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Abstract

The Delegation Framework is a collection of programs, network protocols and library
interfaces that provide fine-grained delegation of authority to network systems. The
design and implementation of the Delegation Framework focus on addressing some of
the stumbling blocks that have prevented delegation systems from becoming widely
deployed in real world network applications. The Delegation Framework makes it pos-
sible to integrate delegation into an existing client-server network application without
modification to the network application protocol. A dynamic library interposition im-
plementation also make it possible to integrate delegation into large classes of legacy
client and service programs with minimal or no manual source code modification.
An integration case study describes the process of grafting the Delegation Framework
onto a simple Apache- and MySQL-based network application and analyzes the added
overhead incurred by the application.
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Chapter 1

Introduction

Access control mechanisms common to many of today's network services blur the

distinction between the operations a user is authorized to perform and the operations

that programs the user employs are authorized to perform. Operating systems control

resource access based on a user identity assigned to a process. Even if a user's

program infrequently or never requires any more than a particular subset of those

user authorities, few access control systems provide a practical mechanism to limit

the authority delegated to the program.

A distinction between a user's authorities and those of the programs the user

employs often does not exist; the user must give a program either all of his authorities

or none of them. This circumstance would be satisfactory for users' security needs if

the various other authority-requiring software that users employ were well-behaved

and perfectly resilient to attack by malicious parties. However, given the ability to

maliciously manipulate a client or service program, an adversary can translate the lack

of distinction between user and program authorities into an opportunity to capture

a user's credentials. The opportunity to capture credentials is especially apparent

when resources are distributed across a network. Many of today's networked systems

require a user to transfer his identity credentials to any remote system that is to make

a request on his behalf.



1.1 Delegation of Authority

Many security mechanisms today provide implicit delegation of coarse-grained au-

thority, such as the authority to assume the user's identity. Making that delegation

explicit and more finely-grained can alleviate the problems resulting from blurring the

identities of users with the identities of their programs. Explicit delegation provides

precise control over what authority is granted to a given program for a particular

period of time, and consequently it becomes more challenging for malicious to abuse

authority derived from a user.

1.1.1 Coarse-Grained Delegation is Ubiquitous

Though not typically called delegation, computer systems often employ security mech-

anisms that are implicitly delegation. Often, a client program (e.g., a web browser)

receives a password typed by a user, which the client program presents as a credential

to prove that it holds authority to access a service on the user's behalf. The user thus

delegates the authority to assume his identity to the client.

Many web applications provide are front-end interfaces through which users access

data stored on an underlying service. These web applications take the role of a deputy,

a network service that makes requests of other network services on a user's behalf.

For example, a web interface to an IMAP mail service forwards a password from a

user to the service. In this case, the deputy web application is delegated the authority

to assume the identity of the client.

Many database-driven web applications rely on code running on the web server to

verify user credentials and make authorization decisions to control access to database

tables. This requires complete trust in the web server's access control. All users

implicitly delegate to the web application the full set of authority to access their

underlying database records. This authority can be easily abused by any adversary

able to compromise the web server.

The salient problem with password credentials and strong trust relationships is

that they only allow coarse-grained (i.e., all or nothing) delegation. It is difficult to



guarantee that a client or deputy does not abuse its authorities without revoking all

of the authorities it has been given, rendering it unusable. A delegation mechanism

for defining and granting more fine-grained sets of authorities to different network

services would benefit a great many of the systems that rely on passwords (and

other client-held user credentials), and strong trust relationships across the interfaces

between deputies and underlying services.

1.1.2 Precise and Explicit Delegation

A variety of research has posited fine-grained delegation of authority as a solution

to limit the scope of potential authority abuses that may result from reliance on

passwords and strong trust relationships in networked systems [13, 17, 18, 26]. Fine-

grained delegation of authority enables an authority holder to grant specific author-

ities to another principal for a specified period of time. If allowed by the delegator,

the delegate may re-delegate this authority further. Delegation and re-delegation al-

low authority to trickle down through a system from the users who hold authorities,

to their client software, to the deputy services those clients rely on to access other

services. A client or deputy may then delegate the authority further or use the cre-

dentials that prove that it has been delegated the authority to access the underlying

resource. Fine-grained delegation enables more explicit control of the amount and

duration of authority users make available to the software they use locally and over

a network, thereby limiting the amount of trust placed in those software programs.

In contrast to the common password-based authorization scenario, credentials

proving delegated authority need not indefinitely grant a client the full set of author-

ities held by the user. Instead, the user is able to specify which of his authorities

the client program may use and for what duration they make be used. Delegation

of authority enables a user to grant different sets of authority to client programs of

varying levels of trustworthiness and different functional requirements. A user need

not be concerned with a compromised client retaining authority after the specified

expiration time.

Additionally, the strength of trust relationships between deputies and the underly-



ing services to which they provide access can be reduced or, in some cases, eliminated

entirely. In a delegation-enabled version of the system consisting of a web application

(a deputy service) and an underlying database service, a user can delegate the deputy

the precise set of authorities required to perform the database operations for the task

requested. The strong trust relationship between the deputy and database service can

be eliminted. Instead of lavishing the web application with a large set of authorities

and trusting the web application to mediate access, authorization checks can take

place at the database that sufficiently verify the user authorized the web application

to perform such requests. The web application (acting as the user's deputy) may

continue to perform authorization checks as before.

Delegation of authority and capabilities systems have been studied for many years

now. Research efforts have addressed many of the problems encountered on the

path to making delegation of authority possible, and demonstrated some interesting

applications. Useful structures of cryptographic certificates for delegation are now

well-defined. Authority description languages make it possible to flexibly describe

arbitrarily fine- or coarse-grained sets of authority. Usable systems designed with

delegation functionality built-in have been constructed and used in laboratory envi-

ronments. If these laboratory success could be carried over into real world systems,

it would improve the security properties of a large class of the network applications

in existence today. Nevertheless, despite these developments in the study delegation

of authority, most network applications have not been successfully adapted to use

delegation for authorization.

1.2 Deployability Problems for Delegation Systems

While delegation has been research extensively, effective delegation of authority mech-

anisms have not become widely deployed in real world systems. This is a classic prob-

lem of a good technology failing to be deployed because it was not designed to be

easily deployable. Redesigning systems and reimplementing client and service soft-

ware to include support for delegation has been impractical, and good methods for



integrating delegation into legacy applications and services have not been deployed1 .

1.2.1 Lack of Support in Application Protocols

Network applications enlisting the support of a delegation systems require protocol

support for requesting and passing delegation credentials between hosts. Application

protocols, the protocols spoken between clients and services at the application layer

across the Internet (such as HTTP, SMTP, IMAP) are often well-specified, standard-

ized protocols that have received the intense scrutiny of working group committees at

standards organizations. Few, if any, standard application are pre-specified to carry

delegated credentials or pair protocol requests with particular credentials. Amending

these protocol specifications to support delegation would be a labor-intensive process

that could take standards organizations years, a common stumbling block for new

security technologies. A better approach to solving the protocol problem must be

developed.

1.2.2 Integration with Legacy Code

Rewriting or modifying legacy software can be prohibitively expensive and error-

prone. Rewriting could also require major changes to access control functions. Source

code may be lengthy, poorly documented and difficult for unacquainted developers

to decipher. Even with a strong understanding of the code, the challenges involved

in the integration process are numerous: major restructuring of a program may be

involved; support for underlying cryptographic operations may need to be added; and

the proper authorization checks can easily be misplaced or omitted.

1.2.3 Usability

If users cannot understand how to use a delegation mechanism, or find using it tedious,

integrating delegation may not actually improve the security of a network application.

'The term legacy as it is employed in this thesis refers to software that was not originally designed
and implemented to have a delegation of authority mechanism and is not intended to make any other
qualitative judgments about the software's age or sophistication.



It may instead make the application more difficult to use. The reasons a user must

delegate authority may not seem obvious to him, and authorization policies specifying

the authorities granted to a delegate are difficult for the novice to craft. Usable

interfaces must be developed to assist users of the system in delegating authority easily

while ensuring that the user's actually receive the security benefits a delegation system

is intended to provide them. The delegation system must also provide whatever

infrastructure support these usability mechanisms require.

1.2.4 Performance

Regardless of how desirable a given authorization mechanism's security benefits are,

the mechanism must be implemented efficiently to be successfully adopted. High

volume Internet services demand security mechanisms that do not severely degrade

the quality of service offered to clients. Considerable effort must be spent designing

and implementing a delegation system with acceptable performance characteristics.

1.3 Making Delegation Deployable

These practical issues have rendered the research successes of delegation of author-

ity difficult to deploy in real world systems. The contribution of this thesis is the

Delegation Framework, which makes strides in addressing many of the problems of

integrating delegation of authority into legacy network applications. The framework

consists of a collection of network protocols, an agent, and a set of library routines

that work together to address various of the deployability challenges facing delegation

of authority. The Delegation Framework makes automatic or near-automatic integra-

tion of delegation into a large class of network applications software a reality, thereby

helping system administrators to more easily deploy delegation-enabled systems to

their users.

Chapter 2 summarizes relevant previous work. Chapter 3 gives an overview of

the Delegation Framework design. Chapter 4 describes the structure of delegation

credentials. Chapter 5 discusses in detail the design of the protocols used by the Del-



egation Framework. Chapter 6 discusses the implementation of the Delegation Agent

program, the cornerstone of the Delegation Framework. Chapter 7 describes the Del-

egation Framework Library, the interface via which legacy software participates in

Delegation Framework-enabled application. Chapter 8 discusses the integration of

the Delegation Framework into an Apache-served web application that utilizes an

underlying MySQL database when generating webpages. Chapter 9 summarizes the

contributions of this work and proposes future work on the Delegation Framework.





Chapter 2

Related Work

2.1 Distributed Authorization and Delegation

2.1.1 Theory

Butler Lampson et al. dedicated a portion of their seminal work on a general calculus

for access control (the most notable contribution being the "speaks for" relation) to

the theoretical underpinnings of delegation[2, 17]. These works explore formalisms of

delegation as a basic authorization primitive. They also touch on some of the interest-

ing fundamental characteristics of delegation, namely the importance of identifying

a delegate principal as working on behalf of its delegator. A delegate is not simply

Alice, but must use a special identity such as "Alice for Bob" specifying that Alice is

working on Bob's behalf. This provides a theoretical construct for dealing with the

confused deputy problem [14] and highlights the consequent care that must be taken

to avoid the misapplication of authorities delegated from principal Bob when perform-

ing an operation on behalf of a separate principal Charles. The confused deputy is an

fundamental problem that the Delegation Framework, like any reasonable delegation

system should, go to great lengths to avoid.

Gasser and McDermott described the principles for the proper construction of a

delegation architecture [13]. This work has much in common with that of Lampson et

al., but covers delegation exclusively whereas Lampson et al. treat delegation within



a larger discussion. The paper serves as a tutorial on the delegation primitive and

explores the mechanics of delegation in more depth than Lampson et al.. Certificate

structure, delegation expiration, and delegating subsets of authority are among the

issues they consider. Many of the presented ideas are leveraged in the Delegation

Framework.

2.1.2 Applications

Kerberos [21] is a distributed authentication system that uses a trusted server to

authenticate clients on behalf of the services they use. Following an authentication

protocol between the client and Kerberos service, the Kerberos service issues the client

a credential called a ticket. The client then supplies this ticket to the other services it

uses to prove its authority. The trusted server may specify a "OK-AS-DELEGATE"

flag within the tickets granted to the client. With this flag set, the user may delegate

the authority associated with their credentials using a proxy ticket. The primary

drawback of delegation using Kerberos is that it requires a central trusted server. The

central trusted server is considerable drawback for security, flexibility, and availability

of services. The Delegation Framework can provide delegation without reliance on

a central trusted online component; a delegation between a delegator and delegate

requires no involvement on behalf of a trusted third party.

The Taos operating system [32] provides an operating system level implementa-

tion of the concepts devised in the authors' theoretical work [2, 17] including roles,

groups, secure channels, and delegation. Each host includes a component called the

authentication agent which manages knowledge of principals and their associated

credentials. The authentication agent runs in user space, and each application is

linked with the necessary means to communicate with it. Agents on different hosts

are able to communicate with one another, allowing authentication primitives such

as delegation to be applied across hosts. The Delegation Framework incorporates

an authentication agent-like component, called the delegation agent, but allows that

each user and each individual client and service program have its own authentication

agent for clearer isolation of user authority from the authority held by individual



programs. The major drawback for the Taos approach is that today, more than ten

years after the original research on Taos took place, widespread support for delegation

primitives in popular operating systems has not materialized. Requiring operating

system support has greatly hinders deployability. The Delegation Framework favors

an approach implemented entirely in user space so that system administrators can

enabled the delegation primitive in the clients and services running on their hosts

without complex kernel modifications.

A number of systems with delegation or delegation-like mechanisms are imple-

mented in userspace and operate successfully without operating systems (as in Taos)

or the support of a trusted third party (as in Kerberos). These userspace mechanisms

tend to have much better deployability characteristics. However, existing userspace

implementations do not fully realize the delegation solution.

Once such system is the popular Secure Shell (SSH) protocol [4], most notably the

OpenSSH implementation [22]. SSH has enjoyed wide deployment as an answer to the

telnet remote login program's security issues. The SSH protocol specifies support

for a delegation-like mechanism called agent forwarding, and OpenSSH users may

employ a program called ssh-agent that manages the user's public keys and engages

in authorization protocols on behalf of user's SSH clients. When a user logs into a

remote host, the user may specify an optional flag that causes the client to delegate

the user's authority, allowing the remote host to act as his deputy. The "delegation"

technique is called agent forwarding, and allows any SSH clients executed on the

remote host to ask the user's ssh-agent on local host to engage in an authorization

protocol on its behalf. With agent forwarding, it is not possible for the user to

delegate a subset of his authority to the deputy host, only all or none of his authority.

Also problematic is the lack of an is no opportunity to the agent to later revoke an

authorization of a remote login; a deputy may maintain a persistent connection to

the host authorized by the agent indefinitely and use or abuse the user's authorities

on that host.

REX [16] is a remote execution system that improves upon agent forwarding

mechanism of SSH. Like SSH, REX allows the forwarding of access to a credential



management agent to the user's remote execution environment upon login to a remote

machine. Unlike SSH, the REX agent will present a confirmation dialogue box to the

user when a remote rex command attempts to use the forwarded agent. The dialogue

box asks the user whether to trust the host in question. This allows a user to build

a policy dictating which hosts the agent delegates the user's credentials over time.

This is an improvement when compared to SSH, but the mechanism is still course

grained; the user's decision is binary in that the user can only delegate all or none of

his authority to any given host.

SSH and REX are powerful tools for remote execution with delegation-like mech-

anism. However, they are not architected to allow explicit fine-grained delegation of

authority to deputy hosts for precisely defined periods of time. Nevertheless, some

characteristics of SSH and REX have influenced the design of the Delegation Frame-

work: no special operating system support requirements, credential management

agents, and communication channels dedicated to passing credentials and request

for credentials between client agents and deputies.

Other userspace-implemented systems resolve some problems with SSH and REX

by employing explicit certificate-based delegation mechanisms. One such system,

called PorKI [26], allows PDA users to store their credentials and delegate their au-

thorities to client machines, such as computer lab terminals, of which the level of

trustworthiness is less than ideal. Rather than enter a static password into a terminal

machine, a user can delegate the terminal temporary credentials using proxy certifi-

cates created on the PDA and transmitted to the client machine via the Bluetooth

wireless protocol. System administrators specify different trust levels for the client

terminals they administrate. The user's proxy certificate specifies authorization poli-

cies for each trust level, thereby allow client machines in each trust level different

sets of authorities. The delegated credentials are sufficient for the user to access his

network resources reasonably while limiting the set of authorities leaked in the event

of the client machine's compromise. The user's authorities may only be exploited

temporarily whilst delegated credentials on a client machine remain valid. The user's

cryptographic keys remain isolated on the PDA and the password protecting them



is never typed into an unfamiliar machine where it could be captured. PorKI is an

improvement over the status quo, but it focuses on concerns of untrustworthy client

machines and consequently allows only single-level delegations to client machines. It

is not possible for programs on the client host to re-delegate authority to a deputy

across a network, or for the deputy to re-delegate authority to another deputy, and

so on. While allowing a somewhat more fine-grained mechanism than SSH and REX

and allowing delegations for precise periods of time, the limited form of delegation

provided by PorKI does not allow the large amount of trust placed in the deputies

of many systems to be eliminated. The Delegation Framework allows for arbitrary

levels of delegation and re-delegation to support whatever system architectures that

may be interested in employing delegation, and thereby allow for strongly trusted

deputies to be replaced with delegate deputies wherever they may exist.

The Grey System [5], a system similar in many respects to PorKI, uses smart-

phones for delegation of authority to access both physical and virtual resources and

allows users to delegate their authority to one another. Users may delegate creden-

tials authorizing access to client machines, network resources, and physical spaces

to one another using smartphones that communicate via Bluetooth- or SMS-based

protocols. Unlike PorKI, users employ the smartphone (or PDA) as a delegate for

accessing any of the aforementioned resources, not just a delegating credential man-

agement agent. Provided that PDAs or smartphones become highly ubiquitous and

can effectively secure the data they store, their physical, not merely virtual, separa-

tion for the potentially untrustworthy client machines make them excellent candidates

as trusted devices on which users store their credentials and perform delegations. The

Delegation Framework does not presently support PDA or smartphone devices, and

therefore user cryptographic keys must be stored on any client machines they use.

However, the Delegation Framework can support a PDA- or smarthphone-based im-

plementation provided that a PDA or smartphone supports TCP/IP and can perform

a few important cryptographic operations.

SPKI/SDSI [9] (a project resulting from the merger of two formerly separate

projects, SPKI and SDSI) builds on the delegation theory work of Gasser and Mc-



Dermot [13]. The SPKI/SDSI work describes attribute certificates (mapping authority

to identities) and authorization certificates (mapping authority to a public key). In

an attribute (authorization) certificate, an issuing principal specifies some set of au-

thority to be delegated to a subject principal for a specified period of time. Making

an authorization decision involves following a chain of attribute (authorization) cer-

tificates back to a trusted issuer. In SPKI/SDSI, this trust issuer need not be globally

trusted as in traditional PKI. Following the certificate chain, the set of authority ul-

timately held by the subject at the bottom of the chain must be the intersection of

all the sets of authority specified by each attribute (authorization) certificate along

the chain. The intersection operation prevents any principal from authorizing the use

of authority it does not hold or is not authorized to assign to another principal. The

certificates used to delegate authority in the Delegation Framework are very similar

to attribute certificates of SPKI/SDSI.

The term "delegation" is used in a variety of topical areas in computer science.

Other systems refer talk about delegating tasks to software agents. The C# pro-

gramming languages offer a "delegate" keyword for specifying callback methods in

event-driven systems. Specifically within the area of network- and security-focused re-

search, the Delegation Framework shares something of a naming collision with other

systems that describe "delegation" or "delegating architectures". The Delegation

Framework uses the term delegation in the sense of passing authorities from one

principal to another such that the recipient of the delegation becomes authorized to

perform tasks on the issuer's behalf. It is worth noting the difference between the

Delegation Framework and other "delegation" or "delegating" architectures.

The Delegation-Oriented Architecture (DOA) [29] is a research effort aimed at re-

solving many of the problems associated with network "middleboxes" such as packet

filters, network address translators, and transparent caches. DOA reintroduces a

Internet-wide flat name space for all hosts (a role once served by the IP address space

that has been diminished due to prevalence of network address translators) using

what are called endpoint identifiers (EIDs). A host may specify a vector of EIDs in

packet headers to explicitly redirect its packets to a middlebox or sequence of mid-



dleboxes whose functionality the host's administrator desires. This allows for greatly

flexibility in the architecture of networks with middleboxes, allowing the middleboxes

to be removed from points inline between end hosts and the internet. DOA focuses on

specifically on delegating network-level packet manipulation tasks to remote packet

processing hosts such as network address translators and firewalls, whereas the Dele-

gation Framework focuses on the delegation of tasks (and their associated authority)

to remote hosts at the level of application protocols.

Ostia [12] employs a "delegating architecture" to produce more effective appli-

cation execution sandboxing. The sandboxed application requests operating system

resources by way of a controlling agent program, thereby implicitly delegating the

task to the agent. While Ostia, like the Delegation Framework, is motivated by the

desire to minimize the abuse of authorities, the manner in which it employs the idea

of delegation is quite different. In the Delegation Framework, and many of the delega-

tion systems described above, a principal holding a set of authorities delegates those

authorities to a principal that is less privileged. Ostia's approach is the reverse; an

unprivileged process delegates the task of obtaining authority to perform a particular

operation to a more privileged controlling process. Further, Ostia focus on executing

environment sandboxing limits the target set of authorities to those provided on the

local host.

2.2 Trust Management Systems

Trust and authorization policy issues are at the core of the debate on authorization

in networked applications. A body of work on "trust management systems" has iden-

tified the need for flexible mechanisms able to express complex authorization policies

and trust relationships that is independent of the needs of a particular system. This

allows for general policies that apply across a range of applications rather than being

geared toward a specific one. Trust management systems typically consist of policy

description languages for the specification of trust relationships and trust-requiring

operations, and compliance checking algorithms for the evaluation of authorization



statements written in the policy language.

Trust management systems are important in delegation of authority systems due to

a need for a clear specification of delegated authority. The set of authorities delegated

to a given principal must be unambiguously described, and the policy languages of

trust management systems are useful for this task. Trust management systems suggest

a useful way to think about the delegation of authority mechanism: delegation of

authority enables users (holders of authority) to dynamically define and distribute

policies pertaining to the authority they wield.

Blaze et al. engaged in the seminal work on trust management systems, building

a system they called PolicyMaker [7]. PolicyMaker uses filters to specify under which

conditions given policy assertions apply. The policy language itself is very simple,

allowing 1) policy assertions with specific filters, and 2) query statements used to

determine whether a given request is permitted by a given policy. PolicyMaker asser-

tions and filters are implemented in a "safe" (i.e., does not have access to filesystem

or network resources) version of the AWK interpreted language. The AWK variant

is a language contained within the PolicyMaker policy language, and could be sub-

stituted by any "safe" interpreted language. While PolicyMaker's stated aim is to

separate trust management mechanisms from the workings of the target system itself,

its reliance on the AWK language programs leads to a situation in which assertions

and filters become complex and application-specific. The PolicyMaker framework

around this language is certainly application independent, but this "independence"

(a heralded benefit of trust management systems) is not implicitly transfered to the

assertions and filters written by system designers.

Usability is a major concern with trust management systems as they are applied

to the Delegation Framework. If users can be expected to delegate authority in

a fine-grained manner, there must exist a means for them to define policies to be

contained in the certificates they pass to delegates. Trust management systems' policy

languages are beyond the grasp of novice users, and even knowledgeable users will

find them tedious to deal with. This problem is a major obstacle for the Delegation

Framework which presently relies on a simple, home-grown policy definition language.



The Delegation Framework is not tightly bound in its design or implementation to

any particular trust management system, leaving room for future adaptations.

2.3 Other Related Work

A essential part of making the Delegation Framework practically deployable requires

that it be possible to easily integrate the Delegation Framework with existing soft-

ware. A few key implementation techniques that have been adopted in the Delegation

Framework, or show promise for future adoption, can drastically ease the challenge

of integrating delegation into exist client and service software. These are essential to

making the Delegation Framework truly practical.

2.3.1 Extensibility through Interposition

A great deal of previous work has explored system call and dynamic library interpo-

sition as a technique for extending the functionality of existing interfaces [8, 24, 12,

15, 25, 28]. Interposition mechanisms allow system and library interface calls to be

intercepted and redirected to new routines, allowing the interface to be modified or

replaced entirely with a new implementation. Consequently, it becomes possible to

modify the behavior of programs using interposition without modifying the programs

themselves. In the following examples, interposition mechanisms make it possible for

to transparently retrofit software with the following functionality without modifying

the software's source code:

* profiling and debugging [8]

* execution environment restriction mechanisms [24, 12]

* file and socket encryption and compression [15]

* insertion of protocol stack layers between transport and application [25]

. network distribution of computationally-intensive calculations [28]



The Delegation Framework leverages some of these ideas using dynamic library inter-

position, causing the target software to augment the data transmitted within the TCP

sockets with useful metadata using ideas derived from Tesla [25], and to pass data

back and forth with a local agent program that may initiate network communications

of its own from based on ideas from Jones [15] and Thain & Livny [28].

2.3.2 Checking Authorization Policies in Legacy Code

An important and challenging task for integrating the Delegation Framework is prop-

erly instrumenting service software with authorization checks. Many code integration

problems can be solved automatically with dynamic library interposition, but this

authorization check instrumentation problem is not one of them. Dynamic interpo-

sition techniques offer the possibility of placing authorization checks at well-known

library interfaces, but a useful correspondence between these library interfaces and

the interfaces offered by many network application services may not exist in a given

case. Instrumenting a service with Delegation Framework authorization checks via

dynamic library interposition is a task that cannot be accomplished in a sufficiently

general way for all service software.

Recent research suggests other difficulties facing this instrumentation task. Xi-

aolan Zhang et al. have conducted work using the static analysis tool CQUAL in

which they analyze the placement of authorization checks within the Linux kernel by

the Linux Security Modules [33]. Rather than place these authorization checks at

a well-know interface such as the system call interface, the Linux Security Modules

placed them internally deeply within the kernel. They developed techniques using

CQUAL to verify automatically whether authorization hooks completely covered all

access modalities. Zhang et al. found that the manual work performed by well-

qualified individuals placing these authorization checks was error prone, difficult to

verify manually, and left the kernel vulnerable to exploitation. Though Zhang et al.

focused on kernel code, which is known for being particularly complex and difficult

to understanding and for which there exist fewer experience developers, Integrating

authorization checks into the Delegation Framework is likely similarly error-prone.



The current design of the Delegation Framework, having only made manual instru-

mentation of service source code as easily as possible, does not fully address these

major challenges.

However, recent work has successfully retrofitted legacy software with authoriza-

tion policy enforcement hooks using static program analysis techniques [11]. This

work acknowledges the need for security solutions that are deployable and can be

integrated into legacy software. Their work describes two techniques, one which iden-

tifies the location of "security-sensitive operations" in a program's executable code

and, based on its results, one for subsequently instrumenting the code to include

reference monitor calls into an authorization checking routine based. The identifica-

tion technique looks for locations where the code performs "primitive operations on

critical server resources." Provided that the identification technique is effective, its

plausible that their instrumentation techniques could be adapted to insert Delegation

Framework authorization checks based on this identification information. However,

a study of the applicability of these techniques to the Delegation Framework has not

yet been explored.





Chapter 3

Design Overview

The design of the Delegation Framework is informed by needs of a delegation system

as outlined in theoretical work on delegation [2, 17, 13], the design choices employed

in many research efforts in delegation systems [32, 16, 26, 5, 9], and deployability

problems from which many technologies suffer (see Chapter 1). Much of the Delega-

tion Framework design is derived from previous work. Where noted, design decisions

have been influenced by the aim of improving deployability.

3.1 Delegation Credentials

A credential proving that a principal holds a particular set of authorities in the Dele-

gation Framework is comprised of a sequence of cryptographically signed statements

that prove that authority has been delegated. These signed statements take the form

of X.509 certificates. Taken together, a sequence of these certificates forms a proof of

delegation. A significant portion of the functionality the Delegation Framework is de-

voted to dealing with proofs: constructing and signing them, requesting and passing

them between principals, verify their authenticity, and mapping the authorities they

prove to authority-requiring operations. Effectively supporting proofs of delegation

requires properly-structured certificates and a language in which the authorities to

be delegated can be described.



3.1.1 Delegation Certificates

The Delegation Framework proofs are comprised of two types of certificates: delega-

tion certificates that map authorization policies to identities, and identity certificates

that map a principal's identity to a public key. An issuing principal produces a dele-

gation certificate to assert an authorization policy describing how a subject principal

may use the issuer's authority, signing it with a public key. A chain of delegation

certificates form the backbone of a proof of delegation, each certificate authorizing

the issuer of the next certificate in the chain.

A delegation certificate may actually assigned more authority that its issuer holds.

This is permitted because a principal's authorities can change over time, and a dele-

gation certificate may have been created prior to the expiration of a subset of those

authorities. The expiration of one subset of authority does not invalidate other au-

thorities held by the delegator. Therefore, a delegation certificate authorizes the

intersection of the set of authority held by the delegator and the set of authority

the certificate assigns to the delegate. When a sequence of delegation certificates is

chained together (forming a proof of delegation), a whole series of these intersection

operations occurs as each delegate re-delegates the authority it has been delegated.

Identity certificates, familiar from various PKI systems, are used to map identity

to keys so that the signatures on delegation certificates can be check during the proof

verification process. In addition to use in proofs, the Delegation Framework uses

identity certificates during peer authentication. The Delegation Framework does not

depend on any particular PKI system so long as it securely maps identities to public

keys.

3.1.2 Authorization Policy Statements

Delegation certificates must include a statement of the authorities assigned to the

delegate using an authorization policy language. The Delegation Framework design

is not bound to any particular language. However, because the set of authorities

authorized by a proof of delegation is generated by taking the intersection of the



authorization statements contained in each delegation certificate, it should be possible

to represent the intersection of any two policy statements defined in the language.

If a tractable algorithm for computing the intersection of two policies does not

exist, it is suitable for a service to retain all of the authorization statements in a given

proof. In such a scenario, checking whether a given access request is authorized by the

proof amounts to checking whether the required access authorities are authorized by

each of the policies contained in each of the proof's delegation certificates. Therefore,

any of the policy definition languages from the various trust management systems

could function sufficiently in this role.

3.2 Network Protocols

Section 1.2.1 described issues related to network protocol support for delegation. To

deal with these issues, the Delegation Framework provides two new protocols, the

Delegation Protocol and the Speaks For Layer Protocol. These protocols provide the

communication needs of the Delegation Framework without requiring modifications

to application protocols. Chapter 5 describes the Delegation Protocol and Speaks

For Layer Protocol in greater detail.

3.2.1 The Delegation Protocol

The Delegation Protocol provides peer principals with a separate channel through

which they negotiate the client's authority to access the service via application pro-

tocol flows. The Delegation Protocol enables the following transactions:

* A principal delegates authority to an unprivileged principal

* A principal proves it has been delegated the authority to work on behalf of

another principal

* A service requests evidence that a client holds an authority

* A principal requests that authority be delegated to it
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Figure 3-1 depicts these different Delegation Protocol transaction at work. A

client sends a request to a deputy asking that an operation be performed via an

application protocol (step 1), causing the deputy in turn to make a request on behalf

of the client asking a service to perform an operation (step 2). The service does not

know whether the deputy is authorized to make its request, so it sends a Delegation

Protocol request for evidence that the deputy holds some authorities (step 3). The

deputy does not hold the authority, so deputy sends a Delegation Protocol request

asking the client to delegate it the authority required to work on the client's behalf

(step 4). The client, holding the required authority, delegates it to the deputy by

passing the deputy a delegation credential via the Delegation Protocol (step 5). The

deputy sends its delegation credential to the service via the Delegation Protocol to

prove that it holds the required authority (step 6). The service verifies the delegation

credential and, satisfied that the deputy now holds the required authority, responds

to its application protocol request (step 7). Upon receiving a response to the request

it performed on the client's behalf, the deputy responds to the client's request.

While the transactions enabled by the Delegation Protocol help the Delegation

Framework avoid modifying application protocols, using the Delegation Protocol de-

couples delegation credentials from the application protocol requests to which they

are intended to apply. The Delegation Protocol provides messages for negotiating

principals' authority to access services, but these credentials only bind authority to

identities and public keys. They provide no binding between a client's credentials

sent via the Delegation Protocol and the client's application protocol requests sent

via a separate channel. A mechanism must exist that binds a client's identity to

application protocol requests.

This binding problem could be solved by creating credentials that bind authority

directly to application protocol flows, but that is problematic because some clients will

employ multiple application protocol flows when accessing a service. For instance, web

browsers often open multiple connections to web servers when downloading content.

Credentials would have to bind authorities to each of these flows individually. When

authorizing a client to access a service, a user would have to include flow information
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Figure 3-2: A deputy acts on behalf of two clients when communicating via one
application protocol flow

in those credentials, requiring that new credentials be regenerated each time a client

initiates a new application protocol flow.

Binding authority directly to flows is also problematic because a deputy can send

application protocol requests via a single flow on behalf of multiple client principals.

Figure 3-2 illustrates a network application in which this occurs. A mailbox server

acts as a deputy by accessing a user's mailbox files stored on an underlying filesystem

service on the user's behalf. Different credentials should apply to the flow at different

times depending on whose behalf the deputy is accessing the underlying service (e.g.,

the deputy acts as "deputy for clientA" or "deputy for clientB" depending on which

client it serves at a given time).

Instead of binding authorities directly to flows, a client could send flow-to-identity

bindings via the Delegation Protocol. However, this would introduce significant net-

work overhead; being transmitted via separate channels, application protocol and

Delegation Protocol messages cannot be expected to arrive in a particular order.

Therefore, ensuring that a flow-to-identity binding was correct would require the

client to block its application protocol request until it received a confirmation that

its binding had been received by the service. In the network application depicted

in Figure 3-2, this could happen frequently due to the mailbox service acting as a

deputy.

3.2.2 The Speaks For Layer Protocol

The Speaks For Layer Protocol address the problem of mapping authorities onto the

flows to which they apply. Delegation credentials sent via the Delegation Protocol
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Figure 3-3: The contents of a client's Speaks For Layer Protocol-encapsulated appli-
cation protocol flow

bind authority to identities (as is done with attribute certificates in SPKI/SDSI).

The Speaks For Layer Protocol provides the other piece of the puzzle, binding an

application protocol flow to the identity for which it speaks. The Speaks For Layer

Protocol is a protocol in which application protocol data is encapsulated by a client

before it is sent to a service. Normal application protocol data is sent wrapped

in a "Data" message. When necessary, the client may insert a SpeaksFor message

binding the flow to the identity for which the flow now speaks. The service receives

these bindings, remembering the most recently received flow-to-identity binding. The

service makes authorization decisions regarding individual application protocol access

requests based on the identity given in the most recently received SpeaksFor message.

Figure 3-3 depicts the contents of the Speaks For Layer Protocol messages that

a client sends to a service. The first message is a SpeaksFor message specifying that

subsequent application protocol messages speak for the identity Alice. The client

then sends two Speaks For Layer "Data" messages containing some application pro-

tocol request data. The service makes authorization decisions for these application

protocol requests by checking the authority held by Alice. Following the two "Data"

messages, the client sends sends another SpeaksFor message indicating that subse-

quent application protocol messages now speak for the identity Bob. The SpeaksFor

message is followed by two more "Data" messages containing application protocol,

for which the service makes authorization checks of authority held by Bob.

A client would not typically switch from speaking on behalf of one identity to

speaking on behalf of an entirely other identity as depicted in Figure 3-3. A client,

speaking on behalf of one user, will typically only send one SpeaksFor messages during

Service



the lifetime of a given application protocol flow. However, a deputy that constantly

switches between handling requests from multiple clients such as in Figure 3-2 will

send a SpeaksFor message each time it switches between sending requests on behalf

of one client to sending requests on behalf of another client (i.e., when the deputy

switches between its identity "deputy for clientA" and "deputy for clientB").

3.3 Framework Architecture

Delegation credentials are essential to realizing delegation in the Delegation Frame-

work and the proposed protocols facilitate deployment by avoiding application pro-

tocol modifications, but the problem remains that delegation credentials and the

Delegation Protocol and Speaks For Layer Protocol must be integrated with legacy

client and service programs. The Delegation Framework must be architected around

the needs of the legacy programs with which it is to be integrated.

Integrating support for handling delegation credentials and two new network pro-

tocols into a legacy client or service program is a considerable challenge for a devel-

oper. Legacy code may be a challenge to understand and integrating the Delegation

Framework may require an expensive and error-prone development process.

3.3.1 The Delegation Agent

Rather than require developers to port all the delegation functionality directly into

the legacy software, the Delegation Framework introduces an agent program, the

Delegation Agent, which performs much of the work of delegation on behalf of a

legacy program. Each legacy client and service is assisted by its own Delegation

Agent1 . Each Delegation Agent is assigned an identity, and a corresponding identity

certificate maps this identity to a public key. Using this identity and public key,

the Delegation Agent manages principal credentials, much like Taos' authentication

agent and OpenSSH's ssh-agent program, and speaks the Delegation Protocol on

'In legacy software implemented using multiple processes or threads., a single Delegation Agent
serves all of the processes or threads of a given client or service.



behalf of the legacy process it is assisting, eliminating the need for the legacy software

to understand the details of each of these tasks. Though the legacy program code

must be modified to interact with its Delegation Agent, the Delegation Framework's

agent-assisted design simplifies the task of integrating the Delegation Framework into

legacy code considerably.

In the interest of maintaining separate notions of the authorities assigned to users

and the authorities assigned to the clients they use, each user also maintains a separate

Delegation Agent that is distinct from the Delegation Agents of each of the client

programs he uses. When needed, a client program's Delegation Agent asks the user's

Delegation Agent to delegate authority the client requires to perform its function.

The user Delegation Agent provides a delegation user interface through which the

user decides whether to delegate authority to a client when a client makes such a

request.

3.3.2 The Delegation Framework Library

The Delegation Agent considerably reduces the amount of functionality that each

legacy program must support directly within its code, but nevertheless the legacy

code must be modified to support the Delegation Framework. The set of calls that

the legacy software must perform comprise the Delegation Framework Library. This

library provides calls to support the Delegation Agent's functions, calls to check

whether a client is properly authorized, and calls for communicating via the Speaks

For Layer Protocol.

In the interest of making modifications to legacy programs as easy as possible, the

interface of the Delegation Framework Library should be conducive to being imple-

mented using dynamic library interposition techniques [25, 15, 28]. For instance, a

considerable amount of information can be derived from the pattern of socket I/O op-

erations the legacy process performs. If the Delegation Framework Library interface

is designed appropriately, it will be possible to reroute socket I/O calls to alternate

implementations of the call that perform Delegation Framework Library calls without

requiring a programmer to modify the legacy program manually. If calls to the Del-
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Figure 3-4: The Delegation Framework architecture

egation Framework Library can be implemented successfully using dynamic library

interposition as a stub, it would considerably reduce the difficulty of integrating the

Delegation Framework into legacy software.

3.3.3 The Components Working in Concert

Figure 3-4 illustrates the interactions that occur in a Delegation Framework-enabled

network application between legacy processes, different instances of the Delegation

Framework Library, and Delegation Agents. The figure depicts three hosts on each

of which a client, deputy, and service program executes. An instance of the Del-

egation Framework Library resides within the memory of each legacy process. An

interposition stub, also resident within each legacy process's memory, performs the

appropriate Delegation Framework Library automatically for the legacy process when

it is able. Legacy programs communicate with one another using their normal ap-

plication protocol, but they encapsulate the application protocol data within Speaks

For Layer Protocol using calls in the Delegation Framework Library.

For each legacy program, there exists a Delegation Agent that manages the legacy

program's delegation credentials and communicates via the Delegation Protocol with

other Delegation Agents on behalf of the legacy program. The legacy program com-



municates with its Delegation Agent using its instance of the Delegation Framework

Library, which opens a communication channel with the local Delegation Agent via

an operating system-provided domain socket. In a legacy program involving multiple

threads or processes, there exists only one Delegation Agent, but each legacy thread

or process maintains its own separate communication channel with the Delegation

Agent.

In addition to a Delegation Agent working on behalf of each legacy program, there

exists a separate Delegation Agent working on behalf of each user. The user's Dele-

gation Agent communicates with the Delegation Agents of the legacy client programs

that the user uses. A delegation user interface, through which the user makes autho-

rization decisions, is attached to each user Delegation Agent. The user's Delegation

Agent and the corresponding delegation user interface may reside on the same host

as the user's client programs (as depicted in Figure 3-4) or, for added security, on a

separate host or portable hardware device as has been done in previous delegation

applications [26, 5].





Chapter 4

Delegation Credentials

Delegation credentials provide the mechanism by which one principal asserts that it

delegates authority to another principal. A delegate uses these assertions to prove its

authority when accessing a -service on behalf of the delegator. This chapter details

the structure of delegation credentials used in the Delegation Framework.

4.1 Delegation and Identity Certificates

The Delegation Framework employs two types of certificates: identity certificates

which allows a principal to assert mappings between an identity's name to public

key, and delegation certificates which allow a principal to assert a delegation of its

authority to another principal. These certificates are the building blocks of delegation

credentials.

4.1.1 Identity Certificates

Using an identity certificate, an issuer asserts that a subject holds a particular public

key for a specified period of time. An identity certificate contains the following fields:

* issuer - the name of the issuing identity

* subject - the name of the subject identity



* subjectlkey - the subject identity's public key

* notbefore - the time before which the certificate is not valid

* not.after - the time after which the certificate is not valid

In the prototype implementation of the Delegation Framework, the issuer iden-

tity for all identity certificates is a well-known, globally-trusted certificate author-

ity principal whose public key and name are stored on all participating hosts. This

amounts to a simple, single-tiered PKI system. The single-tiered PKI approach would

not effective for internet-wide deployments of the Delegation Framework. A real world

deployment should employ a true hierarchical PKI-based or other infrastructure for

mapping an identity's name to key, such as DNSSEC. Provided it can be successfully

deployed, DNSSEC servers have potential to be convenient places to store identity

certificate-like mappings; when a client looks up the IP address of a given service

with which it is about to initiate an application protocol stream, the query could also

return the identity certificates, or equivalent identity certificate-like mappings, for all

Delegation Framework-based services on the host.

The subject identity and the subjectlkey represent the name-to-key mapping

that the certificate provides. The not_before and not_after fields are timestamps

specifying the period of time during which the certificate is valid. The use of these

timestamps requires all hosts that are part in a given network application using the

Delegation Framework to maintain reasonably consistent clocks within a few seconds

of one another.

4.1.2 Delegation Certificates

Using a delegation certificate, an issuing delegator asserts that it grants a subject

delegate a set of authorities that the issuer presently holds or may hold at some time

during the delegation certificate's validity. A delegation certificate includes the same

fields as an identity certificate (thereby making it possible to include a name-to-key

mapping) along with one additional field:



* authpolicy - an authorization policy assertion specifying the delegated set of

authorities

As described in Section 3.1.2, the design of the Delegation Framework is not bound

to a particular authorization policy language. The Delegation Framework prototype

implementation uses the language described in Section 4.3.

A problem with relying exclusive on global name-to-key mapping infrastructure is

that they tend to produce mappings with long lifetimes. When a principal's private

key credential is compromised, the long-lived mappings between its name and public

key must be revoked and replaced with new mappings. To help deal with this issue,

delegation certificates include a subjectlkey field, allowing a principal to provide

an name-to-key mapping for the principal to whom it delegates authority, making

it possible to delegate authority to a temporary private key that does not have an

corresponding name-to-key mapping in the global PKI infrastructure, DNSSEC, or

whatever other name-to-key mapping mechanism that may be used.

Having the subjectlkey field in delegation certificates allows a deputy adminis-

trator to store the deputy's private key on a secure (perhaps offline) host separate

from the deputy's service-providing host, and regularly regenerate and push tem-

porary keys and short-lived delegation certificates to the online deputy host. The

authorization policy specified in these delegation certificates is of a special form that

allows the temporary keys to inherit all authority delegated to the globally-mapped

identity. However, in the event of a deputy's compromise (provided that the compro-

mise is discovered), the temporary credentials hijacked from the host only authorize

the authorities delegated to service for the window of time during which the hijacked

temporary credentials remain valid. Global identity-to-key mappings remain valid, al-

lowing the administrator to go to the trouble of having a certificate authority produce

a long-lived mapping to a new key pair.

The Delegation Framework implements certificates using the OpenSSL's X.509

and cryptographic library routines to construct, sign, and verify certificates. The

Delegation Framework is not bound to any particular public key algorithm or specific

parameters of that algorithm. Any secure public key algorithm with appropriately-



sized keys will suffice, and the OpenSSL library implements several. The Delegation

Framework prototype uses 2048-bit RSA keys.

4.2 Identity Names

The Delegation Framework uses strings with an email address-like naming format

to identify principals in the issuer and subject fields of identity and delegation

certificates. The following of some examples of the name format:

* alice@foo.anydomain. com

* mailbox@bar . somedomain. com

* filesystem@baz. otherdomain. com

* database@bang. otherdomain. com

Each principal in the Delegation Framework (be it a user, client, deputy, or service)

has an associated name assigned by its administrator.

Maintaining a strict mapping between the domain name specified in an identity

and the actual domain name of the host on which a principal's legacy software and

Delegation Agent processes reside. For example, users who may employ multiple

client machines or whose client machines are part of a DHCP pool in which domain

names can change. Additionally, a single service may be served by a dynamic pool of

hosts. Therefore, the Delegation Framework does not rely on a strict mapping being

a host's domain name and the one specified in an identity string. However, in the case

of services, it is useful to maintain this mapping because it will help users and clients

locate services identified by these strings. This would be particularly important in

deployment of the Delegation Framework where DNSSEC is used to map keys to

identities. As a guideline, a service principal's domain name specified in an identity

string should smallest domain in which the service can be expected to remain. User

and client Delegation Agents should be suspicious of services that do not follow this

guideline, and maintain a policy for dealing with them.



4.3 Authorization Policies

The Delegation Framework prototype supports a simple language for defining autho-

rization policies contained in delegation certificates. Authorization policy are specified

by strings of the following form:

* <identity>:<operation>:<subject>

The <identity> field is of the form described in Section 4.2. This identity defines

the principal of the service on which the operation and argument fields are relevant,

not the principal to whom the authority has been given (the holder of the defined au-

thority is specified within a delegation certificate). The <operation> and <subject>

fields specify the access operation attempting to be performed the subject object of

that operation. The precise contents of the <operation> and <subject> fields are

specific to the service for which the authorization policy applies.

Each of the individual fields may include a set definition, allowing an authorization

policy definition to specify multiple combinations of field values. A set definition is

represented either as a comma-separated list of string values or as a string with

an asterisk. An asterisk defines that an arbitrary length string may take its place.

Asterisks are only allowed as the last character of the <operation> and <subject>

fields. They are allowed in the <identity> field in two locations: the end of the string

preceding the '0' symbol, and the beginning of the string following the '@' symbol.

These restrictions on the location of the asterisk make it possible to compute the

intersection of two authorization policies using a simple tractable algorithm while

still providing a fairly descriptive authorization policy language.

The following are examples of authorization policies that might be employed in a

network file service:

1. filesystemrfoo .somedomain. com:*:/home/alice/*

2. filesystem@foo. somedomain. com :read: /home/alice/www/*

3. filesystem@*.somedomain.com:read,execute:/usr/bin/*



4. **:*:*

Example 1 specifies the authority to perform any operation on a file or directory

within the /home/alice file hierarchy. This defines the set of authority that the file

service would logically granted to the user alice@foo. somedomain. com to access her

own home directory.

Example 2 specifies the authorities required to read the web files of the principal

named alicef oo. somedomain. com.

Example 3 defines the authority to read and execute files and directories within

the /usr/bin directory of any service named filesystem on any host in the

somedomain. com domain name space. This is an example of authority that might

be delegated to users of a distributed computing environment. Programs of interest

can be maintained and made available by different sub-organizations within a given

administrative domain on their own file servers such as is common in MIT's Athena

system.

Example 4 defines the set of all authority. This defines the all-inclusive autho-

rization policy that may define the authorities a deputy's administrator delegates

to temporary online keys as described in Section 4.1 such that the temporary keys

inherit any authority delegated to the deputy's identity.

A production deployment of the Delegation Framework would likely require a

sophisticated authorization policy definition language, such as SAML or that provided

by Keynote. These language would provide more descriptive capabilities than our

scheme. The Delegation Framework prototype employs this simple scheme to allowing

for experimentation with the architecture of the framework without requiring the

prototype to implement a complex authorization policy language.

4.4 Credential Structure and Validity

Work on general purpose algorithm for distributed proving of authorization have

proven to be complex [6]. These algorithms often go beyond the needs of the Delega-

tion Framework. A simpler algorithm will suffice provided that clients and deputies



store the delegation credentials providing evidence of their authority, and that those

credentials are structured appropriately.

The Delegation Framework requires delegation credentials to adhere to a structure.

Each delegation credential includes two sequences of certificates: one consisting of

delegation certificates, and the other consisting of identity certificates. The ordering

of these sequences reflects the natural structure of the chain of delegation. The

name of the issuer of each delegation certificate must match the name of the subject

of the previous delegation certificate in the chain (no constraints are place on the

issuing identity of the first delegation certificate or the subject identity of the last

delegation certificate). The sequence of identity certificates must follow the same

ordering. The subject of the next identity certificate must match the issuer of the

next delegation certificate. This mapping requirement enables the credential verifier

to quickly determine the public key used to sign the delegation certificate. If the i'th

delegation certificate contains a non-empty subj ectlkey field, it provides the identity-

to-key mapping that the (i + 1)'th identity certificate would have if the subjectkey

field were empty. The (i + 1)'th position in the sequence of identity certificates is left

empty.

4.4.1 Credential Structure

Figure 4-1 illustrates the structure of credentials using an example constructed accord-

ing to the requirements of the Delegation Framework. Signature values are omitted

from the figure, but are normally contained in each certificate. The 1st identity cer-

tificate must always be included in the credential because there does not exist a dele-

gation certificates previous to the 1st delegation certificate in which an identity-to-key

mapping could be included. Delegation certificates 1 and 3 leave the subjectlkey

field empty, and consequently the 2nd and 4th identity certificates must be non-

empty. However, the 2nd delegation certificate includes a non-empty subjectkey

(highlighted in bold font in Figure 4-1), providing the mapping that would otherwise

be provided by the 3rd identity certificate.



i Delegation Certs Identity Certs
issuer=Alice issuer=CA

1 subject= Bob subject=Alice
subjectkey=0 subjectkey=1FB0...
notbefore= T1  not_before= T2
notafter=Ts not_after=T 9

authpolicy=A1

issuer-=Bob issuer=CA

2 subject=Charles subject=Bob
subject_key=7B42... subjectkey=4C25...
not_before=T3  notbefore=T4
not_after=T10o notafter-Tll
authpolicy=A2
issuer=Charles

3 subject=Diane
subjectkey= 0
notbefore=T5

not after=T12
authpolicy=A 3
issuer=Diane issuer=CA

4 subject=Edward subject=Diane
subjectkey=0 subjectkey=A289...
notbefore=T6  notbefore= T7

not_after=T13  notafter=T 14
auth_policy=A 4

Figure 4-1: A sample delegation credential in the Delegation Framework



4.4.2 Credential Validity

To be considered valid, the certificate chain in each delegation credential must adhere

to the following three constraints:

* The signature of each certificate must be valid

* The notbefore fields of all certificates must not be after the current time and

the notafter fields of all certificates must not be before the current time (the

temporal constraint)

* Each authority granted to the subject of a delegation credential must be spec-

ified in each the authpolicy specifications of each delegation certificate (the

spatial constraint)

The most basic of these is the constraint on signatures. For a delegation credential

to be considered valid, each of its certificates must be considered valid. Each identity

certificate must be validly signed by the key of the globally trusted certificate author-

ity principal. Each delegation certificate must be validly signed by the key that has

been mapped to the certificate's issuing identity, whether the key was derived from

an identity certificate or from a previous delegation certificate.

The temporal constraint is satisfied if every certificates is valid at the present

time. Therefore, the present time must be later in time the most recent time spec-

ified in the notbefore field values of all the certificates in the credential. Corre-

spondingly, the present time must be earlier than the earliest time specified in the

notafter field values of all the certificates in the credential. The Delegation Frame-

work uses a common representation for time: the integer number of seconds have

passed since an epoch. Therefore, determining the latest and earliest time values

from among a set of time values involves computing the maximum and minimum of

the integer time values, respectively. In the example depicted in Figure 4-1, the del-

egation credential is valid from the time max(T1 , T2, T3, T4, T5, T6, T7) until the time

min(Ts, T9, T1, T11, T12, T1 3, T14).



To satisfy the spatial constraint, every delegation certificates in the chain must

contain each of the authorized authorities and the original issuer must be known to

possess each of these authorities as well. Each access-controlled service (where the

credential is ultimately verified) maintains an access control list of the authority it

has granted to users of the service, the principals who will be the original delegators

of authority in any given credential.

Computing the set of authorities authorized by a delegation credential in order to

meet the spatial constraint is straightforward. As described in Section 3.1, the set of

authorities authorized by a delegation certificate is defined to be the intersection of the

authority known to be held by the issuer with the set of authorities defined within the

delegation certificate. In the example from Figure 4-1, the first delegation certificate

in the chain specifies that "Alice" delegates "Bob" the set of authorities A1 defined by

the authorization policy in the authpolicy field of the certificate. Therefore, if the

access control list on a given service to which a credential applies authorizes "Alice"

to use the set of authorities Ao, the actual set of authorities granted to "Bob" by the

first delegation certificate is Ao n A1. "Bob", holding the set of authority Ao n A1,

then re-delegates a subset of his authorities to "Charles" with the second delegation

certificate depicted in Figure 4-1. The authority held by "Charles" is the intersection

of the set of authorities held by "Bob" and the set of authorities A2 held specified by

the auth_policy field of the second delegation certificate. Consequently, "Charles"

is granted the set of authorities Ao n A1 n A 2. This pattern of intersection operations

continues through the remainder of the delegation credential, finally authorizing the

principal named "Edward for Diane for Charles for Bob Alice" with the set of

authorities Ao n A A2 nf A3 n A4.

4.4.3 Credential Verification

Verifying the validity of a proof is a matter of checking the ordering requirements

and other constraints on the proof. Having imposed restrictions ordering constraints

on the proofs in the Delegation Framework, it is possible to avoid complex proving

algorithms. Verifying Delegation Framework proofs requires only a single linear pass



over the sequences of delegation and identity certificates contained in a proof. Natu-

rally, the certificate signatures can be checked one at a time. The values required to

check the temporal and spatial constraints can be computed iteratively as the verifier

passes over each certificate.

The proof algorithm proceeds as follows. The algorithm first initializes values

Tnot.before to 0, and Totafter to infinity'. The algorithm must also initialize Apoof to

the authorization policy contained in the local access control list that describes the

authorities granted to the issuer of the first delegation certificate in the chain.

After initializing this state, the algorithm examines each of the certificates in the

proof. Assuming there are n delegation certificates (and thus n identity certificates),

for each value i from 1 to n a proof verification algorithm does the following:

1. If i'th identity certificate is non-empty:

(a) verify its signature. If invalid, report an invalid proof

(b) check that its subject matches the issuer of the i'th delegation certificate.

If they do not match, report an invalid proof

(c) Compute the maximum of Thor-before and the value contained in its not _bef ore

field , and assign the result to Tnot-before

(d) Compute the minimum of Tnotfter and the value contained in its not after

field , and assign the result to Tnotoafter

2. Verify the signature of the i'th delegation certificate using the public key de-

rived from the subjectkey field of the (i - 1)'th delegation certificate (if the

subjectkey field was non-empty), or the i'th identity certificate. If invalid,

report an invalid proof.

3. If i > 1, check that the issuer of the i'th delegation certificate matches the

subject of the (i - 1)'th delegation certificate. If they do not match, report an

1Under the epoch-based time representation, the time value 0 represents the earlier possible time
that can be represented using this convention, the epoch itself (12 AM January 1, 1970 on UNIX
systems) and time value infinity represents the latest possible time that can be represented (actually
limited by the number of bit used to store time values by the operating system).



invalid proof.

4. Compute the maximum of T,not_efore and the value contained in the notbefore

field of the i'th delegation certificate, and assign the result to Tnot-before

5. Compute the minimum of Tnotafter and the value contained in the notafter

field of the i'th delegation certificate, and assign the result to Tnot_-fter

6. Computer the intersection of Apoof and the authorization policy contained in

the i'th delegation certificate's authpolicy field, and assign the result to Aproof

After completing the n passes through this sequence of steps, Tnot-before and

Tnotafter will respectively contain the earliest time and latest time that the whole

proof is valid, and Aproof will contain the authorization policy describing the authori-

ties assigned to the subject of the last delegation certificate in the proof. If Tnotbefore

is greater than Tnotafter or if Aproof is the empty set, the proof should be considered

invalid2

2 These conditions can be checked after each of the n passes through the looping portion of the
algorithm in order to avoid wasting time in the case of an invalid proof.



Chapter 5

The Delegation and Speaks For

Layer Protocols

Application protocols cannot be assumed to support delegation of authority. The

conventional approach to including support for new security features in a protocol

is wrought with complications. Application protocol specifications are often drafted

by standards organizations, and achieving alteration to their specifications requires

a great deal of lengthy debate. Further, the adoption of new protocol specifications

requires each protocol implementation to be modified which can also be a length and

expensive process. The Delegation Framework is designed to avoids these complica-

tion by providing two novel protocols, the Delegation Protocol and Speaks For Layer

Protocol. These protocols allow the Delegation Framework to provide delegation of

authority in network applications without modification to the existing application

protocol specifications used in the network application.

5.1 Application Protocol Model

The Delegation Framework relies on some assumptions about the application proto-

cols to which it is being applied. Application protocols must adhere to the client-server

model. Application protocols associated with many important network applications

fit this model: HTTP, IMAP, database protocols, and NFS.



The typical order of events that occurs in the client-server model is that the

client host sends a request message via the application protocol to the server asking

that one or more specified operations be performed on one or more specified objects.

Upon receiving the request message, the server may make one or more authorization

decisions regarding each of the individual operations on each of the specified objects.

If the client is authorized, the server performs the requested operation and sends a

response message to the client via the application protocol with the result. If the

client is unauthorized, the server responds with a message indicating its denial of the

request.

In addition to adhering the client-server model, an additional assumption must

be made about the application protocol. The Speaks For Layer Protocol allows the

client to periodically "tag" an application protocol flow with SpeaksFor messages (see

Section 3.2.2). This SpeaksFor message applies to all application protocol messages

transmitted subsequent to it until the client tags the application protocol stream with

a new SpeaksFor message. If application protocol messages and SpeaksFor messages

are not delivered in order, it will be impossible for the server receiving them to con-

clusively determine the correct identity for which a particular application protocol

message speaks. To support the Speaks For Layer, the transport over which applica-

tion protocol messages are carried must be reliable and provide in-order delivery. For

practical purposes on the internet today, this means the application protocol must be

transported over TCP, though the design of the Delegation Framework is not bound

to TCP'.

The reliable, in-order delivery requirement eliminates the possibility of using UDP-

transport application protocols with the Delegation Framework, whether or not they

adhere to the client-server model. The NFS protocol is an example of a common appli-

cation protocol transported over UDP, and NFS-based services are a strong potential

target for a delegation-based authorization mechanism. Fortunately, implementations

1In recent years, a reliable, in-order transport protocol called Stream Control Transmission Pro-
tocol (SCTP) has been proposed as a more feature-rich substitute for TCP [27]. Though an exami-
nation using SCTP with the Delegation Framework is beyond the scope of this thesis, its probable
that SCTP would be a suitable transport for application protocols in the Delegation Framework.
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Figure 5-1: Delegation Framework protocol stack

of NFS that are transported over TCP exist, though the use of TCP versus UDP can

considerably affect the protocol's performance.

Peer-to-peer and group protocols may also benefit from the delegation authoriza-

tion paradigm, but may or may not function such that the Delegation Framework

can be integrated as it is presently designed and implemented. This thesis will not

consider the applicability of the Delegation Framework to these types of protocols.

5.2 Protocols Working Together

The Delegation Framework is able to achieve delegation across a network for a large

class of application protocols not by substituting a new protocol for the existing ap-

plication protocol, but rather by using the Delegation Protocol and Speaks For Layer

Protocol in conjunction with a given application protocol. Together, the protocols

form a meta-protocol, a version of the application protocol that supports the delega-

tion authorization mechanism. Figure 5-1 illustrates the organization of the protocol

stack that the Delegation Framework employs.

The Speaks For Layer Protocol (SFL) must be carried over a reliable, in-order

transport in order the SpeaksFor messages to be properly ordered with the applica-

tion protocol requests that they attach to specific identities (see Section 5.1). The

Delegation Protocol is used to pass potentially large delegation credentials (contain-

ing arbitrarily many delegation certificates), and so its messages are not guaranteed

to fit within a single maximum transmission unit specified for a given data link that

may lie between a client and service2 . To ensure that its large messages are received

2The maximum transmission unit by standard gigabit ethernet is 1500 bytes. A sequence of



properly, the Delegation Protocol must also be carried over a reliable, in-order trans-

port. Though it is not an express requirement of the design, the prototype Delegation

Framework implementation relies on TCP for reliable, in-order transport.

Further, the Delegation Protocol and Speaks For Layer Protocol must be car-

ried within an encrypted channel. The Delegation Protocol carries a considerable

amount of information regarding the authorities held by individual principals that

could be discovered by an eavesdropper, and the Speaks For Layer Protocol contains

authenticating information that could be leveraged by adversaries to abuse a princi-

pal's delegation credentials (described in further detail in Section 5.5). Encapsulating

both protocols in an encryption layer prevents most information leakage attacks.

The remainder of this chapter describes the facilities of the Delegation Protocol

and the Speaks For Layer Protocol, and details the meta-protocol they produce in

conjunction with a generic application protocol that adheres to the client-server model

(see Section 5.1).

5.3 Diagram Notation

The remainder of this chapter employs network protocol diagrams. Figure 5-2 is a

simple example of one such diagram. Each vertical bar in a given diagram corresponds

to a single principal participating in the protocol. These vertical bar are each labeled

with the principal's name or role in the protocol. The sloped lines of text between

the vertical bars represent protocol messages transmitted between the principals,

and and the corresponding arrows point toward the recipient principal's vertical bar.

The diagrams depict a temporal dimension, which advances downward such that

MessageTwo follows MessageOne in time in Figure 5-2.

identity certificate containing the 2048-bit (512-byte) public keys used in the Delegation Framework
can easily exceeds this capacity.
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Figure 5-2: A generic protocol example

5.3.1 Protocol Messages

The particular protocol that a message is a part of is explicitly noted for clarity in

the network protocol diagrams.

Delegation Protocol messages are colored red and enclosed in square brackets as

follows:

* DP[ Message

Application protocol messages are colored blue and enclosed in square brackets as

follows:

* (pi) [ Request ]

* (p,i)[ Response ]

With regard to application protocol message notation, p specifies the application

protocol in which a message is communicated, and i specifies a particular session of

the application protocol p. For instance, messages as part of the 1st session of the

SMTP protocol would be denoted as (SMTP,1)[ .]. This notation allows diagrams to

distinguish between different sessions of the same protocol (i.e., (IMAP,i)[ . ] versus
(IMAP,j)[ . ]) and sessions of different protocols (i.e., (IMAP,i) [. J versus (POP,i)[ .]).

Speaks For Layer Protocol messages are colored green and enclosed in square

brackets as follows:

* SFL[ Messagei



5.4 Delegation Protocol Channel Setup

Before a legacy client process initiates an application protocol session with a service,

the client's Delegation Agent must first attempt to establish a Delegation Proto-

col channel with the service's Delegation Agent. This process indicates whether the

legacy service is Delegation Framework-enabled. If the client Delegation Agent deter-

mines that the service supports the Delegation Framework, then the client can encap-

sulate application protocol requests within Speaks For Layer Protocol messages. If the

service is not Delegation Framework-enabled, the legacy client process can transmit

application protocol requests without Speaks For Layer Protocol encapsulation.

5.4.1 Finding a Service's Delegation Agent

The Delegation Agent for each Delegation Framework-enabled legacy service run-

ning on a given host is expected to listen on a distinct port in order to prevent the

Delegation Agents of different services from colliding on a particular port. To avoid

port collisions in the Delegation Framework prototype, a legacy service's port number

maps to an arbitrary, but well-known, port number on which the service's Delegation

Agent listens. For instance, if the legacy service is a web server listening on port 80,

its Delegation Agent listens for Delegation Protocol connections on port 3489.

This approach is suitable for the Delegation Framework prototype, but the choice

of ports in the prototype's convention may collide with services offered on real world

hosts. Instead of relying on a convention that may still result in port conflicts,

real world deployments could use a service similar to RPC's portmapper. This

portmapper-like service would listen on a single well-known port, and would pro-

vide mappings between the ports of Delegation Framework-enabled services and the

ports on which those services' Delegation Agents listen.

5.4.2 Encrypted Channel Setup

Given that the service is Delegation Framework-enabled, the client Delegation Agent

opens a TCP connection to the service Delegation Agent via which the two Delegation



Agents will communicate using the Delegation Protocol. Immediately following the

channel setup, the two Delegation Agents negotiate a shared secret key and encrypt

all connection data with it. The specific key negotiation protocol and encryption

algorithm used are not important provided that they produce an encrypted channel

that is resilient to eavesdropping. Though a deployed Delegation Framework imple-

mentation should use an encrypted channel, the current prototype of the Delegation

Framework does not implement an encryption layer. Producing an encrypted channel

is a well understood problem and an implementation is non-essential to validating the

Delegation Framework design.

5.4.3 Mutual Authentication

After the two Delegation Agents have established an encrypted channel, they must

mutually authenticate one another. The mutual authentication protocol in which they

engage is a variation of the Needham-Schroeder public key mutual authentication

protocol [20] that is resilient to the Lowe attack [19] and has been proven to be

cryptographically sound [3]. The Needham-Schroeder protocol is structured such

that, following the successful completion of the protocol, each party is convinced that

its peer holds the public key it claims to hold. In the Delegation Framework variation

of the protocol, that key is also mapped to the peer's identity. This mapping is

provided by an identity certificate or a delegation delegation certificate with a non-

empty subjectlkey field (see Section 4.1). Finally, the peers also agree on a session

nonce that will be used later to authenticate Speaks For Layer Protocol messages.

The Delegation Protocol messages that compose this protocol are the Hello and

HelloResponse messages. During mutual authentication, each Delegation Agent sends

its peer a Hello message. With the Hello message, a Delegation Agent transmits its

identity certificate Cid or, if the principal is using a temporary key that does not have

an identity certificate, the identity certificate Cid of the principal on whose behalf

it is working. If the Delegation Agent is using a temporary key, It also transmits

a delegation certificate Ctemp that contains its temporary key and the authorization

policy defining the authorities delegated to the temporary key. The Hello messages



also contains a randomly-generated nonce N that the sending Delegation Agent signs

using it private key (whether its a long-term or temporary key), which is essential

for the Needham-Schroeder protocol. Protocol diagrams denote the Hello messages

as follows:

* Hello Cid, Q•emp, {yI}pK

In order to correctly perform mutual authentication under Needham-Schroeder,

each peer must respond to the Hello message it receives with a HelloResponse message

containing the nonce that it received from its peer, this time signing the nonce with

its own private key. Protocol diagrams denote the HelloResponse message as follows:

* HelloResp {N}pK<

Figure 5-3 depicts the Delegation Protocol channel setup dialogue. All together,

the steps of this dialogue are as follows:

1. The client Delegation Agent transmits a Hello message containing the iden-

tity certificate Cid,li containing the permanent identity-to-key mapping for the

principal on whose behalf its temporary principal operates, and the delegation

certificate Ctemp,ci which authorizes the temporary principal and provides its

identity-to-key mapping. The client includes the randomly generated nonce NI

in the message signed in this case with a temporary private key PKtemp,di. The

service Delegation Agent verifies the signatures on both certificates and the

nonce, and closes the Delegation Protocol connection if any signature is invalid.

2. The service Delegation Agent transmits a Hello message containing the iden-

tity certificate Cid,srv containing the permanent identity-to-key mapping for the

principal on whose behalf its temporary principal operates, and the delegation

certificate Ctemp,r,, which authorizes the temporary principal and provides its

identity-to-key mapping. The service includes the randomly generated nonce

N2 in the message signed in this case with a temporary private key PKtemp,srv.

The client Delegation Agent verifies the signatures on both certificates and the

nonce, and closes the Delegation Protocol connection if any signature is invalid.
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Figure 5-3: The Delegation Protocol channel setup dialogue

3. After receiving the service Delegation Agent's Hello message in step 2, the client

Delegation Agent extracts the nonce N2 and signs the nonce using its temporary

private key PKtemp,di, marshalls the signed nonce into a HelloResponse message,

and transmits the message to the service Delegation Agent. Upon receiving the

HelloResponse message, the service Delegation agent extracts the signed nonce

{N2}PKtemp,cCi and uses the temporary public key contained in Ctemp,cli to verify

the signature on the encrypted nonce. If the signature is valid, the service

considers the client to be authenticated. If the signature is invalid, the service

Delegation Agent closes the Delegation Protocol connection.

4. After receiving the client Delegation Agent's Hello message in step 1, the service

Delegation Agent extracts the nonce N1 and signs the nonce using its temporary

private key PKtemp,sv, marshalls the signed nonce into a HelloResponse mes-

sage, and transmits the message to the client Delegation Agent. Upon receiv-

ing the HelloResponse message, the client Delegation agent extracts the signed

nonce {N1}PKtemp,Srv and uses the temporary public key contained in Ctemp,srv to

verify the signature on the encrypted nonce. If the signature is valid, the client

Delegation Agent considers the service to be authenticated. If the signature is

invalid, the client Delegation Agent closes the Delegation Protocol connection.

After the client and service have authenticated one another, each peer remembers

the nonce N1 sent by the service. N2 becomes the session nonce, which is used later

to authenticate SpeaksFor messages.



The messages in steps 1 and 2 may be exchanged in any order, but will always

precede the messages in steps 3 and 4. Steps 3 and 4 may also be exchanged in any

order, but will always follow the messages in steps 1 and 2. Once the channel setup

dialogue is completed, each Delegation Agent is prepared to exchange Delegation Pro-

tocol messages with one another as described through the remainder of this chapter.

Network protocol diagrams throughout the remainder of this chapter will denote an

instance of the dialogue shown in Figure 5-3 as follows:

* DP[ Setup ] --+

Following the Delegation Protocol connection setup, the client will complete the

intended application protocol connection setup, performing whatever session negoti-

ation that the application protocol requires of the legacy client and service processes.

This may amount to nothing more than a TCP handshake, or it may involve the

authentication of a client by a standard mechanism such as a password or challenge-

response protocol and the negotiation of a number of session parameters. Whatever

the exchange entails, the data is exchanged is encapsulated in the Speaks For Layer

Protocol.

5.5 The Speaks For Layer

The Speaks For Layer's role is to provide mappings between identities and applica-

tion protocol flows. All application protocol requests must be mapped to an identity

so that the requesting client's authorities can be properly to application protocol re-

quests. These mappings state that an application protocol flow SpeaksFor a given

identity. Authorities provides by delegation credentials for the given identity subse-

quently apply to the requests transmitted via the application protocol flow. Without

proper identity-to-flow mappings, it is impossible for a service to properly authorize

any application protocol requests.

The Speaks For Layer Protocol (SFL) is a simple protocol used by a client to

mark its application protocol flows with information identifying on whose behalf ap-

plication protocol messages speak. SFL is not a modification to application protocols



themselves, but an additional protocol stack layer inserted above TCP and an encap-

sulating encryption layer and below the application protocol as depicted in Figure

5-1. These tags are only included by clients; a service does encapsulate the data it

transmits to clients within SFL messages; clients in the Delegation Framework do not

attempt to authorize the responses that they receive from services and therefore do

not require that each application protocol response by tagged with SpeaksFor infor-

mation. Thus, the Speaks For Layer Protocol only applies to the client-transmitted

half of the flow. Services transmit application protocol data as it normally would

without any SFL encapsulation.

Figure 5-4 depicts a series of messages transmitted via the Speaks For Layer Pro-

tocol. With message 1, a SpeaksFor message, the client informs the service that

subsequent application protocol requests speak for the principal "Alice for Charles".

The client includes the session nonce N,. The legacy service process receiving this

SpeaksFor message reports its contents to its local Delegation Agent which verifies

that N, is the correct session nonce. If the session nonce is incorrect, the service

will deny any subsequent requests from the client. The client then transmits an ar-

bitrary application protocol request in message 2 within an SFL "Data" message,

which identifies the request as application protocol data. If the service performs an

authorization check following the reception of message 2, it will evaluate the request's

authority with respect to the principal identified in the most recent SpeaksFor mes-

sage, "Alice for Charles". Message 3 is the service's application protocol response,

transmitted normally without being encapsulated in the Speaks For Layer Protocol.

Message 4 through 6 repeat the protocol, but this time around the client informs

the service that it speaks for the principal "Alice for David". Again, the service

Delegation Agent will verify that N, is the correct session nonce, and any subsequent

authorization checks that occur following message 5 are evaluated with respect to the

newly specified principal "Alice for David".
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Figure 5-4: A Speaks For Layer session

5.5.1 Authenticating SpeaksFor Messages

A SpeaksFor message contains a session nonce because the SpeaksFor message cannot

be authenticated exclusively based on knowledge of the host from which it were

received. The Delegation Framework allows multiple client principals (e.g., a mail

client and a web browser) to exist on a single host, each having separate identities

and having obtained different delegation credentials from their respective user(s). If

multiple client principals on a single host are communicating with a single legacy

service, the legacy service cannot determine whether an application protocol flow

actually speaks for a given client principal using only the identity contained in a

SpeaksFor message. If they did, a malicious client could claim one of its flows speaks

for another client principal on the same host.

Therefore, each SpeaksFor message contains the session nonce, N,, negotiated

between a given client and service Delegation Agent during the Delegation Protocol

channel setup. The client Delegation Agent can pass the appropriate session nonce

for a given service to a legacy client process when the legacy client process reports

that it is initiating a new application protocol session. With the correct session nonce

in hand, the legacy client process can include it in subsequent SpeaksFor messages

sent via the application protocol flow. The receiving legacy service process passes the

SpeaksFor message to its Delegation Agent so that subsequent authorization checks

can be made with respect to the correct client identity, giving the Delegation Agent



the opportunity to check the session nonce as well.

5.6 Protocols in Two-level Transactions

When a legacy service process receives an application protocol request from a client,

it performs an authorization check by making one or more reference monitor calls into

its Delegation Agent, passing the Delegation Agent an authorization policy definition

describing the authority that the client issuing the request must hold in order to have

the request honored. If the service Delegation Agent does not know whether the iden-

tity for whom the request speaks holds the required authority, the Delegation Agent

sends the a Delegation Protocol RequireAuthority message to the client's Delegation

Agent. The RequireAuthority message specifies the authorization policy A defining

the authority required, and the identity ID for whom the application protocol mes-

sage in question speaks (the identity that must be proven to hold the authority).

The RequireAuthority message also contains a nonce N. A later message includes

this nonce to identify itself as response to the RequireAuthority message. Network

protocol diagrams denote the RequireAuthority message as follows:

* ReqAuth A, ID, N

Upon receiving a RequireAuthority message, the client's Delegation Agent checks

its local knowledge of the authority it holds. If it holds the authority set A and can

present a corresponding credential providing evidence that it holds the authority, it

presents this credential to the service Delegation Agent using a DemonstrateAuthor-

ity message. A DemonstrateAuthority message contains a delegation credential C

providing evidence that ID holds the authority set A required by the service. The

DemonstrateAuthority message contains the value of the nonce N included in the

RequireAuthority message to which it responds. The DemonstrateAuthority message

need not contain explicit references to A or ID as this will be apparent to the service

Delegation Agent upon examining N. The credential C, if valid, will also contain in-

formation about ID and A. Upon receiving the Demonstrate Authority message, the
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Figure 5-5: A client-service dialogue in the Delegation Framework.

service Delegation Agent verifies the credential according to the algorithm described

in Section 4.4. If the credential is valid and does in fact show that ID holds the au-

thority set A, the service Delegation Agent informs the legacy service process that the

request is authorized. Network protocol diagrams denote the DemonstrateAuthority

message as follows:

* DemoAuth C, N

Figure 5-5 depicts the RequireAuthority and DemonstrateAuthority as they fit

into a dialogue between a client and a service. The steps that take place in this

dialogue are as follows:

1. The legacy client process is about to initiate a TCP connection to legacy ser-

vice process over which they will communicate using an application protocol.

Before allowing the connection to be initiated, legacy client process informs its

Delegation Agent of its intentions to open an application protocol connection.

If a Delegation Protocol channel has not already been established between the

client and service, the client's Delegation Agent establishes a TCP connection

to the service's Delegation Agent over which they will communicate via the

Delegation Protocol. The Delegation Agents engage in a setup dialogue (see

Section 5.4).

2. The legacy client process initiates the application protocol TCP connection.

Client Service



3. Immediately following the completion of the application protocol connection's

TCP handshake, the legacy client process informs the service of the principal for

which the application protocol flow speaks. The legacy service process receives

the SpeaksFor message and reports that the identity of the principal for whom

the application protocol flow speaks to its local Delegation Agent.

4. The legacy client process sends a Speaks For Layer-encapsulated application

protocol request.

5. Upon receiving the application protocol request, the legacy service process

makes a reference monitor call into its Delegation Agent specifying the author-

ity needed that the client must demonstrate in order to its request serviced.

The Delegation Agent finds that it has no evidence that the principal for whom

the application protocol request speaks (as identified by the SpeaksFor message

received in step 3) possesses the required authority, and consequently sends the

client's Delegation Agent a RequireAuthority message specifying the authority

set A1 that the principal must demonstrate.

6. Upon receiving the RequireAuthority message, the client examines the delega-

tion credentials that it holds to determine whether any of them provide him

with the authority set A1. If any of the credentials the client holds do pro-

vide the client principal with A1, the principal will marshall that credential

C1 into a DemonstrateAuthority message and send it to the service Delega-

tion Agent. Otherwise, the client's Delegation Agent will send a request to the

user's Delegation Agent asking whether to delegate it the required authority.

The dialogue with the user's Delegation Agent is described in Section 5.7. If the

user delegates the authority set A1 to the client, it provides the client Delega-

tion Agent the credential C1 . The client Delegation Agent marshalls C1 into a

DemonstrateAuthority message and sends the message to the service Delegation

Agent.

7. Upon receiving the DemonstrateAuthority message, the service's Delegation



Agent verifies the credential C1. If C1 is valid, it proves that the The Delega-

tion Agent responds to the service software's reference monitor call, indicating

whether the the client holds the required authority (i.e., whether the credential

C1 is valid and the set of authorities A2 proven to be held by the client contains

A1 as a subset). Given that the reference monitor call returns affirmatively, the

service software handles the application protocol message as it would normally

prior to the introduction of the Delegation Framework.

5.6.1 When a Client is Unable to Demonstrate Authority

If the client does not hold and cannot obtain delegation credentials from the user

providing the client with authority set A1, the client responds with a NoAuthority

message. This message appears in the dialogue depicted in Figure 5-5 at step 6. The

NoAuthority message contains only the nonce N indicating the RequireAuthority

message to which the NoAuthority message is being sent in response:

* NoAuth N

The service receives the NoAuthority message, checks the nonce and responds to

the legacy service process's corresponding reference monitor call indicating the client

principal's lack of authority. The application protocol response sent by the legacy

service process in step 7 indicates a failure due to lack of client authority.

5.7 Requesting Credentials from the User

If a legacy client program requires some authority that it does not hold, it must have

a mechanism by which it may request the required authority from its user. Between

steps 6 and 7 in the dialogue depicted in Figure 5-5, such a request may occur. The

client Delegation Agent engages in a dialogue with the Delegation Agent of the client's

user, asking the user to delegate the client some authority. This dialogue looks sim-

ilar to the RequireAuthority-DemonstrateAuthority exchange, expect now the client

requests a delegation of authority rather than a demonstration. The client Delegation



Agent sends a RequireDelegation message requesting that the user Delegation Agent

with identity ID delegate it authority set A. Like the RequireAuthority message, the

RequireDelegation message includes a nonce N that a user Delegation Agent message

will include to indicate it is a response to the RequireDelegation message. Network

protocol diagrams denote the RequireDelegation message as follows:

* ReqDel A, ID, N

The Delegation Protocol channel through which this dialogue occurs is initiated

by the user Delegation Agent prior to the user actually interacting with a given Del-

egation Framework-enabled client program. Just like a client initiating an exchange

with a service, the user Delegation Agent initiated a Delegation Protocol channel and

engaged in the Delegation Protocol channel setup dialogue described in Section 5.4.

This Delegation Protocol channel is a available for the client Delegation Agent to

transmit the RequireDelegation message to the user Delegation Agent.

Upon receiving the RequireDelegation, the user Delegation Agent determines

whether the user holds the requested authority and, if the user does, will prompt

the user asking whether to delegate the requested authority. If the user refuses, the

user Delegation Agent sends a NoAuthority message containing N back to the client

Delegation Agent. if the user wishes to the delegate the authority, the user Del-

egation Agent generates a delegation certificate providing the client principal with

the required authority set and constructs a credential from the delegation certificate.

The user Delegation Agent marshalls this credential C and the nonce N from the Re-

quireDelegation message to which the Delegation Agent is responding into a Delegate

message and sends the message to the client Delegation Agent. Network protocol

diagrams denote the Delegate message as follows:

* Delegate C, N

Figure 5-6 depicts the simple exchange between the user and client Delegation

Agents that would occur between steps 6 and 7 of the dialogue depicted in Figure

5-5 if the client did not already hold delegation credentials proving its authority.
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Figure 5-6: A user-client dialogue in the Delegation Framework

Upon completion of the dialogue, the client Delegation Agent holds the delegation

credential P1 proving its authority.

5.8 Protocols in Three-level Transactions

Clients are not the only principals that may require authority to be delegated to

them, and users are not the only principals who may delegate their authority. If a

client employs a deputy to access an underlying service on its behalf (e.g., a web

browser employs a deputy web service to access an underlying database service), it

may be necessary for the client to delegate some authority that it has received from

its user to a deputy. Doing this does not require any additional messages that the

Delegation Protocol does not already provide; the RequireDelegation, Delegate, and

NoAuthority messages can be reused in a dialogue between the client and deputy.

The dialogue depicted in Figure 5-7 is an expansion around the client-service

dialogue depicts in Figure 5-5. In this dialogue, the deputy principal takes up the

role that the client had in Figure 5-5.

The first five steps of the dialogue in Figure 5-7 are identical to the first five steps

of the dialogue which takes place in Figure 5-5. Instead of performing a reference

monitor call after step 5, the legacy deputy process initiates a client application

protocol flow of its own in order to service the client's request. In order to initiate

the application protocol flow, the deputy takes the role of the client in Figure 5-5,

and the same dialogue occurs between the deputy and service. After receiving the

RequireAuthority message in step 9, the deputy sends a RequireDelegation message

to the client if it does not hold the authority required to make the request sent in

step 8.
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If the client does not hold the authority it has been asked to delegate, the client

handles the RequireDelegation in step 10 by engaging a dialogue such as that in Figure

5-6 before it can send the Delegate message in step 11. Once the client Delegation

Agent holds the authority it must delegate to the deputy, the client Delegation Agent

generates a delegation certificate and crafts a delegation credential for the deputy

using this delegation certificate and the delegation credential proving the client's

authority. This is done by appending the new delegation certificate to the end of

his own delegation credential. The client Delegation Agent sends a Delegate message

containing this new delegation credential to the deputy in step 11. Like step 6 in

Figure 5-5, the deputy passes this delegation credential to the service in step 12 to

prove that it holds the needed authority. In step 13, the service Delegation Agent

returns an affirmative response to the legacy service process's reference monitor call

following step 12 that causes the legacy service process to handle the deputy's request

in step 13. Upon receiving a response to its application protocol request in step 13,

the deputy is now able to handle the client's request. The deputy sends its application

protocol response in step 14.

5.9 A Priori Delegation and Demonstration

If a client knows what authority it must delegate to a deputy or demonstrate to a

service before initiating a transaction, it is possible to reduce the request's latency.

Figure 5-8 depicts a dialogue similar to that which occurs in Figure 5-7, in which

the client and deputy delegate and demonstrate their authority prior to sending their

application protocol requests. If a client or deputy had a mechanism for remembering

which authority was needed to make a given application protocol request, this could

significantly reduces the delay incurred in transaction by avoiding the RequireDele-

gate and RequireDemonstrate messages altogether. The service software's reference

monitor call into the Delegation Agent following step 12 returns affirmatively instead

of causing the Delegation Agent to send a RequireDemonstrate message to the deputy.

The deputy need not send a RequireDelegate message since it received the needed



authority during step 4 and demonstrated that authority in step 9 before sending its

application protocol request in step 10.

The Delegation Framework prototype does not presently implement such a mech-

anism. In practice, it is difficult to know what authority a given application protocol

request will require. An examination of methods for ascertaining this information in

support of a priori delegation and demonstration is beyond the scope of this thesis.

5.10 Protocols in n-level Transactions

As an extension to the protocols depicted in Figures 5-7 and 5-8, the Delegation

Framework supports an arbitrary number of deputies in between the leftmost client

and the rightmost service in a given transaction. Passing of credentials from the

leftmost client to the rightmost deputy would involve additional exchanges of Re-

quireDelegation and Delegation messages.
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Chapter 6

The Delegation Agent

The Delegation Agent performs a couple of different functions depending what type

of software that it is assisting. When assisting a user or client principal, it acts as

a credential manager demonstrating and delegating authority in much the same way

that OpenSSH's ssh-agent manages credentials for ssh clients [22]. When assisting a

service process, the Delegation Agent acts as a reference monitor into which a service

processes make calls to check whether a client holds some required authority. When

assisting a deputy (i.e., a service that may act as a client when communicating with

an underlying service on behalf of its own clients), the Delegation Agent performs

both of these roles.

One instance of the Delegation Agent is run for each user and each client or service

in a Delegation Framework-enabled network application. A process communicates

with its Delegation Agent when the process:

1. Initiates a new outgoing application protocol flow (clients and deputies only)

2. Changes an identity-to-application protocol flow mapping (deputies only)

3. Closes an application protocol flow

4. Receives a SpeaksFor message from a client (services only)

5. Receives a request that requires authorization (services only)



Much of the interaction between a client or service process and its Delegation

Agent takes place so that Speaks For Layer Protocol messages properly identify the

principal on whose behalf each application protocol speaks. A Delegation Agent must

be capable of handling all of these interactions with the legacy client or service on

whose behalf it operates while the client or service is interacting with any number

of peers in a Delegation Framework-enabled system. I will later describe how legacy

processes can be made to interact with the Delegation Agent automatically in Chapter

7.

6.1 Delegation Agent architecture

The Delegation Agent is an event-driven program implemented using a select()-

based event loop. It is activated by Delegation Framework Library calls from from the

local process it assists, and other Delegation Agents. Each type of event corresponds

to a different type of message received by the Delegation Agent, and each message

has an associated handling routine to which the Delegation Agent dispatches in order

to properly handle the message.

The Delegation Framework specifies that each instance of a service or client on

a given host should have its own identity and, correspondingly, its own Delegation

Agent. However, due to the multiple-process and multi-threaded architecture of many

client and service processes, a single Delegation Framework principal may have mul-

tiple processes with which it must communicate. Each of these process with which a

Delegation Agent communicates maintains a separate UNIX domain socket with the

Delegation Agent.

Each Delegation Agent maintains an instance of each of the data structures listed

in 6.1. These data structures are introduced at appropriate times throughout the

discussion of this chapter.



Structure Key Value
peerdasock.map IDpeer peerdaf fd
peer-id.map peerdaf d IDpeer
peer..nonce-map IDpeer Ns,peer
flow.parentmap f lOWhild flOWparent
clientspeaksformap flow IDcDient
pending resp.map Nreq (resptype, resp_f d, Aresp, IDresp, Nresp)
known-authority-map ID {P 0, P1, ..., Pn}

Table 6.1: The Delegation Agent data structures

6.2 Handling Events

6.2.1 Handling a Legacy Client's New Connection Report

Section 5.6 discusses the steps taken between a client and service in a two-level trans-

action. Immediately after the legacy client process initiates a new application protocol

channel in the first step of the transaction, the legacy client calls into its Delegation

Agent to report the new application protocol TCP flow's flow identifier, a 4-tuple

identifier comprised of the four pieces of information that uniquely the flow by its

endpoints: (client IP, client port, service IP, service port).

Maintaining Peer Authentication Knowledge

If the client's Delegation Agent has not already opened a Delegation Protocol channel

with the Delegation Agent of the service to which the client is connecting, it initiates

a new Delegation Protocol connection to the service's Delegation Agent.

During the Delegation Protocol channel setup dialogue, each of the Delegation

Agents learns the identity and public key of its peer, along with a session nonce

which each must remember for the duration of the Delegation Protocol session. Each

Delegation Agent inserts an entries into three separate data structures containing

information about the session nonce, and identity and public key of the peer Del-

egation Agent. A Delegation Agent inserts an entry in the peer.nonce.map data

structure, mapping the peer name to the session nonce of the Delegation Protocol

session between the two peers. The Delegation Agent also inserts an entry in the



peerda_sock_map data structure, mapping the name of the peer identity to the TCP

socket descriptor of the Delegation Protocol channel that connects the local Dele-

gation Agent to the peer Delegation Agent. Finally, the Delegation Agent inserts

an entry in the peer_idnmap data structure, mapping the Delegation Protocol socket

descriptor to a pairing of the identity and key of the peer Delegation Agent. These

entries become useful later for identifying the proper descriptor of the socket via

which a particular Delegation Protocol message should be sent, and for determining

the identity of Delegation Protocol peer who sent a message that was received via a

particular socket.

Determining the Correct "Speaks For" Identity

Following the Delegation Protocol channel setup, the client must sends a message

through the application protocol TCP flow that it just setup. After completing the

mutual authentication protocol, the client's Delegation Agent determines the proper

identity for which the application protocol request presently speaks, and sends the

identity and the session nonce to the legacy client as the response to the new con-

nection report that caused the Delegation Agent to setup the Delegation Protocol

session. In a two-level transaction (such as that discussed in Section 5.6), the identity

for which the application protocol is of the form "client for user" where client is the

name of the principal on whose behalf the Delegation Agent is working, and user is

the name of the user principal currently using the client principal.

The Correct "Speaks For" Identity in a Three-Level Transaction

However, if the new application protocol connection is reported by a deputy in a

three-level transaction (see Section 5.8), the correct identity is that of the deputy

speaking on behalf of its client (who is in turn speaking on a user's behalf): "deputy

for client for user". Correctly reporting the deputy's identity requires knowledge of

the principal on whose behalf the new application protocol is initiated. This cannot

be determined with the 4-tuple of the newly setup application protocol flow alone;

the legacy deputy's report of the application protocol flow must also contain the flow



identifier of the flow from which it read the application protocol request on whose

behalf the new flow is being setup.

Using this additional flow identifier, the Delegation Agent can lookup the identity

of the deputy's "client for user" principal in a data structure called the

clientspeaksfor-map, which maps a serivce's client application protocol flows to

the identities for which they speak. A service (including deputy services) populates

its Delegation Agent's clientspeaksfor-map by reporting when it has received a

message to the Delegation Agent. In the case of a three-level transaction, the entry,

for an application protocol flow connecting a client to the deputy initiating the new

application protocol flow, will contain a principal identity of the form "client for

user".

Remembering a Child Flow's Parent

Later, the deputy must be able to determine to whom it should send a RequireDelega-

tion message upon receiving a RequireDemonstration or RequireDelegation message

from a service. To support this, a deputy's Delegation Agent must maintain knowl-

edge of the mapping between each outgoing application protocol flow that the deputy

has initiated on behalf of a client, the child flow, and the incoming client flow on

whose behalf the child flow was initiated, the parent flow. The Delegation Agent

maps child flows to parent flows using the flowparent-map data structure.

Returning to the Legacy Client or Deputy

Now that the client or deputy Delegation Agent has determined the identity of the

principal for which the new application protocol flow speaks, it returns the identity

to the legacy client or deputy process for inclusion in a message along with the

corresponding session nonce determined from the peer-noncemap data structure.

The legacy client or deputy process sends this information via a message (see Section

5.5).
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Figure 6-1: A deputy switches from working on behalf of one client to working on
behalf of another

6.2.2 Handling a New Parent-Child Relationship

When a deputy legacy process is working on behalf of multiple clients, it is possible

that it may send client requests to an underlying service for multiple clients via a

single application protocol flow. The identity of the application protocol flow to the

underlying service must change when a deputy switches from working on behalf of

one client to working on behalf of another client.

Figure 6-1 illustrates a network application with this problem. deputyA switches

from working on behalf of clientA to working on behalf of clientB. The application

protocol flow via which it communicates with serviceA much now speak on behalf of

the new deputy identity "deputyA for clientB for userB". In abstract terms, this

may appear to be a contrived case, but this sort of configuration is not improbable in

real world systems. For example, deputyA might be a web front-end interface to an

IMAP service deputyB that accesses mailbox files on serviceA and e-mail directory

entries on serviceB on a user's behalf.

The deputy process must report to its Delegation Agent when such a change

occurs, passing the Delegation Agent the child flow identifier and the identifier of the

parent flow on behalf of which the child flow is being used. The Delegation Agent

handles this change much as it would a new application protocol flow connection

(see Section 6.2.1). The Delegation Agent need not setup a new Delegation Protocol

session because one already exists. However, the Delegation Agent must determine
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Figure 6-2: A network application requiring the forwarding of messages

the correct identity for which the child flow now speaks by looking up the parent flow

identifier in the clientspeaks_formap data structure, enter the new child-parent

relationship in the flowparent-map, and return the new identity for whom the child

flow speaks and the corresponding session nonce from peer-nonce-map for inclusion

in the legacy deputy process's message.

6.2.3 Handling a "Speaks For" Report

Upon receiving a message, a legacy service reports the message's contents to its

Delegation Agent. The Delegation Agent populates its

clientspeaksformap data structure using the reports. These reports include the

session nonce identity contained in the message, the flow identifier of the application

protocol TCP flow from which the message was received. The Delegation Agent looks

up the session nonce stored in its peernonce-map using the identity contained in the

message. If the peernonce~map value does not match that in the message, it rejects

the "Speaks For" mapping. This prevents the client from having its application

protocol request authorized using any principal's delegation credentials. If the nonce

values match, the Delegation Agent inserts an entry mapping the application protocol

flow identifier to the identity of the principal for which the application protocol flow

speaks into the clientspeaks-for-map.



Forwarding "Speaks For" Information

If the service receiving a "Speaks For" report is a deputy, there may exist flows which

are the children of the flow for which a new "Speaks For" identity has been specified.

This means the identities of each child flow have changed as well. For instance,

Figure 6-2 illustrates a network application which such a situation might occur. A

deputy, deputyB, may receive a "Speaks For" report regarding a parent flow, which

previously spoke for principal "deputyA for clientA for userA", declaring that the

parent flow now speaks for "deputyA for clientB for userB". The parent's child

flows that spoke for "deputyB for deputyA for dientA for userA" now speak for

"deputyB for deputyA for clientB for userB". The deputyB Delegation Agent

returns this identity to the deputy legacy process, which must send messages via each

of the parent's child application protocol flows'.

6.2.4 Handling a Reference Monitor Call

When a service process makes a reference monitor call into its Delegation Agent asking

whether a given application protocol flow's principal satisfies some authorization pol-

icy, the Delegation Agent begins handling the reference monitor call by looking up the

identity of the principal for whom the request speaks in the client_speaksf or.map.

Given this identity, the Delegation Agent looks up the credentials of the identified

principal in the known_authority-map data structure, which maps a principal's iden-

tity to the set of valid delegation credentials that the Delegation Agent has verified

for the principal. The Delegation Agent examines the principal's credentials to deter-

mine whether any of them prove that the principal satisfies the authorization policy

required by legacy service process's reference monitor call.

If the principal's knownauthority-map entry contains a credential satisfying the

reference monitor call's authorization policy, the Delegation Agent sends an affirma-

tive response back to the legacy service process. If the principal's known_authoritymap

entry does not contain credentials satisfying the reference monitor call, it sends a Re-

'The task of remembering a given flow's children is left to the legacy deputy and implemented
with dynamic library interposition techniques (see Chapter 7).
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quireDemonstration to the client's Delegation Agent. The Delegation Agent looks

up the socket descriptor of the Delegation Protocol channel connect the Delegation

Agent to the appropriate client's Delegation Agent in the peer_dasockmap.

Handling the Require* Chain

Sending a RequireDemonstration message to a deputy can result in the deputy Del-

egation Agent sending a RequireDelegation message to another client, initiating an

arbitrarily-long chain of RequireDelegation messages sent from service to deputy,

deputy to deputy, ..., deputy to client, and client to user. Eventually, a RequireDel-

egation message will reach a user's Delegation Agent who may send a Delegate mes-

sage back up the chain. Each Delegation Agent must maintain state remembering

each outstanding RequireDelegation and RequireDemonstration that it has sent, and

the parameters of the response it must send upon receiving a response to its Re-

quireDemonstration or RequireDelegation mesage.

Figure 6-3 gives an illustration of the chain of Require* messages and correspond-

ing chain of Delegate and DemonstrateAuthority responses that must occur when

a user decides to delegate the authority that has been requested of him via a Re-

quireDelegation message. The arrows in the figure represent the transmission of fol-

lowing messages (numbered in the order in which they are transmitted) sent between

each of the depicted processes:

1. Reference monitor call asking whether "deputy for client for user" holds A1

User Host Service Host



2. ReqAuth Al, deputy for client for user, N1

3. ReqDel A1, client for user, N2

4. ReqDel A1, user, . 2

5. Delegate P,, N3

6. Delegate P2, N2

7. DemoAuth P3, N1

8. Affirmative reference monitor call response

From the viewpoint of service Delegation Agent depicted in Figure 6-3, the fol-

lowing series of events must occur:

1. The service Delegation Agent receives a reference monitor call, message 1, from

a legacy service process

2. The service Delegation Agent sends a RequireDemonstration, message 2, be-

cause it has of whether the requesting principal authority has authority

3. The service Delegation Agent receives a DemonstrateAuthority, message 7, in

response to message 2

4. The service Delegation Agent sends a reference monitor call response, message

8, in response to the original message 1

Without some kind of state, the service Delegation Agent will fail to send message 8.

Each of the other Delegation Agents in the system will similarly fail to send messages

5 through 7.

2Upon receiving the RequireDelegation, the user Delegation Agent prompts the user asking
whether to delegate "client" the authority set defined by authorization policy A1 .



Maintaining Pending Response State

After sending a RequireDemonstration or RequireDelegation message, a Delegation

Agent uses the pending.response-map data structure to maintain knowledge of the

responses it must send; either a Delegate, DemonstrateAuthority, or reference monitor

call response. The pendingresponse.map data structure maps the nonce Nreq from

its RequireDemonstration or RequireDelegation messages to a vector containing the

following information about the message that must be sent once a response to the

RequireDemonstration or RequireDelegation message with nonce N,,,e is received 3 :

* The message type resp_type: a Delegate message, DemonstrateAuthority mes-

sage, or reference monitor response

* The authorization policy Areq required by the RequireDemonstration or Re-

quireDelegation message

* The identity ID of the principal for whom the authority set A,eq is required

* The socket descriptor respsd via which the response should be sent4

* The nonce Nresp that must be included in the response5

Handling a RequireDelegation for the User

The chain of RequireDelegation messages stops at the user's Delegation Agent. In-

stead of checking the known_authority-map and possibly sending an additional Re-

quireDelegation message, a user's Delegation Agent prompts the user asking whether

3The DemonstrateAuthority or Delegate message sent in response will contain the nonce Nreq
(see Sections 5.6 and 5.7)

4A service Delegation Protocol channel descriptor if the response is a Delegate or DemonstrateAu-
thority message, or the UNIX domain socket of a local legacy process if the response is a reference
monitor response.

5This may be empty if the response is a reference monitor call response because this is important
only for Delegate and DemonstrateAuthority responses.
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to delegate the set of authority defined by the authorization policy contained in the

RequireDelegation.

In the current Delegation Framework prototype, the Delegation Agent prompts

the user with a very simplistic textual interface that might look the following6:

Would you like to delegate the following authority set defined by
the authorization policy:

web_banking@somebank.com:viewbalance,transfer_funds:my_accounts

to the principal "firefoxDfoo. somedomain.tld'"? [Y/N]

If the user responds affirmatively, the Delegation Agent constructs a delegation

credential P consisting of a single delegation certificate in which the user delegates the

identity displayed in the user prompt to the set of authority defined by the authoriza-

tion policy listed in the prompt. It sends the Delegate message containing P and the

nonce Nreq contained in the RequireDelegation message via the socket from which

the RequireDelegation message was received. If the user responds negatively, the

Delegation Agent sends a NoAuthority message containing the nonce Nreq contained

in the RequireDelegation message via the socket from which the RequireDelegation

message was received.

6.2.5 Handling the Delegate or DemonstrateAuthority Chain

After prompting the user, the user Delegation Agent sends a Delegate message, initi-

ating a chain of responses to the RequireDelegation and RequireAuthority messages

sent earlier. Upon receiving a Delegate or Demonstrate Message, a Delegation Agent

verifies the delegation credential C contained in the Delegate or DemosntrateAuthor-

ity Message'. If the credential is valid, the Delegation Agent inserts an entry mapping
6 Despite being an important issue for a successfully-deployable Delegation Framework, the de-

velopment of an effective and usable user interface is a considerably difficult task and is outside the
scope of this thesis.

7If the message is a DemonstrateAuthority message, the credential C provides evidence that the
authority of the client sending the message. When verifying the delegation credential, the service



the subject of the credential to the credential C into its known-authority.map data

structure. The known_authority-map entry allows the Delegation agent to handle

subsequent RequireAuthority, RequireDelegation, and reference monitor calls with

an immediate response instead of initiating a potentially long series of Delegation

Protocol messages.

Using Pending Response State

After verifying the credential and storing it in the known_authoritymap data struc-

ture, the Delegation Agent looks up the nonce Nreq contained in the Delegate or

DemonstrateAuthority message in the pendingresponse-map to identify the cor-

rect outstanding response parameters that must be sent. If an entry exists in the

pendingresponse.map, the Delegation Agent checks whether the authorization pol-

icy Areq contained in the entry is satisfied by the delegation credential C.

If the policy is not satisfied and resptype specifies a reference monitor call re-

sponse, the Delegation Agent send a reference monitor call response via respsd

indicating that the application protocol request is not authorized. If resp_type spec-

ifies a Delegate or DemonstrateAuthority response, a NoAuthority message containing

nonce Nesp is sent via resp_sd.

If the policy is satisfied and resptype specifies a reference monitor call response,

the Delegation Agent send an affirmative reference monitor call response via respfd

indicating that the application protocol request is not authorized. If resptype speci-

fies a DemonstrateAuthority response, the Delegation Agent sends a DemonstrateAu-

thority message containing the delegation credential C and nonce Nresp via resp_fd.

If resptype specifies a Delegate response, the proper response requires the Del-

egation Agent to craft a new delegation certificate and update the delegation cre-

dential C to prove the delegate's authority. First, if the Delegation Agent uses a

Delegation Agent also verifies that the issuer of the first delegation certificate holds the specified
authority in its local access control list (see Section 4.4).



temporary key, it appends the delegation certificate that delegates it the permanent

principal's authority to C'. Second, the Delegation Agent crafts a new delegation

certificate in which it delegates the authority Areq to the identity ID values from

the pendingresponsemap entry, and appends this certificate to C. Next, the Dele-

gation Agent sends a Delegate message containing the newly-constructed delegation

credential C' and nonce Nresp via respfid.

Finally, in all cases, the pending-respmap entry for nonce Nreq is deleted.

6.2.6 Handling a NoAuthority Message Response

A Delegation Agent also handles a NoAuthority messages by looking up its nonce

Nee in the pendingrespmap. If the resptype value specifies reference monitor call

response, the Delegation Agent sends the reference monitor call response indicating

that the application protocol flow's principal does not hold the required authority.

If the the resp_type value specifies a Delegate or DemonstrateAuthority message,

the Delegation Agent sends a NoAuthority message containing the nonce Nresp via

respfd.

6.2.7 Handling a Connection Shutdown

A legacy client or service process must inform its Delegation Agent when it closes an

application protocol flow. This allows the Delegation Agent to clear state that is no

longer necessary. The legacy process reports the flow identifier of the flow being closed.

The Delegation Agent clears any entries that may exist in the flow.parentmap and

client_speaks-formap data structures. The Delegation Agent does not return any

information to the legacy process in response to the flow shutdown report.

8Typically, the delegation certificate contains the authorization policy **: * * (see Section 4.3).



Chapter 7

The Delegation Framework Library

Client and service software requires an interface through which it may participate in

the Delegation Framework. This interface must enable the legacy software to:

1. Report important application events to its Delegation Agent

2. Superimpose the Speaks For Layer protocol beneath application protocols

3. Determine whether a client holds some authorities

The library functions are divided into three corresponding functional categories:

* Speaks For Layer Protocol implementation

* Socket event reporting

* Reference monitoring

The library is implemented in C and consists of the eight functions summarized in

Table 7. The check_authority() function provides the reference monitoring inter-

face. The socket event reporting interface is comprised of the reportsocket_*()

functions. The sf _* () functions implement the Speaks For Layer.



Library Call Return Value Callers Automated
checkauthority () boolean service
reportsocketsetup () identity name client X
report socketdependency() identity name deputy X
reportsocketspeaks-for () identity name service X
reportsocketshutdown() none all X
sflwrite_speaksfor () boolean client X
sflwritedata() boolean client X
sf 1read() (identity name, int) service X

Table 7.1: Summary of the Delegation Framework Library functions

7.1 Automating the Library Calls

An important goal of the Delegation Framework is to increase the ease with which

delegation can be integrated into legacy network applications. As is apparent from

the topics discussed in Chapters 5 and 6, the Delegation Framework has gone to

considerable ends to avoid modifying application protocols and to handle delegation

credentials on behalf of legacy programs. However, it remains apparent that a consid-

erable number of modifications must be made to the code of a legacy program before

it can participate in the Delegation Framework.

Fortunately, it is possible to perform all or most of the Delegation Framework

Library functions automatically for large classes of legacy client and service software

using synchronous I/O. Seven of the eight Delegation Framework Library functions

can be implemented automatically by a dynamic interposition library that catches

various C library routines (indicated by an 'X' in the "automated" column in Table

7). Therefore, a programmer need not manually insert function calls into the legacy

software source code. The only function that cannot at present be performed auto-

matically is the check_authority() function. This eases integration of the Delega-

tion Framework with legacy clients (which never perform reference monitor calls) and

deputies that opt not to perform access control based on delegation credentials. All

end services (i.e., services that do not act as deputies) protecting privileged resources



must control access based on delegation credentials if the network application is to

derive any benefit from the Delegation Framework. Therefore, check_authority()

calls will have to be included in source code.

7.1.1 Authorization Checks in Deputies

Depending on the characteristics of a given network application into which the Del-

egation Framework is being integrated, services acting as deputies may also include

delegation credential-based authorization checks. For instance, an application may

be structured such that sensitive information is stored both on a deputy service and

on an underlying service used by the deputy. This may often be the case for some

kinds of database-driven web applications (i.e., the web service is the deputy and the

database is the underlying service).

In other circumstances, the authority to perform a fine-grained operation at the

interface provided by a deputy might require the deputy to be delegated the authority

to perform a more coarse-grained operation on an underlying service. For example,

the deputy is an IMAP-based mailbox service that accesses mail files on an underlying

file service on behalf of users. A user wishes to delegate a spam filtering client program

the authority only to read messages in his inbox and mark them as spam. However,

the fine-grained authority to mark messages as spam depends on the coarser-grained

authority to perform filesystem write operations on the user's inbox file. Authority

to perform write operations on the user's inbox file is sufficient to delete messages

from the inbox as well as mark them as spam. In this network application, it is not

possible to enforce the desired fine-grained authority at the interface of the filesystem

service. Therefore, an authorization check must be performed at the interface of the

mailbox system to properly prevent the spamfilter doing anything more than marking

messages as spam.



7.2 The Speaks For Layer Protocol Interface

Three functions implement the Speaks For Layer Protocol. Clients encapsulate ap-

plication protocol requests in the Speaks For Layer Protocol so that they are able to

intermittently transmit messages tagging the application protocol flow with the name

of the identity for whom the application protocol flow speaks. All of the functions

provided by the Speaks For Layer interface are made automatically by a dynamic

interposition library.

7.2.1 sf lwrite_speaks_f or ()

int sfl_write_speaks.for(int srv_socket, Identity *id, char *nonce)

A process acting as a client calls sfl_write_speaksf or() when it:

* Opens a new socket connection to a service

* The identity on behalf of which the socket speaks has changed

The function writes a SpeaksFor message into the socket srv_socket informing the

recipient service of the identity name (specified by the Identity object pointed to by

id) for which subsequent requests written to the socket speak'. sf l_write_speaksf or ()

is only called on a socket connecting the caller to a legacy service process, and never

called on a socket for which the caller behaves as a legacy service.

sf lwritespeaks-for () marshalls a SpeaksFor message containing the string

representation of the Identity object pointed to by id, and the session nonce nonce

and writes this message into srvsocket using the C library write() function2 .

sfl_write_speaksfor() returns the result of the write() function.

1The Identity object is a C struct implemented in the Delegation Framework. Any naming
collision that Identity encounters with another software package is coincidental.

2The Delegation Framework prototype uses 8-byte nonces.
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7.2.2 sf lwritedata()

int sf1_write_data(int srv_socket, char *buf, int size)

When writing on a socket on which it is acting as a client, a process calls sflwritedata()

on a socket to write application protocol data carried via the Speaks For Layer in

place of a C library write(). The function marshalls a Speaks For Layer "Data"

message containing size bytes of data pointed to by buf, and writes this message

into srvsocket using the C library write() function. sflwritedata() returns

the result of the write() function.

7.2.3 sf 1read()

int sfl_read(int cli_socket, char *buf, size_t bytes, Identity **id,
char **nonce)

When reading from a socket on which it acts as a service, a process calls sflread()

in place of read(). sfl read() reads SpeaksFor and "Data" Speaks For Layer Pro-

tocol messages from clisocket. Having no knowledge of whether a SpeaksFor or

"Data" message will be received next, the caller passes three return parameters, buf

that is bytes bytes long and return parameters Identity object pointer id and nonce

byte string pointer nonce. sflread() performs a C library read() function on

clisocket to receive the next Speaks For Layer message.

If the received message is a SpeaksFor message, the an Identity object is allocated

containing the name of the identity contained in the SpeaksFor message. Memory is

also allocated for the session nonce contained in the SpeaksFor message and returned

via the nonce return argument. The memory pointed to by both the id and nonce

must be freed by the caller. It does not modify buf and returns 0.

If the received message is a "Data" message, sflread() fills buf with bytes

worth of data and sets id and nonce to NULL. If the "Data" message carried more



than bytes bytes of data, the excess is left in the socket buffer for reading during

a subsequent call to sfl.read() and internal state is marked to reflect this. Future

calls to sflread() treat the left over data as a new "Data" message and will return

the data. If the "Data" message carried less than bytes bytes, sf 1.read() will

not attempt to read additional Speaks For Layer messages. sfl_ 1ead() returns the

number of bytes read into memory starting at buf.

7.3 The Socket Event Reporting Interface

The four reportsocket_* () functions comprise the portion of the Delegation Frame-

work Library through which both clients and services communicate with the Dele-

gation Agent. These functions help the Delegation Agent properly assist the calling

process via the Delegation Protocol and provide the appropriate contents of Speaks

For Layer Protocol messages.

All calls to the functions described in this section can be handled automatically by

the dynamic interposition library (see Section 7.5). Therefore, a developer integrating

the Delegation Framework into an existing system need not be familiar with these

functions beyond understanding their purpose and knowing that they are handled

automatically by a dynamic interposition library.

Socket descriptors passed to these calls are marshalled into strings representing

unique flow identifier of the TCP flow associated with the socket descriptor. The

strings are represented as the 4-tuple (client IP address, client TCP port, service IP

address, service TCP port).

7.3.1 report_socketsetup()

Identity *report_socket_setup(int new_socket, int cli_socket,
char **nonce)
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A client; or deputy calls report_socket_setup () after initiating a new application

protocol TCP connection to a legacy service, but before writing any data to the socket.

The new_socket argument specifies the socket descriptor associated with this newly

created TCP flow. If the calling program is a deputy and initiates this new socket

on behalf of an application protocol request received from a client socket, it should

indicate this by specifying the client socket's descriptor clisocket. If the calling

program is not a deputy, it should indicate that it is not creating the new socket

on behalf of a request received from another principal by setting the cli_socket

argument to -1.

reportsocketsetup() marshalls the identifier of the TCP flow associated with

the new_socket and, if one is specified, the flow associated with cli_socket. The

function sends the identifiers via UNIX domain socket to the caller's Delegation Agent.

reportsocket _setup() then receives via the domain socket a response from the

Delegation Agent containing the identity name for which the flow associated with

newsocket speaks and the flow's session nonce, returning the name of the identity

in the form of an Identity object pointer and the session nonce by setting the nonce

return parameter.

The caller must subsequently pass newsocket and the returned Identity object

and session nonce as the arguments to the sfl_write_speaksfor() function (de-

scribed in Section 7.2.1). Also, the caller must remember the session nonce for any

subsequent SpeaksFor messages that may need to be written regarding the flow asso-

ciated with the socket descriptor new_socket.

7.3.2 report _socket _dependency ()

Identity *reportsocket_dependency(int srv_socket, int clisocket)

A deputy calls report_socketdependency () to indicate that an application pro-

tocol request is about to be written to the socket srvysocket on behalf of an appli-
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cation protocol request received from the socket clisocket. Unlike in

report_socket setup(), clisocket cannot be set to -1.

report socketdependency () marshalls the TCP flow identifiers associated with

srv_socket and clisocket into a message and sends the message via UNIX domain

socket to the caller's Delegation Agent. report _socket_dependency() then receives

via the domain socket a response from the Delegation Agent containing the name

of the identity for which the flow associated with srv_socket speaks, returning the

name of the identity in the form of an Identity object pointer.

The caller must subsequently pass srvsocket and the returned Identity object

pointer as the arguments to the sfl_writespeaksifor() function along with the

session nonce that was saved following the preceding call to reportsocketsetup()

(see Section 7.2.1).

7.3.3 reportsocket _speaksf or()

Identity *reportsocket_speaks_for(int cli_socket, Identity *id,
char *nonce)

A deputy or service calls report socket _speaksf or () after having been returned

an Identity object pointer and session nonce by the sflread() function (described

in Section 7.2.3) on a client socket. The cli_socket argument must be the socket

argument passed to the sf 1read() call that returned the Identity object.

reportsocketspeaks for () marshalls the identifier of the TCP flow associated

with cli_socket, the Identity object pointed to by id, and the session nonce pointed

to by nonce into a serial message. It sends the message via UNIX domain socket

to the caller's Delegation Agent. The function then receives via the domain socket

a response from the Delegation Agent containing the name of the identity for which

flows initiated on behalf of requests received from clisocket speak. This return

value will only be important in the case of a deputy who initiates socket connections
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and makes application protocol requests on behalf of its clients.

The deputy must maintain state identifying the child sockets working on each

client socket's behalf, and correspondingly call sfl_writespeaks_for() once for

each one of these sockets, passing the socket descriptor and the Identity object pointer

returned by report socket speaksfor() along with the session nonces that were

saved following the preceding calls to reportsocket_setup() for each of the child

sockets.

7.3.4 report socket_shutdown()

void reportsocketshutdown(int socket)}

A client, deputy, or service calls reportsocket_shutdown() immediate after

it closes a socket. No socket data should be read of written between the call to

report_socketshutdown() and the C library closeO) function.

The function generates a string representation of the 4-tuple that uniquely iden-

tifies the TCP flow associated with socket. It marshalls this string into a message

buffer, and sends the message via UNIX domain socket to the caller's Delegation

Agent. The Delegation Agent does not send any messages in return, and the function

has no return value.

7.4 The Reference Monitoring Interface

The reference monitoring interface consists of a single function, checkauthority ().

7.4.1 checkauthority()

int check_authority(int cli_socket, char *operation, char *subject)

A service calls checkauthority() to determine whether the sender of a client

request received via the socket cli_socket has the authority to request an operation
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on a given subject. The strings contained in the operation and subject argument

specific to the authorization policies that the service has granted to its users.

check_authority() marshalls the TCP flow identifier associated with clisocket,

and an authorization policy definition (see Section 4.3) formed by concatenating the

local deputy or service's identity name with the contents of operation and argument.

The function marshalls a message containing the flow and authorization policy def-

inition and sends it to the caller's Delegation Agent. It then receives a response

from the Delegation Agent signifying whether the identity for whom the client socket

cli_socket speaks holds the authorities defined by the authorization policy defi-

nition passed to the Delegation Agent. If the principal for whom the client flow

speaks holds the authority, check_authority() returns 1. if the principal does not,

check_authority() returns 0.

Responding to a checkauthority() may require the Delegation Agent to engage

in a Delegation Protocol dialogue (see Chapter 5). check_authority() will block

until the Delegation Agent responds. The duration for which the function blocks

depends on the delay characteristics of the network and the promptness with which

a user responds to a request for delegation.

7.5 Dynamic Interposition Library

A dynamic interposition library automatically implements most of the Delegation

Framework Library functions that a legacy process must perform. The dynamic

interposition library intercepts a set of five functions at the library functions. The C

library interface was chosen as the point of interception because it is both ubiquitous

across UNIX platforms and provides the opportunity to automate the correct calling

of most of the Delegation Framework Library functions. The interposition library

simplifies the integration process, and reduces the possibility of programming errors
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during the process of integrating the Delegation Framework into a legacy program.

7.5.1 Loading the Interposition Library

Each legacy client and service process participating in a Delegation Framework-

enabled system must have the dynamic interposition library loaded into its address

space. The interposition library is loaded into a target process's memory using the

LDPRELOAD environment variable3 . LD_PRELOAD instructs the operating system's dy-

namic linker to load the dynamic library into a program's address space prior to

all other dynamic libraries, including the dynamic C library. When the linker be-

gins linking any unresolved symbols in the program's code segment, the linker looks

through the dynamic libraries for the symbols in the order in which the libraries were

loaded.

7.5.2 Inferring Socket Dependencies

Within a deputy legacy process, the reportsocketsetup() and

reportsocket_dependency() functions described in Section 7.2 both require the

caller to report knowledge of instances when a socket is setup or written to by the

deputy on behalf of a request received from a client. A deputy program developed from

the ground up could handle this requirement straightforwardly, but understanding

existing code and modifying it manually will often be a complex and error-prone

task. If the interposition library could handle this automatically for all types of

deputy programs, it would make integrating the Delegation Framework significantly

easier.

While not a complete model of all deputy behavior, the Delegation Framework

interposition library employs a simple model that correctly infers socket dependencies

3The appropriate loading mechanism may differ on some UNIX platforms and consequently the
prototype implementation of the library may not be compatible with all UNIX platforms.
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for a class of deputy programs:

A deputy process sends an outgoing application protocol request (i.e., writes to a
socket that it initiated) on behalf of the client from which it has most recently received
an application protocol request (i.e., reads data from a socket open by a listenO
function).

This model works correctly for the class of deputy programs in which one or more

processes each handle requests from one client at a time using synchronous I/O.

The Apache web server is a notable example of a deputy program from this class.

Apache assigns each incoming client connection to one of a pool handling processes.

These handling processes read client requests and, when authorized, perform whatever

handling is necessary to fulfill them. Dynamic web content is often database-driven,

requiring the handling process to subsequently write requests to a database service

socket. Because an Apache process handles at most one client at a time, it is straight-

forward to determine the client on whose behalf any writes to the database service

socket were performed.

7.5.3 The Interposition Functions

This section describes a set of five functions that we insert into the C library of legacy

applications to replace five existing C library functions. The goal of these functions is

to properly communicate via the Speaks For Layer Protocol, and to communicate with

the Delegation agent when necessary. The five re-implemented C library functions

are:

* accept()

* connect()

* read()

* write()

* close()
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Structure Key Value
clientsockets n/a clisd
service-sockets n/a srvsd
currentcli_sd n/a n/a
socketparent.map srvsd clisd
socketchildmap clisd Set(srvsd)
socket-nonce-map srvsd nonce

Table 7.2: Summary of the interposition library data structures

Instead of completely replacing the implementation of a function, the replacement

implementations of these functions call into the actual C library functions whose

place they take. The re-implemented versions of these functions are referred to with

a new_ prefix. Calls to the C library implementations of the functions have the prefix

original .

The interposition library implementation maintains the data structures in Table

7.2. client_sockets is the set of socket descriptors for which the socket connec-

tion peer is a client. service_sockets is the set of socket descriptors for which

the socket connection peer is a service. current_clisd is the socket descriptor

within clientsockets on which the application has most recently performed a

read() function. If a socket descriptor in servicesockets was initiated on behalf

of a socket descriptor in clientsockets (as would occur in a deputy application),

socket_parentmap maintains a mapping from the "child" service socket to the "par-

ent" client socket on whose behalf it was initiated. socket _child.map maintains

the reverse of the mapping in socket_.parent _map. socketnonce-map maintains a

mapping between a service socket and the session nonce that must be written into

Speaks For Layer Protocol messages (see Section 5.5.1 for a description of session

nonces). These data structures are discussed where appropriate in the discussion of

this section.

4The Delegation Framework interposition library resolves the memory address of a given func-
tion's original C library implementation using the dlsym() interface.
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new.connect ()

new_connect () is implemented as follows:

1: ret +- originalconnect(sd, name, namelen)
2: if ret < 0 then
3: return ret
4: end if
5:

6: servicesockets +- servicesockets U {sd}
7: id <- report _flow_socket _setup(sd, current_cli_sd, &nonce)
8: sflwrite_speaksfor(sd, id, nonce)
9: socketnoncemap [sd] - nonce

10: if current_clisd # -1 then
11: socketparent map [sd] +- current_clisd
12: S +- socket child.map [currentcli_sd] U {sd}
13: socketchild-map [current cli_sd] +- S
14: end if
15: return ret

new_connect () is the routine used by a client or deputy to initiate a new service

socket connection. The original_connect() returns 0 on success, or -1 on error. If

ret does not reflect an error condition following the call in line 1, the new socket

descriptor is inserted into the service socket descriptor set service_sockets. Subse-

quent newwrite() calls use servicesockets to identify when data should be encap-

sulated within Speaks For Layer Protocol messages before being written to the socket.

Having setup a new socket, new.connect () routine reports the new socket to the local

Delegation Agent at line 7. The argument currentclisd value is either -1 (the ini-

tialized value), or a value set by the new.read(). The reportf lowsocketsetup()

function returns the identity name for which the new socket speaks and the appro-

priate session nonce for the writing of a SpeaksFor message into the socket at line

8. The nonce must be stored in the socketnoncemap data structure for subsequent

SpeaksFor messages. newconnect () call then checks whether the currentclisd

value is set to a valid socket descriptor number. currentcli.fd stores the socket

descriptor of the most recently read client socket, the socket which (according to the
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model described in Section 7.5.2) any subsequent application protocol requests must

speak for. The interposition library stores the parent-child relationships (i.e., a child

socket is a socket that a deputy uses to speaks on behalf of a parent socket) between

sockets in the socket parent _map and socket _child-map data structures.

new.writ e()

newwrite() is implemented as follows:

1: if sd ý servicesockets then
2: return originalwrite(sd, buf, bytes)
3: end if
4:
5: if currentclisd = -1 and socket_parentmap [sd] 4 current_cli_sd then
6: id +- report socket dependency(sd, current_clifd)
7: sflwritespeaks-for(sd, id, socketmnoncenmap [sd])
8: socket parentmap [sd] +- currentclisd
9: S +- socketchild-map [current_cli_sd] U {sd}

10: socketchild.map [current _cli_sd] +- S
11: end if
12: return sflwrite_data(sd, buf, bytes)

newwrite () properly encapsulates application protocol data in the Speaks For

Layer Protocol. If the sd argument is not included in service_sockets, data writ-

ten to the descriptor need not be encapsulated in Speaks For Layer Protocol mes-

sages. Otherwise, the data writing to the service socket must be encapsulated in

the Speaks For Layer Protocol using the sflwritedata() Delegation Framework

Library call. Before the data can be written, the interposition code checks whether

the current-clisd (i.e., the socket from which the most recent application protocol

request was received) is the known parent socket of the child service socket to which

the write is about to occur. If it is not, the new child-parent relationship must be

reported to the local Delegation Agent, which is done at line 6. The name and session

nonce returned by the dependency report function are then sent to the legacy service

process in a SpeaksFor message. The procedure then updates the socket.childmap
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and socketparent.map to reflect to current parent-child socket relationships. Fi-

nally, the interposition library writes the Speaks For Layer Protocol-encapsulated

request to the socket.

new_accept ()

new_accept () is implemented as follows:

1: ret +- original_accept(ld, name, namelen)
2: if ret < 0 then
3: return ret
4: end if
5:
6: clientsockets +- client_sockets U {ret}
7: return ret

A deputy or service process uses the newaccept () to accept a new client socket

connections. originalaccept () returns the newly accepted client socket (ld is the

listening socket), or -1 on error, at line 1. If ret does not reflect an error con-

dition, the socket descriptor must be inserted into the client socket descriptor set

client-sockets. Subsequent new-read() functions use client_sockets to identify

when to expect data carried within Speaks For Layer messages.

new-read()

new.read() is implemented as follows:

1: if sd ý client_sockets then
2: return original-read(sd, buf, bytes)
3: end if
4:
5: current_clifd -- sd
6: ret +- 0
7: while ret = 0 do
8: ret +- sflread(sd, buf, bytes, &id, &nonce)
9: if id # NULL then

10: iddep +- report_socket_speaksfor(sd, id, nonce)
11: for each child_sd E socket_childmap [sd] do
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12: sflwrite_speaks_for(childsd, id_dep, socketnoncemap [sd])
13: end for
14: end if
15: end while
16: return ret

Descriptors not contained in clientsockets, both for files and service sock-

ets (services do not encapsulate their application protocol response in Speaks For

Layer Protocol messages), will be handled normally using the C library implementa-

tion of new.read(). After being created by the new_accept() call and included in

clientsockets, a new.read() call on a client socket causes the current_cli.fd to

be updated to reflect the most recently read from client socket in accordance with the

model described in Section 7.5.2. When reading from a client socket, the sfLread()

call may return a SpeaksFor message. The contents must be reported to the local

Delegation Agent, and the new identity name for which the client socket's children

speaks must be forwarded along via the child sockets. new-read() loops until it

receives Speaks For Layer-encapsulated application protocol request data at which

point it returns to the caller.

newclose()

When a socket is closed, the corresponding state in the interposition library must

be cleaned up. newclose() function removes all state relevant to the closed socket

from the interposition implementation data structures. The function is implemented

as follows:

1: originalclose (d)
2: if d E servicesockets or d E client_sockets then
3: report socket_shutdown (d)
4: end if
5: if d E servicesockets then
6: socketparent.map [d] +- 0
7: servicesockets <-- servicesockets / {d}
8: end if
9: if d E client_sockets then
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10: socketchild_map[d] +- 0
11: client_sockets -- clientsockets / {d}
12: end if
13: if current_cli_fd = d then
14: current_cli_fd d- -1
15: end if
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Chapter 8

Integration Study of Apache and

MySQL

Though the Delegation Framework Library implementation makes it possible to inte-

grate the Delegation Framework with minimal or no manual source code modification,

it remains unclear whether the remaining level of effort to make a system delegation-

enabled is practical. Further, it is unclear whether it is possible to integrate the

Delegation Framework into a network application without incurring unreasonable

overhead.

This chapter presents a proof-of-concept integration of the Delegation Framework

into an existing network system. The system consists of a clients and an Apache web

server which provides content derived from queries on a MySQL database. In the

application of the Delegation Framework, Apache takes the role of a deputy working

on behalf of its clients to access the MySQL database. The MySQL database acts

as an end service which grants end users the authority to access tables and records.

Apache holds no authority to access the MySQL database that it is not explicitly

delegated by its users. A web client, the wget utility, is used to access the MySQL

database indirectly via an Apache-served PHP web application to which it delegates
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the authority necessary to perform the requested task on the underlying database.

Following a description of the integration process that took place, this chapter

presents a measurement of the additional Delegation Framework overhead observed

at the client.

8.1 MySQL

If MySQL is to control access to its tables using the Delegation Framework, it will

need to perform reference monitor calls into its Delegation Agent. Reference monitor

calls are not automatically integrating by the dynamic interposition implementation

of the Delegation Framework Library and, therefore, must be included manually

in the MySQL source code. This requires an understanding of MySQL's existing

authorization mechanisms and how these mechanisms will interact with Delegation

Framework reference monitor calls. MySQL version 5.0.22 was used for the integration

study.

8.1.1 Existing Authorization Mechanisms

The MySQL documentation provides a detailed description of the database software's

access control mechanisms [1]. MySQL checks for authority at two times: when a

client connects to a database service, and when the database service receives a client

request (i.e., receives an SQL query).

When a client connects to the database, MySQL attempts to authenticate the

client. The client presents a username and password, and may be authorized to

connect only from a, specified range of hosts. The username, password, and allowed

address range are stored in the user table within the mysql database stored on a

given MySQL database service.

After being authenticated and authorized to connect to the MySQL service, a

114



client may send requests to the database service in the form of SQL queries. MySQL

performs authorization checks on each of these queries using records from a number

of tables in its mysql database. The user table, mentioned above, stores grants of

authorities on a global basis (e.g., grant the authority to perform SELECT queries

on all tables in a database). The db table provides authority at the coarse gran-

ularity of a given database served by the MySQL service (e.g., grant INSERT and

UPDATE authority on all tables in a database). tablespriv allows authorities to

be granted for specific queries on tables in specific databases (e.g., grant INSERT,

UPDATE and SELECT on tableA but only SELECT on tableB). Another table,

procspriv defines authorities to use different stored procedures offered by a given

MySQL service. The most fine-grained authorities are specified in the columns_priv

table, which allows query authorities to be granted on a per-column basis.

The entries in these tables are keyed on the identity (i.e., username) of that the

client as authenticated at the time the client connected to the MySQL service. When

determining whether to authorize a particular query, the MySQL service examines

the entries that match the client's identity in each of these tables. A client principal's

full set of authority is the union of the sets of authority granted in each of these tables;

if any one of these tables grants authority that matches the query's requirements, the

database service will execute the query and send the results back to the client.

8.1.2 Crafting MySQL Authorization Policies

For the purposes of the integration study, the goal was to have the ability to control

access on a per-table basis using delegation credentials as is provided by MySQL's

tablespriv table. This provides an administrator the ability to grant authorities

to perform specific types of queries on specifies tables. Defining a useful Delega-

tion Framework authorization policy for these authorities was straightforward. The

allowed operations correspond to the different query types (a boolean column for
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each of which exists in the tablespriv) and the allowed objects correspond to the

database and table names on which the query may be performed. For instance, the

following authorization policy defines the authority to perform a SELECT query on

the table tbl in the database data on the database service with identity named

database@foo.example.com:

database@foo.example.com:select:data.tbl

The database name and table name are concatenated together to form the complete

subject field value.

Alternatively, an administrator can grant authorities to perform any query on any

table in the data using the following authorization policy:

database@foo.example.com: * : data.*

Thought not implemented during the integration study, it is also straightforward

to define authority to perform a particular query on a per-column level. The following

authorization policy defines the authority to perform the INSERT query only on the

column colA in the table tbl in databse data:

database@foo.example. com: insert: data. tbl. colA

8.1.3 Adding Delegation Framework Authorization Checks

Understanding and modifying the MySQL code required about 15 hours of effort

(with some of that time spent resolving bugs in the Delegation Framework which

presented themselves while testing the MySQL source code modifications).

Understanding the Code

Given that MySQL has a sophisticated system for defining authorities, integrating

Delegation Framework authorization policy check was a conceptually straightforward
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task. With a few hours of examining the MySQL source code, I was able to identify

the sqlacl. cc source file in which MySQL's implementation of authorization checks

using the internal grant tables exists. A number of routines exists in this file, with

one corresponding to each of levels of granularity provided by each of the different

grant tables that MySQL uses (i.e., tablespriv and columns_priv).

The checkgrant () routine provides the interface through which MySQL threads

check whether a query is authorized by an table-level authorization entry in the

tables_priv table. This is the routine that must be modified to perform the appro-

priate Delegation Framework reference monitor calls containing authorization policies

that the client principal must satisfy.

The caller passes the checkgrant () routine a list of the tables to which a query

requires access and a bit vector specifying the types of queries that the client wishes

to perform on those tables. checkgrant () verifies whether the client is authorized

to perform each of the queries specified in the bit vector on all of the listed tables.

Though not modified for this integration study, the other authorization checking

functions in the sqlacl. cc source file are similarly structured and lend themselves

to analogous modifications, thereby making it possible to use delegation credentials

for authorization of SQL queries at all levels of granularity provided by MySQL's

authorization mechanisms.

Modifying the Code

Instead of eliminating the MySQL authorization mechanism in favor of a purely

Delegation Framework-based approach, my approach to modifying checkgrant ()

alters the MySQL authorization mechanism such that a query must satisfy both

the requirements of the standard MySQL tablespriv grant table and the Dele-

gation Framework-equivalent authorization policy. The following modifications to

check.grant () routine could be applied to the corresponding routines for each of
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MySQL's other grant tables (i.e., columnspriv, etc.), thereby creating Delegation

Framework analogues to each grant table provide by the standard MySQL mechanism.

Modifications to the check.grant () function totaled an additional 34 lines of code

to the its original implementation of 71 lines'. An additional 14 lines referencing

the Delegation Framework Library header files and a static data structure were also

included.

As check_grant () loops over the list of tables to check whether the client is autho-

rized to perform all required queries on each table, the modified source constructs a

Delegation Framework authorization policy matching the authorization requirements

that checkgrants () looks up in tables_priv. After checkgrant () has checked

that the client satisfies all tablespriv requirements, a complete Delegation Frame-

work authorization policy has been defined. check_grant () calls the Delegation

Framework function check_authority() (see Section 7.4), passing the constructed

authorization policy and the socket descriptor for the socket from which the query

was read. The socket descriptor argument is derived from an argument passed to

check_grant () called the thread handle. The thread handle stores information rele-

vant to the context in which the calling thread is handling client requests. The thread

handle includes the descriptor of the socket through which the handler is connected

to its client. The call to check_authority() may initiate a Delegation Protocol dia-

logue (see Chapter 5) and, if it does, will not return until the dialogue is completed.

The reference monitor call returns a boolean result indicating whether the client has

satisfied the necessary authorization policy and, if it has, check.grant() returns a

result indicating that the client's SQL query is authorized.

'Source code lines were counted using the "physical source lines of code" method [31].
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Building mysqld

Properly building MySQL required that the necessary Delegation Framework Library

shared library object, libdf .so, be linked into the mysqld binary. This requires an

additional argument to the MySQL package's configure script specifying additional

linking flags to use when building the mysqld binary. The Delegation Framework

Library and OpenSSL library must be included in the binary2:

$ ./configure --with-mysqld-ldflags=-L<Framework library path> \
-ldf -issl

Executing mysqld

When executing the mysqld binary, a number of parameters must be specified via

environment variables at the time of execution. These serve to properly load the

dynamic interposition code in the shared library object poser. so, and to provide the

Delegation Framework Library with configuration information. The location of the

UNIX domain socket for mysqld's Delegation Agent and its identity name are passed

in the DASOCK and DAIDENTITY variables respectively. The library files specified in

LD_PRELOAD cause the interposition functions, contained in poser. so, to be loaded.

The following is an example of the environment variables as they might be setup in

the environment mysqld when the binary is executed:

LD_PRELOAD=poser. so: libdf. so
DA_SOCK=/tmp/da. sock. A5g21F
DA_IDENTITY=database@foo.example. com

Within this environment, the mysqld binary can be executed normally without any

special arguments, causing the interposition library to be loaded and intercept the

appropriate function calls.

2The Delegation Framework Library implementation relies on OpenSSL for cryptographic func-
tions and random number generation.
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8.2 Apache

Apache plays the role of a deputy when serving a database-driven web application.

For the integration study, the Apache web service does not perform any authorization

checks and therefore can have the Delegation Framework integrated automatically.

8.2.1 Automatic Integration

Integrating the Delegation Framework into Apache was very straightforward, but did

require some modification of the interposition library for support.

Forcing connect () to be Synchronous

Though each Apache process handles one request at a time from one client, the

Apache web server using non-blocking I/O when performing connect () calls on behalf

of a client. This is a violation of the assumptions that socket I/O operations are

performed synchronously. This violation makes it impossible for the interposition

library's connect () function to behave properly because the C library connect ()

call may return a result indicating an asynchronous I/O operation is in progress. The

interposition library's connect 0() function cannot report the flow identifier of the new

flow to its Delegation Agent in this case, and also cannot write a SpeaksFor message

into the socket until the C library connect () function call returns.

This requires the interposition library's connect () function to force the C library

connect () call to be blocking by setting its socket descriptor argument as blocking3 .

Due to the multiprocess, synchronous architecture of Apache, this does not constitute

a major reduction in the web application's performance; in our system a socket must

be setup before a database query can be sent and therefore, blocking or not, the C

library connect() call must be completed before a MySQL-driven webpage can be

served to a client.
3This is done using the fcntl () routine.
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Executing Apache's httpd Binary

Because Apache does not perform any reference monitor calls, integrating the Delega-

tion Framework into Apache requires only that the Apache httpd binary is executed

within the proper environment. This environment will ensure that the interposi-

tion library is properly loaded and the Delegation Framework Library parameters are

available to it. These parameters are similar to those used when executing mysqld.

For the Apache web service, this might look like the following:

LD_PRELOAD=poser. so: libdf . so
DA_SOCK=/tmp/da.sock.G54x2D
DA_IDENTITY=web@bar.example.com

8.2.2 Challenges for Web Application Authorization Policies

Though this integration study did not involve performing authorization checks at the

Apache web service, it is important to consider the ease with which this might be

done if system administrators find it desirable to perform authorization checks from

within Apache. The Apache web server may not be able to define an authorization

policy domain that seems reasonable for all Apache-based web applications. Unlike

a database service, an Apache web service can serve a variety of very different appli-

cations with very different interfaces; an arbitrary CGI binary or HTML-embedded

PHP program can be executed to serve a page. Each of these types of web appli-

cations is accessed using the HTTP GET and POST methods, but these methods

are too general operations to perform fine-grained authorization checks for the op-

erations offered by a particular web application. Therefore, it seems unlikely that

a general Delegation Framework authorization checking implementation for Apache

will be useful. If authorization checks are desirable at the Apache interface, each CGI

binary or PHP program will have to implement its own reference monitor calls.
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8.3 Client Programs

The wget utility [30] served as the legacy client program for the Apache/MySQL-

based network application. Like Apache, wget required no manual modifications,

only that the loading of the interposition library and the corresponding Delegation

Framework Library configuration are specified in the execution environment. For

wget or other client program, the environment might look like the following:

LD_PRELOAD=poser. so:1 libdf. so
DA_SOCK=/tmp/da. sock. G54x2D
DA_IDENTITY=client@baz.example. com

In addition to the wget client, the mysql client program was used during testing

of the MySQL source modifications. Automatic integration worked well with both

clients without additional tweaking of the dynamic library implementation.

8.4 Delegation Framework Overhead

The implementation of the Delegation Framework was focused on serving as a proof

of concept, not as a well-optimized, high performance implementation. Therefore, no

effort was put into improving the performance of the Delegation Framework imple-

mentation. Nevertheless, it is important to understand the magnitude of the overhead

incurred due to the integration of the Delegation Framework. Future work on the

Delegation Framework can improve upon the shortcomings of the current prototype

implementation.

It is possible to measure the overhead incurred due to the Delegation Framework

by comparing the delay observed from the perspective of a client with and without

the Delegation Framework integrated into the network application. To perform this

comparison, one simply measures the amount of time from the instant a client sends

its request to a service until the instant when the client receives a response from the

122



service. Comparing the delay incurred with and without the Delegation Framework

integrated into the wget, Apache and MySQL programs gives us a sense of whether

the overhead experienced due to the Delegation Framework will be reasonable in real

world system.

8.4.1 Experimental Setup

To measure the additional delay experienced by a client in a Delegation Framework-

enabled network application, a toy web application was constructed. The web appli-

cation, select .php, consisted of a simple PHP program executed within the Apache

deputy that connects to the MySQL database service and issues a SELECT query on

a table with a single column of integer type values, select .php responds to the client

indicating whether the query succeeded or failed. During the experiment, the table

was populated with 20 rows. This simple web application can be considered a reason-

able baseline for the minimum delay experienced in most any database-served PHP

web application; the performance of the average PHP-implemented web application

will likely exceed that of the web application used in these tests.

The delay between initiating an HTTP request and receiving an HTTP response

was measured from the perspective of the wget client. The delay was measured

both with and without the Delegation Framework integrated into the legacy soft-

ware components. The average difference in the observed delays with and without

the Delegation Framework provide an estimate of the performance overhead that a

network application can be expected to incur when integrated with the Delegation

Framework.

To measure the delay, the wget client program is instrumented with timing code

capable of microsecond precision4 . The timing code measures the amount of time

that the program's retrieveurl () routine takes to execute and return. The
4Microsecond precision is available using the gettimeofday() C library routine, though the clock

in a given hardware platform may not support microsecond timing.
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retrieve.url () sets up the application protocol socket setup with Apache if nec-

essary, retrieves the specified URL, and writes the output to a file. If a TCP

socket has already been setup with a specific web service (i.e., during the first call

to retrieveurl ()), it will be reused for subsequent retrievals from the same web

service.

In a real world system, a user would interact with its Delegation Agent during

a Delegation Protocol dialogue (see Section 6.2.4). In order to eliminate the human

response delay factor from the experiment, the user Delegation Agent was modified

not to prompt the user. Instead, the user Delegation Agent behaves as though its user

had authorized the delegation without waiting for a user response. This allows the

experiment to focus on the measurement of delay derived from parameters excluding

the user involved (i.e., implementation performance).

For the experiment, the user Delegation Agent and wget along with its Delegation

Agent were executed on the same network host. The MySQL and Apache services

were executed on two additional independent network hosts. The three machines

were connected via a dedicated network switch carrying only the traffic between the

three hosts involved in the test and remote login traffic from a fourth machine.

Four separate trial sets were run; one or two wget clients were used and the

Delegation Framework was or was not integrated in a given trial, constituting the

total of four sets of trials. In each trial set, five individual trials in which each

client issued 100 successive HTTP requests for the select. php page served by the

Apache web deputy (requiring Apache to initiate a TCP connection to the underlying

MySQL database service to which select. php program connects). The length of time

for which the retrieveurl () executed was recorded for each of the HTTP requests

issued by wget.
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# clients 1 2
Average Normal (ms) 12.72 10.48
Std. Dev. Normal (ms) 2.33 2.65
Average with Framework (ms) 323.71 634.56
Std. Dev. with Framework (ms) 1.53 199.08
Average Added Delay (ms) 310.99 624.07
% Average Delay Increase 2545 5953

Table 8.1: Delay statistics for initial HTTP query

8.4.2 Results and Analysis

For the analysis of results, the initial query sent by each instance of wget during a

given trial set is treated as distinct from all subsequent trials in the same set. Due to

the implementation of wget, the initial request is the only request for which a new

HTTP socket is opened. All subsequent queries reuse the HTTP socket. Therefore,

the measured delay of the initial query will include the delay incurred due to the TCP

handshake between wget and Apache. Additionally, the initial query during a given

set of trials with the Delegation Framework will include the delay due to the initial

negotiations of Delegation Protocol sessions between the wget and Apache, as well

as Apache and MySQL. This allows us to consider the Delegation Framework setup

overhead distinctly from the steady state overhead.

Initial Query Delay

Table 8.1 lists the statistics gathered regarding the initial queries across the one and

two client trial sets, both with and without the Delegation Framework integrated.

The delay measurements are given in milliseconds. The "normal" values represent

those taken without the Delegation Framework integrated. In the single client trials,

the initial query took 369 milliseconds with the Delegation Framework involved where

they took 13 milliseconds without the Delegation Framework, indicating an average

of 356 milliseconds of additional delay. In the two client trial sets, the initial query
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of each client took 635 milliseconds on average with the Delegation Framework inte-

grated as compared to an average of 10 milliseconds without, representing an average

additional delay of 624 milliseconds.

Though the figures of a 28.0 times and 59.5 times increases in delay (in the one

and two client cases respectively) seem alarming, they may not seem unreasonable

in the context of more complex web applications. a real world web applications is

typically much more complex than the toy web application used for these performance

tests and would incur similar amounts of Delegation Framework-related overhead as

the toy application would. Nevertheless, this additional delay is considerable.

Little of the delay can be blamed on the network latency in the Delegation Protocol

channel. Table 8.2 lists the pairwise round trip time measured over ten consecutive

ping queries between each of the host pairs that must exchange Delegation Protocol

message 5. Each of the pairs of principals listed in the table performs the mutual

authentication protocol during Delegation Protocol session setup (one round trip time

for each host pair) and Delegation Protocol dialogue initiated during the handling of

the initial HTTP request (a second round trip time for each host pair), but this does

not account for much of the measured additional delay:

2RTT * (0.016 + 0.165 + 0.223)ms/RTT = 0.808ms.

Most of the additional delay is incurred due to processing overhead within the

Delegation Framework implementation. The considerable amount experienced during

the initial query is due to the cryptographic processing of multiple certificates during

the Delegation Protocol session setup dialogue (see Section 5.4) and the subsequent

dialogue in which authority requirements and delegation credentials are transmitted

(see Section 5.8). A considerable amount of time is spent in the prototype imple-

mentation marshalling and unmarshalling the large Delegation Protocol messages as

well as encapsulating and de-encapsulating application data in the Speaks For Layer

5The user and client Delegation Agents are executed on the same host, but communicate using
the TCP/IP stack as they would if they were communicating via a network.
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Host Pair Avg. (ms) Dev. (ms)
user-client 0.016 0.006
client-deputy 0.165 0.035
deputy-service 0.223 0.040

Table 8.2: Round trip times between the network application's host pairs

# clients 1 2
Average Normal (ms) 5.82 10.10
Std. Dev. Normal (ms) 0.47 4.03
Average with Framework (ms) 46.53 160.24
Std. Dev. with Framework (ms) 4.05 86.26
Average Added Delay (ms) 40.71 150.14
% Average Delay Increase 699 1486

Table 8.3: Delay statistics for subsequent HTTP queries

Protocol. The client experiences additional overhead due to communication between

each process and its local Delegation Agent via the Delegation Framework Library

(some of which is also experienced in subsequent queries).

Subsequent Query Delay

Table 8.3 lists the statistics gathered regarding the non-initial "steady state" queries

in each of the four trial sets. The delay experienced by these queries is significantly

lower given that the TCP socket between wget and Apache is setup (select. php sets

up a new one each time it is run, but the resulting delay is experienced both with and

without the Delegation Framework), and the necessary delegation credentials have

already been delegated and presented. The delay times are given in milliseconds. The

"normal" values represent those taken without the Delegation Framework integrated.

In the single client trials, the initial query took 77 milliseconds on average with the

Delegation Framework integrated where they took 6 milliseconds on average without

the Delegation Framework, indicating an average of 71 milliseconds of additional

delay. In the two client trials, the the average subsequent query from each client
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took 160 milliseconds with the Delegation Framework integrated as compared to an

average of 10 milliseconds without, representing an average additional delay of 150

milliseconds. These figures represent 12.2 times and 14.9 times increases in delay for

non-initial HTTP queries in the one and two client cases respectively as compared to

the network application excluding the Delegation Framework.

Given that the Delegation Protocol sessions have been setup between peer Delega-

tion Agents and that all necessary credentials have been delegated and demonstrated,

the delay experienced by steady state queries consists exclusively of Speaks For Layer

overhead and communication between each client, deputy, or service process and its

Delegation Agent.
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Chapter 9

Conclusion

The Delegation Framework provides legacy client and service software with a dele-

gation mechanism for the passing of authority from one principal to another. The

framework, designed with deployability in mind, makes delegation possible in net-

work applications without re-specification of application protocols or the re-design

and re-implementation of legacy software. The Framework's prototype implementa-

tion further minimizes the effort required to integrate delegation into legacy software.

9.1 Contributions

9.1.1 Protocol Support for Delegation of Authority

The Delegation Framework provides two novel protocols, the Delegation Protocol and

Speaks For Layer Protocol, that make it possible to delegate authority for the class of

network applications which adhere to the client-server protocol model and are carried

via TCP. These protocols, together with a target application protocol, allow a service

to mediate requests made via the application protocol using credentials delegated

via the Delegation Protocol. This approach enables systems to support delegation of

authority without a redesign and re-implementation of the myriad application-level
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protocols on which they rely.

9.1.2 Integration of Delegation into Legacy Software

The design and implementation of the Delegation Framework simplifies the integra-

tion process by which a network application features the delegation of authority. Past

delegation systems implemented the mechanism in ways that were not conducive to

easy deployment in legacy systems. The Delegation Framework succeeds in imple-

menting a delegation mechanism with a realistic integration path into legacy software.

For many legacy programs, integration is possible without manual modification to the

program. At worst, a developer must include authorization checks in services that

handle authority-requiring requests.

9.2 Future Work

While the Delegation Framework has improved the ease with which delegation can

be integrated into legacy network applications, a number of challenges remain which

affect whether the Delegation Framework can realistically be integrated into existing

systems.

9.2.1 Fully-automated Integration

Currently, it is not possible to automatically integrate the Delegation Framework into

legacy applications. To benefit from the the Delegation Framework, services must be

manually modified to use the framework's reference monitor. Additionally, legacy

applications that perform non-blocking I/O are not supported. Future work on the

Delegation Framework should attempt to address these shortcomings.
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Automatic Reference Monitoring

While the Delegation Framework has made significant strides in reducing the effort

required to integrate delegation into legacy software, it remains unclear whether it is

possible to automatically integrate the authorization checks that must currently be

integrated manually. Recent research has demonstrated some promising code analysis

techniques for automatically inserting reference monitor calls into existing code [11].

However, it is not immediately clear whether their techniques are applicable to the

Delegation Framework. If the authors' techniques (or extensions thereof) are indeed

applicable, a future implementation of the Delegation Framework could be integrated

without any manual modification to the source code of legacy software.

Automatic Integration for Asynchronous Programs

Services that employ asynchronous I/O typically outperform their synchronous coun-

terparts [23, 10) and, therefore, are desirable choices for service providers. However,

the Delegation Framework implementation does not properly support asynchronous

socket I/O. Two aspects of the Delegation Framework's dynamic interposition imple-

mentation make dealing with asynchronous I/O difficult.

First, the interposed C library routines rely on the successful completion of syn-

chronous calls to the real underlying C library routines. For instance, the new_connect ()

call requires that the socket be completely setup because it must write a SpeaksFor

message into the socket before it returns. The interposed routines rely on the full

completion of new_accept(), new.readO, and newwrite() calls as well. Versions

of these interposed routines that are robust in the face of asynchronous I/O must be

developed.

Second, the socket dependency model used by the interposition library is not

suited for correctly inferring socket dependencies in legacy deputies that perform asyn-

chronous I/O. An event-driven deputy frequently switches between handling different
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requests from multiple client when it is waiting for one or more asynchronous I/O

operations to complete. When this type of frequent switching occurs, it is no longer

reasonable to assume that an application protocol request was written to a socket

on behalf of the most recently read socket. A more sophisticated model must be de-

veloped to handle asynchronous I/O before the interposition library can successfully

implement the Delegation Framework Library socket dependency calls automatically

for asynchronously programmed deputies.

9.2.2 Usability

The usability of a delegation system is just as important to its adoption as making

it easy to integrate with existing software. The current prototype of the Delegation

Framework has addressed some of the issues inhibiting the deployment of delega-

tion in legacy software, but it has not addressed the usability issues that remain. If

the Delegation Framework is to become widely deployed and used properly once it

is deployed, a sensible and intuitive user interface must be developed. The current

prototype provides only a basic functional console-based user interface. The autho-

rization policies used in the Delegation Framework may not make sense to users,

especially novices. They must be presented to users in a palatable manner. Research

on user interfaces for managing authorization policies must be conducted and incor-

porated into the Delegation Framework. Further, providing usable interfaces may

require modifications to parts of the Delegation Framework supporting the interface.

These issues must be explored along with corresponding studies of the usability of

any interfaces that may be proposed.
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