
A Low-Power-Extended-Linear-Range Magnetic

Levitator

by

Rayal St. Patrick Johnson

S.B., Massachusetts Institute of Technology (2004)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2007

® Massachusetts Institute of Technology 2007. All rights reserved.

Author ...................
Department of ElectricafEngin& ring and Computer Science

February 2, 2007

Certified by ........... . ...............~ -.......... :-.. .. - .....
Professor James K. Roberge

Professor of Electrical Engineering
--.·- Thesis Supervisor

Accepted by..........• ... :.C.. . .......
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHUSETTf I- TU tT..
OF TECHNOLOGY

OCT 0 3 2007 ARCHIVES

LIBRARIES





A Low-Power-Extended-Linear-Range Magnetic Levitator

by

Rayal St. Patrick Johnson

Submitted to the Department of Electrical Engineering and Computer Science
on February 2, 2007, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering

Abstract

In this thesis, I designed and built analog circuits to extend the linear range of a
magnetic levitator. Analog Devices AD633 multipliers are used to implement nonlin-
ear terms which compensate for the electromagnet and sensor nonlinearities, which
were measured experimentally. Implementing the nonlinear compensation allows the
system to be operating point independent. Frequency compensation was done with a
lead network since the resulting linearized levitator is essentially a double integrator.
Position sensing was done using an OPB732 reflective switch. Nonlinear compensa-
tion for the sensor is done with an AD532 multiplier configured as a divider.
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Chapter 1

Introduction

1.1 Background and Motivation

The magnetic levitator is one of the demos used to teach linear control theory.

It demonstrates how linearizing a nonlinear system along with the use of a linear

controller can be used to create a stable system around an equilibrium point. The

linear range for the magnetic levitator is however very small due to the method of

linearization and does not allow the levitating object to move very far outside of this

range. Another limiting factor is the linear range of the sensor used to determine

the position of the levitating object within the magnetic field. In order to create a

wide-linear range system, the system and the sensor need to be wide range.

The method of linearization most often used, is to determine the system's trans-

fer function through a Taylor series expansion at a specific operating point and then

neglect higher order terms of the state variable, along with cross products of state

variable perturbations. Methods of position sensing include photo-detectors as in

[7, 14], hall effect sensors as in [1, 2]. There are also variations in coil drivers as well,

such as class A amplifiers in [2, 7, 14] and switching amplifiers as in [3, 9, 13].

There is an alternate method to linearize the system known as feedback lineariza-

tion. The central idea of the approach is to algebraically transform the nonlinear

system dynamics into a (fully or partly) linear one, so that linear control techniques

can be applied. This type of linearization is achieved by exact state transformations



and feedback, rather than by linear approximations of the dynamics [11, 8]. The new

transformed system is therefore operating-point invariant.

1.2 Thesis Objectives

Previous work has focused on building a levitator to illustrate the behavior of

a nonlinear system around an operating point. They are not intended for moving

the ball/object through space. This thesis aims to combine the methods of feed-

back linearization, power converter design and classical feedback design towards the

implementation of a levitator/suspension system that

* is stable

* does not depend on operating point

* allows larger displacement of the object compared with a linear-approximated

system

* dissipates less power in the power amplifier

* has large disturbance rejection to forces in the vertical direction

A program of analysis, circuit simulations, and experimental verification is de-

veloped to investigate the performance of the wide-linear-range magnetic levitator-

and-sensor system through the use of both linear and nonlinear compensation. This

work provides the analytic tools required to evaluate the usefulness of this method of

linearization.

1.3 Thesis Outline

This thesis is divided into five chapters, including this introduction. The docu-

ment builds up from the definition of the system to the definition of a controller to

the design and implementation of the controller.

Chapter 2 reviews the modeling of the single axis magnetic levitator. It illustrates



the nonlinear behavior of the levitator, as well as its linear behavior for small motions

around an operating point along with its frequency response. It also outlines exper-

iments for parameter identification of the levitator, such as the leakage inductance,

position dependent inductance, and the natural length of the electromagnet as well

as the mass of the suspended object which in this case is hollow metal globe. The

chapter also touches on the Taylor series expansion which defines the linear behavior

from the nonlinear behavior.

Chapter 3 details the nonlinear control theory used for position control of the

magnetic levitator. It introduces the concept of feedback linearization in general as

well as specific to the levitator. The chapter concludes with the design of a linear

compensator, specifically a lead network.

Chapter 4 details the design of useful nonlinear circuits used in this project as

well as a current driver and a linear position sensor. The nonlinear circuits are based

on analog multipliers.

Finally, Chapter 5 concludes the thesis with experimental results, comparisons

with predicted responses as well as suggestions for future work in the subject.





Chapter

System Dynamics

0xVB

Figure 2-1: Magnetic Levitator

Before building any circuitry around the electromagnetic suspension/levitator sys-

tem, the dynamics of the system have to be derived. The dynamics will dictate the

gains to be used and the type of controller to be developed. The equation of motion

is first derived in its nonlinear form with no approximations. The nonlinear equation

is then linearized through Taylor series expansion around a nominal operating point

to get the conventional linearized levitator.

2.1 Nonlinear Dynamics

The open loop dynamics of the magnetic levitator shown in Figure 2-1 is derived

through co-energy techniques introduced in [15] and discussed in [6]. The important

equations to take away are the inductance of the system, the magnetic energy, and



the force of the ball due to the magnetic energy.

a1+

2Wm= 2L(XB)ziM (2.2)

dWm dL(XB)i2M L (2.3)
S dLB 2 dxB 2a(1 + x) 2

With the force on the ball due to the magnetic field known, the equation of motion

of the ball can be defined. The only forces acting on the ball in the vertical direction

are the force due to gravity downwards and the magnetic field upwards, therefore the

equation of motion is:

fb = Mg- fm - fd (2.4)

MB = Mg - 2( - fd (2.5)2a(1 + X)2

where M is the mass of the ball, g, the acceleration due to gravity and fd is a

disturbance force in the same direction as the magnetic force (gravity is a constant

at one location).

The equation of motion in its full nonlinear form is therefore:

JI = X2 (2.6)

C /iM\ 2  fd
Y2 = + g (2.7)

Here x 1 = a + XB and C = aL

2.2 Linear Dynamics

Using the above nonlinear dynamics, the linear dynamics for small perturbations

around a nominal operating are derived through Taylor series expansion. Each vari-

able is written in terms of an operating point plus an incremental perturbation:



XB = XB + Xb and iM = IM + im and then inserted into the nonlinear equation.

S=dfMfm = Fm + fm. fM (IMXB) + dXB

fM = FM + fm L 1 22a(1 + xa)2

IIM,XB ) Xb + dfM

L I•4xb
+ a2 (L+ I

a2(1 + X&)3
a,/

IIM,XB) im

_L1Mlim

a(1 M+ )2

From Equation 2.7, the linearized dynamics of the ball is then

Mi = Mg- LIM
2a(1 + Xa)2

+ L,1MXb
a2(1 + xB)3a

L1IMim

a(1 + )2 -f

If it is assumed that the operating point position XB is realized when the force of

gravity just cancels the force due to the electromagnet, i.e.

Mg LIMl =0
2a(1 + Xa)2a

(2.11)

then substituting this position, the linearized state equation of motion around the

operating point XB is then

Mi = 2Mg a(1 + _a) (2.12)

And in full state space form:

Y1l = X2

2g
a2 ~ X1
a + Xs

2g.

IM%

(2.13)

(2.14)

With Equation 2.14, the linear dynamics for small perturbations around a nominal

operating point is fully defined.

2.3 Levitator Parameter Identification

The parameters that are important to build the system are: the mass of the ball

M, the displacement dependent inductance L(XB), and the natural length of the

(2.8)

(2.9)

(2.10)



electromagnet a.

The values for the mass of the metal globe M, coil resistance R, and L are easily

determined. The globe was measured, not by the author but by providers of the globe

from LNS Technologies, which sells a levitator kit. The value of R is measured using

a multimeter and the value of L, specifically L(XB) is determined by measuring the

time constant of the coil current response to a voltage step outlined in the following

experiments.

2.3.1 Experiments

Lo Drive the inductor with a square wave of voltage that is slow enough for the

inductor current to settle. The inductor current should look like the Figure 2-2.

VL V

At

Figure 2-2: Illustration of rise time measurements

Measure and record the 10% - 90% rise time for the case when the ball is absent

from the magnetic field, i.e. XB = 00.

L1 Repeat the above experiment for the case when the ball is touching the face of

the electromagnet, i.e. XB = 0.

a Repeat the experiment a third time with the ball an arbitrary distance XB = Xa

from the face of the electromagnet such that the inductance is in between Lo

and L 1. Using the values for Lo and L 1 found above, solve for a and record.



2.3.2 Measurements

The measurements for the system studied in this document are tabulated below in

Table 2.1.

Parameter Units Value
mass of metal ball M [kg] 3.15 x 10- 3

coil resistance R[_ ] 13.7
coil inductance Lo[mH] 213
coil inductance Li [mH] 19.2

constant a[m] 4 x 10- 3

maximum coil applied voltage VMAx[V] 15

Table 2.1: Electromagnet System Parameters





Chapter 3

Nonlinear Control Theory

3.1 Overview

This chapter introduces the theory used to construct the position controller for the

magnetic levitator. In Chapter 2 it is realized that the levitator system is nonlinear.

Therefore, in order to operate over a wide range of inputs, the system needs to be

transformed into a linear system. This is done through feedback linearization.

3.2 Feedback Linearization

The central idea of the approach is to algebraically transform the nonlinear system

dynamics into a (fully or partly) linear one, so that linear control techniques can be

applied. The resulting system is an equivalent model, just in simpler form. The new

transformed system is however operating-point invariant. The concept is illustrated

in Figure 3-1 below.

The system is constructed in two loops, the linearization loop and the pole-

placement loop. The purpose of the linearization loop is to transform the nonlinear

system dynamics represented by

f = f(x, u) (3.1)



Figure 3-1: Input-state linearization

into a linear system with the help of a nonlinear compensator represented by u =

u(x, v). The purpose of the pole-placement loop is to compensate the resulting linear

system for a desired frequency response with the help of the linear compensator

represented by v = -kz. The term z is a measure of the output variable as with a

sensor. Specifically in this project the drive u is the electromagnet current represented

by iM, and the output variable is the position of the ball represented by x1 .

3.2.1 Nonlinear Compensator

The nonlinear compensator creates an operating point independent system by

compressing the input drive by the inverse of the system's nonlinearity. What this

means is that the electromagnet is driven with the "correct" current for a given

displacement/position of the ball. The "correct" current generates an electromagnetic

force that balances the force due to gravity at a given position. The design of this

current is based on the nonlinear dynamics introduced in Chapter 2, repeated below

neglecting the disturbance force.

Xl = x 2  (3.2)

X2 g (3.3)

24



If the nonlinear term 4 (j)2 is set to some new control v, it is then apparent that

if the coil current is made to vary as

iM = x1 V (3.4)

for the new control v, then the levitator is globally linearized and operating point

invariant. Equation 3.4 represents the full nonlinear compensator. This compensator

is implemented here in analog hardware where signals will be represented by voltages

and currents. If the compensator is represented in the form:

VM = (3.5)km

VM
iM = (3.6)

RM

it can then be constructed with analog multipliers such as Analog Devices AD633.

In this case the system's block diagram is represented in Figure 3-2, where Vx is the

position of the ball in units of volts [V], RM is a resistance in units of ohms [Q], kn

and km are constants, intrinsic to the multiplier, in units of volts [V], and kx is the

sensor gain in units of volts per meter [y].

VF -G X1

Figure 3-2: Nonlinear magnetic suspension system



The system is now linearized and represented by the state equations

1 = X2 (3.7)

2 k2  + g (3.8)

and transfer function:

V(s) = - (3.9)V(s) MkR M  s2

free from any operating point constraints. The new plant from v to xl is represented

by a double integrator with a gain G = M The system parameters are listed in

Table 3.1. Assuming that the transformation is correct and the new system is fully

represented by Equation 3.9, a linear compensator must now be designed to make

the system unconditionally stable. The linear compensator is represented by Ge(s)

in Figure 4-2. The usual linear control techniques can then be employed to create a

stable robust system that is trackable.

Parameter Units Value
current driver trans-resistance RM [Q] 4

magnetic force constant C[ . 2] 3.84 x 10-

sensor gain k [v] 235
square-root gain kn [V] 10
multiplier gain km [V] 10

Table 3.1: System Parameters

To implement the nonlinear compensator represented by Equation 3.4 in circuit

form, both a multiplier and a square-root circuit are required. The circuit implemen-

tation of these circuits are discussed in the next chapter.



3.2.2 Linear Compensator: Lead Compensation

Figure 3-3: Feedback linearized block diagram

The design of the linear compensator is based on the linearized system repre-

sented by the transfer function in Equation 3.9 whose frequency response is shown in

Figure 3-4. The uncompensated system has zero phase margin for the phase is -180'

at all frequencies. In order for the system to be unconditionally stable, it requires a

positive phase margin and a large gain margin.

Bode Dagram
Gm = dB (at 31.4 se), Pm .0 deg(at 31.4 radse)

Frequency (rad/ec)

Figure 3-4: Bode Plot of Open Loop Uncompensated System

This can be accomplished with the lead compensator. Lead compensation pro-

vides maximum phase margin at the geometric mean of the compensator. The lead

compensator has the form:

Go(s) = KL (rs + 1

27

(3.10)

I
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The compensator is comprised of a single pole and a single zero which is located

at a frequency below the pole. The system can be compensated without changing

the low-frequency behavior with maximum phase margin by placing the compensated

crossover frequency at the geometric mean of the lead-compensator [6]. Typically

a = 10 is chosen as a trade-off between maximum phase bump and high frequency

noise rejection. The maximum phase bump is given by:

B = arcsin -a (3.11)

with a phase bump of qB = 550 for a = 10. Along with a = 10, the other design

criteria for the system are 550 of phase margin and a crossover frequency less than

10Hz. The loop transmission for the compensated system shown in Figure 3-3 is:

(s) = LS+ 1) 928 (3.12)

If KL is chosen to be 1, then the crossover frequency without the compensator is:

cu = 31.6 rps = 5Hz (3.13)

In order to satisfy the requirements above, the lead-zero is placed a factor of ra

below the former crossover wu. Therefore,

1 wo1 = -U (3.14)
10TL a

and

TL - = 5.6 ms (3.15)
10wu

The full compensator is therefore represented by

G,(s) 0.0056s 1) (3.16)
with KL 1 abstracted into the uncompen0.0056s + 1 gain. The fully compensated

with KL = 1 abstracted into the uncompensated loop gain. The fully compensated



system's loop gain is therefore

998 0.056s+1
L(s) = 2- 0.0056s + 1

and the frequency response and step response are presented in Figures 3-5 and 3-6

respectively.

Bode Digram r
Gm . -In dB (at 0 ra ec). Pm= 65 dog (al 56 radeso)

soS00

50T

Figure 3-5: Bode plot of lead-compensated system

Stop Re•pose

Tine (se)

Figure 3-6: Step response of lead-compensated system

The compensated system has a new crossover frequency of 56 rps = 8.9 Hz with

a phase margin OM of 550. This translates into a step response with a 20% peak

overshoot. A step input of 2.35 V commands a displacement of xl = 1 cm.

(3.17)

. .... .......... ........ . .. ......... ... .. ... ......... .. ...... ....... ... ... ....... .. ... .....



The circuit implementation of a lead compensator can be constructed as shown

in Figure 3-7. The transfer function from Vi, to Vt is:

R2 C

Figure 3-7: Implementation of a Lead Compensator

Vout

Vin
Ri)

R3)
(R 2 +R 3)Cs + 1

R 2Cs + 1
(3.18)

To design the lead compensator, the value of the capacitor is chosen to be C =

l1pF. Since - = R 2C = 5.6ms, the value of R 2 is therefore:

T
R2 - 5.6 kQ2

C
(3.19)

and a value of a = 10 determines R3 to be:

R 3 = 9 - R2 = 50.4 kQ (3.20)

while a gain of 1 determines the value of R 1 to be:

R1 = R3 = 50.4 kOQ (3.21)

For all resistors, the nearest 5% values are used, which are: R2 = 5.6 kQ, R 3 = 1 =

51 kQ.



Chapter 4

Hardware Implementation

4.1 Overview

Hysteretic Current
Source

XR

Position Sensor

Figure 4-1: Levitator control system

This chapter details the design of a position controller based on the nonlinear

dynamics developed Chapter 2 and nonlinear controller defined in Chapter 3. The

basic topology is shown in Figure 4-1. The controller is comprised of a linear posi-

tion sensor, a hysteretic current source, a nonlinear compensator and finally a linear

compensator.

The position sensor uses a OPB732 reflective switch at its core. It contains a



photodiode, used to generate an infrared light source and a phototransistor, used

to detect the light, in one package. The metal ball is suspended above the sensor

which produces a current that nonlinearly depends upon the position of the ball.

The current is driven into a resistor to get a voltage dependent on position and then

linearized with a divider. This resulting voltage is used by nonlinear compensator to

linearize the force to drive relationship and by the linear compensator to drive the

current source.

A block diagram of the topology is shown in Figure 4-2

Figure 4-2: Nonlinear compensation of magnetic suspension system

where Ge(s) represents the linear compensator, VM = >XFv [V] represents the non-

linear compensator, k, [V] is a constant, k, [2Q] represents the current source, and

kx iv] represents the position sensor. The symbols in brackets represent the units of

each constant, i.e., the units of kx is volts per meter. The exact values of each symbol

is presented in the subsequent sections.

4.2 Multipliers, Dividers and Square-Rooters

The following nonlinear circuits are useful in compensating nonlinearities. These

circuits are based on analog multipliers, specifically Analog Devices's AD633 and

AD532 multipliers. Both multipliers have the same transfer function, namely

(X1 - X2)(YI - Y2) (4.1)
10V



with the only difference is that the AD532 has an internal operational amplifier shown

below in Figure 4-3.

X,

X2

Y1

Y2

V,

Figure 4-3: Analog Devices AD532

Division is frequently accomplished by applying feedback around an analog mul-

tiplier. Since the AD532 multiplier comes with an internal op amp it is immediately

ready for such an implementation.

In order to implement a divider, the output of the amplifier is connected to one

of the multiplier inputs as shown in Figure 4-4.

if
V,

V2

Figure 4-4: Divider implemented with the AD532

The large gain of the op amp and negative feedback forces the terminals of the op

amp to be equal. Therefore:

-VOUTV2 V1
10V -R R

VOUT 
V V

V2

and therefore

(4.2)

(4.3)



The square-rooting function can be implemented in a similar way. To implement,

the output of the op amp is shorted to both inputs of the multiplier as shown in

Figure 4-5.

VOUT

Figure 4-5: Square-rooter implemented with the AD633

As before, the large gain of the op amp and negative feedback forces the terminals

of the op amp to be equal. Therefore:

VOUTVOUT
VOUT = a(s)(V - )ouVo (T

10V

and therefore

VOUT = 1OV.V • V 1> 0 (4.5)

4.3 Position Sensor

4.3.1 Overview

OPTEK Technology's long distance reflective switch (OPB732) was the choice of

position sensor for the levitator. The OPB732 uses an infrared light-emitting-diode

(LED) and phototransistor in a reflective switch configuration. While an object is

in the reflective path of the sensor, light from the LED will be reflected back to the

housing irradiating the surface (base) of the phototransistor. When infrared light

strikes the phototransistor, the transistor becomes forward biased, [10] just as a reg-

(4.4)



ular bipolar junction transistor, with the infrared light operating as the base current.

The OPB732 offers both the emitter and detector in one package allowing easy inte-

gration.

4.3.2 Design

Since the reflective switch emits infrared light to determine determine the presence

of an object, it would appear that the sensor is susceptible to the same problems

as previous photo-detector circuits, that being the presence of infrared radiation in

ambient light mainly from the 60 Hz in the surrounding lights. The opaque housing of

the sensor however reduces this interference. A quick look at the spectral density or

FFT of the returning signal however shows that the 60 Hz frequency and its harmonics

are absent from the signal. This means that no additional filtering is required.

The sensor does however have a nonlinear distance to current relationship. This

nonlinear relationship is quantified using the circuit in Figure 4-6.

+15V +15V

RA

OP732W I I

L- ---- 'VE

RE

Figure 4-6: Circuit used to measure current to distance relationship of the OP732W
reflective switch

The typical forward drop of the diode is 1.8 [V] and has an absolute maximum

peak forward current of 1 [A] and a maximum DC forward current of 50 [mA]. A

forward current of 30 [mA] was chosen for this project. The resistor RA sets the

current in the diode. The value of the resistor is therefore:

15V - 1.8V
RA 30mA =440 Q (4.6)
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The nearest 5% resistor used in this implementation is RA = 430 [1]. The phototran-

sistor has a maximum collector DC current of 50 [mA] and has a collector-emitter

saturation voltage of 0.4 [V]. The collector current chosen was also close to 30 [mA].

The value of resistor is therefore:

15V - 0.4V
RE = = 487 Q (4.7)

30mA

The actual resistor used in this implementation is RE = 510 [Q]. With this imple-

mentation, the voltage representation of position is measured at the emitter of the

phototransistor. The result of the experiment is displayed below in Figure 4-7

Sensor output voltage vs. positon

x [cmn

Figure 4-7: Position sensor output voltage vs. position

This nonlinearity needs to be corrected to allow a wide linear range sensor. It is

apparent that the nature of the nonlinearity is hyperbolic with respect to the distance

of the detected object from the sensor. The output voltage VE at the emitter of the

phototransistor can be represented in the form:

VE(XB) = (4.8)
XB - X 0

where k is a gain of 1.63 x 10- 3 [Vm], XB is the distance of the ball from the sensor,

and x0 of 1.5 [cm] is an offset which is due to the fact that if the object is too close,

there is zero reflection/detection.

E



The sensor data fitted with Equation 4.8 for xB > 1.5 [cm] is shown in Figure 4-8

below. The only error with the fit is at low ball position, i.e. when the ball is closer

than 2 [cm] to the sensor.

Senor aulput voltage VE vs. bal potion

Figure 4-8: Position sensor output voltage vs. position fitted with Equation 4.8

In order to get a linear response from the sensor, the inverse of the sensor output

needs to computed. This can be most easily achieved through the use of an analog

divider. Using the divider of Equation 4.3 with V1 set to a constant voltage and V2

equal to VE, the new theoretical sensor output voltage is therefore:

10. Vi[V]2 10V . Vi
V,(XB) = - k - xo)VE XB) k

which is linear in zB. The theoretical linearized sensor characteristic is shown below

in Figure 4-9. If the constant voltage is set to V1 = 1.4 and the previous sensor voltage

is multiplied by a gain of thirty then the linearized sensor follows the equation below,

where Vsen is in volts [V], XB is in centimeters [cm] and gain is kx = 2.35 [-].

Vsen = 2 .3 5XB - k

(4.9)

(4.10)



Figure 4-9: Linearized position sensor output voltage vs. position

4.3.3 Experimental Implementation

The circuit implementation of the linearized sensor is shown in Figure 4-10. The

circuit consists of the OPB732 reflective switch, an AD620 instrumentation amplifier

configured for a gain of thirty, the AD532 configured as a divider and another in-

strumentation to provide a voltage offset, since the result of the divider are negative

voltages. The result is a sensor output voltage which increases as the ball moves

away from the electromagnet pole (increasing xl). There is a 5-cm gap between the

electromagnet and the sensor and the ball has a diameter of 2.54-cm, therefore the

ball should have a theoretical maximum displacement of 1-cm before moving out of

the linear range of the sensor as shown in Figure 4-9

R

Figure 4-10: Circuit implementation of position sensor

Sensor output voltage V nvs bah position x,

x, [cm]



4.4 Current Driver

4.4.1 Overview

The design of the current driver of Figure 4-2 is discussed in detail in this section.

The driver is implemented as a hysteresis controlled DC-to-DC switching power con-

verter, specifically a buck converter [4]. The motivation for the use of a switching

amplifier is efficiency and the presence of an inductive filter provided by the induc-

tance and resistance of the electromagnet. The use of a buck converter is preferred

because the inductor or electromagnet current is linearly proportional to the input

voltage, derived in the next section.

A switching power converter has a theoretical efficiency of 100% because it is made

up of ideal lossless elements such as capacitors, inductors and switches. Although in

the real world such a high efficiency is not possible due to finite switching times of

the switches which will be discussed later, and that of equivalent series resistances

(ESR) of capacitors and inductors, switching amplifiers are much more efficient than

linear ones. More efficiency means less power is dissipated as heat in the devices and

more power is transferred to the load, which in this case is the electromagnet.

4.4.2 Buck Converter

S L iL

+

Vs D I R VR

Figure 4-11: Basic Buck Converter

The steady state operation of the buck converter is determined through periodic

steady state analysis. In periodic steady state, the system returns to the same point

at the end of every switching cycle [4]. Over one cycle, the switch is on for a time DT



and off for a time (1 - D)T, where D is the duty ratio which is the ratio of the time

that the switch is on, to the period T, which is the one over the switching frequency.

Specifically, under periodic steady state conditions, the average voltage across the

inductor L in Figure 4-11 is zero.

(VL) = VLdt = 0 (4.11)

VL s- iLR if 0 < t < DT
VL =L (4.12)

-iLR if DT < t < T

DT T
(VL) ( - iLR)dt - iLR = 0 (4.13)

(VL) = (V, - iLR)DT - iLR(1 - D)T = 0 • (4.14)

D = D, (4.15)
R

It is clear from Equation 4.15 that the current through the electromagnet can be

controlled by varying the duty ratio D, assuming V, and R are constants.

4.4.3 Hysteretic Control

The method of control chosen for the buck converter/current driver is that of

hysteretic control mainly to satisfy the requirement that the current driver be much

faster than the overall open loop system. In hysteresis control, switching boundaries

are defined in terms of a single state variable, or the system output, i.e. inductor

current. Two boundaries with a small separation control the switch S turn-on and

turn-off action [5]. The concept is illustrated in Figure 4-12 below.

During the time DT or tj, when the switch is on, the inductor current increases

with a time constant 7 = 1. Conversely, during the time (1 - D)T or t2, when the

switch is off, the inductor current decreases with the same time constant. It is clear

then that the switching frequency, defined as f,, = I and the duty ratio defined as

D = ( are defined by the time constant T and the hysteresis band Vh = VB - VA.
T



A detailed analysis of the switching frequency and duty ratio dependence is derived

and summarized below.

VS -

VB
DVs -

VA

q(t) iLR

K:,
Vh

DT T

Figure 4-12: Transient response of hysteresis controlled buck

During time tl, the switch is on and the diode is off, and therefore the inductor

current iL, the voltage across the resistor VR and tl are:

i = -(1 - e)R (4.16)

VR = V,(1- e-7) (4.17)

t = --r In (= - -r n - (4.18)

While during time t2 , the switch is off and the diode is on and the current in the

inductor iL, the voltage across the resistor VR and t 2 are:

ZL = e e
R

VR = VBe

t2 = -ln InI =(In i-
VB VA

(4.19)

(4.20)

(4.21)

The switching frequency is:

(4.22)tl + t2

-- 4

t,

t



4.4.4 Experimental Implementation

The actual implementation of the hysteresis-controlled-buck-converter-based cur-

rent source is shown in Figure 4-13. The circuit consists of the basic buck converter

topology, an op amp used as a comparator with hysteresis for the switching and an

op amp gain stage.

D
4M002

Figure 4-13: Hysteresis controlled buck converter

The analysis of the circuit is straight forward and for the most part was completed

in the last section. The average inductor current is found as before as:

(VL) = (V, - iL(Rc + Rs))DT - iL(Rc + Rs)(1 - D)T = 0 (4.23)

while feedback forces pins 2 and 3 to be equal

Vref - 4Vsen (4.24)

which results in an inductor current as

DVs Vref
iL = 4 R 44R, 4 (4.25)

The only item remaining is to quantify the values VA and VB from this topology.



The comparator output q switches to the positive supply when the positive ter-

minal V+ is greater than the negative terminal V- and conversely to the negative

supply when the opposite is true. The voltage at the positive and negative terminals

are:
V+ RG + RG2 R2 R V+ R(4.26)

RG + R 2 ) +R) R, + R2

V- = Vef (4.27)

VR = iL(Rc + R,) (4.28)

To get the quantity VA, assume that the output of the comparator q was previously

high, in this case zero (q = V,). The threshold that the sense voltage Ven = iLR,

must exceed to turn off the switch on is:

( RG1 (R 2 + R R1
VA = RG 2 + [ 2 ef 2 .9] (4.29)

while if the output of the comparator q was previously low (q = 0), the threshold

that the sense voltage Vse = iLR, must then fall below to turn the switch on is:

V = RG R2 + R1 e (430)
RG1 + RG2 ( 2

Combining Equations 4.22, 4.29 and 4.30, the switching frequency for this topology

is:
1

fsw = (4.31)
klk

2 
Vref -- kgVs

I klk2 Vref -

The most important item to take away from this analysis is that the switching fre-

quency with respect to Vref is much higher than the crossover frequency of the mag-

netic levitator system. This is illustrated below in Figure 4-14.

The switching frequency of the current source has a parabolic response to control

voltage with the maximum switching frequency at 50 % duty ratio or Vref = 30 or

i- = ef 7.5 A. The current source will not run at such high currents as the 3-g

ball only theoretical requires iL = 680 mA at xl = 2.4cm. Therefore the current



Figure 4-14: Buck switching frequency versus Vref

source will always run below maximum frequency but at a higher frequency than the

crossover frequency of the levitator.

Switching frequency f vs. control vdlage V_

r

_r



Chapter 5

Results and Conclusions

This chapter presents the results of the experiments performed on the single degree

of freedom magnetic levitator described in this thesis. In Section 5.1 the experimental

step responses are presented and compared with responses predicted in simulation and

possible sources of discrepancies are discussed. In Section 5.2 conclusions are drawn

from the data presented, the thesis is summarized and suggestions for future work is

discussed.

5.1 Step Responses of Levitator

This section presents and analyzes experimental step responses performed on the

complete magnetic levitator. The sensor output is measured for step sizes of 100,

200, 300, 400, and 500 [mV] across two operating points and presented below in the

following figures.



The results suggest that the nonlinear compensator works well at an operating

point of Vda = -3V since a linear increase in input voltage produces a linear increase

in output position. There was a problem however as an operating point of Vdc = -4V

exhibited very different step responses. The loop gain obviously changed for the effect

of the pole-zero doublet is more apparent at Vdc = -4V.

The culprit was discovered to be the biasing of the position sensor, specifically in

the instrumentation amplifier. The reason why the position sensor is bias dependent

is because the V,,f pin is biased with a high impedance voltage source implemented as

a 500kQ potentiometer. The internal schematic of the AD620, taken from the Analog

Devices data-sheet is shown below in Figure 5-16.

The V,,f pin is connected through a 10kQ resistor to the output amplifier. The

voltage at the positive terminal for V,,f = 8.9V is then:

10kQ 10kQ
Ok = V(X) + Vref (5.1)

140kQ 140kQ

and therefore the output voltage V,,, is then:

20kOk 20kQ
e 20k VX21) + 20kQ Vref (5.2)140k l 140k

It is clear then that if the position dependent voltage V(xi) ranges from 0 to 8 V

within the operating range of the sensor, the output voltage Ven varies by position

and therefore the gain of the sensor varies by position.

There are two ways to combat this problem: (1) bypass the V,,f pin with a large

capacitor or (2) put a buffer in between the potentiometer and V,,f, shown in Figure

5-17 below.

The problem was discovered close to the conclusion of the thesis and therefore

there was no time to correct, but if the position sensor's gain is constant through its

operating range, the levitator would operate well over this region.



5.2 Conclusions and Suggestions for Future Work

The data presented in this thesis demonstrates the effectiveness of of a nonlinear

compensator to linearize a nonlinear system as the step responses are essentially oper-

ating point independent within the full range of the levitator. Feedback linearization,

along with a linear compensator and a linear sensor, is therefore a viable method of

nonlinear control when operating over a wide range is desired.

5.2.1 Thesis Summary

The principal effort of this thesis is the design and evaluation of nonlinear ana-

log compensators and system limitations due to sensor characteristics. A nonlinear

compensator is designed which allows the magnetic system to be operating point

invariant. A reflective switch positioned under the ball is used as the position sen-

sor. The effectiveness of feedback linearization is demonstrated as the linear range of

the system is increased within a small range where the position sensor's gain is not

changing.

5.2.2 Suggestions for Future Work

The one difference discovered in literature was with the modeling of the inductance

of the levitator using coenergy techniques. In [7, 9, 11, 15], and in this thesis, the

inductance is modeled as having a hyperbolic characteristic, while [3] models it as a

decaying exponential. While an exponential has a the same decaying characteristic, an

inverse exponential nonlinear compensator can be investigated for future discussions

on this topic.

Putting the lead compensator in the feedback loop as opposed to the forward loop

is another area to explore. The system will have the same loop gain but will exhibit

no overshoot.

Since the sensor was a large part of the thesis, the exploration of more efficient

sensor designs should be explored. The range garnered by the linearization of the

position sensor presented in this thesis was not large. The goal for future work is



to have a sensor that has a linear region larger than the maximum output current

of current source. The limitations in that scenario would be the maximum current

output.
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Figure 5-1: Vd = -4V, with a square wave input of 100mVpp
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Figure 5-2: Vdc = -4V, with a square wave input of 200mVpp
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Figure 5-3: Vdc = -4V, with a square wave input of 300mVpp
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Figure 5-4: Vd = -4V, with a square wave input of 400mVpp
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Figure 5-5: Vdc = -4V, with a square wave input of 500mVpp
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Figure 5-6: Vdd = -3V, with a square wave input of 100mVpp
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Figure 5-7: Vdc = -3V, with a square wave input of 200mVpp
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Figure 5-8: Vd0 = -3V, with a square wave input of 300mVpp
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Figure 5-9: Vd, = -3V, with a square wave input of 400mVpp
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Figure 5-10: Vdc = -3V, with a square wave input of 500mVpp
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Figure 5-11: Vdc = -3V, with a sine wave input of 1.5Vpp
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Figure 5-12: Minimum input voltage for the levitator
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Figure 5-13: Output of subtractor with a 1-V sawtooth wave input
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Figure 5-14: Output of lead compensator with a 1-V sawtooth wave input
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Figure 5-15: Output of square-rooter with a 1-V sawtooth wave input
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Figure 5-16: Simplified schematic of the AD620 instrumentation amplifier

internal to AD620
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Figure 5-17: Biasing fix for the position sensor
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Appendix A

Schematics

Figure A-1: Subtractor and lead compensator
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Figure A-2: Nonlinear compensator
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Figure A-3: Current driver
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Figure A-4: Position sensor circuit
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