
Smart Bookmarks:
Automatic Retroactive Macro Recording on the Web

by
Darris Hupp

Submitted to the Department of Electrical Engineering and Computer Science in Partial
Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

May 11, 2007

© 2007 Darris Hupp. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole and in part in any medium now known or

hereafter created.

A utho r
Department of Electrical Engineering and Computer Science

May 11, 2007

Certified by
Robert C. Miller

Associate Professor
'lesis Supervisor

Accepted by.............
Arthfr-Gmith

Professor of Electrical Engineering
Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INS'r E
OF TECHNOLOGY

OCT 0 3 2007 BARKER

LIBRARIES

2

Smart Bookmarks:
Automatic Retroactive Macro Recording on the Web

by
Darris Hupp

Submitted to the
Department of Electrical Engineering and Computer Science

May 11, 2007

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

New technology has made the Web more dynamic and personalized, while at the same time
interaction with the Web has become more complicated and involved. This thesis presents
Smart Bookmarks, a web automation system that allows users to automate complex tasks or
easily return to otherwise hard-to-reach dynamic web pages by creating smart bookmarks. A
smart bookmark consists of an automatically generated script of recorded browsing commands
that returns to a particular web page or web application state. Smart bookmarks can be
created retroactively, meaning that the user does not need to explicitly initiate recording
before performing a task, but can instead request a bookmark after visiting the destination
page; the appropriate sequence of commands need to return to a page is selected
automatically from a history of the user's browsing interactions. Smart Bookmarks provides a
rich, visual representation of recorded bookmarks in order to clearly illustrate the actions that a
bookmark performs, and includes textual descriptions, screenshots, and animated previews of
each command. Finally, the system allows users to easily and intuitively edit bookmarks after
they have been created, and to share smart bookmarks with other users.

Thesis Supervisor: Robert C. Miller
Title: Associate Professor

3

4

Acknowledgements

I would like to thank Rob Miller for his invaluable advice and support. He was a constant source
of encouragement and inspiration throughout this process, and I am grateful to have had him
as my research advisor.

I would also like to thank all the other members of the User Interface Design group for their

technical advice and valuable feedback, and especially Kevin Su, Vikki Chou, and Greg Little for

their insight and support.

Finally, I would especially like to thank my parents, Russ and Regina, and my sister, Chelsie.

They have been a constant source of motivation and support throughout this project and my

entire MIT career. None of this would have been possible without them and their unwavering

encouragement and belief in my abilities.

5

6

Contents

1 Introduction..14

2 Related W ork..18

2.1 W eb Autom ation and Custom ization ... 18

2.2 W eb-based M acro Recording ... 19

2.2.1 Proactive vs. Retroactive Recording ... 19

2.2.2 Architectures for Recording User Actions.. 20

2.2.3 Representing Recorded Com mands ... 21

2.2.4 Variable and Private Com mands ... 22

2.3 Other Web-based Progra mming-by-Demonstration Systems 23

2.4 Visual M acro Recording ... 23

3 Usage Scenarios .. 25

3.1 Accessing a Hard-to-Reach Bank Portfolio Page ... 25

3.2 Searching for a Flight on a Travel W ebsite... 27

3.3 Sharing a Custom Laptop Configuration ... 28

4 User Interface Design.. 30

4.1 Overview of the Layout .. 30

4.2 Creating a Bookmark... 32

4.3 Graphical Representation of a Bookmark ... 33

4.4 Replaying a Bookmark... 35

4.5 Editing a Bookm ark ... 37

4.5.1 M anually Editing a Command .. 37

4.5.2 Copying, M oving, and Deleting Com mands .. 38

4.5.3 Live Edit ... 40

4.6 Param eterizing a Bookmark ... 41

4.7 Graphical Browsing History ... 42

4.8 Sharing Bookm arks ... 44

5 Im plem entation .. 45

7

5.1 Overview of the Design .. 45

5.2 Internal and External Representation of Bookmarks .. 48

5.2.1 Internal Representation ... 48

5.2.2 External Representation..49

5.3 Recording the User's Browsing Actions ... 50

5.3.1 Recording Com mands ... 50

5.3.2 Recording W eb Page DOM s .. 54

5.3.3 Recording Im ages... 54

5.4 Autom atically Generating a Bookmark .. 56

5.4.1 Determ ining W hether a W eb Page is Bookmarkable .. 59

5.4.2 Removing Unnecessary Commands from a Generated Bookmark 60

5.5 Playing a Bookmark... 61

6 Discussion of Challenges... 63

6.1 Dealing with Side Effects .. 63

6.1.1 Side Effect Detection User Interface..64

6.1.2 Side Effect Detection Im plementation... 66

6.2 Security and Privacy ... 68

7 Evaluation ... 70

7.1 Autom atic Bookmark Generation ... 70

7.2 Robustness of Bookmarks .. 72

7.3 W eb Page Com parison Algorithm ... 73

8 Conclusion .. 77

8.1 Future W ork..78

8

List of Figures

Figure 1.1 A smart bookmark script that accesses my MIT Webmail inbox 14

Figure 1.2 Smart Bookmarks is implemented as a sidebar in the Firefox browser..................16

Figure 1.3 An example bookmark displayed in the Smart Bookmarks sidebar........................16

Figure 3.1 Use the Create Bookmark button the Smart Bookmarks sidebar to create a new smart
bookmark that returns to the current web page... 26

Figure 3.2 A portion of the Bank of America bookmark shown graphically in the sidebar..........26

Figure 3.3 Replay a smart bookmark by clicking the Go button .. 27

Figure 3.4 Smart Bookmarks allows users to specify that a command's value is variable and
should be specified each time the bookmark is played ... 28

Figure 3.5 Saving a sm art bookm ark to a file .. 29

Figure 3.6 Im porting a sm art bookm ark ... 29

Figure 4.1 Smart Bookmarks is implemented as a sidebar in the Firefox browser..................30

Figure 4.2 The Smart Bookmarks sidebar showing the list of bookmarks this user has created (a),
and a graphical view of one of those bookmarks (b).. 31

Figure 4.3 Creating a new sm art bookm ark .. 32

Figure 4.4 Users can change a bookmark's name by clicking on it .. 32

Figure 4.5 A graphical representation for the command: type Boston, MA into Departs textbox
.. 3 3

Figure 4.6 Use the New Bookmark button to create a new blank smart bookmark................33

Figure 4.7 How a typical command is displayed in Smart Bookmarks 34

Figure 4.8 A sequence showing a few frames from a command's animated preview.............34

Figure 4.9 Bookmarks can be displayed more compactly using a slider in the toolbar 35

Figure 4.10 Replay a smart bookmark using the Go button (a), or directly from the bookmark list
(b) ... 3 5

Figure 4.11 Smart Bookmarks also supports several partial playback options for bookmarks 36

Figure 4.12 An example of a Smart Bookmarks reminder ... 36

9

Figure 4.13 Editing a command so that it enters "mary" into the username textbox rather than
"a lice".. ... 3 7

Figure 4.14 Commands can be copied into a smart bookmark from a text editor or email client
.. 3 9

Figure 4.15 Toggle Live Edit mode using the Live Edit button in the toolbar of an open bookmark
.. 4 0

Figure 4.16 Using Live Edit mode, users can modify bookmarks by demonstrating actions in their
browser, which will automatically get inserted into the bookmark at the cursor location (a),
or w ill replace an existing com m and (b) .. 40

Figure 4.17 Users can choose to enter a command's value before playback begins (a), or during
p lay back (b)...4 2

Figure 4.18 Users can view their graphical browsing history by clicking the View History button
.. 4 3

Figure 4.19 The Smart Bookmarks history is similar in appearance to a normal smart bookmark
.. 4 3

Figure 4.20 Saving a bookm ark to a file ... 44

Figure 4.21 Im porting a bookmark from a file ... 44

Figure 5.1 An overview of the internal Smart Bookmarks architecture. The boxed "1, 2, 3" labels
identify open browser tabs and their corresponding internal BrowseHistory objects. 47

Figure 5.2 An overview of the event-to-command process in Smart Bookmarks 53

Figure 5.3 The results of running the image comparison algorithm on a screenshot of the
original web page (a) and a modified version of that page (b); the differing regions as
returned by the algorithm are outlined. ... 56

Figure 5.4 How Smart Bookmarks automatically generates a new bookmark (bookmarkable
U RLs are indicated w ith stars) .. 58

Figure 6.1 Smart Bookmarks will prompt the user to comfirm playback of a command when it
detects that it may cause a possible side effect ... 65

Figure 6.2 Users can mark actions as causing side effects explicitly in their browser 65

Figure 6.3 Side-effecting commands are highlighted in red in the sidebar 66

Figure 6.4 Smart Bookmarks automatically detects and obscures passwords when displaying
com m ands in the sidebar ... 68

Figure 6.5 Smart Bookmarks warns the user before exporting bookmarks containing passwords
.. 6 9

10

Figure 7.1 A graph showing the distribution of edit-distance scores for 60 evaluated web pages.
The system designates pages with scores over 0.1 as unbookmarkable, and those with
scores below 0.1 as bookm arkable ... 74

Figure 7.2 A chart that categories the refetched versions of unbookmarkable web pages by the
type of content they lead to. ... 76

Figure 7.3 A graph depicting the running time of the page comparison algorithm against the
number of DOM nodes in the pages being compared..76

11

List of Tables

Table 5.1 A summary of how Smart Bookmarks determines the label that should be associated
with particular element types during the command recording process 51

Table 7.1 Smart bookmarks for 24 tasks. Time is the time required to generate the bookmark;
Steps is the number of commands in it; Replay indicates which bookmarks could be
successfully replayed after the specified number of weeks ... 70

Table 7.2 Confusion matrix for the page comparison algorithm. There were zero incorrect
m atches for the 60 evaluated web pages .. 73

Table 7.3 Results from an evaluation of Smart Bookmark's web page comparison algorithm, on
both bookmarkable pages and unbookmarkable pages. Count is the number of pages
tested; Score refers to the average page similarity score assigned by the algorithm; Time is
the average time the algorithm took to run in msecs; and DOM Nodes is the average
num ber of nodes in the page DOM s .. 73

12

13

1 Introduction

As the Web has grown and matured, new technologies such as scripting languages, cookies, and
XML have been introduced that have made the Web much more dynamic and personalized
than before. At the same time, however, Web interaction has become more complicated and
involved [2, 51. Users are often required to correctly remember and input user name and
password combinations and fill out sequences of tedious forms to perform even relatively
simple tasks. Furthermore, web pages are often dynamically generated, and so it is not always
possible to use traditional bookmark facilities to retrieve them. This is unfortunate, because it
is precisely these kinds of pages that require the most effort from users to repeatedly access,
and which would therefore benefit the most from a bookmarking facility that allows dynamic
content to be retrieved with a single click, as traditional bookmarks provide for static web
pages today [6].

This thesis presents a solution to this problem in the form of smart bookmarks, which consist of
a script of Web interaction commands that can be replayed to return to a particular web page,
or to restore a particular state of a web application. An example of a short smart bookmark
script that accesses my MIT Webmail inbox is shown in Figure 1.1.

2 type -dwpp" into MIT Kerberos emame textbox

3 type * into Passwwod textbmx

4 . s r k Log in

Figure 1.1 A smart bookmark script that accesses my MIT Webmail inbox

14

In addition to recalling hard-to-reach, dynamic web pages, smart bookmarks are also useful for
automating common tasks on the Web. Users may often find themselves repeatedly
performing the same tedious sequence of steps to perform a task, such as searching for a flight
on a travel website. Smart bookmarks allow users to easily automate these kinds of tasks by
creating a script of commands that performs the task when replayed. Because portions of web
based tasks are often slightly different each time they are performed, smart bookmarks can
also be parameterized, so that users need only enter the one or two parameters that change
each time when replaying a bookmark (the departure and return dates in a flight search, for
instance).

A third benefit that smart bookmarks provide is that they can allow users to easily share
dynamically generated content. For example, a user could customize a laptop he or she wishes
to purchase online, save the completed configuration page as a smart bookmark, and send the
bookmark to a friend to look over. Smart bookmarks could also be used as step-by-step
tutorials that could be sent to someone to illustrate how to perform a task on a website.

The Smart Bookmarks system is implemented as a sidebar inside the Firefox web browser
(Figure 1.2). From the Smart Bookmarks sidebar, users can bookmark their current web page,
run a bookmark they have already created, or view and edit a graphical representation of an
existing bookmark. Smart Bookmarks continuously monitors and records the actions the user
makes as he or she browses the Web and stores them as commands in the background. Then,
when a web page is bookmarked, it automatically determines the necessary sequence of
commands from the user's browsing history needed to return to that page or web application
state and saves those commands as a smart bookmark.

Once a bookmark has been created, it can be replayed with a single click. Smart Bookmarks will
replay the bookmark's command sequence in the user's web browser to return to the page and
state that was originally bookmarked. Users can also indicate that they should be asked about
the inputs for certain commands in the bookmark before or during each playback. This would
be useful for automating a task where only one or two things change each time the task is
performed.

In order to clearly show users what a particular bookmark will do when replayed, Smart
Bookmarks displays a graphical representation of the bookmark. In addition to textual
descriptions of a bookmark's commands, the graphical view includes a screenshot of each
command showing the part of the web page that command acted on when the bookmark was
created, as well as an animated preview for each command that more clearly shows its context
within the web page as a whole. Smart Bookmarks also allows users to easily edit a bookmark
once it has been created, for instance by changing the inputs to a command, copying
commands, or removing a command from a bookmark entirely. Users can also dynamically edit
or even create bookmarks in real time by explicitly performing the actions they want to capture
in their browser. A screenshot showing how an example bookmark appears in the Smart
Bookmarks sidebar is shown in Figure 1.3.

15

Smart Bookmarks sidebar

Ft

Figure 1.2 Smart Bookmarks is implemented as a sidebar in the Firefox browser

-1 Bookmark name

Starting page URL

I

I

Textual description of command I
Graphical illustration of command

Editing a command's value

I

I

..- GA/0r Iff DePart taxbo

Animated preview showing
command in context of full page

Figure 1.3 An example bookmark displayed in the Smart Bookmarks sidebar

16

Smart Bookmarks differs from previous Web-based macro recorders [1, 2, 5] in two key areas.
First, it utilizes the notion of automatic, retroactive macro recording. That is, unlike other
macro recorders that use a VCR-like interface that requires users to explicitly specify when to
start and stop recording, Smart Bookmarks is able to continuously record users' actions silently
in the background as they browse the Web. Users do not need to decide in advance that the
task they are about to perform should be recorded. Furthermore, once the task has been
performed or the desired web page reached, Smart Bookmarks is able to determine the correct
sequence of recorded commands necessary to return to the web page or application state
automatically. Users only need to indicate retroactively that they would like to create a
bookmark, and Smart Bookmarks will scan back through their command history to find an
appropriate starting point for the macro. Automatic, retroactive macro recording conveniently
allows users to create macros without any advanced planning and without the need to repeat a
task for the sole purpose of recording a macro after determining that one would be useful. It
also neatly fits into the "one-click" model of traditional URL-based bookmarks that many Web
users are already familiar with.

A second key contribution that Smart Bookmarks provides is its rich, visual representation of
recorded bookmarks. A smart bookmark contains many features that help clearly illustrate
what the bookmark does and how it does it, including textual descriptions, screenshots, and
animated previews of each command. This feedback serves to make smart bookmarks more
understandable, and to inspire more confidence in the automation itself, since users can see at
a glance immediately after a bookmark is created what it will do when replayed. An additional
benefit of this rich visual feedback is that it allows users to easily share bookmarks with each
other with less confusion. In fact, two of the primary intended uses for Smart Bookmarks are to
allow users to share dynamic or customized content with each other, and to support the
creation of step-by-step tutorials, both of which clearly benefit greatly from bookmarks that are
easy to understand and follow.

The rest of this thesis discusses the details of the Smart Bookmarks design and implementation.
Related work is presented in Chapter 2. Chapter 3 illustrates a few of the main uses of Smart
Bookmarks through the use of three example scenarios. The system's user interface is
discussed in Chapter 4. Chapter 5 explains the details of Smart Bookmark's implementation.
Chapter 6 provides a discussion of some of the challenges inherent in the design of this kind of
system, and how Smart Bookmarks attempts to overcome them. An evaluation of Smart
Bookmarks and some of its integral components is presented in Chapter 7. Finally, Chapter 8
concludes and discusses possible future improvements and extensions to Smart Bookmarks.

17

2 Related Work

Smart Bookmarks draws from and builds upon previous related work in several different areas:

* Web automation and customization with scripting languages and syntax-free
programming

" Web-based macro recording
* Non-macro-recording Web-based programming by demonstration systems
* Visual macro recording

This section discusses some of the aspects of prior work in each of these areas that Smart
Bookmarks incorporates and why, as well as the ways in which Smart Bookmarks differs from,
improves upon, or extends some of these ideas.

2.1 Web Automation and Customization

Smart bookmarks are essentially scripts of commands that can be replayed to automate tasks
on the Web. Smart bookmark commands are based on the ideas introduced by Chickenfoot [3],
a programming system integrated in the Firefox browser that allows users to automate and
customize websites using scripts. Chickenfoot is designed so that users can create scripts that
manipulate web pages by referring only to the user interface itself; that is, the rendered web
page as displayed by a browser. For example, a Chickenfoot script might consist of human-
readable commands like click ("search button"), rather than commands that involve
the underlying HTML source of a page.

Using commands written at the user-interface abstraction level provides some important
benefits. First, because it is not necessary to manipulate or even look at the HTML source of a
web page, scripts can be written more easily and more quickly. Additionally, once written,
these scripts are more understandable to both programmers and non-programmers alike.
Furthermore, scripts that identify page components using descriptive keywords based on the
contents of a site's user interface are more resilient to changes in the web page's structure,
since site designers are likely reluctant to modify the outward presentation of their web pages
in order to avoid confusing their visitors.

Chickenfoot later took this idea even further by introducing the notion of keyword commands
[19], as a syntax-free alternative to traditional scripting languages, including Chickenfoot's own
JavaScript based language. For example, instead of writing the command click ("search

18

button") as above, syntax-free programming frees users to write more natural statements
like click the search button.

While Chickenfoot is not itself a macro recorder (though it can display commands
corresponding to user actions while browsing the Web), its notion of having commands that
refer to web page components using only descriptive elements extracted from the visible user
interface of a page is clearly beneficial to macro recording as well. Smart Bookmarks internally
represents bookmark commands in a manner akin to Chickenfoot commands. Specifically, it
uses visible keywords from web pages to refer to components involved in recorded commands,
rather than the more direct, but less intuitive and less resilient approach of utilizing aspects of
the internal page structures, such as Document Object Model (DOM) XPaths [11, 24] or
component IDs. Additionally, Smart Bookmarks displays the textual representation of
bookmark commands in the form of syntax-free keyword commands. This makes it easier to
see at a glance what a smart bookmark does.

2.2 Web-based Macro Recording

Macro recording is clearly an important component of the Smart Bookmarks system. More
specifically, Smart Bookmarks is concerned with macro recording as it pertains to the Web; that
is, Smart Bookmarks and previous systems [1, 2, 6, 20] are designed to be able to capture user
interaction with web pages inside a browser, and to store those recorded interactions in a form
that can be replayed in the future to recreate the user's original actions. The method used to
capture and replay those actions, and the form they take once recorded, differs from system to
system.

2.2.1 Proactive vs. Retroactive Recording
Much of the previous Web-based macro recording work relies on proactive recording [1, 2, 6],
where users must explicitly tell the system when to start and stop recording their browsing
actions. Smart Bookmarks, on the other hand, supports recording retroactively: user
interaction is continuously recorded in the background, and a macro can be created using a
subset of past commands at any time. This eliminates the need for users to know in advance
that the sequence of steps they are about to perform could be useful to save as a macro that
they can reuse in the future, as might often be the case while browsing the Web. Smart
Bookmarks takes this idea a step further by not requiring users to explicitly specify which
commands from their recorded history should be included in the macro they want to create.
Instead, users need only indicate that they would like to create a smart bookmark that will
return them to the web page or state that they are currently viewing, and Smart Bookmarks is
able to determine automatically the sequence of commands from their history necessary to
include in the bookmark. That said, Smart Bookmarks supports both proactive macro recording
and explicit retroactive recording as well, if those methods are preferred by the user for a
particular situation. WebMacros [6], an earlier Web-based macro recording system, also
proposed a "Get Me Here" feature similar to the retroactive macro recording employed by
Smart Bookmarks, but didn't describe how to implement it.

19

2.2.2 Architectures for Recording User Actions
All macro recorders designed for the Web need a method for detecting events initiated by users
in their browser so that those events can be recorded. For instance, the user might click on a
link, type a URL into their address bar, or enter information into and submit a form. There are
at least two primary methods for detecting and capturing this information: using a proxy that
sits between the browser and the Web, and imbedding the system within the browser itself.

Previous Web macro recording systems like LiveAgent [1] and WebMacros [6] use a proxy
architecture that sits between the user's browser and the Web, intercepting any requests
initiated by the browser and any responses returned from the server. The system can then
make any changes necessary to the HTML source to support macro recording and playback
before passing it along to the browser.

LiveAgent was one of the earliest Web automation systems, and allows users to automate
repetitive tasks through proactive demonstration, by manually starting and stopping recording
of their browsing sessions. LiveAgent implements a proxy between the user and the Web that
modifies web pages on the fly to incorporate JavaScript event handlers on buttons, links, and
other components, which then allow the system to recognize and record user actions.

A later system, WebMacros [6], also users a proxy-based architecture and works by rewriting
HTML pages to include annotations that support macro recording and playback. WebMacros
replaces all URLs in links and form actions with a special URL containing additional information
used by the recording system that it can intercept and interpret when the user clicks a link or
submits a form.

One of the main advantages of using a proxy-based approach is that proxies are ideally
independent of both the browser and the operating system, which is clearly not possible with
an embedded browser solution. Integrating with a cross-platform browser helps mitigate this
issue somewhat, however. However, proxies have some significant disadvantages as well.
Proxy systems cannot modify web pages that are accessed over a secure connection, since
those pages are encrypted by the browser before the proxy is given access to them. This is
important since a growing number of sites on the Web today do employ encryption, and macro
recorders need to have access to the unencrypted HTML source of a page in order to track
users' browsing events. Perhaps an even bigger issue is that many web pages use significant
amounts of client-side JavaScript in the design of their user interfaces. Since a proxy has no
access to the web page once the HTML response has been passed along to the browser from
the server, it is unable to respond to any events caused by user interaction with the client-side
JavaScript.

A second approach that avoids some of the problems inherent to proxy-based architectures is
to embed the macro recording system inside the web browser itself. This is the approach that
Smart Bookmarks takes, as well as other web automation systems like Chickenfoot [3], Koala
[201, and WebVCR [2]. Because these systems have access to the browser and its content
directly, they are able to see and modify web pages exactly as the user sees them, including

20

changes that occur due to the use of cookies, client-side JavaScript, and style sheets.
Furthermore, embedded systems have no problem accessing or modifying secure web pages,
since they will already be decrypted by the browser. Additionally, the issue of being unable to
detect and respond to client-side scripting activity is avoided as well.

More specifically, Smart Bookmarks is embedded within the Firefox web browser as a sidebar
extension (like Chickenfoot and Koala as well). Smart Bookmarks is able to detect events
caused by user interaction with web pages through the use of JavaScript event handlers
attached to the Firefox browser window itself. This allows it to seamlessly create smart
bookmarks using commands that span multiple tabs and even multiple windows, something
some of the previous systems were unable to do.

WebVCR [2], another Web-based macro recorder, takes a slightly different approach to the in-
browser technique. WebVCR is implemented as a Java applet for use with the Netscape web
browser, and uses a VCR-like interface that requires users to explicitly start and stop macro
recording. When it is recording, WebVCR automatically inserts event handlers into web pages
as they load so that it can record users' browsing activity. WebVCR also coined the term smart
bookmark to refer to macros that provide shortcuts to web content, though it is unable to
generate such macros automatically. As using a Java applet is an in-browser approach,
WebVCR is also dependent on the browser itself, the operating system, and more specifically in
this case the Java Virtual Machine. Additionally, for security reasons this approach requires
users to explicitly confirm the necessary security privileges that the Java applet requires so that
it can access and modify web pages outside of its own domain. The applet must also remain
open in a separate browsing window while recording so that it can retain state across multiple
web pages.

2.2.3 Representing Recorded Commands
While the number of methods for detecting events generated through user interaction with
web pages is relatively small, the manner in which those actions are formatted and stored
varies widely among all the macro recorders discussed so far.

LiveAgent uses a proprietary format called the HTML Position Definition Language (HPD), which
provides a significant amount of flexibility in referring to elements the user has interacted with
on the page [1]. For instance, a single link could be represented in terms of its order in relation
to other elements on the page, the words contained in the link's text, or a variety of other
possibilities. However, while this approach is both flexible and powerful, LiveAgent is not able
to infer this information automatically; users must supply the HPD for each element in the
macro explicitly using a dialog box.

WebVCR only explicitly stores link traversals and form submissions, and includes information
associated with other elements, such as textboxes or radio buttons, with the form they belong
to when that form is submitted [2]. For links, it includes information like the URL the link points
to, the text displayed by the URL, and its location in the web page DOM. Similar information is
stored for form submissions, in addition to the names, values, and locations of any other

21

elements associated with the form. As some of the information WebVCR uses to identify
elements is likely to change frequently as web pages are updated, the system includes
heuristics to match steps in the recorded macro with actual page elements during playback.
For instance, if a step refers to a link that no longer exists in the current web page DOM,
WebVCR will attempt to find a link elsewhere in the document with the same link and displayed
text, or barring that any link with the same text but different URL, and so on. These heuristics
help protect WebVCR scripts against changes to web page structure.

WebMacros stores recorded macros internally in a relational database [6]. The actual macro
steps are stored in one table, which, like WebVCR, consists only of link traversals and form
submissions. It includes information like the requested URL, DOM location of the element, and
whether the step was a link traversal, form submission, or external page load. A second table
stores information related to the elements associated with form submissions. Elements are
identified by type (textbox, list box, etc), and by name extracted from the HTML source. Finally,
a third table contains the actual values associated with the various form elements. While
WebMacros does not make any attempt to protect against changes to the underlying page
structure during macro playback, it does attempt to detect when playback is proceeding
incorrectly by checking for HTTP error codes and comparing the web pages that are retrieved
during playback to corresponding page fingerprints that were calculated and stored with the
macro when it was created.

While LiveAgent, WebVCR, and WebMacros all represent recorded commands and their
associated web page elements using primarily attributes extracted from the internal HTML
source code of the page, Koala (and Smart Bookmarks) takes the approach introduced by
Chickenfoot, using keywords derived from the visible user interface of a web page instead.
Koala uses proactive macro recording, where users start and stop the recording as necessary,
and actions are recorded in the form of natural keyword commands [20]. This is important,
since it allows recorded scripts to be more robust against changes to page structure than scripts
that rely on the details of the internal HTML, as the user interface of a page is less likely to
change frequently over time. Once recorded, Koala command scripts are saved automatically in
a wiki, allowing users to easily exchange and improve scripts. This is possible because recorded
Koala commands are represented using natural language that is easy for people to read and
understand, and are visible in the user interface itself. Smart Bookmarks also stores recorded
commands internally using keywords that reference the visible interface of web pages, and
displays commands externally to the user using syntax-free keyword commands. Smart
Bookmarks takes this one step further, however, and utilizes a rich graphical representation for
bookmark commands that should make it even easier for users to understand, use, and modify
recorded bookmarks.

2.2.4 Variable and Private Commands
Some previous Web-based macro recording systems, such as WebMacros, support command
parameterization, meaning that users can mark particular page elements as being either
variable or constant [6]. Variable parameters can then be provided by the user each time the

22

macro is played, rather than always using the same value. Parameters can also be marked as
private, which indicates that the parameter value should not be stored with the macro.

Users must explicitly indicate to WebMacros whether an element should be constant, variable,
or private, by selecting from a set of radio buttons associated with the element and inserted
into the HTML source of the page by the proxy. Reasonable defaults are provided, however.
WebVCR supports the use of variable parameters as well, in addition to private parameters
which the system encrypts and stored with the macro [2].

Smart Bookmarks also supports parameterization; however, users specify that a parameter is
variable through the Smart Bookmarks sidebar user interface, rather than by modifying the web
page itself. Additionally, Smart Bookmarks allows users to choose whether they would prefer
to enter the values for variable parameters all together before replaying a bookmark, or
through the web page itself during bookmark playback. Smart Bookmarks supports private
parameters by automatically detecting password fields and storing those values in Firefox's
secure built-in password manager rather than storing them with the smart bookmark itself.

2.3 Other Web-based Programming-by-Demonstration Systems

While not directly related to Smart Bookmarks and other macro recorders, other research has
looked into applying programming-by-demonstration on the Web to areas other than macro
recording.

One example of such a system is Internet Scrapbook [8], which allows users to create a personal
web page using portions of multiple other pages that they can specify graphically using a
process called clipping. The personal web page can then be automatically updated by
extracting the relevant information from the clipped pages. In order to specify which part of a
given web page should be included as a clipping in a manner that is likely to be robust against
changes to page structure, Internet Scrapbook uses a combination of patterns derived from the
visible page (like Chickenfoot, Koala, and Smart Bookmarks), and patterns involving the
structure of the HTML source.

More recent work [16] has taken this idea further by providing users with the ability to
interactively specify extraction patterns that the system can use to automatically find similar
content, and then present a collection of such content in the form of visual summaries. Other
work [17] involves using clipped regions of some web pages as the inputs to clipped regions of
other pages to perform computations that no single web page provides on its own. Finally,
Sifter [18] is a web browser extension that is able to automatically scrape structured data from
web pages and present that data within the context of the original web page in a manner that
can be easily filtered or sorted.

2.4 Visual Macro Recording
One key difference between Smart Bookmarks and the other Web-based macro recorders
discussed is that they either offer no user visible representation of recorded actions at all

23

(WebVCR, WebMacros), or display scripts only in a textual format (Koala). Every command
recorded by Smart Bookmarks, on the other hand, is represented visually in the user interface.
Smart Bookmarks uses a combination of textual descriptions, web page screenshots, and
animations to help convey the purpose of each individual command in a bookmark, as well as
the bookmark as a whole.

The film strip metaphor utilized by Smart Bookmarks was pioneered by two earlier non-Web
based macro recording systems, Chimera [91 and Pursuit [21]. Chimera introduced the notion
of graphical histories that visually represent actions performed within a drawing editor, while
Pursuit is able to graphically represent commands performed within a desktop environment
similar to the Apple Macintosh Finder. Additionally, Chimera supports the creation of macros
retroactively, by allowing users to select and copy commands from its graphical history.

24

3 Usage Scenarios

Smart Bookmarks can be used to automate a variety of common tasks on the Web; these tasks
generally fall into one of three areas: accessing dynamic or hard-to-reach web pages,
automating repetitive tasks, and saving or sharing customized dynamically-generated content.
This section presents a typical scenario from each of these primary usage areas to illustrate how
Smart Bookmarks can be used to supplement normal web browsing.

3.1 Accessing a Hard-to-Reach Bank Portfolio Page
Many banks and other financial institutions include an online portfolio feature that allows users
to view a variety of information about their various accounts and investments. While this
information is likely very useful, it is often also difficult and tedious to access because, like
many modern Web pages, the content is dynamically generated and not directly accessible with
a standard URL.

As an example, to access my Bank of America online portfolio, I must first browse to the bank's
website, select my user ID, and click a sign-in button. On the following page, I need to enter a
pass code and click a second sign-in button. Next, I am presented with an overview of my
accounts. From there, in order to view my actual online portfolio, I must click on a "My
Portfolio" link, which finally takes me to an overview of the portfolio. If I then want to see a
different page within my portfolio, a summary of net worth for instance, I would need to click
yet another link. So, in order to access one web page, I'm required to perform at least seven
actions within my browser. It isn't possible to bookmark any of these intermediary pages using
traditional URL-based bookmarks, since they are all dynamically generated based on the login
information supplied at the start of the process.

This process can be greatly simplified using Smart Bookmarks. Using a Firefox browser
equipped with Smart Bookmarks, I could simply press the Create Bookmark button in the
toolbar of the Smart Bookmarks sidebar once I've reached my portfolio page (Figure 3.1), and a
smart bookmark containing all of the steps necessary to return to that page will be created
automatically. A graphical representation of the bookmark will appear in the sidebar (Figure
3.2), which I can quickly glance over to ensure it does what I expect it to do. Any password
fields (such as my pass code) are automatically detected and shown using asterisks in the user
interface. Additionally, passwords are securely stored using Firefox's built-in password
manager and are not saved in a regular smart bookmark file.

25

SmarI Bookmaks

Figure 3.1 Use the Create Bookmark button the Smart Bookmarks sidebar to create a new smart bookmark that
returns to the current web page

4 type - - Int * Passod: Eater as--d-.
OW11 whIet YUM Passwudv

-0 C--'rzw. &*anfm

5dkkSignlIn

(4 20 Cmaaeoycay r

Figure 3.2 A portion of the Bank of America bookmark shown graphically in the sidebar

26

In textual form, the complete smart bookmark created for this task is shown below:

go to https://www.bankofamerica.com
click Sign In to Online Banking
type "******" into Passcode: Enter a Passcode textbox
click Sign In
click My Portfolio
click Net Worth Summary

Now, when I want to access my portfolio, I need only select the bookmark in the Smart
Bookmarks sidebar and click the Go button in the toolbar (Figure 3.3). The system will play the
commands in the bookmark in sequence, returning to the portfolio page I originally
bookmarked.

Bank of Auwica Pottfol io0

Figure 3.3 Replay a smart bookmark by clicking the Go button

3.2 Searching for a Flight on a Travel Website

Travel websites often require users to fill out tedious forms to search for flight fares and other
information. Users that travel frequently may often find themselves repeatedly filling in largely
the same information each time they look for a flight.

As one example, a user may live in Boston, but have a friend who lives in New York that she
visits frequently. She often flies down to New York and back on the weekends, leaving Friday
night and returning Sunday afternoon. Each time she searches for a flight, she goes to
Orbitz.com, enters Boston, MA as the departure city, New York, NY as the arrival city, and fills in
the dates she wants to leave and return. Also, because she wants to leave Boston in the
evening and return sometime in the afternoon, she chooses those options from the appropriate
drop down menus as well. Finally, she clicks the Find Flights button and after a few moments is
presented with a list of possible flights to choose from.

Because she performs this flight search often, and because much of the process is exactly the
same every time, she may find it useful to automate the task using a smart bookmark. To do
this, she clicks the Create Bookmark button in the Smart Bookmarks sidebar, and is presented
with the following bookmark in textual form:

go to http://www.orbitz.com/
type "New York, NY" into From City name or airport textbox
type "Boston, MA" into To City name or airport textbox
type "08/10/07" into Leave textbox
choose 6p-12a
type "08/12/07" into Return textbox
choose noon-5p

27

click Find Flights

While most of this process will always remain the same, the departure and return dates will be
different each time the user needs to search for this flight. Smart Bookmarks supports this kind
of parameterization by allowing users to specify that the values for particular commands are
variable, and so should be specified each time a bookmark is played. The system allows users
to enter values for variable parameters either all at once right before playback begins, or one
by one during playback in the web page itself. In this case of the example above, the user
would like to enter the return and departure dates together at the start, so she right clicks on
the command type "08/10/07" into Leave textbox in the graphical command list for the
bookmark, and selects Choose value -> Before running this bookmark from the popup menu
that appears (Figure 3.4). She then does the same for the command that specifies the flight's
return date.

After doing this, when the user plays the bookmark, she will be asked to specify the departure
and return dates in the Smart Bookmarks sidebar before the bookmark will begin to play.

Dea

5 d--e e~ Paste an

Ply Tns My Account F

Figure 3.4 Smart Bookmarks allows users to specify that a command's value is variable and should be specified
each time the bookmark is played

3.3 Sharing a Custom Laptop Configuration
There are many online computer manufacturers that allow users to customize default systems
with a wide variety of different parameters before purchase. As an example, one user needs to
choose and customize a computer system, and then send the information to someone else who
will actually be purchasing the system. This may be the case because his company or school is

paying for the computer, or because he was asked by a less computer-savvy friend to create a

system for them. In any case, once the user has chosen a system and modified it with a few

dozen options, there is likely no easy way for him to send the resulting custom configuration to

someone else. Instead, he may have to provide written instructions to the buyer, describing
how the computer should be customized. At some point in this process, mistakes or
misunderstandings are likely to occur, and an incorrect system may be purchased.

28

Smart Bookmarks can be used to get around this problem by allowing the user to save the
configuration using a smart bookmark containing the commands that complete the desired
customizations. So, after visiting Dell's website, selecting a base model, and making a number
of customizations, the user decides he is happy with the laptop configuration he has created
and presses the Create Bookmark button in the Smart Bookmarks sidebar. A bookmark is
generated that is able to recreate the customized laptop he just finished creating:

go to http://configure.us.dell.com/dellstore/config.aspx?c=us ...
check Intel@ Coremh 2 Duo T5600 (1.83GHz, 2MB L2 Cache ...
click Go to Next Component
check Genuine Windows Vistah Business [add $70 or $2/month 1]
click Go to Next Component
check 15.4 inch UltraSharpm Wide Screen WXGA+ Display with ...
click Add My Accessories
check Dell Photo AIO 926 - Includes Media Card Reader

click Choose My Software
check Microsoft@ Office Small Business 2007-includes ...
click Confirm & Add to Cart

The user can save this smart bookmark to a file (Figure 3.5) and email it to whoever is going to
complete the purchase. The purchaser can then import the bookmark into his web browser
(Figure 3.6), quickly scan its visual representation to see what it does, and play it in order to
recreate the same configuration and complete the ordering process.

Alternately, if the purchaser does not also have Smart Bookmarks installed, the user can copy
the bookmark to the clipboard and paste it into his email client, where it will appear as a list of
textual keyword commands. The purchaser can then follow these instructions by hand to
recreate the same configuration.

Figure 3.5 Saving a smart bookmark to a file

smat Book.mpks

Figure 3.6 Importing a smart bookmark

29

4 User Interface Design

One of the overarching design goals for Smart Bookmarks was for it to be as close as possible to
the metaphor of traditional bookmarks that users are already familiar with, and as easy to use,
but be more flexible and more powerful with regard to the tasks that it is able to accomplish.
More specifically:

* It should be easy to create a smart bookmark for a particular task, and to replay that
bookmark later.

* Users should be able to quickly review a bookmark to visually see what it does.
" The system should support multiple mechanisms for creating and replaying bookmarks

if needed or preferred by the user.
" It should be simple and intuitive to edit a bookmark once it has been created.
" In general, the system should be as unobtrusive and integrated into the user's normal

browsing experience as possible.

4.1 Overview of the Layout

Smart Bookmarks is implemented as a sidebar for the Mozilla Firefox web browser (Figure 4.1).
Because of this, its layout should be instantly familiar to users who have used Firefox's built-in
Bookmarks or History features, which are also implemented as sidebars. This also means that
Smart Bookmarks can remain onscreen as users browse the Web, or be hidden in the
background until the user decides to open it with a simple key stroke.

Smart Bookmarks sidebar

Figure 4.1 Smart Bookmarks is implemented as a sidebar in the Firefox browser

30

The Smart Bookmarks interface consists of two main components: a list view and a details view.
The list view appears when the user first opens the Smart Bookmarks sidebar, and contains a
list of all the user's smart bookmarks by name in alphabetical order (Figure 4.2a). Using the
buttons found in the toolbar running across the top of the sidebar, users can create a new
bookmark that will return to the page currently visible in their browser, create a new blank
bookmark, import an existing bookmark into their list, or view a graphical history of their
browsing actions. Users can play any bookmark in their list directly from this view as well. By
clicking on the name of one of their bookmarks, users will be taken to a details view, which
displays a visual representation of the smart bookmark, as well as a variety of commands for
playing or editing the bookmark (Figure 4.2b).

The design follows that of the traditional bookmarking functionality where possible. Like URL-
based bookmarks, smart bookmarks can be created with a single click by simply browsing to the
page that should be bookmarked. Smart bookmarks are also maintained in an easily accessible
list that the user can keep visible as they browse, and a bookmarked page can be revisited with
one click as well. However, Smart Bookmarks also prominently integrates graphical
representations of the bookmarks created by the system. These visual cues are important
because smart bookmarks are, of course, significantly more complex than traditional
bookmarks, and so it is necessary to provide as much assistance to users as possible with
recalling and understanding the tasks that their bookmarks perform.

n1 -0 MyNadnam
Amazon
Amtrak
Apple
Bank of America
Chase
CheapTickets
Dell
Dell Drivers

Facebook -

Gateway
Google Maps
Greyhound pe "kirkland, wa " into City or Zip Code tuitb
Hotmail
HousingMaps
Lenovo
LiveMaps kirkland, wa

Myspace
Orbitz
Travelocity 3 c ik Search
Vanguard
Webmail
Yahoo Mail

(a) (b)

Figure 4.2 The Smart Bookmarks sidebar showing the list of bookmarks this user has created (a), and a
graphical view of one of those bookmarks (b)

31

4.2 Creating a Bookmark

A smart bookmark can be created by clicking the Create Bookmark button in the list view
toolbar (Figure 4.3). This tells Smart Bookmarks that the user wants a bookmark that can
return to the web page or web application state that is currently visible in his browser. The
system then creates this bookmark by generating a sequence of commands corresponding to
the actions the user performed in his browser to get to the page being bookmarked.

,Z.IG i1

Figure 4.3 Creating a new smart bookmark

A smart bookmark will always begin with a go to command instructing the browser to go to a
particular URL. This ensures that the bookmark can always be replayed, independent of the
current state of the user's browser. If the web page the user wants to create a smart bookmark
for is bookmarkable, meaning it is always possible to return to the page and its current state by
simply entering its URL into the browser's address bar, then this initial go to command will be
the only command in the smart bookmark and will simply load the bookmarked web page's URL
directly. However, if the page being bookmarked is not bookmarkable, Smart Bookmarks will
find the most recent web page from the user's browsing history that is bookmarkable and
construct a bookmark beginning with that page's URL and followed by a sequence of
commands that will recreate the bookmarked page. After the bookmark has been created,
Smart Bookmarks will automatically open the newly bookmark in details view and display it
bookmark graphically. The system will also supply a default name for the bookmark (the title of
the web page that was bookmarked), though this name can be freely edited by the user by
clicking on it in the sidebar (Figure 4.4).

Smart Bookmarks _ _ J
Orbitz Flight Search G

-- j1

Figure 4.4 Users can change a bookmark's name by clicking on it

Every command included in a smart bookmark is represented by both a textual description of
the action performed by the command, and a visual screenshot. For commands that affect a
web page component (like clicking on a link or typing something into a textbox), the screenshot
captures the portion of the web page that was affected, as well as a small portion of
surrounding page in order to maintain context. For go to commands, a screenshot of the entire
web page is used. An animated preview is also associated with each command, which smoothly
zooms in to and highlights the component affected by the command from an overview of the
entire page.

32

The command types used by Smart Bookmarks are the same as those used by Chickenfoot [3]:

go to URL
click button or hyperlink
type text into textbox
check checkbox or radio button
choose list-item

For example, a command that enters Boston, MA into the departure city field on the Amtrak
website might be:

type Boston, MA into Departs textbox

The corresponding screenshot associated with this command might look like (Figure 4.5):

Please select a station.

Figure 4.5 A graphical representation for the command: type Boston, MA into Departs textbox

Smart Bookmarks also allows users to create blank bookmarks with no commands, using the
New Bookmark button in the list view toolbar (Figure 4.6). Users can use this option to
manually create a smart bookmark by explicitly recording their actions as they browse the Web,
as discussed in Section 4.5.

Figure 4.6 Use the New Bookmark button to create a new blank smart bookmark

4.3 Graphical Representation of a Bookmark

Smart bookmarks are represented visually in the sidebar using a filmstrip-like metaphor that
places each command that makes up the bookmark vertically on top of each other, with the
first command in the sequence at the top. Users can scroll through the bookmark to see all the
commands if there are too many to fit inside the sidebar at one time.

Each command is labeled with a number, indicating its position in the entire command
sequence, and a textual description of the command is shown to the right of this number. A
screenshot illustrating what the command does is shown below the text description. An
example command is shown in Figure 4.7.

33

7 click My Portfolio

00r COrts & n

VwvA and manage your
from a singe location.

Figure 4.7 How a typical command is displayed in Smart Bookmarks

Users can also view an animated preview of a command by clicking on the Movie Button that
appears in the upper left hand corner of its screenshot when the mouse is over top of the
command. If the smart bookmark begins with an initial go to command (as all automatically
generated smart bookmarks do), then the animated preview for that command will provide an
animated run-through of the entire bookmark, illustrating what the bookmark should do if
actually played. This feature could be helpful for users that have forgotten what one of their
bookmarks does, or if the bookmark was sent to them from someone else. For other
commands, the animated preview will smoothly zoom from an overview of the web page the
command acts on, to a close up the component (textbox, link, button, etc.) affected by the
command (Figure 4.8). This is useful for showing the context of the command within an entire
web page.

Figure 4.8 A sequence showing a few frames from a command's animated preview

The sequence of commands in a smart bookmark will often span multiple different web pages.
Smart Bookmarks indicates that a page change has occurred by inserting a place holder
command that is labeled with the URL of the new page, as well as a screenshot of the page. In
order to differentiate the page change from an actual command, its label is shown grayed out,
and it is marked with a gradient indicating that all commands from that point forward are
associated with the new page.

Smart Bookmarks also includes a slider, found in the secondary toolbar of an open bookmark,
which allows users to shrink the display of commands from their full, default size to a more
compact, text-only format (Figure 4.9).

34

2 Wye -"boston, ma" hnt Destination cc Air

3 dkck Firt Okk In vkew cakndar
4 dkkfkst 30
S did smcand Ck* to view cakendwr

6 dkck 31
7 dhoose 2

8 dkck Search Hoteb

Figure 4.9 Bookmarks can be displayed more compactly using a slider in the toolbar

4.4 Replaying a Bookmark

There are several ways a smart bookmark can be replayed. When a bookmark is open in the
sidebar, users can click on the Go button in the toolbar beside the bookmark's name (Figure
4.10a) to begin playback. Alternately, a bookmark can be replayed directly from the bookmark
list by clicking on the small play button next to its name, or by right-clicking on the bookmark
and choosing Play (Figure 4.10b). When a bookmark is open, the currently selected command
is highlighted in green (and can be changed by clicking on another command). When a
bookmark is playing, the selected command will automatically change to match the command
that is currently playing in the user's browser, allowing users to watch the progress of running
bookmarks in the sidebar. Also, when a bookmark is playing, the Go button changes to a Stop
button, which can be used to stop playback if desired.

(a)

Bank of Anvericx Portfoio

(b)

Figure 4.10 Replay a smart bookmark using the Go button (a), or directly from the bookmark list (b)

Smart Bookmarks also provides three additional playback options to support partial playback
for debugging or other purposes; these options are available as buttons in the secondary
toolbar when a bookmark is open in the sidebar (Figure 4.11). The first button plays only the
currently selected command, the second plays down to the selected command from the

35

beginning of the bookmark, and the last button plays from the selected command to the end of
the bookmark. These options are also available through the menu that appears after right-
clicking on a command.

SmartB okidn 9
Bank of Amrkca Portfolio G0@10"

Figure 4.11 Smart Bookmarks also supports several partial playback options for bookmarks

While Smart Bookmarks is designed to be as resilient to changes in web page structure as
possible, bookmarks can occasionally break when a web page changes, and fail to play back
correctly. Just as traditional bookmarks can break if the web page URLs they refer to change,
problems during smart bookmark playback are sometimes unavoidable. Because of this, Smart
Bookmarks tries to make it as easy and painless as possible for users to update their bookmarks
when errors do occur. If, during normal playback of a smart bookmark, the system is unable to
successfully play a particular command, perhaps because the web page component it uses no
longer exists, playback of the entire bookmark will stop and the broken command will be
highlighted in red in the sidebar. The user can then use any of the editing methods discussed in
Section 4.5 to correct the broken bookmark, or continue on by interacting with the web page
manually.

One of the main benefits of using Smart Bookmarks is that it allows users to save time by
automating common tasks or saving hard-to-reach resources that they may want to access at
some point in the future. Because Smart Bookmarks is designed to be as unobtrusive as
possible, and may not even always be visible as users browse the Web, there may occasionally
be times when the user visits a web site for which he or she has a helpful smart bookmark
saved, but may not think to use it. For cases like these, Smart Bookmarks is equipped with a
reminder feature. Whenever the user visits the starting page of one of their smart bookmarks
by any means (by entering its URL directly into the browser's address bar, or linking to it from
an email, for instance) Smart Bookmarks will display a drop-down message at the top of the
user's browser window, from which the user can play the appropriate bookmark directly (Figure
4.12). If there are multiple bookmarks that can be played starting from the current page, users
can select the one they want using the More button in the drop-down message. The most
frequently used smart bookmark is chosen initially by default.

-W sankofn camr mea P Imoue l ___o__

j Smart Bookmarks; Would you like to run... Bankof America Portfobi0

Banof mercaLocations .Contact Us. Uelp .SiBankof Americaem

Figure 4.12 An example of a Smart Bookmarks reminder

36

4.5 Editing a Bookmark

Smart Bookmarks supports a variety of methods for editing a bookmark after it has been
created. Users may decide to modify a bookmark for one of several reasons, including: fixing a
bookmark that has become broken due to a web page change; making quick changes to parts of
a bookmark without the need to completely recreate it; copying or moving commands from
one bookmark to another; streamlining or adapting an automatically generated bookmark by
adding, removing, or modifying commands by hand; creating a new bookmark manually by
specifying each command individually; or creating a new bookmark by explicitly recording
actions while demonstrating them in the browser.

4.5.1 Manually Editing a Command
One of the smallest, and perhaps most common, changes users may want to make to their
bookmarks is to simply change the input value associated with commands that enter text into a
textbox or select an item from a list box. For instance, the user may have a bookmark that logs
into a website using a particular user name. If that user name changes at some point in the
future, the user doesn't need to recreate the entire bookmark from scratch, but can instead
just edit the command that enters the user name so that it supplies the new one instead. The
parts of a command's text description that can be changed in this way are highlighted, similar
to hyperlinks; users can simply click on these highlighted words to edit them. For instance, if
the user has a command labeled type "Alice" into Username textbox, she could change the user
name to "Mary" by clicking on "Alice" and editing the textbox that appears (Figure 4.13).
Alternately, users can make these changes by choosing Change value from a command's right-
click menu. The editable portions of Smart Bookmarks commands include the URL specified in
go to commands, the text entered by type into commands, and the list item selected by choose
commands. Also, note that after changing the input value of a command, its associated
screenshot will remain, even though it will still show the old value in the textbox or list box.
The outdated image is not removed since it likely still serves its intended purpose, which is to
provide context for the web page component that the command affects, which should not have
changed. However, Smart Bookmarks refreshes all the images in a bookmark each time it's
replayed, so a modified command's screenshot will be updated to correctly reflect its text the
next time it is played.

type 'alice" into Usenamw: telxtbmx

tye-Mary , * into Usenutne: teotbox

type 'mary into Username: textbox

Figure 4.13 Editing a command so that it enters "mary" into the username textbox rather than "alice"

37

While the ability to update the values of commands is likely sufficient for users' editing needs
most of the time, Smart Bookmarks also provides a way to modify the command itself, by
directly editing its textual representation. While the previous method of editing only a
command's value allows users to change, for instance, the text that gets placed inside a
particular textbox, editing the command itself allows users to change which textbox gets
affected, or even change the command from a type into command to a click command. To edit
a command in this way, users can choose Edit command from its right-click menu, and make
any changes necessary in the textbox that appears.

Because Smart Bookmarks utilizes Chickenfoot's implementation of syntax-free keyword
commands [19] to support free editing of smart bookmark commands, it is not essential that
edited commands follow any particular syntax. Instead, when a newly edited smart bookmark
command is played, its text representation is executed as a keyword command: the system
searches for a page component (such as a textbox) and an action on that component (such as
typing text into it) that best match the words found in the command. This means, for example,
that the command type alice into username textbox could be changed to any of the following
commands and still likely play successfully and perform the same action as the original:

enter alice in username textbox
put alice into username
username = alice

When a smart bookmark command has been freely edited in this manner, the system can no
longer reasonably assume that the command continues to affect the same web page
component as before. For this reason, Smart Bookmarks automatically removes the screenshot
associated with a command when it is edited in this manner. As before, however, an updated
screenshot will be added the next time the command is played.

In addition to being able to freely edit existing commands, users can manually insert a
completely new command into a bookmark by choosing Add blank command from the menu
that appears after right-clicking on an opened bookmark or any of its commands. After adding
a new blank command, users can then edit the command to do whatever they want just as if
they were editing any other previously-existing command.

4.5.2 Copying, Moving, and Deleting Commands
It may occasionally be useful to copy and paste commands from one place to another, or delete
commands that are no longer needed. Smart Bookmarks supports copying, cutting, and pasting
of commands within the same bookmark, between different bookmarks, and even from an
external text editor. Users can copy, cut, or delete one or more selected commands from an
open bookmark by choosing the appropriate option from the right-click menu. Selected
commands are highlighted in green, and multiple commands can be selected by clicking on
them while holding down the Ctrl key (to select multiple commands individually) or the Shift
key (to select all the commands between the last selected command and the current one).
Selection behaves in the same manner as any standard text editor.

38

To paste commands that have been copied to the clipboard, users can just right click on the
point in an open bookmark at which they would like to insert the new commands and choose
Paste before or Paste after from the menu. Commands that are copied and pasted within
Smart Bookmarks retain their associated screenshots as well as their text representations. In
addition to using the right-click menus, the standard keyboard shortcuts for Copy (Ctrl-C), Cut
(Ctrl-X), Paste (Ctrl-V), and Delete (Del) are available in Smart Bookmarks as well.

In addition to copying and pasting commands, entire bookmarks can be copied as well by right-
clicking on the bookmark's name in list view and choosing Copy, Cut, or Paste from the menu.
Bookmarks can also be deleted by choosing Delete, and they can be renamed by either
choosing Rename from the menu or by clicking on the name itself when the bookmark is open.

Finally, users can also copy a bookmark or a set of commands and paste them into a standard
text editor or email client, in which case the commands will appear as text. The reverse is also
true: textual commands constructed outside of Smart Bookmarks can be pasted into a
bookmark as well, in which case they'll appear as keyword commands that will be executed the
next time the bookmark is replayed (Figure 4.14).

I
go to http://www.travelocity.com/
type "§ostn, ma" into From: textbox
type "new lork, y into To: textbox
type "6/01/07" into Depart: textbox
type "6/06/07" into Retum: textbox
click Search Flights

* Pasted Bookmark

1 go to http:l"ww.tweloCty.cm/

2 type "boston ma" into From: textbox

3 type 'now york ny into To: textbox

4 type '6/03/01 into Depart textbox

5 type "616107" into Returtf utbox

6 dIk Search Flights

Figure 4.14 Commands can be copied into a smart bookmark from a text editor or email client

39

4.5.3 Live Edit
Since Smart Bookmarks was designed to be as easy and automatic to use as possible, it
supports one additional method for editing bookmarks that allows users to make modifications
by demonstrating them in their browser. When in Live Edit mode, any actions users perform in
their browser automatically get recorded into the currently open bookmark at the location
indicated by a flashing cursor (just like the cursor used when editing text) (Figure 4.16a). If the
cursor is placed at the same location as one or more existing commands, those commands will
be replaced by the next action performed in the browser (Figure 4.16b). The cursor can be
moved using the Up and Down arrow keys on the keyboard, or by clicking on a command (or in
between commands) in the sidebar. Live Edit mode can be toggled on or off by clicking on the
Live Edit button in the toolbar when a bookmark is open in the sidebar (Figure 4.15).

FE ka

Figure 4.15 Toggle Live Edit mode using the Live Edit button in the toolbar of an open bookmark

2 type mw yok" ifnto Leaving ftu: toatbox

3 type "sestt wa into Goingtw t:tbox

(a)

3type "seatt. wa' into Going to: textbox

(b)

Figure 4.16 Using Live Edit mode, users can modify bookmarks by demonstrating actions in their browser,
which will automatically get inserted into the bookmark at the cursor location (a), or will replace an

existing command (b)

Live Edit mode makes it easy for users to fix up bookmarks that break because of web page
changes. If, during playback of a bookmark, Smart Bookmarks is not able to play a command
for whatever reason, playback of the bookmark will stop and the broken command will be
highlighted in red in the sidebar. At that point, the user can enter Live Edit mode and perform
the action that the broken command should have performed in the browser. Because the Live
Edit cursor will be placed at the location of the offending command by default, it will be

40

replaced with the corrected version. Of course, the user can move the cursor and edit some
other part of the bookmark if need as well.

Another important use for Live Edit mode is to allow users to specify a smart bookmark as a
macro by creating a new blank bookmark (see Section 4.2) and then demonstrating what the
bookmark should do in their browser. The steps will automatically get captured in the blank
bookmark, and users will end up with a smart bookmark that can exactly repeat the actions that
they just performed manually. This process is effectively a form of proactive macro recording
discussed earlier in Section 2.2.1.

4.6 Parameterizing a Bookmark

Occasionally, users may find themselves wanting to automate a task with a smart bookmark
where one or two of the commands should be slightly different each time the task is performed
(i.e. each time the bookmark is played). For instance, a user may want to automate performing
a search for a book on his local library's website, which requires him to log in first with a
username and password. The user could automate this process with a smart bookmark, but
needs to be able to specify a different name or author for the book he is searching for each
time the bookmark is played.

Smart Bookmarks provides this capability by allowing users to specify that the value for a
particular command (the text entered into a textbox or the option chosen from a list box)
should be provided every time it is played. The system supports two different methods with
which users may choose to provide the values for parameterized commands: they can specify a
command's value up front, before playback of the bookmark begins (along with all the other
commands for which this option was chosen); or they can specify its value using the web page
itself during playback. The first option is likely preferable the majority of the time, since it
allows users to specify everything together up front, without the need to monitor the
bookmark as it plays and make choices for each command separately as playback gets to them.
However, the second option may occasionally be necessary for cases where users may not
know the value to provide for a particular command until they see the web page itself. One
common example of this scenario is specifying the text to enter for a command that involves
CAPTCHA's, where users are asked to specify the sequence of letters and numbers displayed in
a distorted image in order to login to a web page or perform some other action. In this case, it
is impossible for the user to know in advance what text this command should enter.
Commands can be parameterized using either option by right-clicking on the command and
selecting either Choose value -> Before running this bookmark or Choose value -> While running
this bookmark. Likewise, the default option of using a constant parameter value can be
selected using Choose value -> Always use the current value.

When the user plays a bookmark that contains parameterized commands, Smart Bookmarks
will first display a list of the commands for which the user has chosen the first option (values
provided up front), if any (Figure 4.17a). Each command will be shown basically as it appears
when in the context of the entire bookmark, but with the parts for which the user needs to
specify values replaced with textboxes. Default values for each command are provided (the

41

value that was specified the last time the bookmark was played or when it was originally
recorded), but the user has the option to change any of them as desired. Once satisfied, the
user should again press the Go button to begin playback. While playing a bookmark, if the
system comes to a parameterized command for which the user has chosen the second option
(values provided during playback), playback will immediately stop, and the affected component
will be highlighted in the context of the actual web page to indicate that the user needs to
specify a value before continuing (Figure 4.17b). Once the user has entered the necessary text
into the appropriate textbox or chosen an item from the appropriate list box, the Go button
should be clicked again to continue playback.

(a)

Location:

Word Verification:

Terms of Service:

United States

Type the characters you see in the picture below.

Please check the Google Account information youlve entered above
(feel free to change anything you like), and review the Terms of
Setvice below.

(b)

Figure 4.17 Users can choose to enter a command's value before playback begins (a), or during playback (b)

4.7 Graphical Browsing History

In order to support automatic bookmark generation, Smart Bookmarks continuously records
the actions users perform in their browser in the background. Users can view the history of

42

their recorded actions graphically by clicking the View History button in the list view toolbar
(Figure 4.18). This history is analogous to the standard History feature built-in to many
browsers that users are often already familiar with, but much more detailed. While the
standard History only includes the web page URLs that the user has visited, the Smart
Bookmarks history includes every action the user has performed in their browser, including
clicking on links, entering text into textboxes, and so forth. However, the Smart Bookmarks
history only includes actions recorded during the current browsing session (since Firefox was
opened), rather than an indefinite amount of time in the past. A separate history is available
for each tab in each window currently open in Firefox; the history for the currently visible tab is
shown when the user clicks the View History button.

In appearance and in functionality, the history is mostly the same as a typical smart bookmark
(Figure 4.19). The only real difference is that commands in the history cannot be edited or
deleted. More importantly, however, users can copy commands from their history and paste
them into a bookmark. Thus, Smart Bookmarks also supports manual retroactive macro
recording (as discussed in Section 2.2.1), in that users can create a new bookmark by copying
and pasting a sequence of commands from some point in their history after performing the
corresponding actions in their browser.

Figure 4.18 Users can view their graphical browsing history by clicking the View History button

Sgo to ht*./ensik&pdisoagquwWHobmn

2 9*.hi totk

3 dkk Sign Up

4 go to htap/oinan/.copaghotmIVpIa

Figure 4.19 The Smart Bookmarks history is similar in appearance to a normal smart bookmark

43

4.8 Sharing Bookmarks

One of the primary intended uses for Smart Bookmarks is for users to share dynamically
generated custom content with each other. This content could be a computer they have
configured online, a shopping cart they have created, or a tutorial for how to perform some
task on a website. In any case, once users have created a smart bookmark to accomplish the
task or return to the content they wish to share, they should first save their bookmark to a file
by opening the bookmark in the Smart Bookmarks sidebar and clicking the Export Bookmark
button (Figure 4.20) in the toolbar. Alternately, they can choose Save asfile... after right-
clicking on the bookmark in list view.

After saving the bookmark to a file, users can email the bookmark to someone else as an
attachment. Assuming the recipient of the bookmark also has Smart Bookmarks installed, he or
she can then import the bookmark into their bookmark list by clicking on the Import Bookmark
button in the list view toolbar (Figure 4.21) and selecting the smart bookmark file in the dialog
box that appears. Alternately, they can choose Addfromfile... after right-clicking anywhere in
list view.

If the recipient doesn't have Smart Bookmarks installed, however, a second option is for the
user to instead copy the bookmark to the clipboard, and then paste it as text into a standard
text editor or email client. The recipient can then simply use the bookmark as a sequence of
instructions that he or she can follow by hand in a web browser.

Figure 4.20 Saving a bookmark to a file

Smart Bookmarks

Figure 4.21 Importing a bookmark from a file

44

5 Implementation

Smart Bookmarks is implemented as an extension to the Firefox web browser, and is written
primarily in JavaScript and XUL [12, 26]. However, some portions of the code are written in
Java [29] for speed reasons, and interface with the rest of the system using Firefox's
LiveConnect technology, which allows JavaScript running inside the browser to communicate
with Java objects [23].

5.1 Overview of the Design

The Smart Bookmarks implementation is split into two main components: a backend that
manages most of the details of the operation and state of the system; and a user interface
component that initializes and controls the system's visible interface, which is provided
primarily in the form of a Firefox sidebar. A graphical overview of the architecture is provided
in Figure 5.1. The backend is implemented as an XPCOM (Cross Platform Component Object
Model) component, which allows Smart Bookmarks to integrate with the rest of the Firefox
framework [30]. There exists only one instance of the Smart Bookmarks XPCOM object
whenever Firefox is running; if there are multiple Firefox windows open at the same time (and
thus multiple Smart Bookmarks sidebars as well), then each window's separate version of the
UI interacts with a single instance of the backend XPCOM object.

This setup allows the system to maintain a consistent state that is shared across all open
instances of the Smart Bookmarks sidebar, though each sidebar can be used independently.
For instance, users could replay a smart bookmark in one browser window while
simultaneously creating a new bookmark from a web page in a second window. However, any
changes that occur to the state of the Smart Bookmarks system as a whole, such as the addition
of a new bookmark, will automatically be reflected in the Ul of every open Smart Bookmarks
sidebar. Additionally, because anything not directly related to the functionality of the Smart
Bookmarks UI runs within the backend XPCOM object, Smart Bookmarks is able to function
properly even if no instances of its sidebar is open.

When Firefox first loads for a user that has installed the Smart Bookmarks extension, it will
create an instance of the Smart Bookmarks XPCOM object (internally represented as
BookmarkerService) and register it as a service that other Firefox components can access. At
this point, Smart Bookmarks sets up a variety of internal components that it needs to operate,
starting with the BookmarkManager. The BookmarkManager is the primary component around
which most of the Smart Bookmarks backend is designed, and takes care of all of the logistics
involved with bookmark creation and recording the user's browsing actions. Whenever a new

45

Firefox window is opened, a new instance of the Smart Bookmarks sidebar UI is created. That
U1 component, like all other Firefox components, has access to the Smart Bookmarks XPCOM
service, and tells it to register the newly created window with the BookmarkManager. The
BookmarkManager is then able to attach a variety of event handlers to the browser window, so
that it will be notified when tabs are created or closed, when web pages are loaded, and when
the user performs some action with a web page (such as clicking on a link).

Smart Bookmarks records commands on a per tab basis by maintaining a list of BrowseHistory
objects (one for each tab in any open Firefox window). Each BrowseHistory stores the
sequence of commands that are generated from the actions the user performs in its associated
Firefox tab. In addition to keeping track of the commands themselves, each BrowseHistory also
creates its own PageManager, which handles the storage and retrieval of the DOM (Document
Object Model) representations of each web page loaded in its tab. These DOM representations
are used during the creation of smart bookmarks (see Section 5.4). Additionally, each
PageManager sets up an ImageManager that handles capturing and storing the various
screenshots and other images used to visually represent smart bookmarks in the sidebar.

The BookmarkManager also maintains a BookmarkStorage object, which takes care of storing
and loading smart bookmarks on the user's hard drive, the SideEffectsDatabase (Section 6.1),
and the BrowseTracker, which is tasked with initiating the bookmark reminder notifications
when the user visits certain web pages. Other vital components used in the Smart Bookmarks
backend include: BookmarkRunner, which supports bookmark playback (Section 5.5);
BookmarkGenerator, which is used for the automatic creation of smart bookmarks (Section
5.4); BookmarkPreview, which provides the animated previews associated with bookmark
commands; and of course the various objects used to actually represent smart bookmarks and
their commands, including Bookmark and Command (Section 5.2).

46

Smart Bookmarks Backend ----------- ------------------------- -..

setupWindowO

BookmarkerService

BookmarkManager

IBrowseHistory Ell

S aBrowseHistory 3

PageManager

ImageMangager

Command

-A
U

BrowseTracker

BookmarkStorage

SIdeEffectData base

I
- I
tmi

IBookmarkRunner
BookmarkGenerator

BookmarkPreview

Bookmark I
SCommandDetails Commandimage

COIFI

Figure 5.1 An overview of the internal Smart Bookmarks architecture. The boxed "1, 2, 3" labels identify open
browser tabs and their corresponding internal BrowseHistory objects.

47

U

U U

I
U

-1
a

+- -

5.2 Internal and External Representation of Bookmarks
This section describes how smart bookmarks are represented internally while the Smart
Bookmarks system is running, and how they are stored externally as files in order to persist
between sessions.

5.2.1 Internal Representation
Smart bookmarks are represented internally as Bookmark objects. Each Bookmark has an ID, a
name, a list of Commands, and a variety of properties, including the date and time when the
smart bookmark was originally created, how many times it has been played, and a description.

A Command object represents a single smart bookmark command, corresponding to some kind
of action that could be performed in the browser (such clicking a link, or entering text into a
textbox). Each Command has an ID, its textual keyword command representation, a
CommandDetails object, a list of Command/mages, and a variety of properties that include how
the command should be displayed in the sidebar, whether the command should be executed
when replaying a bookmark, whether the command has been marked as unnecessary (see
Section 5.4.2), and how the command's value should be specified (provided before playback,
provided during playback, or constant).

A Command's CommandDetails object contains information about the command that the
system needs in order to play it when requested, and is usually initialized when the command is
recorded. CommandDetails objects contain the following information:

" The command's action type (go, type into, click, choose, or check).
" Its label, if applicable (the descriptor used to locate the command's target component

in a web page, such as a textbox for a type into command). Go commands do not have a
label.

" Its value, if applicable. This will be the URL for a go command, true orfa/se for a check
command (whether to check or uncheck), the text to enter into a textbox for type into
commands, or the item to select from a list box for choose commands. Click commands
do not have a value.

" Ordinal information indicating the position of the command's target component in the
web page if its label matches multiple components.

" The x,y location and dimensions in pixels of the command's target component in the
web page. This information is used when showing a command's animated preview.

" The XPath of the command's target component, which specifies the location of the
element in the DOM tree representation of its containing web page. This information is
used when determining whether the correct matching component was found when
replaying the command.

* The type of the command's target component (textbox, list box, radio button, link, etc).

All of the information provided through a CommandDetails object is separated from the rest of
the Command object because it is possible for this information to be unknown for a particular

48

command. This will be the case any time the user has edited the textual representation of a
command, or created a command by pasting text from outside of Smart Bookmarks. In these
situations, the command is represented entirely by its keyword command and does not contain
a CommandDetails object. The next time the command is played, its keyword command will be
used to determine the correct action to perform (using Chickenfoot's keyword command
interpreter), and then a Command Details object will be created and assigned to the command
based on the results of that interpretation. If Chickenfoot is not available because it has not
been installed, then Smart Bookmarks ensures that a CommandDetails object is always present
by disabling editing of a command's text and pasting of commands from outside of the system.

Finally, Command objects also contain a list of Commandimage objects, which represent the
various screenshots and other images associated with commands that are used when displaying
bookmarks in the sidebar and to support Smart Bookmarks' animated preview feature.
Commandlmage objects contain the following information:

" A unique ID
" A path indicating where the actual image file is stored on disk.
* The format of the stored image file. In the current implementation, images are always

stored as PNG files.
" The dimensions of the image.
" The image type. When a command is recorded, Smart Bookmarks captures images for

two different purposes: to display in the sidebar when a bookmark is open, and to use
when showing a command's animated preview. This property refers to which of these
purposes this particular image is intended.

" The location of the image in the context of a larger background image used during
animated previews.

5.2.2 External Representation
A smart bookmark is stored externally on disk as an XML file, with references to any image files
it uses stored separately in a directory associated with the bookmark. All the XML files and
images for a smart bookmark are automatically saved to a special directory within the user's
Firefox profile whenever the bookmark is created or changed. An example of the format of a
smart bookmarks XML file is:

<bookmark id="1">
<name>Name of Bookmark</name>
<description>Description of Bookmark</description>
<dateCreated>Tue Feb 06 2007 22:34:36 GMT-0500</dateCreated>
<playCount>5</playCount>
<imageDirectory>1-1175734866363 Images</imageDirectory>
<commands>

<command id="O" display="display always"
execute="true" prompt="no prompt">

<keywordCommand>type nyc into from textbox</keywordCommand>
<details>

<action>click</action>

<value>nyc</value>

49

<target x="O" y="O" width="50" height="50">

<label>from</label>
<xpath>/HTML[1]/BODY[1]/INPUT[1]</xpath>

<type>text box</type>
</target>

</details>
<images format=".png">

<image id="1-0" type="display"
x="O" y="O" width="100" height="100" />

</images>
</command>

</commands>

</bookmark>

The XML tags used above should largely be self explanatory, and mostly refer directly to
corresponding properties discussed in the Internal Representation section.

5.3 Recording the User's Browsing Actions
Clearly an important and necessary part of how Smart Bookmarks works is the ability to detect
the interactions users make with web pages in their browser, and record those interactions as
commands in a form that the system can understand and replay in the future.

5.3.1 Recording Commands
The first part in the process of recording actions users make in their browser is detecting when
they occur. Smart Bookmarks accomplishes this by attaching JavaScript event handlers to any
open Firefox windows. More specifically, the BookmarkManager is notified any time a new
Firefox window is opened, and will then attach click and change event handlers to the window's
tabbrowser. The tabbrowser is an internal Firefox component containing all of the browser's
open tabs; this means that Smart Bookmarks will receive events that the user performs within
web pages contained inside any tab, but not events caused by actions performed on the
browser itself.

Click events are generated when the user clicks on a link, button, or some other web page
element. Change events are generated when the user changes the value of some element,
such as entering something into a textbox, choosing an item from a list box, or checking off a
checkbox or radio button. When the BookmarkManager detects one of these events, it first
runs it through an algorithm that analyzes the event and creates a new Command object that
represents the action the user initially performed in their browser that generated the event in
the first place. Smart Bookmarks then assigns the newly created command to the
BrowseHistory object that corresponds to the tab in which the original event occurred.
Whenever a BrowseHistory receives a new command, it sends the command to its associated
ImageManager, which is responsible for capturing the images for the command from the web
page (see Section 5.6).

50

The BookmarkManager also registers a Progress Listener on the window, and uses that listener
to detect when a web page in the browser begins to load, and when it has finished loading.
When Smart Bookmarks detects that a page has begun to load, it creates a new go command to
represent the event and sends it to the appropriate BrowseHistory object. Smart Bookmarks
uses begin load events rather than end load events to trigger the creation of go commands
since some web pages can take a significant amount of time to completely finish loading, even
when the majority of the page is already visible, so it's possible for users to visit and then leave
a page before the end load event is generated. In this case, Smart Bookmarks will still be able
to capture a go command for the page visit. When the page end event occurs, Smart
Bookmarks signals the go command's associated ImageManager to capture a screenshot of the
now fully-loaded web page and store that with the command (Section 5.6), and also to save the
DOM representation of the web page to disk so that it can be used during bookmark creation
(Section 5.4).

After detecting that an event has occurred, Smart Bookmarks needs to be able to construct a
Command object that represents the action the user performed that originally triggered the

event. Most of this process is straightforward; the action type can be determined by looking at
the event type (click, change, or load) and the target element that the event acts on (textbox,
link, radio button, etc.). Most of the rest of the details that make up a Command, such as its
value, target type, target XPath, target dimensions, and target location, can be extracted
directly from the target element of the event. The label that should be associated with the
command is more difficult to determine, since it needs to be able to correctly and reliably
identify which component in a web page the command should affect. A command's label
should also be both understandable to the user and robust against changes to the structure of a
web page. It is for these reasons that Smart Bookmarks follows the ideas introduced by
Chickenfoot [3], and uses text taken from the visible interface of a web page as the label
whenever possible. If for some reason Smart Bookmarks is unable to determine an appropriate
label for a command, the XPath of the target element is used as a fallback instead.

Table 5.1 lists the various element types Smart Bookmarks understands, along with a brief
summary of the process used to determine a label for each type. For all elements, before
attempting to use the procedures outlined in the table, Smart Bookmarks will use the text
content of a Label node that has been assigned to the target element as its label, if one is
available. In general, the approach Smart Bookmarks uses to locate appropriate labels is similar
to that of Koala [20].

Finally, a visual outline of Smart Bookmark's entire event capturing process is shown in Figure
5.2.

51

E Process used to determine a label

The text content ot the link.
I Link

Button The text content of the button, or if it has none, its value or title attributes. I

Radio button or
Checkbox

Anything else

The system looks at all the text nodes following the radio button or checkbox in

the web page's DOM, and uses the content of the first one that does not belong to

a Script or List Item element as the start of a label. After that, it will continue to

append the content of any following text nodes to the initial label until it reaches

any element that breaks the flow of the text (such as a Div or Br).

If the element is not one of the above elements and is clickable, meaning it either

has an onclick event handler assigned to it, or the cursor that appears when

hovering over the element is the "hand" shape, then the system looks for the first

text node or image element that is a descendant of the target element and uses

the same procedures as outlined above to determine a label for either of those

respective element types. If the element is not clickable, then the XPath of the

element is used for the label as a fallback.

52

Table 5.1 A summary of how Smart Bookmarks determines the label that should be associated with particular
element types during the command recording process

IElement Type

1. Register click, change, and page
load event listeners on the window

2. User clicks
Google Search
button in Tab 14

6. Send command to the
ImageManager, where images
are captured from web page

I

I BookmarkManager
U -

3. click event generated

Tab 2
BrowseHistory

I
4. conver

to Sma
Comma

Event
to

Command

5. Add command to its tab's
BrowseHistory:
click Google Search button

ImageManager

Web !macps Video News

arc rmie

t click event
rt Bookmarks
nd

Y m E-.u-.----.

Tab 1
BrowseHistory I

I
a

8. Update command
in BrowseHistory
with new images

7. Save captured
images to disk 'ii'

~4J

Figure 5.2 An overview of the event-to-command process in Smart Bookmarks

53

Tab 1 GoogIe~
I -

m U

U U

A

5.3.2 Recording Web Page DOMs
Smart Bookmarks also needs to keep a record of the structure and content of the web pages
users visit while browsing the Web, in order to automatically generate smart bookmarks when
needed (see Section 5.4). Smart Bookmarks accomplishes this by detecting when a web page
finishes loading in the browser, and then notifies the PageManager associated with the tab the
web page loaded in. The PageManager constructs a simplified XML version of the web page,
based on its DOM, that strips out any information Smart Bookmarks doesn't need, such as
Script elements, comments, and element attributes. The resulting XML file is then saved to a
special temporary directory within the user's Firefox profile, and is automatically removed
when the browser is closed.

5.3.3 Recording Images
Smart Bookmarks' interface heavily utilizes web page screenshots and other images to
represent smart bookmark commands in the sidebar and to construct animated previews for
each command. These images need to be captured from a web page and stored whenever a
command is recorded. This is done in one of two ways, depending on whether the recorded
command is a go command, or one of some other type (click, choose, etc.). In either case, the
ImageManger associated with the browser tab from which the command was recorded is used.

For go commands, two images are captured. The first is a thumbnail screenshot of the entire
web page, which is used to represent the command when it is displayed as part of an open
bookmark in the Smart Bookmarks sidebar. The second is a full-size screenshot of the entire
web page, which is used as the background image during the preview animations of any
commands that occur within the web page captured by the go command.

The ImageManager is sent two notifications for each go command. The first occurs when a web
page begins loading in the browser and the corresponding go command is created. At this
point, the ImageManager simply keeps a record of the go command, but cannot actually
capture any images for it, since the web page has not finished loading. The second notification
occurs once the web page has completely loaded, and at this point the ImageManager captures
the necessary images from the browser and associates them with the go command it was
notified about previously. Smart Bookmarks captures these screenshots by using an off screen
canvas element, drawing a portion of a web page to the canvas using Firefox's Canvas API, and
then converting and saving the resulting image as a file in PNG format.

For all other commands, Smart Bookmarks captures two different types of images. The first is a
thumbnail screenshot, similar to those captured for go commands, which includes the web
page component affected by the command (a textbox or link, for instance), plus a 50-pixel
border to provide the command's context within a web page.

The second image type is captured for use during animated previews. Because the previews
are intended to depict web pages exactly as they looked from one recorded action to the next,
with all visual changes intact, it would not be sufficient to simply capture an initial screenshot of
the web page and then layer on subsequent command thumbnails, since those thumbnails are

54

not guaranteed to capture all the visual changes that resulted from performing the command.
For instance, selecting a radio button will cause two visual changes to a web page: the selected
radio button will be filled in, which should be captured by the corresponding command
thumbnail, but in addition to that, the previously selected radio button will become unfilled.
This second change is likely not to be captured in the command's thumbnail. An obvious
alternative is to recapture a screenshot of the entire web page for every new command.
However, because users are likely to generate a great deal of commands over the course of a
single browsing session, this solution is clearly not ideal because of the space it would require.

Instead, when a command is recorded, Smart Bookmarks captures and saves only the portions
of a web page that have changed since it was originally loaded. It does this by comparing an
updated screenshot of the web page at the time the command is recorded to the screenshot
that was previously recorded for a prior go command. The algorithm used to do this takes two
images and returns a list of the rectangular regions that differ between the two. Only those
regions of the web page are saved and associated with the command. If the window containing
a web page is resized between commands, the system will still capture the changed regions as
expected as long as the layout of the page is not affected by the resizing, since the entire
rendered web page is used during the image comparison rather than only the visible portion. If
a web page's layout is changed due to a resizing (regions get bigger or smaller, text flows
differently, etc.), then the majority of the page may appear different to the comparison
algorithm, and most of the page will be recaptured. This is okay, however, and just means that
the effects of the page resizing will be evident during any animated previews involving the
page.

The image comparison algorithm used is written in Java for speed reasons, and makes a
tradeoff between the number of differing regions returned and the amount of wasted (non-
different) space that is included in those regions. For example, at one extreme a single region
consisting of the entire image could be returned, with a large amount of wasted space; at the
other extreme, potentially hundreds of one-pixel regions could be returned instead with zero
wasted space. Smart Bookmarks balances this somewhere in the middle, so that generally only
a handful of image regions need to be saved. The algorithm works by first scanning vertically
down the two images, and marking continuous vertical regions over which there is at least one
pixel difference between the images per horizontal line. This effectively creates zero or more
rectangular regions that are guaranteed to contain the portions of the two images that differ.
Each of these regions can then be scanned horizontally in the same way to find left and right
boundaries for the differing parts within the region. These further constrained regions then
replace the original marked regions, and the process continues until every region found by the
algorithm is constrained in both directions. The resulting set of rectangular regions is then
returned as the specification of the portions of the image that need to be saved. The result of
running this process on an example web page is shown in Figure Figure 5.3.

55

Adyanced Search TiIsAbout Goog e

Return pages written in

FOn7yA return results of the le format

any language . .

any format _ __

(a)

Advanced Search Advanced Search Tps I About Goo-g

Language Return pages written in

File Format nl return results of the file forma

Mearc" wrMs aursum-s

nore search terms

any language 2
tany format

(b)

Figure 5.3 The results of running the image comparison algorithm on a screenshot of the original web page (a)
and a modified version of that page (b); the differing regions as returned by the algorithm are outlined.

5.4 Automatically Generating a Bookmark

When users request a smart bookmark for their current web page, Smart Bookmarks must
determine a subsequence of recorded commands from the browsing history that when
replayed will return to the web page or state being bookmarked. If the current web page is
bookmarkable, meaning that it is possible to correctly revisit the page using only its URL, then
this command sequence will simply start with the most recently recorded go command, plus
any additional commands that have since changed the state of the web page. However, if the
web page is not bookmarkable (whether because it is dynamically generated, the result of a
form submission, relies on session cookies, or some other reason), then the system must find
the most recently visited page that is bookmarkable, and start the sequence from there. This
means that, in principle, a correct sequence of commands for a smart bookmark could simply
consist of the user's entire browsing history, since it is guaranteed to start with a bookmarkable
web page (the page that Firefox opened with). In practice, however, the entire history is likely
to be very long, so Smart Bookmarks aims to find the shortest possible sequence of steps
needed to correctly bookmark a given web page.

Smart Bookmarks maintains the user's browsing history separately by browser tab, with each
history including only the commands corresponding to actions performed in its respective tab.
When a new tab is created, a new history is created as well; when a tab is closed, its history is

56

Language

File Format

Advanced Search

discarded. Because it is possible for smart bookmark sequences to span multiple tabs (and thus
multiple histories), it is also necessary for Smart Bookmarks to maintain some notion of how
commands from separate histories are interspersed. For instance, a user may log in to an
online email service, right-click on a message in the inbox and tell Firefox to open it in a
separate tab (or window). The user may then decide to bookmark the email message in the
new tab. Because the web page containing the email is not bookmarkable, Smart Bookmarks
needs to find an earlier page that is bookmarkable, and start the bookmark's command
sequence from there. In this case, the smart bookmark should start with the email site's log in
page, which is bookmarkable, and from there include the steps that the user used to sign into
the site, as well as the command that opened the email message. However, this sequence is
now split across two separate command histories, and each may have other unrelated
commands both before and after the commands needed for this particular bookmark (the user
may have continued browsing to another site after opening the email in the new tab, for
instance). Smart Bookmarks accounts for this by creating a link from each newly created
browsing history that points back to the last command in the tab that was visible at that
moment, if any. This behavior assumes that if the sequence started in a tab depends on a
sequence in another tab (and it may not), then the tab that it depends on was visible right
before the new tab was created.

In order to find the correct sequence of commands to include in a smart bookmark for a
particular web page, the system starts with the most recent go command present in the page's
browsing history and determines whether that command's associated URL is bookmarkable.
The method Smart Bookmarks uses to determine whether a URL is bookmarkable is described
in Section 5.5. If it isn't, Smart Bookmarks will continue to try successively older go command
URLs until it finds one that is bookmarkable. The generated smart bookmark will then include
that go command and every command that follows it in the sequence. Subsequent go
commands are included for display purposes only, and are not executed when the bookmark is
replayed. If the system reaches the beginning of a browsing history without finding a suitable
bookmarkable page, it will follow the history's link back to a prior history and then continue the
search from there. In practice, an appropriate starting page should always be found using this
method. A diagram illustrating this process is shown in Figure 5.4.

57

1. Create Smart
Bookmark

2. try URL

3. not bookmarkable

4. follow tab link

5. try URL

6. not bookmarkable

7. try URL

8. Success!

Tab 2

go to by101w.bay101.mail.live.com/mail/InboxLight.aspx?...

previous tab link

Tab 1

* go to google.com

click Inbox Opens new tab

go to by101w. bay101.mail.Iive.com/mail/TodayLight.aspx?...

click Sign in

type ****** into Password textbox

type user@hotmail.com into E-mail address textbox

go to login.live.com

click Hotmail

go to msn.com 4 Start of user's browsing
session (i.e. when Firefox

is opened)

Final Generated Smart Bookmark

go to login.live.com

type user@hotmail.com into E-mail address textbox

type ****** into Password textbox

click Sign in

click Inbox

Figure 5.4 How Smart Bookmarks automatically generates a new bookmark (bookmarkable URLs are
indicated with stars)

58

5.4.1 Determining Whether a Web Page is Bookmarkable
Smart Bookmarks considers a web page to be bookmarkable if the version of the web page as
seen by the user while browsing is the same as the one the user would see if he or she visited
its URL in future. Smart Bookmarks simulates a fresh, future visit to a web page by fetching the
page's URL after temporarily removing the user's temporary cookies. Smart Bookmarks
considers a cookie to be temporary if it is a session cookie and will expire when the browser is
closed, or if the cookie is specified to expire in a time span of less than one month. The fresh
version of the web page can then be compared to its original version (which was automatically
saved when the user visited the page) by computing the edit-distance between their two DOMs
[15]. The edit-distance is determined by the number of insert, delete, and update operations
needed to transform one version of the DOM to the other. Smart Bookmarks does not require
that the two versions be exactly the same, since even web pages that are bookmarkable are
likely to change slightly over even short periods of time (the ads that are shown or a displayed
date and time can change, for instance). Instead, the amount of difference between the two
versions of a web page, as determined by their edit-distance, must fall within a certain
threshold relative to the overall page size in order for them to be considered the same page.

The edit-distance algorithm attempts to match large sub-trees between the two DOMs by
computing a hash for every node in both DOMs and then comparing the hashes starting from
the roots. Once all the possible matches have been made, the algorithm then matches any
remaining unmatched sub-trees in the two DOMs if the ratio of a node's matched children to its
unmatched children is above some threshold and the matched children in both DOMs share a
common parent. Based on this matching, the set of insert, delete, and update operations
needed to transform the original page P into the fresh page F is computed. The cost of an
operation affecting a sub-tree T is measured by the total weight of the sub-tree, denoted wT,

where an element node has weight 1 and a text node containing n characters has weight log n.

Therefore, the overall amount of change between the two pages P and F is the sum of the costs
of the operations needed to transform P into F, divided by wp+wF, the total weight of the two
DOMs. This value can thus be interpreted as the fractional amount of the two pages that are
different. If P and F are identical, this measure is 0, indicating no change. If they are
completely different, such that the smallest set of edits needed to transform P into F requires
deleting of all P and replacing it with all of F, then this measure is 1. Smart Bookmarks uses a
threshold of 0.1 to determine whether two version of a web page are deemed the same, and
thus whether the page is considered bookmarkable. Thus, if an original web page and its fresh
copy differ by less than 10 percent, Smart Bookmarks will classify the page as bookmarkable.
While this threshold may seem somewhat arbitrary, in practice a legitimately bookmarkable
URL tends to produce pages that are very similar, and have an edit-distance very close to zero,
while URLs that aren't bookmarkable tend to vary substantially (accessing unbookmarkable
URLs typically tend to lead to an error page, a completely different page within the same web
site, or the start of a form sequence, for instance).

59

5.4.2 Removing Unnecessary Commands from a Generated Bookmark
Smart Bookmarks detects and records relatively low-level click events in addition to higher-level
change events associated with things like typing text into a textbox or checking off a radio
button. Click events are useful and necessary for recording some actions, such as clicking
buttons or links. However, performing some actions may result in the generation of a
combination of click and change events, and thus multiple Smart Bookmarks commands. For
instance, selecting a single option from a list box actually leads to the creation of three separate
commands: a click command on the list box itself (which displays the list of options), a second
click command on the chosen option, and a choose command resulting from the change event
that gets triggered when the value of the list box changes. Clearly the choose command is
sufficient by itself, and the remaining two click commands are unnecessary. Similarly,
unnecessary commands often result from the use of textboxes, radio buttons, and checkboxes
as well.

Determining when commands like these are not needed and can safely be removed from a
smart bookmark is complicated by the fact that web pages occasionally attach their own event
listeners to page elements that trigger when the user clicks on the element, for instance. For
example, travel websites often display a small calendar when the user clicks inside a date
textbox. If the user creates a smart bookmark that depends on that calendar being present,
Smart Bookmarks needs to ensure that its display is triggered during playback of the bookmark,
just as it would have been if the user had performed the actions manually. Smart Bookmarks
does this by simulating click events even when playing back non-click commands, such as type
into, choose, or check commands.

A related problem is determining when click commands that aren't associated with other
actions like selecting from a list box should be included in a bookmark. Including click
commands that don't do anything, such as clicking on a non-linked image in a web page,
clutters up the bookmark and makes it more difficult to understand. However, it is sometimes
not obvious whether clicking on an element has an effect on a web page or not. For instance,
many web sites support navigation through the use of clickable DIV elements, rather than
traditional buttons or links.

Smart Bookmarks uses a combination of factors to attempt to determine the necessity of click
commands. If the target element associated with the command, or one of its ancestors,
includes an onclick on onfocus event handler, or specifies that a "hand" cursor should be
displayed when hovering over the element, then the command is marked as necessary.
Additionally, Smart Bookmarks tracks when various HTTP requests are imitated. If a click
command is immediately followed by one or more of these requests, then Smart Bookmarks
assumes that the associated click triggered those requests, and the command is also marked as
necessary. If none of these conditions are met, then the click command is not included in an
automatically generated bookmark. However, all commands, even those that have been
deemed unnecessary, are still available in the Smart Bookmarks history (though they are grayed
out in order to differentiate them). Therefore, users always have the option of manually

60

copying one or more of these commands into a smart bookmark if the system incorrectly flags
them as unnecessary.

5.5 Playing a Bookmark

Smart Bookmarks replays a bookmark (or any series of commands), by playing each of its
commands in sequence. For bookmarks that have been automatically created by the system,
the sequence will start with a go command that loads a URL in the browser, followed by a series
of click, type into, choose, or check commands. In general, however, Smart Bookmarks can play
back any sequence of commands.

The system plays back non-go commands by first determining which element in the current
web page the command is intended to affect. For instance, the command click Google Search
button should logically affect a button in the web page that is labeled Google Search. Smart
Bookmarks locates the appropriate element for a given command by iterating over each
element of the type indicated by its target type property (textbox, link, radio button, etc.), and
then running the same label-finding algorithm discussed in Section 5.3.1 on each of these
elements. Each element in the page is assigned a score based on the edit-distance between its
label as generated using the label-finding algorithm and the label associated with the command
being played. The element with the highest score is designated the winner. If there are
multiple elements with the same or about the same highest score, then the command's ordinal
property is used to select one. Finally, if the winning element's XPath does not match the XPath
associated with the command, then the element's score is reduced by half. If the resulting
score is greater than 0.1, then Smart Bookmarks determines that the element is an appropriate
match, and the system simulates the action represented by the command (clicking on the
element, entering text into it, etc.). Otherwise, playback of the command fails.

A command can fail to play for several reasons. Usually, playback fails because the element the
command refers to no longer exists, due to the web page having changed. Occasionally,
however, a command can fail temporarily because the element it refers to will be created by
JavaScript code embedded in the web page that has not finished running yet. Smart Bookmarks
does not attempt to play a given command until the web page it affects has completely finished
downloading from the server. However, some web pages that heavily rely on JavaScript are not
always entirely loaded when Smart Bookmarks is notified that the page has been fully
downloaded. JavaScript code can continue to run and create new page elements after the page
has loaded, and it is very difficult to detect when this occurs. In order to mitigate this problem
somewhat, Smart Bookmarks waits three seconds after playback of a command has failed and
then attempts to play it again. If some JavaScript code that creates the element that the
command depends on has finished running in the meantime, then the command will
successfully playback on the second attempt. If after three tries playback is still unsuccessful,
then the system determines that the bookmark or command sequence is broken; playback of
the entire bookmark will stop, and the broken command will be highlighted in red in the Smart
Bookmarks sidebar so that the user can correct it or continue on manually.

61

If no label was found for a command when it was originally recorded, then the system uses the
XPath associated with the command to match with an element in the page. However, because
XPaths are highly sensitive to changes in the underlying structure of the web page, non-labeled
commands may frequently break. If no element exists in the web page at the location indicated
by the command's XPath, or if an element exists but it is of the wrong type, then playback of
the command automatically fails. Fortunately, Smart Bookmarks is able to determine an
appropriate label for the vast majority of commands it records.

A command may potentially also have no detailed information associated with it whatsoever,
except for a keyword command. This will be the case if the user has edited the command's
text, created it manually, or pasted a textual command into a bookmark from outside of Smart
Bookmarks. In this situation, Smart Bookmarks uses Chickenfoot's keyword command
algorithm [19] to interpret the command as some action that can be performed on an element
in the page (or possibly a go command). Smart Bookmarks can then convert this interpretation
into the same format used for its automatically generated commands, and continue playback as
normal.

Finally, whenever a command is successfully played, all of its associated images and target
element information, including the element's XPath, are automatically updated and visually
refreshed in the Smart Bookmarks sidebar if visible. This is true even for commands that
originally relied on keyword command interpretation.

62

6 Discussion of Challenges

Smart Bookmarks faces a number of challenges that are inherent in the design of this kind of
Web automation system. Specifically, this section discusses the difficulties in protecting users
from undesirable side effects caused by automation, and preserving the user's security and
privacy when automating websites with sensitive information.

6.1 Dealing with Side Effects

An automatically generated smart bookmark may include commands that trigger side effects.
For instance, in certain contexts, simply clicking on a button in web page could send an email,
register the user for an account, or even make a purchase with a credit card. If the bookmark is
being used to automate a task, these kinds of side effects may be intentional; however, for
bookmarks that are intended to simply return to a particular web page, side effects are
generally undesirable. Even ignoring the complication of determining the user's intent in these
situations, detecting commands that could potentially cause undesirable side effects is a
difficult problem in itself. This is because there is no reliable method used to differentiate
actions on the Web that cause side effects. That is, from a technical perspective, a form
submission that initiates a search for flights on a travel website looks the same as a form
submission that completes an online purchase. Systems like Smart Bookmarks can attempt to
guess at the intended effect of these actions, but only the web site itself can know with any
certainty which actions have side effects and which don't.

With this in mind, one solution to the side effect problem that has been proposed [7] would
require web site authors to explicitly annotate actions that have side effects, using a set of
standardized side effect attributes. Then a web automation system like Smart Bookmarks could
check these attributes during the process of playing a bookmark to ensure that the system does
not inadvertently trigger side effects that the user does not intend to occur. While this is
clearly an optimal solution, it depends on wide participation by web site authors, and so would
be very difficult to actually implement in practice.

Instead, Smart Bookmarks attempts to combat this problem using a combination of two
methods: ensuring that users are as aware as possible of what their bookmarks do; and
automatically detecting commands that can potentially trigger side effects using heuristics.
Smart Bookmarks is designed to make it easy for users to view and understand bookmarks and
the actions that they perform, through the use of screenshots, thumbnails, and animation.
While this was done in part to make using Smart Bookmarks intuitive to use, the visuals can also
help the user see when a bookmark contains commands that might cause side effects they

63

don't want. For instance, it is difficult for Smart Bookmarks to detect that a bookmark that
adds an item to a shopping cart and then clicks a button labeled "Finalize Order" leads to a
purchase; however, the user can quickly glance over the same bookmark and easily understand
what it does.

However, it may not always be sufficient to depend on the user being aware of every action an
automatically generated bookmark performs, especially if the bookmark is long or includes
commands unrelated to the task the user was attempting to capture and automate. For this
reason, Smart Bookmarks also attempts to detect actions during playback that may cause an
unintended side effects whenever possible. Specifically, the system classifies click commands
that operate on buttons or button-like images as either causing one of a range of possible side
effect types, or as being side effect free. The side effect types that Smart Bookmarks can
understand and detect are:

" Purchases or other monetary exchanges
" Sending or posting a message or email
" Completing a registration or subscription (for an account, mailing list, etc.)
" Adding or removing something (deleting an email message, adding an item to a

shopping cart, etc.)
" Some other, generic side effect

6.1.1 Side Effect Detection User Interface
Before replaying any click command that operates on a button or image, Smart Bookmarks
passes the command to a classifier that determines which of the above side effect types this
command is likely to cause, if any. If the classifier determines that the command is likely to
cause an undesirable side effect, then Smart Bookmarks displays a warning dialog box asking
the user to provide a confirmation before continuing (Figure 6.1). The dialog provides a
description of the specific side effect the system detected, and allows the user to choose one of
three options:

* Confirm that the command will indeed cause the indicated side effect, but continue
replaying it anyway

" Indicate that the system has incorrectly classified the command and that it does not in
fact trigger any side effects

* Confirm the side effect classification, and do not replay the command

Users can also check a checkbox indicating that the system should always apply their choice
when considering this particular command. This prevents users from having to repeatedly
confirm a misclassified command each time they replay a bookmark, for instance.

64

Figure 6.1 Smart Bookmarks will prompt the user to comfirm playback of a command when it detects that it may
cause a possible side effect

Users also have the option of explicitly marking an action in a web page as causing a side effect
during normal browsing (Figure 6.2). Smart Bookmarks will use this information when a
classifying a recorded command that performs that action. Additionally, Smart Bookmarks uses
data gathered from actions the user has explicitly marked as side-effecting or non-side-
effecting, as well as information collected from the user's confirmation or dismissal of
classifications in the warning dialog, to improve the system's ability to correctly classify side-
effecting commands automatically.

held the small Indian girl wrapped in its
heavy coils, dragging her tovard the
river...* (maroi)
Key PMrasest piranha creat
nightcap oak, healing vward,
Captain Waxrnn Professor Kouwe,
Gerald Clark (rre...)
*l*** (115 custorner reviewel

List Price: $7.99
Price: $7.99 & eligible for FREE

Super Saver Shipping on
orders over $25. Details

View Dnage
Copy Image
Copy kage Location

Sye Image As..

Send Image...
Set As Desktop Background.
Block imaqes from ec.images-amaz.

sending or posting amessage or email Run lrigger on this page

a regristration or subscnption Properties
the addition or removal of something Send ink using Cooiris
something else

doesn't cause anything to happen

Figure 6.2 Users can mark actions as causing side effects explicitly in their browser

65

Running this command could result in a purchase, credit card charge, or some other
monetasy exchange. Please confirm your intention before continuing.

click first Proceed to Checkout

YOUR SHOPPNG CAT ea

This warning isn't accurate. Run the cwmrnd.

Don't run this commandU

Smad Bookma : Possi6le 04ptend

Finally, Smart Bookmarks also highlights the text of commands it has classified as causing side
effects in red when they are displayed in the sidebar, in order to make it easier for the user to
notice them before actually playing a bookmark (Figure 6.3).

7 dick Add to Shopping Cart

Figure 6.3 Side-effecting commands are highlighted in red in the sidebar

6.1.2 Side Effect Detection Implementation
The classifier used by Smart Bookmarks to detect side effects works in two parts, using a
combination of machine learning and collaborative feedback. Whenever users classify a
command as side-effecting or non-side-effecting, either using the warning dialog or by explicitly
marking a component in a web page, Smart Bookmarks adds a vote for that command's target
element in a central database that aggregates feedback from a community of Smart Bookmarks
users. Specifically, the database maintains the following information for each element:

* Its label
" Its XPath
" The URL of the web page it's located in
" The values of its various HTML attributes, including its id, name, alt, title, and src

attributes
" The XPath of the form it is contained in
" The values of its containing form's id, name, and action attributes

Whenever a new vote is added to the database for a particular command, the vote is included
with the total of an existing element if the above information for the new command's target
element matches that of an existing element exactly. Otherwise, the element is added as a
new entry in the database with a new vote total. Older entries can be removed after a
specified length of time.

When the side effects classifier attempts to classify a command, it first polls the database to see
if other Smart Bookmarks users have already classified the command as causing a particular
side effect. However, the system does not require that the command match the information
for any one element in the database exactly, since much of this information is likely to change
slightly over time, even for the same visible element in a page. Instead, the system considers all
of the elements included in the database that have the same domain name as the command
being considered, and assigns each of those elements a score indicating how closely they match
the command in question. So, for instance, a database element that has the same URL,
attributes, and containing form as the command, but a different XPath, will be assigned a very
high score (but not perfect) score. The score computation algorithm also considers the

66

individual tokens of a URL separately, so the URL www.domain.com/a/b/c will match more
closely with www.domain.com/a/b/d than with www.domain.com/e, even though they are all
different.

The total number of votes for a command is then determined by scaling the individual votes for
each element in the same domain by a factor equal to its similarity score (which ranges
between 0 and 1). So the command will effectively end up with a set of yes and no votes for
each side effect type. If the ratio of yes votes for a particular side effect type to the total votes
for that type is above a certain threshold, and is reliable (meaning a certain number of votes
has been cast), then the system can classify that command as causing the side effect. If for
some reason multiple side effect types meet the vote threshold, then the type with the highest
percentage of yes votes is chosen.

The use of the similarity score in this way also means that two buttons that are, in actuality,
separate buttons on different web pages can still be considered similar and provide votes for
each other, if much of the rest of their information is the same. This is important because many
web sites include hundreds of buttons that perform the same function (with the same side
effects) in different contexts, and the system is unlikely to receive enough votes for each of
them individually to be useful. For example, Amazon.com has thousands of separate web
pages for individual products that share similar buttons for purchasing the products, adding
them to wish lists, etc. Because these buttons differ from each other primarily only in the URL
of the page they reside in, votes for one can largely be considered the same as votes for
another.

The second component of the side effect classification system comes into play when the
command being considered does not garner enough votes from the database to make a reliable
classification. In this case, a naive Bayes classifier learned from examples of other buttons in
the database is used instead. Whenever a vote is cast for a particular button and added to the
database, all of its associated properties (label, HTML attributes, etc.) are parsed for keywords;
these keywords are then added to the database as well, along with a yes or no vote for the side
effect type in question. These keyword and vote combinations allow the system to learn over
time the types of words and phrases that are typically associated with actions that trigger a
certain side effect type. For instance, monetary exchange side effects are typically associated
with keywords such as purchase, buy, shopping cart, or check out. So if the system needs to
classify a button that is not yet in the database, but which includes a label like "Complete
Purchase," then the system is likely to assume that clicking on this button may cause a side
effect.

In the current implementation of Smart Bookmarks, the side effect database, while designed to
store community feedback, is used only locally with a single user. However, it can still be useful
for classification if the individual user provides the system with enough votes for the naive
Bayes classifier to function effectively. Alternately, the database could be seeded with a certain
amount of appropriate data initially when the user first installs Smart Bookmarks.

67

6.2 Security and Privacy

Smart Bookmarks may occasionally capture commands that include users' private information,
such as credit card numbers or passwords. Smart Bookmarks detects passwords automatically,
by looking for textboxes that are marked with the HTML attribute type="password". Detected
passwords are obscured in the Smart Bookmarks interface in the usual way; for instance, a
command containing a password might appear as type ****** into password textbox (Figure
6.4a). The screenshot associated with the command is of course already obscured, since it was
captured directly from the web site. Users can edit commands containing passwords as usual,
with the only difference being that a standard password textbox is used when modifying the
password itself (Figure 6.4b).

3 .4 int Paswom textox nd w r dsZyncommnd t

Fac Face

sidebar

Passwords are not actually stored in a bookmark's XML file. Instead, Smart Bookmarks

integrates with Firefox's built in password manager, storing any passwords needed by
bookmark commands there and automatically retrieving them whenever necessary. This
means that users will need to provide their Firefox master password once per browsing session
if they want to use a bookmark that contains a password, for security reasons. Passwords are
only added to the Firefox password manager when a bookmark is created that uses them;
passwords in commands that exist only in the history are not stored in the manager, since they
exist only in memory and are not saved to disk until included in an actual bookmark.

Additionally, because Smart Bookmarks does not want users to inadvertently share smart
bookmarks containing passwords with someone else, the system will explicitly ask users when
they export a bookmark that contains passwords if they would like to include the passwords as
plain text in the bookmark file (Figure 6.5). If the user decides not to include passwords in the
file, then any commands that use them will be treated as parameterized commands if someone
imports the bookmark into their own browser.

68

Include Passwords with Bookm~ark?

This bookmark contains commands that use a password. Would you like to include the passwords
with the bookmark file in plain text?

Figure 6.5 Smart Bookmarks warns the user before exporting bookmarks containing passwords

Detecting other private information that is not explicitly marked through the user of a password
field, such as social security numbers or credit card numbers, is more difficult, however.
Heuristics could be used to attempt to detect when bookmark commands include such
information (looking for strings of four 4-digit numbers to locate credit card numbers, for
instance), however this may not always be reliable. As with side effects, Smart Bookmarks
attempts to mitigate the risk of users inadvertently exposing private information by providing a
rich visual representation for bookmarks that clearly shows what they do and what information
they contain.

69

7 Evaluation

This section presents an evaluation of Smart Bookmarks in three categories: the range of web
sites and tasks that the system is suited for; the robustness of smart bookmarks against web
page changes; and an analysis of the web page comparison algorithm Smart Bookmarks uses to
determine whether a page is bookmarkable.

7.1 Automatic Bookmark Generation
To demonstrate the range of web sites and tasks that Smart Bookmarks can support, the
system was evaluated against a set of 24 popular websites, using tasks that fall into one of the
three usage scenarios described earlier in Section 3: accessing hard-to-reach web pages,
automating repetitive tasks, and saving or sharing customized dynamically generated content.

As an example, the bookmark created for the Vanguard task consisted of these actions:

go to https://flagship.vanguard.com/...
type "username" into User name textbox
click Log on
type "password" into Password textbox
click Submit
click Performance

Each of the tasks was performed using normal browsing in a Firefox browser with the Smart
Bookmarks extension installed. When the task was complete, or the desired web page was
reached, Smart Bookmarks was used to automatically create a bookmark that could repeat the
task. Table 7.1 lists each of the 24 tasks performed grouped into their respective usage
scenarios. For each task, the table also includes the amount of time Smart Bookmarks required
to generate the bookmark in seconds, and the number of commands it contained. Most
bookmarks took only a few seconds to generate, but some needed up to 15 seconds, largely
because the web site was slow to respond during the search for the starting point of the
bookmark. The average creation time over all the tasks was 4.2 seconds, and the average
number of actions was 6.

70

Task Description Time Steps Replay

I Log in and view inbox 14.6 5 111 weeks I V I

Yahoo Mail

Facebook

MySpace

I Log in, view inbox, and mark read

I Log in and view messages

2.0 9

1.7 5

2.5 5

5 weeks v/

11 weeks V

11 weeks X

Chase Sign in and view account summary 3.5 4 1 11 weeks I/

I Expedia I Search for a flight 111.1 18 11 weeks I -/ I

CheapTickets

Travelocity

Greyhound

Search for a flight

Search for and choose bus schedule 1.5

I Get updated drivers

I MyNewPlace

112.4 16 111 weeks I V I

7 11 weeks V/

7 5 weeks

5 5 weeks

Search for apartment rentals 11.8 18 1 11 weeks I / I

Dell Customize a laptop for purchase

Lenovo Customize a laptop for purchase

1 2.3 1 5 1 11 weeks I y I

2.9 5 5 weeks

HousingMaps View apartment rentals for an area 1.2 5 5 weeks

GoogleMaps Locate a specific region on the map 1.4 7 11 weeks

LiveMaps Locate a specific region on the map 3.4 7 11 weeks V

71

Hotmail

I Dell

V

Table 7.1 Smart bookmarks for 24 tasks. Time is the time required to generate the bookmark; Steps is the

number of commands in it; Replay indicates which bookmarks could be successfully replayed after the specified

number of weeks.

14.1

The table only shows successful bookmarks, to demonstrate the range of the Smart Bookmarks
system; however it is possible for the system to incorrectly identify a suitable starting page for
bookmarks created for some web sites. Some web sites may embed session IDs in the URL of a
dynamically generated web page, rather than maintaining state through the use of cookies. In
this situation, Smart Bookmarks will incorrectly flag the page as bookmarkable, since it
simulates a fresh fetch of a page only by disabling cookies; the session ID contained in the
page's URL will remain valid, however, so the original version of the page will still be returned
by the server. When the session ID expires a short time in the future, however, the URL will no
longer work, and the smart bookmark that uses it will be broken. An example of a site that
exhibits this problem is the Apple Store web site.

A second problem related to automatic bookmark generation occurs when long-term (non-
session) cookies that affect the layout or content of a web page are created during the process
of performing browsing actions that will subsequently be bookmarked. For instance, the user
may visit an email site, sign into an account, and then navigate to a page that he or she wishes
to bookmark. However, this particular site has placed a cookie on the user's hard drive that will
keep the user logged in indefinitely in the future. Now, during the process of bookmark
creation, when the system attempts to re-fetch the log in page, the URL now leads directly to
the user's inbox, and so the system will incorrectly flag the URL as unbookmarkable since it no
longer matches the original log in page that was stored when the user was initially browsing.
This situation occurs when a user visits Hotmail and checks the "Save my email-address and
password" checkbox when signing in, for instance.

A potential solution to this problem might be to compare the saved version of a page to a fresh
version fetched with all cookies enabled, in addition to comparing the saved version to the page
when fetched without temporary cookies as usual. If the two versions are different even with
all cookies enabled, and the version fetched with all cookies is the same as the one fetched with
temporary cookies disabled, then the system might assume that the changes are due to long-
term cookies created during the current browsing session, and the page should thus be
considered bookmarkable. This possible solution has not yet been tested or implemented in
the current system, however.

7.2 Robustness of Bookmarks
In order to gauge the robustness of the 24 bookmarks to web page changes overtime, an
attempt was made to replay the bookmarks several weeks after they were originally recorded.
18 of the bookmarks were replayed after a period of 11 weeks, and the remaining 6 (which
were created more recently) were replayed after a period of 5 weeks. Table 7.1 indicates which
bookmarks were successfully replayed. All but three were able to complete successfully. The
Dell customization bookmark was unable to perform an action that required selecting a
checkbox for a particular model of printer because that printer was no longer listed as a
possible customization. The Gateway bookmark failed because the computer model it was
created to customize no longer existed. Some unreliability for bookmarks involving specific
products or customizations like these can be expected, and is likely unavoidable. Due to the

72

nature of such tasks, it is also unlikely that users would intend to use them for long periods of
time in any case.

The MySpace bookmark did not successfully replay because an advertisement page was
inserted at one point in the process that required the user to click on a link to continue. Since
the advertisement did not occur when the bookmark was originally recorded, playback was
unable to continue without the user intervening. This particular problem could be corrected
relatively easily using heuristics that check for links like "click to skip this ad", but a more
general solution is more difficult. In any case, no matter what the cause of the error, Smart
Bookmarks tries to make it as easy as possible for users to correct problems when they do
occur, through the use of the live editing mode and by visually highlighting actions that are
found to no longer work.

7.3 Web Page Comparison Algorithm

An evaluation of the web page comparison algorithm used to classify pages as either
bookmarkable or unbookmarkable was performed, using the web pages involved in the
creation of the bookmarks listed in Table 7.1. A total of 60 different web pages were
compared. First, I manually classified the 60 pages by physically looking at the two versions of
each page and deciding whether or not the page should be considered bookmarkable or not.
This manual classification is then used as the base against which the results of the comparison
algorithm are evaluated.

During the process of generating the bookmarks in Table 7.1, a variety of data was recorded for
each web page tested: the edit-distance score the page received (ranging between 0 and 1,
with 0 being more likely to be bookmarkable); the amount of time the algorithm needed to
perform the computation in milliseconds; and the number of nodes contained in the DOMs of
both versions of the page. A summary of the results is contained in Table 7.3, and a graph
showing the distribution of edit-distance scores across all the web pages tested is shown in
Figure 7.1. Pages that I manually classified as bookmarkable are shown in dark blue, and
unbookmarkable pages are shown in light blue. A dotted line indicates the score boundary that
the algorithm uses to divide bookmarkable and unbookmarkable pages. The algorithm
correctly classified all 60 pages that were tested (Table 7.2).

The average score for the set of bookmarkable pages tested was 0.003; 63% of the pages
received a score of 0; the maximum score assigned was 0.022. The average score for the set of
unbookmarkable pages tested was 0.91; 72% of the pages received a score of 1; the minimum
score assigned was 0.141. In general, the scores of bookmarkable pages were clustered very
close to zero, with the scores of unbookmarkable pages ranging more; even there, however, all
but three pages scored higher than 0.5, and the large majority were either at 1 or very near it.

73

Predicted

Actual

Bookmarkable Unbookmarkable

24 0

0 36

Table 7.2 Confusion matrix for the page comparison algorithm. There were zero incorrect matches for the 60
evaluated web pages.

Count Score Time DOM Nodes

Avg Avg StdDev Avg StdDev Avg StdDev

Bookmarkable Pages 24 0.003 0.005 138 318 2866 3827

Unbookmarkable Pages 36 0.910 0.214 73 173 2117 3067

All Pages 60 0.545 10.476 99 241 2421 3377

Table 7.3 Results from an evaluation of Smart Bookmark's web page comparison algorithm, on both
bookmarkable pages and unbookmarkable pages. Count is the number of pages tested; Score refers to the

average page similarity score assigned by the algorithm; Time is the average time the algorithm took to run in
msecs; and DOM Nodes is the average number of nodes in the page DOMs.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0

1 6 11 16 21 26 31 36 41 46 51 56

Web Page

U Unbookmarkable PageN Bookmarkable Page

Figure 7.1 A graph showing the distribution of edit-distance scores for 60 evaluated web pages. The system
designates pages with scores over 0.1 as unbookmarkable, and those with scores below 0.1 as bookmarkable.

74

0

As can be seen in Figure 7.1, a few unbookmarkable web pages scored near the bookmarkable
page cutoff of 0.1. In particular, page 25 (an Amazon.com web page) received a score of 0.14
from the page comparison algorithm. This means that the system determined that the Amazon
page and its refetched version differed by only 14%, even though the page is unbookmarkable
and leads to different content when accessed with cookies disabled. In many of the cases in
which an unbookmarkable web page receives an unusually low score, it is because the structure
of the constant portions of the web page (header, footer, menus, etc.) is much more complex
than the variable content portions of the web page. For instance, the Amazon.com page that
received a score of 0.14 consists of a header, footer, and product menu that remain the same
across all the pages that make up the Amazon website. The header, footer, and menu are
constructed from approximately 1200 individual DOM nodes; however, the actual content on
the particular page tested is made up of only 150 nodes. Therefore, even though nearly all of
the content nodes differ between the two versions of the web page, the differences as a
percentage of the entire page size is relatively small.

One potential improvement to the comparison algorithm that could help resolve this issue
might be to compare the DOM of the page being tested to the DOM of the page's domain, and
mark any matching nodes. Then, the algorithm could be run as before to compare the web
page to a version fetched without cookies, except that any of the previously matched nodes
would be ignored. For example, the Amazon web page that was tested could first be compared
to the Amazon.com homepage, and the DOM nodes that make up the header, footer, and
menu would be marked, since they are the same across all Amazon pages. Then, when the
page is evaluated against a refetched version, only the unmatched content nodes would be
considered when calculating a score. Since most of these content nodes will be different, the
page should receive a score near 1.0.

One other possible improvement to the algorithm that could be considered and evaluated is to
factor in the size of nodes as rendered on screen in the browser when determining their
weight, rather than only considering the amount of contained text and number of child nodes.
Therefore, nodes that render content that takes up a relatively large amount of screen real
estate would be given more weight than a potentially more complex node structure that
renders to a smaller portion of the screen.

In general, web pages are marked as unbookmarkable when the page that results from
accessing its URL without cookies differs from the original version of the page that the user saw.
The refetched versions of unbookmarkable web pages generally fall into one of four broad
categories: error pages, the beginning of a form sequence, the website's homepage, or some
other page such as a login page. The majority (51%) of the 36 unbookmarkable pages that were
evaluated led to a website homepage when accessed without cookies. A chart depicting the
complete breakdown for the unbookmarkable pages that were tested across these four
categories is shown in Figure 7.2.

75

Figure 7.2 A chart that categories the refetched versions of unbookmarkable web pages by the type of content
they lead to

Finally, a graph depicting the running time of the algorithm against the number of DOM nodes
is shown in Figure 7.3. It is comparable to the expected running time of the algorithm, which is
0(n) where n is the combined number of nodes in the two DOMs being compared.

U,
Uw
U,

U'
E

*1=

1600

1400

1200

1000

800

600

400

200

0

12000 14000 160000 2000 4000 6000 8000 10000

Number of DOM Nodes in Page

Figure 7.3 A graph depicting the running time of the page comparison algorithm against the number of DOM
nodes in the pages being compared.

76

Type of Refetched Pages for Unbookmarkable Web Pages

* home page

* other

* beginning of form

0 error page

M-10- IV *------ --- - ' -- - - - --- -- Z'- "A

8 Conclusion

Smart Bookmarks is a web automation system that supports automatic, retroactive macro
recording. The system allows users to create smart bookmarks, which consist of a script of
browsing commands that can be replayed to automate a task or return to a particular web page
or web application state. Smart bookmarks can be created to help with a variety of tasks,
including: accessing dynamic or hard-to-reach web pages; automating repetitive Web-based
tasks; creating interactive tutorials for web pages; and saving or sharing customized
dynamically-generated content. Users can create a smart bookmark that returns to a particular
web page in a single step by simply bookmarking the destination web page; the necessary script
of commands is generated automatically.

Smart Bookmarks includes a highly visual interface for viewing, editing, and replaying
bookmarks. Commands are displayed graphically in the Smart Bookmarks sidebar, in a style
akin to a story board that users can easily follow to see exactly what a bookmark does. Each
command is represented using a combination of textual cues, screenshots, and animation,
illustrating as clearly as possible the action the command performs in the context of an actual
web page. The visual feedback is intended to make smart bookmarks more understandable,
inspire confidence in the validity of the automation itself, and support sharing of bookmarks
with less confusion.

Smart Bookmarks incorporates several methods for editing that make it as simple and intuitive
as possible for users to change bookmarks they have created, or quickly correct a bookmark
that has become broken due to web page changes. In particular, the system includes a live edit
mode that allows users to modify existing commands or add new ones to a bookmark by
demonstrating the actions they would like it to perform directly in their browser. This process
attempts to capture the familiarity of a standard text editor, and allows users to see their
changes appear immediately in the context of the bookmark they are editing.

Smart Bookmarks provides access to a visual history of the user's browsing actions. This history
allows the system to support the traditional model of macro recording, where users can create
bookmarks by manually copying and pasting past commands, in addition to automatic
bookmark generation. The history's presence also has the potentially beneficial side effect of
making the system's operation more transparent, which in turn may increase the user's
confidence in its ability to successfully create useful automations.

Finally, Smart Bookmarks introduces a possible partial solution to the problem of reliably
identifying actions that may trigger undesirable side effects, through the use of a detection

77

mechanism based on a combination of machine learning and collaborative feedback provided
from a community of Smart Bookmarks users.

8.1 Future Work

This section presents a discussion of possible additions or modifications to the Smart
Bookmarks system that would provide some useful new features or improvements to the
existing core implementation.

Automatic Bookmark Detection

Smart Bookmarks makes some strides toward the goal of making it as easy and automated as
possible for users to create web macros that help them use the Web more efficiently, by not
requiring that users know in advance that a task they are about to perform would be useful to
record and save, and by not requiring that they manually choose the steps needed to do so.

Ultimately, however, it would be nice if users didn't even need to realize after the fact that
recording a task would save them time or effort in the future. Instead, the system itself could
monitor the users' browsing history (as it already does), analyze the data for patterns that
might indicate oft-performed tasks that might benefit from a smart bookmark, and then offer
to generate that bookmark automatically.

For instance, if the user often visits their bank's homepage, signs in, and navigates to a
particular page within their account, the system could recognize this pattern and offer to create
a bookmark that would take the user directly to the destination page. As another example, the
system could automatically generate a parameterized bookmark for a user that always
performs a particular flight search on a travel web site (recognizing the input fields that always
change vs. the ones that rarely do).

Furthermore, one could imagine a system that is even capable of suggesting bookmarks for
tasks the user didn't even explicitly perform. For instance, with the flight search example, the
system could suggest bookmarks that perform the same flight search but on a completely
different travel web site, perhaps by comparing the task to bookmarks other users have created
and placed in some centralized repository.

Better Parameterization

There are many improvements that could be made to the command parameterization options
that Smart Bookmarks currently provides. For instance, relating to the previous discussion,
appropriate parameters could be automatically chosen as defaults for some commands in a
generated bookmark, rather than always requiring the user to mark them manually. This could
be accomplished by looking at a history of how the user has performed the task captured by a
bookmark in the past.

Additionally, the system could provide a way for users to link the inputs and outputs of certain
commands together. For example, the user could create a bookmark that searches multiple

78

different sites for the same flight; the parameters that change each time (like dates), are the
same across each travel web site, so it would be nice if the user only had to supply that
information once per bookmark run. Similarly, the "output" of a command (i.e. some results
displayed as text on a page), could be used as the input to a subsequent command. This would
require some way to visually specify the output region interactively in the web page.

Improved Reminder Feature

Right now, Smart Bookmarks' bookmark reminder feature works in a very simple way: if the
user has created a smart bookmark that begins at a particular site, if the user visits that site in
the future the system will display a reminder for the relevant bookmark. This could be made
much more powerful and elegant, especially if integrated with the kind of automatic bookmark
detection feature discussed above.

For instance, there may be many cases where the user performs some specific sequence of
steps many times, but doesn't think to create a bookmark for it, or may even feel that the task
is simple enough that creating a bookmark would be overkill. A similar situation might exist
wherein the user performs a task once and doesn't plan to do so again, or plans to do so very
infrequently. The user may not feel it is necessary to create a bookmark for a task that he is
only going to perform a handful of times.

In all of these situations, it would be useful if the system provided a way to quickly play a large
number of mini bookmarks that haven't explicitly been created and that are suggested within
the context of the user browsing a web page. These bookmarks may not even be bookmarks
that automate a complicated task, but simply links to a bookmarkable URL, akin to traditional
bookmarks. As a personal example illustrating a possible use of this kind of system, I frequently
access some web pages by doing a search for the web site name, loading the site from the
search results, and then browsing to the page I want by clicking on links within the web site.
The page may be bookmarkable using traditional URL-based bookmarks, but it's easier for me
to just perform the search process when I want to access it, rather than remembering or taking
the time to bookmark the page and then having to find the page in a long list of bookmarks
when I want to access it, which may be relatively infrequently. In this situation (and potentially
many others), I would find it useful if, instead, when I perform a search for the website's name,
I'm presented with an unobtrusive list of possible destinations I may have had in mind within
the context of the web page itself. I could then click to go directly to the page I want each time.
In this situation, it isn't so much the task itself that is so complicated (I may save only a couple
of seconds by doing this), but the context in which I'm presented with the time-saver (i.e. links
within the web page itself when I start the process, rather than bookmarks available externally
in a side bar that I have to manually open and then find). And over time, and over many
different web pages and tasks, these little one or two second time savers could potentially add
up.

79

Integration with Firefox Bookmarks

A less ambitious, more short-term additional feature would be to integrate Smart Bookmarks
somewhat with the traditional bookmarking facility provided by Firefox. The names of the
smart bookmarks that users create could appear alongside their traditional bookmarks in
Firefox's bookmark list (differentiated in some way, of course). The user could then click on a
smart bookmark just as if it was a URL-based bookmark, and it would automatically open in the
Smart Bookmarks sidebar and begin playing. Deleting, renaming, and organizing bookmarks
within the Firefox bookmarking facility could be integrated as well.

More Evaluation

The side effect detection mechanism employed by Smart Bookmarks is a new feature that
hasn't been thoroughly analyzed or evaluated, in part because it is difficult to test in any kind of
automated way. It is very likely that the specific weighting formula used by the algorithm to
automatically classify elements that are not present in the database will need to be adjusted for
the detection to operate reliably. This kind of evaluation and refinement will likely require a
large sample of both side-effecting and non-side-effecting page elements to analyze. A second
component of the detection system that may need to be adjusted is the algorithm used to
assign votes to an element by computing the similarities with elements that have already been
added to the database by users. This should be analyzed to ensure that elements are receiving
appropriate similarity scores based on their amount of similarity in the context of causing side
effects within a given web site.

A second useful study would be to evaluate the robustness of automatically generated smart
bookmarks to web page changes over time. This kind of study would simply require the
creation of a number of bookmarks across a variety of web sites, and then attempting to replay
those bookmarks at several periods in the future to see if they still function as expected, and if
not, why they broke. A version of this kind of robustness evaluation over a relatively short time
scale is discussed in Section 7.2.

80

81

References

[1] Krulwich, B. "Automating the Internet: Agents as User Surrogates." IEEE Computing,
July/August 1997.

[21 Anupa, V., Freire, J., Kumar, B., and Lieuwen, D. "Automating Web Navigation with the
WebVCR." Proc. WWW9, May 2000.

[3] Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R.C. "Automation and Customization
of Rendered Web Pages." ACM Conference on User Interface Software and Technology
(UIST), 2005.

[4] Bolin, M. "End-user Programming for the Web." MIT MEng thesis, 2005

[5] Safonov, A., Konstan, J., and Carlis, J. "Towards Web Macros: a Model and a Prototype
System for Automating Common Tasks on the Web." Proceedings of the 5th Conference
on Human Factors & the Web, June 1999.

[6] Safonov, A., Konstan, J., and Carlis, J. "Beyond Hard-to-Reach Pages: Interactive, Parametric
Web Macros." Proceedings of the 7th Conference on Human Factors & the Web, June
2001.

[7] Safonov, A., Konstan, J., and Carlis, J. "End-user Web Automation: Challenges, Experiences,
Recommendations." Proceedings of WebNet, 2001.

[8] Sugiura, A. and Koseki, Y. "Internet Scrapbook: Automating Web Browsing Tasks by
Demonstration." Proceedings of ACM Symposium on User Interface Software and
Technology, 1998.

[9] Kurlander, D. and Feiner, S. "A history-based macro by example system." Proc. UIST1992,
pp. 99-106.

[10] Flanagan, D. JavaScript: The Definitive Guide. O'Reilly, 2001.

[11] W3C. "Document Object Model (DOM)." www.w3.org/DOM.

[12] JavaScript 1.5. www.mozilla.org/js/jsl5.html.

[13] Faaborg, A., Lieberman, H. "A Goal-Oriented Web Browser." CHI 2006.

82

[14] Faaborg, A. "A Goal-Oriented User Interface for Personalized Semantic Search." MIT M.S.
thesis, 2006.

[15] Cobena, G., Abiteboul, S., and Marian, A. "Detecting changes in XML documents." Proc.
ICDE 2002, pp. 41-52.

[16] Dontcheva, M., Drucker, S., Wade, G., Salesin, D., and Cohen, M.F. "Summarizing personal
web browsing sessions." Proc. U/ST 2006, pp. 115-124.

[17] Fujima, J., Lunzer, A., Hornbmk, K., Tanaka, Y. "Clip, connect, clone: combining application
elements to build custom interfaces for information access." Proc. U/ST2004, pp. 175-
184.

[18] Huynh, D.F., Miller, R.C., and Karger, D. "Enabling Web Browsers to Augment Web Sites'
Filtering and Sorting Functionality." Proc. U/ST 2006, pp. 125-134.

[19] Little, G. and Miller, R.C. "Translating Keyword Commands into Executable Code." Proc.

U/ST 2006, pp. 135-144.

[20] Little, G., Lau, T., Cypher, A., Lin, J., Haber, E., Kandogan, E. "Koala: Capture, Share,
Automate, Personalize Business Processes on the Web." Proc. CHI 2007, to appear.

[21] Modugno, F. and Myers, B. "Graphical representation of programs in a demonstrational
visual shell - an empirical evaluation." TOCH/, 4(3), Sept. 1997, pp. 276-308.

[22] Chickenfoot. groups.csail.mit.edu/uid/chickenfoot/.

[23] LiveConnect. http://www.mozilla.org/js/liveconnect/.

[24] W3C. "XML Path language (XPath) Version 1.0," 1999.

[25] Mozilla. XUL Reference. http://developer.mozilla.org/en/docs/XULReference.

[26] XULPlanet. http://www.xulplanet.com/.

[27] Mozilla. Mozilla Development Center. http://developer.mozilla.org/en/docs/MainPage.

[28] Bauer, M. and Dengler, D. InfoBeans-Configuration of Personalized Information Services.
Proceedings of ACM /U1 99.

[29] Sun. Java SE 6.0 API Specification. http://java.sun.com/javase/6/docs/api/

[30] Mozilla. XPCOM. http://www.mozilla.org/projects/xpcom/.

83

