civita connection, X, Y, Z

are tangent vector fields, then

2g(VxY, Z) = X -g(Y, Z) + Y -g(Z, X) - Z -g(X, Y)

+ g([X, Y], Z) - g([Y, Z], X) + g([Z, X], Y)

The Dirac operator associated with g is related to the Dirac operator Do associated

with g0 in the following way:

Theorem 2.3.3. Let (M, g) be a smooth Riemannian manifold of dimension 2m, B

is an embedded submanifold with codimension 2. S is a Spin bundle over M\B which



can not be extended to a spin bundle over M. Then near B, the Dirac operator D +

can be written as
1 1

D+ = Or + + H + A, + ? (r).
2r 2

H is the mean curvature of B, which we can view as a function on the unit circle bun-

dle of B, and A, is the perturbed operator introduced in Chapter 2. qr(r) is compactly

supported in a small neighborhood of B, equal to O(r) near B. Thus equivalently, we

have that near B

D+ = D + + H + O(r),2

D+ is equal to 9r + r + A,.

Proof. Let el,... ,e 2,- 2 be an oriented orthonormal frame for TB, and ( is the

infinitesimal of the s I action on N. First from the Koszul formula, it is straightforward

to see that the contribution to the Levi-Civita connection VM from the third and

fourth part in the metric formula in Lemma 2.3.1 is O(r), hence the same is true for

D +. Thus it suffices to consider metric 91 = go90 - 2g(An,*i, 7r,)r. As shown in [13], at

(p, rn), the Dirac operators D + and DN are related by

HND = -r, + DN -H
2

Here DN is the Dirac operator on N with metric induced from gl, i.e., gN - r2w 0

w + 7r*gB - 2g(Anx,, r,). HN is the mean curvature of N at (p, rn).

For any fixed r, 9N is a small perturbation of the model metric we considered

before, again from the Koszul formula, the Levi-Civita connection is perturbed by an

O(r) term, so is true for the Dirac operartor: DN = A, + O(r).

At (p, rn), if we still use el, ,e-2 denote the pull back vectors from B, then

under the metric gj, ei = -1+ O(r), ( =r, and (, 7, 8 is an orthonormal frame

for TM. On the other hand, HN = Zm-2g(Vei/nei i +(V/rn, /r). Since

g(Vn,) = y(V,, , ) = - the last term in the above is - . From theoszul formula, 2 (Vn, ei) ii) = 2(A , e), the last uality follows

Koszul formula, 2gI (V,,n, el) = nT.g1 (ei, el) = -2g, (AnCi, el), the last equality follows



from the definition of our metric gl. So HN(p, rn) = - 2H(p, rn), thus Dt

+ H= r + Ar+ H= Do+ 1H. ]

Now for any smooth metric g on M, the corresponding Dirac operator D is just a

bounded perturbation of Do: D = Do + H + r1(r), from Lemma 2.2.8., we know that

the index of D will remain equal.

Proof of theorem 1.0.2. To prove that D + is Fredholm, notice that it suffices

to prove

D + G (P o R) : Dom(D+ax) -- L 2 (S +) D (Im(P) n L2 (SB))

is Fredholm, for which the proof of proposition 17.2.5. in [12] applies here: first PPo :

Im(Po) n L2 1 - Im(P) n LP, is Fredholm, since (PoP)(PPo) = P + Po(P - Po)Po,
2 2

so is a compact perturbation of the identity operator on Irm(Po), so PPo has a right

inverse operator moduli compact operators, simliarly it also has a lefte inverse. Thus

(D+, PPo) is Fredholm. At last, we can write (D+, P) = (D+, PPo) + (0, P(P - Po)),

the first is Fredholm and the second is compact, so (D+ , P) is Fredholm. If we replace

P by P1 as in the theorem, following from the proof of proposition 17.2.6 in [12], D +

is Fredholm.

As for the index, the first index formula has just been proved. For the second index

formula, since the only difference in the boundary contribution is from ker(DB), which

now is projecting to ker(D,) instead of to ker(DB), thus the index formula follows

immediately.

2.3.1 Weitzenbock formula.

In this section, we look at the Weitzenbock formula for spinors in the domains we

considered before. For simplicity, we assume the metric g equal to dr2 2+r2c Ow+T*gB

near B.



Let ME = {p E M d(p, B) > e}, E > 0. For ¢ E L2(S+), D+¢ E L2(S-), we have

M, JME ME 4JN, 2EN
(2.3.21)

The last term is because with our metric, the boundary circle bundle has mean

curvature 1. As E -- 0, we will see that both fM I| V¢ | 2 and 1f N 4I 112 dge

diverge, but the divergent terms of this two cancel out, so the left hand side of the

above equation remains finite.

For any ¢ C L2(S+) such that D+¢ e L2(S-), from the last section, ¢ = o0+r-20,

0o E L (S+, M\B) , 0 is a section which in the tubular neighborhood is in 7r*L 2 (SB),

and vanish in the interior. Thus fM Vr- 112 (2 gI E-I 112 dgE respectively)

is the term that renders fM I V4 112 (N II 112 dgs respectively) divergent.

In the tubular neighborhood, the spin connection V can be written as

V = V1 + V2.

V = dr + - w (2.3.22)lr - Or ® dr ÷ -2 0 i

+ -1 - 0

2+ I2(-rn) 072 2rn 0 1 (2.3.23)-i 0



The divergent term of fM H Vq 2 comes from fM, | Vr- 12, which is

SVr- 112 = C+
IME\Ma

I 11211 lr -• " V

=C + r-3 ' I•1 -rb (1) -1.1 O••12
ME\Ma 4 2 r

= C + M\M

=C + Ar

=C- f

1---r 1
1 | 112 +1r-34

1 V) 11 2II ¢ 1I2 +GB/-2 JB2
11 12 + '

Here C is a constant which depends on 0, and in the third equality above we used

the fact that I w JIN,=

At the same time, the divergent term of - fN, 112 is

2E1 E 2 11 dg, 11 I2 dgB (2.3.25)

Thus if we let

Q(M) = lim( J IVOlH 12 2E (2.3.26)u 1l 112)

Also notice that limE-o fNo < Deq, q >= fB < DBV, ,b >, Weitzenbock formula for

q E L 2(S+), D+¢ e L2 (S - ) becomes

111 12= Q(¢) + fM\B 12 + bll < DBO >

2.3.2 Index for Spin c Case.

Let S -* M\B be a Spine bundle, Ao is a Spinr connection such that restricted to

the circle bundle P of B, it is (S lp, Ao p) = 7r*(SB, AB), where SB is a Spin' bundle

over B, and AB is a Spine connection on SB. So Ao has holonomy -1 along the

circles linking B. Let w be a connection form of P. Thus (S, Ao + ilw) extends to a
Spine pair (SM, AM), w is a connection form on P. And Ao + ilw has holonomy zero

along circles linking B.

IM/
IV) 112 (2.3.24)

IM\B
(2.3.27)



Use Ao as a reference connection, then all the Spinc connection can be charac-

terized by ia E Al(iT*M\B). Now suppose that when restricted to the tubular

neighborhood , ia = icw, c E (0, •) is constant. Let D' be the Dirac operator as-

sociated with connection A, = Ao + icw. In the tubular neighborhood U, as before,

we have L 2(S + u) = L 2((0, 1), L 2 (S + N) O rdr). Since the Spinr bundle is a pull

back of a Spine bundle over B, the S1 action on N again can be lifted to S, and

L2 (S + N) = Vk, where Vk is the eigenspace of the differential of the S1 action, L(.

The Dirac operator corresponding to A, and g |N= r2W 9 w + 7r*gB is denoted by

A , and as in Chapter 2, can be written as

1 r (A = A, + A --- (-)y(-*dw).
r 4 r

We also have the isometry Qk : V -* L2 (SB 0 L-k), such that when restricted to

Vk, Ah = Q•' o Ak O Qk.

AC = 1A, + Ah is the twisted operator.

Let k,a = a~O e L 2(SN) be a unit norm common eigenvector of Le and Ah with

eigenvalues ik and a respectively.

If a 4 0, k # 0, then a, / span a two dimensional space, under this basis, AC is

represented by

Ak,a =
a k+c

If a = 0, (a, 3) E ker(DB), then a is the eigenvector of A, with eigenvalue kcr

and multiplicity dimKer(Ak S, OL-k), and 0 is the eigenvector of Ak with eigenvalue

+ and multiplicity dimKer(Ak SBOL-k).

If k = 0, up to the isometry, Ar Ivo= DB.

Then as in Chapter 2, the eta function 'TAO of Ao is again

TIAO(S) = A(B) fs(e),

ekxe-kz ((s-(2i-1))x
2 i - 1

where f, (x) = - ek ks = -2 i> (2i-1)!



For 0 < c2 < , the eta function riAc(S) of AC with holonomy ei2"(c+ ) is

f, A(B)ch(det(SB)L
Ac(S)= -(k + c)s

Bk>0

k-) B, A(B)ch((det(SB)Lk))
k<0 (-k - c)s

with

fs(X)Z= Ccj (j(s
i>0 j=0

+ j=o ((s j,
i>0 j=0

(-c ) i
i!

Here ((s, a) is the Hurwitz Zeta function, given by

+o0

((s, a) = (k + a)
k=0

((s, a) defines a meromorphic function on the complex plane, with a simple pole at

s = 1 of residue 1, and ((s, a) is continous in the second variable a.

Let

C"O(M\B, S+; P) = {c E C" n L2, DcO% L2 }. (2.3.29)

Still let Dcax denote the closure operator defined by above. When c = 0, define

Dom(Dk) is the kernel of the composition:

riDom(Dmax) L2 > (Ss 0 LB 0 Lk) - L, 1(S 0 LB 0 Lk).
2 2

Here PB is as usual the projection map to the negative spinors. When c - 0, for any
__ _C1 1 2

E Dcax, the leading order term of ¢ is # = c 1 (r - 2 - a E r- C 2 3) + C2 (rT +c'

r2 -c/3) + O(Inr), for some a, 3, a', 3' E L 2(Sp). Define

Dom(DC) = I limr,,olr ILr2(SN,g 1) = 0}.

(2.3.28)

X
i!



Due to the behavior of q E D'ax for near B, we see that this boundary condition

is exactly the same as the second boundary condition we considered before, i.e.,

projection to the negative spinors.

The main result in this section is the following theorem:

Theorem 2.3.4. Let S -- M\B be a Spine bundle, Ao is a Spine connection such

that when restricted to the circle bundle P of B, (SJp, Aolp) = (7r*SB, W*AB),SB is

a Spine bundle over B, AB is a Spine connection on SB. If the connection in the

tubular neighborhood is Ao + icw, then with the domain defined above, D'4 is Fredholm

and

, s/ 1 - coshidw A 2 ý --Ind(D+)Ind(DA) = A(M) A exp( FA idw) - A(B) 1 - cosh + Ind(D),M 4xp B 2 sinh 2
(2.3.30)

where FM is the cuvature term of AM. When M is four dimensional,

Ind(D) = (M) - ce(S+)2
8

where (SM, AM) is the extension of the pair (S, Ao + i w).

Proof. Frehlomness can be proved in exactly the same way as before.

When c = 0, the index calculation is almost the same as the Spin case. The eta

function of A'is of the exact same form, which makes the boundary contribution the

same. As for the interior form, notice that Fx - idw is the curvature form of our

Spine connection.

When c $ 0, the eta function •lAc(S) is given by (4.26), and since the Hurwitz

function ((s, q) has simple pole at s = 1 with residue 1 and ((s, a) is continous

in the second argument, we see that the boundary contribution to the index of Dc

is continuous in c. But on the other hand, the index form of Dc also continously

depends on c, they are all equal to fM A(M) A exp((FAm - idw + i2cdw)). Since

Ind(Dc) is integer valued, we get that Ind(Dc) = Ind(Do). When c = 0, the boundary

contribution is the same as before, the index formula follows immediately.

The formula for four dimensional case follows as below: E is Spin, we can write



1 1

S|p = (r*Kj2 E@ *K) 0H, such that (H, B) = r*(HE, BE, A), He is a line bundle

over E with degree k. And Ao comes from the connection of the pull back Spin
1 1

connection on K 2 e K' and BE. Thus (S, Ao + i w) extends to (Sx, Ax) such that

cl(S+)(E) = 2k + n. Now from the general formula, Ind(Dc) 8(x)-(ci(sX)-dw)2)

S-1 k, while (cl (Sx) - dw ) 2 = C1(S+)2 - 2cl(Sx) A dw + n, and cl(S+) A du = 2k + n,8 2

we get

ind(DC) = j(X) - c1 (S+ )

8

D



Chapter 3

Moduli Space of Singular

Monopoles.

3.1 Basic Seiberg Witten Theory.

Seiberg-Witten equations are first order elliptic equations. And the solutions are

absolute minimum of a so called Seiberg-Witten functional. The Euler-Lagrange

equations of the functional are second order equations, and Seiberg-Witten solutions

also satisfy the Euler-Lagrange equations. One strategy to study the Seiberg-Witten

solutions is to first solve the E-L equations, then to identify conditions under which

certain solutions actually also solve the first order equations. The main source of

reference is [10].

3.1.1 The monopole equations.

Let X be a compact connected oriented 4-manifold and fix a Spine structure S on

X. Such a Spinc structure always exists. As before, y : TX -- End(S) is the

Clifford multiplication, and y extends to an isomorphism of algebra bundles C(TX) -+

End(S). There is a natural splitting of S:



into the + eigenspaces of -(ele 2e3e4 ) where el,e 2 , e3 , e4 is any positively oriented

orthonormal frame of TX. Let Ls be the determinant line bundle of S + and S-:

Ls = det(S +) = det(S-)

Denote by A the space of Spinc connection on S + . For any given A E A, DA is

the associated Dirac operator.

The Seiberg-Witten monopole equations are a system of first order differential

equations for a pair (A, 4) where A E A and D e C' (X, S+). They read

DA) = 0, FA = U+((4)*)0). (3.1.1)

Here the endomorphism D4* E C'(X, End(S+)) is defined by

4D"•* =< 4,Tr > 4D

for - E C'(X, S+). Its traceless part is given by

(4 *)0T =< 47, > 4) - ( I T 1 .

Let Endi(S+) denote the bundle of traceless endomorphisms of S +. The bundle

isomorphism

o+ : Endo(S +) -* Q+T*X 0 C

is the inverse of the map y : Q+T*X -- Endo(S +) defined by Clifford multiplication.

Recall that in the 4-dimensional case, y identifies the imaginary self-dual 2-forms

on X with the traceless Hermitian endomorphisms of S +. Thus a+((44*) 0) is an

imaginary valued self-dual 2-form and so is F+.

3.1.2 Space of Configurations.

In order to use these equations to produce a moduli space, out of which one can define

Seiberg-Witten invariant of the Spinc structure, we need to put these equations in a



nonlinear elliptic framework. The space of configurations is the space on which the

equations define a function. It is the space of all pairs (A, D) where A is a Spine

connections and D is a spinor. For technical reasons, we need to work with Banach

or Hilbert spaces. And usually people work with L' or L for p > 4. Here we choose

the working space to be L12, based on [10].

Let L2(S + ) be the space of sections of W + of L2 class, and A2 be the connections

on S+ of L2 class.

The Seiberg-Witten functional for a pair (A, (D) is defined by

SW(A, 4)= (| VA' 1 + ± F 2 + 12 11+ 4)dvol.

and s is the scalar curvature of (X, g).

Seiberg-Witten solutions are absolute minimum of this functional. The Euler-

Lagrange equations of the Seiberg-Witten functional are

s 1
--AA+ 8+ II 12  = 0, (3.1.2)

4 4

1
d*FA + -Im < Vie, q > ei = 0. (3.1.3)

2

Here AA is the Laplacian, and Vi = Ve,, {ei} is an orthonormal basis of TX.

The following maximum-principle property is proved by Kronheimer-Mrowka in

[11]:

Theorem 3.1.1. For a smooth solution (A, 4) of the Seiberg- Witten equation,

II O(x) 11< max{-s, 0}.

It is not hard to see that the functional SW is well defined on A x L (S +) and

SW is smooth.

A suitable Lie group is required to serve as a gauge group. Let Go = exp(iL2(X, 72)).

Then go is a Lie group: obviously the quotient Y = Li~/ , is a Lie group with the

usual addition of functions, - is the equivalence relation in L2 (X), 01 q2 if and



only if p1(x) - 0 2 (x) = 27rn, for almost all x e X, for some integer n. And g0

can be identified with Y by the exponential map. Hence •o is a Lie group with the

multiplication of functions.

Lemma 3.1.2. Define g = U - Go. g is a Lie group, here the union is over all

components of C'(X, s'). 9 acts smoothly on A,2 x L (S+).

The proof of the following gauge fixing lemma can be found in [16].

Lemma 3.1.3. For any pair (A, q), Ao a fixed smooth connection on S + , there exists

a gauge transformation g, such that a = g - A - Ao satisfies d*a = 0, and

Ia OL< C1 II FAJL2 +C2

where cl, c2 are constants.

3.1.3 Regularity of solutions.

The crucial point in the proof of both the regularity and compactness of weak solutions

is the L" bound of the spinor ¢. As long as this is guaranteed, the regularity can

then be obtained through the standard elliptic bootstrap method.

Since now the configuration space is L 2, the usual maximal-principle argument

does not apply to prove the L" bound. And the authors in [10] use the method in

[20] to prove the following:

Theorem 3.1.4. Let (A, ¢) G A2 x L (S+ ) be a weak solution of (5.1). Then

I IILoo max{-s(x), 0}.

Proof. Let so = min{s(x) Ix c X}. If S0o > 0, then since

1 VA s 1 1 4= 0,

thus 0 = 0. Without loss of generality, assume so = -1. Define test function r7 to be



for I H> 1,
0, for • 1.

(3.1.4)

and Q = {z E XI | (x) >1}.

Let v = for 1, X(t) be the characteristic function of Q. By noticing

that v = 1 and I 0 > 1, we conclude

Vq = X( )((d I 1)V + (H 1 -1)Vu) E L2

since d( l)v = < v , =< v > v e L2 , and

Vq 1
X( 0)(( -1) - 2( 1110 1 2 011-1) 3< V >

= X() ((1 - )V 1 1- (1- I ) < V, v > v L2).2 1ý 0 1

Now that (A, 0) is a solution of (5.1), we have

< VA¢, VAT/ >

< VAQ, VA/ >

< VA0, VAT) >

4
1

1
1+•(

1
4

12 +8)(1 1 -1) 1

S 2112 1)(11 12 - 1) 11 ,

for s > -1. We show that the first term is also nonnegative: for

< VA , VAq /> J< VA, d( ) I' > + < VAq (H -1)VAV >
Jo

=< d(ll 0 II)v, d(ll | II)v > + <11 II Vv, d(l 0 I) >
+ < d(ll ) II1), (11 II -1)VAV > + <11 I1 VAV, (11 1 i --1)VA >

=< d(l II)v, d(ll II)v > + 11 Ii (11 II -1) < VAV, VA' >

>0

(3.1.5)

X(A) ((W 1 -1)V ) --

-
>

2I 1< OlT >



The last equality in the above is due to the fact that < v, VAv >= 0 since v is a

unit normal vector. Thus Q has measure zero, and q| ILoo 1.

With the L" bound at hand, it is straightforward to prove the regularity property

and the compactness theorem.

Theorem 3.1.5. Let (A, ¢) A2 x L (S+ ) be a solution of the Seiberg-Witten equa-

tion. Then there exists a gauge transformation g E G such that g(A, q) = (g(A), g-10)

is smooth. Moreover, for any sequence (Ai, ¢i), there exists a subsequence(also de-

noted by (Ai, ¢i)), and gi, such that gi - (Ai, ¢i) converges in C" to a solution (A, ¢).

Proof. As before, we choose a base connection A0 . From the gauge fixing lemma,

there exists a gauge transformation g, a = g -A - Ao, such that d*a = 0. Thus the

Seiberg-Witten equation is of the form

(DAoq = ia

(da)+ = ua() - F+o,  (3.1.6)

d*a = 0,

Since $ j 0ILc< C, again from Lemma 3.1.3, a has uniformly bounded L' norm

for any p > 1. In particular, take p > 4, we see that it is bounded in Co by the

Sobolev Embedding Theorem, and hence a - is bounded in LP for any p, It follows

that ¢ is bounded in LP for any p > 4. Since L' has Banach algebra structure, it

follows from elliptic bootstrap that (OZ, ¢) is bounded in Lp for any k > 2. Then

sobolev embedding theorem says that (a, ¢) is smooth.

For compactness property, notice that ¢ has a uniform L" bound, from the exact

argument above, for any sequence (Ai, ij), we have a uniform L' bound for any integer

k 1 and p > 4, thus Rellich's Theorem produces a subsequence converges in LP for

all k. This proves the compactness.

O



3.2 Configuration space over the complement of

the surface.

3.2.1 Spinc structures.

As before, X is a smooth, connected, oriented closed four manifold, E is a smooth,

oriented, embedded surface in X. Denote by P the circle bundle of the normal bundle

of E with degree n. w is a connection form on P, such that dw = 7r*dvolr. The

following lemma summarizes some relevant cohomological information about these

spaces. The (co)homology groups are with integer coefficients.

Lemma 3.2.1. Let X, P, E, n $ 0 are as above.

Hi(P) 2 Hi(E), , H2(P) Zn E H (E)

H1 (X\E) - H1 (X), H 2(X\E) - H2(X)®/ ( F,

where ( is the Poincare dual of E and F is a subgroup of H 1 ( E ).

Proof. The cohomology groups of P comes from the Gysin exact sequence of S1 -

P -ý E. The Gysin exact sequence implies

H 2 (P; Z) w* H2 (; Z) e Hu1 (E; Z) E Zl ® Z2g

As for the cohomology of X\E, we can use the Poicare duality and the excision

principle: H 2(X\E) ý- H 2(X\E, P) r H 2(X, U), U is the tubular neighborhood of

E. And H2 (X, U) can be calculated from the exact sequence of the pair H2 (X, U):

H3(X) --* H3(X, N) -- H 2(U) -* H 2(X) --+ H 2(X, U) - H,(U).

Since H1 (N) is a free abelian group, we have H 2(X, U) ý H 2(X)/ED F, F is some

subgroup of HI(U). Similarly H1 (X\E) r H3 (X, U) ! Hi(X).

E



Any line bundle H on P such that cj(H) =k E Zll can be obtained as a pull

back of a line bundle He on E, c1 (HE) = k E Z. Note that k is determined only

modulo n. So this does not give a faithful correspondence between the line bundles

on E and the torsion line bundles over P. However, if one equips the line bundle with

a connection, one gets a faithful correspondence, as described in [17]:

Lemma 3.2.2. ([17]) There is a natural one-to-one correspondence between pairs

bundles-with-connection over E and bundles- with-connection over P, whose curvature

forms pull up from E and whose fiberwise holonomy is trivial.

Let C be a flat connection on H with holonomy exp(2ikir/n). Set Ck = C +

(2ikir/n)w, then Ck has trivial holonomy along the fibers and the curvature form of

Ck is horizontal, Fck = 2ik-rdw. Thus Ck is the pull back of a connection CE on a

line bundle He whose curvature satisfies

7r*Fc = 27ik/ndw = 2ikw*dvolE.

Thus cl (HE) = k.

Now any Spinc bundle Sp over P with torsion determinant line bundle can be
1 1

written as S + = w*K 2 0 H G 7*K 09 H.

Suppose S is a Spinc structure on X\E, whose restriction to P is determined

by a torsion line bundle and it extends to a Spinc structure on X. The extension

is not unique, and any two extensions differ by a power of the line bundle N, the

normal bundle of E.(The pull back of N to P is trivial, so we can extend N to

a line bundle over X, still denoted by N). This fact can be seen as follows: first

changing the Spin' extension on X by a power of N does not change the induced

Spine structure on X\E, since N is trivial on X\E. On the other hand, suppose two

Spin' structures on X differ by a line bundle L. If restricted to X\E, they give the

same Spine structure, then L is trivial on X\E, hence cl(L) lies in the kernel of the

restriction map H 2(X) -- H 2 (X\E), which is generated by the Poincare dual of E,

thus cl(L) = mcl(N), L = N m .

Although the extension of a given Spine structure S on X\E is not unique, when



coupled with an extendable connection, from the above lemma, we do have a unique
1 1

extension. More specifically, write S+ p = (-*K 2' e 7r*K ) 0 H, let Ak a Spine

connection on S + , such that restricted to P, it is obtained by coupling the Spin
1 1

connection on 7-*KE-5 D 7r*KZE and a connection Ck on H. (Recall that Ck =

C + ik/nw is a connection with trivial holonomy on H.) And Ak has -1 holonomy
1 1

since the Spin connection on 7r*KE 2 D *KF does. From the above lemma, the pair

(H, Ck) is a pull back of a unique pair (HE, Cr) on E. Thus (S+, Ak + liw) extends

uniquely to a pair (Sx, Ax) on X. Let £ denote the determinant line bundle of Sx,

then cl(C)(E) = 2k + n.

3.2.2 Configurations space of singular monopoles.

In order to be able to consider the Seiberg Witten equations over the complement of

the surface, we need to choose an appropriate function space to study the equations.

Recall that we chose to work with smooth metric g which can be extended to X. And

the Spinc structure S is the one we mentioned above, whose determinant line bundle

is torsion restricted to P. Let Ak + icw be the reference connection. Thus Ak + icw

has holonomy exp(2i(c - )7r) along the circles. Notice that if we change c to c + 1

for some integer 1, then Ak + ilw + ice has the same holonomy and Ak + ilw = Ak+1n.

Thus we only need to fix c E (-, 0) U (0, ). When c = , the holonoy is trivial,

and it reduces to the usual analysis on the compact manifold X.

Now for the spinors, we will use the space we studied in Chapter 2, i.e., V +

{q E LP(S+), DA E LP(S-), (r2 )(0) E S+ } for c= 0, Vc = {Q E LP(S+), DA E

LP(S-), (rl)(0) = 0} for c E (-,0) U (0, 1).

For the connections, we use the following weighted sobolev spaces, with different

weight of the spaces introduced in [11].

For some p > 2,

CP = {a E Q'(X\E) I o E LP(iQ'(X\Z)), Vxa E r -LP(i*+(X\E))}, (3.2.1)

C~ =f f f rL P, Vf E L, V 2f E r -1 Lp }. (3.2.2)



And Co = {f f E r-1LP}. Here Vx is the induced Levi- Civita connection on

1-forms, and a G rcLp means that r-ca E LP .

Let Ak = {Ak + icw + a I a E Cp}. And the configuration space we choose to

work with is Ck = V + x Ak.

The above spaces are isometric to

duced in [11]:

For nonnegative integer k and p >

pactly supported smooth functions on

I f Iwk=llI f pP + I

Obviously WkP C LP, and Wo = Lp.

T(f) = r 2f is an isometry map.

the following weighted Sobolev spaces intro-

2, W,~ is the completion of the space of com-

X\E in the norm

r Vf ip '"+ II Vkf Ip

And the multiplication map T : Ck --+ Wk~

In [11], the authors studied singular Yang-Mills equations along an embedded

surface. There the connection near the surface is

A = a +b

with ao being the diagonal part and b being the off diagonal part such that ao is in

the ordinary L' space and b is in W' as above. The anti-self-dual equations can be

written as

d+ao = -[b, b]

d+b = -[ao , b]

Formally, the Seiberg Witten equations look simliar as the above equations, with

aO being replaced by the spinc connection and b being replaced by the spinor. The

configuration spaces we chose here are actually the analogue of the configurations

spaces for the singular connections, at least up to an isometry: for any spinor 4 E V +,

since 0 q O(rC-½), we can check that re E WP(S+, X\E) for appropriate constant

p > 2, also for any a E C~, we know that ra e LP, and V(ra) = dr 0 a + rVa E LP,

so ra E Lp . Thus up to the weight r, our configuration spaces are such that spinors

lie in W" and connections lie in LP.lie in WCiIIICp VID IC11 1.



It is shown in [11] that usual embedding theorem also holds for Wkf, and so does

the elliptic theory: let

wP = k - p/4,

Lemma 3.2.3. ([11].) If k > 1 and w >_ w', then there is an inclusion W , W

If both inequalities are strict, then the inclusion is compact.

Lemma 3.2.4. The usual statements of elliptic regularity also holds for S:

S = (d* + ) (d+ +
r

C2: 1(X) - Q0 (X) E Q+(X).
r

Due to the isometry T, we have

Lemma 3.2.5. The Sobolev embedding property also holds for Ck.

regularity also holds for d* e d+ acting on Cjk.

Define A = Ak + Ci.

V+ x A.

And the elliptic

The configuration space we choose to work with is C =

A gauge transformation a E L~1 oc(X\E, Si) belongs to the gauge group based at

E, G9, if there exists f e C2, so that a = exp(f). Define g = U, g - g9, where the

union is over all the harmonic representatives of H1(X).

3.3 Deformation Complex.

Seiberg-Witten equations on the complement of the surface give rise to a well defined

map

SW: V x A -+ LP(S-, X\E) x r-'LP(iQ+).

The deformation complex D(A,qI) of the solution (A, I), taking into account of the

action of g, is

0 -* C' • -K(A,) V + x A -T(A,T)SW L 2(S - ) x r-'LP(iQ+(X\E)) -* 0, (3.3.1)



where K(A,P) (f) = (2df, -fo) is the infinitesimal gauge group action and

T(A,V)SW(a, I) = (d'a - 2Q('I, 0b), DAV + a. - I)

is the linearization of the Seiberg-Witten map at (A, TI). Here Q is the bilinear map

associated to the quadratic map q in the Seiberg-Witten equations. The cohomology

groups of this complex provide some local information about the based moduli space.

The first observation is the following:

Lemma 3.3.1. The zeroth cohomology group of the deformation complex is trivial.

Proof. If f E C2~ is in the kernel of K(A,4), then df = 0. Thus f is constant and from

our definition of Gi, f converges to 0 near E, it must be identically equal to zero. O

The first cohomology group of the deformation complex is called the Zariski tan-

gent space of the moduli space and the second cohomology group is called the ob-

struction space. If (A, I) is a regular point for the Seiberg-Witten map, then the

obstruction space vanishes and the first cohomology of the complex is isomorphic to

the tangent space of the moduli at [A, I].

Let (A, IF) be a configuration on X\E. The adjoint K*A,') of the infinitesimal

gauge group action K(A,q) is defined with respect to the following inner products: for

imaginary-valued forms a and 3 let

where * is the complex anti-linear extension of the Hodge star operator.

Then K(*A,)(a, /) = 2r 2 d*r- 2 + 2ilm < 9, V) >; we can drop the factor 2, thus

obtaining the wrapped-up complex

F : A x V- LP(iQ(X) E iQ+(X)) E LP(S-),

2
F(a, ) = (d*a - - + ilm < TI, >, d+a - 2Q(T, P), DA' + a* P).

r



3.4 The equations over a Kahler manifold.

On a closed Kahler manifold (X, Q), there is a canonical Spine structure given by

So = Qo(X; C) E DO,2(X; C),

So = Q0,1(X; C).

Any other Spin' structure S differs from So by tensoring with some complex line

bundle L, and is given by

S + = Qo(X; L) QO,'2(X; L),

S- = o,'1(X; L).

Furthermore, the determinant of S + is K,1 0 L2

Recall that (S, Ak) is a pair of Spine bundle and connection over X\E, such that

(S, Ak + i w) extends uniquely to a pair of (Sx, Ax) on X. Write S+ = Qo(X; L) E

QO' 2(X; L). And C is the determinant line bundle of Sx, c1(,)(E) = 2k + n. For any

holomorphic connection B on £, let B1 be the induced holomorphic connection on L.

Let (A, q) E Ck be a solution to the Seiberg-Witten equation. From our definition

of the singular configuration space, A = Ak ± icw + ia, for some a E C1P. Write

S= (a, ) E S + E S-, a has leading order r2 - c near E while / is of 0(1) near E.

Due to the Kahler structure, we can write the Seiberg-Witten equations:

Aa + YA = 0,

(FA+)1,1= (II a 112 _ 11 112)w, (3.4.1)

A ,2

Now the configuration space Ck is acted on by the complex gauge group which

is defined to be Gc = Map(X\E, C*). A complex gauge transformation ef acts on

configurations by

A -- A + 6f - Df



a --+ efCa

S-+ e-0f

When f is pure imaginary this coincides with the usual action of g. And it is easy

to verify that the first and the third equation in (3.4.1) are preserved by this action.

Choose ef = rC-2, and al = r'-ca, 31 = r-P. Under this change, B =

A+ (I - c) 1in r -(I - c)1n r is a nonsingular Spinc connection which can be extended

to a Spinc connection on Sx.

Now the standard proof that Seiberg-Witten solutions on Kahler manifold have

vanishing F0,'2 directly generalizes to our case: we have the harmonic spinor equation

Ba + aB! = 0,

Apply 0 B to this equation we get

OBOBal +-BD-BO1 = 0.

Of course, OBBa = F a, but FA, = F, = 2 = a-1, we have

aIl 112 31 + - BB/1 = 0,

Due to the behavior of al and f1 near E(al is of order 0(1), and /1 is of order

O(r½-2 ) ) , we have that f, < */1, 31 > rdgN, goes to 0 when r goes to 0, here gNz is

a fixed metric on N. Thus we are justified to take the L2 inner product with / and

get

-1 aQ 11211 )1 112 dvol+ II D 1 1122= 0,

Since each of these terms is nonnegative, it follows that they both vanish. And

d1o1 = 0. This means that F0,2 = 0, and hence A is a holomorphic connection, P1
is an anti-holomorphic section, and ac is a holomorphic section. In particular, if X

is connected, from unique continuation principle, either ac or P1 vanishes identically

on X.



Furthermore, since

(F +), 1' - (FB+)1' 1 + i(c - )d = ( 2 -1 11 2 ),.

Thus (2c (L) - c(Kx)+ (c- - JX = f (2c (L) -c(Kx)+ (c-) )•) = - fx( I
01 11 2 - 1 112)dvol, here ( is the Poincare dual of E.

Since at least one of a 1 and p1 is zero, we see that if (2c(L) - cl(Kx) + (c- -))

is nonnegative, then al = 0 and if (2cl(L) -c (Kx)+ (c- I)\). Q is non-positive, then

r1 = 0. Without loss of generality, we assume that (2cl(L) - cl(Kx) + (c -_))

is nonpositive. Thus the Seiberg-Witten equations reduce to the following:

d9 B•a1 = 0,

(2 FB+ _ FK)1,1 = 2c-l I a, 112 w - cdw, (3.4.2)

F 12 = 0.

To sum up, if (2c,(L) - c (Kx) + (c - Q)) < _ _ 0, the Seiberg Witten equations

reduce to the above singular vortex equation, (B 1, a1 ) is an effective divisor on L.

3.5 Identification of two moduli spaces.

For compact Kahler manifold, there is a holomorphic description of the solutions to

the Seiberg-Witten equations. More specifically, the following correspondence has

been proved in [16]:

Theorem 3.5.1. Let (X, w) be a closed Kahler surface, S be a Spinc bundle over X,

S+ = (QO(X; L)Q0 'O,2(X; L)). Let (A, 4) be a solution to the Seiberg-Witten equations

for S, with 0 = (a, 0) E Q0 (X; L)E 0o'2 (X; L). Then if fx(2cx(L)-cl(Kx)) A < O,

we have p = 0, A is a holomorphic connection on C, a is a holomorphic section of

L, with

(Ff) 1, = 0i 2W.

if the fx(2cl(L) - ci(Kx)) A Q > O, we have a, = O, A is a holomorphic connection



on L, and / is an anti holomorphic section on L, with

(F+)1,1 - 2

Conversely, suppose that fx(2cl(L) - ci(Kx)) A Q < 0, A is a hermitian, holo-

morphic connection on £, a is a nonzero holomorphic section of L, then there exists

another hermitian structure h' on L such that for the connection A' which is hermi-

tian with respect to h' and which defines the same holomorphic structure on L as A

does we have

F ,= ( ) W

where (ja h')2 means the norm measured with respect to the hermitian structure on

Lo determined by h'.

Similar results hold for 3 when fx(2cl(L) - cl(Kx)) A Q > 0.

In this section, we are going to prove an analogous identification theorem for the

singular moduli space considered previously.

Let E be a holomorphically embedded curved in a closed Kahler manifold (X, Q).

E is a holomorphically embedded surface. (L, ho) is hermitian line bundle over X,

such that LIp is torsion, cl(L)(E) = k + g - 1. Bk is the connection on L such that

when restricted to P, Bk is a pull back connection from a connection on a line bundle

Le over E.

For some p > 2, define

B = 0 , + {a G io 0 '1 (X), a G C1},

2Cp = eg9 g E C2p is a complex valued function},

D~P= {( 9B, C) E B x LP(L) IFB'2 = 0,O2a = 0},

where LP(L) is the usual Sobolev space. Also recall that Mk = {(A, ¢) e Ck|SW(A, ¢) =

0}.

So 6Cp is the complex gauge group, and DP is the collection of effective divisors.



2 p acts on :DP as follows: for any e"g E 9 ,P (OB, a) E :Dp,

B -- eCgOBe -g ,

a -- ega

SB- B+ g- ag.

here B is the connection compatible with DB and ho. From the definition the complex

gauge group does form a group and the above action preserves DP.

Now we are ready to state the following correspondence theorem:

Theorem 3.5.2. Let Sx = So 0 L be a Spinc bundle on a Kahler manifold (X, Q),

E be a holomorphically embedded surface, n is the intersection number of E. L is the

determinant line bundle such that cl (£)(E) = 2k+n. If (2cl (L) -cl (Kx) +(c- )) ý)Q

is nonpositive, then we have a one to one correspondence:

i : Mk/G' kp pCg

Proof. First from the adjunction formula, ci (C)(E) = 2k+ n implies that c (L)(F) =

k + g - 1. We have proved in Section 3.4 that if (2ci(L) - cl(Kx) + (c - !)() -Q is

nonpositive, then any for solution (A, b) E Ck, = (a, 0), after the complex gauge

group transformation ef = r - c , the pair (B, al)(B = A + (1 - c)Of - (I - c)-f,

al = r2 ca) satisfy equation (3.4.2), i.e., B defines a holomorphic connection on the

determinant line bundle £, let B also denote the induced holomorphic connection

on L, B - B'k E CO, and az is a holomorphic section of L, which give us the map

i : (A, ) -- (B, a).

The following theorem tells us that for any (&B, a) E Dp , there exists a unique

ef E GIcp such that after the gauge transform, the effective divisor also satisfies the

curvature equation in (3.4.2), thus i is sujective and injective.

Theorem 3.5.3. Let Sx = So 0 L be a Spinc bundle on X, E is a holomorphically



embedded surface with genus g. cl(L)(E) = k +g- 1. If (2cl(L) -cl (Kx) +(c- )() .*

is nonpositive, then for any pair (OB, a) E Dp, there exists a f E C, such that after

the gauge transform ef, (dB', ac) satisfies

(2 FB' - FKx), 1 
__ I 2c-1 0 1 2, - ic(d3)1,1.

Proof. In order to solve

(2 FyB - FKx) 1,1  4 2c-1 a12 - ic(dw)1'1

First observe that for the gauge transformation ef , we can write the above as an

equation for f:

-i An (2FB - FKx +f - f) - 2c-r 1 1a 1 
2e 2 f - ic(dw)"1 .

4

Define w = -4i AQ (2FB - FKx - 4icdw), f w > 0 from the assumption. And using

the Kahler identity -4i AQn 8f = Af, the above equation becomes

Af + r 2c- 1 1o2e2f - w = 0, (3.5.1)

Now follow the exact procedure in [6], we can construct a solution f. And the

elliptic regularity in Section 3.2 will make sure that f E C2,. First using the method

in [6] to construct a sub-solution f_ and a super-solution f+ for equation (3.5.1), i.e.,

functions f_ and f+ such that f+ > f_ everywhere and

Af_ + r 2c- 1 o 1 
2e 2f- - w < 0

Sf+ + r 2c- 1 1c 2e2f+ - w > 0.

Then define a sequence of funcitons inductively by setting fo = f- and defining

fi+l to be the unique solution to



L fi+l = -r2c-1 2e 2fi + w + k fi

where L = A + k for a suitably defined nonnegative function k.

Then using fi to construct a solution to equation (3.5.1).

Notice that Av = u has a solution whenever fu = 0. If u C L, then v E L.

To construct u+, let v1, v2 be solutions to Avi = w - i and Av 2 = c - r2c-1 1a 2

with c = f r 2c- 1 a 12 and T = f w. Choose a to be constant large enough so that

ac > U and then choose a constant b large enough so that evl +av2+b - a > 0 and

a - e- v l - aV2-b > 0. Let f+ = vl + av2 + b and it is easy to check that f+ is a sup

solution,

Simply define f_ = vl - n with n large enough constant so that f_ < f+ and

T + r2c- ll1 2 evi-n < 0, then f_ will be a sub solution.

Obviously f+, f_- LP.

Let k = r2c- 1 a, 2ef+.

Just as in [6], the sequence fi defined recursively above satisfy fi+l Ž> fi. Thus we

have uniform upper and lower bounds on fi, we get a uniform LP bounds on fi from

elliptic theory. Thus fi has a subsequence converging uniformly to f in Lr for some

r > 4. In particular, fi converge to f in Co norm.

From the definition of fi, it is not hard to see that f is a weak solution of 3.5.1.:

for any smooth function h,

x Vfi+1Vh + kfi+lh = (A fi+l + kfi+1)h = jx(-r2cI-12e2fi + w + k fi)h

let i go to infinity, we have

SVf Vh + kfh = (r2c- 1 o l2e2f + w + kf)h.

Since f is a weak solution of 3.5.1, f E L' from the elliptic theory.

To prove that f E C2P, it suffices to prove g = rf E W21 by recalling the isometry

we mentioned :



Since f is the solution to (3.5.1.), g is the ssolutionto the following equation

1 1
rA(-g) + rr 2c- 1 1 29 - rw = 0 (3.5.2)

Now that A = -4i A, 00, we have

1 2-1 21
-4i A, (r0-(-g) + rr2c- la1)ie - rw = 0,

alternatively, we can write

-1 1 -1
-4i A. (0(r0(-g) - -r A r&(-g))) = -rr la2c-1 122g - rw = 0,r r r

since g = f is ccontinuous the right hand side of the above equation is in LP, and

r-O(Ig) is also in LP because f e L, thus r-(lg) is in WP, equivalently, r-(Ig) =

Og - -g is in Wi,, which shows that g E W2p.

Uniqueness: if fl, f2 are two solutions, we have

0 < Id(f - f2) 12

S -< 2(fl- f2), fl - f2)(

and the last integral is nonpositive, thus d(fl- f2) = 0, fi - f2 = c for some constant c.

But c has to be 0 otherwise the integral above is strictly negative. Thus fi = f2. El

3.6 Compactness of the moduli space for Kahler

case.

In this section, we are going to prove that the moduli spaces we identified above is

compact. The crucial point is to get a uniform L" bound for the spinors. Notice that

we are only working with LP space here, so the maximal principle does not apply.

Fortunately the argument in Section 3.1 works here. When the base manifold is not



Kahler, we can not reduce the equation, and we still do not know whether the moduli

is compact or not.

By using the argument introduced in Section 3.1.3., we prove that al admits a

uniform L" bound.

Lemma 3.6.1. Let X be a closed Kahler surface, E be a holomorphically embedded

curve. S is a Spine structure on X\E, which restricted to the tubular neighborhood

of E is torsion. If (A, 0) e Ck is a solution to the Seiberg- Witten equation, then there

exist a constant C independent of (A, ¢), such that II r-C IJILoo< C.

Proof. First suppose that (2clL) - cl(Kx) + cý) - Q is non-positive, thus 0 = 0,

and ¢ = (a, 0). From the above discussion, (B, al) satisfies equation (3.4.2), with

a 1 = r2 Ca, and B = A + (1 - c)Olnr - (I - c)-lnr is a Spine connection being

able to be extended to X. Thus it suffices to prove that a1 has a uniform L' bound.

Notice that a,1  L'. The same method for Theorem 3.1.1 applies here:

Without loss of generality, we can assume that s(x) > -1, s(x) is the scalar

curvature. Again define the test function 7 e L12 to be

( a ,1  -1) c" for 11 a , 1|> 1, (3.6.1)
Ha 11 (3.6.1)

0, for a, 1.

and Q = {x E X |III (x) I> 1}.

Since (Al, a) is a solution, we have

0 = j <VBa1, V? > + < a 1 ,7 > + V$ 1 2< c-lZC1a 1  >

< V•a, V•al > +-1(11/1 +8)(1 a+,11-1)(1 ac-

Ž < VBO, VA > + (1 112 -1)(r2c - 1 1 1 H-1) 0 1

for s > -1. The first term is nonnegative from the proof of Theorem 3.1.1. Thus

Q has measure zero, and 1 al IILoo 1.



Now we are ready to prove the following compactness theorem:

Theorem 3.6.2. Let X be a closed Kahler surface, E be a holomorphically embedded

curve. S is a Spin c structure on X\E, which restricted to the tubular neighborhood of

E is torsion. Then for any sequence (A', a') E Ck which are solutions to the Seiberg-

Witten equations, there exists a subsequence, still denoted by (A i , ai), and a sequence

of gauge transformation gi E G, such that g'i (Ai, a') converges in Ck.

Proof. Let Bk = Ak + icw + Of - Of be the reference connection , with ef = r -c.

After the complex gauge transformation of ef defined before, we have a sequence

(ai, I), such that (Bk +a, ai) solve equation (3.4.2), with a' E C', and a1 E L (S+).

And (A', ai) converges in C if and only if (ai, a•) converges in Cp x L (S+). From

the usual gauge fixing theorem, for any sequence (Bi, ai), we can find a sequence gi

of gauge transformations, such that gi' B', still denoted by B', satisfy d*ai = 0, and

ailLP < C for some constant C. For convenience, we rewrite equation 3.4.2. here:

OBka +± a' a = 0,

d+aZ = FBk + r2c-lr(a, a), (3.6.2)

d*ai = 0.

Since d+ E d* has the usual elliptic regularity on C', ai has uniform CP bound, which

in turn, through the first equation, gives a uniform LP bound on a'.

To get the bound for higher derivatives, we use the argument in [10]:

a1 is a weak solution to the following second order equation:

-ABal1 + s1 + r-2c 1 a1
2 01 = 0.

4 4

From the above equation, we get for 1 < r < 2,

IA 1 /Aa L• c(II tBnal |IlL + 1 A ILr + II B 111 VBsal llL + 1 I B 1211 L),

From the Holder inequality



1111 B i Vo1 IIILr<I A IILHrI V1-tI ILq .

Thus II a' II L2 < C.

From Rellich theorem, L -- L 2 is compact, thus there eexistsa subsequence aC

converging in L2 .

Now the right hand side of the second equation (3.4.4) has a uniform Cf bound:

o-(OC, I1) has uniform L' bound for any s < 4, thus a uniform C' bound, and r 2c- 1 E

Cf for 1 > 2, thus from Holder inequality, the whole term is bounded in Cf. From

Lemma 3.2.3, a' has a uniform bound in Cp , and has a subsequence converging in Cf.

Remark: Notice that due to the identification theorem in the previous section,

the compactness argument here also proves the compactness for the moduli space of

the effective divisors 9'.
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