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Abstract

The subject of this thesis is devoted to a class of multiparticle entangled states known
as the cluster-states. In particular, we focused on a system of four spins and studied
the entanglement properties of a four-qubit cluster-state, using a set of entanglement
measures for quantifying multipartite entanglement. We then experimentally pre-
pared the linear cluster-state in a liquid NMR sample of crotonic acid, by applying a
set of pulses generated by the Gradient Ascent Pulse Engineering (GRAPE) algorithm
on a temporally averaged pseudo-pure state of four carbon spins. While our spectral
results were consistent with the creation of a linear cluster-state, the reconstruction
of the experimental density matrix via a full state tomography of the system revealed
additional challenges in the detection of certain desired spin terms. These problems
must be overcome before the system could be studied quantitatively.
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Chapter 1

Introduction

1.1 Entangled states and the measurement-based

model of quantum computation

Quantum computation relies on the superposition principle to store and manipulate

information with greater efficiency than that achieved by a classical computer. The

computational basis in quantum information is known as a qubit, which is analogous

to the unit of binary memory in classical computation. Qubits can be physically rep-

resented by two-level quantum systems and are expressed in the orthogonal quantum

states 10) and I1). It is the superposition of these computational bases that gives a

quantum computer an enhanced capability over its classical counterpart, since parallel

operations can be performed on all combinations of quantum states at once.

The implementation of quantum computation (QC) involves applying quantum

gates and measurements to a set of prepared qubits [1]. A quantum gate is typically

a unitary operation that coherently manipulates the superpositions of quantum states.

It has been shown that there is a universal set of quantum gates upon which any ar-

bitrary unitary gates can be constructed. This set includes all single-qubit operations

and one conditional two-qubit gate, such as the controlled-NOT [2]. For most com-

putations, the outcome needs to be a classical string and so the quantum algorithm

ends in a final projective measurement that destroys all quantum superpositions.



There have been experimental demonstrations of the basic principles of quantum

computation using various physical implementations, including: ion traps, optical

cavities, and nuclear magnetic resonance (NMR). However, the scalability of these

models to a system that can match the computational power of current classical

computers is hampered by the difficulty of maintaining quantum coherence in the

system over the duration of computation. Furthermore, while there exists a universal

set of gates, the construction of n-qubit unitary operations requires a number of gates

that scales exponentially with the size of the system [3].

To overcome these challenges while building a sizable quantum computer, sig-

nificant theoretical advances have been made in recent years including error correc-

tion [4, 5, 6, 7] and teleportation [8]. Most of these techniques rely upon the concept

of entangling measurements, in which the act of measurement on an entangled state

transfers quantum information from one place to another, rather than destroying it

entirely [9]. Entangled states are therefore valuable resources for QC, especially since

they are ubiquitous in large quantum systems.

One specific class of entangled states, the cluster-state or graph state, is generated

by Ising-type interactions between neighboring qubits [10, 111. These states are found

naturally in large Hilbert spaces, but can be created in smaller systems by controlling

the interactions between selected qubits, using the standard QC methods of applying

unitary gates. Cluster-states are ideal systems for implementing quantum teleporta-

tion and error correction techniques since they have been shown to be more resilient

to disturbances by local operations than other maximally entangled states and have

the capacity to teleport multi-qubit entangled states [12, 13].

The entanglement properties of a cluster-state has inspired a new scheme of

QC [14], in which information processing proceeds via a series of one-qubit measure-

ments on the cluster-state, followed by conditional gates that are already built into

the entangled substrate. Since computation is executed by a set of measurements,

this model is known as measurement-based or one-way QC. The special feature of

this scheme is that unlike the more conventional models of a quantum computer,

such as the quantum network model [15, 16], information is not encoded in the phys-



ical qubits, but in the entanglement between the qubits. It has also been shown that

for many algorithms, the number of computational steps scales more favorably with

the system size than the network model [11].

1.2 NMR as a quantum information processor

In a NMR quantum information processor, qubits are represented by the nuclear

spins contained within an ensemble of molecules. NMR is an effective testbed for

demonstrating and developing new techniques for QC, due to its long decoherence

time (on the order of seconds) relative to the timescales over which unitary evolutions

occur. This suggests that that quantum information can be preserved over the course

of computation. The application of radiofrequency (RF) pulses in NMR also provides

a robust method for coherently controlling the interactions between specific spins in

the system, thereby allowing the precise implementation of unitary gates [17].

The realization of a quantum information processor in a NMR system was a

challenge at first because spins are in a mixed state at room temperature, whereas

QC requires that its system be in a pure state. Proposals for performing QC in such

an ensemble system were first given by Cory, Fahmy, and Havel [18] and Gershenfeld

and Chuang [19]. The method outlined in [18] involves the creation of pseudo-pure

states, which are mixed states that transform similarly to pure spin states.

The highly mixed nature of the spin states renders the extraction of pseudo-pure

states for more than ten qubits impractical [18, 20]. However, in the nascent stage

of experimentally realizing QC, NMR remains a potent technology for developing

methods of control and demonstrating the implementation of standard quantum al-

gorithms.

1.3 Thesis objective

The objective of this thesis is to create a four-qubit cluster-state via liquid-state NMR

and to use this state to demonstrate one-way quantum computation in an ensemble



system. The creation and detection of the cluster-state can provide interesting in-

sights about the nature of multipartite entanglement, as well as offer an alternative

means of performing quantum algorithms in NMR that is perhaps more robust against

decoherence and other local effects within the sample.



Chapter 2

Cluster-State Description and

Preparation

Entanglement is a special feature of quantum mechanics. It describes a phenomenon

by which the quantum states of spatially separated objects become correlated to

one another in a way that violates classical expectations. Since it is impossible to

define a separate state for each object, measurement of the physical observables in

the system would yield correlated results. For this reason, entanglement is a valuable

and powerful resource for computation, enabling the transmission of data between

qubits (teleportation) and the transfer of error information from a data qubit onto

an observable subspace (error detection and correction).

While two-particle (bipartite) entangled states are fairly well-understood and can

be easily related to the entanglement contained in a Bell-state [21], there exist in-

equivalent classes of entangled states for multi-particle systems with three or more

parties. For instance, tripartite entanglement falls under either the Werner (W) or the

Greenberger-Horne-Zeilinger (GHZ) class [22]. In a four-particle system, new classes

of entangled states emerge which contain properties that differ from those of the W

and GHZ states. One example is the n-qubit cluster-state which was first introduced

by Briegel and Raussendorf [10].

Cluster-states may be generated in arrays of qubits that interact via Ising-type



interactions, under the interaction Hamiltonian [10]

1 + (a) 1 - (a')
Hint = hg(t) f (a - a') 2 2 (2.1)

a,a'

where a and a' represent the lattice sites of the qubits, gf is the coupling strength,

and az is the pauli matrix. Cluster-states are part of a larger family of states known as

graph states, which are states that can be mapped onto a d-dimensional graph formed

by adjoining vertices in which each vertex corresponds to a qubit and connecting graph

vertices infer entangled qubits (see Figure 2-1).

a'

I i

Figure 2-1: Cluster-states or graph-states can be mapped onto a d-dimensional graph
where qubits are represented by lattice sites (circled) and the lines that connect
neighboring vertices a, a' indicate that Hit has been applied to those qubits.

The cluster-states originally conceived by Briegel and Raussendorf and imple-

mented in one-way QC refer to a square lattice array of entangled qubits. With the

incorporation of graph states of various geometries in one-way QC schemes, the term

"cluster-states" is no longer confined to graph states with a square geometry. To

avoid confusion, I will use the term "cluster-state" to describe graph states that are

used in one-way computation models.

For a linear array of n entangled qubits, we can simplify the interaction Hamilto-

nian to
n-1 (a) (a+l)

H oinear ' 1 + a -o• z2
i = hg(t) 1 (2.2)

a=l

where we set f g(t) dt = 7r, since this condition yields a maximally entangled state

(we will define this in a later chapter) [10]. Under this case, the action of Hint is

equivalent to a controlled-PHASE gate between each pair of qubits a and a + 1, with



the corresponding operator 10), a (010I(a+1)+ 11)a (11 Uza+1). The resulting "graph"

corresponding to the mapping of the state onto a geometric plane will have a linear

structure.

For a system consisting of four qubits, the cluster-state can have a linear or box

configuration, as shown in Figure 2-2. The corresponding circuit for generating such

states are shown below in Figure 2-3.

1 2 3 4
0 -- 0--0---0

Figure 2-2: Four-qubit cluster-states.

1 10)

2 10)

3 (0)

4 10)

Figure 2-3: Quantum circuit for the construction of the box cluster shown in Figure 2-
2. Each horizontal wire represents the time-dependent operations on a qubit, with the
initial states indicated on the left. H represents the single-qubit Hadamard operation.
For two-qubit control operations, the control qubit is indicated by the dot and the
operation is shown on the quantum wire for the target qubit. € represents a controlled-
PHASE gate. If the last controlled-PHASE operation between qubits 1 and 4 is left
out, then the resulting state is the linear cluster.

As demonstrated in the quantum circuit, the initial state of the system is Il)initial =

10000). A Hadamard operation performed on each of the four qubits transforms 10000)

into I + + + +), where 1±) = '(10) 1)). This is followed by the application of

controlled-PHASE gates, which are two-qubit operations that rotates the target qubit



along the i-axis by 7r, conditional on the control qubit being in the I1) state. The

final state becomes

kb)box = ~(10 + 0+) + 1i - 0-) + j0 - 1-) + II + 1+)) (2.3)

for the box geometry. If we leave out the C-PHASE operation between qubits 1 and

4, we obtain the linear cluster which has the form

1
0)1•near -= 1(10 + 0+) + 11 + 1-) + 11 - 0+) + 10 - 1-)). (2.4)

The entanglement property of the linear cluster-state allows us to replace the last

C-PHASE gate with the following operation

where x-x represents the swap gate. A box cluster-state can therefore be prepared

from a linear cluster-state by application of the Hadamard gate on qubits 2 and 3,

followed by a swap operation between the two qubits.



Chapter 3

Entanglement Properties of the

Four-Qubit Cluster-State

I will now discuss the different entanglement measures that will be used to quantify

the degree of entanglement in the four-qubit cluster-state.

3.1 Bipartite Entanglement

An important concept in the classification of entangled states is that entangled states

are considered equivalent if they are relatable through local transformations; that is,

entanglement properties are invariant under local unitary operations. For bipartite

entanglement there exists one class of maximally entangled pure states, which are

known as the Bell-states:

i oo 1 00) ( 111)

S 01) - 110)
I)=, (3.2)

where we can take 10) and (1) to represent the up and down spin states along i.

Many methods have been proposed to quantify bipartite entanglement, but scal-

ing these measures to accommodate multipartite entanglement with a larger number

of parties is a formidable task due to the complexicity of multipartite entanglement.



Here we use a measure for global entanglement, Q, to study the entanglement struc-

ture of the cluster-state under the loss of one qubit, and the methods of mixed three-

tangle and concurrence to quantify the remaining tripartite and bipartite entangle-

ment in the system. Two-qubit entanglement will now be explored in greater depth

through an example to demonstrate some of these methods.

1 10) -- R{o()-] -
2 10)

Figure 3-1: Quantum network for the creation of an entangled state using two qubits.

Figure 3-1 shows a set of two operations, with adjustable parameter 0, that can

lead to the creation of a two-qubit entangled state. Both qubits 1 and 2 are initially

in state 10). The first qubit is subjected to a rotation of 0 around the (101) axis for

which the corresponding operator is

0 i 0Rlo1 (0) = I cos- + -(0 + T3) sin . (3.3)

This rotates the first qubit into some superposition of 10) and 11), depending on the

rotation angle 0. The rotation operation is followed by a controlled-NOT gate which

flips qubit 2 conditional on qubit 1 being in the I1) state. This results in the state

0 i 0 i 0
I(O)) = (cos- + sin )100) + sin-•11), (3.4)

with corresponding density matrix

0 1 0,i 9 0 1 0
p() =(cos + sin2 )100)(00 + -( sin-cos + sin -)111)(00j (3.5)

2 2 2 2 2 2 2
i 0 0 1 s 1 .

+ ( sin-cos- + -sin 2)100)(11+ 1sin2 11)(11I.2 2 2 2 2 2 2

It can be shown that Tr{p(0)2 } = 1 and therefore 1,0(0)) is a pure state.

To quantify the degree of entanglement contained in the pair of qubits, one can

examine the purity of the. entangled state under particle loss [231. In a pure state

system, entanglement exists between parts of the system that do not have pure states



of their own. For instance, if a state is separable (can be expressed as a single product

term) and its separable parts are pure, then it is unentangled.

The partial trace operation is a useful method for examining qubit losses in a

system. For a two-qubit state I))AB with PAB = I•)AB AB(OI, the partial trace PA is

defined by

PA = TrB{PAB}, (3.6)

where TrB denotes the trace over B. Representing the trace as an inner-product sum,

Eqn. (3.6) can be re-written, using the basis {IO)B, I1)B}, as

1

PA = E B(iPAB i)B, (3.7)
i=O

Since the basis set of B is of lower rank than that for the composite system AB, the

resulting PA is a reduced density matrix.

Applying Eqn. (3.6) to the pure system in Eqn. (3.5) and tracing over qubit 2,

one obtains
8 1. 2 1 2(

PA(O) = 10)(0(cOS2 +sin2 ) + 1)11(sin2 ). (3.8)

It can be shown that pA = PB, so the particle over which one traces does not matter.

PA is a mixed density matrix; the trace of its square yields cos 2 + ¼sin20 + Isin40

We apply the measure for global entanglement Q = 2 - 2ZTr {p} [23, 24],
i

where n denotes the number of qubits in the system and pi represents the partial

trace over i, to Eqn. 3.8. Q was introduced as a scalable measure of multiparticle

entanglement and has the property of being 0 when the state is a product state and

1 when the state is maximally entangled. When 0 is set to 7r, 1,... , Q is 1 and

the corresponding state in Eqn. 3.4 is that of a Bell-state.

Another measure for bipartite entanglement is the concurrence [25), which is de-

fined as C = I(41) j2, where Il) denotes the resulting state when the operator o•® 0 o

is applied to the complex conjugate of 1k). For the state [i(0)), C = vrsin4 + in2 9

Like Q, concurrence is also an entanglement monotone that has a maximum value of

1 and is 0 for a factorizable state.



The method for computing C for mixed states is outlined in [26]. It involves first

defining the "spin-flipped" matrix as PAB = (y 0 Y) )P*AB(UY 0 ay), where * indicates

complex conjugation, and then finding the eigenvalues of the product PABPAB. The

concurrence is then given by CAB = max{A 1 - A2 - A3 - A4 , 0}, where the A's indicate

the square roots of the eigenvalues, indexed in descending order.

In general, entanglement monotones conceived for pure states can be extended to

mixed states by applying the convex roof formalism [27]. For a mixed state p, one

can compute the value of an entanglement monotone t that was originally defined

for a pure state [0), using

Imixed(P) = min Pi A/(1'i)), (3.9)

where •mixed(P) is the minimum value taken over all possible pure state decomposi-

tions (ZpiJl0i)(0il = p) of the mixed state system .

3.2 Tripartite entanglement

True tripartite entanglement has two inequivalent classes which are the IW) and the

1GHZ) states [22]. These states can be represented by

IW) = (I1001) + 1010) + 1100)) and (3.10)

[GHZ) = 12( 1000) + |111)). (3.11)

The two states are not relatable by local transformations and behave differently under

particle losses. While the entanglement in the GHZ state is vulnerable to even the loss

of one particle (the state becomes fully mixed and thus completely unentangled when

one particle is traced out), the W state retains the maximal amount of entanglement

under particle loss, in comparison to other three-qubit entangled states [22].

To quantify tripartite entanglement, the three-tangle (TABC) [26] is often used.

This measure is based on the method of concurrence for two-particle entanglements



and can be computed by considering the entanglement in a system PABC between

qubit A and subsystem BC, as well as the shared entanglement between qubits A and

B and between A and C. In a pure state system, TABC can be calculated from

TABC = C2(BC) - CAB - CAB, (3.12)

where CAB and CAc are the concurrences for the reduced density matrices PAB and

PAC- C2(BC) considers the entanglement between qubit A and subsystem BC and is

equal to 4 detpA. The special feature of the three-tangle is that it is at its maximum

value of 1 when applied to the IGHZ) state and is 0 for the IW) state [22].

3.3 Four-particle entanglement

There exist nine inequivalent entanglement classes in a four-qubit system [28]. Here

we compare the entanglement properties of a cluster-state to those of the other

maximally-entangled four-qubit, namely the 1W) and 1GHZ) states. These states

are given by

IW) = (10001) + 10010) + 10100) + 11000)) (3.13)

IGHZ) = 1 (10000) + 11111)). (3.14)

In the subsequent sections, we use the method of partial trace to obtain reduced

density matrices for the cluster-state system under one or two particle losses. We

then apply Q and perform pure state decomposition on the reduced density matrix

to quantitatively study the residual entanglement in the system, using the measures

of three-tangle (for residual tripartite entanglement) and concurrence (for residual

bipartite entanglement). The process of purification is shown rather explicitly due to

its relationship to the Schmidt decomposition,. which is another useful measure for

multipartite entanglement.



3.3.1 n-tangle

The measure of concurrence has been generalized to quantify the entanglement in

multiparticle systems with an even number of qubits. This measure is known as the

n-tangle [29] and is defined as Tn = (I1)12, where I' ) = o Inb*). When applied to

the aforementioned states, Tr = 0 except for the GHZ state, for which r7 has a value

of 1.

3.3.2 Schmidt decomposition

Any pure state 10) of composite system AB can be decomposed into a sum of orthog-

onal bases for subsystems A and B:

S= Z iiA)IiB), (3.15)

where A, are called the Schmidt coefficients and have non-negative and real val-

ues. The number of terms in the decomposition (known as the Schmidt number) is

preserved under local unitary transformations and is thus used as an entanglement

monotone. The Schmidt number is 1 for a factorizable state and increases with the

amount of entanglement in the system. The Schmidt decomposition is relatable to

purification in that purifying a mixed system is equivalent to diagonalizing the mixed

density matrix using the Schmidt bases [30].

3.3.3 Four-particle entanglement under loss of one qubit

For the Ip)box state, four different mixed density matrices (pBD, P D, box POD Pc)

result from the loss of one qubit. Each of these matrices is fully mixed (Tr {pb2  =

and so the measure for global entanglement (Q) for this system is 1. Upon pure state

decomposition, the density matrices can be expressed by the sum of two systems,

both of which are pure. If either qubit A or qubit C is traced out, each of the terms

in the decomposition is formed by a pure state that belongs to the three-qubit GHZ



class. For instance, purification of PboD gives

box 1
pbeD = [(|+0+)+I-1-))((+0+l+(-1---)+(l+1+)+ -0-))((+1+I+ --0- |)].

(3.16)
In Eqn. 3.16, each pure state is weighed with a coefficient of .1 The state that forms

the first subsystem, [0)a = 2(l + 0+) + I - 1-)), is equivalent to the 1GHZ) state

under the local unitary H 0 I 0 H, while |1)b = 1(I + 1+) +l - 0-)) can be

converted to IGHZ) by the operation H 9 a. 0 H. Similar relations can be found for

the purification of PABD-

Meanwhile, when qubit B or D is traced out, the resulting system can be purified

into two terms each containing a pure state formed by the product between a Bell-

state and a single qubit state. For example,

box 1
PCD = [(l00+) + 111+))((00 + I + (11 + I) + (101-) + 10-))((01 - I + (10 - )]

1
= 1(14+)(<¢+I 0 I+)>(+I + lW'+)(,+l 0 IH->-I). (3.17)

The decomposition of the linear cluster with the loss of one qubit is equivalent to

that of the box cluster, under the permutations of spins, and yields the same value

of 1 for Q.

For the JGHZ) state, tracing out any one qubit gives the reduced density matrix

pxGH = I(000) (000 + 11 11(111), for which Q = 1. The purification of the system

yields pure states that are entirely unentangled.

The resulting system from tracing out any one qubit in a four-qubit JW) state can

be written as p~ = (3 W) (WI+ 1000) (0001). For this density matrix, Tr{p 2} = 5

and Q = 3
4.

3.3.4 Four-particle entanglement under loss of two qubits

Measures that consider the remaining entanglement of the system under the loss of

any two spins have three values. For the box cluster state, the reduced matrices



box, , , p can be written in the formPABR PCDO PAD; PBD can be written in the form

box __1

PAB = (10+)(0 + ( + I1+)(1 + I + 10-)(0 - + 10-)(0 - I) (3.18)1 1
= [(10)(01 + I11)(11) 0 (1+)(+1+ I-)(-I)]= 4=

On the other hand, plinear and plar can be purified into

PA = 1(1+)( 4 '+1 + I+)(+1). (3.19)

Applying the method of concurrence to these reduced systems gives a value of 0 for

all decompositions.

In the linear cluster, pure state decomposition of the reduced two-qubit system

PAi ar results in

pnar = [(10+) + 11-))((0 + I + (1 - I) + 10-)(0 - I + I1+)(1 + 1]. (3.20)

Applying the operation I OH on pnear gives the expression inear = 1(2 1I+)(+| +

101) (011 + 110) (101). Similar decompositions can be performed on the other two-qubit

mixed subsystems. The two-qubit systems have concurrences of 0.

Meanwhile, The mixed subsystem remaining in the IW) state after the disposal

of any two qubits can be decomposed into

pZ = 1 (I'+)(I+j + 100) (001), (3.21)

for which C = 1. For the IGHZ) state, the remaining system can be represented by

pHZ = (I00)(001 + (11)(111), (3.22)

where C = 0.

Tables 3.1 and 3.2 summarize the entanglement measures used in this chapter and

provide their values for each of the four-qubit entangled states we studied.



Table 3.1: Global entanglement properties of four-particle entangled states 4 )box,

Il)uinear, 1W), and IGHZ). This table shows the values of Q = 2 - Z 1Tr {p},

which examines the mixedness of the system under one particle loss, and the Schmidt
numbers of various subsystems, which refers to the number of terms in the Schmidt
decomposition.

Q Schmidt Number
State PA(BCD) P(AB)(CD) P(AC)(BD) P(AD)(BC)

[1')box 1 2 4 2 4

14)unliear 1 2 3 3 3

IW) 2 2 2 2
GGHZ) 1 2 2 2 2

Table 3.2: Local (pairwise) entanglement properties of four-particle entangled states
I0)box, I)liinear, |W), and IGHZ). This table shows the values of the n-tangle (74), the
mixed state three-tangles for the four possible three-qubit subsystems (1ABC, TBCD,
TACD, rTABD), and concurrences CAB, CAC, and CAD.

State T4 TABC TBCD TACD TABD CAB GAG CAD

10)bo,, 0 0 1 0 1 0 0 0
0)liinear 0 0 1 1 0 0 0 0

1W) 0 0 0 0 0 1 1 1
IW) o o o o o

jGHZ) 1 0 0 0 0 0 0 0

3.4 Interpretations

Entanglement measures tell us to what degree a system is entangled, which is directly

related to the usefulness of the system in quantum computation. The entanglement

contained in multipartite states (pure or mixed) beyond two qubits becomes increas-

ingly difficult to characterize and often one needs to perform more than one measure

to distinguish among several inequivalent classes. There are many possibilities in

identifying a suitable set of entanglement measures for a given system. The Schmidt

measure is an entanglement monotone that is computed from the log 2 of the Schmidt

number. It was used in [31] to examine four-qubit entangled states, including the

cluster-state, JW), and 1GHZ). The results obtained in that study are consistent

with those shown in Table 3.1.

In this chapter, a nine-parameter approach was used to characterize the entan-

glement in a four-qubit cluster state. While the Schmidt measure compares the



separability of a state under different partitions, the method used here makes the

distinction between high-order entanglement, which can be seen as the global en-

tanglement shared among all parties in the system, and the pairwise, or residual,

entanglement of the system under qubit losses.

Q is an effective way of discerning global entanglement because it measures the

degree of "mixedness" in the remaining system under the disposal of any one of the

four qubits. Out of the four states we studied, only the IW) exhibits partial global

entanglement, all the other states have a maximal Q value of 1.

The results of the four-qubit n-tangle is similar to those found in the three-tangle

case, T4 is 1 for a IGHZ) state and vanishes for the IW) state. The cluster-state also

has a vanishing 4-tangle.

The residual entanglement of the system under particle loss is studied using the

mixed three-tangle method and the two-particle concurrence. They both measure the

robustness of a state against the loss of a qubit. For the IGHZ) state, even though

the system has maximal four-partite entanglement, tracing out one qubit completely

destroys all the residual entanglement in the system (as -ABC and C vanish for the

remaining mixed systems). The IW) also has values of 0 for its mixed three-tangle,

but it contains partial bipartite entanglement (C = ½).

For the box and linear cluster states, true tripartite entanglement remains in

some cases. This follows from the purification result. The mixed system from tracing

out qubit A or C can be decomposed into two pure state systems that are locally

equivalent to a IGHZ) state, for which TABC = 1. If one defines the average three-

tangle as = (ABC TABD ACD BD) its value is for both cluster-states

and 0 for the 1GHZ) and [W) states. However, the cluster-states lose all bipartite

entanglement upon the disposal of two qubits, as the concurrence vanishes for all

decompositions.

We therefore find that a combination of nine entanglement measures is sufficient to

distinguish the cluster-state from the JW) and IGHZ) states. By studying the higher-

order (global) and residual entanglement in the systems, one can see that the cluster-

state exhibits properties belonging to both the W and GHZ class. However, unlike



both the IW) and the IGHZ) states, it retains some true tripartite entanglement

under one qubit loss.





Chapter 4

Experimental Cluster-State

Preparation and Detection in

NMR

The set of operations for the creation of the cluster-state was implemented in liquid-

state NMR and applied to a sample of Crotonic acid (C4H60 2). The structure of a

crotonic acid molecule is shown in Figure 4-1. In the molecule, the internal Hamilto-

H7 H6

H8--4--C3---2-C-2 1 0

J9 J5---

Figure 4-1: Structure of a crotonic acid molecule. The four Carbon-13 nuclei
(C1, C2, CS, C4) comprise our four-qubit system. H denotes proton.

nian for the carbon subsystem (with proton decoupling) can be described by [321

4 4 4

Hin,, = E (F)I:' + 27rE  E Jiji -F", (4.1)
i=1 i=1 j=i+l

where 4i(rf represents the chemical shift of the i-th spin at location r; Jij is the

scalar coupling between spins i and j; and IP is the angular momentum operator



(defined as I = -a, where a' is the pauli matrix vector). The J-coupling constants

are: J12 = 75.55 Hz, J23 = 69.75 Hz, J34 = 41.6 Hz, J13 = -1.3 Hz, J24 = -1.6 Hz,

and J14 = 7.1 Hz.

All experiments were conducted using a Bruker 400 MHz NMR Spectrometer. We

prepared the cluster-state using the four carbon nuclei in the molecule, by applying

a series of RF pulses, gradients, and delays. The pulse sequence we used is based

on the set of unitary operations illustrated in the quantum circuit in Figure 2-3,

in which each input qubit is represented by one of the carbon spins in the liquid

NMR system. We implemented the single qubit operations in the circuit by applying

RF pulses generated using the GRAPE algorithm [33] to rotate spins. Meanwhile,

entangling operations between two qubits were performed also with the application

of GRAPE pulses, with pulse times set to match the spin-spin coupling between the

carbon nuclei. Non-unitary operations, which are necessary in the creation of the

pseudo-pure state, were done with the use of gradients.

4.1 Creation of pseudo-pure state

The realization of a cluster-state in the four carbon system was preceded by the

creation of the pseudo pure state from thermal equilibrium (peq O I (I" + I2 + IJ + 2 J),

where we have removed the identity II from the expression). The pseudo pure state

has the form

= 1_V4 1 +2 + 3 + 4PPP 16 + (IZ+Ill+4 +1 I1

+ _ (jIZI + + IZ + II + II2I; + I)•I +II

+ _ ( _ + I7 IZ4 + I I4+ IzI I3)

+ IE If I4. (4.2)

With the large number of terms in the density matrix, the observed signals in the

readout spectra will be low due to distributed magnetization. For this reason, each

term (aside from the identity) was prepared separately and the resulting spectra



from each preparation were computationally added to give the full spectra of the

pseudo pure system. This method is known as temporal averaging and the pulse

sequences used for generating each pseudo-pure state term are given in Appendix A.

Table 4.1 shows the relative weighting of each term to construct the full state, based

on simulation results.

Table 4.1: Table of coefficients for each term in the temporally-averaged pseudo pure
state, according to simulation results. The desired terms are in bold print and the
numbers in the first column denote the experiment number as shown in Appendix A.

Sequence number Pseudo-pure state terms Coefficient for weighting

1 -I 1  2.05

2 -I2 6.12

3 -I_ 12.20
4 -4 13.41

5 I I3, I,4 IIgI 5.15

.I6 I2 I II3.07

7 G , Ia, It , I at 2.05

8 Iu, Ie4 , - 1r2, o IIn t 1.05

9I •2 I I 1.07

10 I , 1.05

Each sequence shown in Appendix A was implemented experimentally using pulses18 readout pulses, was then performed on the system. The acquired spectra were2.04

code to reconstruct the experimental state density matrix. The product operator

decompositions of the density matrix can be found in Table 4.2.

Our experimental data deviates from simulation results in several ways. First, a
Our experimental data deviates from simulation results in several ways. First, a



sign flip was introduced to the coefficient of the target term during the state prepa-

ration sequences for I2I'4 , I1, I , I I , and lI. I2 31 4 . This sign flip might be due to

a systematic phase error in the sample information used for the GRAPE pulse mak-

ing process and the simulations. Additionally, the product operator decomposition

shows that all three-body terms (I'IIIz, I Iz I , I~ I I, Iz I 4 ) have either small

contributions or are missing in the final state. One possibility is that the curve fitting

step during the tomography process cannot resolve the antiphase peaks formed by

the weak coupling between non-neighboring spins (for instance, carbons 1 and 3 have

a J-coupling of only -1.3 Hz between them). While the missing terms prevent us

from being able to compute the weightings for the construction of the full state, we

can nonetheless show that our state contains the desired terms by inferring from the

spectra under various readout pulses.
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4.2 Pulse sequence

To implement the sequence for creating a cluster-state, the quantum gates shown in

Figure 2-3 were expressed in terms of unitary operations and input into the GRAPE

pulse finding code (Appendix B), which searches for the appropriate pulses for car-

rying out the operations.

The Hadamard transform can be represented by

UH = H ® H H H, (4.3)

in which H = (a. + az) is the Hadamard operator. In terms of the pauli matrices,

the Hadamard transform is

4+ )

UH = e i =  - (4.4)

This is equivalent to a collective 7r rotation around the (101) axis on all four spins.

The C2-PHASEj gate, on the other hand, is given by

UO(i,j) = E® 0 I j + E'_ 9 aet = e-f i (4.5)

where E+ = 10)(01, E_ = j1)(11, and the kronecker product ® between operators

applied to different spins is implied in the last expression. Eqn. 4.5 is consistent with

the unitary evolution eiHintt, where Hint is the Ising-type interaction Hamiltonian

shown in Eqn. 2.1.

The overall unitary operator for preparing a four-qubit cluster-state from an initial

state of 10000) is therefore

Ucluster = U (4, 1) UO (3, 4) UO (2, 3) UO (1, 2)UH. (4.6)

Meanwhile, the density matrix evolves from an initial density matrix p(O) according



p(t) = Up(O)Ut. (4.7)

Applying Eqn. 4.6 onto the pseudo-pure state, the density matrix becomes

Pbox 1 1 1 2 1 (123 2 3 4 1 2 4 + 3 4

16 2 X 4+ (III + <'-•-•-• -I-•-• - I-I•- - 'Y'X)

+ II2I34 + I2I2I34 + 1i 2 3 4 + y11234 + 123I4. (4.8)

If the last C-Phase operation between spins 1 and 4 is left out, the resulting density

operator corresponds to a linear cluster-state:

1 1 1
=16 8 4

+ (12(134 + 1i 3i4 + IJy2J4 + j134)

1 2 3 4 +2 2 3 4 4Iidi2 I 4 - 1Y I2 3 I4 + 1T22T3 . (4.9)

The pulse performances of the Hadamard transform and C-Phase gates were first

evaluated by observing the resulting spectra for a couple of representative input states.

A more quantitative method would be to perform a full state tomography on a number

of input states and compare the results with expectations, but this was not done due

to time constraints. The representative spectra for the UH and each of the phase

gates are shown in Figures 4-2-4-6.

4.3 Linear cluster state preparation and results

By inspecting the spectra, we found that while the phase gates generally perform

the expected actions on their target spins, they also tend to introduce errors into the

other carbon spins. These errors appear to be larger for longer pulses (C3 - PHASE4

and C4 - PHASE1 ). We therefore created the linear cluster state, which does not

require the C4 - PHASE1 operation.



The linear cluster state pulse sequence was applied to each term from the pseudo

pure state preparation and a full tomography was performed on the resulting states.

Table 4.3 shows the simulated input pseudo-pure state terms and the corresponding

output states. The problem with the detection of three-body terms encountered in

the measurement of the pseudo-pure state again shows up here. Since the entangling

operations transform all two-body terms into either three-body or four-body terms,

they become difficult to be resolved by tomography and the resulting correlation be-

tween the experimental density matrix of each term in Table 4.3 and its theoretical

value is poor. However, this is not necessarily an indication that we have failed to

create a linear cluster-state. We observed a couple of recorded spectra from tomog-

raphy and found them to be consistent with simulated spectra (see Figures 4-7-4-8).

Table 4.3: Input pseudo pure state terms and the corresponding output states after
linear cluster-state preparation. The desired terms are displayed in bold print.

Input state Linear cluster-state term

eq

Iz + IJz + IJz + I I1 2  IzIxISz + IzjISjz4 + I3Ijx + II2I1

I + Iz+ 3 + .z4 + I.I. z +1+ I + +

Iz + Iz + I a3 + ISIz4  xjI2 + IzIx=,I + Iz2IaIz4 + jIzIjYI

Jz3 + _ Jz-I2 + I113+ - Tzlz144 + I1IIM

Izi _ IJI - 1314z3 + 1..14 _IaI 2 _ IzI TI aT - _l a3j4 + I 2JI4ISI
zzzzz11 zx_ ,2 z3 4 Tz3Iy3IV4 TIT2T3T4

I z + /3 + 4 +1112J3  r_11z + Iz.Ix z + -Jz -• - -y -,,-y -

I + 14 _ lz31z4 + J1121I4 I1x2 + Iz31x4 + 1z2j3 Y4 + M21314

I I zzz+• + XI +y



CoxJective n/2) pulse on p
xlO

b~ - I

Hatamard Transform onpe

1 1

I i ii i I
1 1 I I Ii·

SI III II
I 1 1 1 II

1 III . II
t - 1--- --

il
-1

-0.5 0
Hz

0.5 1

xlO

-1 -0.5 0
Hz

0.5 1

x104
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Figure 4-7: (a)-(b) show the experimental and simulated spectra of the carbon system
after the linear cluster preparation has been applied to thermal equilibrium; (c)-(d)
show the spectra after the linear cluster preparation was applied to the pseudo-pure
state term corresponding to I1I,2 after a ! pulse along x on the first carbon. (e)-(f)
show the spectra of the III,' terms after the linear cluster preparation sequence and
a 2 pulse along x on the fourth carbon. In the next couple of figures, we provide a
spin-by-spin comparison of each of the spectra with simulated results and provide the
product operator expression for the states.
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cluster preparation to thermal equilibrium.
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Chapter 5

Discussion

In this thesis, we first studied the entanglement properties of a four-qubit cluster-

state by using a nine-parameter measure that takes into account both the global and

piecewise entanglement properties of the state. The measures we used also allowed us

to reveal the entanglement structure of the cluster-state under qubit losses. We found

that the four-qubit cluser-state retains some true tripartite entanglement under one

qubit loss, but loses all bipartite entanglement upon disposal of any two qubits. This

reinforces the notion of shared or distributed entanglement in a multipartite system,

since local entanglement must be nonmaximal if a state exhibits maximal global

entanglement. Our results are consistent with published observations on multipartite

entanglement [31].

We subsequently attempted to realize the cluster-state in a liquid NMR sample of

Crotonic acid, via the use of pulses generated by the GRAPE algorithm. The GRAPE

method of finding pulses presents an alternative approach to strongly modulated

pulses (SMP) [34] for coherently controlling a system of qubits and implementing

precise unitary transformations in NMR. There are challenges in using the GRAPE

code to generate pulses, mainly because protocols for its implementation in liquid-

state NMR have not yet been well-established. One difficulty we encountered is

related to the finding the optimal duration of a given GRAPE pulse. We found, as

in the case for the C-PHASE gates, that longer pulses are more likely to introduce

errors into the operation and that varying the pulse discretization time step slightly



can greatly affect the behavior of the pulse.

Another important aspect to the experiment is the preparation of a temporally

averaged pseudo-pure state. The approach of creating terms in the pseudo pure state

separately and computationally adding them post-experiment to yield a full state

avoids the problem of observing low signals due to distributed magnetization in the

spatially averaged pseudo-pure state, whose creation involves the application of RF

pulses and field gradients on a single state.

For the cluster-state experiment, we created a set of pulses corresponding to both

one qubit and two qubit operations and tested them on a couple of input states.

We were, however, unable to detect most of the three-body terms in the pseudo-

pure state, possibly due to the fact that the antiphase peaks introduced during the

tomography sequence between weekly coupled carbons cannot be resolved from the

finite linewidth of the spectrum. This problem must be overcome before one can

calculate the appropriate weighting for each step of the pseudo-pure state preparation.

We experienced a similar problem in our attempt to measure the experimentally

prepared linear cluster-state; almost every term created after applying the sequence

contains three-body coherences that are difficult to detect, leading to the low correla-

tion results. State detection was therefore inferred from spectral results, rather than

constructing an experimental density matrix.

While there remain significant problems that would need to be resolved before we

can fully utilize the GRAPE pulse-generated pseudo-pure state as a reliable substrate

for preparing special states with high fidelities and executing quantum computational

tasks, this study has presented some preliminary results that might lend insight into

what some of the issues are and how one might attack them in future experiments.



Appendix A

Pseudo-Pure State Preparation via

Temporal Averaging

We prepared each term in Eqn. 4.8 separately and added the results post-experiment

to give a full pseudo-pure state. Additional terms that were created during prepara-

tion were eliminated from the final state by weighing the contribution from the result

of each sequence with an appropriate coefficient.

State preparation was performed using GRAPE pulses, gradients, and delays. The

pulse sequences and the necessary GRAPE pulses were designed and provided by Troy

Borneman. Here we list the method for creating each of the pseudo pure state term

as well as the expected output states (the desired terms are in bold print). All terms

were prepared from thermal equilibrium.

The pulses are represented by 09), where 0 describes the rotation angle; 0 is the

rotation axis on the x-y plane; and i denotes the carbon spin. The gradient [grad] is

set to 1% along the 2 axis.
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Appendix B

GRAPE Algorithm for Pulse

Making

All pulses used for the preparation of the pseudo-pure and cluster states were gener-

ated using the Gradient Ascent Pulse Engineering (GRAPE) algorithm introduced by

Khaneja et al. [33]. The algorithm utilizes optimal control theory to search for pulses

that can maximize the coherence transfer between coupled spins as well as minimize

relaxation effects during a given time step.

For the purpose of our experiment, the GRAPE code was used to find an optimal

pulse for a given unitary operation (the controlled-PHASE gate, for example). A key

parameter in the use of the GRAPE algorithm is the number of time steps chosen for

the discretization of pulse shapes. We used a time step of either 10 As or 25 its for

generating all pulses used in our experiment. The total duration of the pulse was set

to 1 ms for single qubit unitaries and a pulse time comparable to the scalar coupling

constant ( 1 ) for two-qubit operations between spins i and j. Table B.1 shows the

control parameters for each GRAPE pulse used in the cluster-state creation sequence

from the pseudo-pure state.



Table B.1: Control parameters input into the GRAPE algorithm.

Pulse Time step Total time I
2J

Hadamard Transform 10 ps 1000 [s -

C1-PHASE 2  25 ps 7500 ps 6.89 ms

C2-PHASE 3  10 Ps 7500 ps 7.17 ms

C3-PHASE 4  25 ps 12500 ps 12.0 ms

C4-PHASE 1 25 ps 72000 ps 70.4 ms
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