
Aggregation of Student Answers in a Classroom Setting

by

Amanda C. Smith

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

August 31, 2006

Copyright 2006 Massachusetts Institute of Technology

All rights reserved.

Author

Department of Electrical Engineering and Computer Science
August 31, 2006

Certified by 
_ Dr. Kimberle Koile

Re arch Scientist, CSAIL
7 ,Zhesis Supervisor

Accepted by,

MASSACHUETS INS-TTU
OFTECHNOLOGY

OCT 0 3 2007 BARKER

LIBRARIES

Arthur C. Smith
Professor of Electrical Engineering

Chairman, Department Committee on Graduate Theses



Aggregation of Student Answers in a Classroom Setting
by

Amanda C. Smith

Submitted to the
Department of Electrical Engineering and Computer Science

August 31, 2006

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In a typical class, an instructor does not have enough time to poll all students
for answers to questions, although it would be the best method for
discovering students' misconceptions. The aggregator module of a system
called Classroom Learning Partner provides a solution to this problem by
collecting answers students wirelessly submit on tablet PCs and placing them
in clusters, which then are displayed to the instructor in histogram form. The
student answers are compared, via syntactic parsing and similarity measures,
to each other and to instructor-provided example answers to form clusters,
which represent student misconceptions. In tests, the aggregator module
consistently created relevant clusters, very similar to those created by humans
working with the same data. Classroom Learning Partner, including the
aggregator module, has been deployed successfully in an MIT introductory
computer science class.

Thesis Supervisor: Dr. Kimberle Koile
Title: Research Scientist, CSAIL

2



ACKNOWLEDGEMENTS

Dr. Kimberle Koile, without whom this project would not be possible

The CLP Group, who not only created the rest of the system, but also

provided encouragement and camaraderie

Alejandro Morales

"If you can dream it, you can do it." -Walt Disney

3



Table of Contents

Table of Figures ................................................................................................................ 5

1. INTRODUCTION 6
2. BACKGROUND 7

Classroom Presenter 7
Classroom Learning Partner ....................................................................................... 8

3. D ESIG N ....................................................................................................................... 12
3.1 Program m ing Language ...................................................................................... 13
3.2 Integration ............................................................................................................. 14
3.3 A nsw er Types ........................................................................................................ 15
3.4 Know ledge Representation ................................................................................. 16

4. IM PLEM EN TA TIO N ................................................................................................. 19
4.1 A ggregation Exam ple .......................................................................................... 19
4.2 Factors that A ffect A ggregation ......................................................................... 25

5. TESTIN G ..................................................................................................................... 28
5.1 D eploym ent ........................................................................................................... 29
5.2 A ggregator ............................................................................................................. 30
5.3 H um an A ggregators ............................................................................................. 34

6. D ISCU SSIO N A N D FUTU RE W ORK ..................................................................... 39
6.1 Sem antics ............................................................................................................... 39
6.2 A dditional A nsw er Types ................................................................................... 41

D iagram s .................................................................................................................... 42
Graphs ........................................................................................................................ 44
C o d e ............................................................................................................................ 4 6
T ex t ............................................................................................................................. 4 8

6.3 Concluding Thoughts .......................................................................................... 49
7. REFEREN CES ............................................................................................................. 51
8. A PPEN D IX .................................................................................................................. 53



Table of Figures

Figure 1: A screenshot of a slide on the instructor's machine in CLP................... 9
Figure 2: A screenshot of a slide on a student's machine, with correct answers .... 9
Figure 3: A histogram of aggregation results ............................................................ 11
Figure 4: CLP Architecture and steps in using CLP .............................................. 12
Figure 5: O bject classes in CLP................................................................................ 17
Figure 6: A n exam ple tree ........................................................................................ 43
Figure 7: An example box-and-pointer diagram.......................................43

5



1. INTRODUCTION

Technologies aimed at improving student learning have recently

experienced a resurgence in interest thanks to the development of wireless

technology, new hardware platforms, and the Internet. Much of the current focus

has been on student learning outside the classroom. Cybertutor, for example,

allows students to answer physics problems online, with step-by-step help and

feedback if they are having difficulty. The Classroom Learning Partner (CLP,

http://projects.csail.mit.edu/clp) has a different aim: improving student

learning in the classroom. In a traditional classroom setting, an instructor does

not have time to look at every student's answer to an in-class exercise, and thus

some misunderstandings go uncorrected. CLP addresses this problem by

allowing students to submit their answers to the instructor immediately through

the use of tablet PCs and wireless technology. Similarly, the instructor can

provide immediate feedback to the students by displaying and discussing some

of the submitted answers. He or she can choose to address the most prevalent

misconceptions, illustrated by submitted answers, rather than guessing at what

mistakes the students are likely to make. A similar approach is taken by systems

such as Personal Response Systems (PRS), which employs a wireless polling

mechanism and a computer to instantly tabulate results. While these sorts of

system provide support for in-class exercises, they limit the instructor to asking

multiple choice and true/false questions [Draper, 2004]. CLP, because it uses

6



tablet PCs for input, has the potential to support any form of written answer,

including diagrams and sketches. [Koile and Shrobe, 2005; Koile and Singer,

2006] The research in this thesis constitutes a major component of the CLP

project: the aggregation of these open-ended written answers, so they may be

presented in a format that is easy for the instructor to interpret.

2. BACKGROUND

Classroom Presenter

The Classroom Presenter software, which is the basis for the CLP project,

has the ability to allow students to send answers to the instructor during class.

An instructor displays a Powerpoint-like slide presentation on her tablet, which

also is displayed with an overhead projector and broadcast to student tablets

[Anderson, et al. 2004; Anderson, et al. 2005]. Some of the slides contain in-class

questions, to which the students can respond by writing directly on the slide in

digital ink and sending the ink to the instructor tablet. The submitted slides are

collected into a new slide deck on the instructor's machine, and can be displayed

on the overhead projector and discussed in class. This scenario does not scale

well to larger classes, as the instructor generally only has time to examine a

handful of slides before it is necessary to continue with the class. Furthermore,

the instructor probably would rather know how many students answered

7



correctly instead of reading through many slides with near-identical correct

answers, because these do not provide him or her with information about

problems the students may be having. Successful aggregation of answers solves

both of these problems by sorting similar student answers into categories,

allowing the instructor to see common correct and incorrect answers at a glance

and easily pull up student-created examples of these answers.

Classroom Learning Partner

In the full CLP system, the instructor is able to create question and answer

sets using the Instructor Authoring Tool (IAT).l When an instructor creates such

a set, he or she can enter one or more correct answers as well as any number of

possible incorrect answers, along with a short description of the answer. This

question and answer set is displayed on an instructor-viewable slide as part of a

slide deck that is distributed to student tablets before class.

The current version of the IAT was implemented by CLP group members Kevin Chevalier, Capen Low,
Michel Rbeiz, and Kenneth Wu. [Chen 20051 describes an earlier implementation.

8



"Your turn"
The following expressions evaluate to values of what type?

(lambda (a b c) (if (> a 0) (+ b ) (- b c)))

(lambda (p) (if p "hi" bye"))

(3.14 (* 2 5))

Figure 1: A screenshot of a slide on the instructor's machine in CLP [Koile & Singer, 2006]

During the lecture, the instructor displays the relevant slide (see Figure 1)

and asks for student submissions.

"Your turn"
The following expressions evaluate to values of what type?

(lambda (a b c) (if (> a 0) (+ b c) (- b c)))

(lambda (p) (if p "hi" "bye"))

(* 3.14 (* 2 5))

VW u 61 6AI%

Figure 2: A screenshot of a slide on a student's machine,
2006]

with correct answers [Koile & Singer,

Students input answers directly on the slide in digital ink (see Figure 2),

which is then processed into text format by a handwriting interpreter module

9

Ir.lN 75M 9, AmD Skldtmil Mi



[Rbeiz, 2005]. The answers are transmitted to a central database, and when the

instructor determines that students have had enough time to answer, he or she

runs the aggregator. The aggregator obtains the student and instructor answers

from the database and uses the instructor answers to evaluate the student

answers. The student answers are then placed in "bins" based on their

similarities to the instructor answers and amongst themselves. CLP fetches the

completed bins from the database and constructs a histogram of the data for the

instructor to examine (see Figure 3). The slides with the student's answers

written on them are also presented to the instructor. Each slide has a colored

mark corresponding to the bin in which the answer was placed, with the

histogram serving as a color key, so that the instructor can quickly display an

example of an answer from any bin.

10



Figure 3: A histogram of aggregation results [Chevalier, 2006]

The system architecture for CLP is shown in Figure 4. Various

components run on the instructor's tablet, the students' tablets, or a central

server. In the current implementation, the aggregator runs on the instructor's

tablet, and the database (aka repository) runs on a separate server, as database

access on the tablet proved too slow.

11



Instructor Tablet

Classroom Presenter
Instructr
Slides

I
CLP architecture

i 3- Slides Broadcast

2. Slides Retrieved

Sides Smed 5. Interpreted II SAnswers Se

, S a6. Interpreted Ink
7 Suary Data Aners Re.rigvd

Aggregin

StdentTa~et m

Classr -Presenter

Stuen

nk
nt

Figure 4: CLP Architecture and steps in using CLP

3. DESIGN

In designing the aggregator, the most important principle was modularity.

Although the program is designed for use in MIT's introductory computer

science course 6.001, Structure and Interpretation in Computer Programming

[Abelson and Sussman, 1996], the intent was to create a program flexible enough

to be used, with minimal additions, in any course. It is also beneficial to create a

system where more advanced algorithms can replace old ones without affecting

more than a single function. Another major consideration in the aggregator's

design was efficiency. If the aggregator takes more than thirty seconds to return

when clustering a classroom's worth of answers, it will not be a practical tool to

use in class. The aggregator also must be robust. In particular, it should not be

12



possible for a student to crash or otherwise negatively affect the aggregator

through malformed input.

3.1 Programming Language

One of the most important early decisions was the choice of programming

language for the aggregator. Since the CLP project as a whole is based on the

Classroom Presenter code, the interpreter and the authoring tool modules were

written in C#, the same language in which Classroom Presenter is written. C#

also allows easy access to an MS SQL database, which was considered to be the

easiest format for the central database. C#, however, is not necessarily the best

language for the aggregator, and, since the aggregator is a separate module that

only interacts with the rest of the system through the database and a notification

scheme, other languages were considered for the aggregator. The aggregator, in

particular, requires new functions to be created at runtime -the functions which

check the student answers based on the provided instructor answers.

Lisp-based programming languages easily support the creation of

functions at runtime. They treat functions as objects that can be passed freely to

other functions. Lisp-based languages, furthermore, are not strongly typed,

which allows great flexibility and reuse of functions for various purposes.

Scheme, a variant of Lisp, was an early candidate for the aggregator's language,

mostly due to the useful free development kits. Scheme, however, suffers from

13



the fact that its object-oriented programming is extremely cumbersome. The

decision was made, therefore, to write the aggregator in Common Lisp. Common

Lisp has full capabilities for object-oriented programming, treats procedures as

objects, and has a choice of several development programs that plug into the

Emacs text editor to create a coding environment that is familiar to me and easily

portable.

One problem with Common Lisp is that it does not have an interface for

MS SQL, only for MySQL. This problem was solved by calling C# functions from

within Lisp, as described in the section on integration.

3.2 Integration

Integrating a module written in Common Lisp with a system written

primarily in C# provided its own interesting design challenges. It was decided

early in development that the aggregator would essentially be a "black box" as

far as the C# components are concerned. In keeping with this philosophy, the

aggregator only interacts with the main system when it is notified to begin

aggregating a batch of student answers, and when it adds and removes data

from the database. CLP uses an MSSQL database, and there was no publicly

available interface allowing Common Lisp applications to access an MSSQL

database. A module known as RDNZL, which provides a wrapper for C#

functions so they can be called from a Common Lisp application, provided the

14



solution to this problem. With RDNZL, the aggregator was able to use the same

procedures for database access as the other modules. Once the answer bins are in

the database, CLP generates the histogram of the student answers and a filmstrip

of the answers with their categories marked, and displays these on the

instructor's machine.

3.3 Answer Types

Possibly the most crucial early design decision was determining which

types of answers the aggregator would focus on in its first iteration. Strings were

deemed essential, because they are the answer type necessary for most basic

questions asked in class, and many other possible answer types, such as code

and diagrams, contain strings as subparts. Numbers were also implemented,

since numbers are also a very common form of answer, and creating various

procedures for comparing two numbers was relatively trivial. Sequences, i.e.

ordered lists of answers, were also a crucial type, as this allows answers with

multiple parts, as well as more complex answers. Currently the aggregator

supports sequences of strings, which are not aggregated particularly differently

from strings themselves, but eventually the aggregator will support sequences of

other answer types, including sequences of sequences. The final answer types

added to the aggregator were multiple choice and true/false. True/false

questions are a special subclass of strings for which "t" is equal to "true" and "f"

15



is equal to "false." These last two answer types were added so that CLP could be

used by instructors who may prefer PRS-style classroom interaction.

3.4 Knowledge Representation

The various CLP components, shown in Figure 3, all share a knowledge

representation scheme that is centered on the notion of an answer. As shown in

Figure 5, the class called Answer is the superclass of student and instructor

answers.

16



Student
courseld : int
studentNsme : string
userName - sing
+CourselDO() int
StudentNe )e(: string I

wNw stritig I

I Course
- I acourselare sting

4ectures : int
VoblemSets (opt)

-students : Int
tewrn : string

*Cours ANe); string
+ tUrss : CloseSession

+Studenlso: StudentLogin
+TermI: string

aextends* Student~ogin
nextendsa L machind : string

AnuserNrne: stg
eextendsp string

Psrwntboursdld:; nt dossSe iold : int
Class~esin /Dabsd +Machinelde : string

-ic : strin +etns F Trostwmo) :. string
-pow~oiit~e+UserNamw( : string

e wmds :- string sei ds* +ClassSessiond0 :In

'parentCourmeld : int
-iesentations : Presentation Ase

S+Topico : string k
S+PoweirfointFile( : byte n

+Keywords0 : string 4weananti~p srng

+Presentations(): Presentation k1*ytes: bytePe e t x r iea -.o ) nnt

'1, nd* SemmnfcRep(
P 

np u

I Un : sing,%struct*Eaxmtadfypo 811doExercises I -pmentationID : Int
NONE : s"g -sliejrner I axwrcises : SlidsExercisas
SEQUENCE: sting -exeros: Exerse I (SET : string I +SfideNumber0 : int +Id00: Int

S BENGstrng I +Exercises().: Exercses(): SideExercises
SE sidng L - 1
SCHEMEEXPRESSION: string I _NW I
TRLIEFALSE : str*g I Exercise
MULTIPLECHOICE : string i son- QuestonbInstructorAnswers: InstructorAnwur

qptlons (opt) ou'estion
Answnr e -studentAnswerArea - - - - - - uestionText: string

AnwrTyp seNumber : int exprosd: int
+STANDARD.- t n-tes: strng

INSTRUCTOR InI 1 eerciseNumber :irn +QuestionText(): string

+RUNNABLE tnt I Interct+onMod: IniersotonMode Exerciseld): Int
+QuestionO: Question
+addinstructorAnswerq
remov9InshruIto erAtN

49MXstru >nstructorAnswero

Interection ode IAnswBox*t
+PEN :Int 4--- %deNurrber0 : int _____ ioret

+1EYORD nt +Eeds~ mberl : int -YE - in
AnierctionModeW: InteractionModt +14' n
Activatefnko 

NA n

- - - - - - - J -

------------------------
-armas I
+Aeoo inallrmciorAnmwer
+Copy) Correct, :Corred

descripIn string
answerMetdats : AnswerMetadsts *extends*

-number ; intI
Subtuewon +lCarrect() : IfCorrect
bText : string +Descrpto a : sring
ubTe*XO) :string INUMWb : int Answer Sin tinests+AnswerMetadota: AnswerMetadata descripion: string

+Copy : InstructorAnswer m-tsts: AnswaMetsdat
- - -ast - Anwreadt eassSanswers: int

-exerclsel: it
An' ts~tedIte clossSeslD : Int +TWnS

-description : string IDescriptiono: sting Mac
4isunderstood-concept: string I *SU*: int
jtudy-ntfvrIl: string :i e1tadats0: Ans wMstsdM

nword :it I AddAnswer(
Descrpbon) : string I Rernoenswer Ev

+MisunderstoodConcepto: string +Sizeo: int
+ParentCourseldo: int ( - - - - - - - - - - +Answerldso :int

+SludyMateral(): sting sExersolDOn: Int
+Copy( : Answertoetada tsassSessionlDO: lit

q% L2

Activteinkt)

Te.iCase
meaters: string
ntAnswvedd: nt

Wt+uts string

+1Corrcts: "Coect

+numOuts( nt
+P8mtersO stIng
+PeretAnswerido: Wi

r OtlUW Q: string

I NumO!ts): kyt

I ext

RunnableAnswer
preEx : string
keyn: string
axwnpleCode: string
tesiCode: string
**s": TestCase
PreEx :sring

kKeyIn(): string
iExompl'eCode(: string
PTestCode(): string

caqsw) :TestCase

Skudidt Amnser
sip
old : it
ins (opt) Evakation (Lisp Only)

lsslonID int
tempO

eldO
SessionID0 : Int

aluaton (Lisp Only)
erption, string

swerid - I
swer-metsdeta(opt)me±-bo J

Figure 5: Object classes in CLP

Both student and instructor answers are created by requesting the

appropriate data from the database. The text version of the answer is stored in

17

su
+S



the "interpreted ink" field, and the evaluations field of the student answer class is

initially set to nil. The "evaluations" field will eventually hold an answer's

associated evaluation objects. Each evaluation object is a description of how close

the answer is to one of the instructor answers. The "ian," or instructor answer,

field contains the interpreted ink of the associated instructor answer, the

"description" field contains the description carried by the instructor answer, and

the "score" field contains a numerical value of how close the student answer is to

the instructor answer. This score ranges between zero and one, where zero

represents an exact match, and one signifies that the two answers have nothing

in common. These evaluation objects are generated by evaluation procedures. An

evaluation procedure is a procedure generated at runtime that takes a student

answer as input, calculates a score, creates an evaluation object, and adds the

new evaluation object to the student answer's evaluations field. If the student

answer already has evaluations, the new evaluation will be appended to the list.

There is one evaluation procedure per instructor answer, so every student

answer is compared with every instructor answer.

Another important object type is the answer bin. An answer bin contains a

list of related answers and a description of the bin. The description is generated

based on the answers it contains. If the bin contains a set of answers very similar

to an instructor answer, the bin's description will match the instructor answer's

description. If the bin contains a cluster that does not center around an instructor

answer, the bin's description will be the most common answer in the bin with

18



ties broken randomly. Answer bins are placed in the database, where they will be

accessed by the main CLP program, upon completion of the aggregation.

4. IMPLEMENTATION

4.1 Aggregation Example

To illustrate the implementation of the design described above, it is easiest

to walk through a simple aggregation of a small data set. For this example, I will

use a data set drawn from a real question asked in a 6.001 lecture: "What is the

value of the following Scheme expression: (- (+ 1 4) (* 2 (+ 4 1)))". Most students

produced the correct answer, -5, but a few made mistakes, writing -50 (probably

caused by violating Scheme's order of operations) and 5 (most likely a typo). This

example aggregation uses the following data set: -5, -5, -5, -5, -5, -50, -50, -50, 5, 5.

Before the aggregation, the instructor would have had to create the exercise in

the Instructor Authoring Tool. When writing this exercise, the instructor chose

"number" as the expected answer type and provided -5 as a correct answer, with

no further information. When the students are given the question in class, the

answers they write on the tablet are processed into text by the handwriting

analyzer and placed in a database; this example assumes no errors originating

from the handwriting analyzer. The instructor clicks the "aggregate" button, and

the aggregation module is loaded.

19



The first step in the aggregation process is to obtain the submitted student

answers and instructor information from the database. A list of student answer

objects is created in the aggregator's runtime environment, each one containing a

submitted student answer as a text string; likewise, the single instructor answer

object is created with "-5" as its text string and "true" as its correctness

designation. When the answer objects are created, the aggregator checks the

expected type of the answer and performs any necessary pre-processing. In this

case, the expected type is "number," and so the text strings from the database are

changed into numerical values with a simple string-to-number function. The

instructor answer becomes part of an "evaluator function." This evaluator

function takes a student answer as input and produces as output a numerical

value designating how close the student answer is to the answer "-5". When

comparing numerical answers, the evaluator function returns the absolute value

of the difference between the two numerical answers, and so a value of 0

designates a complete match. Each student answer is provided as input to the

evaluator function. The result of the evaluator function is appended to the

student answer in its "evaluation" field. Thus, after evaluation, the student

answers containing -5 will be tagged as exact matches to the instructor answer,

and the other student answers will be tagged as very different from the

instructor answer.

Once evaluation is complete, the student answers are ready to be placed in

bins. The actual bin objects are not created immediately. Rather, a hash map is

20



used to store the temporary bins, with a representative answer from the bin as

the key and the list of student answers contained by the bin as the value. The first

bins created are those which center around instructor answers. All answers

which match an instructor answer closely will be placed in the corresponding

bin, and all other answers will be placed in a miscellaneous bin. In this case, all of

the -5 answers are put in a -5 bin and the -50 and 5 answers are put into the

miscellaneous bin. The next step is to create interesting clusters from the student

answers in the miscellaneous bin. The aggregator contains a parameter for the

maximum number of bins which should be created, and clusters will be created

from the contents of the miscellaneous bin until the maximum number is reached

or until no further clusters can be created. In this case, only two bins have been

created, and the default maximum number of bins is seven, so the aggregator

will try to split the miscellaneous bin up to five times.

In order to split a meaningful cluster from the miscellaneous bin, a logical

cluster center must be chosen. This need leads to the question of which answer

bins the instructor would most like to see. Obviously, the answer to this will be

very different depending on the instructor and the question asked. One of the

goals of this tool, however, is to allow instructors to see problems and mistakes

common to several members of the class, so the instructor can discuss his or her

class's particular misconceptions. With this in mind, the priority in choosing a

cluster center is creating the largest possible cluster. Thus, when choosing a

cluster center, the aggregator tests each student answer as a possible cluster

21



center, and observes how many of the remaining student answers would be

placed in that cluster. For this example, the contents of the miscellaneous bin are

-50, -50, -50, 5, 5. Using -50 as a cluster center nets a new bin with three members

but using 5 as a cluster center nets a new bin with two members, so -50 is chosen

as a cluster center. A -50 key is added to the hash table, with a list of the three

corresponding student answers as the value; the -50 answers are removed from

the miscellaneous bin. The aggregator will then attempt a second split. In this

case, only one cluster is possible, a cluster centered around 5 containing two

student answers, and so it is created. At this point, the miscellaneous bin is

empty and the aggregator will cease attempting to split new bins.

The final step is to create the actual bin objects from the hash table. Each

key and its corresponding value are extracted from the hash table, and a new bin

is created. The key is used as a bin description, the list of student answers is the

bin's contents, and the number of student answers in the bin is the bin's size. The

bin descriptions, contents, and sizes are placed in the database. The aggregation

is then complete, and the bin data is used to create a histogram showing the

frequency of various student answers, and to color-code the student answers as

per the histogram.

The above data set was chosen specifically to illustrate the basic workings

of the aggregator. Most sets of student answers are larger and contain

considerably more variation. Here is a more diverse set of student answers,

which are responses to the question, "What is the type of this Scheme expression:

22



(lambda (x) (if x "true" "false")) ?"

procedure

bool -> str.

(boolean) -> (string)

proc. boolean -> string

procedure

procedure: boolean -> string

bool -> string

string

boolean -> string

string

proc: bool -> string

compound procedure

proc (A -> string)

proc

boolean -> string

This set of answers poses a more interesting set of challenges. One issue with

aggregating data such as the above is the issue of commonly-used abbreviations.

An instructor would likely consider "bool" an acceptable alternative to "boolean";

likewise with "string"/"str" and "procedure"/"proc". Thus, the aggregator should

not mark "bool -> string" as incorrect if the instructor's correct answer was

"boolean -> string". Without context, it is nearly impossible for the computer to

determine which substitutions are acceptable. Therefore, when the student and

instructor answers are pulled from the database, any abbreviations are changed

23



into the full form by a function which simply looks up known abbreviations for

common terms used in the class. Furthermore, excess spaces and punctuation are

stripped from the text; this step generally removes all punctuation except the

"arrows" (->), but a "Scheme" option exists that keeps the parentheses, and other

such options could be added for different contexts.

Strings and sequences of words must use a different similarity measure

than the one used for numbers. Measuring how "alike" two strings are has a well-

known dynamic programming solution which was employed here. In particular,

the strings are compared character-by-character and word-by-word. A missing,

extra, or incorrect character adds a point to a running score, and a missing or

excess word adds three points to the running score. The two strings are

compared in such a way as to minimize the point count. For instance, comparing

the two strings "abc" and "ac" would result in a point count of 1, with the score

calculated as follows:

a b c

a c

0 1 1

as opposed to the possible score of 2:

a b c

a c

0 1 2

The three-point penalty for a missing or excess word is imposed so that the

severity of the mistake of leaving out a word does not depend on the length of

the word. Thus, if the correct answer is "foo bar baz quux," the answers "foo bar

24



quux" and "foo bar baz" will be equally penalized. The final score ranges between

zero and the length of the longer word, and thus can be changed into a

percentage. When comparing two answers, the resulting percentage must fall

below a certain "similarity parameter" for both answers to be placed in the same

bin. In the example of "abc" and "ac", the result would be 1/3 or approximately

33% different, and thus the two answers would not be placed in the same bin if

the similarity parameter is set to 10%. The aggregator also contains a similarity

measure for use with multiple choice questions, which simply determines if the

two answers (presumably, two letters or two numbers designating choices) are

exactly the same.

4.2 Factors that Affect Aggregation

The most important factor affecting aggregation is the list of correct and

incorrect answers provided by the instructor. Each of these answers will have a

corresponding answer bin associated with it if at least one student gave a similar

answer. Thus, instructor answers are a way to ensure that the instructor will

always get to see the number of students who gave a particular answer. The

number of instructor answers given also affects the number of computer-

generated bins that are created, since there is generally a maximum number of

bins the aggregator will create in total, and instructor-defined bins use up some

of that allotment.

25



One very important consideration in the quality of the aggregation is the

number and variety of answers. In particular, a large data set with a large variety

of answers will generally result in many answers relegated to the miscellaneous

bin, unless the maximum number of bins created is set to be very high. As an

example, imagine a class of two hundred people, where no student answer is

shared by more than four people. If the maximum number of bins is seven, then

the aggregator will create seven bins of three or four answers each and then stop,

leaving the vast majority of answers uncategorized in the miscellaneous bin. The

aggregator provides its best results when used in small classes or on data sets

with a small variety of answers. If the number of unique answers is less than the

maximum number of bins, aggregation is trivial.

The order in which the instructor and student answers are provided to the

aggregator will make no difference as to the final set of bins, with two

exceptions. If a student answer is very similar to two different instructor

answers, the bin in which it is placed is determined by the order in which the

instructor answers were provided. Furthermore, if the aggregator is deciding

between two student answers that are considered to be equally appropriate

cluster centers, the first answer will be picked. These cases both involve the

aggregator choosing between two equally "good" options, and thus the order of

answers should not affect the quality of the aggregation significantly.

The aggregator contains two important, adjustable parameters: the

maximum number of bins the aggregator will create, and the similarity

26



parameter discussed above. The maximum number of bins is set by default to

seven. The default value of seven was chosen because it is considered to be the

number of elements in a list an adult can remember at once; it is large enough to

show off the most interesting clusters in a class of about thirty, but small enough

such that the histogram of bins fits neatly on the screen and does not take much

time for the instructor to read. The temptation exists to set the maximum number

of bins to a very high number or do away with it entirely so the instructor can see

all of the possible clusters, but there are disadvantages in either case. The first

disadvantage is that reading clustering output takes time away from lecture, and

if there is too much output, the instructor may feel overwhelmed or waste time

reading it all. Furthermore, one of the major purposes of this tool is for

instructors to see problems which several students are having so he or she can

talk about related misconceptions in class. In a large class, the instructor likely

does not wish to discuss every single mistake, especially those only committed

by one or two people. Thus, providing every possible cluster to the instructor

would cause unnecessary cluster and provide unnecessary information.

The similarity parameter is set by default to 10%, meaning that answers

must be 90% alike, according to the algorithm described above, to be placed

together in the same bin. The 10% was chosen to mitigate the impact of mistakes

originating from the handwriting analyzer; as the analyzer improves, this

number would probably be set lower. Currently, the handwriting analyzer has

an average success rate of 87%, and so 10% was chosen as a compromise between

27



compensating for the analyzer's mistakes and creating accurate bins. This

parameter can also be set to 0 if the instructor wishes only for answers which are

exactly alike to be clustered together.

5. TESTING

The aggregator is part of a system designed to help instructors in a

classroom setting, and the aggregator's results are meant to be displayed to a

classroom full of students. Thus, not only is it absolutely crucial that the

aggregator cannot crash, which would disrupt lecture and waste the instructor's

time, it is also crucial that the aggregator provides consistently reasonable

results. Creating lectures with interactive questions in Classroom Learning

Partner requires significantly more time than writing basic Powerpoint slides,

overheads, or working on a blackboard. If the aggregator's results are not useful

enough to justify the time commitment, then the instructor will no longer wish to

use CLP. Furthermore, if the aggregator produces poor results which are

displayed to the class, the students will likely lose interest in answering the

questions to the best of their ability. The aggregator was tested in three ways:

deployed in a classroom setting, outside the classroom using sample student

answers from the 6.001 online tutor, and comparing the grouping of student

answers from the tests with "human aggregator" groupings

28



5.1 Deployment

The full system with aggregator module was deployed in Dr. Kimberle

Koile's 6.001 recitation at the end of the spring term in order to test the

aggregation of handwritten answers in a classroom setting. Students were asked

questions such as "Out of reading, writing, and listening, what is your favorite

learning style?" Although the aggregator produced the expected results in most

cases, deployment led to several important changes. The first version of the

aggregator, for example, tended to choose the most unique answers as cluster

centers. This clustering method, unfortunately, meant that if a student entered a

joke answer, then that joke answer would almost certainly be chosen as a cluster

center. In practice, several meaningless clusters of one answer each were

produced. The problem was solved by favoring large clusters, rather than unique

answers, while aggregating, which ensures that joke answers will likely remain

in the miscellaneous bin. Deployment also led to a more efficient string

comparison algorithm, as the original version caused the aggregator to run too

slowly for real-time use (on the order of minutes) with answers to one of the

questions. On the whole, the deployment was successful, and students generally

enjoyed seeing histograms of what others in the class had answered. Whether to

show the histograms to the student or only to the instructor is an open research

question. Anecdotal evidence suggests that the histogram should be reserved for

29



the instructor's use.2

5.2 Aggregator

While the system was deployed in the classroom, the majority of

aggregator testing was performed outside the classroom, because the various

CLP components were not all available at the same time. In addition, each CLP

module needed to be tested on its own to ensure that it would not cause the

system to crash and would behave as expected. In testing the aggregator, we

used sets of student answers collected from the 6.001 online tutor. The online

tutor asks exactly the same sorts of questions that the instructor would ask in

6.001 recitation and catalogs both student successes and mistakes, and so it can

be considered a reasonable simulation of classroom use.

The first tests of the aggregator used small, artificially-created data sets to

ensure that the aggregator was working properly and did not have bugs that

would cause it to crash. An example of this kind of data set is discussed in the

implementation section of this paper; the example with three unique numbers

repeated several times each was a test case designed to check the basic

functionality with the system. Small batches of string answers were obtained

from the handwriting analyzer testing, in which about twenty participants were

instructed to answer simple 6.001 questions [Rbeiz 2006]. This test evaluated

2 Instructors who have used MIT's TEAL (Teaching Enabled Active Learning) classroom report that some
students feel uncomfortable when they are one of a small group of students with an incorrect answer.

30



basic functionality, this time including a complicated string comparison

algorithm. Tests were run both with instructor answers and without.

The second batch of testing used the student answers from the 6.001

online tutor. There were many questions in the system, from which four

canonical test cases were chosen. Many questions required long pieces of code as

answers, which the current version of the aggregator is not designed to handle.

See Future Work below for more on aggregating student code. Some questions

with shorter answers were so easy that most students submitted the correct

answer on the first try, and there were not enough unique answers to produce

interesting answer bin behavior. If the number of unique answers present in an

answer set is less than the maximum number of bins the aggregator will

generate, then every unique answer can have its own bin and the results are

trivial. The questions chosen for the test represent typical questions which a

6.001 instructor would ask in class. For each question, two hundred student

answers were chosen from the tutor's files. 3 A sample of these student answers

can be found in the Appendix.

Question 1

Lec.2.4.4: Write an expression that is equivalent to the
following, but that uses lambda explicitly: ' (define (fizz
x y z) (+ x z) ).

Correct answer: (de f ine f i z z (lambda (x y z) (+ x z)))

[Singer, 20061
3 Students can check their answers before submitting final answers to the tutor. Our example answers were
chosen from the file of checked answers because many interesting incorrect answers were present.

31



Possibly due to the length of the student answers, the logic in the clusters

chosen by the aggregator are nonobvious. Many answers ended up in the

miscellaneous bin. The largest cluster is the one centered around answers like

(define (fizz x y z) (lambda (x z) (+ x z))), an error which is likely caused by

people mistakenly including the argument names both where they would be in

the correct answer and where they were in the original statement. There are also

interesting clusters based around answers missing "define fizz", so an instructor

might glean that people did not understand that the question requires the

procedure to be linked to the name "fizz".

Question 2

Lec.3.2.2.pl: Assume that we have evaluated the following
definition: '(define fizz (lambda (a b) (* (7 a b) (/ b
a))))'. Now, we would like to evaluate the expression
'(fizz (+ 1 -1) 1)'. Indicate the first step of the
substitution model.

Correctanswer: (fizz 0 1)

This answer set results in an even larger miscellaneous bin, but the logic

behind the other bins is much clearer. The largest bin results from the answers

that included "define" and "lambda", mistakenly thinking that the first step

involved evaluating the statement that defined the procedure. Another bin

consists of answers that include "a" and "b" from students who did not realize

they were supposed to substitute the argument's values in for the argument's

names. The question asks for the first step of the evaluation, so unsurprisingly

there is a bin that centers on the second step in the evaluation and one that

32



centers on the third step. These mistakes might prompt the instructor to remind

the students of the step(s) they forgot.

Question 3

Lec.3.2.2.p2: This is a continuation of the previous question, where the students

are asked to provide the second step of the evaluation model.

Correct answer: (* (/ 0 1) (/ 1 0) )

Since this question is a continuation of the previous question, it isn't

surprising that some of the bins from the last question also appear here. In

particular, we have a bin resulting from students forgetting to substitute in

values for argument names and one from students who tried to evaluate the

statement that defined the procedure. There is also a bin centered on the third

step of the evaluation, and the rest of the bins, apart from the miscellaneous bin,

appear to be from students who performed the math in a different order than the

Scheme interpreter.

Question 4

Lec.3.2.3.pl: Assume that we have evaluated the following
definition: '(define fuzz (lambda (a b) (if (= b 0) a (/ 1
b))))'. Now, we would like to evaluate the expression
"(fuzz -1 0)". Indicate the first step of the substitution
model.

Correct answer: (if (= 0 0) -l (/ 1 0))

This question is similar to Lec.3.2.2.pl, and the aggregator's bin creation is

fairly consistent. Again we see the bin from students evaluating the statement

defining the procedure and a bin from people who did not fully substitute values

33



in for argument names. Another bin results from those who did not include the

consequences of the "if" statement, perhaps feeling that since the test is evaluated

before the consequents, only the test should appear in the first step of the

evaluation. Another bin is produced from answers that mistakenly substituted

the value of "a" in for the argument "b" in one position.

5.3 Human Aggregators

The tests using student answers from the online tutor served to ensure

that the aggregator would not crash, and that the results seemed reasonable.

When categorizing student answers, however, there is no true "gold standard"

for what is reasonable. Even if humans categorize the data, unless there is some

truly obvious grouping (i.e. if there are only three unique answers, creating three

answer groups is trivial), they will probably produce different clusters. Of

course, this does not mean that any grouping the computer produces is

acceptable, and so some attempt at a standard should be made. To test the

reasonableness of the system's groupings, CLP's aggregator results were

compared with "human aggregator" results.

To compare machine and human aggregator results, student answers

from the online tutor were printed on paper and given to 6.001 instructors and

teaching assistants so they could create groups. These groups were compared to

the aggregator's results on the same data, to provide some basis for evaluating

34



the aggregation.

Smaller versions of the data sets discussed above were created for the

human aggregators, in order to save time. Two hundred answers would take a

prohibitively long time for a human to categorize, and so the intent was to create

sets of student answers that reflected the original data but were comparable in

size to a typical classroom -approximately twenty-five answers per set. To create

these smaller data sets, the original large data sets were aggregated, and answers

were drawn from each bin in proportion to the relative sizes of the bins (with the

exception that a less than proportionate number of answers was drawn from the

miscellaneous bin). The answers were printed and cut into individual slips of

paper. The answers used for each test question are shown in the Appendix.

We asked four volunteers to cluster the answers by any method they

wished. Each volunteer had different knowledge and/or teaching experience

with 6.001, so that even though the sample size was small, we could have a sense

of how experience affects aggregation. The volunteers were: a graduate student

teaching assistant who had taught 6.001 tutorials for one term; a graduate

student instructor who had taken the course as an undergraduate and taught

6.001 recitation for one term; a faculty member experienced with teaching the

course several years ago; and a faculty member very experienced with creating

and teaching the course.

When the people arrived for testing, they were handed the slips of paper

corresponding to the first question. They also were given the question and the

35



canonical correct answer to read. They then were asked to put the student

answers in categories of their own design. Once they were finished, they were

asked to explain their categorization scheme. Then, if they had created more than

seven bins, they were asked to categorize the student answers again in only

seven bins, and explain the new categorization scheme. This process was

repeated for each test question.

In conducting the tests, it was notable that different people tended to cite

very different logic when describing their categories. Two subjects talked mainly

about placing answers in categories based on the mistakes they believed the

students had made, while another hardly mentioned possible mistakes and

instead sorted the answers on the basis of key words and answer length. Another

subject, noting that the sample student answers were Scheme code fragments,

chose to focus on what results the fragments would produce in a Scheme

interpreter. This served to confirm that teaching experience affected aggregation,

as the more experienced faculty members were focused on student mistakes,

while the graduate student who had spent the least time teaching 6.001 was the

one who focused primarily on key words. There was a constant in the human

testing, however - all of them took far longer than the aggregator to produce

their clusters. In fact, they commonly took ten minutes per set of student

answers. One even commented aggregator in this situation, as the process was

much too time-consuming and tedious for a teaching assistant to do in class.

36



Question 1

Lec.2.4.4: Write an expression that is equivalent to the

following, but that uses lambda explicitly: '(define (fizz
x y z) (+ x z))'.

Correct answer: (de f ine f i z z (1ambda (x y z) (+ x z)))

The most noticeable common thread among the subjects' groupings for

this question is that they all made at least initial groupings based on keywords.

All of them split answers beginning with "define" from answers beginning with

"lambda," while the aggregator was not so strict in making this distinction.

Apart from this split, the bins created by the subjects are quite different from one

another and from the aggregator's bins. It is possible that there simply is not an

intuitive grouping for this set of student answers.

Question 2

Lec.3.2.2.pl: Assume that we have evaluated the following
definition: '(define fizz (lambda (a b) (* (/ a b) (/ b
a))))' . Now, we would like to evaluate the expression
'(fizz (+ 1 -1) 1)'. Indicate the first step of the
substitution model.

Correct answer: (f i zz 0 1)

For this set of student answers, the human testers produced several of the

same bins the aggregator produced. The aggregator generated a bin of answers

containing "define" and "lambda," and the human aggregators consistently

created separate bins for answers containing "define" and answers containing

"lambda," citing different keywords or the idea that misunderstanding how

"define" works is a more serious mistake than misunderstanding the "lambda"

37



construction. All of the human subjects and the aggregator created a bin of

answers in which the student forgot to substitute values for variables. They also

all created a bin of "almost correct" answers that closely resemble the correct

answer but for a typo or parenthesis error. The aggregator created two bins

containing answers in which students had skipped a step or more; the humans,

for the most part, created one bin for all of these answers. Overall, the subjects

generated very similar clusters to those created by the aggregator, although they

differed a bit on which clusters to "merge" and "split."

Question 3

Lec.3.2.2.p2: This is a continuation of the previous question, where the students

are asked to provide the second step of the evaluation model.

Correct answer: (* (/ 0 1) (/ 1 0) )

For this question, the only keyword present was "lambda," and both

human and machine aggregators predictably made a bin for the student answers

containing "lambda." They also both created bins of student answers in which

the student had not substituted values for variables, as in the previous question.

This step left the answers that contained only numbers and operators, and here

the aggregator and subjects diveTged somewhat. One subject based his bins on

the length of the expression and what operators it contained, which produced

results similar to the aggregator's, but another split the expressions into bins

based on what their evaluations in Scheme would be, which produced a larger

difference.

38



Question 4

Lec.3.2.3.pl: Assume that we have evaluated the following
definition: '(define fuzz (lambda (a b) (if (= b 0) a (/ 1

b))))'. Now, we would like to evaluate the expression

"(fuzz -1 0)". Indicate the first step of the substitution
model.

Correct answer: (if (= 0 0) -l (1 1 0))

For this question, the subjects and the aggregator were mostly in

agreement. Common bins included a bin for those who erroneously used

"define" and "lambda" in their answer, a bin for those who forgot to substitute

values for variables, and a bin for those who only included the test of the if

statement and left out the consequents. These bins left answers which were

mostly correct, and humans tended to divide these into typo / missing

parenthesis and erroneous consequent, which is also similar to the aggregator's

division.

6. DISCUSSION AND FUTURE WORK

6.1 Semantics

Although the aggregator was originally designed with 6.001 in mind, one

of the goals was to make it as universal as possible. Thus, there are only two

references to 6.001-specific concepts in the code base: the procedure that expands

abbreviated words into their full forms, which has a lookup table of common

39



6.001 abbreviations, and the Scheme expression option for string handling, which

does not strip away parentheses like the normal string processor. This generality

carries a price, however, as the aggregator makes very little use of semantics.

In theory, there are many ways in which the aggregator could use

semantics. For example, if the instructor asks "What Scheme procedure can be

used for (a task)?, the aggregator could compare answers not only to instructor

answers, but also to a list of common Scheme procedures. This functionality

would help remedy the mistakes made by the handwriting analyzer, as a word

that is just one or two characters apart from a known Scheme procedure would

be matched to its closest possible answer instead of appearing as a confusing

mistake. The aggregator also could adjust penalties based on an answer's

semantics - leaving out the procedure in a Scheme expression could carry a

larger penalty than leaving out an argument, for instance.

Knowledge of semantics would help the aggregator in many other

contexts as well. If the instructor asked a math problem, it would be ideal if the

aggregator could parse the math problem and auto-generate a list of common

incorrect answers, stemming from likely mistakes such as performing the

operations out of order or dropping a negative sign. If the aggregator had a built-

in dictionary, handwriting analyzer mistakes would be less of a problem,

because if a handwriting analyzer mistake resulted in a non-dictionary word, the

aggregator could provide a likely alternative. Of course, this functionality might

pose a problem if the instructor asked a question that did not have an answer

40



that appears in a standard dictionary. In this case, specialty dictionaries would

have to be loaded depending on the class, such as the list of Scheme procedures

mentioned above.

Although these semantic additions probably would improve the

aggregator's results, the improvements might not outweigh the disadvantages.

One problem is that producing a semantics module that helps with a particular

class would require a great deal of knowledge associated with class, so the

programmer would have to work with an instructor or someone else highly

knowledgeable in the field to create the module. Another issue is efficiency. The

aggregator is already pushing the limit of how long an instructor should have to

wait for an answer, and adding a feature like dictionary lookup will certainly

increase the time requirement. There also exists the possibility that in some cases,

a semantics module would hurt more than help. If the instructor wanted to ask a

question with an answer that the aggregator was not capable of parsing with its

particular semantics module, for example, the aggregator might attempt to fit the

answer to what it was expecting, which could lead to errors. Despite these issues,

investigating the use of semantics modules for specific classes would be a good

direction of attempted improvement for future research.

6.2 Additional Answer Types

As stated previously, one of the major considerations in designing the

41



aggregator was the ability to easily add more features -in particular, new types

of answer. To add a new answer type, one must be able to store and extract data

of that type from the database, process the data so that it can be handled by the

Lisp interpreter, and, most significantly, write an algorithm that can compare

two answers of this type and return a percentage reflecting how alike the two

answers are. The comparison algorithm moreover must be capable of making

O(nA2) comparisons, where n is the number of student answers received, in less

than thirty seconds, or the aggregator will take too long to be of practical use in

the classroom. In the case of complicated answer types, such as full essays,

designing an algorithm that meets these requirements is likely a full thesis' worth

of work in itself. What follows are some design thoughts on how several

proposed data types-diagrams, code, and longer text passages-might be

incorporated into the aggregator.

Diagrams

The next answer type that will be added to the aggregator is the diagram.

The aggregation of sketched diagrams has been one of CLP's goals from the

beginning, and the main reason why the project has focused on tablet PCs

instead of more traditional laptops. One of the major stumbling blocks to

diagram aggregation has been designing an ink interpreter that can detect shapes

and spatial relations as well as characters. The current focus, therefore, is on a

42



series of formulaic diagrams with a limited set of possible shapes: trees and box-

and-pointer diagrams. See Figures 6 and 7 for examples.

II

Figure 6: An example tree Figure 7: An example box-and-pointer diagram

All of these diagrams can be expressed in an XML-type language. For

example, the tree above can be described as:

<node> <node> <node> 1, 2 </node>, 3 </node>, 4,

<node> 5, 6 </node> </node>

Likewise, the box-and-pointer diagram can be written as:

<boxpointer> x, <cons> 1, <cons> 2, <cons> 3, null

</cons> </cons> </cons> </boxpointer>

When expressed in these terms, the answers are very similar to sequences,

as they are simply a collection of elements which are supposed to occur in a

particular order. Thus, the comparison algorithm for these diagrams will be very

much like the comparison algorithm for sequences. Two important differences

between these diagram sequences and sequences of strings are that 1) the

diagram sequences contain XML tags, which must be treated as symbols, not

strings, and 2) the diagram sequences must allow nested answers. In other

43



words, one piece of the diagram (a square, for example) can potentially contain

another piece of diagram (a circle, perhaps), or a string, or a sequence of strings.

One of the major challenges with writing diagrams in XML terms is ensuring that

the order is consistent from diagram to diagram. Ideally, two diagrams that are

semantically the same should write the same XML representation, but it is

possible that the relative placement of objects on the slide might cause the

diagram analyzer to write two different representations. Two sister leaves on a

tree, for example, might correctly be written in either order. Ideally, the

aggregator will have reasoning more advanced than simple pattern-matching,

and will be able to determine whether two diagrams are semantically identical.

Graphs

All of the diagrams discussed thus far are well-structured. Each has only a

small number of possible pieces; for example, a box-and-pointer diagram

contains only boxes, boxes with slashes through them, and arrows. The

dimensions of the boxes and lengths of the arrows do not matter. Thus, it is

possible to represent these objects in XML without having to encode information

about their sizes. While this simplifies matters, it also unfortunately disallows a

wide variety of interesting diagrams for which the dimensions are important,

such as graphs. The representation of a graph would have to include at least the

endpoints of every line, and curves would either require a vector of points or an

44



approximated equation representing the curve. The aggregator would need

geometric comparison algorithms to compare two lines or two curves in order to

determine how alike two graphs are. Furthermore, the instructor might need to

provide additional information rather than simply drawing an example of a

correct graph, for in some cases the instructor might wish for the students to

draw a line with a particular slope, to demonstrate a trend, whereas in other

cases the instructor might care more about the line including particular data

points. For many types of diagrams, it might be difficult for the instructor to

articulate exactly what parts of the diagram must be present for a student answer

to be correct. If the instructor asks students to draw a graph of a particular trend,

he or she might want a detailed graph with carefully labeled axes and known

data points marked, or he or she might accept any graph with an upward slope

as correct. The aggregator may need to employ different algorithms depending

on the accuracy the instructor requests. Another closely related answer type is to

request that students circle a particular piece of a diagram. When people are

asked to circle something, they will often draw a sloppy circle which cuts off the

edges of the thing they are trying to circle, or one that includes bits of other

pieces of the diagram. The aggregator will have to know how much of the correct

answer the student is allowed to exclude, and how much extraneous material the

student is allowed to include, for the answer to still be considered correct.

45



Code

As the aggregator was originally designed for 6.001, which teaches the

principles of programming, accurate aggregation of code fragments is important.

Currently, code fragments are aggregated as strings or sequences, but this

solution is far from optimal. In fact, this approach will only produce reasonable

results if all variable and procedure names are provided by the instructor, and if

there are only a small number of possible ways to write the code. These

restrictions exclude all but the most basic programming questions. The 6.001

online tutor checks student-written procedures by running instructor-created test

cases, which, while also imperfect, is a far more robust system than treating the

code fragments as simple strings. If this functionality were incorporated into the

aggregator, it would be relatively simple to place code fragments into answer

bins based on which tests they pass and the results of any failed tests. Two code

fragments that pass all tests but one and produce the same answer for the failed

test are likely to exhibit a similar coding mistake. The aggregator also would

need to catch errors thrown by the student code and take them into consideration

when creating the answer bins.

While the ability to run student code would be a great asset to the

aggregator, adding this feature would be far from trivial. In order to run student-

written Scheme procedures, the aggregator would need to be able to quickly load

and call a Scheme interpreter. Moreover, the aggregator would be required to

run several tests on each code fragment, so time requirements might become an

46



issue, particularly if the class is large or the requested code is complex. To protect

the aggregator from infinite loops and very inefficient code, each test would have

to time out after a very short time interval; this restriction means that the

aggregator could not differentiate between code containing infinite loops and

code that is functionally correct that takes a long time to return. Ideally, the

instructor could define his or her own timeout for each question, as he or she

might be willing to wait longer for aggregation results from a particularly

complex programming question.

Another issue with this approach to aggregating code is that it does not

allow instructors to ask questions about programming style. In 6.001, the

instructor often asks for the students to write a certain procedure using recursion

as opposed to iteration (and vice versa), but simply running the code on test

cases is not enough to differentiate a correctly-written recursive procedure from

a correctly-written iterative procedure. Furthermore, many questions in 6.001

require a student to use a certain function, or request that a procedure be written

without a certain function. If the instructor asks the students to code their own

version of the procedure "map" from scratch, for example, then they obviously

should not be allowed to use the predefined procedure "map" in their code.

The above issues can be partially resolved through the use of keywords.

An instructor, when defining the question, could specify which keywords and

phrases the student code should include, and which keywords and phrases it

should not include. A recursive procedure should contain a particular signature

47



code fragment which differentiates it from the iterative version of the procedure,

and thus instructors would have increased ability to request a particular coding

style from the students. If this approach to Scheme questions works well, it

might be beneficial to expand this answer type to incorporate many types of

"runnable" objects, such as code in other languages, or mathematical expressions,

which can be tested by substituting in values for variables and observing the

result.

Text

Finally, one answer type of particular interest is freely written text. The

aggregator can currently handle text, but only can compare the text character by

character with an instructor-defined answer. The instructor therefore is limited to

asking questions with predefined answers that do not vary from person to

person; he or she cannot ask the student to explain a concept or define a term,

because there will be a multitude of answers that differ only in superficial

wording. In the current system, if the instructor asked, "Why do objects fall?", the

answers "gravity," "because of gravity," and "due to gravity" would all be

considered different. One solution to this problem is to use keywords, as has

been proposed for programming questions. In the above case, the keyword

would obviously be "gravity". Keywords alone will not be enough, however. For

code fragments, the test cases prevent students from writing incorrect code

containing the keywords, but if keywords alone were used for text fragments,

48



then the aggregator could not properly distinguish between the phrases

"because of gravity," "it has nothing to do with gravity," and "I don't know what

gravity is." More sophisticated solutions to this problem include syntax and

semantic parsers. These parsers traditionally require large amounts of time to

produce a correct answer, however, and it might be years before tablet PCs are

available to the classroom that can run sophisticated algorithms on each student

answer and return in less than thirty seconds. When one considers that such

parsers are frequently inaccurate, it might not be worth the added time burden to

add such technology to the aggregator, at least until hardware has improved.

6.3 Concluding Thoughts

Without the use of technology, it is difficult or impossible for an instructor

to poll his or her students on non-multiple-choice questions, as it simply takes

too long to ask a class full of students to answer a question and then process all

the results to determine which misconceptions are the most severe and

widespread. Classroom Learning Partner, which contains an aggregation

component, is an effective solution to this problem. The aggregator module can

take a class' worth of student answers and return in less than a minute with easy-

to-read results showing the most common correct and incorrect student answers

given. In all tests run, the aggregator produced bins which, for the most part,

easily could be explained in terms of the mistakes the students had made. Even if

the aggregator's bins don't match the instructor's ideal clustering -an impossible

49



task, since among instructors there is disagreement as to what an ideal clustering

would be - the aggregator is still a useful tool for personalizing the instructor's

teaching for a particular class. The successful results, furthermore, were

accomplished almost entirely without analyzing the semantics of the answers,

which suggests an applicability across domains. The aggregator is designed to be

easy to improve in the future, with additional supported answer types, semantics

parsing, and more efficient algorithms, but as it stands it forms a solid

foundation for a useful and unique classroom tool.

50



7. REFERENCES

Abelson, H. and Sussman, G.J. Structure and Interpretation of Computer Programs,

Second Edition. MIT Press, Cambridge, 1996.

Anderson, R., Anderson, R., Simon, B., Wolfman, S., VanDeGrift, T., and

Yasuhara, K. Experiences with a tablet-pc-based lecture presentation system in

computer science courses. In Proc. Of SIGCSE '04.

Anderson, R., Anderson, R., McDowell, L., and Simon, B. Use of Classroom

Presenter in engineering courses. In Proc of ASEE/IEEE Frontiers in Education

Conference, 2005.

Chen, Jessica. Instructor Authoring Tool: A Step Toward Promoting Dynamic

Lecture-Style Classrooms. M.Eng. Thesis, MIT Department of Electrical

Engineering and Computer Science, February 2005.

Chevalier, Kevin. An Aggregation User Interface for the Classroom Learning

Partner. Undergraduate Advanced Project report, MIT Department of Electrical

Engineering and Computer Science. December, 2005.

Draper, S.W. From active learning to interactive teaching: Individual activity

and interpersonal interaction. In Proc. of Teaching and Learning Symposium:

Teaching Innovations, 2004, The Hong Kong University of Science and

Technology.

Koile, K. and Shrobe, H.E., 2005a, The Classroom Learning Partner: Promoting

Meaningful Instructor-Student Interactions in Large Classes, MIT CSAIL TR., In

preparation.

51



Koile, Kimberle and Singer, David. Improving Learning in CS1 via Tablet-PC-

based In-class Assessment. In Proc. of ICER 2006(Second International Computing

Education Workshop).

Rbeiz, Michel. Semantic Representation of Digital Ink in the Classroom Learning

Partner. M.Eng. Thesis, MIT Department of Electrical Engineering and

Computer Science, 2005.

Singer, David. Personal correspondence, 2006.

52



8. APPENDIX

This appendix contains a sample of student answers, taken from the 6.001

online tutor, that were used for testing the aggregator. They are also the selected

student answers given to the "human aggregators."

Lec.2.4.4

(lambda (xyz) (+xz))

(lambda (x y z) (- (+ x z y) y))

(lambda (fizz x y z) (lambda (x y z)

define (lambda (x y z) (+ x z) ) (+x

(define x (lamda (x y z) (+ x z)))

((define (fizz x y z) (lambda (x z)

(define \"fizz x y z\" (lambda (x y

(define (fizz x y z) lambda (x z) (+

(define (fizz x y z) (lambda x z (+

(define (fizz x y z) (lambda () (+ x

((lambda (fizz) (+ x z)) x y z)

((lambda (x y z) (+ x z)) x y z)

(lambda (x y z) (+ x z) (fizz x y z)

((lambda (x z) (+ x z)) (fizz x y z)

(lambda

(lambda

(define

(lambda

(define

(lambda

lambda

(lambda

(lambda

(lambda

(lambda

(x y z) + x z)

(x y z) (+ x z)

(fizz) (lambda (x z)

(x y z) (+ x z) )

fizz (lambda (x y z)

(x y z) (+ x z))

(x y z) + x z

() (+ x z))

( ) (+ x z)

(fizz x y z) + x z)

fizz (x y z) (+ x z))

(+ x z)))

z) )

z

x

+ x z)))

) (+ x z)))

x z))

z)))

z))

(+ x z)))

(+xz) )

53

)

)



Lec.3.2.2.pl

(* (/ a b) (/ b a

(* (/ a b) (/ b a

fizz 0 -1)

fizz ((* (/ 0) 1)

(* (/ (+ 1 (- 0 1

(fizz (* (/ (+ 1

(lambda ((+ 1 -1)

(+ 1 -1) 1 ) )

(procedure (a b)

(lambda (a b) (*

f izz

(* (/ (+ 1 -1) 1

(* (/ (+ 1 -1) 1)

(* (/ (+ 1 -1) 1)

(* (/ (+ 1 -1) 1)

(define fizz (lam

1 -1)))

(define fizz (lan

1)) )

(fizz (lambda ( (.

1)))))

(fizz (+ 1 -1) 1)

(fizz (+ 1 -1) 1)

(fizz (0 1)

(fizz 0 1)

(/ 1 (+ 1

1) (/ 1

)) 1) (/ 1

-1) 1) (/

1) (* (/

-1)))

(+ 1 (- 0 -1)))

(+ 1 (- 0 1)))

1 (+ -1 1))))

((+ 1 -1) 1))

(* ( a b) (/ b a)))

(/ a b) (/ b a)) (+

(/ 1

(+ 1

1

1

(+ 1 -1)))

-1)))))

1 -1)))

1 -1)))

1 -1))))

1 -1)))

1 -1) 1) (*

-1) 1) (*

(+ 1

-1)

)

)

(/ ((+ 1 -1) 1) )

-1)

1)

1

(/ (+ 1 -1) 1) (/ 1 (+

(+ 1 -1) 1) (/(-1 1)

(/ (+ 1 -1) 1) (/ 1 (+ 1

54

(+ 1 -1) 1) (* (/



Lec.3.2.2.p2

(* (/ 0 1) (/

(* (/ 0 1) (1

(* (/ 0 1) (/

(* (/ (+1 -1)

(/ 1 0)

(fizz (/ 0 1)

(/ 0 -1)

fizz ( 0 0)

(* (/ 0 1) (/

(lambda (0 1)

fizz

(/ 1 (+ 1 -1)

0

1 0)"

0))

1 0)

1) (/1

(* (/ 0 1) (/1 0)

(+1 -1))))

(/ 1 0))

1 0) error

a b) (/ b a)))

)

(/ -1 0))

(lambda (

(lambda (

(* (/0 1

(* (/0 1)

(lambda

(lambda

(0 1) (*

(* (/ (+

(* (/ (+

(* (0) (/

(* 0 (/ 0

a

0
0

1

b)

b)

(/1

(/1 0

1)(

1)(

/0 1

-1))

-1)

0 1))

1))

*

*

0)

*

*(/

) (/I
(/ 1

1) (/

a b)

a b)

0

0

1

1)

1)

0))

(+ 1

1 (+

(/ b a)))

(/ b a)))

(/I(/
1

0

0))

1)))

-1) ))

1 -1)))

55

-1

(/

+1)

0 -1)

1

0 1

0 1

(/

(*



Lec.3.2.3.pl

(define fuzz (lambda -1 0) (if (= 0 0) -1 (/ 1 0)))

(lambda (-1 0) (if (=0 0) -1 (/ 1 b)))

if(= 0 0)

(if (= b 0) -1 (1/b))

(if(= 0 0) 1 (/ 1 0))

(if (= 0 0) 0 (/ 1 0))

(lambda (-1 0) (if (= b 0) a (/ 1 b)))

(fuzz (a b))

a

(if (= 0 0) -1 0)

(= a -1)

-l

(if #t a (/ 1 b))

(if (= 0 -1) -1 (/ 1 0))

(a b) (if (=b 0) a (/ b 0)))

(fuzz -1 0)

(if (= 0 0) -1)

(if (= 0 0) 0)

(if (= 0 0))

(if (=0 0) -1 (/ 1 b))

(if (= 0 0) -l (/ 0 b))

(if (= 0 0) -1 (/ a 0))

(if (= 0 0) -1 (/1 0))

(if (= 0 0) 1 (/ 1 0))

(if (= 0 0) -1 (/ 10))

(if (= 0 0) -1 (/1 0))

(fuzz (if (= 0 0) -1 (/ 1 0)))

(if (= 0 0) a (/ 1 b))

(if (= 0 0) a (/ 1 0))

56

((Iambda -1 0)


