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Abstract

This dissertation consists of three essays in empirical labor and health economics.
The first chapter examines how the amount of time devoted to a leisure activity

varies in response to temporary changes in the price of that activity. Specifically, I
estimate the effect of changes in expected winnings in an online poker game on the
probability that players quit playing. I find that expected winnings have a large negative
effect on the probability that a player quits playing poker. A one dollar increase in
expected winnings decreases the probability that a player quits playing altogether by 0.5
percentage points, compared to the mean of 1.1 percentage points. This corresponds to a
price elasticity of demand for poker of -0.14.

The second chapter develops and tests a model of how college students choose
their field of study. The model combines features from learning and human capital
models and captures several stylized facts from the empirical literature on choice of
college major. I test the model's predictions using High School and Beyond data. I find
three results that generally agree with the model's predictions. First, students with higher
levels of ability choose majors with higher average earnings. Second, students who
receive low grades in college are more likely to change their field of study. Third,
students who switch majors in college subsequently earn less than students who do not
change majors, but this difference is primarily due to major-switchers obtaining degrees
in low-paying fields.

The third chapter, coauthored with Abhijit Banerjee, Esther Duflo and Gilles
Postel-Vinay, provides estimates of the long-term effects on height and health of a large
income shock experienced in early childhood. Phylloxera, an insect that attacks the roots
of grape vines, destroyed 40% of French vineyards between 1863 and 1890, causing
major income losses among wine growing families. We exploit the regional variation in
the timing of this shock to identify its effects. We find that, at age 20, those born in
affected regions were about 1.8 millimeters shorter than others. This estimate implies
that children of wine-growing families born when the vines were affected in their regions
were 0.6 to 0.9 centimeters shorter than others by age 20. This is a significant effect
since average heights grew by only 2 centimeters in the entire 19th century.
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The Wages of Sin: Leisure Choices of Online Poker Players

Timothy M. Watts



Abstract

This paper examines how the amount of time devoted to a leisure activity varies in
response to temporary changes in the price of that activity. Specifically, I estimate the
effect of changes in expected winnings in an online poker game on the probability that
players quit playing. I estimate this effect with data on over 300,000 hands of online
poker, using a measure of opponent skill as an instrument for expected winnings. I find
that expected winnings have a large negative effect on the probability that a player quits
playing at his current table. A one dollar increase in expected winnings decreases the
probability of leaving the current table by 0.9 percentage points, compared to the mean
probability of 2.4 percentage points. After players leave one table, they can start playing
at another one immediately, so substitution between poker tables rather than between
poker and other activities accounts for some of the effect of expected winnings. Even so,
expected winnings affects the total amount of poker played. A one dollar increase in
expected winnings decreases the probability that a player quits playing altogether by 0.5
percentage points, compared to the mean of 1.1 percentage points. This corresponds to a
price elasticity of demand for poker of -0.14. The results indicate that poker players
respond to changes in the price of poker by playing more when the price of poker is low.



I. Introduction

People devote a large portion of their time to leisure activities. Aguiar and Hurst (2006)

report that Americans spend 36 hours a week in leisure activities compared to 51 hours in

market and nonmarket work. In theory, changes in the prices of leisure activities should

affect the consumption of leisure activities in the same way that changes in wages affect

labor supply. Yet while an extensive literature estimates the relationship between wages

and labor supply, few papers estimate the relationship between the price and consumption

of leisure.

This chapter examines how temporary changes in the price of a leisure activity

affect the amount of time devoted to that activity. Specifically, I estimate the effect of

changes in expected poker winnings on the probability that players quit playing. Because

poker players lose money on average, expected winnings will typically be negative and

can be considered the price of poker. Expected winnings affect the amount of poker

played through two channels. First, an increase in expected winnings makes poker less

expensive compared to other activities, which causes players to allocate more time to

poker. Second, an increase in expected winnings increases expected wealth, but whether

this increases or decreases the amount of poker played depends on the player's utility

function.

To develop these ideas, I model the poker-playing decision as the solution to a

dynamic income- and time-allocation problem. Within a period, players allocate income

between consumption and poker and allocate time between poker and some costless

leisure activity. The model shows that, as long as wealth effects are small, an increase in

expected winnings decreases the likelihood that a player quits playing poker.



I test this prediction using data on over 300,000 hands of online poker. From this

data I construct records of poker sessions, which are groups of hands played by a single

player at the same table and seat without long gaps between consecutive hands. The

sample yields over 55,000 sessions played by more than 4,500 players. With this data I

estimate the relationship between expected winnings and quitting. Expected winnings are

unobserved, so I use actual winnings as a proxy. A regression of an indicator variable for

the last hand of a session on actual winnings suggests that actual winnings and, by

implication, expected winnings have a very small negative effect on the probability of

ending a session. These estimates are biased towards zero, however, since actual

winnings are a noisy measure of expected winnings.

To correct the attenuation bias, I use a measure of opponent skill as an

instrumental variable for expected winnings. The measure of opponent skill is

observable by players, and anecdotal evidence suggests players pay attention to this

information. While players can choose the opponents they face at the beginning of the

session, within-session opponent turnover creates exogenous variation in opponent skill.

I use this within-session variation in opponent skill to identify the effect of expected

winnings.

The instrumental variable estimates suggest that expected winnings have a strong

negative effect on the probability of ending a session, which occurs when a player stops

playing poker at his current table. A one dollar increase in expected winnings decreases

the probability of ending a session by 0.9 percentage points, which is large compared to

the mean probability of 2.4 percent. Part of the effect of expected winnings on session

length is due to players switching between poker tables rather than players switching



between poker and some other activity. Yet further investigation reveals that expected

winnings affect the total amount of poker played as well. A one dollar increase in

expected winnings reduces the probability that a player quits playing poker altogether by

0.5 percentage points. From this estimate, I calculate that the price elasticity of poker

consumption is -0.14. Together these results show that poker players respond to changes

in the price of poker by playing more when the price of poker is low.

Two recent papers find that people take less leisure when the weather is bad.

Neidell (2006) finds that participation in certain outdoor leisure activities in Southern

California decreases on days with smog alerts. Connolly (2006) finds that men spend

more time at work and less time on leisure on rainy days. Since bad weather likely

reduces the marginal utility of leisure, these results suggest a positive relationship

between the marginal utility of leisure and the amount of leisure consumed. But without

further research on the willingness to pay to avoid bad weather, these results cannot be

interpreted in monetary terms. This paper builds on the literature by examining the

response of leisure time to the price of a leisure activity. My estimates of the effect of

expected winnings on the probability of ending a poker session translate directly into a

price elasticity of poker. Thus the leisure demand response I estimate may be directly

compared with estimates of labor supply elasticity.

This paper is also methodologically and theoretically related to several recent

studies on labor supply, which use high frequency data from markets in which the

workers have flexible hours and variable wages. Several of these papers examine the

labor supply of taxi drivers. Camerer et al. (1997) and Chou (2000) find that taxi drivers

work fewer hours on days with higher average wages. The authors suggest that this



evidence supports the target-earner model of labor supply, in which workers stop

working once they have reached some target level of income. Farber (2005), however,

estimates a survival time model of taxi driver labor supply and finds that daily income

does not predict the probability that a driver stops working. Other recent studies find that

bicycle messengers work more days when wages are high (Fehr and Gbtte, 2005) and that

stadium vendors are more likely to work at games that have high expected wages

(Oettinger, 1999). My paper contributes to this literature by using a similar strategy to

estimate the price elasticity of demand for leisure.

The paper is also related to a large empirical literature on gambling. One main

strand of the gambling literature tests the efficiency of various wagering markets (see

Sauer, 1998, for a survey). Although studies find some persistent deviations from

efficient pricing, the main result is that wagering markets are approximately efficient. A

second focus of the literature is the demand for lottery tickets (see e.g. Guryan and

Kearney, 2005; Kearney, 2006; and Clotfelter and Cook, 1993). In contrast to much of

the empirical gambling literature, which uses data on aggregate variables, this paper uses

individual-level data. My paper contributes to the empirical gambling literature by

offering evidence that one aspect of gambling behavior is consistent with utility

maximization.

II. Background on Poker

Poker has surged in popularity in the past three years. The World Series of Poker, an

annual poker tournament with a $10,000 entry fee, provides a striking illustration.

Between 2003 and 2006, the number of World Series entrants increased tenfold - from

839 to 8,773. The online poker industry has also grown rapidly. The first online poker



site opened in 1998. Today hundreds of poker sites cater to millions of players and the

earnings and volume of online poker exceed that of brick and mortar establishments .

Online card rooms offer several varieties of poker. This paper focuses on one

particular poker variant called fixed-limit Texas hold'em. Like all poker games, fixed-

limit Texas hold'em is a strategic game of imperfect information. Players vie against one

another to win the money in the pot, which contains the wagers made by the players in

the course of a game. A single game of fixed-limit Texas hold'em, called a hand,

consists of two to ten players and up to four rounds of betting. Before the first round of

betting each player receives two cards facedown and two players must make forced bets.

Play proceeds clockwise around the table beginning with the player to the left of the

forced bets. To continue playing, players must either match or exceed whatever bets

have been made in the current round. In fixed-limit Texas hold'em poker, players may

only bet a predetermined amount of money. If a player does not match a previous bet, he

gives up his cards and forfeits the hand.

At the end of the first, second, and third betting rounds, additional cards are dealt

face up in the middle of the table. A hand ends when a player makes a bet that no other

player matches or at the end of the fourth betting round. If a player makes a bet that no

one matches, or if he makes the best poker hand at the end of the final betting round, he

wins all the bets.

III. A Model of Demand for Poker

Online poker rooms operate continuously, and they increase the number of virtual poker

tables to accommodate new players. Thus a player may join an online poker game at any

Online poker sites earned S3 billion in 2005 (Xanthopoulos, 2006), compared to $1.2 billion for card
rooms and casino poker (AGA, 2006). This suggests that most poker hands take place online, since online
poker sites typically earn less money per hand than card rooms.



time and, once he has joined, he may play as much or as little poker as he likes. The end

of each hand provides the player with an opportunity to decide whether to continue

playing by comparing the costs and benefits of one more hand of poker. Thus a complete

model of the demand for poker would relate a player's decision after each hand to

variables such as how long he has been playing and how much he expects to win or lose

in the next hand. Because expected winnings may predictably rise and fall over the

course of many hands, the solution to the full model is difficult to characterize. I follow

the approach of Farber (2005) and develop a simpler model whose solution gives a

reasonable approximation to the more complicated optimal stopping problem.

A. Assumptions

Each period the player derives utility from the consumption of goods, C,, and time spent

playing poker, H,. On average, the player loses money at poker, so he allocates wealth

between goods and poker. The player divides his time between poker and some other

costless leisure activity2. The player's utility function is additively separable between

periods and is defined for period t as

T

(1) U, = E[U(C,,H,)].
S=1

The period utility function is twice differentiable and strictly concave. Another important

assumption is that poker winnings do not affect the marginal period utility of poker.

The player has initial assets Ao and accumulates assets according to:

(2) A,+I = A, + w,H, - C,.

2 Adding a work activity to the model results in the same predictions, but I omit work since I have no data
on the (non-poker) labor supply and wages of the players in my sample.



w, is winnings, which is the average amount of money won per unit of time spent playing

poker in period t. In words, the player's assets in the next period depend on assets at the

beginning of the current period, the amount of won or lost playing poker and expenditure

on consumption goods. During a period, the player plays poker against a fixed set of

opponents. At the beginning of period t, the player observes the skill of his opponents

without error and correctly forecasts w, from this information3. The set of opponents

varies between periods, and future values of w are uncertain. Since wt is on average

negative, -w, can be thought of as the price of poker, because it represents the amount of

consumption a player must forgo to play one unit of poker.

B. The Player's Maximization Problem

Each period the player chooses C, and H, to maximize the value function

(3) V(A,, t) = (U(C,, H,)+ E[V(A,l , t + 1)]),

subject to the asset accumulation rule (2). The optimal choice of consumption satisfies

(4) Uc (C,,H,)= 2, - V/ A,,

which means the marginal utility of consumption equals the marginal utility of wealth.

The optimal choice of poker satisfies

(5) U(C,,H,) / A, Ž (-w,),

which means the ratio between the marginal utililty of poker and marginal utility of

wealth is greater than or equal to ratio between the price of poker and the price of

consumption (which has been normalized to one). Finally, the allocation of wealth across

periods is determined by

3 In the model, the player knows the winnings per poker unit with certainty. This differs from reality since
players do not know the winnings from any hand of poker in advance. The assumption may be justified,
however, if players play enough hands in each period that the variance in actual per hand winnings is
arbitrarily small.



(6) 2, = E,[A,+,],

which means the marginal utility of wealth in the current period equals the expected

marginal utility of wealth in the next period. The terminal condition

(7) AT+, =0

completes the characterization of the player's solution.

C. Theoretical Predictions

Equation (5) implicitly defines H, as a function of C,, w, and 2,. Let h, denote a single

hand of poker in period t, and let h, denote the final hand of poker in period t. The

probability that a player quits playing poker after a given hand can be written as

(8) p,, = Pr[h, = h, I w,, H,] = D(- U(C,,H,)/A, -w,),

where Ht is the amount of poker played so far in the period and I(.) is a monotonic

increasing function. Equation (8) makes two predictions.

First, each hand of poker played increases the probability of stopping. This

follows from the assumption that UHH < 0.

Second, an increase in winnings typically decreases the probability of stopping.

Winnings influence p through a substitution effect and a wealth effect. The substitution

effect is unambiguously negative. The sign of the wealth effect depends on the sign of

Un. As long as UH is positive, then the wealth effect of an increase in winnings is

negative and reinforces the substitution effect. But if UH is negative, the wealth effect

offsets the substitution effect. In either case, as long as winnings are small compared to

total wealth, the wealth effect should also be small.

IV. Empirical Strategy

A. Estimating Equations



The theory suggests that an increase in expected winnings decreases the probability that a

player stops playing poker. I test this prediction empirically by comparing the quitting

behavior of poker players across hands with different expected winnings. The unit of

observation is a player-hand, and each player-hand belongs to a player-session. If I

define D(.) from equation (8) as D(x) = x the model

(9) Mh,,i = a,, + l Wht,i + 2hhti + P3 X,,, + -hti

gives a linear approximation of the relationship between the probability of quitting and

control variables. The dependent variable Mhti is an indicator variable that equals one if

hand h is the final hand of session t for player i. ati is a session fixed effect, whti is the

expected winnings in dollars for the next hand, Xh,, is a vector of effects for the number of

players in the hand and ch,, is the error term. The coefficient flI measures the change in

probability of quitting caused when expected winnings for the next hand increase by one

dollar. With session effects included, within-session variation in expected winnings

identifies fi-.

The econometric model can be viewed as a reduced-form linearization of equation

(8). The probability of quitting should be negatively related to expected winnings and

positively related to the number of hands played. Thus the theoretical prediction is that

,f < 0 and 82 > 0.

Since expected winnings are unobservable, fl cannot be estimated using equation

(9). I estimate instead

(10) M,,, = a,, + P6,ActualWinnings,,, + 2hh,ih + P3X,h,, + E,i,

where ActualWinningsh,i proxies for Whi. ActualWinningsh,i is defined as the net dollar

amount won by player i in hand h of session t. ActualWinningsh,, equals expected



winnings plus measurement error. Since the amount won in a given hand depends largely

on chance, the error term is large. Thus estimating (10) by ordinary least squares (OLS)

produces biased estimates. Specifically, A understates the magnitude of the effect of

expected winnings on the probability of quitting.

To correct for this attenuation bias, I estimate equation (10) by two stage least

squares (2SLS), using a measure of opponent skill as an instrumental variable for

expected winnings. The first stage relationship between actual winnings and opponent

skill is

(11) ActualWinnings,,, = 1,i + yvOpponentSkillh,i + y 2 hhti + y 3Xhti + Uht,,

where 6,i is a session fixed effect and uhti is the error term.

B. Threats to Validity

Whether estimating equation (10) by 2SLS produces consistent coefficients depends on

three conditions. First, my measure of opponent skill must be correlated with actual

winnings. Estimates of the first stage equation (11) in section VI show that this condition

is satisfied.

Second, opponent skill must be uncorrelated with the error term of equation (10).

If opponent skill instead affects the probability of quitting through an omitted variable,

the 2SLS estimates will be inconsistent. Two possible concerns are that opponent skill is

correlated with player-specific characteristics or the marginal utility of poker, both of

which affect the probability of quitting. For example, players who like to play long

sessions of poker may also select tables with worse opponents. But including session

effects addresses this concern because they control for fixed player characteristics. A

greater concern is that players may enjoy playing poker against certain types of



opponents. If players enjoy playing against unskilled opponents, the 2SLS estimates will

overstate the relationship between expected winnings and the probability of quitting. On

the other hand, players may enjoy the challenge of playing against skilled opponents,

which would bias the estimates in the opposite direction. Section VII investigates these

concerns further.

Third, opponent skill must be uncorrelated with the difference between expected

and actual winnings. Otherwise, the first-stage projections of opponent skill onto actual

winnings capture expected winnings plus measurement error, and the 2SLS estimates will

be biased toward zero. In the model, opponent skill is uncorrelated with the measurement

error by assumption since players form expected winnings conditional on opponent skill.

C. Measuring Opponent Skill

I use the poker statistic VP$IP to measure opponent skill. Voluntarily puts money in the

pot (VP$IP) is defined as the fraction of hands for which a player calls or places a bet in

the first round of betting, excluding any forced bets. The theoretical relationship between

VP$IP and win rates is clear. To maximize winnings, players should only put money in

the pot when they expect to win as much or more money in return4. The amount of

money a player expects to win depends in part on the probability that his cards will make

the best poker hand. If players consistently call bets with cards that have little chance of

making the best hand or consistently fold cards that have a strong chance of winning,

they will lose money. This suggests a nonmonotonic relationship between VP$IP and

skill, although in practice players are far more likely to play too many hands than too

few. Thus VP$IP is likely inversely related to skill.

4 This ignores any effects of the current hands on the play of future hands.



To construct my instrument, for each player-hand I calculate the VP$IP of each

opponent using all hands in my sample except for the hands that are part of the same

player-session. For example, if player A plays a session that last for 40 hands, the VP$IP

for all of player A's opponents will be calculated excluding the 40 hands from that

session5. This method prevents mechanical correlation between the opponents' VP$IPs

and a player's actual winnings. The opponents' VP$lPs are then averaged. The resulting

measure, called opponent VP$lP, remains constant throughout a player-session unless the

composition of opponents changes.

V. Data

To estimate equation (10), I collected data from detailed poker hand records from an

online card room. All hands in the sample are fixed-limit Texas hold'em at $60 stakes

and took place between January 9th and 26 th, 2006. The sample contains 320,009 hands

with an average of 7.4 players per hand. Each hand's record contains its time, date and

table number as well as the usernames, betting actions and net winnings of each player

involved. Each player is identified by a unique username, which allows me to track a

player's behavior over many hands6 .

A. Player Statistics

Panel A of table 1 shows descriptive statistics for players. The sample contains 4,586

players. Players play, on average, 12 sessions, 519 hands and 391 minutes of poker in the

sample. There is substantial variation in these measures, and the mean is greater than the

5 Some player-sessions contain every hand of an opponent with few hands in the sample. In this situations,
no VP$1P is calculated for that opponent and mean VP$IP is the average of the remaining opponents'
VP$1Ps. A small number of player-hands are excluded from the analysis because no opponent's VP$IP can
be calculated.
6 Players may change their usernames once every six months, so a small portion of players in my sample
could have two usernames. If a player abandons a username, no other player may use it.



median for each one, which suggests a right-skewed distribution of poker consumption in

which a few players consume large amounts of poker.

Players lose an average of $148 in the sample at the rate of $571 per hour or $7.20

per hand. Again, there is substantial variation in losses. 39 percent of players have

positive winnings. The 25 th percentile of winnings per hand is $-12, the median is $-2,

and the 7 5th percentile is $3. The medians of total winnings and win rates exceed their

means, suggesting a left-skewed distribution of winnings where a few players lose much

more than the average amount.

The average player's VP$IP is 0.37, which means the average player risks money

voluntarily with 37 percent of hands. The standard deviation of player VP$IP is 0.14,

which suggests poker strategy differs widely between players.

B. Session Statistics

Each hand belongs to a session - defined as a series of hands played by a single player at

the same seat and table with a maximum gap of 30 minutes between consecutive hands.

Panel B shows descriptive statistics of sessions. The sample contains 55,983 player-

sessions. Sessions last on average for 43 hands or 32 minutes, and the standard deviation

of session length is 51 hands or 39 minutes. Between-player differences likely explain

some of the variation in session length. Among players with at least two sessions,

however, the average within-player standard deviation of session length is 34 hands or 26

minutes. This within-player dispersion in session length could result from short-term

variation in expected winnings. Players lose $12.15 in an average session.

C. Player-hand Statistics



The sample contains 2.38 million player-hands, which is the unit of observation for the

econometric model. Panel C shows summary statistics for the variables used in the

regressions. The sample average of the primary dependent variable, a dummy for the last

hand of a session, is 0.024, which means the unconditional hazard of ending a session is

2.4 percent. Players lose $0.30 in an average player-hand7 . The mean value of opponent

VP$IP, the instrumental variable for expected winnings, is 0.28 with a standard deviation

of 0.05.

VI. Empirical Results

A. Relationship between Expected Winnings and the Probability of Quitting

I estimate the relationship between the probability of ending a poker session and expected

winnings, using opponent skill as an instrument for expected winnings. The data suggest

a predominantly negative relationship between a player's VP$IP and his own winnings.

Figure 1 shows the results of a kernel regression of a player's winnings per hand on his

VP$IP. Winnings initially increase in VP$lP and then trend steadily downward. The

maximum predicted winnings occur when VP$IP equals 0.16, but most players in the

sample exceed this VP$IP: the median VP$IP is 0.34, the 2 5 th percentile is 0.24 and the

7 th percentile is 0.16. Thus the typical player's expected winnings should decrease in his

own VP$IP and increase in the VP$IP of his opponents.

Column 1 of table 2 shows the first-stage relationship between opponent VP$1P

and actual winnings. As expected, players win more against opponents with higher

VP$IPs. A one percentage point increase in opponent VP$IP causes a $0.21 increase in

actual winnings. The t-statistic of this estimate is 8.2. Because there may be serial

7 This number is negative because the card room generates revenue by collecting a portion of the money
wagered in each hand. Per hand winnings are greater when averaged across player-hands than when
averaged across players because a player's total hands are positively correlated to his per hand winnings.



correlation in opponent VP$IP, standard errors allow for clustering within a player-

session. The regression includes session fixed effects, the number of hands played so far

in the session, and a set of dummies for the number of players that participated in the

hand.

Column 2 of table 2 shows the OLS relationship between the probability of

quitting and actual winnings, which proxy for expected winnings. The coefficient on net

dollars won is -0.0021, which corresponds to the percentage point change in the

probability of quitting for a $1 increase in net winnings. Taken at face value, this result

suggests that expected winnings have a small negative effect on the probability of

quitting. Yet the actual amount won in a hand contains expected winnings plus noise, so

the OLS estimate will be biased towards zero. The inclusion of session effects

exacerbates this bias since expected winnings are likely serially correlated within a

session. One way to reduce the attenuation bias is to use a proxy with less noise, such as

the average of actual winnings over several hands. Column 3 shows the OLS estimate

using cumulative session winnings per hand as a proxy. The coefficient on actual

winnings is -0.0024, which is still small and not significantly different from the estimate

of column 2.

Column 4 shows the reduced-form relationship between the probability of quitting

and opponent VP$IP. The results suggest that players play longer against less skilled

opponents: a one percentage point increase in opponent VP$IP decreases the probability

of quitting by 0.19 percentage points. Column 5 shows the 2SLS estimate of the

relationship between the probability of quitting and expected winnings. Because

opponent VP$IP should be uncorrelated with the difference between actual and expected



winnings, using it as an instrument for expected winnings should correct for the

attenuation bias of columns 2 and 3. Players quit playing less often when expected

winnings are high. Increasing expected winnings by one dollar decreases the probability

of quitting by 0.9 percentage points. This is a large effect compared to the mean

probability of quitting of 2.4 percent. The 2SLS estimate is several orders of magnitude

larger than the OLS estimate, which suggests the attenuation bias of OLS is severe. This

is no surprise since the actual amount won in a given hand depends on many random

variables besides expected winnings, such as a player's cards and the cards of each of his

opponents.

As predicted by the model, the probability of quitting is negatively related to

expected winnings and positively related to the number of hands played. This implies

that the length of a poker session is also negatively related to expected winnings. To

quantify this relationship, I calculate the elasticity of session length with respect to

expected winnings using the coefficients in table 2. Since the coefficient on hands played

is small, and the typical session consists of only 43 hands, a constant hazard function

should allow a reasonable approximation of expected session length. Define the constant

hazard function as

(12) A(h)= C + w,

where the constant C is defined as the difference between the sample mean probability of

quitting and the product of p, and the sample mean of actual winnings. 2(h) gives the

probability of quitting for a given value of expected winnings, holding other variables

fixed at their sample means.



For a constant hazard, the reciprocal of the hazard gives the expected duration

until failure. The elasticity of the expected number of hands remaining in the session

with respect to expected winnings is

(13) r = -,w/(C + /w).

Using the sample mean value of per hand winnings of $-0.30 for w, the OLS estimates

from column 2 correspond to an elasticity of -0.003 while the 2SLS estimates from

column 4 correspond to an elasticity of-0.113. Because mean winnings are negative,

these should be interpreted as price elasticities of poker consumption8 .

B. Switching Tables versus Logging Off

The results of tables 2 support the hypothesis that a decrease in expected winnings

increases the likelihood that a player quits his current session. After a player quits one

session, however, he may immediately begin another at a different table. In fact, the

results would be consistent with players who play the same amount of poker every day,

but switch to a new table when expected winnings fall at the current table. To test

whether expected winnings affect the total amount of poker played rather than just

inducing players to switch tables, I regress an indicator variable for logging off on

winnings and other controls. The indicator equals one if the hand is the last of a session

and the player's next in-sample session does not begin for at least 15 minutes.

Table 3 shows the relationship between expected winnings and the probability of

logging off. Column 1 shows the OLS estimates. A one dollar increase in actual

winnings decreases the probability of logging off by 0.0016 percentage points. Column 2

shows the 2SLS estimates. A one dollar increase in expected winnings decreases the

8 For ease of presentation, the coefficients in the relevant columns in table 2 are reported as percentage
point effects. They must be divided by 100 to perform the calculations of equations (12) and (13).



probability of logging off by 0.47 percentage points. These estimates suggest that

substitution between tables accounts for half of the effect of expected winnings on the

probability of quitting a poker session.

Since at any time my sample contains a maximum of ten tables while the online

card room operates up to 25 tables of the same poker type and stakes, I overestimate the

number of players who log off. Multiplying the coefficients in columns 1 and 2 by 0.4

gives a conservative correction for the overestimation of the dependent variable. The

resulting OLS and 2SLS estimates are 0.0006 and 0.20. This correction is not perfect,

however, since the number of active tables varies during the sample. Unfortunately, the

data do not give the number of tables active at a given time.

One way to work around this problem is to use only data from times when my

sample contains all active tables. Because my data-collection software automatically

collected records from up to ten tables, I know that my sample contains all active tables

for periods that contain data from nine or fewer tables. Columns 3 and 4 of table 3

restrict the sample to periods in which there were nine or fewer active tables for at least

30 minutes. A one dollar increase in actual winnings decreases the probability of logging

off by 0.0018 percentage points and a one dollar increase in expected winnings decreases

the probability of logging off by 0.54 percentage points.

Hands in the restricted sample take place during off-peak hours, such as early

mornings on weekdays. If players playing at those times have relatively inelastic demand

for poker, the results of column 4 would not provide a good estimate of typical behavior.

To check the amount of difference between the full and restricted sample, I estimate the

relationship between expected winnings and the probability of ending a session using the



restricted sample. Columns 5 and 6 report the results. Increasing expected winnings by

one dollar decreases the probability of ending a session by one percentage point. The

similarity between this estimate and the full-sample estimate suggest that players in the

restricted sample behave like the typical player.

The estimates from the restricted sample suggest that substitution between poker

tables accounts for half of the effect of expected winnings on the probability of ending a

session. They also show, though, that changes in expected winnings affect the total

amount of time devoted to poker. Repeating the elasticity calculation from the previous

subsection using the estimates from column 4 yields an elasticity of total hands of poker

played in a period with respect to expected winnings of -0.136. This is slightly larger

than the elasticity calculated in the previous section, which seems puzzling since the

effect of expected winnings on the probability of logging off is smaller than the effect on

ending a session. But the mean probability of logging off (1.2 percent) is lower than the

mean probability of ending a session (2.4 percent) and the effect of expected winnings

varies in proportion to the means. The similarity of session-length and period-length

elasticities suggests that the total amount of poker played in a given day is proportional to

session length.

C. Estimating Effects by Experience Level

If players gradually learn how to solve the optimization problem of section III, the effect

of expected winnings on the probability of quitting may increase in player experience.

Other studies have found that people's behavior differs by their level of experience.

Camerer et al. (1997) find that, in two of three samples, high-experience drivers have

significantly higher wage elasticities than low-experience drivers. List finds that more



experienced market participants bargain better (2004) and are less likely to display the

endowment effect (2003).

I divide players into experience groups based on a simple criterion: a player's

experience is high if I ever observe him playing at two or more tables simultaneously9.

Playing at multiple tables requires more effort and concentration and faster decision

making than playing at one table. Relatively inexperienced players may find playing at a

single table taxing, especially since online play proceeds much faster than live play.

Even seasoned players who could handle multiple tables may prefer to play one table

since this frees them to perform other tasks at the same time. On the other hand,

experienced players and winning players will be more attracted to multi-table play, since

they can more easily manage additional tables and playing extra tables will increase their

expected hourly winnings.

Table 4 shows summary statistics for high- and low-experience players. Slightly

more than one quarter of players are classified as high experience, but because they play

nearly 9 times as many hands, sessions and minutes as low-experience players, they

account for three quarters of player-hand observations. High-experience players are also

more successful. They lose on average only $0.19 per hand compared with a $9.79 per

hand loss of low-experience players. High-experience players also use different

strategies - their VP$IP is 0.28 compared to 0.40 for low-experience players. In short,

high-experience players play much more poker and lose far less than low-experience

players.

9 The data do not contain such natural measures of experience such as the length of time since the player
joined the card room or the total number of hands the player has played on the cardroom. My criterion for
experience captures a mix of characteristics including skill and effort.



Table 5 shows the results when the regressions from tables 2 and 3 are run

separately for players of high and low experience. Column 1 shows the first-stage

relationship between opponent VP$IP and dollars won in the current hand. A one

percentage point increase in opponent VP$IP increases winnings by $0.43 for

inexperienced players and $0.13 for experienced players. Columns 2 and 3 report the

estimates for the probability of quitting. Column 2 shows the OLS estimates. A one

dollar increase in actual winnings decreases the probability of quitting by 0.004

percentage points for inexperienced players and by 0.001 percentage points for

experienced players. Column 3 shows the 2SLS estimates. A one dollar increase in

expected winnings decreases the probability of quitting by 0.43 percentage points for

inexperienced players and by 1.42 percentage points for experienced players.

Columns 4 and 5 report the estimates for the probability of logging off. Column 4

shows the OLS estimates. A one dollar increase in actual winnings decreases the

probability of logging off by 0.0035 percentage points for inexperienced players and by

0.0007 percentage points for experienced players. Column 5 shows the 2SLS estimates.

A one dollar increase in expected winnings decreases the probability of logging off by

0.36 percentage points for inexperienced players and by 0.59 percentage points for

experienced players.

Table 5 reveals three interesting differences between inexperienced and

experienced players. First, the first-stage effect of opponent VP$IP on actual winnings is

three times larger for inexperienced player compared to experienced players. One

plausible explanation is that inexperienced players use the same strategy against all

opponents while experienced players use different strategies against different opponents.



Second, expected winnings have a bigger effect on both the probability of ending

a session and the probability of logging off for experienced players. This supports the

idea that experienced players' demand for poker responds more strongly to changes in

expected winnings. Either a higher elasticity of demand or the ability to more accurately

estimate expected winnings or a combination of both could explain why the demand

response is greater for experienced players.

Third, substitution between tables (as a proportion of the overall response to

changes in expected winnings) is greater for experienced players. Substitution between

tables accounts for 60 percent of experienced players' response to expected winnings but

only 20 percent of inexperienced players' response. By switching tables relatively more

often compared to inexperienced players, experienced players may be able to play against

lower skilled opponents on average, which could partially explain why their win rates are

higher.

D. Learning

The model of section III assumes that players observe their opponents' skill levels

without error. If players instead gradually learn their opponents' skill, the econometric

model of section IV is misspecified. In a learning model, the player updates his beliefs

about his opponents' skill each hand based on his prior belief and a signal of skill. The

updated belief is a weighted average of the prior and the new signal, and the weight

assigned to the prior increases with the total number of signals observed. Thus, late

signals shift the belief on average by less than early signals.



Specifically, a learning model implies that the effect of expected winnings

decreases in magnitude as the history of signals becomes longer. I test for learning

effects by estimating

Mhi = at + fllActualWinningsh, i + f 2hh,, + / 3hh,i x ActualWinningshti(14)
+ 3 Xhti + Ehti '

As in equation (10), hhti is the number of hands played so far in session t. In the

estimation of equation (14), OpponentSkillh, i and hhi x OpponentSkillh,, serve as

instruments for the variables ActualWinningshli and h,,, x ActualWinnings,,,. The

theoretical prediction of a learning model is that the negative effect of expected winnings

should become weaker as a player learns more about his opponents, hence /1 < 0

and/ 3 > 0.

Table 6 shows the results for equation (14). Column 1 shows the OLS results.

The main effect on dollars won is -0.002 and the effect between the interaction of dollars

won and hundreds of hands played is 0.0004. Both effects are significantly different than

zero. Column 2 shows the 2SLS results. The main effect on dollars won is -1.16 and the

interaction effect is 0.67. While this pattern of coefficients is consistent with learning,

the interaction effect is imprecisely estimated and is not statistically significant from

zero. The no-learning model of section III cannot be rejected.

VII. Robustness Tests

A. Checking the Validity of the Instrument

For the results of the previous section to measure the effect of expected winnings on the

probability of quitting, opponent VP$IP must be a valid instrument for expected

winnings. The instrument is constructed by taking the average of each opponent's



VP$IP, but mean opponent VP$IP might not be a sufficient statistic for expected

winnings. The first part of this section addresses this concern by allowing more

flexibility in the first-stage relationship between opponent skill and actual winnings.

Section III.B mentioned another threat to validity: VP$IP may affect the probability of

quitting by changing the marginal utility of poker. The second part of this section

addresses this concern by using an instrumental variable other than VP$IP.

1. Testing the Functional Form

Equation (11) specifies that actual winnings depend on mean opponent VP$IP and other

controls. Since the instrument is constructed as the mean of several opponents' VP$IPs, I

could instead use the individual VP$IP of each opponent as instruments. Such a

specification could include the VP$IP of up to nine opponents, although this would limit

the sample to games involving ten players. To keep a reasonably large sample size, I

include the VP$IP of five opponents. That is, I estimate equation (10) by 2SLS using the

first stage equation

ActualWinnings,,,, = 56, + y1OpponentVP$IP, +... + y5OpponentVP$IP 5
(15)

+ Y6hh,i + Y7Xhti + U hti,

where OpponentVP$IP1 is the VP$IP of the opponent to the player's immediate right, and

OpponentVP$1P 5 is the VP$IP of the fifth opponent to the player's right.

Table 7 shows the results. Column 1 shows the 2SLS, first-stage and reduced-

form results when mean opponent VP$IP is used as the instrument for the sample of

player-hands with at least five opponents. A one dollar increase in expected winnings

decreases the probability of quitting by 0.94 percentage points. Column 2 shows the

results when the VP$lPs of the five opponents to the player's right are used as

instruments. A one dollar increase in expected winnings decreases the probability of



quitting by 0.76 percentage points. The similarity of the estimates suggests that the

effects estimated in early sections are not artifacts of the instrumental variable's

functional form.

Since column 2 uses multiple instruments, I can check the specification by testing

the overidentifying restrictions. The null hypothesis is that none of the instruments is

correlated with the error term, and the test statistic is distributed chi-squared (n - 1),

where n is the number of instruments'0 . The overidentification test statistic and its

associated p-value are reported at the bottom of columns 2. The test suggests that the

individual opponents' VP$IPs meet the requirements for a valid instrument outlined in

section IV.

2. Using an Alternative Instrument

The overidentification test of table 7 might overlook correlation between individual

opponents' VP$1Ps and an omitted variable, however, because each opponent's VP$IP

likely affects the same variables. To conduct a stronger test of VP$IP's validity as an

instrument, I estimate the relationship between quitting and expected winnings using a

different instrumental variable. Table 3 shows that high-experience players differ on

many characteristics from low-experience players. High-experience players seem to be

more skilled since they lose significantly fewer dollars per hand. Conditional on VP$IP,

it may be difficult for players to distinguish between high- and low-experience

opponents, so experience should be unlikely to affect the marginal utility of poker. The

dummy Experience equals one for high-experience players. I define

OpponentExperience to be the mean of Experience of a player's opponents. I then

'o The reported test statistic is the Hansen-Sargan statistic, which measures the correlation between the
instrumental variables and the residuals from the second stage.



estimate equation (10) using opponent experience as an instrument for expected

winnings.

Table 8 reports the 2SLS, first-stage and reduced-form results. Column 1 reports

the results when opponent VP$IP is omitted. A one dollar increase in expected winnings

decreases the probability of quitting by 0.66 percentage points. Column 2 reports the

results when the VP$IPs of five opponents are included as instruments in addition to

opponent experience. A one dollar increase in expected winnings decreases the

probability of quitting by 0.73 percentage points. Column 2 also reports the

overidentification test statistic, which has a p-value of 0.16. These results suggest that

that the results in section VI stem from variation in expected winnings and not in some

omitted variable.

B. Checking the Functional Form of the Econometric Model

The main econometric model, equation (10), specifies that the probability of quitting

follows a linear probability model. If instead some nonlinear function relates the

regressors to the probability of quitting, the results from section VI could be misleading.

This section estimates two nonlinear models: a probit model and a proportional hazards

model.

1. Probit Results

Defining D(.) from equation (8) as the standard normal cumulative distribution function

implies the following probit model:

(16) Pr[Mh, = 1] = ] (a + f, ActualWinnings,,, + 8J2 h,,i + A X,,,h),

where D(.) is the standard normal cdf. The large number of sessions makes it impractical

to estimate session effects. I estimate equation (16) using standard probit techniques and



also using a probit instrumental variables estimator, with opponent skill as the instrument.

The probit IV technique is developed in Newey (1987).

Table 9 reports the probit results. The normalized probit estimate is

100* 8p -0(PX), where 0(.) is the standard normal density, which gives the marginal

percentage point effect of X on the probability of quitting, evaluated at the sample mean

of X. Column I shows the standard probit results. A one dollar increase in actual

winnings decreases the probability of quitting by 0.0025 percentage points. Column 2

shows the probit IV results. A one dollar increase in expected winnings decreases the

probability of quitting by 1.17 percentage points. For comparison, column 3 shows the

linear probability 2SLS results when session effects are omitted. A one dollar increase in

expected winnings decreases the probability of quitting by 1.41 percentage points. The

similarity of the probit and linear probability model results bolsters the evidence from

section VI.

2. Proportional Hazard Model Results

The linear probability and probit models specify that the regressors additively affect the

probability of quitting. I estimate an alternative model in which the regressors

multiplicitavely affect the probability of quitting:

(17) Pr[Mh,,, = 1] = A(hh,,) exp(JXh,,),

where •0(hhi) is an unspecified baseline hazard function and Xhti is a vector of control

variables". A change in one of the control variables affects the probability of quitting by

multiplying the baseline hazard.

" An "on the job" search model of poker, in which the poker player's outside option varies over time and
the player stops playing when the outside option exceeds a certain threshold, could provide theoretical
justification for a proportional hazard model. See section 4.3 of Van Den Berg (2001).



Table 10 reports the proportional hazard results. The reported estimates are

hazard ratios, which give the multiplicative effect on the baseline probability of quitting

of a one unit change in the control variable. The hazard ratio equals exp(/i). Column 1

shows the results using actual winnings and a set of dummies for number of players as

controls. A one dollar increase in actual winnings multiplies the baseline hazard by

0.999. For a baseline hazard of 2.4 percent (the sample average), this implies a 0.0024

percentage point decrease in the probability of quitting. Column 2 shows the results

using opponent VP$IP*20 and number of player dummies as controls. A five percentage

point increase in opponent VP$IP multiplies the baseline hazard by 0.782. For a baseline

hazard of 2.4 percent, this implies a 0.52 percentage point decrease in the probability of

quitting. For comparison, column 4 of table 2 implies that a five percentage point

increase in opponent VP$IP decreases the probability of quitting by 0.95 percentage

points. Compared to the linear probability model, the proportional hazard model gives a

significantly smaller estimate of the reduced form relationship between opponent VP$1P

and the probability of quitting.

VIII. Conclusion

This paper finds that the skill of a poker player's opponents predicts the amount the

player will win. Players are more likely to quit playing poker against highly skilled

opponents and thus more likely to quit playing when expected winnings are low. Using

opponent skill as an instrumental variable for expected winnings, I estimate that a one

dollar increase in expected winnings decreases the probability of quitting by 0.9

percentage points. This is a large effect relative to the mean probability of quitting of 2.4

percent, and it corresponds to a price elasticity of session length (the number of hands



played at a given table) of -0.11. Substitution between poker tables, rather than between

poker and other activities, accounts for roughly half of this effect, but expected winnings

still affects the total amount of poker played. In fact, I calculate that the price elasticity

of the total amount of poker played is -0.14, which is similar to the session-length

elasticity.

The negative relationship between expected poker winnings and the amount of

poker played has several broader implications. First, it shows that people adjust their

leisure consumption in response to changes in the prices of leisure activities. Because

this paper does not measure the total amount of leisure consumed or the labor supply of

poker players, I cannot test whether changes in expected poker winnings change the total

amount of leisure consumed, and thus labor supply, or merely cause players to reallocate

time between poker and some other leisure activity, keeping total leisure constant. But

the results do suggest a path by which the price of leisure could affect labor supply,

which deserves further research.

Second, the results are consistent with rational poker players who realize the

tradeoff between poker and consumption. When poker becomes too expensive, they quit

playing. This contributes to the many studies finding that wagering markets predict

outcomes of sporting events well (Sauer 1998) and that demand for lottery tickets

increases in the expected value of lottery tickets (Kearny 2006). Together this evidence

suggests that standard economic models describe at least some aspects of gambling. My

paper also shows, however, that gambling behavior still presents many puzzles. The

players in the data set employ a wide range of strategies, some of which perform much



worse than others. Whether traditional economic models offer parsimonious and

plausible explanations for poor poker play remains an open question.
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TABLE 1
Descriptive Statistics

Mean Median Std Dev

(1) (2) (3)
Panel A: Player summary statistics (N=4,586)
Total sessions 12.2 3 28.1

Total hands played 519.3 130 1207.5

Minutes of playing time 390.7 93.6 920.7

Average session length 31.1 23.7 29.4

Total dollars won -148.3 -300 2593.7

Dollars won per hour of play -571.2 -173.4 2485.0

Dollars won per hand played -7.2 -2.1 29.7

VP$IP 0.37 0.34 0.17
Panel B: Session summary statistics (N=55,983)
Session length in hands 42.5 26 50.9

Session length in minutes 32.0 18.9 39.0

Total dollars won -12.15 -30 702.30

Panel C: Player-hand summary statistics (N=2,381,396)
Last hand 0.024 0 0.152

Dollars won -0.3 0 107.7

Opponent VP$IP 0.276 0.266 0.051

Number of players 8.1 9 1.9
at table

Cumulative hands 52.2 31 64.7
in current session

Cumulative dollars won 20.2 -30 747.6
in current session

Cumulative session 0.012 -1.243 36.130
dollars per hand



TABLE 2
Relationship between Probability of Quitting and Expected Winnings, Instrumented with Opponent VP$IP

Dependent Variables
Dollars Won in Last Hand of
Current Hand: Last Hand of Last Hand of Session: OLS Last Hand of

OLS (1st stage) Session: OLS Session: OLS (Reduced Form) Session: 2SLS

(1) (2) (3) (4) (5)
Opponent VP$IP 21.094 -19.01

(2.566) (.4616)
Dollars won in -0.0021 -0.9013

current hand (.0001) (.1106)
Dollars won up to -0.0024

current hand (.0004)
per hand

Hands played -0.0095 0.0275 0.0276 0.0259 0.0174
(.0018) (.0015) (.0015) (.0014) (.0022)

Observations 2,363,348 2,363,348 2,363,348 2,363,348 2,363,348

Number of player Yes Yes Yes Yes Yes
effects?

Session effects? Yes Yes Yes Yes Yes
Notes: Coefficients are predicted percentage point change in the probability that the current hand is the last hand of a
player-session. Robust standard errors in parentheses account for clustering at the session level.



TABLE 3
Relationship between Probability of Logging

Full Sample

Off and Expected Winnings

Restricted Sample

Logs Off:
OLS
(1)

Logs Off:
2SLS

(2)

Logs Off:
OLS
(3)

Logs Off:
2SLS

(4)

Last Hand
of Session:

OLS
(5)

Last Hand
of Session:

2SLS
(6)

Dollars won in -0.0016 -0.4729 -0.0018 -0.5434 -0.0020 -1.0268
current hand (.0001) (.0585) (.0003) (.1885) (.0005) (.3520)

Hands played 0.0151 0.0098 0.0284 0.0209 0.0400 0.0350
(.0008) (.0012) (.0046) (.0054) (.0070) (.0096)

Observations 2,363,348 2,363,348 120,726 120,726 120,726 120,726

Number of player Yes Yes Yes Yes Yes Yes
effect?

Session effects? Yes Yes Yes Yes Yes Yes
Notes: Coefficients are predicted percentage point change in the probability that the current hand is the last hand of a
player-session. Robust standard errors in parentheses account for clustering at the session level.



TABLE 4
Differences between High- and Low-Experience Players

Experience All High Low
(1) (2) (3)

Total dollars won -148 502 -383
(2594) (4258) (1554)

Total hands played 519 1495 168
(1207) (1998) (280)

Total sessions 12.2 34.4 4.2
(28.1) (47.2) (5.8)

Minutes of playing time 391 1124 126
(921) (1530) (216)

Average session length 31.1 34.2 29.9
(29.4) (21.2) (31.8)

Dollars won per hour -571 -16 -771
(2485) (521) (2855)

Dollars won per hand -7.25 -0.19 -9.79
(29.71) (6.06) (34.11)

VP$IP 0.37 0.28 0.40
(0.17) (0.10) (0.18)

Total players 4586 1215 3371
Notes: Players are classified as experienced if they are ever observed playing at
multiple tables simultaneously. Standard deviations in parentheses.



TABLE 5
Relationship between Probability of Quitting and Expected Winnings by Experience

Dependent Variables
Dollars Won in
Current Hand: Last Hand of Last Hand of
OLS (1st stage) Session: OLS Session: 2SLS Logs Off: OLS Logs Off: 2SLS

(1) (2) (3) (4) (5)
Panel A: Low-Experience Players
Opponent VP$IP 43.065

(5.814)
Dollars won in -0.0040 -0.4281 -0.0035 -0.3571

current hand (.0001) (.0579) (.0001) (.0488)
Hands played -0.0380 0.0333 0.0151 0.0289 0.0138

(.0055) (.0021) (.0031) (.0018) (.0026)

Observations 560,108 560,108 560,108 560,108 560,108

Number of player Yes Yes Yes Yes Yes
effects?

Session effects? Yes Yes Yes Yes Yes
Panel B: High-Experience Players
Opponent VP$IP 13.522

(2.838)
Dollars won in -0.0012 -1.4236 -0.0007 -0.5931

current hand (.0001) (.3008) (.0001) (.1261)
Hands played -0.0024 0.0261 0.0211 0.0117 0.0096

(.0018) (.0017) (.0030) (.0008) (.0013)

Observations 1,803,240 1,803,240 1,803,240 1,803,240 1,803,240

Number of player Yes Yes Yes Yes Yes
effects?

Session effects? Yes Yes Yes Yes Yes
Notes. Coefficients are predicted percentage point change in the probability that the current hand is the last hand of a player-

session. Robust standard errors in parentheses account for clustering at the session level.



TABLE 6
The Interaction between Expected Winnings and Hands Played

Dollars won in current hand

Hands played

Dollars won in current hand *
hundreds of hands played

Observations

Dependent Variables
Last Hand of Last Hand of
Session: OLS Session: 2SLS

(1) (2)
-0.0023 -1.1567
(.0001) (.1719)
0.0275 0.0270
(.0015) (.0071)
0.0004 0.6682
(.0001) (.4033)

2,363,348 2,363,348

Number of player Yes Yes
effects?

Session effects? Yes Yes
Notes: Coefficients are predicted percentage point change in the
probability that the current hand is the last hand of a player-session.
Robust standard errors in parentheses account for clustering at the
session level.



TABLE 7
Instrumenting for Expected Winnings

with VP$IPs of Several Opponents

(1) (2)
Panel A: 2SLS relationship between expected winnings

and quitting
Dollars won in current hand -0.937 -0.757

(.108) (.086)
Panel B: First stage
Mean opponent VP$IP 27.53

(3.15)
Opponent 1 VP$IP 3.16

(1.21)
Opponent 2 VP$IP 4.86

(1.08)
Opponent 3 VP$IP 5.75

(1.03)
Opponent 4 VP$IP 5.58

(.98)
Opponent 5 VP$IP 3.52

(.94)
Panel C: Reduced-form
Mean opponent VP$IP -25.80

(.54)
Opponent 1 VP$1IP -4.34

(.18)
Opponent 2 VP$IP -3.93

(.17)
Opponent 3 VP$IP -3.58

(.15)
Opponent 4 VP$IP -3.70

(.15)
Opponent 5 VP$IP -2.91

(.14)

Overidentification test statistic 6.09
p -value 0.19
Notes: N=2,068,544. All regressions control tor hands
played, number of player effects and session effects.
Coefficients are predicted percentage point change in the
probability that the current hand is the last hand of a player-
session. Robust standard errors in parentheses account for
clustering at the session level.



TABLE 8
Overidentification Test with Opponent Experience

(1) (2)
Panel A: 2SLS relationship between expected winnings

and quitting
Dollars won in current hand -0.660 -0.726

(.100) (.077)
Panel B: First stage
Mean opponent experience -5.62 -3.12

(.83) (.90)
Opponent 1 VP$IP 2.32

(1.24)
Opponent 2 VP$IP 4.03

(1.10)
Opponent 3 VP$IP 4.96

(1.05)
Opponent 4 VP$IP 4.86

(1.00)
Opponent 5 VP$IP 2.93

(.96)
Panel C: Reduced form
Mean opponent experience 3.71 1.54

(.14) (.15)
Opponent 1 VP$IP -3.93

(.18)
Opponent 2 VP$IP -3.52

(.17)
Opponent 3 VP$IP -3.19

(.15)
Opponent 4 VP$IP -3.34

(.15)
Opponent 5 VP$IP -2.62

(.14)

Overidentification test statistic 7.90
p -value 0.16
Notes: N=2,068,544. All regressions control for hands
played, number of player effects and session effects.
Coefficients are predicted percentage point change in the
probability that the current hand is the last hand of a player-
session. Robust standard errors in parentheses account for
clustering at the session level.



TABLE 9
Probit Estimates of the Relationship between Probability of

Quitting and Expected Winninngs

Dependent Variables
Last Hand Last Hand Last Hand
of Session: of Session: of Session:

Probit Probit IV LPM 2SLS

(1) (2) (3)
Dollars won in current hand -0.0025 -1.1703 -1.4128

(.0001) (.0239) (.2866)
Hands played -0.0062 -0.0074 -0.0062

(.0002) (.0002) (.0016)

Observations 2,363,348 2,363,348 2,363,348

Number of player effects? Yes Yes Yes
Notes: Probit estimates are normalized to reflect the marginal percentage
point effect at X* of X on the probability of quitting. The normalized probit

estimate is 100 x /8 x b(X * 83), where (-)) is the standard normal
density.



TABLE 10
Proportional Hazard Model of Ending Sessions

Hazard Ratios

(1) (2)
Dollars won in current hand 0.999

(.000)
Opponent VP$IP*20 0.782

(.004)

Observations 2,363,348 2,363,348

Number of player effects? Yes Yes
Notes: Estimates are hazard ratios, the exponetiated
coefficients from the proportional hazards model. Robust
standard errors in parentheses account for clusering at the
player-session level.
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Abstract

This paper develops and tests a model of how college students choose their field of study.
The model combines features from learning and human capital models and captures
several stylized facts from the empirical literature on choice of college major. I test the
model's predictions using High School and Beyond data. I find three results that
generally agree with the model's predictions. First, students with higher levels of ability
choose majors with higher average earnings. Second, students who receive low grades in
college are more likely to change their field of study. Third, students who switch majors
in college subsequently earn less than students who do not change majors, but this
difference is primarily due to major-switchers obtaining degrees in low-paying fields.



I. Introduction

In this chapter I develop a model that focuses on the role of learning and occupation-

specific human capital in the choice of college major. The model assumes that there are

two occupations with different returns to ability. Students have either high or low ability,

but do not know their ability with certainty. Based on their beliefs about their ability,

students choose an initial field of study for college. Studying a field in college generates

occupation-specific human capital that increases a student's potential earnings in that

field's associated occupation. Midway through college, students learn their ability

perfectly and may then switch their field of study. Upon the completion of college,

students enter the labor force and choose the occupation that gives them the higher

earnings.

The model is consistent with several well documented results and generates

several predictions about the pattern of major choice in college. The model predicts that

students with high expected ability begin their college studies in the field with higher

returns to ability; that the number of students who switch from the high ability field to the

low ability field exceeds the number of students who switch in the opposite direction; that

students who receive low grades in college are likely to switch their field of study; and

that students who switch their field of study earn less than those who do not.

I test these predictions using High School and Beyond data. I find that students

who have higher scores on a high-school test of cognitive ability plan to major in fields

with higher average earnings. I also find that students who receive low grades in college

are more likely to change their major field of study. Finally, I find that students who

switch majors in college earn less than students who do not, although this result is



explained by differences in the distribution of major choices for switchers and non

switchers. On the whole, these results support the model.

II. Evidence on Field of Study in College

Prior research on the choice of majors in college documents several robust empirical

findings. First, average earnings vary greatly across majors, and this result persists across

different datasets and different cohorts of college students. To give a few examples,

differences in average earnings across college majors exist for American college students

who graduated from college in the year 1986 (Rumberger and Thomas, 1993); Canadian

students who graduated in the years 1982, 1986 and 1990 (Finnie and Frenette, 2003);

and students who graduated from the University of Texas in five different years spanning

the time period 1980 to 2000 (Hamermesh and Donald, 2006). These earnings

differences persist even after controlling for occupation, college performance,

achievement test scores and a wide range of demographic variables. These studies also

consistently identify particular majors as having high or low earnings. For example,

students who major in the fields of engineering or health earn above average wages,

while those who major in the fields of humanities or education earn below average

wages.

The literature also finds that differences in average earnings across majors

influence a student's choice of major. Freeman (1971) finds that the number of college

students who major in the field of engineering rises with the market wages of engineers.

Subsequent studies find similar results for students studying law (Freeman, 1975),

economics (Hoffman and Low, 1983) and education (Zarkin, 1985). Berger (1988)

considers the general problem of major choice and estimates separate wage equations for



several college fields of study. He finds that a student's probability of choosing a given

major increases with the student's expected present value of income in that major.

Prior research also provides some evidence that students sort themselves across

majors by ability. Paglin and Rufolo (1990) find that mean math and verbal scores on the

Graduate Record Exam (GRE) vary widely across majors. They also find a strong

positive correlation between major fields' mean starting salaries and mean GRE math

scores. The second result suggests that students with higher math ability choose majors

with higher average salaries, although the authors acknowledge that a student's choice of

major could influence her math ability since some majors could increase math ability

more than others and the GRE only measures a student's ability at the end of college.

The possibility that employers place a high value on math ability relative to other skills

provides another possible explanation for the correlation between mean major salaries

and mean major math scores.

A related strand of literature examines students who switch majors in college.

Two large national surveys conducted in the 1960s show that many students change their

career plans in college. The first survey finds that 37% of college students change their

career plans between their freshman and senior year (Davis, 1965). The second survey

finds that 38% of male college students who choose certain fields of study during their

freshman year change their career plans by their sophomore year (Werts, 1967)'. To the

extent that students' career plans correspond to their choice of majors, both surveys

1 This statistic is based on my calculations using data reported in Table 1 of Werts (1967). The calculation
likely overestimates the proportion of students who change career plans because the table only reports data
for careers fields in which at least 150 of those initially interested in the field subsequently switch into
another field.



suggest that students often begin college in one field of study only to graduate with a

degree in a different field of study.

When students change their career plans, they choose some career fields more

frequently than others. This means that some fields grow while others shrink. Davis

(1965) finds that, between the freshman and senior year of college, the fields of

engineering and medicine lose the most students on net, while the fields of education and

business gain the most students on net. Net changes in field size, however, do not fully

describe the pattern of career choice. Each field loses some of the students who initially

choose it and gain some students who initially choose a different field.

In summary, the literature on the choice of majors broadly supports the finding

that students who major in some fields earn significantly more than students majoring in

other fields, even after controlling for observable characteristics. The variation in

earnings across major fields partly explains a student's choice of majors, and students

tend to choose a major in which their expected earnings are relatively high. Students'

abilities also partly explain their choice of major, and there is weak evidence that the

ranking of fields by average student ability corresponds to the ranking of fields by

average expected earnings. Finally, a large proportion of students change their field of

study in college, and some fields gain students on net while other fields lose students on

net.

III. A Theory of College Major Choice

This section adapts Gibbons and Waldman's (1999) model of wage dynamics inside

firms to the context of choosing a course of study in college. The present model differs

from Gibbons and Waldman's model in two respects. First, the present model



incorporates career-specific human capital to capture the idea that taking courses in one

major likely increases a student's productivity in some occupations more than others.

Second, in order to simplify the analysis, this model incorporates perfect rather than

gradual learning.

A. The Model

The model lasts for three periods. In the first period, students take college courses in one

field of study and receive grades. At the end of the first period, students decide whether

to continue in their initial field of study or to switch fields. In the second period, students

finish college and they enter the labor market in the third period.

Students differ in their innate ability, 0, which affects their productivity in both

careers. For simplicity, innate ability takes either a high (OH) or low (OL) value. Before

beginning college, students do not know their ability with certainty but they have a prior

beliefpo, where po = Pr[O = OH ]. A student may derive her prior belief from a variety of

sources, including academic performance, achievement test scores and family

background characteristics. Prior beliefs are informative about actual ability in the

following sense: of the population of students with prior beliefpo, the fraction po has high

ability and the fraction (1 -po) has low ability. The grades that a student receives at the

end of the first period perfectly inform her about her ability. I assume that half of all

students have high ability and that the population distribution ofpo is U[0,1].

Students choose between two possible fields of study in college, called field I and

field 2. Each field is associated with an occupation in the labor market. Students

accumulate one unit of human capital specific to a field of study for each period they

spend at college in that field.



When students enter the labor market, they work in occupation 1 or occupation 2

and earn an amount equal to their marginal revenue product. A student's productivity in

either occupation depends both on the student's innate ability and the student's stock of

human capital in the field of study associated with that occupation. Specifically, earnings

in careerj for student i with ability 0i and occupation-specific human capital xij equal

(1) yu = c, + dj(0 f(xi ))

where x. e {0,1,2} and f(2) > f(l) > f(0). I assume that d2 > dl > 0, that cl > c2 and

H> C - C2 > L

that d- di . Together these assumptions ensure that, among students who

have equal stocks of human capital in both occupations, those with low ability earn more

in occupation I and those with high ability earn more in occupation 2.

In each period, students make decisions that maximize the expected value of their

lifetime earnings. In period 3, students know their ability and stock of human capital

with certainty, and they choose the occupation that gives them higher earnings.

In the second period, students know their ability with certainty but must decide

whether to accumulate a second unit of human capital in their initial field of study or to

accumulate one unit of human capital in a new field. Students compare their earnings

conditional on having two units of human capital in their initial field with their earnings

conditional on having one unit of human capital in each field (both conditional on their

OC> - C2known level of ability). >
known level of ability). Here I assume that d2f(1)- d f(2)



C1 - C2

and d 2 f(2) - df(l) , which ensures that in the second period high-ability students

choose to study field 2 and low-ability students choose to study field 1.

In period 1, students calculate their expected third-period earnings for both initial

fields of study. The expected earnings for a student with prior po who begins her studies

in field 1 is

(2) V, = (1- po)[c, +d,OLf (2)]+ po[c2 +d 2 Hf(l)]

The first term of the equation is the probability that a student learns she has low ability

multiplied by the expected earnings of a low ability student who initially studies field 1.

The second term is the probability that the student learns she has high ability multiplied

by the expected earnings of a high ability student who initially studies field 1. By the

same reasoning, expected earnings for starting in field 2 equals

(3) V2 = (1- p0)[c1 + d,OLf()] + 2 + d2 Hf(2)]

Students choose their initial field of study to maximize expected earnings, so students

only begin their studies in the second field if y2 
> V~ Subtracting Vl from V2 and

simplifying yields

(4) V2 - V = [po (d2 H + d,,) - d, OL](f(2) - f(1))

which is clearly increasing in po. Denote the prior at which V2 = V as p*. Then students

with po < p' begin their studies in field 1 and those with po > p begin their studies in field

2. Equation (4) and the definition ofp* imply that

(5)

* diOL 1
p = <-L

d20 H + dO L 2



where the inequality follows from the previous assumptions that d2 > d, and OH > 9L

B. Predictions and Discussion

This simple model makes several predictions about the pattern of major choice and the

relationship between major choice and earnings. First, students with high expected

ability in high school will begin their studies in a field with high returns to ability.

Second, more students will switch from high-ability majors to low-ability majors

than vice versa. This prediction implies that high-ability majors lose students on net. To

see why this is true, note that any student with po > p* studies the high-ability field in the

first period. Since po - U[O,1] and p* < 1/2, more than half of the students begin in the

high ability field. But only half of the students-those who learn that they have high

ability-study the high-ability field in the second period. Thus fewer students study the

high-ability field in the second period than in the first.

Third, a student's college grades will be negatively correlated with the probability

of switching majors. In the model, students perfectly learn their ability in college. If a

student learns their ability through college grades, then receiving high grades reveals that

the student has high ability and receiving low grades reveals that the student has low

ability. Both high grades and low grades may cause a student to switch majors. But

because the high-ability major loses students on net and because low grades cause

students to switch out of the high-ability major, most student who switch majors will

have low grades.

Fourth, students who switch majors earn less than those who do not. Two factors

contribute to this result. First, major switchers necessarily accumulate less human capital

in their chosen occupations than do non-switchers. This difference implies that, within



occupations, major switchers earn less than non-switchers (because earnings in both

occupations increase in occupation-specific human capital). Second, the majority of

major switchers end up working in the low-ability, low-earnings occupation, which

further deflates the average earnings of major switchers.

IV. Data

This paper uses the High School and Beyond dataset (HSB). HSB participants were

either sophomores or seniors in high school in 1980, the base year of the survey. HSB

conducted follow-up surveys for both cohorts in 1982, 1984 and 1986 and for the

sophomore cohort in 1992. Because there is limited information on labor market

outcomes for the senior cohort, I limit my sample to the sophomore cohort. I further

restrict my sample to students who earn a bachelor's degree by the end of the sample

period and have complete information on planned and actual college major. The main

sample consists of 2,384 students. For the analysis of labor market outcomes, I further

restrict my sample to students who make their first long-term transition to the labor force

during the sample period. Following Farber and Gibbons (1996), I define a long-term

transition to the labor force as spending at least three consecutive years working after

spending at least one year not working. The sample for labor market outcomes comprises

1,775 students. The appendix provides more detail on the construction of the sample.

To examine major switching behavior, I define variables for college students'

planned and actual majors. The 1982 HSB follow-up survey asks members of the

sophomore cohort to choose the field that they "would most like to study in college" from

a list of 25 fields. I define a student's planned major as her response to this question.

HSB also contains transcript data from postsecondary education institutions attended by



participants. HSB records the three-digit Classification of Instructional Program (CIP)

codes for the major field of study listed on each postsecondary transcript. To determine

actual college major, I first assign each CIP code to the one of the 25 fields for planned

college major2. I then define actual college major as the field corresponding to the CIP

code from the earliest transcript that records a completed bachelor's degree. If a

student's actual major differs from her planned major, I define her as having switched

majors.

In addition to the data on students' major field of study, I use demographic and

labor market variables. The demographic variables include gender and race as well as

two measures of ability: score on a standardized cognitive test and college GPA. The

cognitive test score is a composite of reading, vocabulary and math scores on an ability

test administered by HSB in 1982. A student's college GPA is taken from the same

transcript as actual college major and converted to a 4.0 scale. The timing of the ability

measures plays an important role in the analysis. The cognitive test score is determined

before students make their initial major choices, while the college GPA is determined (at

least in part) between the students' initial and final major choices3

Some regressions also control for characteristics of the student's family and high

school. Family background variables include indicators for whether the student's father

or mother has a college degree, whether the student's family's income was greater than

$25,000 in 1980, and whether a language other than English was spoken at the student's

2 The appendix gives more information on the assignment of CIP codes to major fields.
3 Since the final major choice occurs before the end of college, then part of college GPA is determined after
the final choice. Even so, it contains information about ability that is unknown at the time of initial major
choice.



home. High school variables include indicators for whether the school is in the southern

Census region, whether the school is private and whether the school is in an urban area.

The analysis of labor market outcomes focuses on average monthly earnings. I

construct average monthly earnings using data from years that satisfy two criteria: they

must occur after an individual's transition to the labor force and they must be spent

mainly working4 . I refer to these years as working years. For each working year from

1986 to 1992, I determine how many months an individual spends working full time

using monthly data on labor force status and educational enrollment status5. I then

calculate average monthly earnings by dividing annual earnings by the number of months

spent working full time. The data contain up to seven years of average monthly earnings

for each worker. I control for an individual's experience and age in earnings regressions.

I define experience as the number of years that have elapsed since a worker's transition to

the labor market. Because students complete the same level of education at different

ages, I can separate the effects of age and experience on labor market outcomes.

A. Student Characteristics by College Major

Table 1 reports average characteristics of students by planned and actual major. Panel A

shows that business is the most common planned major, accounting for 21% of the

students in the sample, followed by engineering (12%), preprofessional (11%) and

computer science (8%). Majors also differ widely in gender balance, ranging from

predominantly male fields such as engineering to predominantly female fields such as

4 Individuals must work full time for at least four months in 1992 and at least six months in all other years
to be classified as mainly working for that year.
5 Labor force status is available from January 1982 to August 1992 and education enrollment status is
available from June 1982 to June 1992.



home economics. The proportion of black students also varies across majors, although

not as widely.

Panel B shows characteristics of students by actual majors. Business remains the

most popular major. In fact, it has grown to include 25% of students. The social sciences

(13%) and engineering (8%) follow business in popularity. The gender and racial

makeup of actual majors resembles that of planned majors.

B. Pattern of Major Switching

Table 2 reports the difference between the number of students who plan to major in a

field and the number of students who actually receive a degree in that field. The social

sciences, business and English gain the most students, while preprofessional, engineering

and computer sciences lose the most students. As a percentage of the number of students

who plan to major in a field, the social sciences, English and home economics experience

the biggest gains, while preprofessional, vocational and health occupations experience the

biggest losses. The breakup of fields into net gainers and losers broadly resembles that

found in earlier studies (Davis, 1965, and Werts, 1967).

Table 2 also shows that the preprofessional field suffers remarkable attrition.

Over 250 students plan to major in the field but only 5 actually do. HSB's survey

question for planned major lists prelaw, premedicine and predentistry as examples of

preprofessional fields. Few schools award majors in these fields, however, and aspiring

doctors commonly major in fields such as biology. Because many of these students are

likely to be wrongly classified as major switchers, I exclude students who plan to major

in the preprofessional field from subsequent analysis.

C. Major Switchers versus Non-Switchers



Table 3 compares the characteristics of major switchers and non-switchers. Planned

major predicts actual major fairly well - 44% of students do not switch majors. The

proportion of females is six percentage points higher in switchers than in non-switchers,

but the other background characteristics are relatively similar for the two groups.

Switchers are somewhat less likely to make a long-term transition to the labor force.

V. Empirical Results

This section reports how the model's predictions stand up to the data. I first investigate

the relationship between a field of study's mean student ability and mean earnings. The

model predicts that students with high expected ability begin their college studies in

fields with high returns to ability. The prediction also implies that students with high

expected ability begin their college studies in fields with high average pay6.

I test this prediction by regressing the expected earnings of a student's planned

major on the student's score on the cognitive test administered during high school. I

define a major's expected earnings as the average monthly salary offered during July of

1982 to students graduating with a bachelor's degree in that major. Table 4 shows the

results. Students with higher test scores plan to major in fields with higher starting

salaries. A student whose test score is one standard deviation above the mean selects a

major with a monthly starting salary that is $86 higher than a student whose test score is

one standard deviation below the mean. When I add controls for the student's

demographic characteristics, the effect of ability on the planned major's starting salary

6 Let yj(Oi,xx 2) denote the earnings in occupationj for a student with ability 0, and x, units of human
capital specific to occupation 1 and x2 units of human capital specific to occupation 2. By assumption,
Y2(11, 1,i) > yI(OH,2 ,0). Because returns to ability are positive in both occupations, Y1(OH,2 ,0) > y (OL,2 ,0).
And because returns to specific human capital are positive in both occupations, y2(OH,0,2) > y2(811,1 ,1) and

y (0L, 2 ,0) > yi(OL, 1,1 ). Together, these inequalities give the following ranking of earnings for the four
ability-capital combinations , y2(O,0,2 ) > y2(OH, 1,1) > Y (L, 2 ,0) > y1(OL,1,1). Thus all students who enter
occupation 2 earn more than all students who enter occupation I and average earnings in occupation 2
exceed average earnings in occupation 1.



becomes somewhat smaller but remains highly statistically significant. These results

support Paglin and Rufolo's (1990) finding that students with higher GRE math scores

major in fields with higher average earnings, and my data overcome two of the

weaknesses of their analysis. First, my measure of ability is observed before students

enter college, so college curriculum does not cause the variation in ability. Second, I

measure the majors' average starting salaries during the students' final year of high

school. This ensures that the variation in the students' skill across planned major fields

does not directly influence the fields' salaries because the students are not yet in the labor

force.

The model also predicts that receiving low grades in college increases the

probability that a student switches majors. I test this prediction by regressing an indicator

for switching majors on college GPA and other controls. Table 5 reports the results. In

the bivariate regression, college GPA has a small negative but statistically insignificant

effect on the probability of switching majors. When I control for demographic

characteristics and a set of effects for planned major field of study, the magnitude of the

effect increases. Increasing college GPA by one point decreases the probability of

switching majors by 6.8 percentage points, and this effect is significant at the 95%

confidence level. Adding cognitive test score to the set of controls decreases the effect of

college GPA, but it remains negative and statistically significant at the 90% confidence

level. Taken together, the results provide some evidence that students switch majors

when they receive low grades in their planned major.



I next examine the relationship between switching majors and earnings. The

model predicts that major switchers earn less than non-switchers even after controlling

for actual major field. I estimate the following wage equation:

(6) It, = a, + 3,1 S, + ,52X, + P,i

The dependent variable Ii, is the logarithm of average monthly earnings for individual i in

year t. at is a year fixed effect, Si is an indicator for switching majors, Xi, is a vector of

other control variables and pi, is the error term.

The first column of table 6 shows that major switchers earn 7.5 percent less than

non-switchers after controlling for experience, age, gender, race and year effects. The

estimate remains nearly unchanged in column 2, which includes measures of student

ability as additional independent variables. When a set of effects for actual college major

is included (column 3), the negative effect of switching majors on earnings drops to 2.2

percent and becomes statistically insignificant. When I include industry or occupation

effects instead of actual major effects (columns 4 and 5), I estimate the negative impact

switching majors on earnings to be 6.4 or 5.6 percent. Finally, including a full set of

effects for actual major, industry and occupation (column 6) yields a negative switching

effect of 2.2 percent, which is not statistically different from zero.

These results provide mixed support for the model. In each specification,

switching majors has a negative effect on earnings, but the effect is statistically

insignificant in the specifications that control for actual major. While the model predicts

that differences in choice of major between switchers and non-switchers explains only

part of the earnings gap, the data suggest that differences in choice of major account for



the entire gap. This casts doubt on the model's assumption that majors generate

occupation specific human capital which is rewarded in the labor market.

In addition to addressing the model's prediction about labor market outcomes, the

pattern of results in table 6 also implies that high-earnings majors lose students on net.

This must be true since the average major switcher earns less than the average non-

switcher, but no less than a non-switcher in the same career. This implies that low

earnings field gain students on net because major switchers disproportionately switch to

them.

VI. Conclusion

Research on the choice of college major has uncovered a number of robust facts about the

relationship between major choice, earnings and ability, and has found some consistent

patterns in the behavior of major switching. I develop a model of college major choice

that incorporates occupation-specific human capital and learning. The model predicts a

pattern of major choice in college that is consistent with findings from previous research.

I also test the model's predictions using HSB data and the results of these tests generally

support the model. I find that students who have higher scores on a high-school test of

cognitive ability plan to major in fields with higher average earnings; that receiving low

grades in college increases the likelihood that a student will switch majors; and that

students who switch majors earn less than students who do not, although this is explained

by their choice of majors.

This chapter contributes to the literature on major choice by considering how a

simple model of major choice generates predictions consistent with several well known

findings. That my results generally support the model suggests that occupation-specific



human capital and learning influence students' choices of college major. Some results,

however, do not fit the model's predictions. Future research could consider whether

focusing on other aspects of major choice (e.g. compensating differentials) might explain

these inconsistencies.



Data Appendix

A. Sample Construction

The main sample consists of the subset of High School and Beyond participants who
belong to the sophomore cohort, earn a bachelor's degree by the end of the sample
period, and have complete information on actual and planned major as well as on control
variables. 2,384 students meet these criteria.

For the estimation of earnings equations (reported in table 6) I further restrict the
sample to students who make a long-term transition to the labor force during the sample
period. To make a long-term transition to the labor force, a student must spend at least
three consecutive years mainly working after spending at least 1 year mainly not
working. I classify a student as spending the year mainly working if they work full time
for a least six months of the year. To work full time, the student's labor market status
must be "employed full time" and the student's educational enrollment status must not be
"enrolled full time." I also exclude students who are missing any control variables from
the earnings equation sample, which consists of 1,775 students.

B. Correspondence between Planned and Actual Field

HSB reports actual major in much greater detail than planned major. I assign actual
major codes to planned major groups as follows (listing planned major followed by
corresponding CIP codes for actual major): Agriculture: 10, 20, 30, 31; Architecture: 40;
Art: 500, 502, 504, 505; Biological Sciences: 260, 261, 262, 263; Business: 60, 61, 62,
63, 70, 71, 80; Communication: 90, 91, 100; Computer Science: 110, 111, 112;
Education: 130, 131, 132, 133, 134, 135; Engineering: 140, 141, 142, 143, 144, 150;
English: 230, 231, 232, 501; Ethnic Studies: 50, 51, 53; Foreign Languages: 160, 161;
Health Occupations: 170, 171, 172, 173, 174; Health Sciences: 180, 181, 185, 186, 187,
188; Home Economics: 190, 191, 192, 200, 201; Interdisciplinary Studies: 300, 301, 302,
303, 304; Mathematics: 271; Music: 503; Philosophy and Religion: 380, 381, 390;
Physical Science: 400, 401, 402, 403; Preprofessional: 182, 183, 220, 221; Psychology:
420; Social Sciences: 430, 440, 441, 450, 451, 452, 453, 454, 455, 456; Vocational or
Technical: 120, 121, 460, 470, 471, 472, 480, 481, 490, 491; Other: 240, 250, 280, 310,
320, 999.

C. College Placement Council Data

The measure of expected earnings used in table 4 comes from the July, 1982, CPC Salary
Survey. The College Placement Council collects data from 161 colleges and universities
on job offers made to new college graduates. The July, 1982, averages are based on
51,290 salary offers received by bachelor's degree candidates. I group the starting salary
data into 11 major categories, some of which include more than one "actual field." The
data do not cover some actual fields, such as education.
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TABLE 1
Average Characteristics by Planned and Actual College Major

Number Switched Proportion Proportion College Test Annual
major female black GPA score earnings

(1) (2) (3) (4) (5) (6) (7)
Panel A: Summary statistics by planned college major
Planned major:

Agriculture 38 0.605 0.395 0.000 2.89 57.3 22,041
Architecture 29 0.552 0.310 0.034 2.97 60.2 25,103
Art 57 0.561 0.719 0.070 3.08 55.6 16,877
Biological sciences 66 0.621 0.500 0.030 3.15 62.9 21,049
Business 499 0.333 0.555 0.074 2.89 57.8 22,673
Communications 123 0.455 0.585 0.154 2.99 59.3 20,686
Computer science 188 0.633 0.441 0.138 3.01 59.5 24,367
Education 108 0.519 0.806 0.028 3.03 56.7 18,031
Engineering 293 0.543 0.195 0.102 2.90 61.6 26,131
English 53 0.660 0.717 0.094 3.18 61.8 19,819
Foreign languages 23 0.652 0.870 0.130 3.13 60.7 15,630
Health occupations 66 0.894 0.848 0.106 2.98 57.6 21,285
Health sciences 94 0.596 0.862 0.043 3.03 58.1 23,478
Home economics 16 0.563 1.000 0.125 3.01 54.9 18,265
Mathematics 27 0.852 0.519 0.037 3.06 62.5 22,293
Music 28 0.393 0.429 0.071 2.97 59.2 16,420
Philosophy/religion 19 0.684 0.368 0.053 3.21 62.9 45,901
Physical science 70 0.757 0.357 0.071 3.17 62.6 21,342
Preprofessional 265 0.996 0.502 0.121 2.98 60.6 -
Psychology 73 0.740 0.836 0.082 2.96 59.0 21,543
Social Sciences 121 0.529 0.587 0.107 3.04 59.9 22,339
Vocational 40 0.975 0.425 0.075 3.16 58.9 23,312
Other fields 88 0.966 0.682 0.080 2.99 58.2 20,778

All majors 2,384 0.607 0.539 0.089 2.98 59.4 22,678
Standard deviation 0.182 0.214 0.040 0.09 2.3 5,954
(across majors)
Notes: Other fields includes students planning to major in ethnic studies, interdiscliplinary studies, or "other."



TABLE 1 (continued)
Average Characteristics by Planned and Actual College Major

Number Switched Proportion Proportion College Test Annual
major female black GPA score earnings

(1) (2) (3) (4) (5) (6) (7)
Panel B: Average characteristics by actual college major
Actual major:

Agriculture 31 0.516 0.419 0.000 2.91 58.4 21,605
Architecture 19 0.316 0.368 0.000 3.14 61.9 24,493
Art 47 0.468 0.596 0.043 3.09 57.4 18,019
Biological sciences 110 0.773 0.527 0.064 3.21 62.7 19,306
Business 604 0.449 0.520 0.091 2.91 58.2 22,432
Communications 153 0.562 0.634 0.137 2.89 58.3 20,861
Computer science 115 0.400 0.426 0.130 3.01 60.7 27,374
Education 139 0.626 0.871 0.065 3.03 55.6 16,664
Engineering 194 0.309 0.160 0.072 2.98 61.8 29,087
English 107 0.832 0.673 0.047 3.12 61.2 19,749
Foreign languages 24 0.667 0.792 0.083 3.17 61.4 16,288
Health occupations 31 0.774 0.742 0.000 3.07 57.6 24,269
Health sciences 94 0.596 0.894 0.074 2.98 58.1 26,810
Home economics 29 0.759 0.897 0.069 2.81 57.0 18,453
Mathematics 37 0.892 0.514 0.081 3.11 61.8 24,329
Music 27 0.370 0.593 0.074 3.19 59.6 14,811
Philosophy/religion 28 0.786 0.214 0.107 3.23 61.6 19,880
Physical science 57 0.702 0.263 0.070 3.09 62.6 21,885
Preprofessional 5 0.800 1.000 0.000 3.12 56.7 26,694
Psychology 117 0.838 0.658 0.154 2.97 58.8 17,447
Social Sciences 318 0.821 0.487 0.123 2.92 60.1 22,754
Vocational 14 0.929 0.143 0.071 2.92 56.4 20,145
Other fields 84 0.964 0.571 0.048 3.00 59.6 25,750

All majors 2,384 0.607 0.539 0.089 2.98 59.4 22,678
Standard deviation 0.201 0.239 0.043 0.12 2.2 3,917
(across majors)
Notes: Other fields includes students who actually earn degrees in ethnic studies, interdiscliplinary studies, or any field
that falls into none of the categories for planned major.



Social sciences
Business
English
Psychology
Biological sciences
Education
Communications
Home economics
Mathematics
Philosophy/religion
Foreign languages
Health studies
Music
Other field
Agriculture
Art
Architecture
Physical science
Vocational
Health occupations
Computer science
Engineering
Preprofessional

TABLE 2
Net Changes by Major

Planned Actual
Major Major

(1) (2)
121 318
499 604
53 107
73 117
66 110
108 139
123 153
16 29
27 37
19 28
23 24
94 94
28 27
88 84
38 31
57 47
29 19
70 57
40 14
66 31
188 115
293 194
265 5

Net
Change

(3)
197
105
54
44
44
31
30
13
10
9
1
0
-1
-4
-7
-10
-10
-13
-26
-35
-73
-99

-260
Notes: Other fields includes students planning to major in ethnic studies,
interdiscliplinary studies, or "other" as well as students who actually earn
degrees in ethnic studies, interdiscliplinary studies, or fields that fall into none
of the categories for planned major.

Percent
Change

(4)
162.8
21.0
101.9
60.3
66.7
28.7
24.4
81.3
37.0
47.4
4.3
0.0
-3.6
-4.5
-18.4
-17.5
-34.5
-18.6
-65.0
-53.0
-38.8
-33.8
-98.1



TABLE 3
Average Characteristics of Switchers and Non-Switchers

All
(1)

Proportion female

Proportion black

Proportion hispanic

Father Has College Degree

Mother Has College Degrei

High Family Income

Language Other than Engli:
Spoken at Home

High School in South

Urban High School

Private High School

College GPA

Test score

Proportion entering
labor force

Monthly earnings

Total students

Switchers

(2)
0.54
(.50)
0.09
(.28)

S0.08
(.28)
0.34

(.47)
0.19

(.39)
0.61
(.49)
0.20
(.40)
0.25
(.43)
0.17
(.38)
0.35
(.48)
2.98
(.46)
59.24
(6.35)
0.84
(.36)
2253

(1884)
2,119

0.57
(.49)
0.09
(.28)
0.09
(.29)
0.36
(.48)
0.19
(.39)
0.60
(.49)
0.20
(.40)
0.26
(.44)
0.18
(.38)
0.36
(.48)
2.98
(.46)
59.04
(6.69)
0.82
(.39)
2232

(2382)
1,184

Non-Switchers

(3)

Notes: The numbers in parentheses are standard deviations.

0.51
(.50)
0.09
(.28)
0.08
(.27)
0.32
(.47)
0.20
(.40)
0.61
(.49)
0.19

(.39)
0.24
(.43)
0.17
(.37)
0.35
(.48)
2.99
(.46)
59.48
(5.87)
0.88
(.33)
2277

(1018)
935



TABLE 4
Relationship Between Ability and Expected Earnings

Starting Monthly Salary of
Planned Major in July, 1982

(1) (2)
Test Score 6.832 6.206

(1.077) (1.063)
Female -170.680

(13.339)
Black 74.422

(26.026)
Hispanic 17.852

(28.560)
Father Has College Degree -23.769

(16.015)
Mother Has College Degree -24.608

(18.645)
High Family Income 2.376

(13.942)
Language Other than English 25.742

Spoken at Home (19.340)
High School in South 16.221

(15.370)
Private High School -18.235

(13.557)
Urban High School 29.275

(18.011)
Observations 1642 1642
R-squared 0.0235 0.1266
Notes: The numbers in parentheses are White-Huber standard
errors.



College GPP

Female

Black

Hispanic

Father Has C

Mother Has

High Family

Language Ot
Spoken at

High School

Private High

Urban High

Test score

TABLE 5
Relationship between College GPA and Major Switching

Switched Switched
major major

(1) (2)
-0.01977 -0.06808
(.02485) (.02437)

0.04471
(.02376)
-0.04082
(.04043)
0.00875
(.04624)

:ollege Degree 0.05429
(.02625)

College Degree -0.05165
(.03064)

Income -0.01811
(.02333)

her than English -0.00358
Home (.03294)
in South 0.03358

(.02501)
School 0.02861

(.02290)
School 0.00982

(.02932)

Planned field yes
1,862 1,862

0.0003 0.1387
Notes: The numbers in parentheses are White-Huber standard errors.

I
Switched

major
(3)

-0.04482
(.02641)
0.03983
(.02375)
-0.05476
(.04065)
-0.00081
(.04631)
0.05713

(.02628)
-0.04595
(.03078)
-0.01598
(.02333)
-0.00335
(.03297)
0.02867
(.02508)
0.03083
(.02291)
0.00921
(.02914)
-0.00496
(.00192)

yes
1,862

0.1415



TABLE 6
Relationship between Switching College Majors and Monthly Earnings

log monthly log monthly log monthly
earnings earnings earnings

(1) (2) (3)
-0.07510 -0.07250 -0.02256
(.02172) (.02186) (.02222)
0.02253 0.02190 0.01946
(.01133) (.01127) (.01101)
-0.05670 -0.04836 -0.05373
(.02777) (.02785) (.02571)
-0.20521 -0.19725 -0.15992
(.02196) (.02232) (.02239)
-0.02018 0.00036 -0.00444
(.03836) (.03921) (.03677)
0.04686 0.06178 0.04937
(.03691) (.03720) (.03596)

0.00139 0.02568
(.02758) (.02575)
0.00491 0.00227
(.00200) (.00194)

yes yes yes
yes

Switched major

Experience

Age

Female

Black

Hispanic

College GPA

Test score

Year
Actual field
Industry
Occupation
Observations
R-Squared

7,741
0.1000

7,741
0.1608

log monthly
earnings

(4)
-0.06396
(.02138)
0.01453
(.01120)
-0.04816
(.02741)
-0.16746
(.02225)
-0.00020
(.03824)
0.07433
(.03536)
0.00059
(.02663)
0.00387
(.00193)

yes

7,741
0.1317

log monthly
earnings

(5)
-0.05567
(.02107)
0.02081
(.01092)
-0.04969
(.02690)
-0.15276
(.02280)
0.01132
(.03816)
0.06255
(.03794)
0.00467
(.02683)
0.00257
(.00193)

yes

yes
7,741
0.1576

The numbers

log monthly
earnings

(6)
-0.02200
(.02139)
0.01297
(.01074)
-0.04777
(.02555)
-0.12815
(.02195)
0.01043
(.03583)
0.07018
(.03625)
0.01217
(.02524)
0.00158
(.00185)

yes
yes
yes
yes

7,741
0.2089

in parentheses

7,741
0.0976

Notes: The dependent variable is In(annual earnings/number of months working full time).
are White-Huber standard errors that correct for clustering at the worker level.



Long Run Health Impacts of Income Shocks:
Wine and Phylloxera in 19th Century France
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Abstract

This paper provides estimates of the long-term effects on height and health of a large
income shock experienced in early childhood. Phylloxera, an insect that attacks the roots
of grape vines, destroyed 40% of French vineyards between 1863 and 1890, causing
major income losses among wine growing families. Because the insects spread slowly
from the southern coast of France to the rest of the country, Phylloxera affected different
regions in different years. We exploit the regional variation in the timing of this shock to
identify its effects. We examine the effects on the adult height, health, and life
expectancy of children born in the years and regions affected by the Phylloxera. The
shock decreased long run height, but it did not affect other dimensions of health,
including life expectancy. We find that, at age 20, those born in affected regions were
about 1.8 millimeters shorter than others. This estimate implies that children of wine-
growing families born when the vines were affected in their regions were 0.6 to 0.9
centimeters shorter than others by age 20. This is a significant effect since average
heights grew by only 2 centimeters in the entire 19th century. However, we find no other
effect on health, including infant mortality, life expectancy, and morbidity by age 20.



I. Introduction

Poor environmental conditions in-utero and early childhood have been shown to have

adverse consequences on later life outcomes, including life expectancy, height, cognitive

ability, and productivity (Barker, 1992)'. Important influences include the disease

environment (Almond, 2006), the public health infrastructure (Almond and Chay, 2005),

food availability (see e.g. Almond et al. (2007) and Qian (2006) on the great Chinese

famine, Rosebloom et al. (2001) and Ravelli et al. (1998) on the Dutch famine of 1944-

1945), and even the availability of certain seasonal nutrients (Doblhammer, 2000).

At the same time, evidence from developing countries suggests that young

children's nutritional status, not surprisingly, is affected by family income (see e.g.

Jensen, 2000, Duflo, 2003). Taken together, these two facts suggest that, at least in poor

countries, economic crises may have important long term impacts on the welfare of the

cohorts born during these periods.2 Yet, except for the few papers on famines mentioned

above, there is very little evidence establishing a direct link between economic events at

birth and adult outcomes. This is perhaps not surprising, since such an analysis requires

good data on adult outcomes, coupled with information on economic conditions faced

during early childhood. Longitudinal data is often not available over such long time

periods, especially in poor countries, except for dramatic events such as famines. As a

result, the few existing studies tend to be limited to cohort analyses: For example, Van

Den Berg, Lindeboom and Portrait (2006) show that, among cohorts born between 1812

1 The idea that in-utero conditions affect long run health is most commonly associated and referred to as the
"fetal origin hypothesis", and associated to DJP Barker (see e.g. Barker, 1992, 1994). For additional
evidence see, among others, Strauss and Thomas (1995), Case and Paxson (2006), Berhman and
Rozenzweig (2005) and references therein.
2 In rich countries this effect may be compensated by the fact that pollutants diminish during economic
slumps (Chay and Greenstone, 2003).



and 1912 in the Netherlands, those born in slumps have lower life expectancy than those

born in booms. However, a concern with using just time variation is that it might reflect

other time-specific elements, such as the quality of public services, the relative price of

different nutrients, or even conditions in adulthood. To fill this gap, this chapter takes

advantage of the Phylloxera crisis in 19th century France, which, we will argue, generated

a negative large income shock that affected different "departments" (roughly similar in

size to a US county) in France in different years, combined with the rich data on height

and health that was collected by the French Military Administration.

Phylloxera (an insect that attacks the roots of vines) destroyed a significant

portion of French vineyards in the second half of the 19th century. Between 1863, when

it first appeared in Southern France, and 1890, when vineyards were replanted with

hybrid vines (French stems were grafted onto Phylloxera-resistant American roots),

Phylloxera destroyed 40 percent of the French vineyards. Just before the crisis, about one

sixth of the French agricultural income came from wine, mainly produced in a number of

small highly specialized wine-growing regions. For the inhabitants of these regions, the

Phylloxera crisis represented a major income shock. Because the insects spread slowly

from the southern coast of France to the rest of the country, Phylloxera affected different

regions in different years. We exploit this regional variation in the timing of the shock to

identify its effects, using a difference-in-differences strategy.

We examine the effect of this shock on the adult height, health, and life

expectancy outcomes of children born in years where the Phylloxera affected their region

of birth, controlling for region and year of birth effects. The height and health data comes

from the military: Every year, all the conscripts (who were a little over 20 at the time of



reporting) were measured and the number of young men falling into a number of height

categories was reported at the level of the department. The statistics also reported the

number of young men who had to be exempted for health reasons, and specified the

grounds of exemption. This data is available for 83 departments which are consistently

defined over the period we consider. 3 In addition, we use data on female life expectancy

at birth constructed from the censuses and reports of vital statistics.

In many ways, France in the late 19
th century was a developing country: In 1876

the female life expectancy was 43 years; infant mortality was 22 percent; and the average

male height at the age of 20 was 1.65 meters, approximately the third percentile of the

American population today. The Phylloxera crisis therefore gives us the opportunity to

study the impact of a large income shock to the family during childhood on long-term

health outcomes in context of a developing economy. In addition, the crisis had a number

of features which makes it easier to interpret the results we get: First, we will show that it

was not accompanied by either important changes in migration patterns or by an increase

in infant mortality. We therefore do not need to worry about sample selection in those

who we observe in adulthood, unlike what seems to happen, for example, in the case of a

famine. Second, it did not result in a change in relative prices, which would have meant

that it would spill over into areas that do not grow wine (even the price of wine did not

increase very much, for reasons we will discuss below). As a result, we can identify

regions that were completely unaffected. Finally, the progression of the epidemic was

exogenous, as it was caused by the movement of the insects, which is something no one

knew how to stop until the late 1880s.

3 France lost Moselle, Bas-Rhin, and Haut-Rhin to Prussia in 1870, while retaining the Territoire de
Belfort, a small part of Haut-Rhin. Moselle, Rhin-Bas, Haut-Rhin, and Belfort are excluded from the
analysis.



We find that the Phylloxera shock had a long-run impact on stature: We estimate

that children born during a "Phylloxera year" in wine-producing regions are 1.6 to 1.9

milimeters shorter than others. We estimate that this corresponds to a decline in height of

0.6 to 0.9 centimeters for children born in wine growing families in years where their

region was affected, a large effect considering that average height grew only 2

centimeters over the entire century. We do not find that children born just before, or just

after, the Phylloxera crisis are affected by it, which support the Barker hypothesis of the

importance of in-utero conditions for long run physical development. However, we also

do not find any long-term effect on other measures of health, including morbidity at the

age of 20 (measured by the military as well) or life expectancy of women.

The remainder of this chapter proceeds as follow: In the next section, we describe

the historical context and the Phylloxera crisis. In section III, we briefly describe our data

sources (a data appendix does so in more detail). In sections IV and V, we present the

empirical strategy and the results. Section VI concludes.

II. Wine Production and the Phylloxera Crisis

Wine represented an important share of agricultural production in 19th century France: In

1863, the year Phylloxera first reached France, wine production represented about one

sixth of the value of agricultural production in France, which made it the second most

important product after wheat (table 1). Wine was produced in 79 "departments" out of

89, although it was more than 15% of agricultural production in only 40 of them (we

refer to these 40 departments below as the "wine-growing" departments).

Phylloxera is an insect of the aphid family, which attacks the roots of grape vines,

causing dry leaves, a reduced yield of fruit, and the eventual death of the plant.



Indigenous to America, the insects arrived in France in the early 1860s, apparently

having traveled in the wood used for packaging (though it is possible that it was actually

in a shipment of American vines). By the 1860s, the pest had established itself in two

areas of France. In the departments on the southern coast, near the mouth of the Rhone,

wine growers first noticed the pest's effects in 1863, and there are many records of it in

the years 1866-1867. In 1869 the pest also appeared on the west coast in the Bordeaux

region. The maps in figures 1A to ID show the progression of the invasion starting from

these two points: From the south, the insects spread northward up the Rh ne and outward

along the coast. From the west, the insects moved southeast along the Dordogne and

Garonne rivers and north to the Loire valley. By 1878, Phylloxera had invaded all of

southern France, and 25 of the departments where wine was an important production. It

reached the suburbs of Paris around 1885.

During the first years of the crisis, no one understood why the vines were dying.

As the Phylloxera spread and the symptoms became well-known, it became clear that the

disease posed a serious threat to wine growers, and two of the southern departments

(Bouches-du-Rh6ne and Vaucluse) formed a commission to investigate the crisis. The

commission found Phylloxera insects on the roots of infected vines in 1868 and identified

the insects as the cause of the dead vines. After experimenting with various ineffective

treatments (such as flooding, or treatment with carbon bisulphide), what was to be the

ultimate solution was discovered in the late 1880s. This solution required wine growers to

graft European vines onto pest-resistant American roots. In 1888, a mission identified

431 types of American vines and the types of French soil they could grow in, paving the

road to recovery starting in the early 1890s. Eventually, approximately four fifths of the



vineyards originally planted in European vines were replaced with grafted vines.

Figure 2 shows the time series of wine production in France from 1850 to 1908.

The decline in the first few years reflects the mildew crisis, which affected the vines

before the Phylloxera. After a rapid recovery between 1855 and 1859, the production

grew until 1877, by which time more than half of wine growing departments were

touched by the Phylloxera. The production fell until 1890, when the progressive planting

of the American vines started the recovery.

Table 2 shows the importance of the Phylloxera crisis on wine production. Using

data on wine production reported in Gallet (1957), we construct an indicator for whether

the region was affected by the Phylloxera. Gallet (1957) indicates the year where the

Phylloxera aphids were first spotted in the regions. In most regions, however, for a few

years after that, production continued to increase (or remained stable), until the aphid had

spread. Since we want to capture the fall in wine production due to the insect, we define

the "pre-phylloxera" year as the year before the aphids were first spotted, and the

indicator "attained by phylloxera" is equal to one every year when wine production was

less than 80% of its level in the "pre-phylloxera" year. It is then turned back to zero after

1890, since the grafting solution had been found by then.4

We then run a regression of area planted in vines, the log of wine production, and

yield, for the years 1852-1892 on year dummies, department dummies, and an indicator

for whether or not the region was touched by the Phylloxera in that year. Namely, we run

the following specification:

yij=a Pyi+ ki+dj+uj

4 We experimented with other ways of defining the Phylloxera attack as well, with results that are
qualitatively similar (although the point estimates clearly depend on how strong the fall in production has
to be before a department is considered to be "affected").



where yy is the outcome variable (vine grown areas, wine yield, wine production, as well

as wheat production) in department i in yearj, Pij is an indicator for Phylloxera, ki and dj

are department and year fixed effects, and uj. is an error term. The standard errors are

corrected for auto-correlation by clustering at the department level.

We also run the same specification after controlling for department specific

trends:

yi,=a Pij+ ki+t.+dj+uij,

where tij is a department specific trend. The results are shown in table 2, panel B. The

yield and the production declined dramatically: according to the specification that

controls for a department specific trend, the production was 37% lower and the yield was

42% lower during Phylloxera years.

Unfortunately, yearly data on overall agricultural production or department

"income" are not available except for a few departments (Auffret, Hau and Levy-

Leboyer, 1981) so we cannot provide a quantitative estimate of the fall in department

"GDP" due to the Phylloxera. However, there are reasons to think that there was no

substitution towards other activities, so that the decline in wine production led to a

corresponding decline in income in the affected departments. Table 2 shows that the area

planted with vines did not decline during the crisis, both because many parcels of land

that had been planted with vines would have been ill-suited to all other crops and also

because most growers were expecting a recovery. As a result, the decrease in wine

production was not compensated by a corresponding increase in other agricultural

production: Columns 3 to 5, in the same table, show the results of regressing the

production of wheat and the area cultivated on wheat on the Phylloxera indicator, and



shows no increase of wheat production compensating the decline in wine production. In

the few departments in which the series on agricultural production have been constructed

by Auffret et al. (1981), the fall in overall agricultural production does appear to be

commensurate with the fall in wine production.

To make up for the shortage of French wine, both the rules for wine imports into

France and the making of "piquette" (press cake -the solids remaining after pressing the

grape grain to extract the liquids-then mixed with water and sugar) and raisin wines

were relaxed. For example, while only 0.2 million hectoliters of wine were imported in

1860s, 10 million hectoliters were imported in the 1880s (for comparison, the production

was 24 million hectoliters in 1879). Imports declined again in the late 1890s (Ordish,

1972). As can be seen in figure 1, this kept the price of wine from increasing at anywhere

near the same rate as the decrease in production. Price movements thus did little to

mitigate the importance of the output shock. Moreover, given the size of the crisis in the

most affected regions, farmers could not systematically rely on credit to weather the

crisis. In particular, Postel-Vinay (1989) describes in detail how, in the Languedoc

region, the traditional system of credit collapsed during the Phylloxera crisis (since both

lenders and borrowers were often hurt by the crisis). All of this suggests that Phylloxera

was a large shock to the incomes of people in the wine growing regions, and the

possibility for smoothing it away was, at best, limited.

III. Data

In addition from the department level wine production data already described, we use

several data sources in this paper (the data sets are described in more detail in the data

appendix).



First, we assembled a complete department-level panel data set of height reported

by the military. Height is widely recognized to be a good measure of general health, and

countless studies have shown that it is correlated with other adult outcomes (see Case and

Paxson (2006) and Strauss and Thomas (1995) for references to studies showing this in

the context of the developing world and, among many others, Steckel (1995), Steckel and

Floud (1997), and Fogel (2004) historical evidence on this issue from countries that are

now considered developed). France is a particularly good context to use military height

data. Since the Loi Jourdan, in 1798, young men had to report for military service in the

year they turned 20, in the department where their father lived (all the young men

reporting in one department and one year were called a "classe", or military class). They

were measured, and since 1836, the data on height was published yearly in the form of

the number of young men who fell into particular height categories (the number of

categories varied from year to year). These documents also included, for each department

and each year, the number of young men exempted and the grounds for exemption (in

particular, if they were exempted for disease, the nature of the disease). Using this data,

we estimated both parametrically and non parametrically the average height of the 20-

year old in each department in each year, as well as the fraction of youth who were

shorter than 1.56 meters, the threshold for exemption from military duty (see data

appendix for the estimation methods).5 We also computed the fraction of each military

class exempted for health reasons, and created a consistent classification of the disease

justifying the exemptions.

The nation-level aggregate data on French military conscripts has been used

5 Actually 1.56 meters was the highest threshold for exemption that was used---the threshold varied over
time.



previously (see, Aron, Dumont and Le Roy-Ladurie (1972); Van Merten (1990), Weir

(1997), and Heyberger (2005)). However, this paper is the first to assemble and exploit

the data on mean height and proportion of those stunted for all departments and every

year between 1872 and 1912.6 The details of the data construction are presented in the

appendix.

Moreover, we also conducted original archival work in three departments to

collect military data at the level of the canton (the smallest administrative unit after the

"commune", or village) in three wine growing departments (Bouches du Rh6ne, Gard and

Vaucluse). The precise height data was not stored at this level, but the canton level data

tells us three things: The fraction of people not inducted into the military for reason of

height (which is available only until the cohort conscripted in 1901, since the military did

not reject anyone based on height after that year), the fraction rejected for reasons of

"weakness", and the fraction put into an easier service for the same reason.

We use the data for the years 1872-1912 (corresponding to years of birth, 1852-

1892), which span the Phylloxera crisis, as well as the period before and the recovery,

since this is the period for which the military data is the most representative of the height

in the population. Starting in 1872, everyone had to report for military service. Starting in

1886, everyone's height was published, even if they were subsequently exempted from

the military service. Therefore, the data is representative of the entire population of

conscripts from 1886 on, and from 1872 to 1885, we are missing the height data for those

exempted for health reasons (15%) or for other reasons (25%). We discuss in the

appendix what we assume about the height of those exempted to construct estimates that

6 With the exception of Postel-Vinay and Sahn (2006), which was written concurrently with this article and

exploits the same data set.



are representative of the entire sample, and using a complete individual level dataset

available for a sub-sample, we show that these assumptions appear to be valid. The data

should therefore be representative of the entire population of young men who presented

themselves to the military service examination in a given region.

This sample may be still endogenously selected if Phylloxera led to changes in the

composition of those who reported to the military conscription bureau in their region of

birth, either because of death, migration, or avoidance of the military service. According

to historians of the French military service (e.g. Woloch (1994)), the principle of

universal military conscription was applied very thoroughly in France during this period.

A son had to report in the canton where his father lived (even if the son had subsequently

migrated) and the father was legally responsible if he did not. Avoidance and migration

by the son are therefore not likely to be big issues. As a check, we computed the ratio

between the number of youths age 15-19 in each department in each census year, and

sum of the sizes of the military cohorts in the four corresponding year years (for example,

a youth age 19 (resp, 17) in 1856 was a member in the class of 1857 (resp. 1859): The

average is 99% and the standard deviation is low (table 1). Moreover, as we will show in

table 8, this ratio does not appear to be affected by the Phylloxera crisis.

The main potential sample selection problems that remain are therefore those of

differential migration by the fathers and mortality between birth and age 20. We will

show in the robustness section that neither of these seems to have been affected by the

Phylloxera infestation.

Finally, we use data on number of births and infant mortality (mortality before

age 1), from the vital statistics data for each department and each year and two data series



constructed by Bonneuil (1997) using various censuses and records of vital statistics: The

first one gives the life expectancy of females born in every department every 5 years,

from 1806 to 1901. The second gives the migration rates of females, both for the young

(20 to 29 year olds) and for the entire population.

IV. Empirical Strategy

A. Department-Level Regressions

Figures 3 and 4 illustrate the spirit of our identification strategy. Figure 3 shows mean

height in each cohort of birth for wine-producing regions (where wine represents at least

15% of the agricultural production) and other regions. Wine-growing regions tend to be

richer and, for most of the period, the 20 year old males are taller in those regions than in

others. However, as Figure 4 shows very clearly, the difference in average height between

those born in wine-producing regions and those born in other regions fluctuates. The

striking fact in this figure is how closely the general trend in the difference in mean

height follows the general trend in wine production. Both grow until the end of the 1860s,

decline in the next two decades (when the Phylloxera progressively invades France) and

increase again in the 1890s, when wine grafting allows production to again rise.

The basic idea of the identification strategy builds on this observation: It is a

simple difference in differences approach where we ask whether children born in wine

producing departments in years where the wine production is lower due to the Phylloxera,

are shorter at age 20 than their counterparts born before or after, relative to those who are

born in other regions in the same year. Likewise, we can ask whether they have worse

health (as described by the military, lower life expectancy, lower long term fertility, etc.).

The difference in differences estimates are obtained by estimating:



(1) yo.=a PU+ ki+dj+u,

where yu is the outcome variable (for example: height at age 20, life expectancy) in

departement i in yearj, Pj1 is an indicator for Phylloxera (constructed as explained in

section 2, and set to 0 if the department was not a wine producing department7 ), ki and dj

are department and year fixed effects, and uij is an error term (following Bertrand, Duflo,

and Mullainathan (2004), the standard errors are corrected for autocorrelation by

clustering at the department level).

We also run the same specification after controlling for department-specific

trends:

(2) yii=a Pij+ ki+tij+di+u.

Also run is an alternative specification where we use a continuous measure of how much

a department is affected by the crisis, instead of the dummy: The measure is constructed

by interacting the dummy indicating that Phylloxera has reached the department with the

area of vineyard per capita before the crisis (we use average area of vineyards over the

years 1850-1869, taken from Gallet, as our pre-crisis measure). An alternative continuous

measure is the fraction of wine in agricultural production before the crisis, multiplied by

the fraction of the population deriving a living from agriculture.8

Finally, in some specifications, we restrict the sample to those departments where

wine represented at least 15% of the agricultural production before the crisis. All these

regions were affected by the Phylloxera at one point or another, and in these

specifications we therefore only exploit the timing of the crisis, not the comparison

between regions that may otherwise be different.

7 I.e. less than 15% of the agricultural income came from wine before the crisis.
8 We will argue below that this appear to be a correct approximation of the fraction of people who lived in
wine growing families.



All these regressions consider the year of birth as the year of exposure. But one

could easily imagine that the Phylloxera affects the long-run height (or other measures)

even if children are exposed to it later in their lives. We will thus run specifications

where the shock variable is lagged by a number of years (so it captures children and

adolescents during the crisis). For a specification check, we will also estimate the effect

of being born just after the crisis.

B. Canton-Level Regressions: Gard, Vaucluse, Bouches-du-Rh6ne

With regressions run at the department level, one may worry that any relative decline of

height during the Phylloxera crisis is due to some other time varying factor correlated

with the infestation. This concern is in part alleviated by controlling for department

specific trends, but since we are considering a long time period, it is still conceivable that

the trends have changed in ways that are different for regions and cohorts affected by

Phylloxera, but for reasons that have nothing to do with the disease. We therefore

complement this analysis by an analysis performed at the level of the canton: For three

departments in Southern France (Gard, Vaucluse, and Bouches du Rhone) we collected

data on military conscripts at the canton level from the archives in each of these

departments. Data on wine production is not available yearly at this fine a level, but the

area of vineyards was collected for the 1866 agricultural enquiry, and is also available at

the canton level in the archives. We will combine this measure of the importance of vine

production before the crisis with the indicator for the fact that the department as a whole

was hit by the disease as a proxy for the impact of Phylloxera on wine-production.

The specification we use for these departments is as follows:

(3) yaik=a (P~j*Vk)+ mk +di+Uijk,



where Vk is the hectares of vineyards in 1866 in canton k, Py is, as before, a dummy

indicating whether department i is affected by the Phylloxera in yearj, dji is a department

time year fixed effect and mk is a canton fixed effect. This specification only compares

cantons within the same department, and it fully controls for department times year

effects: It thus asks whether young men born in cantons where wine was more important

before the crisis suffered more due to the crisis than those born in cantons where it was

less important.

IV. Results

A. Height

Table 3 shows the basic results on the height at age 20, at the level of the department.

Depending on the specifications, we find that, at age 20, those born in the Phylloxera

years are 1.5 to 1.9 milimeters smaller than others, on average. They are also 0.35 to

0.38 percentage points more likely to be shorter than 1.56 centimeters. In panel C and D,

we use the continuous measure of exposure to the Phylloxera (hectares of vineyards per

capita), first in the entire sample and, in order to check that the results are not driven

solely by the contrast between wine-producing and non wine-producing regions, in the

sample of departments where wine is at least 15% of agricultural production. We find

that, in wine-producing regions, one more hectare of vine per capita increases the

probability that a 20 year old male is shorter by 3% and reduces his height by 1

centimeter. If instead, we use data from all the regions, the effects are respectively 1.85%

and 7 milimeters.

The best way to scale the effect of the Phylloxera crisis would be to use the

fraction of the population living in wine producing households. There is, unfortunately,



no data source on this. To proxy it, we use the product of the share of wine in agricultural

income before the crisis (in 1862) and the share of the population living in households

whose main occupation is agriculture. This would be an overestimate of the fraction of

population living in wine producing households9 if the output per worker was higher for

wine than for other agricultural products. Estimates based on the cross-department

variation in output per worker and share of wine in agricultural production suggest,

however, that the output per worker in wine and non wine production is similar, so that

the coefficient of this variable can then be interpreted as the effect of the crisis on wine

growing families. We show this specification in panel E (for all regions) and F (for wine

producing regions only). The regressions indicate that a child born of a wine producing

family during the Phylloxera crisis was 0.5 to 0.9 centimeters smaller by age 20 than he

would otherwise have been. This is not a small effect, since heights in France grew only

by 2 centimeters in the entire 19th century: In term of stature, being born during the

Phylloxera crisis in a wine producing region was equivalent to losing almost half a

century worth of growth.

Table 4 shows the results of the specification at the canton level of the 3 wine-

producing departments. The results can be directly compared to the results in panel C and

D of table 2, since, as in that table, the explanatory variable is the number of hectares of

vines divided by the population. One difference is that the data are only available for men

born until 1881, and the other is that the threshold for being rejected is not 1.56 meters,

but 1.54 meters. This specification also suggests a significant impact of the Phylloxera on

height: We find that the probability of being rejected for military service because of

height was 1.3% higher for each additional hectare of wine per capita. This is a somewhat

9 Which would lead to an underestimate of the effect of the Phylloxera when we use this variable.



smaller number than what we found in the department-level specification, but the two

numbers are not statistically different, and are of the same order of magnitude. The fact

that this specification, which uses a much finer level of variation, provides results that are

consistent with the department-level results, is reassuring.

Table 5 investigates the effects of the Phylloxera on various regions and cohorts.

Columns 1 to 4 estimate the effect of the Phylloxera on various cohorts. Column 1 is a

specification check: We define a "born after Phylloxera" dummy, and confirm that those

born immediately after the Phylloxera epidemics are no shorter than those who were born

before. This is another element suggesting that the effect is probably not due to an

omitted changing trend. Column 2 examines the effect on those who were young children

(1 to 2 year olds), or toddlers (2 to 5 year olds) at the time of the epidemic. Interestingly,

we find no long-run effects on them. Finally column 3 looks at the effect on those who

were teenagers during the crisis, and finds again no effect on them. It seems that the

shock had no long lasting effects if it was experienced later in childhood.

Column 4 presents another specification check: We run a specification similar to

equation (2) (with the dummy set to 1 for regions where wine represents at least 15% of

agricultural production), but we also include a Phylloxera dummy for regions that

produce less than 15% of wine. Vineyards in those regions were also affected by the

Phylloxera (so that the "Phylloxera" variable can be defined as for all regions) , but we

do not expect this to really affect average height, since wine did not affect most of the

people in this region. Indeed, the coefficient of the Phylloxera dummy in regions

producing little wine is insignificant (and slightly positive).

Column 5 separates the regions that were affected early and those that were



affected late (we code as "early" regions where the Phylloxera was first spotted before

1876, the median year at which it reached the regions). Since the disease was progressing

slowly from one region to the next, the regions affected later might have been able to

anticipate the crisis, and thus avoid a part of the negative impact. This is not what we

find: The effect seems to be just as large in regions affected later on.

B. Other Health Indicators

While height is an important indicator of long run health, it is also important to estimate

whether the Phylloxera affected more acute indicators of health, both in the short run

(infant mortality) and in the longer run (morbidity, life expectancy).

1. Mortality and Life Expectancy

Our next measure of health is the life expectancy of those born during the Phylloxera

periods. To study this question, we take advantage of data constructed by Bonneuil

(1997), from censuses and corrected vital statistics. Bonneuil constructed with great care

life expectancy at birth for women born every 5 years from 1801 to 1901.10 In column 1

of table 6, we use this variable as the dependent variable, still using the specification

from equation (2). We find no impact on life expectancy.

Another (cruder) measure of mortality is given by our data: Since after 1872,

everyone age 20 was called for the military service and since, as we will show below, it

does not appear that there was selective migration out of the Phylloxera departments, a

proxy of survival by age 20 for males is given by the size of the military cohort (classe),

divided by the number of births in that cohort (column 3). This measure also shows no

effect of Phylloxera. We also construct the ratio of the size of the classe and the number

10 Focusing on women avoids biasing the results due to the massive mortality of men during the first world
war.



of children who have survived to age 1 (column 4), and again see no effect. Finally,

column 6 presents the results on infant mortality (mortality before 1). There again, we

find no impact.

2. Military Health Data

To investigate the size of the impact of the Phylloxera infestation on health, we then

exploit the data collected by the military on those exempted for health reasons, and the

reasons for which they were exempted. We use the same specification as before, with the

total number of people exempted, and then the number of people exempted for various

conditions, as dependent variables. We use the specification in equation (2) (with

department-specific trends).

Column 1 of Table 7 displays a surprising result: The number of young men

exempted for health reasons is actually smaller for years and departments affected by the

phylloxera outbreak. However, the following columns shed light on this surprising result:

The incidence of all the precisely defined illnesses (such as myopia, goiter, epilepsie etc.)

are in fact unaffected. The only category of health condition that are affected are that of

"faiblesse de constitution" (or weakness) and hernia. Weakness is clearly something that

is subject to interpretation and one very plausible explanation for what we find is that,

faced with the necessity of drafting a fixed number of people for the contingent, the

military authorities were stricter with the application of the "weak" category at times

where they were rejecting more people for reasons of height. The negative effect on

hernia is more puzzling, but could be due to the fact that these cohorts performed less

hard physical labor at young ages.

Overall there seems to be no clear evidence of a negative long-run impact of



Phylloxera on any health condition: While it affects long-run height, it seemed not to

cause any other physical problems. The conclusion is similar when using "canton" level

data (table 4), in the three wine producing regions. In this data, we have the number of

people exempted from military service because of weakness. If we consider the years

until the year of birth 1881 (class of 1901), there is no impact of the Phylloxera on

exemption for weakness. After 1901, however, the military adopted a policy of not

rejecting anyone because of height and when we include the post 1901 period, we do see

an increase in the number of those exempted for weakness during the Phylloxera period.

This suggests that after 1901 some of those who would have been exempted based on

their height were now exempted based on being labeled as weak, another indication of

the permeability of those two categories.

C. Robustness to Sample Selection

Table 5 presented a number of specification checks confirming the fact that those

conscripted 20 years after the department where they reported was affected by

Phylloxera, are shorter than others born in other years. However, as we have pointed out

above, while a strength of the military data is that it covers a large sample of the male

population, there are some reasons to worry about selection biases. The main source of

potential selection bias comes from the composition of the military class (the cohort who

was drafted in each department in each year), and whether it is representative of all the

children born in the department, or of all the children that would have been born in the

department in the absence of the Phylloxera.

Selection could arise at several levels. First, there could be fewer births during the

Phylloxera period, either due to fewer conceptions or to more stillbirths. The "marginal"
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(unborn) children could be different than the others, in particular they could have been

weaker, had they lived. We regress the number of live births in a year, as well as the ratio

of stillbirths to total births in the Phylloxera years in table 6 (columns 2 and 5). There

does not appear to be an effect on the number of births.

Second, there could be more infant mortality in the Phylloxera years, thus

selecting the "strongest" children. However, we have seen in table 6 that life expectancy

and the ratio of the size of the class over the number of births, or the number of survivors

by age 1, were unaffected.

Third, children born in Phylloxera years may have been less likely to report for

service where they were born. Since they have to report in the place their parents live,

this would be due either to avoidance by the child or to migration of the children's

parents: Some people may have left the affected regions during these years. Table 8

shows some evidence showing that neither avoidance, nor migration, is likely to be

biasing our results: To get a measure of avoidance, we construct the ratio of the size of

five subsequent military cohorts on the size of the census cohorts for people age 15-19

(as discussed above, the mean of this ratio is 99%). As shown in column 3 of table 9, this

is no different for children who were affected by the Phylloxera, suggesting they were no

more likely to avoid military service. Finally, columns 1 and 2 use data constructed by

Bonneuil on the migration of women. We use the fraction of women aged 20-29 and aged

20-60 who migrated as dependent variables. There appears to be no effect of the

Phylloxera on migration out of the affected departments. This does not mean that people

did not migrate at all: In the three departments for which we have canton-level data, we

find that find that the classes born in Phylloxera years are smaller in the cantons that
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relied more intensively on wine production (column 4, table 4). This, combined with the

fact that we see no migration out of the departments, suggest that some of the families

may have migrated out of the wine producing cantons but remained in the department."

V. Conclusion

The large income shock of the Phylloxera had a long-run impact on adult height, most

likely due to nutritional deficits during childhood. We estimate that children born in

affected regions during the years of the crisis were 0.5 to 0.9 centimeters shorter than

their unaffected peers. This is a large effect, considering that height increased only by

two centimeters over the period. Similar results are obtained when comparing

departments with each other or when using data at a lower level of aggregation, the

canton, which reinforces our confidence in their robustness. The effects are concentrated

on those born during the crisis, and imply that they suffered substantial nutritional

deprivation in-utero and shortly after birth, and those had long term impact on the stature

they could achieve.

However, this crisis did not seem to result in a corresponding decline in other

dimensions of health, including mortality, even infant mortality. This suggests, as

suggested by Deaton, Cutler and Lleras-Muney (2006) that despite the shock to income

and corresponding decline in nutrition, health status may have been protected by other

factors, for example public health infrastructure (see Goubert (1989) on the importance of

clean water in the period).

" A regression of the urbanization rate on the Phylloxera dummy (controlling as usual for department
dummies, year dummies, and specific department trends) suggests indeed that urbanization progressed
significantly faster in Phylloxera years in the affected departments.
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Appendix: Data Sources and Construction

This chapter relies on a number of data sources, often assembled in electronic form for
the first time. We are pleased to make all the data available for distribution. This
appendix details the sources and the procedures followed to construct the data.

1. Wine and Wheat Production

a. Aggregated Data on Wine Production

The aggregate data on wine and production comes from Statistique Generale de la
France, Annuaire Statistique, 1932, Paris, Imprimerie Nationale, 1933, p, 55*-56*.

b. Department-Level Wine Production and Phylloxera Crisis

The source is: Pierre Galet's Cepages et Vignobles de France (Galet, 1957) which gives
yearly the area planted in vines and the volume of wine produced in almost every wine-
growing department from 1860-1905. We used the yearly series on wine production as is.
We computed a measure of pre-phylloxera area planted in wine by computing the
average surface planted in vine during the years 1850-1869. We also obtain from Galet
the year of the first time the Phylloxera was spotted in every important wine-growing
department.

c. Department-Level Yearly Series on Wheat Production

From 1852 to 1876, the data comes from : Ministere de l'Agriculture et du commerce
Recoltes des cdreales et des pommes de terre de 1815 a' 1876, Paris, Imprimerie
Nationale, 1878. From 1877 onwards, it comes from Statistique G6nerale de la France,
Annuaire Statistique, 1932, Paris, Imprimerie Nationale, 1878--.

d. Canton-Level Data on Wine Production Pre-Phylloxera

We use the data on wine surface from the Agricultural Inquiry of 1866 (Ministbre de
l'Agriculture, du Commerce et des Travaux Publics, Enquete agricole, 20 serie, enquetes
departementales, 220 et 230 circonscription, Paris, 1867), which are available at the level
of the canton.

2. Population data

a. Department-Level Population

The population (and the agricultural population ) of each department was obtained from
the 1876 census. Statistique de la France: Resultats generaux du d6nombrement de 1876.
Paris, Imprimerie nationale, 1878.
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b. Canton-Level Population

The data on the population of cantons was taken from the military data (see below). The
wine superficie in 1866 was normalized by the canton population in 1872.

c. Births and Deaths

Total number of births, stillbirths, and total number of deaths before age 1 are obtained
from the vital statistics, reported annually in "Statistique Gen6rale de la France: Annuaire
statistique de la France, Paris, Imprimerie nationale" (various years). We computed infant
mortality as the number of deaths before the age of 1 divided by the number of births
during the previous year. As Bonneuil (1992) describes in detail, both the data on births
and deaths are noisy, and the data has very large outliers. We exclude from the raw series
the observations where the infant mortality is in the bottom percentile or the top
percentile. This does not remove any department but removes a few very low or very
high observations in some departments.

3. Military Height and Health Data

a. Sources: Department-Level Data

The department level data is reported yearly (since 1836) in the yearly publications
"Compte rendu sur le recrutement de l'arm6e". Young men born in a given year, for
example 1852, formed the "classe of 1872". They were normally examined early the
following year, at the age of between 20 years plus 8 months on average (plus or minus 6
months depending on the date of birth). They were measured and received a medical
exam.

Before 1871, not everyone was called for the military service: Each young man received
a random number, and people were examined in random order until the size of the
"contingent" (active army) needed for the year was filled. It was also possible to
exchange with someone else. The size of those exempted for health reasons was not
reported.

The data becomes clearer after a 1872 law (following the defeat of Germany) which
changed the nature of the military service: Everyone was now called, and replacements
were not allowed. The statistics also reported the height of a much larger fraction of the
class. There are two periods in the data:

1) From 1886 to 1912: Things are very simple. Every young man was examined, and
a summary table reported the distribution of height for the entire cohort (as the
number of people falling into various bins-the number of bins varied from 10 to
26.

2) From 1872 to 1885:
* Every young man was called to be examined. From 1872 to 1885, a

"classe" was about 300,000 young men. Only about 10,000 per year did
not present themselves (3%), and were therefore not measured.

* Among those who were measured
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i. A fraction (about 50% of the cohort) was put in the "contingent",
or active service. Their height is recorded in bins in the table
"contingent".

ii. A fraction (10%) was put in a category "auxiliaire" (they were
asked to do an easier military service). Their height is recorded in
bins in the table "auxiliaires", with the same category as the table
for the contingent.

iii. A fraction (7%) was put in a category "ajournes" (they were asked
to sit out and to go be examined again the following year-
fortunately, their data was not aggregated with that of the rest of
the contingent the following year). A number of them were
"ajoumrns pour defaut de taille" (too short), and we therefore know
that they are smaller than the height threshold in those years
(1.54m). A number were "ajournms pour faiblesse de constitution"
(weakness) and following Weir (1997) we assume that they are
taller than the minimum threshold (otherwise, they would have
been "ajournes pour defaut de taille", and that they are otherwise
distributed like the rest of the population above this threshold.
They represents only a fairly small fraction of the population
(about 5%).

iv. A fraction (another 10% of the population) was put in a category
"exemptes" (exempted) for health reasons. Still following Weir
(1997) we assume that their height has the same distribution as the
rest of the population.

v. A fraction (about 25% of the population) was "dispenses", and did
not need to do the military service, for reasons other than health
(priests, sons of widows, etc. where put in this category). Their
height was not reported in the summary descriptive either, and we
assume that their height as the same distribution as the rest of the
population.

Fortunately, since everyone was measured, it is possible to check some of these
assumptions (which this paper is the first to do). Farcy and Faure (2003) collected
individual level military data on about 50,000 young men born in 1860 (classe of 1880)
in Paris and a few other departments. Figure Al compares the distribution of height of the
those who serve in the active service to that of the "dispenses" (25% of people exempted
from the military service for reasons other than health).12 The distributions are right on
top of each other. Figure A2 compares those exempted for health reasons to the entire
observed population (dispenses+auxiliaires+ajoumrns). While the correspondence is less
perfect (the distribution of height of the exempted has less mass at the mode), the median
of the two distribution are the same (165 centimeters) and the means are also extremely
close (165.09 centimeters for the exempted, and 165.26 centimeters for the rest of the
population). This suggests that the approximations that are done in this paper are
acceptable.

12 For both figures we estimate the distribution with a kernel density estimator, using an Epanechnikov
Kernel and a bandwidth of one centimeter.
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There was a last complication: From 1872 to 1885, the aggregate data was
not reported at the level of the department, but at a smaller level (military
district). We entered the data at that level and re-aggregated at the
department level.

b. Sources: Canton-Level Data

The height data were published after aggregation at the level of the department, but some
data was also tabulated at the level of the "cantons". The yearly reports ("Comptes
statistiques et sommaires) are kept in the departmental archives, where we collected them
for three departments: Gard, Vaucluse, and Bouche du Rhone. The height distribution
was not tabulated at that level, but the population of the canton, the number of youth
placed in auxiliary service, the number of youth asked to sit out because they were too
short, and the number of youth placed in the active service was recorded. Note that we
lose this information after the class of 1881, since height stopped being a reason for
exemption at this time.

c. Computations Methods

The records on height provide data in a summary form, giving the number of conscripts
in height bins of various widths-for example the number of those between 1.54 and 1.63
meters or those between 1.67 and 1.70 meters. Men shorter than the minimum height
requirement were exempt from service, and listed as "defaut de taille" (lack of height) in
the exemption statistics, resulting in left-censored data.13 The data are in fact double-
censored, since the final category includes conscripts above a certain height, 1.73 meters
for example. Between 1850 and 1912 the number of categories changes several times,
reaching a maximum of 28 from 1903-1912 and a minimum of 9 from 1872 to 1900.

We estimate the departmental distributions of height two ways. First, we assume that the
distribution is normal and estimate the parameters of the distribution by maximum
likelihood estimation. The log likelihood function is maximized using a simplex search
algorithm using starting guesses of 1.66 meters for the mean height and 0.04 meters for
standard deviation. 14 Provided the assumption of normality holds, this technique yields
efficient estimates of the means and variances of the distributions. We use the mean of
the distribution estimated following this procedure.

While height typically follows a normal distribution among adult populations (and the
graphs we just discussed indeed appear to be normal), the distribution of height among

13 The minimum height is 1.56m from 1832 to 1871 and 1.54m from 1872 to 1900. From 1901 on there is
no minimum height requirement.
14 The general form of the log likelihood function for this data is

L = c•*In x - + ci --U D xi-I, P +c 1 *In 1-0 x1-
" i=2 O" " "i

where n is the number of height categories, c is the number of observations in each category, and x is a
boundary between categories and phi is the standard normal cdf.
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French conscripts may differ from a normal distribution. In particular, if the Phylloxera
crisis did affect the long term health, it could result in a distorted distribution. In a
population with varying levels of initial health, an income shock might therefore not
simply shift the distribution; it could have bigger effects at the tails. Imposing a normal
distribution on affected regions may obscure these effects.

We therefore also estimate the height distributions non-parametrically. For each
department-year cell, the number of observations equals the number of height categories.
Each category is assigned the value of the mean of its limits and weighted by its count of
conscripts. The extreme lower and upper categories are assigned values one centimeter
below and above the censoring points. Using a kernel density estimator, we estimate the
PDF evaluated at fifty evenly spaced heights."5 Riemann summation transforms the
points of the PDF into a CDF, and we interpolate to find the deciles of the distribution.
We use this estimated data to compute a uniform series for the percentage of individuals
measured who are shorter than 1.56 meters (very short), which we use as an alternative
dependent variable.

4. Life Expectancy and Migration

The life expectancy and migration data were constructed by Bonneuil (1997) from vital
statistics and census data that he very carefully corrected to provide consistent data.

'5 We use a Gaussian kernel with optimal bandwidth approximated by h 0 .9 m , where m is the sample
variance of the midpoints of the height categories and n is the number of categories.

variance of the midpoints of the height categories and n is the number of categories.
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Figure lA: Phylloxera in 1870
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Figure IB: Phylloxera in 1875
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Figure IC: Phylloxera in 1880
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Figure ID: Phylloxera in 1890
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Figure Al:. Height Distribution in IndividualData
Active service vs exempted (other than heat)

8-

t20 io 1 i40
:Height in centimeters

i80 200

S Service act - - -- Dispenses
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TABLE 1
Summary Statistics

Mean Std. deviation Observations
(7) (8) (9)

Superficie grown in wine (hectare) 28205 33549 2165
Log wine yield (value per hectare) 2.55 0.83 2153
Log(wine production) (value) 12.03 1.87 3088
Log(wheat production) (value) 13.66 0.89 3209
Share of wine in agricultural production (1863) 0.15 0.14 3649
Share of population working in agriculture 0.58 0.15 3526
Superficie grown in wine per habitant 0.07 0.09 3769
Share of populationin agriculture* share of wine in
agricultural Production 0.09 0.08 3526
Number of live births 10751 8593 2795
Share of males surviving untilage 20 0.69 0.23 2683
Share of males surviving until age 20 (conditional on
surviving till 1) 0.85 0.29 2599
Share of still births 0.04 0.01 2795
Infant mortality (death before age 1/live birth) 0.17 0.04 2486
Life expectancy (women) 44.34 4.55 630
Net outmigration of youth age 20-29 -0.02 0.05 690
Net outmigration (all) -0.02 0.02 690
Military class size 3567 2708 3526
Military class/census cohort aged 15-19 0.99 0.27 504
Proportion exempted for health reasons 0.24 0.07 3354
Mean height of military class at 20 1.66 0.01 3526
Fraction of military class shorter than 1.56 meters 0.05 0.02 3526
Height of percentile 10 1.57 0.01 3526
Height of percentile 20 1.59 0.01 3526
Height of percentile 25 1.60 0.02 3526
Height of percentile 50 1.65 0.01 3526
Height of percentile 75 1.69 0.01 3526
Height of percentile 80 1.70 0.01 3526
Height of percentile 90 1.72 0.01 3526
Notes:

1-Except when otherwise indicated, this table presents average by department of the variables used in this paper
over the years 1852-1892 (corresponding to the military classes 1872-1912, and years of birth 1852-1892).
2- Data sources are described in details in the data appendix.
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TABLE 3
Impact of Phylloxera on Height at Age 20

Dependent variables
Fraction shorted than

Mean height 1.56 meter

(1) (2)
A. Year dummies, departement dummies
Born in phylloxera year -0.00150 0.00358

(.00093) (.00204)
Observations 3485 3485
Department trend No No

B.Year dummies, departement dummies, departement trend
Born in phylloxera year -0.00188 0.00381

(.00095) (.00173)
Observations 3485 3485
Department trend Yes Yes

C. Hectare of vine per habitant
born in phylloxa year *hectare -0.00753 0.01928
vine per habitant (.00389) (.01142)
Observations 3485 3485
Department trend Yes Yes

D. Hectare of vines per habitant (wine producing region only)
born in phylloxera year*hectare -0.01101 0.03074
vine per habitant (.00422) (.01352)
Observations 1558 1558
Department trend Yes Yes

E. Share of population in wine growing families
born in ohylloxera* -0.00551 0.01198
Importance of wine (.00392) (.00985)
Observations 3485 3485
Department trend Yes Yes

F. Share of population in wine growing families (wine producing regions)
Phylloxera* -0.00901 0.02257
Importance of wine (.00459) (.01228)
Observations 1558 1558
Department trend Yes Yes
Note:
1-Each column and each panel present a separate regression.
2- The dependent variables are mean height (or proportion shorter than 1.56
meters among a military class in a department and year).
2-"Born in Phylloxera year" is a dummy equal to I if the department
was affected by phylloxera in the year of birth of a military cohort
(see text for the construction of this variable).
3-All regressions include department dummies and year dummies.
4-Standard errors corrected for clustering and auto-correlation by clustering
at the department level (in parentheses below the coefficient).
5- The share or population in wine growing families is estimated, as described in the text.
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TABLE 4
Effect of Phylloxera on Height, Weakness and Exclusion for Other Reasons

Canton-Level Regression for Three Departments

Dependent variable: Canton-level means
Fraction
rejected for
size

Fraction rejected for
weakness Class size

(1) (2) (3) (4)
Hectare of vine per habitant in canton 0.01498 0.00033 0.01664 -64.38
*phylloxera was present in department in year of birth (.0074) (.0186) (.0081) (37.52)
Observations 2040 2040 2590 2610
Department*year fixed effect Yes Yes Yes Yes
Canton fixed effects Yes Yes Yes Yes
Sample 1852-1881 1852-1881 1852-1891 1852-1892

Mean of dependent variable 0.019 0.090 0.10 147
Standard deviation of dependent variable 0.019 0.056 0.06 291
Notes:
1-Data source: archival canton-level data collected by the authors for three departments affected by the
phylloxera: Vaucluse, Gard, and Bouches du Rhone.
2-The data set contains canton-level data for these three department for the years 1852-1891.
2-All the regression include separate fixed effects for each year in each department and canton fixed effects.
3- All standard errors (in parentheses below the coefficient) are clustered at canton-level.
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