
Channel-and-Circuits Aware, Energy-Efficient Coding

for High Speed Links

by

Maxine Lee

S.B. EE, M.I.T., 2005

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

September, 2006

@2006 Massachusetts Institute of Technology
All rights reserved.

A u th o r
Department of Electrical Engineering and Computer Science

September 8, 2006

Certified by
Vladimir Stojanovic

Assistant Professor of Electrical Engineering
M.I.T. Thesis Supervisor

A ccep ted b y ...
Arthur C. Smith

Professor of Electrical Engineering
Chairman, Department Committee on Graduate Theses

1

2

Channel-and-Circuits Aware, Energy-Efficient Coding for High Speed Links
by

Maxine Lee

Submitted to the
Department of Electrical Engineering and Computer Science

September 8, 2006

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

Abstract

Throughput and energy-efficiency of high-speed chip-to-chip interconnects present critical bot-

tlenecks in a whole range of important applications, from processor-memory interfaces, to network

routers. These links currently rely solely on complex equalization techniques to maintain the bit error

rate lower than 10-1. While applicable to data rates up to 10 Gb/s on most links, this approach

does not scale well to higher data rates or better energy-efficiency. The work described in the thesis

shows that it may be possible to use coding techniques to share the burden of combating errors, while

increasing the throughput of the link or improving its energy-efficiency. Since codes here attempt

to alleviate the impact of partially correlated sources of error (like reflections interference, crosstalk

and jitter), an experimental setup was created for characterization of link channel properties and per-

formance gains from different codes. Four codes, specifically Hamming, BCH, Fire, and SEC-DED

codes, are implemented and analyzed with various configurations (i.e. different blocksizes, data rates,

and detection or correction). Most significantly, it is discovered that detection and retransmission of

even the simple codes implemented in this project may be able to maintain a bit error rate of 10-1.

Thesis Supervisor : Vladimir Stojanovic
Title : Assistant Professor of Electrical Engineering

3

Acknowledgments

First and foremost, thank you to my research advisor, Vladimir Stojanovic, for his continued sup-

port throughout my graduate career, and whose technical prowess and dedication to the field are truly

remarkable and inspiring.

To my colleagues in the Integrated Systems Group, Natasa Blitvic, Byungsub Kim, Ranko Sredojevic,

Sanquan Song, and Fred Chen, thanks for making our lab such an enjoyable environment. I could not

have asked for more intelligent, fun, and fascinating people to drink coffee with and to spend all those

long days and nights with.

To my best friends at MIT, especially David Vincent, my greatest supporter, and Wendy Chang, my

coffee buddy and roommate, thanks for making my entire college experience amazing.

Finally, thank you to my parents for getting me started on the right track and letting me find my

way. I would not be where I am today without the values and morals you ingrained in me and all of your

advice throughout the years.

4

Contents

1 Introduction 8

1.1 T he P roblem .. 8

1.2 The Proposed New Technique . 10

2 Background 11

2.1 Basic Coding Theory . 11

2.1.1 Linear Block Codes . 12

2.2 Types of Errors . 14

2.3 The Binary Symmetric Channel (BSC) Model . 15

2.4 Coding System s . 16

2.4.1 Forward Error Correction (FEC) . 16

2.4.2 Automatic Repeat Request (ARQ) . 16

2.4.3 Hybrid Forward Error Correction / Automatic Repeat Request 17

2.5 K now n Codes . 17

2.5.1 Hamming Codes . 18

2.5.2 Bose, Chaudhuri, and Hocquenghem (BCH) Codes 19

2.5.3 F ire C odes . 19

2.5.4 Single-Error-Correcting, Double-Error-Detecting (SEC-DED) Codes 20

2.5.5 Cyclic Redundancy Check (CRC) . 21

3 Previous Work 22

4 Problem Statement 22

4.1 Purpose of the Work . 22

4.1.1 Limitations in Current Methods in Link Transmissions 22

4.1.2 The Goal of This Work . 23

4.1.3 Limitations in Previous Methods in Link Coding 24

4.2 Simultaneous Work and Future Plans for Link Coding . 25

5 Methodology 27

5.1 Description of Hardware 27

5.1.1 Virtex I-ProXFPGA. 27

5.1.2 RocketIO X Transceivers 28

5.2 Desired Information to Capture 29

5.3 Line Cards and Backplanes 30

5.4 High Level Description of the Design . .. 31

5.4.1 PRBS Generator .

5.4.2 Transm itter .

5.4.3 Receiver and Statistics Gatherer

5.4.4 Software System .

5.5 Codes Implemented .

5.5.1 Sim plifications .

5.5.2 Hamming Codes .

5.5.3 BCH Codes .

5.5.4 Fire C odes .

5.5.5 Single Error Correction, Double Error Detection (SEC-DED) .

5.6 Encoder D esign .

5.7 D ecoder D esign .

6 Results

6.1 Tuning the Equalizer and Choosing Data Rates

6.2 Results Compared to a Binary Symmetric Channel

6.3 Uncoded Results .

6.3.1 Number of Errors Per Word for Each Data Rate and Block Size

6.3.2 Error Lengths for Each Data Rate and Block Size

6.4 Coded Results .

6.4.1 Simplifications and Approximations Used for Generating

6.4.2 Results for Hamming Codes

6.4.3 Results for SEC-DED Codes

6.4.4 Results for BCH Codes

6.4.5 Results for Fire Codes

6.4.6 Results for More Powerful BCH and Fire Codes

6.5 Code Comparison .

6.6 Remarks on Hardware Requirements of Codes

6.7 Alternative Codes that May Yield Good Results

7 Conclusion

7.1 Recommendation for Future Work

7.2 Final Recommendation .

Results

5

32

33

35

39

41

42

42

43

44

45

46

47

49

49

50

51

51

52

54

55

56

60

62

65

67

68

71

71

72

73

74

. . .

.

.

.

.

6

List of Figures

High-Speed Link Channel Diagram .

A Typical State-of-the-Art Transceiver Cell

A Received Pulse After the Link Effects .

LFSR for Encoder Implementation .

Binary Symmetric Channel (BSC) Model

Laboratory Setup.......

Different Materials Used in Backplanes: Rogers, NELCO, FR4

High Level Block Diagram .

LFSR Implementation for the PRBS generated by g(X) = X3 1 + X 8 + 1. .

Transmitter Block Diagram .

Transmitter Finite State Machines .

Receiver Block Diagram .

Receiver Finite State Machines .

RAM Connections to Create a Histogram

Cycle-by-Cycle Example of Creating a Histogram Using a RAM

Encoder Circuit for the Last Parity Bit in the (40,34) Hamming Code . . .

A Generic Encoder for a Code with More Than 40 Bits

D ecoder Circuit .

Link Behavior at 5.5 Gb/s, 6 Gb/s, and 6.75 Gb/s

Distribution of Errors Per Word at 6 Gb/s and 6.25 Gb/s

Distribution of Error Lengths at 6.25 Gb/s on a Rogers Link

Data Dependency of Coded Hamming Data Stream at 6 Gb/s

Data Dependency of Coded Hamming Data Stream at 6.25 Gb/s

Hamming (40,34) and (80,73) Correction Results

Effectiveness of Hamming Codes for N =40, 80, or 1000 and Data Rates of

SEC-DED (40,33) and (80,72) Correction Results

8

9

9

. 14

. 15

. 27

. 30

. 31

. 32

. 33

. 34

. 35

. 36

. 39

. 40

. 46

. 47

. 49

. 51

. 52

. 53

. 57

. 57

. 58

6 and 6.25 Gb/s 59

. 61

Effectiveness of SEC-DED Codes for N =40, 80, or 1000 and Data Rates of 6 and 6.25 Gb/s 63

Effectiveness of BCH Codes for t = 2, N =40, 80, or 1000, and Data Rates of 6 and 6.25

G b /s . 64

Data Dependency of Coded Fire Data Stream . 65

Effectiveness of Fire Codes for 1 = 4, N =40, 80, or 1000, and Data Rates of 6 and 6.25 Gb/s 66

Effectiveness of the (480,435) BCH Code and the (480,425) Fire Code at 6 and 6.25 Gb/s 67

Bit Error Rate Improvement For Each Code at 6 Gb/s . 69

Bit Error Rate Improvement For Each Code at 6.25 Gb/s 69

7

List of Tables

1 PowerPC Address Space . 40

2 Bit Error Rate for Various Data Rates on a Rogers Link 50

8

1 Introduction

There is a constant struggle to keep up with the increasing demands in various applications requiring

high-speed chip-to-chip interconnects, such as network routers and processor-memory interfaces. To

increase data rates while maintaining reliability, new advances must be made in the techniques used

for data transmissions through backplanes. Backplanes are used in router backbones, where multiple,

densely compact channels are needed, each transferring data at very high speeds. The purpose of the

work described in this document is to demonstrate the potential of a new approach to transceiver design:

energy-efficient coding. This technique should help alleviate the current bottleneck in achieving higher

data rates.

1.1 The Problem

A typical high-speed link channel consists of the components in Figure 1. This system is highly complex,

due to various sources of impedances, short traces like stubs and vias which are susceptible to reflections,

and longer traces which suffer from attenuation. Added on top of the channel effects are the wide range

of noise sources that are non-additive white Gaussian (non-AWG), such as sampling offset, supply noise,

and jitter [2]. The current technique for transceiver design involves opening the eye of the signal with

complex transmit and receive equalizers. However, the complexity of the equalizer and the number of

taps is severely limited by the high throughput and high energy-efficiency needed by the application.

Thus, to maintain high reliability, data rate is sacrificed.

An example of such a transceiver implementation is shown in Figure 2 and is described further in [3].

Package- t

On-chip parasitic
ttermination resistance and ickage

Line card trace device loading capacitance)

Back plane trace Back plane connector Line card

Backplane via

Figure 1: High-Speed Link Channel Diagram [1]

9

Anticsusa aItaps Sampled Deadband Feedback taps
TXa Data

---)Channel
TapSel

Causal Logic
tp \ 4 4

Figure 2: A Typical State-of-the-Art Transceiver Cell [3]

40 1

O 0.8

0.6

0.4

0.2

0

0 1 2 3
ns

Figure 3: A Received Pulse After Link Effects [4]

The purpose of the hardware is to apply signal processing techniques to cancel the inter-symbol inter-

ference (ISI), which is deterministic. There are two types of ISI caused by the channel. The first is

dispersion ISI, illustrated by the widening of the pulse in Figure 3. The effects of dispersion are short,

so only short-length filters are necessary to combat the errors. The signal, however, has smaller pulses

a few nanoseconds after the initial pulse because of the second type of ISI, reflections. Reflections are

caused by impedance mismatches between the various connectors of the system components in Figure 1.

In order to combat these reflections, current methods dissipate a large amount of power.

To combat the ISI described above and pictured in Figure 3, the hardware must be very complex and

powerful. A linear equalizer called a precoder is used on the transmitting side. At the most fundamental

level, the precoder consists of a simple FIR filter. The taps are designed to reduce the effect of surrounding

data bits on the current data point of interest. In this particular transceiver design, five equalizer taps are

used. On the receiving end, a decision-feedback equalizer (DFE) is the standard equalizer architecture.

For causal ISI, the DFE can subtract away errors from the bit entering the receiver. In the design, the

receiver may use up to 17 taps to cancel a single bit.

Tsym bol=160ps

10

At a bit error rate of 10-15, all of the required hardware burns a total of 40 mW/(Gb/s) and is only

capable of operation at 10 Gb/s for 4-PAM signaling and 5-6.4 Gb/s for 2-PAM signaling. From the

calculations made in [51, links should be capable of supporting data rates between 80 Gb/s and 110 Gb/s.

The performance of the transceiver in [3] clearly falls short of this mark.

Finally, to illustrate the necessity of improved transceiver design, consider the result of using this

state-of-the-art transceiver to create a 40 Tb/s crossbar router chip. Typical chips currently support 1

Tb/s, so 40 Tb/s is not an unrealistic increase. 4000 of the current 10 Gb/s transceivers would have

to be used in the router chip to achieve the desired data rate. Since each transceiver uses a differential

pair, this means that the chip would need 8000 I/O pins, requiring the total on-chip area to be 4000

mm2 . The resulting switch card would be 160 inches wide and 100 inches long. Furthermore, since each

transceiver dissipates 40 mW/Gb/s, the power consumption for the crossbar chip would total 1.6 kW in

130 um CMOS technology [3].

Clearly, these results suggest that a completely new technique may be required in order to approach

the theoretical capacity of links, and thus be able to create a 40 Tb/s router chip. At the very least, an

order of magnitude increase in the energy-efficiency and the data rate of each transceiver is necessary. The

ongoing research in high-speed links attempts to push the data rates to approach the full capacity of the

link channel. For example, the advantageous parallelism of multi-tone techniques presented in [6] improves

the achievable data rates significantly, but the results fall well short of the desired mark. Regardless of the

modulation or equalization technique used, it is necessary to apply coding to approach full link capacity.

The challenge is in doing so in an energy-efficient manner.

1.2 The Proposed New Technique

The proposed remedy to the current limitations in data rate is to add coding techniques. More specifi-

cally, reflections may be considered a noise source and handled by the code rather than the equalizers.

Reflections are only weakly correlated, so coding may be much more effective than signal processing tech-

niques at elimination their effects. The equalizer's primary job would then be to combat dispersion ISI,

which requires fewer taps. Thus, the complexity of the equalizers may be reduced as well as the amount

11

of power dissipated. From here on, this thesis will refer to reflections as a noise source and not as ISI.

Another source of errors in link transmission not mentioned above is the signal interference caused by

crosstalk. Because the signal paths in backplanes are so densely compact, the data of surrounding wires

will affect the signal and possibly cause errors. Since crosstalk is not correlated with the data of interest,

coding can also potentially address any issues caused by this source.

Until recently, coding for links has not seriously been considered, because the overhead required by

coding and the added receiver latency appeared too difficult to surmount. Thus, it is the purpose of this

work to show that there is definite potential in applying coding techniques. Existing codes are used to

show that even codes not designed specifically for links can be advantageous if applied in the correct

manner. Furthermore, these existing codes provide hints as to what properties are particularly effective

at tackling the non-AWG noise sources of links.

The results of this work will feed directly into future research, especially involving the design of codes

created specifically to address link error characteristics and the design of transceivers that incorporate

both equalization and coding.

2 Background

For the remainder of the document, it is necessary for the reader to have a basic knowledge of coding

theory and the particular codes chosen for implementation in the project. Furthermore, much of the

terminology used in the document is defined in the following subsections. The descriptions, however, are

not mathematically thorough and are only intended to provide the reader with enough insight to under-

stand the work involved in the project. For more in depth information on coding, especially concerning

mathematical concepts and proofs, see [7].

2.1 Basic Coding Theory

The purpose of coding is to increase the reliability of data transmission through a noisy medium. Some

redundancy is added to the information in order to detect and possibly correct errors that occur through

the channel. The typical metric for quantifying the reliability is the bit error rate (BER), defined by the

12

total bit errors that occur divided by the total bits sent through the channel. Thus, the objective of the

code is to reduce the BER.

There are two main classes of codes: block codes and convolutional codes. Block codes segment

the binary sequence of information bits into k-bit blocks and calculate the redundancy for each block

separately. The k bits are each transformed into n bits, where n > k and m = n - k is the number

of redundant bits. Convolutional codes also transmit n bits for every k bits, but the parity bits are

generated serially. Convolutional codes typically have very high overhead, and are not well suited for

binary modulation on band-limited channels. Therefore, this thesis is focused on relatively high-rate

block codes.

2.1.1 Linear Block Codes

An (n, k) block code is a code that transforms a message of k bits into a codeword of n bits. The ratio

R = k/n is the code rate of the block code, and it is the fraction of the bits sent through the channel

that carries actual information. A block code is termed linear if the sum of two codewords is another

codeword, and the class of linear block codes is a large and powerful class of codes used in this project.

The Hamming distance, dmin, is an important metric for describing the resiliency of a code. The Ham-

ming distance is the minimum number of errors that must occur for any one codeword to be transformed

into any other codeword. Therefore, a code with a Hamming distance of three will be able to detect all

single-bit errors and double-bit errors within the n-bit block, since the resulting block is not a codeword.

For error correction, a t-error-correcting code must have a Hamming distance of 2t + 1 < dmin 2t + 2.

For example, a code with dmin = 3 can correct all single-bit errors but not all two-bit errors, since a

two-bit error may cause the block to more closely resemble a different codeword.

Generator and Parity-Check Matrices A code may be defined by a k x n generator matrix, G,

or an m x n parity-check matrix, H, where m = n - k. If the k-bit vector, u, represents the message

sequence, v = u - G gives the corresponding n-bit codeword vector. On the decoding side, the n-bit

vector, r = v + e is received, where e is an error vector that contains a 1 at a position if an error occurred.

Afterward, s = r -HT is computed, where s is called the syndrome of the vector. H is in the null space of

13

G, so the syndrome will be zero only if r is a codeword. For r to be a codeword, e must be a codeword.

The all-zero error vector, which indicates that no errors took place, is itself a codeword. Therefore, we

must assume that an all-zero syndrome indicates that no errors took place. Using this approach, an error

will go undetected only if e is a non-zero codeword, and all errors for which e is not a codeword can be

detected. (Note: For this reasoning, it is easy to see that higher-weight codewords are desirable, where

the weight is the number of 1's in the codeword, so that the probability of an undetected error is lower.

In fact, the Hamming distance is equal to the weight of the lowest-weight codeword)

There are 2m syndrome values for any given code, so if error correction is required by the system, then

at most 2' different error patterns, e, may be corrected. There are, however, 2 " = 2m x 2 k possible error

patterns. Therefore, there are 2k error patterns that will cause the same syndrome value, and to maintain

a high code rate, 2 k is usually much greater than 2m. The decoder does not have enough information

to distinguish between these 2 k error patterns. The decoder essentially assumes that, given a non-zero

syndrome, the error pattern with highest probability occurred, and it corrects r accordingly. If in fact a

less probable error pattern caused the syndrome value, a correction error will occur.

A code is in systematic form if the codeword consists of the k information bits followed by the m

parity bits. To generate a code in systematic form, the rightmost columns of G should be the k x k

identity matrix. The remaining, leftmost columns describe how the information bits form the m parity

bits. Thus, G = [P Ikxk]. Similarly, for H to be in the null space of G, the leftmost columns of H must

then be the m x m identity matrix, and therefore H = [Imxm P'J.

Cyclic Codes Many important linear block codes are cyclic, which means that shifting any codeword

produces another codeword. Cyclic codes can be described simply by a generator polynomial, g(X) =

1+aoX +a 2X 2 + ... + amXm, where the ai's take on binary values. All codewords in the code are divisible

by the generator polynomial, so the syndrome can be obtained by merely dividing the received vector by

g(X).

Cyclic codes are especially useful because they can be encoded and decoded simply using linear

feedback shift registers (LFSRs). The feedback connections are specified by g(X) (see Figure 4). The

tradeoff in using this type of implementation is speed, for it takes k clock cycles at the encoder to create

14

ao ai a,

+ + .. +

Figure 4: A simplified LFSR that generates the m parity bits for a cyclic code with g(X) = 1 + a 0X +
a 2 X 2 + ... + am-iXm-l. a2 is a wire when ai = 1. Otherwise, it is an open circuit. At the encoder, with
all the registers initially set to zero, the information bits are fed into the bottom right serially. After all
k information bits have been shifted in, the register contains the m parity bits.

the parity digits, and n clock cycles at the decoder to generate the syndrome digits (plus additional cycles

for error correction, if necessary).

Shortened Codes Many widely used codes are specified for a particular n and k. However, different

applications may require block sizes other than the one specified. It is always possible to create a (n-1,

k-1) block code by removing I columns from the parity-check matrix, and adjusting the generator matrix

accordingly. This new, shortened code has at least the error detecting and correcting capability of the

original code, and often performs better at the expense of a decreased code rate.

Also, it is simple to create a (n-1, k-1) shortened cyclic code. A shortened cyclic codes may be generated

using the same circuitry as the one used for the original cyclic code with only minor alterations in the

decoder. Since shortening a cyclic code is equivalent to removing all codewords with I leading zeros, the

resulting codewords are no longer cyclic. In general, a code can be shortened by deleting any columns

of the parity-check matrix other than the columns that make up the m x m identity matrix. However,

to keep the same hardware as the original cyclic code, the last 1 columns of the code's corresponding

parity-check matrix must be deleted.

2.2 Types of Errors

There are two general types of errors that may occur during transmission: burst errors and random errors.

Errors are considered bursty if there are multiple errors that occur within some reasonably short length.

Thus, the following error patterns are bursty with a burst length of 6: 100001, 110001,..., 111111. Burst

errors occur when the errors are correlated. For example, compact discs are often subject to burst errors,

15

1-p

1 1
1 - p

Figure 5: Binary Symmetric Channel (BSC) Model

since scratches are likely to affect multiple information bits in a row.

On the other hand, if there is no correlation between bit errors, then the errors are random. If all bit

errors are independent, using the binomial distribution, it is easy to see that the probability of a higher-

weight error pattern occurring is less than that of a lower-weight error pattern. Thus, for a channel with

random-errors, it is beneficial to correct low-weight error patterns. The Hamming distance of a code is

therefore the proper metric to judge the strength of the random-error-detecting/correcting ability of code.

Clearly, increasing the Hamming distance of a code is not the proper way to reduce the BER of a burst-

error channel. Instead, burst-error-correcting and burst-error-detecting codes are designed to correct or

detect a particular burst length. The Hamming distance is usually not specified in these types of codes,

since the particular number of errors in the block is not the concern. Thus, a burst-error-detecting code

with length seven correction ability can correct all error patterns of error length seven, but may not be

able to correct a 2-bit error separated by eight bits.

It is also possible to design a code that has both random-error and burst-error detection and correction

properties. Often times, this is accomplished by combining a code of a particular Hamming distance with

a code of a particular burst-error-correcting length. As expected, the code suffers from a lower code rate.

2.3 The Binary Symmetric Channel (BSC) Model

A simple and commonly used channel model is the binary symmetric channel (BSC) model (Figure 5),

which applies only when the probability of a bit error is independent of all other bits transmitted and

the error probability is constant for all bits. In a BSC, the probability of an error occurring for any given

bit is p, the BER.

It is useful to determine if the actual channel can be modeled as BSC, since it is a model based

16

on a single variable, the BER, which can be easily calculated experimentally. Furthermore, it would

be particularly easy to set up an accurate simulation environment to test different codes. In fact, the

performance of many codes has already been studied for a BSC, so choosing the right code for the

application is dramatically simplified. Finally, random-error-detecting/correcting are most effective over

BSC channels, so if the channel is binary symmetric, it is clear that coding will be effective.

2.4 Coding Systems

In order to capitalize on coding techniques, the codes must be implemented in some error correction

protocol. In a real transmission system where the purpose is to correctly receive transmitted data, it

is useless for the receiver to be able to detect an error if it is not able to utilize this knowledge to

obtain the correct data. Thus, error-detecting codes must be used in conjunction with other techniques.

The following sections describe techniques for error correction using codes that detect, correct, or can

simultaneously do both.

2.4.1 Forward Error Correction (FEC)

A forward error correction system uses the most straightforward strategy. FEC systems utilize only the

error correcting capability of codes. The transmitter sends a codeword through the channel, and the

receiver attempts to correct any errors that occurred during transmission. The output of the decoder is

then sent to the destination.

2.4.2 Automatic Repeat Request (ARQ)

An automatic repeat request decoder does not attempt to correct errors that occur in transmission, but

instead asks for the data to be retransmitted until the block is correctly received. Thus, ARQ protocols

only rely on error detection.

Automatic repeat request systems require both a forward channel and a back-channel. The transmitted

data is sent through the forward channel. Once a codeword is received and decoded, the receiver transmits

either a positive acknowledgment (ACK) or a negative acknowledgment (NAK) to the transmitter through

the back-channel. A NAK signals to the transmitter that an error has been detected. Once a NAK is

17

received, the transmitter queues the corresponding word for retransmission.

Since only error detection is required, the only way for the destination to receive incorrect information

is if an undetected error occurs. ARQ systems are often preferred to FEC systems, since error detecting

codes require much less hardware, and error detection is much more reliable than error correction.

There are multiple types of ARQ protocols that trade off throughput and complexity. The delay

through a high speed backplane is short enough such that ARQ systems have very high throughput.

A typical 20 inch backplane has a round trip delay of approximately 100 symbols. The different types

of ARQ systems are not studied in this project, so the reader is referred to Chapter 22 of [7] for an

introduction to the different types.

2.4.3 Hybrid Forward Error Correction / Automatic Repeat Request

As suggested by the name, hybrid FEC/ARQ schemes utilize both error correction and detection with

retransmission. In general, the most common errors are corrected. The less frequent errors, which may

be mis-corrected if correction were attempted, are left for retransmission. Using a hybrid scheme requires

further code examination, since the object of the code is no longer to maximize either correction or detec-

tion capability, but to find a compromise between the two. With simultaneous error detection/correction,

the more error patterns the code attempts to correct, the fewer error patterns it will be able to detect

overall. Thus, there is a tradeoff as to how much correction should be attempted.

2.5 Known Codes

A wide range of codes with varying capabilities are used in the project. Few errors per block are expected,

so these codes are chosen for their lower error correcting or detecting ability and high code rate. The

codes studied are Hamming, BCH, Fire, SEC-DED, and CRC codes. Specifically, Hamming codes have

high rate and are capable of correcting the most common type of errors, single-bit errors, and detecting

double-errors. BCH codes extend the correcting capability by one bit error and the detecting capability by

two bits, since multiple errors per word happen relatively frequently. Fire codes are burst-error-correcting

codes, so they provide insight into the effectiveness of burst-error-correction in links. SEC-DED codes

18

are a common, high rate code designed especially for hybrid FEC-ARQ systems. Finally, CRCs are cyclic

codes that are used strictly for detection in ARQ schemes. More detailed descriptions of each class of

codes follows.

2.5.1 Hamming Codes

Hamming codes are a very popular class of codes used for single-error-correction. Hamming codes are

desirable, because they have a very simple structure and a high code rate. They are used in forward error

correcting schemes when the errors are random and the error rate is low. The same code, if desired, may

also be used instead for double-error detection.

Code Structure For a given number of parity bits, m, Hamming codes have a block size of n = 2' _ I

for m > 2. Thus, the Hamming codes with the shortest block sizes are the (7, 4), (15, 11), and (31, 26)

codes.

A Hamming code has a parity-check matrix of size m x (2' - 1). The 2m - 1 columns consist of all

the non-zero combinations of m bits. Assuming the Hamming code is in systematic form, the first m

columns consist of the m x m identity matrix. This leaves the remaining k = n - m columns with all the

combinations of weight-two or greater.

Hamming codes may also be cyclic. Cyclic Hamming codes are generated using a primitive polynomial

of degree m.

Code Properties The Hamming distance of a Hamming code is precisely three. This can be seen

by examining the parity-check matrix and knowing that the Hamming distance of a code is equal to the

number of columns of H needed to sum to zero (see [7] for a proof). Since all 2 m -1 non-zero combinations

of m bits are used as the columns, adding any two columns together will always give the value of another

column. Thus, the modulo-2 sum of these three columns gives a zero vector.

Since the Hamming distance is three, the code is able to correct all single-bit errors. Furthermore,

Hamming codes are one of a few known perfect codes. There are exactly n error patterns of single weight

and exactly 2m - 1 = n non-zero syndrome values. Thus, every syndrome value can be used for single-bit

19

error correction. This is especially useful for FEC, since the code essentially takes full use of all the

redundancy.

The Hamming distance of three also means that the same codes can be implemented to detect all

errors of weight one or two. Thus, Hamming codes can be used in an ARQ system.

2.5.2 Bose, Chaudhuri, and Hocquenghem (BCH) Codes

Bose, Chaudhuri, and Hocquenghem (BCH) codes are a class of t-error-correcting codes ([8], [9]). When

t = 1, BCH codes reduce to Hamming codes. There are a number of different types of BCH codes, and

not all of them are binary. Reed-Solomon codes, for example, are a commonly used subclass of BCH

codes that are nonbinary. Due to the complexity, and therefore lower energy-efficiency, involved with

non-binary BCH codes, the only codes of interest in the project are binary, primitive BCH codes.

Like Hamming codes, the block size of BCH codes are 2" - 1. The number of parity-check digits

required, however, is at most mt, where t is the number of bit errors the code can correct. For most block

sizes of interest, the number of parity bits required is exactly mt.

Further discussion on the structure and properties of BCH codes is omitted, since BCH codes are

constructed using mathematical tools in fields greater than GF(2) (i.e. non-binary). For more information

on BCH codes, the reader is referred to [7].

2.5.3 Fire Codes

Fire codes are the first class of systematically constructed single-burst-error correcting codes. Fire codes

also have good burst-detecting cap

Code Structure A Fire code with a burst-error-correction length of 1 is generated by g(X) = (XC +

1)p(X), where c = 21 - 1. The polynomial, p(X) is an irreducible polynomial of degree m, where I < m.

Define p to be the smallest integer such that p(X) divides XP + 1. Then c cannot be divisible by p, and

n = LCM(c, p).

20

Code Properties To generalize the definition given above, a Fire code is actually able to simultaneously

correct bursts of length I and detect bursts of length d for d > 1 according to the equation, c > 1 + d - 1.

Thus, the definition given in the previous section is the special case for obtaining the Fire code with

greatest burst-error-correcting length. If the correction requirement is relaxed, the detecting capability

of the code expands. On the far extreme, if only detection is used for an ARQ protocol, a Fire code is

actually capable of detecting all bursts of length c + 1.

2.5.4 Single-Error-Correcting, Double-Error-Detecting (SEC-DED) Codes

The class of codes for single error correction and double error detection (SEC-DED) was first proposed by

Hamming in [10] and later refined by Hsiao [11]. They are suited particularly well for hybrid FEC/ARQ

systems. SEC-DED codes are designed specifically for obtaining high memory reliability in computers.

Code Structure SEC-DED codes are constructed by appropriately shortening Hamming codes in such

a way that the Hamming distance is increased to four. First, all even-weight columns in the parity-check

matrix are removed. Afterward, to reach the required block size, odd-weight columns of largest weight

are removed. These large-weight columns are removed in such a way that the final parity-check matrix

has the same number of 1's in each row, or as close to the same as possible.

Code Properties The Hamming distance of four guarantees that the code can always accurately correct

single errors and detect double errors. If a single error occurs, the received vector will always be closest

to the actual codeword, and correction can remove the error. If two errors occur, the received vector may

be most similar to multiple codewords, so the errors can only be detected.

To see that the Hamming distance is four, we note that even-weight syndromes (like the zero-vector)

must result from adding an even number of distinct, odd-weight columns from the parity-check matrix

together. This, combined with the fact that the Hamming distance must be at least that of the Hamming

code, from which the SEC-DED code is derived, means that the Hamming distance is at least four.

Another valuable property that results from using odd-weight columns is ease in determining whether

to apply correction or detection on a received vector with a non-zero syndrome. If the syndrome is

21

odd-weight, an odd-weight error pattern must have occurred. The decoder assumes that a single error

occurred, and it attempts to correct the received vector. If the syndrome is even-weight, then at least

two errors have occurred, so only retransmission is possible.

SEC-DED codes are designed for encoding and decoding the entire codeword in parallel. For this

reason, the algorithm creates a parity-check matrix with a minimum number of I's and an even distrib-

ution of 1's between the rows. These two requirements guarantee that minimum logic levels are used in

calculating each syndrome bit, allowing for faster clock speeds.

2.5.5 Cyclic Redundancy Check (CRC)

A cyclic redundancy check code is simply the term used to describe a cyclic or shortened cyclic code used

for error detection within an ARQ system. Thus, if a cyclic Hamming, BCH, or Fire code is used only

for error detection, it is considered a CRC.

Code Structure A CRC is defined by its generator polynomial, g(X). There is no systematic way to

choose g(X) and no boundary on what the block size should be given a particular g(X). Often times, a

"standard" polynomial is chosen for an application only because it is a commonly used polynomial, and

may in fact be inferior to many other polynomials.

Code Properties Because there is no defined structure for a CRC code, it is not possible to determine

the Hamming distance of the code without knowing both g(X) and the block size. In [12], the authors

provide insight into the effectiveness of commonly used generator polynomials and a few new polynomials.

Furthermore, from an exhaustive search, they determine the best g(X) for a given information length, k,

and CRC size, m.

The one property common with all CRC codes is the burst error detection capability. As with any

cyclic and shortened cyclic codes, CRC codes can detect all bursts up to the CRC size.

22

3 Previous Work

Although coding is a commonly used technique for increasing transmission reliability, it has typically

been dismissed as implausible for use in high-speed links. This is due to the fact that the throughput

requirement of links is extremely high, and using a code immediately, and often drastically, reduces the

information rate. Only recently has research started in the field of link coding.

In [13], a (62, 56) shortened Hamming code was used for a link running at 10.3125 Gb/s. The code

was able to reduce the bit error rate by many orders of magnitude, from 3.2 x 10-9 to 3.86 x 10-16.

This work shows that there is great potential in applying coding to high speed link transmissions, since

such a simple, general code was able to achieve such impressive results. More recently, a run length code

combined with a double-error-correcting, primitive BCH code was demonstrated. [14]

The authors of [15] took another approach to link coding. They developed a 4-PAM coding scheme

that improves performance by eliminating full-transition swings. Certain worst case patterns are com-

pletely removed, improving the timing margin and decreasing distortion. The work is quite successful at

demonstrating the possibility of designing a code that is aimed specifically at combating high-speed link

noise.

4 Problem Statement

4.1 Purpose of the Work

4.1.1 Limitations in Current Methods in Link Transmissions

As described in the Introduction, currently the only method of combating errors in link transmissions is

to use transmit and receive equalizers. However, due to factors such as reflections, which affect several

subsequent symbols, in the current design approach, the only way to increase the performance of a link is

to find a new way to increase the number of equalizer taps in the power-constrained environment. Even

if new circuit techniques were discovered to increase the number of taps, it does not seem likely that an

entire order or magnitude increase in both energy-efficiency and data rate could be achieved.

23

4.1.2 The Goal of This Work

Rather than using the complicated equalization techniques described above, a system based on both

equalization and coding is being developed. With this added technique, the raw BER requirement (i.e.

without coding) may be reduced to as low as 10-r. This will significantly reduce the complexity and

hardware requirements of the equalizers, and thus reduce the power burned by the transceiver. To bring

the BER back down to 10-", a carefully chosen or designed code will be implemented, which itself will

have some associated hardware and burn some amount of power. The initial goal is to obtain the same

reliability as current implementations at higher energy-efficiency.

The specific goal of this project is to examine the potential of link coding and determine the direction

that future research in this area should take by obtaining information and providing answers to the

following questions:

" Study the effectiveness of current, commonly-used codes in links. There are a wide range of codes

being used today, and they all have very different properties. If a simple Hamming code, as described

in [13], is capable of obtaining such remarkable results, a desirable question that needs to be answered

is: what other codes would work better? And more significantly, what properties do these codes

possess that make them so appropriate for the link environment?

* Provide a general suggestion on which of the commonly-used codes may be used and in what

situations. Many codes behave differently in different situations, so, for example, a code that works

well at a certain data rate may behave poorly at another. Also, the code rates vary quite significantly

from one code to the next, so there may be block sizes that some codes just should not support.

The important question to answer is, given a set of criteria on block size, data rate, etc., what is

the best code to use? What makes that code the better than all of the others?

* Rationalize the use of error-correcting codes for an FEC system, error-detecting codes for an ARQ

system, or a hybrid of the two. As presented in [16], a back-channel can be obtained by using

common-mode signaling. Therefore, it is plausible for all three types of coding protocols to be

used. The requirements of an ARQ system are quite different than those of an FEC protocol. It is

24

therefore necessary to determine which type has the most potential to work for links.

* Give a recommendation on how to progress with the study of coding for links. The work in this

project ranges from studying random-error vs. burst-error detecting/correcting codes to studying

error detecting versus error correcting codes, and even to finding the appropriate block size. With

all of these variables to examine, is there a single combination that is clearly superior? If not, then

what are the most promising results that should be looked into further in the future?

The first step in achieving the goal is to study the type of errors that occur in links. Pseudo-random

data is sent through the link in order to obtain the error statistics of raw, uncoded data. After examining

the error statistics of the link, it is then possible to make a reasonable prediction as to what properties

(i.e. Hamming distance or length of burst-error correction/detection capability) an effective code should

possess. Also, the error statistics will reveal what block sizes would be reasonable to implement.

Based on these findings, a few known codes are chosen with some or all of the necessary properties.

The chosen codes are then implemented in an FPGA test bench for three different block sizes. An FPGA

framework is used, because it offers flexibility in code design and complexity evaluation for different

schemes while cutting down the time to build a custom, equivalent system.

Based on both the predicted and experimental results of the code, preliminary conclusions can be

made as to what type of code is most suitable for link applications. Then suggestions for future research

can be recommended.

4.1.3 Limitations in Previous Methods in Link Coding

There have been some attempts at coding for links, as described in the Previous Works section, but they

do not attempt to answer any of the questions stated above. There are further limitations as well that

prevent their results to be of particular use to this project.

In the first example ([13]), although an amazingly low BER is observed, it can not be attributed only

to the Hamming code. Due to hardware constraints, the data is protected by both 8B/10B and 64B/66B,

which essentially eliminates all the worst-case data patterns. Also, in order to increase the amount of

errors, a noise source external to the system was used to inject errors into the system. This noise source

25

is the dominant noise source, so the results are not an accurate reflection of the performance of the code

at preventing errors caused by typical link noise.

Furthermore, only one code, the shortened (62, 56) Hamming code was implemented, which was

chosen only for its simplicity and small block size. The purpose of the work was to show in a very

basic, preliminary test that coding for high-speed links has potential for improving the bit error rate

significantly, which it was very successfully at doing. However, the work does not attempt to further our

knowledge of link behavior when coding is used, nor does it broaden our understanding of how effective

other codes in general can be.

The main issue with the code developed by [15] is the large overhead. The code rate is only 80%.

Such a low throughput is generally undesirable, and, due to the highly low pass characteristic of links,

increasing the bit error rate in links to increase the information rate will likely remove most, if not all, of

the improved effects of the code.

4.2 Simultaneous Work and Future Plans for Link Coding

The work in this project is part of an extensive, multi-stage effort to develop a system that achieves

high energy-efficiency and data rates that are closer to the theoretical limit. The high level stages of the

project are:

" Phase 1: Link Simulation

" Phase 2: Power-Performance Analysis

* Phase 3: Design of New, Energy-Efficient Codes

" Phase 4: Implementation of New Codes

The first two stages are preliminary, setup phases for the overall project. This project is part of the

second stage. The first stage is being studied and implemented concurrently. Specifically, the purpose of

the Link Simulation phase is to set up an accurate and reliable simulation system to implement and test

different codes. The simulation environment is especially important since the physical hardware designed

26

to provide a general, all-purpose solution, and therefore has natural limitations that will not be a factor

once a custom test chip is built.

The Power-Performance phase will be completed once the codes studied in this project are actually

implemented in a complete coding system (i.e. ARQ) using a theoretical Matlab model and, hopefully,

the link simulator. At that point, the energy-efficiency of the system, which is affected by both the code

and type of coding system, may be determined. This information, in addition to the performance of the

model, is sufficient for obtaining a quantitative evaluation of the power-performance tradeoffs of various

known codes.

The design of new codes will be directed by the results of the power-performance analysis of known

codes. The design will attempt to utilize and incorporate those properties of known codes that are

effective at combating link noise sources. The performance of the code may undergo preliminary tests

using the same test hardware as was used in this project. The actual performance, however, will not be

known until a custom circuit is designed in the final stage.

Designing a link that runs at such high speeds is a very difficult task. The new codes designed will

likely have specific hardware requirements for the encoder and decoder. Thus, the circuit designer working

on the fourth stage of the project must not only design a high-speed transceiver, but must also incorporate

a high-speed encoder and decoder and all associated hardware, as well as any extra hardware required by

the coding system.

The overall goal of the project is quite ambitious, and if the resulting test chip can be shown to work

effectively, it will make a huge impact in link transmission methodology. The results of this intermediate

project are very significant to the overall project, since it shows just how much potential there is in coding

for high-speed links and that future study in this direction is desirable.

27

Figure 6: Laboratory Setup. The labels on the figure indicate the 1) Virtex-II Pro X FPGA, 2) RocketIO

X SMA Connectors, 3) Differential clock from external signal generator for clocking the transceivers, 4)

RS232, 5) JTAG Cable for programming the FPGA, 6) Differential transmit coaxial cables, 7) high-speed

backplane, and 8) differential receive coaxial cables.

5 Methodology

5.1 Description of Hardware

The hardware required for the project includes a Xilinx FPGA with built-in transceivers, Rambus line

cards and backplanes, coaxial cables, and other general laboratory equipment. The entire set up is

shown in Figure 6. A pseudo-random data stream is generated in the FPGA, encoded, sent through the

backplane and brought back to the FPGA via the coaxial cables and line cards. Once the FPGA receives

the transmitted data, it can be decoded and any errors that occurred may be observed and recorded.

5.1.1 Virtex II-Pro X FPGA

The FPGA board used in the project is a general purpose demonstration board, called the MK325,

designed by HiTech Global. It contains a Virtex II-Pro X FPGA.

This particular FPGA has many built-in features that make it suitable for the demands of the project,

including:

-, I I I -- _ I -

28

" Digital Clock Managers (DCMs): The FPGA has eight digital clock managers that can multiply

and divide the frequency and change the phase of an input clock. The DCMs allow the user to

simply create a system with multiple clock domains without having to bring in extra off-chip clock

sources.

* Block RAMs: The Virtex-II Pro X has 308 block RAMS of 18kbits each, which can be combined to

make larger storage devices. These block RAMS are suitable for implementing FIFOs and RAMs,

which are not efficiently implemented using logic cells.

" RocketIO X Transceivers: The RocketIO X transceiver is the I/O device that is used to drive the

device under test (DUT). The next section is devoted to describing the RocketIO X.

" IBM PowerPC Processor: The FPGA has two embedded 32-bit IBM PowerPC processors. The

PowerPC processors uses block RAM for its data and instruction memory. PowerPC programs are

programmed in C and then loaded into the block RAM when the FPGA is programmed. The proces-

sors may be utilized if a software solution is more appropriate to parts of the design. The PowerPCs

may also be effectively used for controlling drivers for FPGA peripherals, such as RocketIO drivers.

The processors communicate with its peripherals via two buses, called the Processor Local Bus

(PLB) and the On-Chip Peripheral Bus (OBP). The designer must connect the peripheral drivers

to one of these buses and define its address space. The drivers can then be accessed and manipulated

using a the standard address/bus interface.

5.1.2 RocketIO X Transceivers

The RocketIO X, as is typical for high-speed applications, uses differential lines for transmitting and

receiving. The MK325 brings out all four pins for each of the 20 transceivers to SMA connectors for a

total of 80 SMA connectors. These connectors provide the interface between the RocketIO I/Os and the

channel.

The RocketIO transceivers are designed to operate up to 10 Gb/s, though because of board routing

and other issues, the MK325 only guarantees operation up to 6.25 Gb/s on all its the transceivers. The

29

transceiver used in this project was selected based on testing all 20 transceivers for the lowest bit error

rate. The selected transceiver is capable of 10 Gb/s operation for channels of relatively high quality,

including the channel that consists of a single coaxial cable.

The RocketIO accepts 40 bits of parallel data and transmits the data serially at 40 times the reference

clock. The bits are sent from the least significant bit to the most significant bit. For 10 Gb/s operation,

the FPGA logic must be clocked at 250 MHz from an external signal generator.

The RocketIO X communicates with the FPGA fabric through dedicated registers. Other than the 40-

bit transmit and receive data registers, there are many other registers that control the various transceiver

settings. Many of the features of the RocketlO X are bypassed, such as 8B/10B or 64B/66B encoding,

so the full effects of the channel and the coders/decoders can be examined. The RocketlO transmit and

receive equalizers, however, are also controlled by registers and must be tuned for each channel and each

data rate in order to eliminate excessive dispersion ISI. These more advanced features of the RocketlO

X can be manipulated using a special bus, called the Physical Media Attachment (PMA) Attribute

Programming Bus.

The RocketIO uses very simple equalizers that have rather coarse resolution. On the transmit side,

two separate registers combine to control the output swing and pre-emphasis levels. Between the two

registers, there are a total of 72 combinations. Depending on the chosen values, the output swing ranges

from 120 mV to 780 mV (single ended) and the pre-emphasis levels ranges from 0% to 500%. On the

receiver side, the magnitude of a highpass filter is controlled by a 10-bit register, where two bits control

the filter value between 50 MHz and 200 MHz, two bits control between 200 and 500 MHz, and six bits

control between 500 MHz and 2 GHz. For more information on the RocketIO X, refer to [17].

5.2 Desired Information to Capture

The purpose of the hardware system is to obtain enough information to get a reasonably clear picture

of how the channel noise affects the link. Other than obtaining the bit error rate, there is a wide range

of valuable information that can be captured about the error distribution. The type of errors caused by

channel noise directly determines what kind of code will be most effect at correcting or detecting them.

30

Figure 7: Different Materials Used in Backplanes. From front to back, the picture shows a Rogers,
NELCO, and FR4 link.

The error distribution affects three crucial aspects of a code: the expected Hamming distance required

by a code, the expected burst length correction/detection capability, and the range of block sizes, n, that

can be considered.

The expected number of errors in the block increases as the block size increases, but the code rate in-

creases as well. Thus, there is always a tradeoff between the block size and the needed detecting/correcting

capability of a code. It is this tradeoff that the designed system must be able to evaluate. Even though

the hardware imposes some restrictions on the block size, it is necessary that system be able to handle

a range of block sizes. For each block size, obtaining the distribution of both the burst length of errors

and the number of errors in the block completes the picture.

5.3 Line Cards and Backplanes

The line card used in the project is pictured in the top left corner of Figure 6. Typically, data is generated

on the white chip in the middle of the line card, as is diagrammed in Figure 1. However, in this case the

data is brought in externally using coaxial cables, also pictured, from the Virtex-I Pro X FPGA.

There are multiple types of backplanes available for the project, each of which are 20 inches long.

Figure 7 pictures backplanes with different substrates. The figure shows, from front to back, a Rogers,

NELCO, and FR4 backplane. FR4 is the typical material used for circuit boards. However, FR4 may be

too lossy at the high bandwidths required of high-speed links. NELCO and Rogers are alternatives to

FR4 and provide lower loss solutions.

There are many sources of reflections due to discontinuities in the signal path. One way of reducing

reflections between the line card and the backplane is to drill out the vias connecting them, a technique

31

Code Select Code Enable

Generator EnAT oder

Rocket1O X
Transceiver To Link

Code Select Decoder RXDATA
sesd

Code Enal G enerato r

Error Ve ctor

Clect ChanneI
Error Statistic s

Figure 8: High Level Block Diagram

called counterboring. The backplanes used in the project do not utilize counterboring, since they are the

more interesting case. Thus, due to availability, the choices are limited to NELCO and Rogers. Of the

two, the Rogers link is chosen for study, because it results in more errors and is therefore more interesting.

5.4 High Level Description of the Design

In its simplest form, the system can be viewed as the diagram in Figure 8.

At one end, the transmitter generates a pseudo-random bit sequence (PRBS) in blocks of 40, codes

the sequence, and sends it through the channel. The receiver then uses the transmitted data to seed a

replica of the transmitter's pseudo-random number generator. As long as the seed value is error-free, the

receiver's PRBS generator can produce the same sequence as the transmitter's. When the receiver can

accurately predict the incoming data, a locked state has been achieved. Once locked, the receiver need

only compare the incoming data to the generated data to determine whether any errors have occurred.

If there are errors, then the error vector is saved for processing. In the processing stage, both the error

length and the number of errors are calculated, as required by the discussion in the previous section.

In the next subsections, each portion of the design is discussed more thoroughly. The transmitter and

receiver design is based loosely on the Xilinx RocketIO Bit Error Rate Tester application note [18].

32

Figure 9: LFSR Implementation for the PRBS generated by g(X) = X 3
1 + X 8 + 1.

5.4.1 PRBS Generator

The pseudo-random number sequence is generated by inverting the sequence produced by the polynomial,

X 31 + X 8 + 1 as recommended by the International Telecommunications Union (ITU-T) [19]. The

polynomial generates a sequence of 231 - 1 bits before the entire sequence repeats again. For data rates

between 5 and 10 Gb/s, the sequence repeats every 0.21 to 0.43 seconds.

Only one bit is produced in a clock cycle if the standard LFSR implementation of the polynomial is

used. Unlike the LFSR shown in Figure 4, a generator polynomial for a random number generator usually

indicates the taps used to create the newest value entering the most significant register. The xors for this

form of LFSR are external to the shift registers, while the logic in Figure 4 is implemented between the

registers. The polynomial used for the PRBS, X 3 1
+ X 8 + 1 is diagrammed in Figure 9.

Since the RocketIO requires 40 bits of data per clock cycle, the output of 40 LFSR shifts must appear

at every clock cycle. The first 31 bits can be generated by creating a circuit that does the equivalent

of 31 shifts in a cycle. Then all 31 registers in the LFSR will contain new data, which can be taken in

parallel and sent to the encoder or to the RocketIO. The proper logic to implement the circuit can be

calculated using matrix math. A single shift can be represented in vector notation by vT = Av T

where vi is a 31-bit vector of the values of each register in the LFSR for cycle i. A is a 31 x 31 matrix

with one row consisting of the generator polynomial in vector form, and 30 rows of weight one to show

that each register's value depends only on the register before it. For two shifts, the equation becomes

v = A(Avn-2) = A 2 -2 . Generally, for x shifts, v = AxvT-. Thus, rather than implementing

A, like in Figure 9, the circuit must implement A 31 . The jth row of the matrix, A31 , gives the feedback

taps necessary to construct the jth bit in the LFSR. This technique is discussed more thoroughly in [20].

If this circuit is extended to include 40 registers, then 40 bits of parallel data can be generated in one

cycle. Notice that even though this implementation requires a 40-bit register, it only needs a seed of 31

33

RE SET 6
C n edounter

COMMA

- 40 40

PR SE nco de r Toc Rocket]O X

G ene rato r

Figure 10: Diagram of the Transmitter. The FSM chooses between the three options: the comma

sequence, uncoded PRBS, and coded PRBS. The counter loops indefinitely through the block numbers.
The encoder must also know the current block number, but the connection is left out of the diagram for

clarity.

bits.

5.4.2 Transmitter

The transmitter is the module that determines the data that is sent through the link. Overall, the

functionality of the transmitter can be described by the finite state machine shown in Figure 11. Also, a

more accurate diagram is shown in Figure 10.

Before the transmitter can send coded data through the channel, it must send two initialization

sequences to ensure the receiver can process the data correctly. The first sequence allows the receiver

to align the transmitted data on the proper 40-bit boundary. Correct alignment is necessary when data

is coded, because the receiver must be able to distinguish between information and parity bits. The

transmitter first sends a comma sequence, where each 40-bit word contains a special 10-bit character

aligned at the beginning of the block. When the receiver detects the presence of this signal, it adjusts the

data alignment such that the 10-bit character takes up the 10 least significant digits of the 40-bit word.

The transmitter sends 4096 words with comma characters to guarantee that the receiver has had enough

time to align the data accurately.

In a similar manner, for block sizes greater than 40, the receiver must be able to distinguish between

34

reset

COM M A
COMMA char

& block number state_counter++

state counter(12)= 1
(clear state_counter)

Uncoded
Uncoded random data

state_counter++

statecounter(1 2)= 1

Codled
Coded random dat

Figure 11: Transmitter FSM. The data outputs of each state are shown on the left.

the position of each 40-bit block within the codeword. Since the codeword length is not changing within

a single test, this information may be communicated during the initialization sequence. The comma

sequence is first divided into n/40 groups. Thus, each codeword also has a relative position within its

group. Each word is assigned a number between zero and n/40 - 1 to signify its position. There are no

requirements for the remaining 30 bits within a comma word, so its position is transmitted using only six

of the leftover bits. When the real data sequence begins, its block positions are kept in phase with the

comma sequence's positions. Given that 4096 comma words are transmitted, the receiver has an ample

number of cycles to achieve codeword alignment.

After the comma sequence is transmitted, another 4096 40-bit blocks of uncoded data is sent. The

purpose of the uncoded data sequence is to allow the receiver's PRBS generator to lock to the incoming

data, which it might not be able to do with a coded sequence. The only situation where a problem arises

is when more than nine bits in a 40-bit codeword is used as parity. As stated in the previous section, the

generator requires 31 bits as a seed, so this type of coded sequence is insufficient to start up the PRBS

generator.

After the initialization sequences, the transmitter is ready to send coded data. The coded data is

synchronized with its uncoded counterpart and with the block number from the comma sequence. The

transmitter stays in this state until the test is stopped.

35

40 From
Rocketl:

gen out

Encoder

40

lock

Soded Data -- ?
FS M E rr o V e clor

I Coded Data

L Collect Error
enable Statistics

0

seed

PR BS De coder
Gene rator

-n 40

40gen~ out

E rror V ector of
f Decoded D ata

PRBS

Lock FSM enab Collect Error

FStatistics
lock.

Figure 12: Receiver Architecture. All of the main components other than the alignment FSMs are shown.
Also, all timing hardware is omitted for clarify.

5.4.3 Receiver and Statistics Gatherer

A more detailed version of the receiver architecture is shown in Figure 12. The receiver is made up of

two alignment modules, the decoder, three error detection circuits, and two statistics accumulators. The

alignment modules find the boundaries between each codeword in the serial stream. The three error

detection circuits determine whether there is an error in the vectors of the uncoded data, the coded data,

and the decoded codeword, respectively. The statistics accumulators save the error properties of each

codeword that is received with errors.

Initialization and Alignment During the initial comma sequence, the receiver has two modules that

align the 40-bit word boundaries and the codeword boundaries, respectively. The RocketIO automatically

accomplishes the first task if the appropriate register is enabled. During normal operation, automatic

alignment should be disabled so that no word in the random sequence that has the special 10-bit character

causes the RocketIO to shift its alignment. Thus, the first module has the responsibility of determining

when to enable the RocketlO automatic alignment register and the length that the function is enabled.

At the beginning of the test, the function is enabled. Once the module detects 256 straight words with

the 10-bit alignment character, it disables automatic realignment. The number, 256, is chosen to be

significantly less than the total number of comma words to account for errors in the stream, yet it is large

SEED PRBS Gen IDL
---- ---------- ESeed Enable-- - - --

clear state-counter clear state

Link data~coded PRBS
gen data

WAIT (clear state er)
CHE'

statecounter++ statecou

state-counter(4)=1
(clear state_counter)

is~s
data

CHECK DATAL

state-counter..

state counter(4>=1

PRBS LOCKED

Figure 13: Receiver Finite State Machines

E

_counter

RSS locked

CK

nter++

tate counter6)=1

ICEKE b C
EnbeErrCllection

enough to ensure alignment.

The second module locks a counter to the incoming block numbers. Once the counter consistently

matches the block numbers in the comma sequence, the counter loops independently of the incoming

data, and continues to do so indefinitely. By the time the comma sequence ends and actual data is sent,

the block number of each incoming word is known.

Receiver Finite State Machines (FSMs) The purpose of the receiver is to collect the error statistics

of the link. However, it must wait until after the initialization and alignment stages are over so that the

received data is valid. The receiver has two finite state machines that keep track of the current stage (see

Figure 13).

The first FSM locks to the uncoded data sequence, which is the second initialization stage, described

in the transmitter section. The FSM seeds the PRBS generator, waits a few clock cycles, and then

determines whether the incoming data matches the generated expected data. Since the received data

may still be part of the comma sequence or may contain errors, the receiver's PRBS may be incorrectly

seeded. The receiver, therefore, must re-seed the PRBS generator as many times as is necessary to lock

the output of the receiver's PRBS generator to the incoming sequence. Once the two sequences are in

lock step, the first FSM enables the second.

36

Link data# PRS
gen

37

The second FSM simply waits for the start of the coded sequence. Instead of comparing the output of

the PRBS generator to the received data, it compares the incoming link data to the coded version of the

generator output. Once the two data streams match for several codewords, the FSM assumes that it is

now receiving the coded sequence. At this point, the received data is considered valid for error statistics

collection.

Gathering Error Statistics Two error statistics gathering modules are implemented in the receiver.

One accumulates data from comparing the incoming link data, which is itself coded, to the coded version

of the expected data. The encoder, as shown on the left side of Figure 12, is used to code the pseudo-

random bit sequence and is an exact replica of the transmitter's encoder. The statistics obtained by this

comparison reveals the error distribution of the coded sequence. Because the code adds data dependency,

the stream sent through the link is not random, and the error distribution may be altered. Therefore,

each code must be evaluated for how well its coded data stream behaves through the channel as well as

how well the actual code performs.

The other statistics gathering module collects data from comparing the decoded channel data to

the uncoded, generated data. This path is shown on the right side of Figure 12. When correction is

implemented and enabled, the distribution of the uncorrectable errors, including those that are mis-

corrected or undetectable, is collected. When detection is enabled, the module collects all errors that are

undetectable.

Comparing the gathered distribution of both modules reveals pertinent information about the code.

Essentially, the two modules show the error statistics of the data before entering the decoder and the

resulting data after correction or detection. This is useful for examining how many errors, and sometimes

which errors actually make it past the decoder to the destination.

The modules used for collecting error statistics each need only an error vector as input. The error

vector alone is sufficient for determining both the length of the error and the number of errors within the

40-bit word. The number of errors in a 40-bit word can be calculated by adding the number of ones in

the vector. The length of the error can also be calculated by determining the bit positions of the first

and last error in the word, and subtracting the two positions. For codewords larger than 40 bits, extra

38

logic is required to perform these calculations for groups of 40-bit blocks.

The error processing logic is clocked with a slower clock than the clock used to generate the error

vector, so a FIFO is used to interface the two clock domains. If an error is detected, which can easily

be determined by a detection circuit that checks if the error vector is non-zero, the entire error vector is

saved in the FIFO. The error processing logic is clocked at a slower rate, because it is unnecessary and

impractical to force these circuits to function as quickly as the detection circuit. Error vector generation

must occur at the same rate that data is received from the RocketIO. For 10 Gb/s operation, this translates

to a logic clock of 250 MHz. However, errors occur rather infrequently (typical bit error rates range from

10-5 to 1010). Thus, as long as the error processing clock pulls out error vectors from the FIFO as fast

as the vectors enter it, the circuit will function properly. For the design, a 50 MHz clock is used, which

is sufficient for error rates below 3 x 10-3. The FIFO used in the design has a depth of 512 to handle

bursts of errors that span multiple words.

As previously stated, it is important to collect the error length and the total number of bit errors

each time a codeword is received incorrectly in order to obtain the distribution of all the errors. Nine

RAMs are used to create histograms of the error data. Eight are used to histogram error lengths. Error

lengths are classified based on the number of errors that occur in the codeword. For example, the first

RAM stores the error length of words with two bit errors, and the eighth RAM stores the lengths of the

errors when nine or more bit errors occur in the word. There are eight length histogram, because, even

for very large blocksizes, more than eight bit errors per word occurs very infrequently. The ninth RAM

is used to histogram the number of bit errors in a word.

The circuit that generates the histogram is shown in Figure 14. At the beginning of the test, all of the

RAM's addresses are set to zero to signify that no errors have occurred. The calculations for obtaining

the number of bit errors in a word or the error length is used as the address to the RAMs. The resulting

calculations for each error vector appear for a single cycle, so a 100 MHz clock is used to clock the RAM,

which is twice as fast the the error processing clock. This divides the slower clock cycle into a read and

a write cycle. In the read cycle, the RAM address containing the error length or number of errors is

read, and the number of previous occurrences of the event appears at the RAM's data output and is fed

39

2x clock- cik
Error length or

Number of Errors/W ord addr RAM
Errorvector# 0 - we

din dout

4-

1

Figure 14: RAM Connections to Create a Histogram

through an incrementer. In the write cycle, the incremented value is written back into the same address.

A cycle-by-cycle example of the histograming process is shown in Figure 15.

The RAMs storing the histograms are all dual-port RAMs. These connections are omitted from

Figure 14. The extra connections allow an external source to read the values stored in the RAM at a

different clock frequency. In the design, the PowerPC reads the results at the end of each test, displays

them to the user, and resets all the addresses before the next test starts. The PowerPC system is described

further in the next section.

5.4.4 Software System

The test system must have a way for the user to easily change the structure of a test, such as which code

is enabled. Other than the RocketIO transceivers, the MK325 has a RS232 connector to interface the

FPGA to an external system. The most straightforward way to use the serial port is to write a software

program for the embedded PowerPC. The PowerPC program acts as the main controller that controls its

two peripherals, the RS232 driver and the RocketIO driver described above. The processor communicates

with the peripherals using the on-chip peripheral bus (OPB), which is clocked at 100 MHz.

The processor interacts with the RocketIO hardware system using several registers, some of which are

read-only, write-only, or read-and-write. The address space of the peripheral is shown in the Table 1.

Using the serial port to communicate with the user, the system is able to change the test parameters

between tests without having to reprogram the FPGA. Once the user finishes setting up a test, the

processor communicates the settings to the hardware via the registers listed in Table 1. Some of the

40

ram_clk

logic_ctk

Error length or -
Number of Errors/Word-

ramdout

ram-din

ramwe

2

6

7

Read& Write
Increment Back

Figure 15: Cycle-by-Cycle Example of Creating a Histogram Using a RAM. In the example, an error

length of two is calculated. In the read cycle, addressing the RAM with the value two, six is read out,

signifying that there are six previous occurrences of length-two errors. Six gets incremented to seven as

shown in Figure 14 and is written back into address two of the RAM.

addr Write Only Read Only

00 Reset Get Test done, Test error

04 Set Block Size

OC Set Code

10 Set Data Type
14 Set Detection/Correction/Hybrid Get PRBS Generator Lock

18-1C Get Total 40-Bit Words

20-24 Get Total Bit Errors

28 Get Total Frame Errors

30 Set PMA Attributes Get PMA Attributes

300000 Errors/Codeword RAM Base Address (for coded data)

300FAO Errors/Codeword RAM High Address (for coded data)

700000 Error Length RAM Base Address (for weight-2 errors and coded data)

700FAO Error Length RAM High Address (for weight-2 errors and coded data)

Table 1: PowerPC Address Space

41

parameters that the user may alter include:

" How long the test is run. The user can either choose to end the test manually or to end the test

after a specified number of bit errors have occurred.

* Which code is enabled. The user can choose to enable the Hamming, BCH, SEC-DED, or Fire

coder/decoder, or coding can be disabled entirely.

" The length of the codeword. Any length that is a multiple of forty may be selected if an uncoded

sequence is run. A coded sequence, however, only works if a block size of 40, 80, 480, or 1000 is

selected.

" The RocketIO's transmitter and receiver equalizer settings. The user may change the default register

settings for the equalizers. Xilinx also recommends certain settings for other RocketlO registers

depending on the desired data rate. The user may also choose to use any one of these recommended

settings.

At the end of a test, the PowerPC reads the test results from the registers of the RocketlO peripheral,

including the number of 40-bit words that were received, the number of total bit errors that occurred, and

all of the RAM addresses. From the data, the PowerPC can calculate the bit error rate. Then, it formats

and displays all of the results to the user. The RAM data is formatted into both MATLAB-compatible

vectors and printed for easy viewing.

5.5 Codes Implemented

The codes chosen for study in the project are Hamming, BCH, Fire, and SEC-DED codes. These codes

are chosen, because they are effective at combating different types of errors and are used in different types

of systems. The structure and properties of each code are briefly discussed in the background section. A

more thorough explanation can be found in [7].

42

5.5.1 Simplifications

Due to limitations imposed by the hardware, a few simplifications have been made to the choice of codes

and their implementa

Another simplification made due to hardware constraints is the implementation of decoders. The

correction circuit for simpler codes are implemented in full. However, the correction circuits of more

powerful codes are extremely complex. Difficulties arise from the requirement that 40 bits be generated

or received at each clock cycle. There are several techniques to handle parallel data for some known

codes. However, these simpler techniques often require that the code is cyclic, which does not apply to

the shortened codes implemented in the design. It is impractical to implement some of these circuits,

because it is not necessary to the evaluation of the code. Post-processing the error statistics of a coded

sequence is sufficient for determining the approximate BER.

5.5.2 Hamming Codes

Hamming codes are a class of simple codes used for single-bit error correction. Hamming codes are

evaluated in the project, because they have high code rates, and single-bit errors dominate the total

errors through the link even for very long codeword lengths. Thus, even single-bit error correction may

be able to improve the bit error rate when compared to uncoded data with equal information throughput.

The same codes may also be used to detect errors in an ARQ protocol. Hamming codes have a

Hamming distance of three, so they are guaranteed to detect all single- and double-bit errors within a

codeword. They are also able to detect many other error patterns, especially since the code is shortened.

To conform to the natural 40-bit block size of the hardware, all the Hamming codes must be shortened,

which no longer makes them perfect. The three Hamming codes are arbitrarily chosen to be the three

primitive polynomials with the fewest terms possible for their degree. If implemented serially, these

polynomials would result in circuits with the least number of taps. Their generator polynomials are:

* g(X) = 1 + X + X 6 for the (40, 34) Hamming code shortened from (63,57).

* g(X) = 1 + X 4 + X 8 for the (80, 73) Hamming code shortened from (127,120).

43

* g(X) =1 + X 3 + X 10 for the (1000, 990) Hamming code shortened from (1023,1013).

5.5.3 BCH Codes

BCH codes are similar to Hamming codes, but generalized for multiple-bit error correction. BCH codes

may provide better performance over Hamming codes, because the bursty nature of the link causes

multiple errors in a codeword to occur more frequently than in a binary symmetric channel. However,

they also require much more redundancy to achieve the improved results.

Three 2-error-correcting BCH codes are implemented with codeword lengths of 40, 80, and 1000 to

directly compare results with the Hamming code and the other codes that are studied. Furthermore,

since up to five errors per codeword occur rather frequently, a 5-error-correcting (480,435) BCH code is

also implemented. The block size of 480 was chosen for its high code rate of 0.906.

The Hamming distance of the 2-error correcting codes is at least five, so these codes may also be used

to detect all error vectors of weight less than or equal to four. The (480,435) shortened BCH code is

guaranteed to detect all error vectors with weight at most 10. Thus, BCH codes are extremely powerful

at detecting errors. Since nearly all words have fewer than nine errors, these BCH codes should be very

effective at error detection.

The generator polynomials for the four shortened BCH codes are:

* g(X) = 1+X 3 +X 4 +X 5 + X 8 +X 10 +X 12 for the (40,27) 2-error-correcting BCH code shortened

from (63,51).

" g(X) = I + X X 2 + X 4 + X 5 + X 6 + X 8 + X 9 + X 14 for the (80,66) 2-error-correcting BCH code

shortened from (63,51).

" g(X) = 1 + X + X 2 + X 4 + X 5 + X 6 + X 1
l+ X12 + X 20 for the (1000,980) 2-error-correcting BCH

code shortened from (1023,1003).

* g(X)= 1+X+X 4 +X 5 +X 6 -X 7 -X 8 +X 9 +X13+Xl4+X l5+X 1 9 +X 22 +X 23 +X 25 _

X 26 + X 29 + X 31 + X 33 + X 34 + x35 + X 37 + X 39 - X 42 ± X 45 for the (480,435) 5-error-correcting

BCH code shortened from (511,466).

44

5.5.4 Fire Codes

Fire codes are the first systematically generated single-burst-error-correcting codes. Fire codes are studied

in the project, because some of the noise sources in links affect the data stream for multiple bits. Thus,

a portion of the errors are correlated and cause bursts.

Fire codes are also studied because they have been shown to be effective for burst-error-correction,

burst-error-detection, and simultaneous burst-error detection and correction. Thus, the codes imple-

mented can be analyzed for use in all three error-correction protocols. The codes implemented in the

design have c = 7, so they are capable of correcting all bursts of four, detecting all bursts of eight, or

simultaneously correcting single-bit errors and detecting bursts of seven, depending on how the decoder

is implemented. These codes are capable of simultaneously correcting and detecting other combinations

of burst errors, but these further combinations are not studied.

One more Fire code is also implemented, a (480,425) shortened code, in order to analyze the perfor-

mance of a more powerful, high-rate Fire code. The (480,425) shortened Fire code has c = 35, so it is able

to correct all bursts of 18, detect all bursts of 36, or simultaneously correct and detect many combinations

of error lengths.

The generator polynomials implemented in the project are:

* g(X) = (1+X 7)(1+X+X 6) -- 1X+X 6+X 7 -X8+X1 3 for the (40,27) 4-burst-error-correcting

Fire code shortened from (63,50).

* g(X) = (i+X7)(i+X+X4) = 1+X+X 4+X 7+X 8+Xll for the (80,69) 4-burst-error-correcting

Fire code shortened from (105,94).

* g(X) = (1+X 7)(1+X 2 +X 3 +X 4 +X 8)=1+X2-X3+X4+X7+X8+X9-XlO+Xl+X15

for the (1000,985) Fire code shortened from (1785,1770).

* g(X) = (1 + X 35)(1 + X15 + X 20) = 1 + X15 + X 20 + X 35 + X 50 + X 55 for the (480,425) 18-burst-

error-correcting Fire code shortened from (525,470).

45

5.5.5 Single Error Correction, Double Error Detection (SEC-DED)

SEC-DED codes have several characteristics that make them potentially suitable for links. They require

only one extra parity bit than the Hamming code of the same codeword length, so they have high code

rates. SEC-DED codes are able to handle double errors, which Hamming codes are forced to miscor-

rect. Thus, SEC-DED codes potentially have significant performance gains for low additional overhead.

Another beneficial property of SEC-DED codes is the detection circuit that signals a retransmission in

an ARQ system. The circuit simply checks whether the syndrome of the received vector is even, rather

than having to determine whether a non-zero syndrome is a correctable error pattern before requesting

a retransmission. This form of detection circuit is unable to detect odd-weight error vectors that are not

correctable, but the simple implementation to an otherwise complex problem is very desirable.

Unlike all of the other codes tested in the project, SEC-DED codes are not cyclic. They are defined

only by their parity-check matrices. To conform to the block sizes of the previously discussed codes, the

SEC-DED codes implemented have parity-check matrices that generate (40,33), (80,72), and (1000,989)

codes. The codes, along with the weight of each column and the number of columns of each weight, are

shown below. For example, the first listed code, the (40,33) SEC-DED code, has seven columns of weight

one and 33 columns of weight three.

" (40,33) code generated with parity-check columns of weight: () 33/ (
" (80,72) code generated with parity-check columns of weight: + + 16/ ()
" (1000,989) code generated with parity-check columns of weight: (12) + (1) + () +

12 + 184/ 12

SEC-DED codes, as described by Hsiao in [11], are designed to have the fewest number of 1's possible

in the parity-check matrix, which results in the shortest logic delay in generating parity bits and syndrome

digits. Furthermore, the columns of greatest weight are chosen in such a way to have an equal number of

1's per row. Based on the design of the hardware, which breaks the codeword into groups of 40 bits, the

project adds the constraint that the I's are distributed evenly between each block of 40 bits in a row.

46

33 32 3130 29 2827 26 25 24 23122 21120119118 17116115114113112 1110 9 8 7 6 5 4 3 2 1 0

Figure 16: Encoder Circuit for the Last Parity Bit in the (40,34) Hamming Code

5.6 Encoder Design

The encoder consists of several modules, one for each code implemented. Since every code can be defined

by a generator or parity-check matrix, the encoder simply realizes the generator matrix in hardware.

The encoder must implement the equation, v = u - G, where u is the information vector and G is the

generator matrix. Since all the codes are in systematic form, the information digits remain unchanged

and in order, and only the n - k redundant bits must be generated. Each parity bit is generated by xor-ing

a subset of the information bits. The specific bits used in the equation are determined based on a column

of generator matrix. For example, the circuit that generates the final parity bit in the (40,34) Hamming

code looks like the circuit in Figure 16. The corresponding generator matrix column, not including the

identity matrix, is [1000011000101001111010001110010010].

The parity bits are formed in three cycles to maximize FPGA resources. Each FPGA slice has two

4-input look-up tables (LUTs) and two registers, so the circuit utilizes each cell as much as possible.

For block sizes larger than 40, a sequence of n bits must be made available from the PRBS generator

before the parity bits may be formed. Only k of the n bits are actually used as information bits, and the

remaining bits are replaced with the generated parity bits. The generic encoder structure for codes with

N > 40 is shown in Figure 17.

Once the parity bits are formed, they must be inserted into the proper location in the codeword.

47

.Rocketio

Figure 17: A Generic Encoder for a Code with More Than 40 Bits

For the Hamming coder partially diagrammed in Figure 16, the redundant bits are not available until

three cycles after all of the information bits have entered the registers. Therefore, instead of immediately

sending the information bits to the RocketIO on the next cycle, the entire word must be delayed three

cycles. This is true for the generalized case of an arbitrarily long codeword. Generally, there must be a

delay block after the final register in Figure 17 that is the same number of cycles as the number of cycles

it takes to create the parity bits. The generated parity bits will then be valid at the same cycle as the

last 40-bit block is ready to enter the RocketIO transmit register. The parity bits can then be inserted

into the last digits of the block. The block number tells the encoder which cycle to insert the parity bits.

For the (480,425) Fire code and the (480,435) BCH code, since the number of parity bits exceed 40,

the parity bits must be inserted into the final two 40-bit blocks. Only a minor adjustment is required

in this case. The circuit must be synchronized such that the parity bits are valid the same cycle as the

second to last 40-bit information block of the n-bit sequence. The first n - k - 40 parity bits replace the

last n - k - 40 bits in the 40-bit word. The last 40 redundant bits are delayed a cycle and sent as the

last 40 bits in the n-bit codeword.

5.7 Decoder Design

To fully decode each code, every code must have a syndrome circuit and a correction circuit. The

syndrome circuit signals that an error has occurred if the result is non-zero. The correction circuit then

uses the value of the syndrome to flip the appropriate bits.

48

The syndrome circuit is virtually identical to the encoder circuit. The algorithm and the implementa-

tion are exactly the same. The minor difference is the syndrome circuit forms the syndrome from n bits

while the encoder forms the redundant bits from only the k information bits. Thus, the syndrome has

one extra bit to include in the xor equation for each syndrome bit.

As stated previously, most of the correction circuits for the various codes are left unimplemented. The

exceptions are the n = 40 and n = 80 Hamming and SEC-DED codes. Both of these codes implement

single-bit error correction, which can be implemented without a large amount of logic, since there are

only n error vectors that the codes must be able to correct. The syndrome is calculated based on the

equation, s = r -HT, where r is the received vector and H is the parity-check matrix. Therefore, when

a single-bit error occurs at position i in the received vector, the syndrome is equal to the ith column of

H. The correction circuit for a Hamming or SEC-DED code determines whether the syndrome is equal

to any of the columns of the parity-check matrix. If it is equal to the ith column than the ith bit in

the received vector is flipped. For example, the last column in the parity-check matrix of the (40,34)

shortened Hamming code is [011011]. Thus, the correction circuit for the least significant information bit

can be implemented according to the equation:

c(0) = r(0) xor (not(s(5)) and s(4) and s(3) and not(s(2)) and s(1) and s(0)).

There are 40 such circuits to realize the full correction circuits for the (40,34) Hamming and (40,33)

SEC-DED codes, and 80 such circuits in the (80,73) Hamming and (80,72) SEC-DED encoders. Extra

registers are required to create a more FPGA-friendly correction circuit than the simple equation above.

The complete decoder circuit for one code is pictured in Figure 18. Like the encoder circuit, the output

of the syndrome circuit is only valid every n/40 cycles, though it changes every cycle. The correction

circuit, however, requires that the syndrome is constant and valid while it performs the correction. The

register between the syndrome circuit and the correction circuit saves the valid syndrome for the full

n/40 cycles until the next one is calculated. Again, like the encoder circuit, the data from the link must

be delayed for extra cycles until the syndrome is calculated and is passed through the register to the

correction circuit. The shift register shown in Figure 18 delays the data such that the data from the link

and the valid syndrome are synchronized to the same cycle. The block number must also be synchronized

49

data from 40 40 data to correct corrected data --
ink

syndrome 0 D Q- syndrome CorrectionSyndrom e yPm EN C irc u it
Circ uit v ald >

Figure 18: Decoder Circuit

so that the correction circuit can differentiate between codewords.

Notice that Figure 18 only shows the decoder for a single code. To create the entire decoder, this

circuit, with the necessary changes to the syndrome and correction circuits, can be copied 10 times for a

total of 11 separate decoders for the 11 different codes. However, this strategy results in excess hardware.

Some hardware components may be shared between codes, such as the shift registers, since only one code

is enabled at a time. Thus, the decoder has several syndrome circuits feed into the same shift register,

which feeds into multiple correction circuits. The correct circuit to use is chosen using a multiplexer. The

shift registers, therefore, have variable delay which generally depends on the codeword length.

6 Results

6.1 Tuning the Equalizer and Choosing Data Rates

The links are tested at a couple of appropriate rates to get an idea of the error distribution at different

points in the frequency spectrum. These rates are selected based on a desired bit error rate, which is

ideally around 10-6 or 10-1. If the BER is much lower than that, then it is impractical to obtain a

reasonable amount of bit errors in a test to be confident of the true distribution, especially after coding

is applied. Furthermore, the goal of the project is to improve the performance of links when the BER is

fairly high. On the other hand, if the bit error rate is much higher than 106, most likely the errors are

being caused by a complete inability to properly equalize the signals, which is not the case of interest in

the project.

To obtain the BER at a given data rate, the equalizers must be set appropriately. An exhaustive test

of all configurations is used to find the best combination of the transmit and receive equalizer settings

50

Data Rate (Gb/s) Bit Error Rate

5.00 3 x 10-12

5.25 1 x 10-10
5.50 8 x 10-10
5.75 3 x 10-9
6.00 2 x 10-7
6.25 2 x 10~6
6.50 1 x 10-4

6.75 1 x 10-3

Table 2: Bit Error Rate for Various Data Rates on a Rogers Link

described in the RocketlO X section of the hardware description. Every combination is run until 100 bit

errors are observed. At the end of the search, the combination resulting in the longest test is assumed to

be the best setting.

For the 20 inch Rogers link, the test produced the results shown in Table 2. As can be seen from the

table, the bit error rate is extremely low at data rates below 6 Gb/s and then falls drastically at rates

higher than 6.25 Gb/s. Thus, for the remainder of the tests, only data rates of 6 and 6.25 Gb/s are used.

6.2 Results Compared to a Binary Symmetric Channel

Figure 19 shows the probability of having x bit errors per word for reasonably small x based on experi-

mental data for a wide range of data rates. This is compared with the projected probabilities for a BSC.

For high data rates where the bit error rates are very low, the channel is similar to the binary symmetric

channel model. Although it is not possible to determine why the link produces these results with 100%

confidence, it is likely that reflections are the dominant noise sources, and the equalizers are not able

to combat them. Reflections are the likely candidate, because the backplane is not counterbore, and

reflections are generally uncorrelated.

For data rates of interest, such as at 6 Gb/s as stated in the previous section, the channel curve

deviates drastically from the BSC curve. To obtain bit error rates of lower than 10-15 using random-

error correction, a BSC would need only a 2-error-correcting code. To obtain an adequately low BER

for the link may not even be possible with simple random-error correction. The channel curve indicates

that at least some of the dominant noise sources are correlated. Thus, it is very unlikely that the existing

51

Uncoded Results Compared to BSC for Data Rates of 5 5 6, aad 6.75 Gbis
t10 10" 10

- Experimental

10- Projected BSC
10 10 --

10 2 ---2--4--2--4--

10---------------------....
----- ~~~~0 ---------(

o 1 0 1 0 - - -- -- -- --

ir '10 10 - 10
1 2 3 1 2 3 4 1 2 3 4 5 6

Number of Bit Errors'Vord Number of Bit ErrorsWord Number of Bit Errors'Word

Figure 19: The three graphs show the behavior of the link at three different data rates: 5.5 Gb/s (left),
6 Gb/s (middle), and 6.75 Gb/s (right). As the data rate increases, the link becomes more and more like
a BSC.

error-correcting codes chosen for study will be capable of bringing the BER down to the desired 10-15.

However, these codes may give an indication of what kinds of codes to try in the future to achieve the

BER goal. Since the link is not a BSC, any information must be determined experimentally.

6.3 Uncoded Results

6.3.1 Number of Errors Per Word for Each Data Rate and Block Size

The left half of Figure 20 shows the total number of x-bit errors that occurred for tests run at different

block sizes at data rate of 6 Gb/s. The equivalent graphs for a data rate of 6.25 Gb/s is shown on the right

half of the figure. As can be seen by these figures, the number of n-bit errors per block stays relatively

constant for block sizes between approximately 100 and 1000. Generally speaking, code rates increase

dramatically as the codeword length increases. For example, the shortest full-length Hamming code has

a rate of 4/7 ::: 0.57 while a (1024,1014) Hamming code has a code rate of approximately 0.99. Therefore,

it may be worth increasing the codeword length in order to use a more powerful code. Increasing the

block size, however, increases the required hardware of the transceiver. This tradeoff must be thoroughly

examined.

Based on these results, three codeword lengths are chosen for testing: 40, 80, and 1000. Currently,

block sizes of 40 are very typical, and n = 80 is on the very high end of what has been attempted in

links. Finally, assuming the number of bit errors per word is constant for coded data streams as well as

52

M 10

10 Error
- -- -- -- - -S 2 Errors

3 Errors
S I ------- - - -------- - - - -Y 1 1 l 1 Y- . - -- - - - - - - -- 4 Errors

4 6 Error

1010410 10 10 10
Block Size (n) Block Size (n)

Figure 20: Distribution of Errors Per Word at 6 Gb/s and 6.25 Gb/s: The graphs show the number of

x bit errors per word over multiple block sizes that occurred for x between one and seven. The graph
on the left is for 6 Gb/s, and the right is for 6.25 Gb/s. Each column of circles in the graph indicates a

separate test run through the link. Although there are a few instances of words with more than seven

errors, not enough occurrences were observed to accurately predict a trend. The y axis is normalized to

1015 bits. The results are actually based on 101
4 to 1015 bits for 6 Gb/s and 1012 to 10

13 bits for 6.25

Gb/s.

uncoded streams, n = 1000 will give the expected bit error rate for block sizes between approximately

100 and 1000. Also, it is useful to compare the BER of very large block sizes with that of small lengths

to examine the potential of using the codeword length as an important variable in transceiver design.

6.3.2 Error Lengths for Each Data Rate and Block Size

Since the channel is not a BSC, the distribution of error lengths reveals some information on the correlation

between the errors. The distribution of error lengths in a 2 x 1013 -bit test at 6.25 Gb/s is shown in

Figure 21, with results normalized for an even 1014 bits. For 6 Gb/s, the results are very similar.

Because the set of graphs is on a logarithmic scale, it is not obvious that a significant proportion of the

errors have bursts of fewer than 10 bits. From a closer examination, it is clear that the bars associated

with lengths two through six on the top graph are significantly higher than any other bar. At 6 Gb/s,

99.94% of all bit errors occur in codewords with error lengths of less than 10. Most of these, however,

are single-bit errors, which technically have error lengths of one. For words with multiple errors, 75%

of the bit errors are still within a length of nine. At 6.25 Gb/s, these numbers are 99.90% and 87.21%,

respectively.

For block sizes larger than 40, the picture looks rather similar to Figure 21. As can be expected, when

5 10 15 20 25 30 35 40

10

10

10, -1-0l

6 10 15 20 25 30 35 40

0 - -- -- - - - - -11- 11
6 10 15 20

Eror Length
25 30 36 40

Figure 21: Distribution of Error Lengths at 6.25 Gb/s on a Rogers Link. The error lengths of all 40-bit

words with multiple errors is illustrated for a single test run, normalized to 1014 bits. The graphs indicate

the error length distribution of error patterns of weight two (top), three (upper middle), four (lower

middle), and five (bottom).

53

10~
10~
10,
in:
10~
10~
10~

0

E
z3

lop

54

the block size is increased, errors that would otherwise have shown up in adjacent words end up appearing

in the same word. Thus, as the block size increases, the percentage of blocks in error with short bursts

decreases slowly. The effectiveness of a burst error correcting code will likely diminish. However, the

number of parity bits required of a burst error correcting code is generally dependent on the burst error

correcting capability of the code, and not necessarily on the size of the block. The number of parity bits

needed for random error correction, like for Hamming or BCH codes, increases monotonically with block

size. Thus, since the code rate may be better with burst error correction than random error correction

at higher block sizes, it has potential to be effective against link noise.

One other notable conclusion that can be drawn from the graphs that make burst error correction less

appealing are that words with a larger number of errors generally have large lengths. From the graph,

only words with two bit errors have consistently short lengths. For four bit errors, most errors are at least

of length 23, and for five bit errors, the shortest length is 11. Thus, burst error corrections will likely be

ineffective for words received with more than a couple of errors. Since words with multiple errors occur

relatively frequently, a code that utilizes only burst error correction will not likely be more successful at

obtaining transmission reliability than a random error correcting code.

6.4 Coded Results

The following sections detail the results observed using the codes mentioned previously. Each code's

performance is analyzed with respect to the equivalent uncoded data and with respect to hardware re-

quirements and complexity. Finally, the results of all of the codes are summarized and directly compared.

From the comparison, a conclusion may be reached on how and what type of coding has the most potential

for use with links.

Before all of this can be done, first the simplifications and approximations used when analyzing the

data are described.

55

6.4.1 Simplifications and Approximations Used for Generating Results

There are two simplifications used when generating the following results for the codes. Neither should

affect the results significantly. However, if these or similar approximations are used in future projects,

their effect on the results should be double checked to guarantee that the conclusions made are valid.

The first approximation is for generating results when no correction circuits are used, which is needed

for larger block sizes and for more complex codes. The results of correction can be approximated by

simply not counting errors that occur within blocks that should be corrected. For example, if a single-bit

error occurs in a codeword when a Hamming code is used, that error is assumed to be corrected accurately.

The approximation deviates from the actual value whenever a mis-correction takes place. For example,

if two errors occur when a Hamming code is used, the actual correction circuit may miscorrect a bit,

therefore generating three bit errors in that codeword. The approximation misses that extra bit error.

Thus, the actual BER is generally higher than the estimated BER. However, the estimation only misses

at most one error whenever an uncorrectable error pattern occurs, meaning that the actual BER is at

most double the estimated BER. Since it is the order of magnitude of the BER that is of interest in the

project, the approximation gives satisfactory results.

The second approximation is for generating detection results when no ARQ protocol is set up. For

the purposes of the project, it is assumed that if an error is properly detected, it will eventually be

retransmitted and accepted without errors. Furthermore, the approximation does not include the decrease

in the throughput that results from one or more retransmissions. The latter approximation is used since

the round trip delay of links is relatively short. For 10 Gb/s, the round trip delay is less than 100

bits. As an example, assuming for the moment that the channel is binary symmetric, using a go-back-N

retransmission scheme at 6.25 Gb/s would result in a throughput of 0.996 times the throughput for a

FEC scheme. Go-back-N is an ARQ protocol that continuously transmits bits to the receiver, and it is

the continuous transmission scheme that has the lowest throughput and lowest complexity. Since it has

been shown that the link is somewhat bursty, the throughput will be somewhat altered. In the future, it

will be necessary to determine what the actual throughput is. However, the throughput of the BSC case

is high enough for the assumption to be warranted, especially since any decrease in the throughput can

56

be compensated for by choosing a different ARQ protocol.

The first part of the assumption, which is that detected errors will always be retransmitted without

errors, results in a BER estimation that will likely be lower than the actual BER. The main problem with

this assumption is that since the link is not a BSC, a codeword that is received with detectable errors is

far more likely than other codewords to incur errors a second time. To illustrate this point, the following

80-bit pattern within the PRBS is very likely to cause errors:

110110000000000000001 11110100001 10000000000000000011100110110000000000000000000

Notice that the DC balance and number of transitions are far from ideal. The 80-bit pattern is

isolated by repeatedly running the pattern through the link. The bit error rate is approximately 10-2.

This appears to show that it is likely for a retransmitted word to eventually be accepted with errors.

However, whenever errors occur, they almost always form the same, or same couple of, error patterns.

Remember that for a codeword to be accepted by the decoder, an error pattern that is a codeword must

occur. Therefore, the main issue with worst case patterns is that they may have to be retransmitted

multiple times before no errors occur. This is not a major problem as long as none of the worst case

patterns fully close the eye. If the eye is completely closed, the sequence will never be accepted by

decoder, and the system cannot continue. Otherwise, having to retransmit sequences multiple times does

not affect the BER of the decoded data. It only affects the throughput of the system.

6.4.2 Results for Hamming Codes

Hamming codes are implemented in the project, because they could potentially attain equal or better

reliability than uncoded data rate at the same information rate. If a code this simple is capable of

achieving any benefits over the uncoded case, then it is likely that there exists a much more powerful

code that can greatly enhance the performance of the link. From the data, it can be seen that Hamming

codes are indeed able to perform better than the uncoded case for large enough block sizes.

Effect of Redundancy on Bit Stream's Error Distribution As previously explained, (40,34),

(80,73), and (1000,990) Hamming codes were implemented and tested. Based on the results of running

tests at 6 Gb/s and 6.25 Gb/s, the graphs in Figures 22 and 23 were generated.

57

,--- --- ---- --- -------- ---------

----------- -------- ---------

------+----- - -- -------

2 3 4 5
Bit Errors/40-bit Word

10-

-10
10

-15
102

61 2 3 4 5
Bit Errors/80-bit Word

-5
10

10 1

0-
20

- -- --------- --------~- ~---- --

- -- - --- -~ ~- ~--

e Uncoded Data
- Coded Data
e Expected BSC

2 4 6 8
Bit Errors/1000-bit Word

Figure 22: Data Dependency of Coded Hamming Data Stream at 6 Gb/s

-10
10

-20
10

2 4 6 8
Bit Errors/80-bit Word

10-10

10
15

-d
20

10 2 4 6 8 10
Bit Errors/1000-bit Word

Figure 23: Data Dependency of Coded Hamming Data Stream at 6.25 Gb/s

10

-o -50
S10

0 6-D

2 -10

S10

0 io

0~0
3 105

F-
0

-10
o 10

010-10
'--

w

0

o -15

0

0f -f

- ------- --------- --

--- --------- - ---------

---------- -- ----------- ---

2 4 6
Bit Errors/40-bit Word

-- + ----- ----- - - -- -

a Uncoded Data
-- 0 Coded Data

- Expected BSC

- -------- ---.. --- ------- ------

-- -- ------ -- --- - ---r ------

--- +-----+ -- -+ ------

-- ----- -------- ------- -------

58

10 10
Raw, Coded Data

Decoded Data

10 - 10C

S10~ 0 ---l ---

0

10~ 101
1 2 3 4 5 1 2 3 4 5

Bit Errors/40-bdt Word # Bit Errors/80-bit Word

Figure 24: Results of Hamming Codes Before and After Correction for N=40 (left) and N=80 (right) at

6 Gb/s. The raw, coded data is based on the entire codeword, or n bits. The decoded data is based on

the information digits only, or k = n - k bits per word.

For the most part, the coded data stream produces an error distribution that matches the uncoded

data. The two curves match extremely well when there are only one or two errors in the word. For

Hamming codes, 2-bit errors dominate the BER. Thus, the performance of Hamming codes may be

accurately predicted by the error distribution of the uncoded data stream.

Results of Error Correction Using Hamming Codes The error distribution after correction for

the (40,34) and (80,73) Hamming codes is shown in Figure 24 for 6 Gb/s. The results for the Hamming

codes are based on tests of 3.6 x 1012 and 3.75 x 1011 codewords, respectively, and both normalized to

1013 words. The figures show the effect of mis-correction on the data stream. Due to mis-correction,

many of the codewords with x errors end up with x + 1 errors. In the figures, the number of errors before

correction takes place is calculated based on the entire n-bit code, including the m parity bits. For the

corrected data, however, only the information bits are considered. Thus, if errors occur in the parity

bits because of the link or from mis-correction, they are not tallied. For example, a 3-bit error with two

errors in the information digits will result in a 2-bit error if a parity bit is mis-corrected (or if the decoder

does nothing, which can occur for shortened Hamming codes only) and a 3-bit error if an information bit

is incorrectly flipped. Notice that, as expected, the total number of pre-corrected codewords with more

than one error is approximately the same as the total number of decoded words with errors.

As can be seen on the left of Figure 25 for 6 Gb/s, represented by circles, the bit error rate does

- - I .-- I ____ '911MM M M - - __ -M - : . I M 11 1

59

10 -7- 1 1 0

-09 - 0 - ----

1 0 ------ - - - - - - - - - 0 9

.... .0-96 09

- -- --- -- - - - - -- -- --9 - r, i----- -----

m 0 -- - -- - - 1 -:: : : : .: j :::-- 0-94

-- - 0 -. 6
.. -- - .4 .E---y-

10 Z
LJ2

1
09 4

102101010 1

-0. T ,I---- .2 c

2r 10 10 08-8 d 4 x ----, se y T BE r bsd bn --tua- r t

r s t E=t f of acded DaR. wE: ---- R

r x A r , a BEs a ox iatenly x1 ar p e n

IhE BER of te coded datataust be

10pae t--- uncode data trnmte ttesm n mtof Dete.to They 01rs6nigifomto

the ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~E othe twDoe.Te(03)Hmmn oems ecmae ocoded Dat rnn t5. bs

108 10.94
10- 10 3 1 10 11F1

Codewowd Lenth (N) Codeword Lencth (N)

Figure 25: Effectiveness of Hamming Codes with Block Size of 40, 80, and 1000. The left graph shows

results for 6 Gb/s while the right graph is for 6.25 Gb/s. The raw bit error rates are approximately

2 x 10
7 and 4 x 10 , t respectively The BER for block sizes of 40 and 80 are based on actual correction

circuits, while the BER for N = 1000 is an approximation of the actual BER.

not significantly increase when the block size increases. Recall that the bit error rate of the data before

correction is 2 x 10-7. After correction, the average BER is approximately 4 x 10-10, a raw improvement

of almost three orders of magnitude.

In order to accurately judge the effectiveness of the code, the BER of the decoded data must be

compared to uncoded data transmitted at the same information rate. The corresponding information

rate depends directly on the code rate, so the (1000,990) Hamming code has a significant advantage over

the other two codes. The (40,34) Hamming code must be compared to uncoded data running at 5.1 Gb/s,

while the (1000,990) Hamming code can be compared to data transmitted at 5.94 Gb/s.

Both graphs in Figure 25 also show the code rate for Hamming codes as a function of the block size.

Notice that the line jagged. For a fixed number of parity bits, m, the more shortened a code is, the lower

its code rate. Thus, the rate curve has a local maximum whenever a full block size of 2 ' - 1 is used,

and then immediately falls to a local minimum since the code is the most shortened possible for m + 1

parity bits. Based on the code rate, it is easy to see why the BER of the uncoded data, marked with

asterisks, rises steadily with block size. In fact, below block sizes of approximately 60, using a Hamming

W! IF

60

code actually decreases the performance of the link. If the block size is increased all the way up to 1000

or higher, it is likely that the BER improvement is quite close to the raw improvement of three orders of

magnitude.

The equivalent graph for 6.25 Gb/s is shown on the right of Figure 25. At 6.25 Gb/s, since more

multiple-bit errors occur, the maximum improvement of coding is only 1.5 orders of magnitude, from

approximately 4 x 10-6 to 8 x 10~8. Coding does not provide any gain over sending uncoded data unless

block sizes of approximately 200 or greater are used.

Results of Error Detection Using Hamming Codes Figures 25 has further information that shows

the approximate BER if the Hamming code is used as a CRC (detection and retransmission is used). Using

detection, the graph shows that coding is beneficial in terms of performance at all block sizes. At large

block sizes, using detection, even with such a simple code, a BER improvement of more than five orders

of magnitude is observed at 6.25 Gb/s. The raw BER of approximately 10-6 drops down to 1011. At

6 Gb/s and N = 80, the test was run long enough to observe a few errors. In this case, the detection

circuit is an improvement over the correction circuit by four orders of magnitude, from a little over 1010

to a little over 10-4. These results are particularly interesting, because it shows that with detection, a

code may not need to be very powerful in order to detect enough errors for 10" reliability.

6.4.3 Results for SEC-DED Codes

SEC-DED codes are an improvement on Hamming codes to enable detection of all double-errors. For the

detection case, we make the assumption, as explained in the previous section describing simplifications,

that any errors that are detected will eventually be received correctly.

Effect of Redundancy on Bit Stream's Error Distribution The results generated by running

SEC-DED codes through the link are remarkably similar to the results for Hamming codes, as shown in

Figures 22 and 23. With the way the hardware is implemented, only the m bits of the SEC-DED code

differ from that of the Hamming codes. The remaining information bits are the same. For block sizes of

1000, only eleven bits in the entire block may have different values. Thus, any differences may not be

61

10 -- - - -- - - - - - - -- - - - - - -- 10 - - - - - - -- -- - - -- -

Raw Coded Data
ED

7E! Decoded Data

1-- - -- - --- -10~

---- 10------------

10 - 10

..---------...--..----- 1..----------------------

1 2 3 4 1 2 3 4 5
Bit Errors/40-bit Word # Bit Errors/8-b Word

Figure 26: Results of SEC-DED Codes Before and After Correction for N=40 (left) and N=80 (right) at

6 Gb/s. The raw, coded data is based on the entire codeword, or n bits. The decoded data is based on

the information digits only, or k = n - k bits per word.

significant enough to affect the ISI.

However, the two curves representing the uncoded and coded data deviate as the number of errors

per word increases. fuich of this is possibly due to the fact that fewer occurrences were observed, so the

results may not be an accurate reflection of the true proportions. For a code that handles two errors, such

as the SEC-DED code, the deviation is not particularly extreme, so one may still obtain a reasonably

accurate prediction of the effectiveness of SEC-DED codes based on the uncoded data alone.

Results Obtained by the SEC-DED Codes As with Hamming codes, the results of decoder at 6

Gb/s are shown in Figure 26. The tests consist of 2.7 x 1012 codewords and 8.1 x 1012 codewords, respec-

tively, but are normalized to 1013 words for graphing purposes. The figure shows the error distribution

of the errors before and after entering the decoder. The decoder is implemented such that it can detect

all even-weight error patterns and correct all single-bit errors. Thus, in the figure, the total sum of the

odd-weight columns greater than one of the pre-decoded data is approximately the same as the total sum

of the columns in the decoded data. From the figure, it is clear that there are still a significant amount of

triple-errors that the code is forced to miscorrect. These triple-errors easily prevent the code from being

as effective as desired.

The results for the comparison between SEC-DED codes and uncoded data at 6 Gb/s and 6.25 Gb/s is

62

shown in Figure 27. For both data rates, the BER is fairly constant for block sizes greater than 80. Notice

also that the uncoded data curve, marked with asterisks, is shifted slightly to the right compared to the

corresponding Hamming graph. The code rate for SEC-DED codes is slightly lower, so the uncoded data

must be run slightly faster in order to maintain the same information rate. Even though the SEC-DED

code has to make up more ground, because it corrects double-errors, which happen very frequently (see

Figures 24 and 26), its performance is better. At 6 Gb/s, SEC-DED codes outperform the uncoded data

for every block size tested. The BER of the decoded data is about 10-11. The raw BER of uncoded data

is about 2 x 10-7, so the SEC-DED code improves the reliability by more than four orders of magnitude

at large block sizes. Even at a block size of 80, the code is an improvement over uncoded data by more

than an order of magnitude, from 3 x 10-10 to 10-11.

At 6.25 Gb/s, the SEC-DED code outperforms uncoded data above block sizes of approximately 100.

The BER of the decoded data is stable at about 4 x 10- for block sizes around 80, so the effectiveness

of the code monotonically increases with the block size starting from that point. For a block size of 1000,

the (1000,989) SEC-DED code is able to improve the BER from 10-6 to 4 x 109, an improvement of

approximately 2.5 orders of magnitude.

6.4.4 Results for BCH Codes

BCH codes with t=2, like SEC-DED codes, are able to handle all single-bit and double-bit errors within

a codeword. The difference between the two codes is that BCH codes correct double errors instead of

just detecting them. The increased ability to correct is obtained by using more bits for redundancy.

Effect of Redundancy on Bit Stream's Error Distribution As with both SEC-DED and Hamming

codes, the effect of using a coded data stream has very little effect on the distribution of the number of

errors per block. This is somewhat more surprising, since BCH codes use a considerably larger proportion

of each block for parity bits, especially for smaller block sizes. It would therefore be reasonable to expect

that some effect on the distribution of the number of errors per block would be noticed. However, since

this is not the case, assuming the results are accurate, the effects of BCH codes may be predicted using

the uncoded data stream with reasonable accuracy.

63

1061 10V~

0-98 1 0-98
-10

10 ---- -- - -- -- 0

J -- - - --I - -- -- 0-96 J
10~~ -------------

10 -- --- 096

- --- - 944
S10/ 10---

-rY Y 09 ---

0- - --
4--- 0 94 5

W---------088010

082 IU 102

Codeword Length (N Codeword Length (N)

Figure 27: Effectiveness of SEC-DED Codes with Block Size of 40, 80, and 1000. The left graph shows

results for 6 Gb/s, while the right graph is for 6.25 Gb/s. The raw bit error rates are approximately

2 x i0-- and 4 x 10-6, respectively. The BER for block sizes of 40 and 80 are based on actual correction

circuits, while the BER for N = 1000 is an approximation of the actual BER. All detection is assumed

to be eventually corrected accurately.

Results of Error Correction using BCH Codes The results of using BCH codes for 2-error-

correction is shown in Figure 28. All correction is approximated, because shortened BCH codes are not

particularly suitable for FPGA implementation. The raw performance of t=2 BCH codes is similar to

that of SEC-DED codes, described in the previous section, since they both are designed to handle 2-bit

errors. The main difference, however, is that BCH codes require many more parity bits. To correct two

errors, the BCH code must have double the number of parity bits of Hamming codes. The code rate

would be even lower if more powerful BCH codes are used. SEC-DED codes, on the other hand, need

only one parity bit more than Hamming codes. The effect of the extra parity bits is reflected in the

graphs of Figure 28, where the curve representing the uncoded data is shifted much further to the right

compared to Figure 27.

The graphs show that a block size of approximately 80 is required at 6 Gb/s for the performance of

the BCH code to be as reliable as the uncoded data. At 6.25 Gb/s, the same point is even higher, at

around a codeword length of 200. Therefore, at small block sizes, BCH codes have either a negative effect

or marginal benefit over uncoded data at the same information rate. The performance of using a larger

64

10 1 1o0 ,,1,

10 - -- -- o-9
-E --.. r 10.-

A~-.it------0-96-
10

--- - ------ 0 E-Ucdd EdR-Q946 -m------0949&

10 02 irV / LJ-
4)~~ --- 09 ------ ,12 1

----- -- -- -- 1

1 : 1 2 1

L W-----J 0.9

0

1o2T 03411 3
10 10.. 10...10

Codeword Lenoth (NI Codeword Lenoth (N)

Figure 28: Effectiveness of t=2 BCH Codes with Block Size of 40, 80, and 1000. The left graph shows

results for 6 Gb/s, while the right graph is for 6.25 Gb/s. The raw bit error rates are approximately

2 x 10-7 and 4 x 10-6, respectively. No undetected errors were observed in testing any of these codes.

block size degrades slowly compared to the corresponding uncoded data performance, from 2 x 1012 to

4 x 10-1 at 6 Gb/s and 10-9 to 8 x 10-9 at 6.25 Gb/s. Thus, only at very high block sizes, where the

slope of the rate curve starts to flatten, can significant improvement be observed. For block sizes of 1000,

there is an improvement of three orders of magnitude at 6 Gb/s and 1.5 orders of magnitude at 6.25

Gb/s.

Results of Error Detection using BCH Codes The Hamming distance of a t=2 BCH code is at

least five. This means that the three codes implemented are all capable of detecting every error pattern

of less than weight five. The codes are also able to detect most other error patterns of greater weight.

At 6 Gb/s, a test of 8.6 x 1012 40-bit codewords produced only one error greater than weight four, which

was successfully detected. Similarly, no errors went undetected for block sizes of 80 and 1000 for 49 total

high-weight error patterns. Thus, the BER after error detection at 6 Gb/s is likely less than 1013.

At 6.25 Gb/s, no errors went undetected in 167 opportunities for N = 1000, 227 opportunities for

N = 80, and 38 opportunities for N = 40. Since more than 1012 bits were sent for each test, the resulting

BER using detection at 6.25 Gb/s is at most 10-11.

65

10 10

10
10a

10

0

55 10'
1n

10

M 10

w 10,

10 10D
0 5 10 15 20 25 30 36 40 46 60 55 60 65 70 76 80 0 100 200 300 400 500 600 700 800 900 1000

Error Length Error Length

Figure 29: Data Dependency of Coded Fire Data Stream at 6 Gb/s with N = 80 (left) and N = 1000

(right). The area curve shown in blue (in front) is for the uncoded data stream, while the curve in red is

the l = 4 Fire coded data stream. The graphs are essentially cumulative distribution functions which show

how many total bit errors remain after i-burst-error-correction. Clearly, the number of errors remaining

decreases as the strength of the code increases. The tests for N = 80 are normalized to 1013 bits and

1014 bits for N = 1000

The actual bit error rates cannot be determined without waiting for an impractically long time to

generate enough errors for an accurate estimate, and thus the bit error rates using BCH codes may in

fact be much lower than the upper bounds given in this section.

6.4.5 Results for Fire Codes

Effect of Redundancy on Bit Stream's Error Distribution For the previous codes, the number

of bit errors per word of the coded data is compared to that of an uncoded stream. Fire codes, however,

correct based on the length of the errors rather than the number of errors. Figure 29 shows the number

of total bit errors remaining after 1-burst-error-correction is used. The results are normalized to 1013 bits

from 1.7 x 1014 bits and 7.2 x 1012 bits for N = 80. For N = 1000, the tests are 1.2 x 1014 bits long and

3.6 x 1014 bits long, respectively, and normalized to 1014 bits. The coded data has fewer total errors at

each error length, so the overall bit error rate for the uncoded data is lower no matter how powerful of

a Fire code is chosen. The difference is generally far less than an order of magnitude, so the difference

does not affect the resulting BER in any significant way, nor does it necessarily imply that the difference

is attributed to coding. Other than the height difference of the area curves, the actual distribution of

66

10 - 1 - - ---- + -

---- -- ~1 G M- ---- - --
10 1 - --- --- ---- -- 96

-- 0 9 4 2 -- - - -- -- -- 0 9 4 ,9
10 - --- z-

......092 --- 092 -
(D

10 B d

. .E R - - --------- ...y....- . --------- - ------- 1 - 0 T4

086 10 1z 01--- CfUcddDt)/Ew noRt 1

----------- ----R- ofD tcanO ls0~ -- L. ~ . J . J 8

10 --- 0---2 10 0.82
10101

Codeword Length (N) Codeword Length (N)

Figure 30: Effectiveness of Fire Codes with Block Size of 40, 80, and 1000. The left graph shows results

for 6 Gb/s, while the right graph is for 6.25 Gb/s. The raw bit error rates are approximately 2 x 10-7 and

4 x 10-6, respectively. Only one test, that of the (80,69) Fire code at 6.25 Gb/s, produced any undetected

errors.

lengths s very similar, especially for the (1000,985) Fire code. In other words, the coded area curve is just

the uncoded curve shifted up. Thus, even if the exact BER cannot be predicted by the uncoded data, the

improvement expected from choosing a more powerful code can be predicted. For example, at 6 Gb/s,

for both uncoded data and coded data, it is clear the BER for an 1 = 30 Fire code is a whole order of

magnitude better than a 1 = 29 Fire code.

Results of Error Correction Using Fire Codes Figure 30 shows the results from using an 1=4

burst-error-correcting Fire code at 6 Gb/s and 6.25 Gb/s. Notice that, unlike all previous codes, the

curve indicating the code rate is not jagged. This is the curve for the maximum code rate for a Fire code,

which depends on the burst-error-correcting ability rather than the block size. For the 1 = 4, the fewest

number of parity bits possible is 11, and this is the number for which the curve is derived. For the codes

implemented, however, the actual number of parity bits for block sizes of 40, 80, and 1000 are 13, 11, and

15, respectively.

For the three block sizes implemented, the approximate BER results are all well within an order of

magnitude. The BER at 6 Gb/s is approximately 1010, and the BER at 6.25 Gb/s is between 10-8 and

-- -M !!!!!!!! I

67

1 - - 10

------ *---------------------- ---
---~~~~~~~~---------------*-------------- ----------------------------- W-------------

10 10:~ -- - - - - - -

.W0 -io

--------------- ---- BER of Coded Data

10 ---------------------- BER of Equvaenl Uncoded Data
(480,435) BCH (480.425) Fire (480,435) BCH (480,425) Fire

Figure 31: Effectiveness of correction using the t 5 (480,435) BCH and the 1 = 18 (480,425) Fire code
at at 6 Gb/s (left) and 6.25 Gb/s (right). Detection with these codes yielded no undetected errors in
> 1014 bits at 6 Gb/s and 1012 bits at 6.25.

10-7. Thus, increasing the block size is an effective way of improving the performance, especially since

the number of parity bits does not necessarily increase with block size. For very large block sizes, the

expected BER improvement is almost three orders of magnitude at 6 Gb/s and one order of magnitude

at 6.25 Gb/s.

Results of Error Detection Using Fire Codes The 1 = 4 Fire codes implemented in the project

are capable of detecting all bursts of length eight, and most errors of greater than eight. The discussion

of error detection using the t=2 BCH codes generally applies here, except there are far more instances

of received codewords with large error lengths than there are codewords with many bit errors. Tests of

approximately equal number of bits were run for the Fire codes as with the BCH codes, and there was

only one test that had any undetected errors. Of 1011 codewords, the (80,69) shortened Fire code let one

6-bit error of length 43 pass undetected at 6.25 Gb/s.

Thus, the resulting BER using detection only is less than 1013 for a data rate of 6 Gb/s. The (80,69)

Fire code produces a BER of approximately 10-12, while the bit error rate of the link when using either

the (40,27) or the (1000,985) Fire code is less than 10-11.

6.4.6 Results for More Powerful BCH and Fire Codes

Results of Error Correction The results of using the t = 5 (480,435) BCH code and the I = 18

(480,425) Fire code are shown in Figure 31. As expected, the BCH code performs significantly better

68

than the Fire code at both data rates. For the BCH code, although the order of magnitude BER

improvement is not greater than the t = 2 BCH code, the more powerful code is necessary in order to

produce results closer to the 101S bit error rate goal. The BER of the more powerful code at N = 480 is

less than 1012 while the BER of the t = 2 code is approximately 10-' at 6 Gb/s. At 6.25 Gb/s, these

BERs are nearly 10-8 versus approximately 10"0. Compared to a BSC, the improvement from using a

much more powerful, hardware-consuming, and energy-consuming code is quite disappointing.

The results of using the Fire code is even more disappointing. At 6.25 Gb/s, the gains achieved by the

code are not even sufficient to overcome the code overhead. Furthermore, compared to the 1 = 4 code,

the more powerful Fire code brings the BER down further from 3 x 10-10 to 10-10 at 6 Gb/s and from

8 x 10-8 to 2 x 1010 at 6.25 Gb/s. The poor performance stems from the fact that the I = 4 code is

able to correct most of the short-length errors, so increasing the burst-correcting ability does very little

to the overall performance.

Results of Error Detection As previously stated, these two codes are considerably more powerful

than the other codes implemented. Thus, it is not surprising that the tests did not yield any undetected

errors in more than 1014 bits at 6 Gb/s and 1012 bits at 6.25 Gb/s.

6.5 Code Comparison

The four codes implemented in the project produce vastly different results. At 6 Gb/s, the BER improve-

ment over uncoded data with the same throughput for each code and block size is illustrated in Figure 32.

The equivalent graph for 6.25 Gb/s is shown in Figure 33.

From Figures 32 and 33, three main conclusions can be drawn. The first conclusion is that clearly

detection outperforms correction. The Hamming code in detection mode, the SEC-DED code, and the

t=2 BCH code can be used to implement the three different types of 2-error-correcting control systems.

A Hamming code used as a CRC can be implemented in an ARQ system. The SEC-DED code is meant

to be used in a hybrid FEC-ARQ scheme, and the BCH code can be used in a FEC system. From the two

figures, the Hamming code outperforms the SEC-DED code by two or three orders of magnitude, and the

SEC-DED code outperforms the BCH code by an order of magnitude for some block sizes. Recall that the

69

E

Q.
E

W

0

4

3

2

1

0

-1

........--------- - - ----------- - r - -- - - , -------

... .---- L .- ..--- 1--.e.- - - -L --- -. ---. e -------

--------'- - -- - - -- '- - i -- --. --.- -- --.-- -
3~ ~ Hammingi .

a SEC-DED
-G-BCH

-Fife

---- Hamming (ARQ)

10 101 10
Codeword Length(N)

Figure 32: Bit Error Rate Improvement For Each Code at 6 Gb/s. The BER improvements using ARQ

with more powerful codes than Hamming are not plotted, because they are off the charts.

MC

f
c

0
E72

0

E

w

6

5

4

3

2

1

0

-1

-2

2 3
10 10 10

Codeword Length(N)

Figure 33: Bit Error Rate Improvement For Each Code at 6.25 Gb/s. The BER improvements using

ARQ with more powerful codes than Hamming are not plotted, because they are off the charts.

e Hamming
e SEC-DED ----

C BCH
-- 2 Fire

SHamming (ARQ)

------------- ----- -- ----- -- -- - --- --- -- --------

- - - -----r ---, " ,-------r

I i i j i I

70

SEC-DED code does not perform up to the code's detection capacity, which would require a much more

complex detection circuit. Thus, it is likely that at its best, the SEC-DED code would be vastly superior

to the BCH code. The Hamming code outperforms the other two codes for two reasons. First, detection

can be implemented at a higher code rate, since it requires less redundancy. Also, detection is capable of

handling a large number of error patterns outside its guaranteed detection range, while correction is often

forced to miscorrect the errors. SEC-DED, which utilizes detection to a lesser degree, performs better

than BCH for these same reasons.

A second conclusion that is observed is the significant increase in performance when the block size is

increased. This phenomenon is mentioned in the discussion for each code, but the significance is worth

reiterating. The code rate for a linear block code generally increases with block size. Thus, as long as a

large enough codeword length is used, a very powerful code can be implemented at a high enough rate

to overcome the overhead. For example, the code rate for a t=5 BCH code would be far too low if a

small block size were used (i.e. a (63,36) BCH code has R = 0.57), but from Figures 32 and 33, it is

clear that the code can achieve significant gains for N = 480. Similarly, another observation that can be

drawn from the figures is that at a high enough block size, the difference between the various code rates

becomes negligible. The most clear illustration of this fact can be seen by comparing the curves for the

SEC-DED and BCH codes at either data rate. Both codes achieve virtually the same BER, since both

BERs are dominated by triple-bit errors. Thus, the performance improvement stems almost completely

from the code rate. As the block size increases, the difference between the two curves shrinks so that at

N = 1000, the curves are separated by far less than an order of magnitude, especially at 6.25 Gb/s.

Finally, length-based correction (i.e. a Fire code) does not perform nearly as well as correction based

on the number of errors (i.e. a Hamming, BCH, or SEC-DED code). Fire codes are not as efficient as

the best burst-error-correcting codes, but the performance of the code does not merit examining more

efficient codes. Fire codes are not even able to perform better than Hamming codes at either data rate.

Increasing the burst-error-correcting capability only decreases the BER improvement, as can be seen by

the circle representing the (480,425) 1 = 18 Fire code. This result is not surprising. Many of the error

lengths are short when there are only two or three errors in the word, but as the number of errors per

71

codeword increases, so does the error length (see Figure 21). Thus, it is far more worthwhile to focus on

correcting all the errors of lesser weight rather than only the ones of short length.

6.6 Remarks on Hardware Requirements of Codes

The complexity of implementing a code in hardware varies based on what code is used, the size of the

codeword, and the decision between correction, detection, and simultaneous correction and detection.

Current transceivers are implemented such that if coding were used, the parity bits would be formed in

parallel at the transmitter and decoded serially at the receiver. It is difficult to estimate the complexity of

the transmitter based on the type of code alone, because the complexity depends partially on the number

of I's in the matrix of the generator matrix. Thus, of the codes studied in the project, only SEC-DED

codes guarantee the simplest encoding circuit. Other than that, clearly the more parity bits required by

the code, the more registers and total xors are required to generate the parity bits.

At the decoder, a cyclic or shortened cyclic code is advantageous, especially if detection is used. With

detection, only a simple LFSR of size m is needed to form the syndrome. The syndrome is enough to

determine whether retransmission is necessary. The hardware of the circuit then grows linearly with the

number of parity bits needed, and the block size has little bearing on the hardware of the circuit. On

the other hand, if correction is used, then besides the syndrome circuit, a correction circuit and a buffer

of size n is necessary to perform the correction properly. Thus, a correction circuit requires many more

registers and additional hardware. It is evident, therefore, that detection is promising for reasons other

than the performance benefits shown in previous sections. Also, since the block size does not greatly

affect the detection circuit, increasing the block size may prove to be a viable option in an ARQ system.

6.7 Alternative Codes that May Yield Good Results

One of the most interesting results of the project is the performance of the Hamming code to detect

errors. At 6 Gb/s, the Hamming code is only able to obtain a BER of 3 x 1010 from a raw bit error

rate of 2 x 10-. With detection, however, the bit error rate is reduced all the way down to 3 x 10-14, a

additional four orders of magnitude. Similarly, at 6.25 Gb/s the BER drops from around a raw bit error

72

rate of 10-6 to 10-11. It may be that a code with a Hamming distance of four instead of will be enough

to reduce the bit error rate all the way down to the desired mark of 10-15. Perhaps the SEC-DED code

can be used, though the fact that it is not cyclic deters from its appeal. According to [12], a CRC for a

(63,56) code generated by g(X) = X 7 +X 5 + X 4 + X 2 + X +1 is particularly effective for detection over

a BSC. This code may be worth studying, because it has a high code rate of 0.89 and a small enough

block size to be implemented using current technology. If a higher code rate is needed, [12] lists CRCs

with data lengths up to 2048 bits.

If the retransmission of worst-case patterns turns out to be problematic for the throughput of an

ARQ system, then it may be desirable to implement a hybrid FEC-ARQ system. Then, a worst-case

pattern will be accepted correctly when one error, or more depending on the code, is received within the

codeword. Although the SEC-DED code performs well, it may be necessary to implement it in such a

way as to be able to detect all odd-weight error patterns that do not produce the same syndrome values

as single-bit errors. Even with the improvement, single error correction and double error detection may

not be enough to achieve the desired results. Then, the Hamming distance should be increased to be able

to detect even more errors and possibly correct more errors.

7 Conclusion

The work described in this document provides a number of useful insights into the effectiveness of using

codes for links. First, the distribution of both the error lengths and the error weights for blocks of various

lengths is discovered. The distribution of error weights shows that although the errors are correlated,

occurrences of error patterns with weights of more than eight are rare. Furthermore, the error length

distribution shows that the expected error length grows rapidly with the weight of the error pattern,

indicating that error length-based correction may not be particularly effective.

Since the BER is low and error weights typically are not large, simple codes are implemented to

test the performance of existing codes. These codes are Hamming, BCH, SEC-DED, and Fire codes,

of which the first three are random-error-correcting codes. Some of these codes are implemented for

detection, correction, simultaneous detection and correction, or for more than one of the above. Overall,

73

the results confirm that purely random-error-correcting codes perform better than purely burst-error-

correcting codes. Furthermore, error detection proves to be a far superior option for links, since a

back-channel exists, and detection requires less hardware and has higher BER gains. However, to fully

analyze the results of using an error detecting code, a full ARQ scheme must be implemented. This

necessity is described further in the following section.

7.1 Recommendation for Future Work

Since error patterns with weight greater than eight occur very rarely, a random-error-detecting code can

be used to obtain low bit error rates. The other option would be to use error correction. Two possible

BCH codes that can correct eight errors are the (255,191) and the (1023,943) codes, which have rates of

0.75 and 0.92. These codes have low rate considering the block size. Thus, error correction has both low

throughput and would require a large amount of hardware. In comparison, error detection can use a code

that has a Hamming distance of 9, like a t = 4 BCH code. The equivalent BCH codes are the (255,215)

and the (1023,991) codes, which have much higher rates of 0.84 and 0.97 and less than half the hardware.

The full performance of an error-detecting code within an ARQ system is still unknown, since the

approximations made in this project do not account for some factors that may impact the performance

of the ARQ system as a whole. The two factors that are potentially problematic are the number of

retransmissions necessary for a worst-case pattern to be accepted, and the frequency of detected errors

that end up being undetected errors in a retransmission. Thus, it is necessary for the codes implemented

in this project to actually be used in an ARQ system. If the results are similar to those described in this

document, then the recommended codes addressed in the previous section should be tested.

There are even more factors to consider when implementing the ARQ protocol that are not considered

in the project. One such concern is choosing an appropriate block size. From a coding standpoint,

based on the results of this work, it is wise to choose large block sizes. However, from a retransmission

standpoint, smaller block sizes are desirable so that both the probability of retransmission is lower and the

number of bits to retransmit is fewer. In fact, for a BSC, the block size that achieves the best throughput

is a block of size one [21].

74

Finally, another concern that must be addressed is the complexity of implementing a retransmission

scheme, and whether that uses less energy than implementing a more powerful error correcting code. The

simplicity of detection circuits over correction circuits is counteracted by the added hardware required

by an ARQ system, such as a transmitter and possibly a receiver buffer. There are many types of ARQ

systems, and these must be explored, along with a given code, to determine the best system based on

achievable throughput and complexity.

From the findings of this work, detection is the route with the most potential for link coding. To

complete the study, the implementation and examination of appropriate ARQ systems is necessary to

determine whether detection, and coding in general, is suitable for links. Afterward, if coding continues

to be a promising solution, then the further steps detailed in the Problem Statement should be taken.

7.2 Final Recommendation

Due to the promising results of both error detection, which produces a BER improvement of approximately

five orders of magnitude at 6.25 Gb/s and HD = 3, and simultaneous error detection and correction,

which produces a BER improvement of 2.5 orders of magnitudes at 6.25 Gb/s and HD = 4, there is

potential for coding to be effective at combating link errors. The low BER requirement of 10- 5 and the

desire for high energy-efficiency essentially rules out the possibility of using an FEC scheme, especially

considering the results of the poor results of the t = 5 BCH code and the 1 = 18 Fire code. However,

there are still many avenues to explore with retransmission schemes that can and should be looked into

in the near future.

To summarize, the answers to the questions posed at the beginning of the document are:

e What codes would work better than Hamming? And more significantly, what properties do these

codes possess that make them so appropriate for the link environment? Hamming is an effective

code for links, since single-bit errors dominate the bit error rate. However, especially since the

channel is not BSC, double-errors, triple-errors, etc. are too common for such a low-power code

to produce the necessary results. It appears that it is not possible for an error control scheme to

achieve the desired results without being able to correct at least all patterns with eight bit errors,

75

whether that system includes a t=8 error-correcting code or a code with a Hamming distance of

nine to detect all 8-weight errors.

9 Given a set of criteria on block size, data rate, etc., what is the best code to use? What makes

that code better than all of the others? The results of the code do not produce definite answers to

these questions, but can comment on trends. Increasing the block size increases the performance

of the code, since the code rate increases and the number of bit errors per word does not increase.

Furthermore, at large block sizes, most codes have virtually the same code rate, so extremely

powerful codes may be chosen as long as the corresponding hardware can be implemented. As for

the data rate, comparing the general results at 6 Gb/s and 6.25 Gb/s, it is easier to improve upon

a BER that is lower. Thus, in the future it will be necessary to determine how powerful to make

the equalizers versus how powerful to make the code.

" Which type of error control scheme has the most potential to work for links? From the results,

detection is shown to be far superior to correction. The true effectiveness of a complete ARQ

system is still unknown, but its potential advantages over FEC systems are clear.

" Is there a single combination of variables (i.e. block size, data rate, code) that is clearly superior?

If not, then what are the most promising results that should be looked into further in the future?

The results of using detection are extremely promising, though the best code and block size has

not been determined. Based on the results generated, the suggested codes may in fact produce low

enough bit error rates and hardware complexity.

76

References

[1] R. Kollipara, "Design, modeling, and chracterization of high-speed backplane interconnects," De-

signCon, 2003.

[2] V. Stojanovic and M. Horowitz, "Modeling and analysis of high-speed links," Custom Integreted

Circuits Conference Digest of Papers, 2003.

[3] J. Zerbe, "Design, equalization and clock recovery for a 2.5-10Gb/s 2-PAM/4-PAM backplane trans-

ceiver cell," IEEE International Solid-State Circuits Conference, february 2003.

[4] V. Stojanovic and J. Zerbe, "A systems approach to building modern high-speed links," IWSOC,

2005.

[5] V. Stojanovic, A. Amirkhany, and M. Horowitz, "Optimal linear precoding with theoretical and prac-

tical data rates in high-speed serial-link backplane communication," IEEE International Conference

on Communications, 2004.

[6] A. Amirkhany, V. Stojanovic, and M. Horowitz, "Multi-tone signaling for high-speed backplane

electrical links," IEEE Global Communications Conference, 2004.

[7] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Upper Saddle River, New Jersey: Pearson

Prentice Hall, 2004.

[8] A. Hocquenghem, "Codes corecteurs d'erreurs," Chiffres, vol. 2, pp. 147-156, 1959.

[9] R. Bose and D. Ray-Chaudhuri, "On a class of error correcting binary group codes," Information

Control, vol. 3, pp. 68-79, March 1960.

[10] R. Hamming, "Error Detecting and Error Correcting Codes," Bell System Tech. J., 1950.

[11] M. Y. Hsiao, "A class of optimal minimum odd-weight-column SEC-DED codes," 1970.

[12] P. Koopman and T. Chakravarty, "Cyclic redundancy code (CRC) polynomial selection for embedded

networks," The International Conference on Dependable Systems and Networks, 2004.

77

[13] L. Thon and H.-J. Liaw, "Error-correction coding for 10 Gb/s backplane transmission," DesignCon,

2004.

[14] D. Carney and E. Chandler, "Error-correction coding in a serial digital multi-gigabit communication

system: Implementation and results," DesignCon, 2006.

[15] A. Bessios, W. Stonecypher, A. Agarwal, and J. Zerbe, "Transition-limiting codes for 4-PAM signal-

ing in high speed serial links," in IEEE Global Telecommunications Conference, December 2003, pp.

3747-3751.

[16] A. Ho, V. Stojanovic, F. Chen, C. Werner, G. Tsang, E. Alon, R. Kollipara, J. Zerbe, and

M. Horowitz, "Common-mode backchannel signaling system for differential high-speed links," in

Symposium on VLSI Circuits. Digest of Technical Papers., June 2004, pp. 352-355.

[17] Xilinx. (2004) Ug035: Rocketio transceiver x user guide. [Online]. Available:

http://www.xilinx.com/bvdocs/userguides/ug035.pdf

[18] . (2004) Xapp661: Rocketio transceiver bit error rate tester. [Online]. Available:

http://www.xilinx.com/bvdocs/appnotes/xapp661.pdf

[19] "General requirements for instrumentation for performance measurements on digital transmission

equipment," ITU-T Recommendation 0.150, May 1996.

[20] P. P. Chu and R. E. Jones, "Design techniques of FPGA based random number generator," in Military

and Aerospace Applications of Programmable Devices and Technologies Conference, September 1999.

[21] J. Morris, "Optimal blocklengths for ARQ error control schemes," IEEE Transactions on Commu-

nications, vol. COM-26, pp. 488-493, January 1979.

