
FITSL: a Language for Directed Exploration and Analysis of

Sequence Data

by

Eric J.P. Mumpower

Bachelor of Science, Massachusetts Institute of Technology (2003)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2007

@ Massachusetts Institute of Technology 2007. All rights reserved, except that This
work is licensed under the Creative Commons Attribution 2.5 License. To view a
copy of this license, visit http://creativecommons. org/licenses/by/2.5/ or

send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco,
California, 94105, USA.

Authorv.
Department trical E'ineering and Computer Science
S• November 8, 2006

C ertified by
Harold Abelson

Class of 1922 Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by... - e.
Arthur C. Smith

Chairman, Department Committee on Graduate Theses
MASSACHuSE.TS INSTlTE

OF TECHNOLOGY

OCT 0 3 2007
ARCHIVES

LIBRARIES

FITSL: a Language for Directed Exploration and Analysis of

Sequence Data

by

Eric J.P. Mumpower

Submitted to the Department of Electrical Engineering and Computer Science
on November 8, 2006, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes a sequence-data processing toolkit for analysis of Intelligent
Tutoring System (ITS) log data, that unlike other tools allows directed exploration of
sequence patterns. This system provides a powerful yet straightforward abstraction
for sequence-data processing, and a set of high-level manipulation primitives which
allow arbitrarily complex transformations of such data. Using this language, very
sophisticated queries can be performed using only a few lines of code. Furthermore,
queries can be constructed interactively, allowing for rapid development, refinement,
and comparison of hypotheses. Importantly, this system is not limited to ITS logs, but
is equally applicable to the manipulation of any form of (potentially multidimensional)
sequence data.

Thesis Supervisor: Harold Abelson
Title: Class of 1922 Professor of Computer Science and Engineering

Acknowledgments

I would like to express my deepest appreciation to the following:

Harold Abelson, Class of 1922 Professor of Computer Science and

Engineering, for his counsel, support, patience, and encouragement

throughout this endeavor

Anne Hunter, MIT EECS, condicio sine qua non

The many people who contributed to the Cambridge-MIT Institute's

Intelligent Book project, without whom this thesis would never have

happened

Gerald Sussman, Chris Hanson, and Selene Victor, for their wisdom and

unflagging assistance in their respective domains

Jacob Beal, for his seasoned perspective and advice

Edi Weitz, for his excellent Common Lisp regular-expression library

My loved ones and my friends for their encouragement and support

And, most particularly, my wife, Johanna Bobrow, for her inspiration and

love, her unflagging faith, and her tireless support of my studies.

Contents

1 Scenario 11

1.1 Introduction .. . 11

1.2 M otivation .. . 11

1.3 Scenario: Basic Usage 13

1.3.1 Experimental Data 13

1.3.2 FITSL Data-Processing Paradigm 14

1.3.3 A FITSL Experiment 15

1.3.4 FITSL Review 22

2 Related Work 25

2.1 Data Mining and Sequence Mining. 25

2.2 Programmable Database Trigger Rules 26

2.3 Agrawal's Shape Description Language 27

3 Language 29

3.1 Processing Paradigm 29

3.2 Language Overview 30

3.3 Core Operators 31

3.3.1 Splitting M odifiers 32

3.3.2 Basic Filters 35

3.3.3 Extract 37

3.3.4 Flatten 38

3.3.5 Join 40

3.4 Advanced Filters

3.4.1 Difference Filters ..

3.4.2 Higher-order Filters.

3.4.3 Regexp Filters....

3.4.4 Whole-stream Filters

3.4.5 Composite Filters .

4 Other Examples

4.1 Extensibility and Interoperation

4.1.1 Language Extensibility: User-Provided Functions

4.1.2 Translating Data into Standard Lisp Structures

4.2 Demonstration of Language Features

4.2.1 The extract Primitive

4.2.2 Basic Difference Filters

4.2.3 The flatten Primitive

4.2.4 Data Exploration with FITSL

4.3 Higher-Order Filters

4.3.1 Recognizing Binary Search

4.3.2 Data Analysis with FITSL

5 Implementation

5.1 Design Criteria

5.1.1 Overall Language Considerations

5.1.2 Modes of Operation

5.2 Choice of Implementation Language

5.3 Various Implementation Decisions

5.3.1 Data Manipulation Paradigm

5.3.2 Regular Expression Filters

5.3.3 Data Representation

5.3.4 Modular Data Import/Export Functionality . . .

5.4 Summary

... 4 3

... 4 3

... 4 4

... 4 5

... 49

.. 50

53

. 53

. 54

. 55

. 56

... .. 56

.. ... 57

.. ... 58

. 59

. 62

. 63

.. ... 64

67

... 67

. 67

... 68

. 68

. 69

. 69

. 70

.... ... 71

. 73

... 74

6 Future Work

6.1 Performance Improvements

6.1.1 Regular Expression Performance .

6.1.2 Enhancements to unsplit

6.1.3 Performance of extract

6.2 Minor Feature Enhancements

6.3 Major Functional Additions

75

.. . . 75

.. 75

.. . . 76

.. . . . 77

.. . . 77

.. . . . 78

Chapter 1

Scenario

1.1 Introduction

This thesis describes the Filtering Interactive Time-Sequence Language (FITSL), a

sequence-data processing toolkit for analysis of Intelligent Tutoring System (ITS) log

data, that unlike other tools allows directed exploration of sequence patterns. FITSL

provides a powerful yet straightforward abstraction for sequence-data processing, and

a set of high-level manipulation primitives which allow arbitrarily complex transfor-

mations of such data. Using this language, very sophisticated queries can be per-

formed using only a few lines of code. Furthermore, FITSL queries can be constructed

interactively from a Lisp interpreter, allowing for rapid development, refinement, and

comparison of hypotheses. FITSL was developed in response to the apparent lack

of similar tools; as is explained in the next section, this lack was encountered in the

course of analyzing patterns in ITS log data.

1.2 Motivation

Decades of educational computing research have resulted in the development of many

Intelligent Tutoring Systems (ITSes). Frequently, such work aims to emulate a human

tutor, in an attempt to reap some of the two-sigma gain in learning [7] which results

when students work one-on-one with a teacher.

In part, deploying such a system is attractive because an ITS allows an educator

to greatly amplify their ability to reach students. A person can only provide one-on-

one tutelage to a handful of students in the course of an hour. In contrast, an ITS

(running on one inexpensive server) can manage simultaneous sessions with hundreds

or even thousands of students.

This increased ability of educators to convey information to students, however,

has not been accompanied by a equal increase in educators' ability to analyze their

students' experiences. Just as a human tutor receives direct and indirect feedback

regarding their effectiveness and the ways that the students choose to engage with

their teaching, an ITS can record a richly annotated transcript of a student's interac-

tion with the system. Manual analysis of such logs can be quite revealing, both with

regards to the surface-level quantitative statistics, and in terms of subtler behavior

patterns, such as simply ignoring advice given by the system [29] or "gaming the

system" [5, 24]. Obviously, the potential number of ITS students prohibits manual

analysis of every single ITS transcript. Technology has given us this embarrassment

of riches by allowing massively parallel use of ITSes; it is natural to turn once again

to computers for the solution to this problem.

Unfortunately, at the outset of this project, it was discovered that no existing

tools are well-suited to a directed analysis of annotated time-sequence data (as will

be discussed in Chapter 2). A tailor-made data-analysis tool could be written to

test any given hypothesis, but such a bespoke approach can be especially ill-suited to

developing/refining a query. Furthermore, writing one program per hypothesis grows

quickly untenable. Thus, a system was designed and implemented to meet this need:

the Filtering Interactive Time-Sequence Language (FITSL).

It will be shown that FITSL allows the concise expression of arbitrary sequence-

data manipulations, and that the language operators can be combined to provide

any given mutation of sequence data. Furthermore, it will be demonstrated that the

data-manipulation engine provided by FITSL is reasonably efficient, and that basic

data-manipulation operations can be composed and tested by the user with ease.

The next section presents a demonstration of the power and convenience of FITSL

in a typical usage scenario.

1.3 Scenario: Basic Usage

Alice is an educational researcher with log data from several classes using an ITS.

She is exploring the hypothesis that students who review material more frequently

also take a larger number of trials before getting correct answers. Presumably, both

behaviors reflect a lower mastery of the material. To test this hypothesis, Alice first

filters the data to extract and measure lesson-reviewing behavior, and uses a series

of filters to measure the number of submissions before a correct answer. This second

step requires several sub-steps: removing dummy records and problems that never

got a correct submission, removing students who presumably dropped the class, and

finally measuring the number of submissions before getting a correct answer. Finally,

Alice joins the two sets of data points produced by the filters and measures both the

overall correlation and the per-class correlations between lesson-reviewing behavior

and submissions before a correct answer. While she discovers a moderate correlation

for all the students taken together, she also finds that the per-class correlation for the

different classes varies enormously.

The ensuing sections present the above experiment in greater detail. Section 1.3.1

describes the real-world dataset used in the experiment, and Section 1.3.2 introduces

the data-processing paradigm used by FITSL. The various stages of experiment itself

are described in Section 1.3.3. Finally, Section 1.3.4 gives a brief summary of FITSL's

features and strengths.

1.3.1 Experimental Data

MIT's main introductory course in Computer Science is Structure and Interpretation

of Computer Programs (also known as 6.001 [1]). An ITS presenting a full online

version of this course has been authored, including texts, lectures, and interactive

homework assignments. This tutor was used by MIT students enrolled in Introduction

to Scheme Programming (6.188); students at the University of Queensland, Australia;

Class I Students in class Designation
University of Queensland (2005) 320 UQ
CETI (2005) 43 CETI
CETI (2006) 37 CETI2
MIT 6.188 (2006) 24 6.188

Table 1.1: 6.001 XTutor Class Information

and students participating in the China Educational Technology Initiative (CETI)'.

Data was collected from 424 students in four different classes, divided as can be

seen in Table 1.1. Transcripts of all student interactions with the 6.001 tutor were

collected, in the form of time sequences containing, in total, over 360,000 distinct

annotated events. While FITSL can import data from CSV, ARFF (WEKA [28]),

and Matlab [17] file formats, the 6.001 XTutor [19] logs each event datum as a textual

representation of a Lisp data structure; hence, a special-purpose XTutor-log module

is used to import the data into FITSL.

1.3.2 FITSL Data-Processing Paradigm

FITSL is intended to deal with the processing of sequential data streams. As such,

while its fundamental unit of data processing is an annotated event object (akin to

a multi-field database record), all FITSL primitives operate on a "streamset" - a

set of event streams. In this paradigm, each event stream is an ordered sequence of

events, and a streamset consists of an unordered set of these event streams. Generally,

streamsets are partitioned into their constituent streams on the basis of the values

of one or more attribute. For example, if one had a streamset split by student ID,

that streamset would contain one stream per student, where each stream contained

the time-ordered list of that student's event objects.

'The CETI program [8] introduces Chinese schools to various educational technologies which
have been created at MIT, to "promote cultural exchange between Chinese and American students."
Students in Australia and China used the 6.001 XTutor server as part of regular computer science
courses offered by CETI and the University of Queensland.

1.3.3 A FITSL Experiment

Here is presented a data-exploration experiment in which Alice investigates student

use of the 6.001 tutor. In Section 1.3, this experiment was outlined briefly; the

following sub-sections explain each of the logical steps of the experiment in detail.

Experiment Background

Students using the 6.001 ITS can review lesson material while working on homework

assignment problems. When finished with a problem, they electronically "hand them

in" for grading. In most cases prior to the final hand-in, however, students can ask the

ITS to check their answers, indicating only whether they are right or wrong. Students

may then revise their answers and re-submit them as many times as they like prior

to final hand-in.

Statement of Hypothesis

Alice believes that when a student is having more difficulty than usual with the course

material, they will submit a larger number of wrong answers for checking, prior to

finding a correct answer. She knows that, when having trouble with a homework

assignment, some students will review lesson materials in an effort to improve their

understanding of the topic. Furthermore, the relative incidence of such behavior will

vary from student to student. Alice decides to explore the hypothesis that, among

students, there is a positive correlation between the incidence of such lesson-reviewing

behavior and the number of wrong answers a student submits prior to getting a correct

answer on a problem. In short, she believes both behaviors occur in proportion to

the difficulty a student has with the course-work.

Loading Data

Alice begins her work by invoking her Common Lisp [12] interpreter and loading the

FITSL packages. As shown in Figure 1-1, she then loads the 6.001 dataset 2 and
2A log-parsing module (customized for the XTutor log format) was previously used to load all

6.001 student data into FITSL; the resulting dataset was then dumped to disk in the special .fd

applies a standard filter to the dataset (which weeds out extraneous log entries and

performs some standard annotations).

(progn
(setf everyone (load-data 'fd "everyone.fd"))

(setf everyone-data

(xtutor-apply-standard-filters everyone)))

;; operation runtime was 1:22 (mm:ss)
;; operation runtime was 2 seconds
;; operation runtime was 1 second
;; operation runtime was 14 seconds
;; operation runtime was 15 seconds

;; TOTAL runtime was 1:54 (mm:ss)

==> #<ESTREAM-SET 0 #x7808eba2>

... Estream-set containing 334058 events of type EVENT-XTUTOR

... with native attribs: (CLASS TIME USERID ENTRYTYPE PROBLEMNAME SUBMITTED
HINTS CODING-HINTS ANSWERS)

... and annotated attribs: (FRACRIGHT PROBLEM-SUBMISSION)

... and split by: (USERID CLASS)

... into 424 discrete streams

Figure 1-1: Initial Loading and Annotation of Data

Lesson-Reviewing Behavior

She begins by annotating each student's data to indicate the times when that stu-

dent is demonstrating lesson-reviewing behavior. She decides to define such behav-

ior as times when a student submits a wrong answer to some homework problem

(gotwrong), then accesses the lesson material, and finally returns to that same home-

work problem (returnedto). She uses the annotation reviewing-lesson to label

such transcript episodes. We can see her encoding of this pattern in Figure 1-2;

FITSL uses an S-expression syntax to encode regular-expression patterns of events3 .

(FITSL Data) format. On the system used for these experiments, parsing this dataset from the logs
takes about five times as long as loading from the . fd file.

3 In particular, it uses a variant of the sexp-regexp syntax used by the CL-PPCRE package [26],
which has been enhanced to allow the use of FITSL event-datum objects as regexp atoms. Event
regexp-atoms may be specified so they only match event objects satisfying given criteria. Also, as
described in this example, annotation of regular-expression portions may be specified in the sexp.

(setf students-reviewing-lesson

(filter everyone-data

'regexp

'(:ANNOTATE reviewing-lesson

(:SEQUENCE

(:ANNOTATE gotwrong (:EVENT (problem-submission)

(fracright /= nil 1.0)))

(:ATLEAST 1 (:EVENT entrytype eq nil :LESSON-PART))

(:ANNOTATE returnedto (:EVENT (problem-submission)

(problemname string= gotwrong)))))

:keepnulls t))

;; operation runtime was 36 seconds

;; TOTAL runtime was 36 seconds

==> #<ESTREAM-SET 0 #x744b9cfa>

... Estream-set containing 334058 events of type EVENT-XTUTOR

... with native attribs: (CLASS TIME USERID ENTRYTYPE PROBLEMNAME SUBMITTED
HINTS CODING-HINTS ANSWERS)

... and annotated attribs: (FRACRIGHT PROBLEM-SUBMISSION GOTWRONG
REVIEWING-LESSON RETURNEDTO)

... and split by: (USERID CLASS)

... into 424 discrete streams

Figure 1-2: Regular Expression Filter

FITSL provides a powerful mechanism for annotating the structure of sequences a

matching regular expression (regexp): the sequences matching each :ANNOTATE form

will be annotated with the specified symbol. Thus, in Figure 1-2, there are clauses

for performing annotations named reviewing-lesson, gotwrong, and returnedto.

Furthermore, when scanning for pattern matches within a sequence, the sequence

matching each : ANNOTATE form (and each : REGISTER form) is captured in a register4 .

Thereafter, any : EVENT expression can make a back-reference to the attributes of

the first event stored in that register. For example, in Figure 1-2 we can see that

the event being annotated as returnedto must be a problem-submission sharing

the same problemname as the initial (gotwrong) event 5 . (For more explanation of

FITSL's regexp filter, see Section 3.4.3.)

4This is in direct parallel to the numbered regexp capture-groups and back-reference mechanism
provided by the Unix sed tool [23] and Perl [25].

5I.e. XTutor problem names are unique strings, and it must have the same problem name as
tested using the Lisp string-equality primitive string=.

For each unique student, Alice then calculates the percentage of that student's log

entries which were annotated as reviewing-lesson. As shown in Figure 1-3, this is

accomplished using the flatten primitive, which takes each stream in a streamset

and condenses it into a single event of a new type. This condensation, or flatten-

ing, occurs by extracting (in order, from the stream) the values of one (or more)

attribute(s) into one (or more) vector(s), and using a flattening procedure6 to turn

those vectors into a single value.

The operation of flatten might be best understood by way of example. In

Figure 1-3, the input streamset students-reviewing-lesson contains one stream

per unique student, and the flatten expression calculates the percentage of the

events (percentage-true) in each student's stream which have been annotated as

reviewing-lesson. Thus, a new streamset (percentage-reviewing) is produced,

containing one event datum per student, where each event object is given appropriate

values for the attributes class, userid, and percentage-true--reviewing-lesson.

(setf percentage-reviewing

(flatten students-reviewing-lesson

:by '(class userid)

:fn #'percentage-true
:attribs 'reviewing-lesson))

;; operation runtime was <1 second
;; operation runtime was 45 seconds

;; TOTAL runtime was 45 seconds

==> #<ESTREAM-SET 0 #x7a884c32>
... Estream-set containing 424 events of type FLATTEN-TYPE-6
... with native attribs: (CLASS USERID)

... and annotated attribs: (PERCENTAGE-TRUE--REVIEWING-LESSON)

... and split by: (CLASS USERID)

into 424 discrete streams

Figure 1-3: Applying the Flatten Filter

At this point, Alice has synthesized a new streamset (percentage-reviewing)

indicating what proportion of their ITS interactions each student spends in behav-
6For example, the flattening procedures tally, mean, percentage-true, count-true,

count-until-predicate are among those provided by FITSL, but users may write other flat-
teners in Lisp as desired.

ior matching her reviewing-lesson criteria. Next, she must extract information

regarding each student's average number of wrong-answer submissions prior to a cor-

rect answer.

Number of Submissions

Each of FITSL's elementary data-manipulation operations may be regarded as a

filter applied to an existing streamset. In the next step (Figure 1-4), Alice cascades

a sequence of FITSL filters to achieve the desired result.

(setf active-students

(let ((just-problems (filter-if-not everyone-data 'problem-submission)))

(filter-chain just-problems
(f 'flatten

:by '(userid class problemname)

:fn (make-thunk-i #'count-until-predicate
:predicate (make-thunk-1 #'equal 1.0))

:attribs 'fracright

:flatten-to 'submissions-until-right)

(f 'test #'not-null :attrib 'submissions-until-right)

(f 'split-only 'userid)

(f 'wholestream
(comp '(lambda (stream) (> (length stream) 5)))))))

;; operation runtime was <1 second
;; operation runtime was 2:11 (mm:ss)
;; operation runtime was <1 second
;; operation runtime was 1:27 (mm:ss)
;; operation runtime was <1 second

;; TOTAL runtime was 3:38 (mm:ss)

==> #<ESTREAM-SET 0 #x7cedfc7a>
... Estream-set containing 25094 events of type FLATTEN-TYPE-1O
... with native attribs: (USERID CLASS PROBLEMNAME)
... and annotated attribs: (SUBMISSIONS-UNTIL-RIGHT)
... and split by: (USERID)
... into 373 discrete streams

Figure 1-4: Counting Submissions-Until- Right

To begin, she uses the f ilter-if -not tool7 to remove all non-problem-submission

events from her original dataset. She then flattens her dataset by student and prob-

lem, calculating the number of submissions each student makes on each problem

before they get a correct answerS; this flattening produces one datum per student-

problem pair. The next stage in the filter-chain discards the data corresponding to

problem-work where the student never submitted a correct answer at all. The penul-

timate stage of the filter-chain re-splits the data by user, and the final stage elides

any students who submitted correct answers for fewer than five problems9 .

(setf avg-student-perproblem-subs
(flatten active-students

:by '(class userid)

:fn #'statistics:mean

:attribs 'submissions-until-right

:unsplit t))

;; operation runtime was <1 second
;; operation runtime was i second

;; TOTAL runtime was 1 second

==> #<ESTREAM-SET 0 #x7c3866fa>
... Estream-set containing 373 events of type FLATTEN-TYPE-15
... with native attribs: (CLASS USERID)
... and annotated attribs: (MEAN--SUBMISSIONS-UNTIL-RIGHT)
... and split by: NIL
... into 1 discrete stream (of length 373)

Figure 1-5: Extracting Students' Average Submissions-Until-Right

Thus, after Figure 1-4 has been evaluated, active-students contains one stream

per student, where each stream contains one datum for each of the problems that

student completed, annotated with submissions-until-right, the number of tries

it took that student until they submitted a correct answer for that problem. For each

7FITSL includes some higher-level composite/shorthand tools, such as filter-if-not and
split-users-and-tag-event-durations; users may create more such tools as desired.

8The make-thunk-1 procedure returns a one-argument wrapper function for any given func-
tion, passing along any specified extra arguments. Thus, if one takes the function returned by
(make-thunk-1 #'eq 'an-arg) and applies it to the value 2.5, the value of the expression
(eq 2.5 'an-arg) will be evaluated and returned.

9There are over 110 problems; on average, students submitted correct answers for 63 problems.
Students who submitted fewer than five correct answers are presumed to have dropped the class.

student in active-students, among the problems that student completed, Alice now

(in Figure 1-5) computes the mean number of submissions-until-right. In other

words, Alice computes each student's average number of submissions prior to getting

a correct answer.

As this is the second statistic Alice sought, she can now proceed to assessing the

degree of correlation between these statistics.

Correlating Results

So far, Alice has extracted the desired statistics from her dataset, but at the moment

these statistics are stored in two separate streamsets. As can be seen in Figure 1-

6, Alice now cross-references these two streamsets using the FITSL join primitive

(similar in function to the SQL [10] join command).

(setf xref-results
(filter-chain avg-student-perproblem-subs

(f 'join
:vs percentage-reviewing

:by '(class userid)

:with '(percentage-true--reviewing-lesson))))

;; operation runtime was <1 second

;; TOTAL runtime was <1 second

==> #<ESTREAM-SET 0 #x7c3ce912>
... Estream-set containing 373 events of type FLATTEN-TYPE-15
... with native attribs: (CLASS USERID)

... and annotated attribs: (MEAN--SUBMISSIONS-UNTIL-RIGHT

PERCENTAGE-TRUE--REVIEWING-LESSON)
... and split by: NIL

... into 1 discrete stream (of length 373)

Figure 1-6: Cross-Referencing Lesson-Reviewing and Number of Submissions

The filter-chain in Figure 1-6 results in a streamset containing one stream, which

contains one element per student. Each student's element contains their values for

both the percentage-true--reviewing-lesson and the submissions-until-right

statistics we extracted in the previous two sub-sections. Alice is finally in a position

to evaluate the overall correlation of these statistics, and does so in Figure 1-7.

(show-correlation

(->xy xref-results :attribs '(percentage-true--reviewing-lesson

mean--submissions-until-right)))

** This is a statistically significant correlation!

;; TOTAL runtime was <1 second

==> ((QUERY::R . 0.14395142) (QUERY::P . 0.0052480423))

Figure 1-7: Measuring Overall Correlation

From this, she sees that there is, indeed, a moderate correlation between lesson-

reviewing behavior and the number of submissions before a correct answer (using

Pearson's correlation, r = 0.144), and that she may have confidence in this correlation

as her p-value'l (0.00525) is statistically significant.

Alice has just calculated the overall correlation of two attributes among the events

in this streamset. In Figure 1-8, the great expressive power of FITSL is demonstrated

by the ease with which one can independently calculate this correlation for every

stream in this streamset. Here, Alice sees that, within classes, the degree of correlation

varies wildly; in particular, while there is a strong and significant correlation amongst

the CETI students, these statistics are almost completely independent amongst the

320 University of Queensland students.

1.3.4 FITSL Review

This is just one example of the applications to which FITSL is suited. This experiment

alone could have been taken in many different directions, and there are an vast range

of experiments which one might perform on a dataset; additional examples are given

in Chapter 4. As it's embedded in Lisp, FITSL provides a framework into which

any user-written filter can be integrated. Also, FITSL can manipulate any set of

sequential data points, such as weather and stock-market data, or server logs. What's

more, FITSL is not merely an tool for interactive use; it's also well-suited for the

10The p-value is the probability of one's data under the null hypothesis. In this case, the p-value
is the probability of having obtained this particular data set assuming that there was no correlation.

(progn

(setf checking-correlation-class-dependence

(flatten (split xref-results 'class)

:by 'class

:attribs '(percentage-true--reviewing-lesson

mean--submissions-until-right)

: fn #' show-correlation
:flatten-to 'conditional-correlation))

(princ checking-correlation-class-dependence))

;; operation runtime was <1 second
** This is a statistically significant correlation!
;; operation runtime was <1 second
;; operation runtime was 1 second
;; Estream-set,
;; containing events of type:

<event type 'FLATTEN-TYPE-19>
;; with native attribs: (CLASS)
;; and annotated attribs: (CONDITIONAL-CORRELATION)
;; and split by: (CLASS)
({ (CETI2) : CONDITIONAL-CORRELATION=((R . 0.14892593) (P . 0.3019788)) })
({ (UQ) : CONDITIONAL-CORRELATION=((R . 0.016508041) (P . 0.1996583)) })
({ (CETI) : CONDITIONAL-CORRELATION=((R . 0.4389962) (P . 0.009235499)) })
({ (FOR-6.188) : CONDITIONAL-CORRELATION=((R .0.2653368) (P .0.18317242)) })

;; TOTAL runtime was i second

Figure 1-8: Measuring Conditional Correlation, Given Class

encoding of unattended data-processing tasks.

As has been stated, FITSL differs from other existing tools in that it allows di-

rected investigation and analysis of patterns in multidimensional time-sequence data.

These patterns may be extracted using any of a number of different methods, including

higher-order discrete filters'1 , description via abstract regular-expression, and many

forms of statistical analysis. The language also has a succinct high-level grammar

which provides a powerful and intuitive paradigm for processing multiple data-streams

in parallel.

FITSL minimizes the time it takes users to implement any given sequence-data

analysis, allowing users to concentrate on the exploration of their ideas rather than

being distracted by implementing the special-purpose query tools which might other-

H1as will be discussed in Sections 3.4.2 and 4.3

wise be required. Furthermore, it provides abstractions and an extensible framework

which greatly ease the rigors of implementing any data transformations which can-

not readily be created through aggregation of existing FITSL primitives and library

functions.

FITSL's interactive mode makes incremental query refinement much more conve-

nient than is possible with any noninteractive toolkit or special-purpose applications.

What's more, its data-processing engine provides high performance for most opera-

tions, making real-time interactive use practical; this enables users to incrementally

develop and compare hypotheses by minimizing delay between iterations.

The following chapters give a deeper understanding of FITSL. They begin with

a more detailed discussion of prior work in this area, and go on to give an in-depth

treatment of the language itself. A chapter is devoted to further demonstration of

the use of this toolkit, highlighting various capabilities which could not be detailed in

this introduction. The closing portions of this paper detail FITSL's implementation,

and outline possible directions for future work.

Chapter 2

Related Work

Investigation of computer-aided data-exploration has led to many different areas of re-

search, including those of data mining, sequence mining, and programmable database

trigger rules. While work in these areas has produced many powerful tools, they are

largely unsuitable for mining preconceived sequence patterns. This chapter begins

by giving an overview of each of these areas in turn, and ends with a discussion of

one notable project, the Shape Description Language, which allows recognition of

user-specified sequence patterns.

2.1 Data Mining and Sequence Mining

There has been a great deal of work in the area of data mining, which aims to identify

correlations between attributes in a dataset (e.g. comparing students' final grades

with their pretest scores). However, most of this work is inapplicable to sequence

datasets, which contain time-sequence data and are likely to encode much implicit

information which is only apparent when the sequence is regarded as a whole. For

example, a sequential dataset might contain a timestamped list of weekly subject-

mastery measurements taken from students in an ITS-based class; time-dependent

information such as the overall trajectory of a student's mastery scores is invisible to

traditional data-mining tools. As a result, the related field of sequence mining has

been developed for analysis of such sequential data.

Table 2.1: Data Domains Explored by Existing Sequence Mining Tools

Domain Examples

traversal of a finite graph logs of user navigation through a web site

sequences of one-dimensional climate data; stock market data
numeric samplings

per-user activity on an e-commerce site;
credit-card or cell-phone activity logs

While sequence mining aspires to find patterns in time-sequence data, work in this

area has generally focused on unsupervised pattern extraction [3, 22, 16, 20], which

precludes investigation of preconceived patterns. Thus, such systems are often used

for automated pattern discovery and extraction of interesting, common, or anomalous

sequence features. Also, most work in sequence mining has explored data which falls

within one of limited domains described in Table 2.1; ITS log transcripts lose much

of their meaning when mapped into any of these domains. For all the above reasons,

such sequence-mining tools are unsuitable for exploration of preconceived hypotheses

regarding sequence patterns in ITS log data.

2.2 Programmable Database Trigger Rules

In the early 1990's, before sequence mining became a popular area of research, there

was a fair amount of work by the DBMS research community on the topic of pro-

grammable database trigger rules [21, 18, 14, 11, 9, 27, 15]. Such rule-systems gen-

erally took the form of an enhancement to an existing database system, allowing the

database to take a specified action on the arrival of a sequence of new records which

satisfied a given programmable "trigger rule." These systems produced a variety of

languages which allowed high-level descriptions of trigger criteria, thereby providing

powerful abstractions for the encoding of match criteria for such rules.

These trigger rules recognized human-specified patterns in an arriving stream of

database records. However, they were generally not used for large-scale data analysis,

but instead, they encoded programmed reactions to near-term conditions'. There is

little indication that such languages were ever viewed as tools for the sort of larger-

scale statistical exploration which would subsequently be referred to as "mining."

Hence, while some of these languages possessed novel pattern-description capabili-

ties, none of them were suited to the kind of ITS log analysis for which FITSL was

eventually written.

2.3 Agrawal's Shape Description Language

There was, however, one sequence mining tool which is reasonably relevant to the

task of ITS log analysis. SDL was a shape definition language which used a Lisp-like

syntax to find patterns in a numeric single-variable (scalar) time sequence [2]. It

provided a set of primitives and constructors which were equivalent in flexibility and

power to a more traditional regular expression language.

Papers on SDL were first published in 1995; in 2006, this author's search for any

ensuing (or related) sequence-mining work was largely fruitless. Unfortunately, with

the exception of the aforementioned work on database trigger-rules, no other fields

could be found with projects similar in spirit to SDL.

FITSL has borrowed one key notion from SDL: that of using a form of regular

expression to describe data patterns. However, while SDL was capable of process-

ing only solitary sequences of real numbers, FITSL extends significantly upon this.

Not only does FITSL handle multidimensional data with arbitrarily-typed attribute

values, but it also provides a succinct syntax for manipulating sets of multiple datas-

treams en masse, as will be described in Section 3.3.4.

'E.g. such a trigger rule could issue a stock-market "sell" order whenever a stock price first (a)
went up more than 50% over its ten-week average and subsequently (b) dropped by 10% of that
peak price.

Chapter 3

Language

This chapter presents a detailed description of FITSL's operators; it begins with two

sections which give a broad overview of the language, discussing in turn its processing

paradigm and the kinds of operations which can be performed. The last half of the

chapter provides a command reference for the language, broken into a pair of sections

describing the basic and advanced operators.

3.1 Processing Paradigm

As described briefly in Section 1.3.2, FITSL is a sequential-data processing language

which operates on sequence sets. These sets are called streamsets, and each contain

some number of ordered sequences of events. An event is an individual multidimen-

sional datum, which could be used to represent, for example, an ITS log entry (bearing

attributes for time, user-id, submitted-answer, and answer-score) or a weather mea-

surement (containing values for time, station-name, temperature, and vector-wind).

Sequences of events are often sorted by time, and are termed streams.

Streamset objects, streams, and events are themselves immutable: one cannot

modify the contents of a given streamset, or the existing attributes of an event.

Instead, each FITSL operator creates a transformed child of its input streamset.

Each event is a multidimensional datum, possessing various named attributes,

each of which has a value. Some of these attributes were created when the event (or

its ancestor) was first imported into FITSL, and are referred to as "native attributes."

The other attributes are the results of annotations which FITSL attached to some

ancestral event; such annotations are referred to as "annotated attributes."'

Streamsets are generally split into streams according to the values of one or more

attribute. For example, if a streamset had been split by student-ID and problem-

number, it would contain one stream for every observed student-problem pair; each

stream would contain the complete time-ordered list of a given student's events involv-

ing a given problem. It will be described in Section 3.3.4 how this splitting interacts

with the language itself to allow implicit iteration over the values taken by a field; for

example, to find the average time-to-completion of every student in an ITS dataset.

3.2 Language Overview

FITSL provides an all-purpose toolkit for manipulation and analysis of event se-

quences. The heart of the language is a set of operators which produce transforma-

tions of streamsets. One may view every operator (and every aggregation of oper-

ators) as some variety of streamset filter, each with its own effect. Many operators

create annotated versions of events and/or remove certain events from the generated

streamsets. Some change the ways in which events are grouped into streams, and

some generate streamsets whose events differ substantially from their parents, de-

riving their values from selected attributes of the parent streamset. These various

operators will be enumerated in the following section.

As will be demonstrated in Chapter 4, appropriate combinations of these prim-

itives can produce arbitrary transformations of sequence datasets. Data may be

partitioned, according to value, along one or more axes (e.g. by city, stock symbol,

etc.), and transformations may be applied within each sub-stream resulting from this

grouping. Simple queries can be expressed concisely, and primitives may be aggre-

gated to extract much more subtle information about patterns in datasets, and to

analyze this information in whatever way is desired.

'For more information on the annotation paradigm, see Section 5.3.3.

One should note that, with one exception, all FITSL operators take an streamset

as input, and create an entirely new streamset which is a transformed copy of their

input. The exception in this case is the join operator, which (like the other filters)

creates just one output streamset, but takes two streamsets as input: a primary and

an auxiliary input 2 .

One should also be aware that, in general, the transformed streamset created by

any filter will contain events of the same underlying eventtype as its input stream-

set (although the output streamset may have annotations attached to its events).

The extract and flatten filters are the most important exceptions to this rule;

they create streamsets containing events of an entirely new eventtype, whose native

attributes are tailored according to the filter arguments. Additionally, the output

of the join filter will have the same eventtype as its primary input streamset, and

the output eventtype of the filter-chain filter composition tool will depend on

the particular filters it aggregates. Finally, the optional :transform argument3 can

be used to produce an output streamset containing events of an entirely different

eventtype than the input streamset.

3.3 Core Operators

This section gives a detailed explanation of the syntax and behavior of the basic

FITSL primitives. Streamset splitting and elementary filtering will be described,

in addition to the streamset transformations of extraction, flattening, and joining.

While this chapter focuses on the independent usage of each operator, it is important

to realize that these primitives are most powerful when used in combination with

one another; extensive examples of such application may may be found in the next

chapter.

For the rest of this chapter, syntax symbols containing the token "A TTRIBS-SPEC"

will be used to indicate an argument used to specify attribute names, which can either

2 Also note that the input streams to the join filter are likely to be of differing eventtypes.
3 The :transform option is accepted by the 'test ' xform, 'diff, 'diff -n, and 'regexp filters.

be a single symbol (e.g. 'foo) or a list of one or more symbols (e.g. ' (f oo bar baz)).

It should also be noted that each FITSL primitive operation can be performed

via a call to the filter function; some primitives may also be invoked directly, for

example as can be seen in the three pairs of equivalent forms listed in Figure 3-3.

;; Estream-set,
;; containing events of type:

<eventtype 'EXAMPLE-DATA>
;; with native attribs: (NAME PROBLEM-ID SCORE LATE-P)
((anne 1 30 T)
(anne 2 18 NIL)
(bart 1 23 NIL)
(bart 2 19 NIL)
(carl 1 24 NIL)
(carl 2 20 T))

Figure 3-1: Example User Streamset

;; Estream-set,
;; containing events of type:

<eventtype 'GRADE-DATA>
;; with native attribs: (NAME GRADE)
((anne 80.4)
(carl 72.8))

Figure 3-2: Example Grade Streamset

In the following sections, examples will be given which manipulate the data shown

in Figures 3-1 and 3-2.

3.3.1 Splitting Modifiers

Every streamset possesses a set of split keys. When a streamset S has the split-key

set V), each split key in b is the name of some attribute possessed by events in S. Let

the "split fingerprint" uop of some event in S be the tuple of values held by that event

for the attributes named by b. All events in S with the same split fingerprint o-U will

be found in the same stream within S, and no events with differing split fingerprints

will be found in the same stream. Thus, a streamset will contain as many streams as

there exist unique split fingerprints in that streamset4 , and a streamset with no split

keys will contain just one stream. We say that a streamset S is split by attribute A

if A is a member of S's split-key set.

As streamsets are immutable, the split-key set of a given streamset may not be

changed. However, a transformed child streamset may be created, such that both the

parent and child contain the same events, but have different split-key sets from one

another.

Figure 3-3: Syntax of Split Operators

(progn
(setf split-userproblem (split my-data 'name 'problem-id))

(princ split-userproblem))

;; operation runtime was <1 second
;; Estream-set,
;; containing events of type:

<eventtype 'EXAMPLE-DATA>
;; with native attribs: (NAME PROBLEM-ID SCORE LATE-P)
;; and split by: (NAME PROBLEM-ID)
((anne 2 18 NIL))
((anne 1 30 T))
((carl 2 20 T))
((carl 1 24 NIL))
((bart 2 19 NIL))
((bart 1 23 NIL))

Figure 3-4: Demonstration of split

4I.e., if the streamset contains no events with a given split fingerprint, there will be no stream
for that fingerprint.

(split streamset attrib-1 [attrib-2 ...])

(filter streamset 'split attrib-1 [attrib-2 ...])

(unsplit streamset)
(filter streamset 'unsplit)

(split-only streamset attrib-1 [attrib-2 ... 1)
(filter streamset 'split-only attrib-1 [attrib-2 ...])

(princ (unsplit split-userproblem))

;; Estream-set,
;; containing events of type:

<eventtype 'EXAMPLE-DATA>
;; with native attribs: (NAME PROBLEM-ID SCORE LATE-P)
((anne 1 30 T)
(anne 2 18 NIL)
(bart 1 23 NIL)
(bart 2 19 NIL)
(carl 1 24 NIL)
(carl 2 20 T))

Figure 3-5: Demonstration of unsplit

(princ (split-only split-userproblem 'name))

;; operation runtime was <1 second
;; Estream-set,
;; containing events of type:

<eventtype 'EXAMPLE-DATA>
;; with native attribs: (NAME PROBLEM-ID SCORE LATE-P)
;; and split by: (NAME)
((anne 1 30 T)

(anne 2 18 NIL))
((carl 1 24 NIL)
(carl 2 20 T))

((bart 1 23 NIL)
(bart 2 19 NIL))

Figure 3-6: Demonstration of split-only

The syntaxes given in Figure 3-3 each create a child variant of streamset, con-

taining the same events as the parent, but with different split keys than its parent.

The split operator produces a child whose split-key set is a superset of the parent's;

the split-key set of the child will be the union of the specified attribute names and the

split keys of the parent. A transcript demonstrating use of the split operator can

be seen in Figure 3-4, where the resulting streamset has been split by both name and

problem-id, and thus contains six streams, one for every name/problem pair present

in the dataset.

The unsplit operator produces a child with an empty split-key set, and the

split-only operator creates a child whose split-key set contains the specified at-

tributes (and nothing more). The usage and effects of these operators are demon-

strated briefly in Figures 3-5 and 3-6; these examples reuse the split-userproblem

streamset which was created in Figure 3-4.

3.3.2 Basic Filters

The central filtering functionality of FITSL is provided by the 'test and ' xform filter

types, seen in Figure 3-7. These filter modes are nearly identical; the difference will

be explained below. They both generate transformed copies of the input streamset;

they can add annotations to the event copies, and the 'test filter can optionally

omit individual events when copying the streamset. Again, streamsets and events are

immutable, and thus while one can use filters to create mutated copies of streamsets,

no existing streamset object is ever modified in any way by FITSL. Similarly, while

filters may generate mutated copies of the events in the input streamset, the original

events are themselves unchangeable.

Figure 3-7: Syntax of Basic Filters

These filters invoke test-function once for every event in streamset; on each

invocation, test-function will be passed either the event itself (by default), or

values extracted from that event (when the optional :attrib argument is supplied).

A basic demonstration of the 'test filter is provided in Figure 3-8.

When the :attrib argument is used, the values of the given attributes will be

extracted from the event, and then are passed (in the given order) to test-function.

(filter streamset < 'test I 'xform > test-function
[:attrib ATTRIBS-SPEC]
< [:annotate-as new-attrib] I [:transform xform-function] >
[:keepnulls boolean]

)

(progn
(setf even-data (filter my-data 'test #'evenp

:attrib 'score
:annotate-as 'even-score

:keepnulls t))
(princ even-data))

;; operation runtime was <1 second
;; Estream-set,
;; containing events of type:

<eventtype 'EXAMPLE-DATA>
;; with native attribs: (NAME PROBLEM-ID SCORE LATE-P)
;; and annotated attribs: (EVEN-SCORE)
({ (anne 1 30 T) : EVEN-SCORE=T }

{ (anne 2 18 NIL) : EVEN-SCORE=T }
{ (bart 1 23 NIL) : EVEN-SCORE=NIL }
{ (bart 2 19 NIL) : EVEN-SCORE=NIL }
{ (carl 1 24 NIL) : EVEN-SCORE=T }
{ (carl 2 20 T) : EVEN-SCORE=T })

Figure 3-8: Demonstration of 'test Filter

Optional Event Removal

When using the ' xform filter mode, events cannot be omitted from the child stream-

set. But when using the 'test filter, events can be elided: when test-function

returns nil for an event, that event is left out of the child streamset.

However, when the optional :keepnulls argument is non-nil, the 'test mode

behaves exactly like the ' xf orm mode: events are never omitted from the child stream-

set.

Optional Annotation or Transformation

When the : annotate-as keyword is specified, the child events will all be given annota-

tions named according to its new-attrib parameter. For each event, the annotation

value will be the value returned from the invocation of test-function corresponding

to that event. For example, if :annotate-as is 'green and test-function returns

the string "yes" for a given event, the child streamset will contain a copy of that

event which has been annotated with the attribute name/value pair 'green = "yes".

To allow the user greater control over stream transformation, instead of using the

default annotation mechanism, a user-specified transformation function can be used.

This is requested via the :transform keyword, which accepts a transform function.

For each event, this function will be invoked with two arguments: the event to be

transformed, and the return value from that event's invocation of test-function.

The value returned by the transform will be included in the output streamset in place

of the original event.

By way of example, when one of these filters is passed the keyword arguments

: annotate-as ' green

this is equivalent to the following arguments having been given instead:

:transform (make-event-annotator 'green)

3.3.3 Extract

As will also be described in Section 4.2.1, the extract primitive generates a set of

completely new events, which share some of their attributes with the events in the

input streamset.

Figure 3-9: Syntax of Extract Operator

The :attribs keyword seen in Figure 3-9 specifies which parent attributes are

copied into the child streamset5 . We can see a demonstration of this keyword in

Figure 3-10, where a new streamset is created, containing events of an eventtype

completely different from the 'EXAMPLE-DATA eventtype of the events in the input

even-data streamset (originally created in Figure 3-8). In this example, the native

5If the parent is split by attributes which are not extracted, FITSL will issue a warning to this
effect, and the child streamset will contain streams which are "split" according to attributes its
events no longer possess.

(extract streamset :attribs ATTRIBS-SPEC)
(filter streamset 'extract :attribs ATTRIBS-SPEC)

(princ (extract even-data :attribs ' (name problem-id even-score)))

;; operation runtime was <1 second
;; Estream-set,
;; containing events of type:

<eventtype 'EXTRACT-TYPE-5>
;; with native attribs: (NAME PROBLEM-ID EVEN-SCORE)
((anne 1 T)
(anne 2 T)
(bart 1 NIL)
(bart 2 NIL)
(carl 1 T)
(carl 2 T))

Figure 3-10: Demonstration of extract

attributes of the new eventtype are 'name, 'problem-id, and 'even-score - precisely

those attributes which were extracted from the input streamset.

3.3.4 Flatten

The flatten operator dimensionally reduces, or "condenses" a streamset. Each

stream is condensed to a single "event", such that as many condensed events are

created as there are streams in the original streamset. The condensation of any given

stream is achieved by passing attribute values from that stream through a "flattening"

procedure. An event is then created which contains (among other things) the value

produced by the flattening procedure; this flattened event is of a new type, which is

related to (but not the same as) that of events in the original streamset. Thus, each

stream in the original (input) streamset corresponds to a single flattened event in

the output streamset, which contains some value which was derived from its parent

stream. For example, one can use flatten to find the per-stream average values

of a given attribute (using the library function statistics:mean as a flattening

procedure).

Any streamset input to the flatten operator is first passed though a filter which

insures that the streamset is split by the attributes named via the :by keyword

described in Figure 3-11. This assures that each stream in the resulting (intermediate)

(flatten streamset
[:fn flatten-func]
[:by by-ATTRIBS-SPEC]
[:attribs attribs-ATTRIBS-SPEC]
[:flatten-to new-attrib]
[:unsplit boolean]

(filter streamset 'flatten [flatten-args...)

Figure 3-11: Syntax of Flatten Operator

(progn
(setf averages (flatten my-data

:fn #'statistics:mean
:by 'name
:attribs 'score))

(princ averages))

;; operation runtime was <1 second
;; operation runtime was <i second
;; Estream-set,
;; containing events of type:

<eventtype 'FLATTEN-TYPE-10>
;; with native attribs: (NAME)
;; and annotated attribs: (MEAN--SCORE)
;; and split by: (NAME)
({ (anne) : MEAN--SCORE=24 })
({ (carl) : MEAN--SCORE=22 })
({ (bart) : MEAN--SCORE=21 })

Figure 3-12: Demonstration of flatten

streamset has uniform values for the attributes named in by-ATTRIBS-SPEC. (For

example, with the example given in Figure 3-12, the my-data streamset is unsplit,

and so an intermediate streamset is automatically created that is split by 'name.)

Each of these intermediate streams is then individually flattened: values for the

attributes named in at tribs-ATTRIBS-SPEC are extracted from that stream's ele-

ments, and these values are passed to the flattening function flatten-func. For

each of these streams, a single event (of an entirely new eventtype) is then created,

and annotated with the flattened value corresponding to that stream.

Recall that each of this intermediate streamset's streams is homogenous for the

values of the by-ATTRIBS-SPEC attributes. Thus, each of the events in the resulting

streamset has the native attributes specified in by-ATTRIBS-SPEC, initialized with

the value tuple inherited from its parent stream. For example, as shown in Figure 3-

12, when flattening by 'name, there are as many events created as there are unique

names, each bearing the distinct name of its parent stream. Note that these events

are of a new eventtype, whose native attributes (i.e. 'name) were specified via the

:by argument.

Naming of Flatten Annotation

If the :flatten-to keyword argument is given, flatten will annotate all the output

events with values for the attribute named by its new-attrib parameter (which val-

ues were output by flatten-func). If :flatten-to is not specified, an attribute

name will be automatically generated from the name of the flattening function (if

available) and the names of the attributes which are being flattened (i.e. those speci-

fied in at tribs-ATTRIBS-SPEC). For example (as demonstrated in Figure 3-12) if the

attribute 'score is being flattened using statistics:mean, the flatten annotations

will have the name 'mean--score by default.

Optional Unsplitting of Output Streamset

Each event in the output streamset will have a unique tuple of values for the attributes

named in by-ATTRIBS-SPEC. By default, the output streamset will also be split by

by-A TTRIBS-SPEC, and therefore will contain exactly the same number of streams as

events. However, if a non-nil value is specified for the optional unsplit parameter,

the output streamset will be unsplit, and all its events will be in a single stream.

3.3.5 Join

The join operator allows the cross-referencing of related streamsets. It can be useful

when importing data from multiple sources, e.g. when one has imported ITS log data

and wishes to cross-reference it with students' non-ITS test scores. It can also be

useful for cross-referencing flatten results, when flattening by the same attributes

in multiple ways (e.g. as is done at the end of Section 1.3.3).

Figure 3-13: Syntax of Join Operator

(princ (join averages
:vs grades
:by 'name

:with 'grade

:keep-matchless-elements t))

;; operation runtime was <1 second
;; Estream-set,
;; containing events of type:

<eventtype 'FLATTEN-TYPE-10>
;; with native attribs: (NAME)
;; and annotated attribs: (MEAN--SCORE GRADE)
;; and split by: (NAME)
({ (anne) : MEAN--SCORE=24 GRADE=80.4 })
({ (carl) : MEAN--SCORE=22 GRADE=72.8 })
({ (bart) : MEAN--SCORE=21 })

Figure 3-14: Demonstration of join

Let us define the term "event siblings" to refer to a set of events which all have

the same tuple of values for certain attributes. Using the syntax shown in Figure 3-

13, the join filter associates events from the input streamset with their "sibling"

events in the vs-streamset. In this case, the sibling association is based on events

having the same value tuple for their by-ATTRIBS-SPEC attributes.

The output of the join filter, then, contains events from streamset which have

(join streamset
[:vs vs-streamset]
[:by by-ATTRIBS-SPEC]
[:with with-ATTRIBS-SPEC]
[:keep-matchless-elements kme-boolean]
[:allow-multiple-vs amv-boolean]

(filter streamset 'join [join-args...])

been annotated with the names and values of their siblings' with-ATTRIBS-SPEC

attributes. (In effect, this is similar to a SQL join [10], where the by-ATTRIBS-SPEC

attributes would be the columns named in the "ON" clause.) We can see this in

the example of Figure 3-14, where the 'name and 'mean--score attributes of the

primary input streamset (averages) are present in the output streamset, and the

'grade values from the auxiliary grades streamset have been added as annotations

(when available).

For convenience, if one passes join the magic arguments ":with 'all", the

streamset will be joined with all possible attributes from vs-streamset, as if

with-ATTRIBS-SPEC had specified all those attributes of vs-streamset which were

not already among the attributes of streamset.

Events Lacking Siblings

If there is an "only-child" event in streamset (an event which has no sibling in

vs-streamset 6), by default that only-child event will simply be omitted from the

output streamset. (This is analogous to a SQL "inner join".) However, if kme-boo Lean

is non-nil, then the only-child event will be included in the output streamset, and

will simply lack any of the with-ATTRIBS-SPEC annotations7 . (This behavior is

analogous to a SQL "left outer join".)

Events with Multiple Siblings

By default, if there are any events in vs-streamset which share the same values for

the by-ATTRIBS-SPEC attributes, join will error (even if none of those events have

siblings in streamset). If amy-boo lean is non-nil, then join will work with such

streamsets. In this case, each streamset event will have one output event per sibling

found in the vs-streamset.

6I.e., there are no vs-streamset events which have the same by-ATTRIBS-SPEC attribute values
as the only-child.

7Note: this is functionally equivalent to the only-child event being given nil values for all the
wi th-ATTRIBS-SPEC attributes.

3.4 Advanced Filters

In this section, a number of more complex filters are described. Difference (first-

order) filters and higher-order filters will be explained; these are similar in spirit

to discrete signal-processing filters. A description is given of the regular-expression

filter facility, which provides both filtering and annotation of event patterns. Finally,

explanations are given of FITSL's whole-stream filters and its facility for compound

filter construction.

3.4.1 Difference Filters

FITSL's 'diff filter makes it easy to compare every event with the immediately

preceding event in its stream. These comparisons can be used to selectively remove

some events, and/or to annotate events with the result from some difference function.

Figure 3-15: Syntax of Difference Filters

This filter works very much like the 'test filter, except that instead of merely

being passed information about the event in question, difference-function (as

seen in Figure 3-15) will be also be passed information about the preceding event in the

stream. (That is, when processing the nth event in a stream, difference-function

will be passed information about both event n and event (n - 1).) A demonstration

of the 'diff filter can be found on page 57; in that example, each user's events are

annotated with the time elapsed since that user's preceding event.

The :attrib, :annotate-as, :transform, and :keepnulls keyword arguments

seen in Figure 3-15 have behavior identical to that described in Section 3.3.2 for the

basic 'test filter.

(filter streamset 'diff difference-function
[:attrib ATTRIBS-SPEC I
< [:annotate-as new-attrib] I [:transform xform-function] >
[:keepnulls kn-boolean]
[:do-leadin dl-boolean]

Events lacking Predecessors

If a non-nil value is specified for the :do-leadin operator, difference-function

will be invoked once for every event. For events lacking an immediate predecessor (i.e.

the first event in every stream), the value nil will be passed to difference-function

in lieu of information about that (nonexistent) predecessor.

However, by default, the first element of every stream will be removed from the

output dataset without ever invoking difference-function for that event. This

allows simple difference functions8 to be used without needing to write a wrapper

function to handle the cases where nil would otherwise have been passed to that

function.

3.4.2 Higher-order Filters

Similar to the first-order difference filter described in the preceding section, FITSL

supports higher-order filters. In an nth-order filter, the filter function is given infor-

mation about the current event as well as the n events which precede it.

Figure 3-16: Syntax of Higher-Order Difference Filters

As can be seen in Figure 3-16, the syntax of this filter is just like the 'diff filter in

the above section, except for the addition of the required :nth-order-diff keyword

argument. The order parameter specified with this keyword must be a positive

integer, indicating the order of the filter being constructed. The use of this filter

8Functions such as Lisp's built-in subtraction (-) or division (/) operators will error if one of
their arguments is nil.

(filter streamset 'diff-n filter-function
:nth-order-diff order
[:attrib ATTRIBS-SPEC]
< [:annotate-as new-attrib] [:transform xform-function] >
[:keepnulls kn-boolean]
[:do-leadin dl-boolean]

is demonstrated on page 63, where a second-order filter is used to identify episodes

where users are guessing values according to a binary search heuristic.

The 'diff-n filter operates exactly like the 'diff filter, with two critical ex-

ceptions. First, instead of only passing fi t er-function information about a sin-

gle predecessor event, it passes information about order predecessors. (As before,

when there is no such predecessor, the value nil is provided in its place.) Secondly,

while the difference filter defaults to a false value for the : do-leadin parameter, the

' diff-n filter defaults to the value t. This means that, unless otherwise specified,

fi ter-function will be invoked for all events, including the order stream elements

at the beginning of each stream (which will have fewer than order predecessors).

3.4.3 Regexp Filters

To allow recognition of complex sequential patterns of interrelated events, FITSL

includes a regular-expression filter mechanism. This facility finds matches for a spec-

ified pattern description in its input streamset; and can optionally remove unmatched

events, and/or attach detailed annotations to its output streamset.

Figure 3-17: Syntax of Regular Expression Filters

With the syntax in Figure 3-17, regexp-pattern describes a sequence pattern

which might be found in an event stream. FITSL's regexp filter scans each stream

of streamset from beginning to end, attempting to make as many serial matches of

regexp-pattern as possible. All events which are included in a successful match are

said to "satisfy" regexp-pattern. Pattern matches are not allowed to overlap, so

no event can satisfy more than one match at a time. Demonstrations of the 'regexp

filter can be found on pages 17 and 63.

(filter streamset 'regexp regexp-pattern
< [:annotate-as new-attrib] I [:transform xform-function] >
[:keepnulls booLean]

)

Non-satisfying events will be omitted from the output streamset, unless a non-nil

value is passed via the :keepnulls keyword argument.

When a transformation is specified with the :annotate-as (or the :transform9)

keyword argument, all events in the output streamset will receive the specified trans-

formation. In the case of :annotate-as, each event will given an annotation named

new-attrib with a boolean value (t or nil), indicating whether the event satisfied

regexp-pattern.

Regular Expression Grammar

The regexp parse trees used by FITSL are an extended version of that provided by

CL-PPCRE [26]. While FITSL supports CL-PPCRE's full regexp syntax, a detailed

explanation is beyond the scope of this document; a complete description is given in

the CL-PPCRE documentation1 .

For basic regular expression composition, the only CL-PPCRE forms generally

needed are :SEQUENCE, :ALTERNATION, and REGISTER. These are described, along

with the FITSL regexp syntax extensions, in Table 3.1; for convenience, this table

also provides comparison with equivalent POSIX regular expression [23] fragments.

Additional demonstration of FITSL's regexp syntax can be seen on pages 17 and 63.

Annotation Nodes

The regexp-pattern may contain :ANNOTATE nodes, which can be used to encap-

sulate any regexp sub-tree. The portions of a match which are contained inside a

given :ANNOTATE will be transformed as indicated by its xspec. Much like the fil-

ter's overall :annotate-as and :transform arguments, the xspec can either be an

attribute name, or a function object (embedded in the regexp tree). When an at-

tribute name is given, all events in the output streamset will be given an annotation

9When a more generic transform is requested, xform-function will be passed the event and
a boolean value indicating whether that event satisfied regemp-pattern; the return value of
xform-function will be included in the output streamset.

10This either can be read via the URL http://weitz. de/cl-ppcre/#create-scanner2, or can
be found in the CL-PPCRE distribution available from [26].

Analogous POSIX Regexp Element String
(:EVENT)
(:EVENT (eventspec))
(:SEQUENCE a b c)
(:ALTERNATION a b c)
(:REGISTER a)
(:ANNOTATE xspec a)
(:MAYBE a)

(:STAR a)

(:PLUS a)

(:ATLEAST n a)
(:REPEAT n a)
(:NOMORETHAN n a)
:START
:END

Table 3.1: Overview of FITSL Regexp Syntax

with that name and a boolean value (t or nil), indicating whether they satisfied

that :ANNOTATE node. Similarly, when a transform function is given, all events in

the output streamset will be transformed according to whether they satisfied that

:ANNOTATE node.

Also, as seen below, one can make regexp comparisons with events matched by

:ANNOTATE nodes, by referencing their annotation names when composing :EVENT

nodes.

Event Nodes

The :EVENT node allows testing and/or comparison of event attributes. This behavior

is specified by the (eventspec) mentioned in Table 3.1, which can take either of the

forms indicated in Figure 3-18, depending on whether one wishes to test more than

one attribute; both of these forms can be seen in use on page 17. An :EVENT node is

considered to match when all of its (attribspec) tests return non-nil values.

Here, (attribspec) is shorthand for the syntax given in Figure 3-19. As shown, any

portion of (attribspec) beyond the initial attrib-name may be omitted, though if

one omits an argument, all of the arguments which follow it must also be omitted.

FITSL Regexp Syntax
(Any single event)
(Any single event which meets (eventspec))
abc
alblc
(a)
(a) (matches of a are annotated per zspec)
a?
a*

a+
a{n, }
a{n,n)
a {O, n }

Figure 3-18: Expansions of (eventspec)

Figure 3-19: Expansions of (attribspec)

The compare-register field is used to indicate whether the current event should

be compared with some event which has been encountered in the course of the current

pattern-match attempt. When its value is nil (or omitted), this attribspec will

examine only the current event. In the case where the value of compare-register

is an annotation name, it refers to the :ANNOTATE node whose xspec bears that

name. In particular, when an annotation name (or a positive integer1") is specified,

the current event will be compared with the first event currently matched to the

corresponding regexp node.

The value of the requested attribute attrib-name will be extracted from the

current event (and the register-captured event, when specified). The additional argu-

ments for test-function are taken to be precisely whatever func-arg s are specified;

if these are omitted, there are no additional arguments. The attribute value(s) and

11In the case where compare-register is some integer n, it refers to the n t h register-capturing
node encountered in a left-to-right scan of the entire regexp tree, where both :ANNOTATE nodes
and :REGISTER nodes are considered to be register-capturing. However, as it can be awkward to
calculate this number (or re-calculate it when modifying a regexp), users are encouraged to use
annotate-names whenever possible.

attrib-name test-function compare-register func-arg-1 func-arg-2 [...]

attrib-name test-function compare-register func-arg

attrib-name test-function compare-register

attrib-name test-function

attrib-name

i

any additional function arguments will be passed to t es t -funct ion 12 for evaluation.

Illustration of Attribute-Specification Behavior

A few examples may help clarify the behavior of regexp-event-node attribute specifi-

cations. When an attribute specification of the form ' (ps-num = nil 3) is testing

an event belonging to problem-set number 17, the Lisp expression (= 17 3) will be

evaluated.

Similarly, if the regexp sub-tree '(:ATTRIB blue (:EVENT)) has been matched

against an event which has the value "yes" for its 'answer attribute, and the regexp

engine is attempting to find a match for a node with the event-node attribute spec-

ification ' (answer string= blue). If the event currently being considered has the

'answer attribute value "foo", the regexp engine will evaluate the Lisp expression

(string= "foo" "yes") in order to determine whether that attribute specification

was satisfied.

Testing Regexp Filters

An helper tool has been provided to to help users debug their regular expressions. The

function show-matches accepts a streamset and a regexp structure as arguments; for

each stream, it prints the individual satisfying sequences which matched the regexp.

3.4.4 Whole-stream Filters

Finally, there is a whole-stream filtering mode, which allows entire streams to be

examined and optionally filtered out of the resulting streamset.

Figure 3-20: Syntax of Whole-stream Filters

12If test-function is unspecified, it defaults to the identity function, which will, in effect, test
whether its argument is non-nil.

Using the syntax in Figure 3-20, each stream in streamset is passed (in list

form) to test-function. The output streamset will only include those streams for

which test-function returns a non-nil value. A demonstration of this behavior

was seen on page 19, where the 'wholestream filter was used to produce a streamset

containing only those streams from its input streamset which contained at least five

events.

3.4.5 Composite Filters

Any FITSL primitive, even those like split and flatten, may be regarded as a

type of filter. One may then consider the idea of cascading multiple filters to create

a compound filter; such composites are here referred to as a "filter chain." When

chaining filters together, the output of each filter stage is fed as input to the next

stage, and the output of the final stage is returned as the filter-chain's result.

(filter-chain streamset
(filterspec-1)
(filterspec-2)

(filterspec-n))

Figure 3-21: Syntax of Filter Chaining

Figure 3-22: Expansion of (filterspec)

As suggested by Figure 3-21, any number of filter-chain stages may be specified

via (filterspec) statements, each of which takes the form shown in Figure 3-22. Here,

fi Iter-type is any symbol accepted as a third argument to the filter command

(e.g. 'flatten, 'test, etc.), and the filter-argument parameters are the same

as would follow that third argument in a non-compound filter. Use of a filter-chain

was shown on page 19, where a sequence of filters was applied to achieve the desired

results. Note that in that example, the output streamset contains events of the

eventtype which was created by the 'flatten stage of that filter-chain.

Chapter 4

Other Examples

In this chapter, several examples of further use of FITSL are presented. While these

hardly cover the range of experiments or applications for which FITSL may be used

(as indicated in Section 1.3.4), they may yield a better understanding of the usage,

operation, and power of FITSL. The first pair of examples in this section build on the

scenario presented in Section 1.3, and, respectively, demonstrate some of the ways in

which users can customize and extend FITSL, and explore various language features.

The subsequent (and final) example uses a different dataset entirely, and illustrates

use of FITSL's higher-order filtering capabilities.

4.1 Extensibility and Interoperation

While FITSL itself only provides a basic set of statistical tools, users may supplement

these with their own Lisp modules, and FITSL allows arbitrarily complex applica-

tion of these tools to any dataset. Furthermore, in addition to exporting data to

several standard file formats which can be visualized using other tools (such as Mat-

lab, WEKA, or a spreadsheet [17, 28]), FITSL includes mechanisms for translating

datasets into standard Lisp objects for use by other Lisp-based analysis packages.

These capabilities are described and demonstrated in this section.

In analyzing the results from her first experiment (in Section 1.3), Alice observes

that the CETI/CETI2 students seem to manifest reviewing-lesson behavior much

Index Classes
0 {CETI, CETI2}
1 {UQ, FOR-6.188}

Table 4.1: Ad-hoc Class Grouping

less often than the UQ/6.188 students. She measures this quantitatively, and finds the

statistics seen in Figure 4-1. As can be seen, their interactions (on average) involve

such reviewing-lesson behavior less than a fifth as often as the other students.

(princ (flatten (unsplit percentage-reviewing)
:by 'class
:fn #'mean-stddev
:attribs 'percentage-true--reviewing-lesson
: flatten-to 'sigfigs-/.-reviewing))

;; operation runtime was <1 second
;; operation runtime was <1 second
;; Estream-set,
;; containing events of type:

<eventtype 'FLATTEN-TYPE-10>
;; with native attribs: (CLASS)
;; and annotated attribs: (SIGFIGS-%-REVIEWING)
;; and split by: (CLASS)
({ (CETI2) : SIGFIGS-%-REVIEWING=((MEAN 0.39829728) (STDDEV 0.65366715)) })
({ (UQ) : SIGFIGS-o-REVIEWING=((MEAN 2.2601516) (STDDEV 2.0806499)) })
({ (CETI) : SIGFIGS-%-REVIEWING=((MEAN 0.30128536) (STDDEV 0.7430263)) })
({ (FOR-6.188) : SIGFIGS-%-REVIEWING=((MEAN 2.7379715) (STDDEV 1.7372252)) })

;; TOTAL runtime was <1 second

Figure 4-1: Exploring Per-Class Reviewing Behavior

4.1.1 Language Extensibility: User-Provided Functions

Alice wishes to measure this correlation between reviewing and class-group, and thus

picks class-group indices which separate the CETI/CETI2 students from the others,

as in Table 4.1. She then annotates the students' data with these indices, using the

FITSL expressions given in Figure 4-2. Note that she filters the data using her own

lambda function, compiling it prior to use with the toolkit macro comp (which returns

a compiled version of the lambda sexp provided as its argument). The resulting

(setf grouped-%-reviewing
(filter percentage-reviewing

'xform (comp '(lambda (c)
(bool->int (not-member c '(:CETI :CETI2)))))

:attrib 'class
:annotate-as 'classgroup))

;; operation runtime was <1 second

;; TOTAL runtime was <1 second

==> #<ESTREAM-SET Q #x7da6359a>
... Estream-set containing 424 events of type FLATTEN-TYPE-6
... with native attribs: (CLASS USERID)

... and annotated attribs: (PERCENTAGE-TRUE--REVIEWING-LESSON CLASSGROUP)

... and split by: (CLASS USERID)

... into 424 discrete streams

Figure 4-2: Assigning Class-Grouping Indices

dataset, grouped-%-reviewing, is identical to the input (percentage-reviewing)

dataset, but with the appropriate class-group annotation added to each event.

4.1.2 Translating Data into Standard Lisp Structures

(show-correlation
(->xy (unsplit grouped-%-reviewing)

:attribs '(classgroup percentage-true--reviewing-lesson)))

** This is a statistically significant correlation!

;; TOTAL runtime was <1 second

==> ((QUERY::R . 0.37606215) (QUERY::P . 1.0840298e-15))

Figure 4-3: Measuring Group/Behavior Correlation

Now Alice wishes to export values from her dataset for evaluation by a non-FITSL

Lisp procedure (show-correlation). Conveniently, the FITSL toolkit procedure

->xy extracts values from a streamset and stores them in a representation more

usable by non-FITSL procedures. Given a streamset, it produces a normal Lisp list

object, each of whose members is a list of the values extracted from one FITSL event.

Thus, as seen in Figure 4-3 she measures the statistical significance of this observed

difference. This is done by using the ->xy tool to extract the specified attributes

(classgroup and percentage-true--reviewing-lesson) from the dataset events

and passing the result (an ordinary list of numbers) to show-correlation. By

yielding a correlation (r value) of 0.38, this shows that there is a definite correlation

between class-group and frequency of incidence of reviewing-lesson behavior. Even

more strikingly, Alice obtains a p-value of 1.1x10 -15 , which dramatically exceeds any

reasonable criterion for statistical significance.

Thus, we have demonstrated how FITSL allows users to write their own extensions

to the language, both internally - custom filter functions - and externally - translating

datasets for use by (possibly user-written) non-FITSL Lisp functions.

4.2 Demonstration of Language Features

This section presents an arbitrary experiment that illustrates some of the other inter-

esting features of FITSL. In this experiment, Alice explores the notional hypothesis

that there is a correlation between class membership and trends in each student's rate

of ITS activity. In the process of doing so, she demonstrates FITSL's extract primi-

tive, its difference filters, the power of the stream-flattening facility, and its suitability

for data exploration.

4.2.1 The extract Primitive

When manipulating data, one may perform annotations which are of particular inter-

est; similarly, some of the original data fields may no longer be needed. To improve

computational consumption of space and time, one might wish to create a new event-

type which contains only the data attributes of interest. The extract primitive

provides this functionality: it creates a new data-type tailored to the specified list of

attributes, and creates a new streamset, whose attribute values are extracted from

the original streamset.

Thus, one can create a new compact dataset from a larger dataset, trimming

(setf interesting-parts

(extract (unsplit everyone-data)
:attribs '(class userid time)))

;; operation runtime was 39 seconds

;; TOTAL runtime was 1:52 (mm:ss)

==> #<ESTREAM-SET § #x74910a9a>
... Estream-set containing 334058 events of type EXTRACT-TYPE-3
... with native attribs: (CLASS USERID TIME)
... and split by: NIL
... into i discrete stream (of length 334058)

Figure 4-4: Demonstrating extract Operator

unneeded fields, and rolling any desirable annotations into built-in event attributes.

(Additionally, it is somewhat more efficient to manipulate built-in attributes than

annotation values, due to the details of FITSL's implementation.) An example of

the extract primitive in use can be seen in Figure 4-4. Because only the students'

class, user-ID, and submission-times are of interest in this experiment, Alice begins

by creating a new version of the dataset containing only these attributes.

4.2.2 Basic Difference Filters

(setf students-with-durations
(filter (split interesting-parts 'class 'userid)

'difference #'-

:attrib 'time

:annotate-as 'duration))

;; operation runtime was 1 second
;; operation runtime was 4 seconds

;; TOTAL runtime was 5 seconds

==> #<ESTREAM-SET 0 #x78a8ff7a>
... Estream-set containing 333634 events of type EXTRACT-TYPE-3
... with native attribs: (CLASS USERID TIME)

and annotated attribs: (DURATION)
and split by: (CLASS USERID)
into 419 discrete streams

Figure 4-5: Demonstrating Difference Filter

One can apply a difference filter (akin to a first-order signal processing filter),

comparing each event in a stream with the event immediately preceding it. Here (as

shown in Figure 4-5), Alice measures the "duration" of each event': the amount of

time elapsed since that student's previous event.

Each event in interesting-parts is annotated with the difference between its

time and that of the student's previous event, as calculated using the Lisp subtraction

operator (-). Note that, while this example is numeric, FITSL difference filters can

manipulate any data type for which some kind of difference (or comparison) function

can be implemented in Lisp. Also, while the above is an elementary first-order dif-

ference filter, FITSL abstracts away all the laborious work involved in applying such

a filter to a streamset, presenting an interface which allows one to succinctly encode

the salient features of any first-order filter.

4.2.3 The flatten Primitive

This section illustrates the expressive power provided by the combination of FITSL's

streamset abstraction with its flatten primitive. As will be shown, one can use a

concise flatten expression to apply any given flattening procedure to every stream

in a streamset.

For the purposes of this example, we assume that trends in a student's event

"durations" provide insight into that student's learning process2 . We further assume

(for the sake of example) that a rough measure of such trends can be found in the

slope of the linear best-fit of each student's set of [time, duration] data-points.

Starting with students-with-durations, which is one-stream-per-student, Alice

takes the slope of the regression line for each student's set of time/duration pairs

as shown in Figure 4-6. (To streamline this example, we eliminate students with

fewer than 20 interactions, and students for whom the linear-regression procedure

was unable to find a fit.) Thus, Alice transforms each of students-with-durations's

'More precisely, she measures the upper bound of the time the student has spent thinking about
the problem since their last submission.

2For example, if their durations grow progressively shorter over time, one might imagine this
indicates relative mastery of the material.

(setf time-with-linregression
(filter-chain students-with-durations

(f 'wholestream
(comp '(lambda (stream) (< 20 (length stream)))))

(f 'flatten
:by '(class userid)
:attribs '(time duration)
:fn #'linregress-slope
:flatten-to 'slope)

(f 'test #'not-null :attrib 'slope)
(f 'unsplit)))

;; operation runtime was <1 second
;; operation runtime was 1:41 (mm:ss)
;; operation runtime was <1 second
;; operation runtime was <1 second

;; TOTAL runtime was 1:41 (mm:ss)

==> #<ESTREAM-SET 0 #x80ad3752>
... Estream-set containing 397 events of type FLATTEN-TYPE-7
... with native attribs: (CLASS USERID)
... and annotated attribs: (SLOPE)
... and split by: NIL
... into i discrete stream (of length 397)

Figure 4-6: Applying Linear Regression to Each Stream

streams using linregress-slope, producing one event datum per student, contain-

ing their UID, class, and resulting regression slope.

The above demonstrates the expressive power produced by FITSL's data process-

ing paradigm and abstractions. Using a concise flatten expression, the requested

pair of attribute values were extracted from the 300,000 events in the streamset, and

nearly 400 distinct linear regressions were performed - one for each stream in the

input dataset.

4.2.4 Data Exploration with FITSL

Having calculated the desired values, Alice now compares them in a variety of ways.

To get a feel for the data, she begins with some overall statistics. In Figure 4-7, we

see Alice displaying the mean slope for each class, and the standard deviation of the

(princ (flatten time-with-linregression

:by 'class
:attribs 'slope
:fn #'mean-stddev
: flatten-to 'slope-stats))

;; operation runtime was <1 second
;; operation runtime was <1 second
;; Estream-set,
;; containing events of type:

<eventtype 'FLATTEN-TYPE-11>
;; with native attribs: (CLASS)
;; and annotated attribs: (SLOPE-STATS)
;; and split by: (CLASS)
({ (CETI2) : SLOPE-STATS=((MEAN 0.0075482796) (STDDEV 0.011864868)) })
({ (UQ) : SLOPE-STATS=((MEAN 0.013770722) (STDDEV 0.061549403)) })
({ (CETI) : SLOPE-STATS=((MEAN 0.04499874) (STDDEV 0.14899734)) })
({ (FOR-6.188) : SLOPE-STATS=((MEAN 0.0037594985) (STDDEV 0.004708432)) })

;; TOTAL runtime was <1 second

Figure 4-7: Examining Mean Slope, Per-Class

Index Classes
0 {FOR-6.188, CETI2}
1 {UQ}
2 {CETI}

Table 4.2: Ad-hoc Class Indexing

slope within each class.

The interactive nature of FITSL makes it easy for Alice to further investigate

this apparent difference. Noting the differences among the classes' average slopes,

she decides to look for a correlation between class and average slope. She posits the

three-group ordering in Table 4.2, which orders the classes by average slope, from

lowest to highest. Alice then tests for a correlation between students' slopes and

class-groups. However, as shown in Figure 4-8, she finds the overall correlation is

relatively small, if statistically significant.

Referring back to the results in Figure 4-7, Alice sees the average CETI slope is

at least three times that of the other classes. Thus, she posits a new class-grouping,

separating CETI from the other classes (as in Table 4.3). Alice is able to calculate the

(progn
(setf durslope-class-indicator
(filter time-with-linregression

'test (make-thunk-1 #'group-index '(:UQ) '(:CETI))
:attrib 'class
: annotate-as 'classind))

(princ

(flatten (unsplit durslope-class-indicatorl)
:fn #'show-correlation
:attribs '(classind slope)

: flatten-to 'classind-slope-correlation)))

;; operation runtime was <1 second
** This is a statistically significant correlation!
;; operation runtime was <1 second
;; operation runtime was <1 second
;; Estream-set,
;; containing events of type:

<eventtype 'FLATTEN-TYPE-15>
;; with annotated attribs: (CLASSIND-SLOPE-CORRELATION)
({ NIL : CLASSIND-SLOPE-CORRELATION=((R . 0.122425966) (P .0.014244958)) })
;; TOTAL runtime was <1 second

Figure 4-8: Experimenting with a Class Grouping

Index Classes
0 {UQ, FOR-6.188, CETI2}
1 {CETI}

Table 4.3: Revised Ad-hoc Class Indexing

correlation among students, between their slopes and this new grouping, by making

only a small revision to her expression from Figure 4-8. As can be seen in Figure 4-

9, this final correlation is stronger, and more statistically significant, than what she

found using the previous grouping.

Most importantly, FITSL's interactive interface makes it very natural for Alice to

incrementally refine her data-analysis queries in the above manner. It is also worth

noting that each of the three operations in this section took less than a second to

execute. Thus we see that FITSL provides a high-level language for data exploration,

and yet pays little performance penalty for this level of abstraction. Hence, FITSL

(progn
(setf durslope-class-indicator2
(filter time-with-linregression

'test (make-thunk-1 #'group-index '(:CETI))
:attrib 'class
:annotate-as 'classind))

(princ
(flatten (unsplit durslope-class-indicator2)

:fn #'show-correlation
:attribs '(classind slope)
:flatten-to 'classind-slope-correlation)))

;; operation runtime was <1 second
** This is a statistically significant correlation!

operation runtime was <1 second
;; operation runtime was <1 second
;; Estream-set,
;; containing events of type:

<eventtype 'FLATTEN-TYPE-19>
;; with annotated attribs: (CLASSIND-SLOPE-CORRELATION)
({ NIL : CLASSIND-SLOPE-CORRELATION=((R . 0.13550824) (P . 0.006712589)) })

;; TOTAL runtime was <1 second

Figure 4-9: Trying an Alternate Class Grouping

provides an efficient engine for manipulation of time-series datasets, and is therefore

well-suited to interactive exploration of datasets and manual iterative refinement of

query statements.

4.3 Higher-Order Filters

In addition to the first-order (difference) filters demonstrated in Section 4.2.2, FITSL

can perform higher-order filtering. Here, we show how a simple second-order filter

can be used to recognize when students are submitting values according to a binary

search pattern. Also, this example demonstrates the analytic power which can result

from the combination of multiple flatten operations.

Unlike previous examples, this example uses a dataset from an online analog-

circuits tutor3 . This ITS featured a circuit design problem which required students

3This ITS was written as part of the Cambridge-MIT Institute's Intelligent Book project [6].

to provide component values to incrementally synthesize a completed circuit meeting

certain requirements. The tutor gave students detailed feedback on submitted values,

such that one might expect a skilled student to reach many answers via a binary

search.

4.3.1 Recognizing Binary Search

(setf binsearch-results

(let ((*binsearch-fuzz* 0.17))

(filter-chain synthesis-input-values

(f 'split 'userid 'varname)

(f 'diff-n #'binary-searching

:nth-order-diff 2

:attrib 'varval

:annotate-as 'binsrch-tail

:keepnulls t)

(f 'regexp '(:SEQUENCE

(:ANNOTATE start

(:EVENT binsrch-tail #'not))

(:EVENT binsrch-tail #'not)

(:ATLEAST 2 (:EVENT binsrch-tail)))

:annotate-as 'binsearch

:keepnulls t))))

;; operation runtime was <1 second
;; operation runtime was <1 second
;; operation runtime was <1 second

;; TOTAL runtime was <1 second

==> #<ESTREAM-SET D #x71b4bcba>
... Estream-set containing 1238 events of type EXTRACT-TYPE-3
... with native attribs: (USERID TIME VARNAME VARVAL)

... and annotated attribs: (BINSRCH-TAIL START BINSEARCH)

... and split by: (USERID VARNAME)

... into 176 discrete streams

Figure 4-10: Annotating Episodes of Binary-Searching

The log of all students' work through this problem is represented in the streamset

synthesis-input-values. As shown in Figure 4-10, this data is then split into sepa-

The tutor was used in MIT's 6.002x class, an experimental ITS-enhanced version of the MIT course
Circuits and Electronics (6.002).

rate streams, divided by student and circuit-variable name; it is then passed through

the second-order binary-searching filter4 for annotation of all binary-search tails

(as binsrch-tail). Naturally, the first two events of any binary-search episode will

not be tagged by this filter; they are recognized and annotated (as binsearch) by

the regular-expression filter which follows the second-order filter.

Thus, we see how FITSL can apply any second-order filter to a dataset. Further-

more, there is no limit on the degree of filter which may be used with FITSL, as

filter-order is one of the configurable parameters of the diff-n filter type.

4.3.2 Data Analysis with FITSL

Next, we wish to know more about how often binary search was performed. This is

calculated using FITSL in Figure 4-11: first, each student's binary-search episodes are

counted, and then we count how many students had any given number of binary-search

episodes. The results can be seen at the bottom of Figure 4-11; of the 35 students

in the class, only 13 actually used binary search to solve the problem, although one

student did use it relatively heavily - nine distinct episodes.

This section merely highlights what has been shown throughout all the examples

given here - that FITSL provides a high-level grammar in which one may encode

arbitrary processing of multidimensional sequence data.

4 We can characterize binary search as any stream of values where the successive differences
between values drops by a factor of 2 with each new difference. Event number n can be said to be
part of the tail of a binary search if the absolute difference in values between events n and (n - 1)
is roughly half the absolute difference in values between events (n - 1) and (n - 2). All three, of
course, make up part of the binary search episode. Thus, the tail of a binary search can be detected
by a relatively simple second-order filter.

(let ((binsearch-count
(filter-chain binsearch-results

(f 'split-only 'userid)
(f 'flatten

:by 'userid
:attribs 'start
:fn #'count-true
:flatten-to 'binsearch-episode-count)

(f 'split-only 'binsearch-episode-count)
(f 'flatten

:by 'binsearch-episode-count

:attribs 'userid

:fn #'count-true

:flatten-to 'users)

(f 'unsplit))))

(princ binsearch-count))

; operation runtime was <1 second
; operation runtime was <1 second
; operation runtime was <1 second
; operation runtime was <1 second
; operation runtime was <1 second
; Estream-set,
; containing events of type:

<eventtype 'FLATTEN-TYPE-11>
; with native attribs: (BINSEARCH-EPISODE-COUNT)
; and annotated attribs: (USERS)
({ (0) : USERS=22 }
{ (1) : USERS=10 }
{ (2) : USERS=2 }
{ (9) : USERS=1 })

;; TOTAL runtime was <1 second

Figure 4-11: Reporting on Binary Search

Chapter 5

Implementation

The goal of FITSL was to enable efficient data processing while also providing the user

with a concise high-level interface for query specification. Several design criteria were

decided upon, the effects of these criteria on the choice of implementation language

were considered, and a number of issues were revealed in the process of implementing

these criteria; this process is discussed below.

5.1 Design Criteria

A wide range of factors influenced FITSL's initial design. This section begins by

describing some broad considerations on the grammar and structure of the toolkit

itself. It then discusses some important considerations regarding how FITSL might

be used.

5.1.1 Overall Language Considerations

It was clear from the outset that this language should be as succinct as possible

while maintaining an intelligible grammar. Users composing filter queries should be

allowed to focus on their work; as much as possible, the mechanisms which implement

these filters should be implicit to the language. At the same time, it was crucial

that the resulting sequence-data toolkit be highly flexible - it would be impossible

to anticipate all possible filters and transformations which might be desired by a

user. Thus, the language must also be extensible, and therefore capable of executing

arbitrary expressions specified by the user. To complicate matters further, it was

expected that these user-specified expressions would typically be applied to every

event in a dataset, and thus the language would need to be able to execute them

efficiently. As a result, I decided to embed FITSL in an existing language, rather

than implement my own parser, compiler, or library functions.

5.1.2 Modes of Operation

Sequence data sets can be very large and complex; loading and processing them can

take non-negligible amounts of time. Furthermore, development of filters (especially

regexp filters) often involves a process of iterative manual refinement. If the toolkit

language were only accessible via pre-scripted batch jobs, this sort of incremental

data-analysis process could be extremely slow. With batch jobs, a query refinement

could only be tested by re-executing the complete query script, which might take

tens (or hundreds) of seconds to complete. Having an interactive interface would

streamline the process of query formulation by allowing users to avoid needless re-

calculation of intermediate results. Therefore, the language should have an interactive

interface, but must also be scriptable for batch processing.

5.2 Choice of Implementation Language

The criteria expressed in the preceding section led in the direction of choosing a lan-

guage such as Java, Lisp, Scheme, or JScheme. The MIT Scheme [13] implementation

was disqualified on the basis of its memory constraints: ITS datasets can easily reach

hundreds of megabytes in size, but MIT Scheme can only access 64 megabytes of

memory. JScheme [4] was intriguing, but is relatively inefficient; in order to have

good performance, inner loops must be implemented in Java. However, the inner

loops (the heart of the filter mechanisms) would all consist primarily of user-specified

code, and thus users would be forced to implement their custom query logic in Java

anyway; one might as well use regular Java instead. This left only Java and Lisp;

of the two, Lisp was more attractive, with its built-in read-eval-print-loop, and also

the ease with which Lisp interpreters can compile dynamically-defined functions on

demand.

5.3 Various Implementation Decisions

This section discusses many of the decisions made in the process of FITSL's im-

plementation. Perhaps the most crucial ones concerned the central approach to data

manipulation used by FITSL; others involved its regexp-based filters, underlying data

representation, or interactions with other tools.

5.3.1 Data Manipulation Paradigm

In a tool like FITSL, the paradigm applied to the task of data processing has profound

effects on the suitability of the system for various tasks. In this case, I found it

necessary to adjust my approach to both the representation and transformation of

data.

Collections of Sequences

When designing FITSL, my initial ideas involved a single stream of events, plus

an explicit iteration facility which could break any given stream down along one

or more axis for various forms of processing (e.g. statistical analysis). However,

as my conception of the language evolved, I realized it would be more desirable to

shift to an approach more like my eventual streamset/splitting model. This was in

part due to the conciseness achieved when iteration becomes implicit to the language

grammar: primitives operate on sets of sequences, rather than individual sequences.

As it was evident from the start that my ITS data would need to be broken down

along many axes on a regular basis, this elegance alone was adequate reason to choose

the streamset paradigm.

Flattening

Similarly, in my early attempts designing a data-analysis mechanism for FITSL, I

ended up with a tool which would translate each stream into a list of values (similar to

the current ->xy tool). Then, I would process these lists with various statistical tools.

This, however, decoupled the statistical results from the original dataset: stream-

related information was generated which was not stored in a streamset, and which

was no longer annotated with any information about the parent stream from which

it had been generated. Confronted with this, I realized I was ignoring the power of

my streamset abstraction: it would be much more elegant to do all FITSL processing

in terms of streamsets. Hence my flatten primitive, which translates a streamset

into a set of "events," each of which associates information about its parent stream

with the flattened value derived from that parent.

The streamset paradigm I first envisioned turned out to be even more valuable

than I originally expected. In part, this is due to the many different kinds of multidi-

mensional analysis which can be performed when combining the split and flatten

operators to transform sequential datasets, as has been discussed in Sections 3.3.4

and 4.2.3.

5.3.2 Regular Expression Filters

Early on, observing the descriptive power of SDL (c.f. Section 2.3) made it clear that

regular expressions can provide a powerful mechanism for describing patterns in data.

Thus, from the very beginning, it was planned that FITSL should include filters for

which user-specified regexps determined which events to annotate.

I decided to take advantage of CL-PPCRE, an existing open-source Lisp regexp

package [26]. Extensive modifications were required to allow it to manipulate lists

instead of character-arrays, and to allow FITSL events as regexp atoms instead of

just characters. This package package uses an S-expression (sexp) grammar to ex-

press regexps, which can be used encode any traditional POSIX [23] (or Perl [25])

character-based regexp. While CL-PPCRE includes some facilities for defining static

regexp synonyms (symbols which map to predefined regexp trees), it lacked any

sort of parameterized macro facility. Thus, I implemented an extensible regexp-tree-

transformation mechanism; in addition to defining a number of regexp macros (like

:STAR and :PLUS), this mechanism is used to translate my :EVENT1 and :ANNOTATE

nodes into a form understood by CL-PPCRE.

My :ANNOTATE nodes are implemented as a variant of the :REGISTER nodes native

to CL-PPCRE. Originally, their sole function was for specifying annotations. How-

ever, CL-PPCRE does not provide register-naming, and hence only allows reference

to registers by number (according to their order of occurrence); as I experimented

with my :EVENT-node facility for comparison with register-captured events, I saw the

awkwardness of only using numbers to refer to registers. Therefore, I modified my

tree-transformation modules so :EVENT-node comparisons could refer to registers by

their : ANNOTATE label as well. This results in a much more elegant syntax, which

greatly simplifies the process of hand-composing a regexp, particularly when iterative

refinements are involved.

One may regard use of regular expressions as a powerful tool for describing pat-

terns in sequence data, much more subtly nuanced than other forms of sequence filters.

On the other hand, regexp filters can be seen as a logical extension of applying higher-

order filters to a sequence. To wit, one may regard a regexp filter as a (potentially)

infinite-order filter, the result of compiling the specified regular expression into a finite

state machine which recognizes the described pattern.

5.3.3 Data Representation

To allow effective manipulation of large datasets, it was important to choose ob-

ject representations which would allow efficient execution of typical tasks. Here, the

two most frequently manipulated object types are discussed: the underlying event

(datum) representation, and the objects in which stream events are sequenced.

1In fact, translation of :EVENT nodes actually involves dynamic code-generation. Because it will
be executed very frequently in the course of a regexp match, the generated Lisp code is compiled at
the time of tree-translation.

Event Representation

I began with the assumption that a typical data-processing session would consist of

accretive annotation and filtering of a modest number of very large datasets. Based on

this, I decided it was key that the underlying event-data representation avoid unnec-

essary duplication of data structures, and therefore reuse (i.e. share) data structures

as much as possible. To facilitate this, I elected to make the event-data structures im-

mutable, so that an annotated variant of some parent event object could safely share

as much of the internal structure of its parent as possible, without worrying about

the shared data being modified by subsequent operations on its parent or siblings.

To this end, I decided that an annotated (child) copy of a parent event should

consist simply of the annotation (a name/value pair) plus a pointer to the original

parent event. Since no data need be copied, annotating a large dataset is extremely

efficient both in terms of computational space and time. By this convention, the

annotation structure of any given event is effectively a linked list.

Obviously, searching such a linked list for a particular annotation is not very effi-

cient. As an optimization, when importing a dataset into FITSL, a new data-structure

type (called an eventtype) is defined, with fields tailored to the event-attributes con-

tained in that dataset. Accessors for these fields (which run in constant time) are

generated and cached. Each event in the dataset is translated into an event-seed

- an appropriately initialized instance of this new structure. Like the annotation

structures, this event-seed is also immutable. With this modification, an annotated

event now contains a pointer to its ancestral event-seed in addition to a pointer to its

parent's annotation structure.

In this scheme, attributes contained in the event-seed (which have constant-time

accessors) are referred to as "native attributes." This is to distinguish them from the

"annotated attributes" which are added via annotation (and whose accessors run in

O(n) time with the number of annotations).

Stream Representation

While our fundamental data unit is an event, FITSL is a sequence-data processing

language; as such, all events are contained within streamsets. For ease of initial

implementation, the streams (sequences) within these streamsets were implemented

as Lisp lists, which have a linked-list structure. Most filtering operations access every

stream element from first to last, and many filtering operations remove some elements,

producing a shorter overall stream. Both of these characteristics make a linked list a

natural and convenient choice for stream representation; the advantages to be gained

from using an array instead of a linked list are questionable, and may be outweighed

entirely by the increased complexity of implementation.

Indeed, it appears that the chosen data representations have given FITSL reason-

able performance for annotation, splitting, and basic filtering of very large multidi-

mensional streamsets. As can be seen in Chapter 4, any of these operations can be

performed in at most a handful of seconds using a dataset containing 300,000 events,

on the system used for these experiments.

5.3.4 Modular Data Import/Export Functionality

To facilitate interoperation between FITSL and other existing analysis/visualization

tools, a pair of complementary frameworks for data import and export were created.

Each of these frameworks allows a given file format to be encoded with a minimum of

effort; simple formats like Matlab and CSV can be specified in perhaps a dozen lines

of code. FITSL currently includes definitions which allow the reading and writing

of files in Matlab, ARFF and CSV formats; more formats can be defined by the

user. This interoperability is intended, in part, to compensate for FITSL's lack of a

graphical front-end for data visualization.

Many common log formats are stateless, with one log entry per line. One can write

a parser for such log-entry formats, which can then be linked into the data-import

framework with a minimum of difficulty.

None of the above file formats, however, support fields that contain arbitrary data

objects (e.g. lists). Because streamsets possessing such values can be useful, it was

necessary to create a FITSL-native file format; this is referred to as the fd format

(for Fitsl Data). Any streamset can be saved in this format and later re-loaded, from

another FITSL session, with exactly the same state as before.

5.4 Summary

We have thus seen how the design of FITSL strove for a compact yet comprehen-

sible grammar, which led to an implicit abstraction for iteration over collections of

sequences, as well as a succinct mechanism for analyzing such collections through

use of flatten procedures. Choosing an immutable data representation, which al-

lowed reuse of shared structure, has yielded the intended benefit of optimizing FITSL

for common filtering operations. The system provides users with a high-level gram-

mar for encoding regular expressions, including an annotation abstraction that allows

comparison and annotation of events within a regexp. To ease integration with data

sources and other analysis and visualization tools, the system lets users import and

export information in a variety of ways, both within Lisp and via external files. Fi-

nally, the system was implemented as an extension to Lisp, providing easy access to

FITSL in either batch or interpreted sessions, and giving users a highly flexible and

extensible system that also allows dynamic compilation of the user-specified inner

loops which can be used in FITSL's filters.

Chapter 6

Future Work

A number of potential directions for future work were made apparent in the course of

implementing and using FITSL. This chapter details these: it begins by outlining var-

ious ways in which FITSL's performance might be improved, continues by discussing

two minor functional enhancements which could be made, and ends by describing a

few major subsystems whose addition might prove worthwhile.

6.1 Performance Improvements

While the language's core filter engine provides reasonable performance overall, there

are a few operations which are not as efficient as may be desired. There are two

major issues in this regard - regexp filters and unsplitting - and one minor one - the

extract primitive.

6.1.1 Regular Expression Performance

Little effort has been devoted thus far to the profiling and/or optimization of FITSL's

regular expression filtering module. As such, it seems likely that there are some in-

expensive optimizations which could be performed. It's possible, however, that the

most significant performance enhancements would be found through major rewrites

of portions of the engine: either fundamental algorithmic optimizations, or a tighter

integration between the regexp engine and the data representation. The great flexi-

bility of the modified regexp engine is both a strength and a weakness: it can encode

sophisticated data patterns, but the complexity of the resulting system is liable to

impede performance.

One relatively inexpensive optimization that might help dramatically would be to

implement event-streams as arrays instead of linked-lists. For historical reasons, the

modified CL-PPCRE engine relies heavily on naive index-based access to sequence

elements (via the Lisp elt operator), which means that list traversal runs in O(n 2)

time. It seems likely that much of the inefficiency of the regexp filter is due to such

wasteful linked-list traversal; switching to an array representation for streams would

allow constant-time access to sequence elements.

6.1.2 Enhancements to unsplit

Currently, it is easy to produce a transformed streamset whose split-key set is a

superset of the parent streamset's, using the split operator. However, the only

efficient mechanism for producing a transformed streamset whose split-key set is a

subset of the parent's split-key set is the unsplit function'. As unsplit can be

used only to create streamsets with empty split-key sets, there is no efficient way

to partially unsplit 2 a streamset. This is unfortunate, because unsplit is a fairly

expensive operation3 , and yet much of its computation may be unnecessary when

only a partial unsplitting is desired. Hence, the addition of an efficient partial-unsplit

facility would be a useful improvement.

If unsplitting were found to be a heavily-used operation, additional optimizations

might be valuable. For example, since the overall sort order of events is generally

the same in a parent streamset and all its transformed descendants, it might improve

performance if this sort order were cached for use by subsequent use of unsplit and

'While split-only does provide this functionality, it is implemented as a wrapper which calls
unsplit (if needed) and then split; as such, it typically performs much needless computation.

2I.e. create a streamset whose split-key set is a non-null subset of its parent's split-key set,
without (as is currently done by split-only) first performing a complete unsplit followed by a
re-splitting.

3 Unsplitting a streamset requires merge-sorting all its streams into a single sequence.

split-only.

6.1.3 Performance of extract

As implemented, use of the extract primitive is relatively computationally intensive.

While it's possible there are some optimizations which could be made to improve this

situation, much of this computational expense is an unavoidable consequence of the

design decisions which shaped the language. The event data structures (described in

Section 5.3.3) allow very efficient execution of common operations, but such perfor-

mance comes at the cost of it being comparatively expensive to create entirely new

instances of such data structures (i.e. new event-seeds). Therefore, it is unclear that

any significant improvement can be made to the performance of extract without

compromising the efficiency of all other FITSL primitives.

6.2 Minor Feature Enhancements

It would be more elegant if the join operator allowed translation of the attribute

names of its input streamsets. This could be used to avoid collision of attribute

names, if both input streamsets have an attribute name in common (but which has

different meanings in the respective streamsets). For example, one might wish to

join a customer-data streamset and a product-data streamset, each of which had an

' id attribute whose value were desired in the resulting joined streamset (attributes

denoting, respectively, customer IDs and product IDs). The attribute in one streamset

could be translated to avoid collision with the other (e.g. translating the products'

'id attribute-name to 'product-id). Similarly, if two datasets each used a different

attribute-name to refer to the same attribute-values (e.g. 'userid and 'uid), one

could translate them to match, so as to allow joining on this shared attribute. While

such translation is not strictly necessary4 , it would be convenient to have a flexible

attribute-name mapping system for the join operator.

4Using a series of simple annotations, one can achieve the same effect as such a translation.

Having a more general way to export data to non-FITSL list structures would

be valuable: the ->xy procedure described in Section 4.1.2 can process any number

of attributes, but only works on streamsets which are unsplit. While the code for

handling split streamsets has been written, there is no user-friendly way to invoke it

or parse its results.

6.3 Major Functional Additions

The 'test, 'diff, and 'diff -n filters all use the same underlying filter-processing

engine. As implemented, there is no way for this engine to pass any contextual

information to a (hypothetical) stateful filter-function (e.g. notification that the next

event belongs to a new stream or a new streamset). This might make it difficult to

implement a 'test filter which maintained internal state, for example a filter function

that internally recorded all answers submitted for a problem by a given student. To

some degree, this kind of filtering can be achieved via the flatten facility, but only

when the resulting dimensional reduction of the dataset is also desirable.

Also, aside from the flatten facility, there is no provision for arbitrary trans-

formation functions that operate on the per-stream level rather than the per-event

level. For example, one might imagine a machine-learning filter which must read

the entirety of a stream before it can annotate any portion of the stream. While

there are a number of ways this functionality might be implemented, it might be best

approached as an enhancement to the 'wholestream filter mechanism.

Finally, it would be valuable if FITSL had a stronger facility for viewing data. If

nothing else, a more polished textual data display would be useful, perhaps involving

a more graceful way to preview select portions of very large datasets5 . It might also

be valuable to have either some kind of basic built-in visualization framework, or to

be tightly integrated with some tool which provided such functionality. On the other

hand, data visualization is an area of active research providing a rich variety of tools

and techniques. It may be wise for an exploration/analysis tool like FITSL simply to

5For example, it is nearly impossible to visually interpret a textual listing of 300,000 records.

have a flexible data-export framework (and thereby take advantage of the strengths

of whatever third-party visualization tools are best suited to the task at hand) rather

than investing substantial development effort in duplicating the functionality of ex-

isting tools.

Bibliography

[1] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and

Interpretation of Computer Programs. MIT Electrical Engineering and Computer

Science Series. The MIT Press, second edition, 1996.

[2] Rakesh Agrawal, Giuseppe Psaila, Edward L. Wimmers, and Mohamed Zait.

Querying shapes of histories. In Umeshwar Dayal, Peter M. D. Gray, and Shojiro

Nishio, editors, Twenty-first International Conference on Very Large Databases

(VLDB '95), pages 502-514, Zurich, Switzerland, 1995. Morgan Kaufmann Pub-

lishers, Inc. San Francisco, USA.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In

Philip S. Yu and Arbee S. P. Chen, editors, Eleventh International Conference

on Data Engineering, pages 3-14, Taipei, Taiwan, 1995. IEEE Computer Society

Press.

[4] K. Anderson, T. Hickey, and P. Norvig. Silk: a playful blend of scheme and java,

2000.

[5] Ryan Shaun Baker, Albert T. Corbett, Kenneth R Koedinger, and Angela Z.

Wagner. Off-task behavior in the cognitive tutor classroom: When students

"game the system". In Proceedings of ACM CHI 2004: Computer-Human Inter-

action, pages 383-390, 2004.

[6] William Billingsley, Peter Robinson, Mark Ashdown, and Chris Hanson. Intelli-

gent Tutoring and Supervised Problem Solving in the Browser. 2004.

[7] Benjamin S Bloom. The 2 sigma problem: The search for methods of group

instruction as effective as one-to-one tutoring. Educational Researcher, 13(6):4-

16, 1984.

[8] China educational technology initiative. http://web.mit. edu/mit-ceti/www/,

2006.

[9] C. Collet, T. Coupaye, and T. Svensen. NAOS - Efficient and Modular Reac-

tive Capabilities in an Object-Oriented Database System. In Proceedings of the

Twentieth International Conference on Very Large Databases, pages 132-143,

Santiago, Chile, 1994.

[10] C. J. Date and Hugh Darwen. A guide to the SQL standard. Addison-Wesley,

4th edition, November 1996.

[11] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification in

active databases: Model & implementation. In Proceedings of the 18th Interna-

tional Conference on Very Large Databases, 1992.

[12] Paul Graham. ANSI Common Lisp. Prentice Hall, Englewood Cliffs, New Jersey,

1996.

[13] Chris Hanson. MIT scheme reference manual. Technical Report AITR-1281,

1991.

[14] Eric N. Hanson. Rule condition testing and action execution in Ariel. In Pro-

ceedings of the ACM SIGMOD Conference, pages 49-58, 1992.

[15] D. F. Lieuwen, N. Gehani, and R. Arlein. The Ode active database: Trigger se-

mantics and implementation. In Proceedings of the 12th International Conference

on Data Engineering, pages 412-421. IEEE Computer Society Press, 1996.

[16] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent

episodes in event sequences. Data Mining and Knowledge Discovery, 1(3):259-

289, 1997.

[17] MATLAB User's Guide. The MathWorks, Inc., Natick, MA 01760, 2006.

[18] Giansalvatore Mecca and Anthony J Bonner. Sequences, Datalog and transduc-

ers. In Proceedings of the Symposium on Principles of Database Systems, pages

23-35, 1995.

[19] MIT Department of Electrical Engineering and Computer Science. XTutor

toolkit. http://icampus. mit. edu/xtutor/, 2005.

[20] Tadeusz Morzy and Maciej Zakrzewicz. SQL-like language for database mining.

In Proceedings of the First East-European Symposium on Advances in Databases

and Information Systems, pages 311-317, St. Petersburg, 1997. University of St.

Petersburg.

[21] Iakovos Motakis and Carlo Zaniolo. Temporal aggregation in active database

rules. In ACM SIGMOD International Conference on Management of Data,

pages 440-451, 1997.

[22] Balaji Padmanabhan and Alexander Tuzhilin. Pattern discovery in temporal

databases: a temporal logic approach. In Evangelos Simoudis, Jiawei Han, and

Usama Fayyad, editors, Second International Conference on Knowledge Discov-

ery and Data Mining, Portland, Oregon, 1996. AAAI Press.

[23] Portable Operating System Interface (POSIX)--Part 2 (Shell and Utilities)-

Section 2.8 (Regular Expression Notation). Standard for Information

Technology-Portable Operating System Interface (POSIX). IEEE Computer

Society, New York, September 1992.

[24] Ido Roll, Ryan S Baker, Vincent Aleven, Bruce M McLaren, and Kenneth R

Koedinger. Modeling students' metacognitive errors in two intelligent tutoring

systems. In Proceedings of International Conference on User Modeling 2005,

pages 367-376, 2005.

[25] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O'Reilly

and Associates, 3rd edition, July 2000.

[26] Edi Weitz. CL-PPCRE - portable Perl-compatible regular expressions for Com-

mon Lisp. Available via http://weitz. de/cl-ppcre/, December 2005.

[27] Jennifer Widom and S. J. Finkelstein. Set-oriented production rules in relational

database systems. In Proceedings of the ACM SIGMOD Conference, pages 259-

270, 1990.

[28] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools

and techniques. Morgan Kaufmann, San Francisco, second edition, 2005.

[29] H A Wood and D J Wood. Help seeking, learning and contingent tutoring.

Computers and Education, 33:153-169, 1999.

