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Abstract

Recently there has been a resurgent interest in syntax-based approaches to informa-

tion access, as a means of overcoming the limitations of keyword-based approaches.

So far attempts to use syntax have been ad hoc, choosing to use some syntactic infor-

mation but still ignoring most of the tree structure. This thesis describes the design

and implementation of SMARTQA, a proof-of-concept question answering system that

compares syntactic trees in a principled manner. Specifically, SMARTQA uses a tree

edit-distance algorithm to calculate the similarity between unordered, unrooted syn-
tactic trees. The general case of this problem is NP-complete; in practice, SMARTQA
demonstrates that an optimized implementation of the algorithm can be feasibly used
for question answering applications.

Thesis Supervisor: Boris Katz
Title: Principal Research Scientist

3



4



Acknowledgments

Special thanks go to:

" Mom and Dad for always being there for me and constantly showing me their

support.

" Boris Katz for being a superb advisor. Boris, I hope this brings QA a step

closer to our dream.

" Roni Katzir for invaluable advice during all phases of this thesis, and for the

late-night conversations about projects that are still to come. Stay tuned, this

is just the beginning.

* Sue Felshin, Gary Borchardt, Gregory Marton and Yuan Shen, for their valuable

suggestions during the writing and editing of this document.

" To the rest of the Infolab group: Federico Mora, Gabriel Zaccak, Jimmy Lin,

Ben Lu and all others that made our corner of the Stata Center such an enjoyable

place to work.

" To MIT for the resources and education it provided me with.

5



6



Contents

1 Introduction

1.1 The Dream . . . . . . . . . . . . . . . . . . .

1.2 Traditional Information Access . . . . . . . .

1.3 Question Answering . . . . . . . . . . . . . . .

2 Exploiting Syntax for Question Answering

2.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . .

2.2.1 Linguistic Background . . . . . . . . . . . . . . . . . . . . . .

2.2.2 Dependency Trees . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3.1 Tree Edit-Distance and Variants . . . . . . . . . . . . . . . . .

2.3.2 Requirements for Question Answering . . . . . . . . . . . . . .

2.3.3 Aligning Unordered Trees . . . . . . . . . . . . . . . . . . . .

3 Related Work

3.1 S TA RT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Surface Pattern Approaches . . . . . . . . . . . . . . . . . . . . . . .

3.3 Parsing-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . .

4 Implementation

4.1 Knowledge Representation . . .

4.2 Architecture . . . . . . . . . . .

7

15

15

16

17

19

20

21

22

25

26

26

27

32

39

39

40

41

45

45

46

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .



4.2.1 Question Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Document Selection . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.3 Document Analysis . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.4 Answer Extraction . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Experimental Results 51

5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusion 59

8



List of Textual Examples

Examples of questions transformed into templates. . . . . . . . . . . . . . 22

Examples of sentences with and without arguments. . . . . . . . . . . . . . 24

Examples of sentences with and without modifiers. . . . . . . . . . . . . . 25

9



10



List of Figures

2-1 An example of a syntactic tree . . . . . . . . . . . . . . . . . . . . . . 23

2-2 An example of a dependency tree . . . . . . . . . . . . . . . . . . . . 26

2-3 An example of tree edit-distance . . . . . . . . . . . . . . . . . . . . . 27

2-4 Types of trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2-5 Permitted operations in the original formulation of tree edit-distance 28

2-6 An ideal alignment between a template and an answer. . . . . . . . . 29

2-7 A suboptimal alignment between a template and an answer. . . . . . 31

2-8 Forest obtained after aligning a root node. . . . . . . . . . . . . . . . 34

2-9 Tree obtained after contracting an edge. . . . . . . . . . . . . . . . . 34

4-1 Architecture of SMARTQA . . . . . . . . . . . . . . . . . . . . . . . . 47

5-1 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

11



12



List of Tables

5.1 Measured accuracies for each of the systems evaluated against the

TREC 2005 questions. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Reported accuracies for the top 10 systems in TREC 2005. . . . . . . 55

5.3 Reported R-Precision for the top 13 IR modules in TREC 2005. . . . 55

13



14



Chapter 1

Introduction

1.1 The Dream

In the last couple of decades the amount of digital information has been increas-

ing dramatically. The push towards digitization has been driven by the advantages

it offers over conventional media: massive repositories of knowledge can be stored

efficiently and information within them can be retrieved rapidly.

Extrapolating from this trend, one can't help but dream of a world where users

can access precisely the information they need exactly when they need it. While

current technology has certainly taken us closer to that dream, the ideal remains

out of reach-it is often quite hard to find the information one needs amongst the

overwhelming amount of data that is available.

An ideal information access system would allow users to express requests for infor-

mation in natural terms and would have human-level understanding of the information

in its knowledge base. Upon receiving a request from a user, it would return precisely

the information that is relevant to that request. Neither more nor less.

I believe that ultimately such an ideal system will be in the form of a question

answering system. To this end, this thesis contends that question answering systems

can and should exploit syntactic information to better understand their knowledge

base and ultimately provide users with more relevant answers.
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1.2 Traditional Information Access

Most currently deployed information access systems attack the problem from an infor-

mation retrieval (IR) perspective by considering indexed documents as bags of words.

Under such a scheme, the semantic content of a document is equated with the set of

keywords it contains regardless of their order or interrelationships.

Unfortunately, keywords alone are not enough to capture the full expressiveness

of language. Word order and syntactic relationships are important when determining

the meaning of a sentence. Consider for example the following pairs of sentences and

phrases with essentially the same keyword content but different meanings:

(1.1) a) France defeated Brazil at the World Cup Final.

b) Brazil defeated France at the World Cup Final.

(1.2) a) Video of kidnapped journalists being released.

b) Kidnapped journalists released with video.

A keyword-based system would treat each of those pairs as desirable responses to

the same query. A user would probably consider only one of the entries in each pair

to be relevant. To illustrate: if the user is interested in knowing the answer to "Who

defeated Brazil?" then the sentence "France defeated Brazil at the World Cup Final."

would be relevant, but "Brazil defeated France at the World Cup Final." would not

be.

To improve their performance, IR systems employ several techniques. Some of

the most common ones include removing stopwords1 , stemming terms2 , and weigh-

ing keywords according to tf - idf 3 [44]. The most significant improvements of IR

technology in recent years have come from exploiting structured and semi-structured

'Stopwords are common words without useful semantic content, such as "the", "a", "of", and
in".

2 Removing the endings of words to keep only their root or stem. For example, "eat", "eats",
"eating", and "ate" are all stemmed to "eat" and considered equivalent.

3 The frequency of a term in a given document (term frequency or tf) times its inverse document
frequency (idf). Intuitively, if a word is rare in general, but frequent in a document, it is an important
indicator of the meaning of the document.
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information. Witness, for example, the highly successful Google search engine, which

weighs documents according to the hyperlink structure of the web to obtain better

results [4]. Unfortunately, information we are interested in is often found as free-

form, natural language text without any explicit structure. Even in semi-structured

documents, such as HTML and XML, most of the relevant content is in a natural

language. Unlike traditional IR approaches that only exploit the few structural el-

ements made explicit in a document, language-based approaches are in a position

to exploit the significant amount of latent structure hidden within the grammar of

English sentences.

1.3 Question Answering

The limitations of traditional IR should be enough motivation to pursue a more

linguistically motivated approach to information access. While one could simply try

to extend a traditional IR system with language-based heuristics, it would be more

desirable to make natural language understanding a cornerstone of information access.

Question answering (QA) systems take such an approach by using natural lan-

guage, both in their answer selection mechanisms and in the interface they use to

communicate with their users. By allowing users to issue information requests in

human terms, QA systems present an intuitive interface that is easy to deploy and

has virtually no learning curve.

Despite the obvious advantages that an ideal QA system would bring, researchers

are currently not in a position to develop an automated system capable of human-

level understanding. Current technology is too primitive to cope with the complexity

of natural languages-we still lack proper ways of dealing with intersentential refer-

ences, common-sense implication, and word sense disambiguation to name a few open

problems.

We are in a position, however, to reach a promising middle ground: we can develop

systems that exploit the syntactic information contained within natural language

sentences. Parsing technology has made great strides in recent years, bringing large-

17



scale syntactic analysis within the realm of possibility. This thesis demonstrates that

it is possible to use a principled approach for comparing syntactic trees in order to

improve the current state of the art in information access.
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Chapter 2

Exploiting Syntax for Question

Answering

The main contribution of this thesis is the design and implementation of SMARTQA, a

proof-of-concept question answering system that relies heavily on syntax to determine

answers.

Today's state-of-the-art question answering systems are rather complex, con-

taining dozens of modules performing various different tasks (information retrieval,

question-type analysis, anaphora resolution, named entity recognition, inferencing,

etc.). Given the complexity of current systems, it is often difficult to understand how

each different module affects performance. In order to fully understand the potential

impact that syntax-driven approaches can have in question answering, SMARTQA

departs from this complex architecture, instead selecting answers based solely on a

dynamic programming algorithm for comparing syntactic trees. Nevertheless, the

system was designed with extensibility in mind; in the future it can be easily ex-

tended into a full-fledged question answering system that incorporates many of these

additional modules.

In its crudest form, a QA system consists only of two modules: an IR-type module

that selects candidate information fragments from its knowledge base, and an answer

selection module that evaluates each of those fragments and assigns them a score

based on how likely they are to answer the posed question.

19



If we restrict our information fragments to sentences, our problem reduces to that

of (i) finding an appropriate representation for questions and candidate sentences and

(ii) defining a similarity measure between those representations such that sentences

containing the right answer are deemed highly similar to the question, and sentences

not containing the answer are deemed highly dissimilar.

2.1 Design Principles

* Wide Coverage.

Often linguistically motivated question answering systems are built to perform

very well within a limited domain, but their performance degrades significantly

when they are extended to handle arbitrary questions. Much of the usefulness

of an information access system derives from its ability to handle a wide variety

of knowledge requests; SMARTQA was therefore designed to handle questions

in unrestricted domains. The only assumption that SMARTQA makes about its

input is that the user submits questions formulated in English. This requirement

is, in fact, an advantage over traditional IR systems. Natural language questions

contain the useful grammatical structure SMARTQA capitalizes on, and serve

as an intuitive interface to information access.

* Robustness to Variable Phrasing.

Natural language offers speakers many different ways to express the same ideas.

SMARTQA is designed to be robust to variable phrasings. The system should

still be able to find an answer even if the source of knowledge it is accessing does

not contain the requested information with the exact same phrasing employed

by the user when posing the question.

* Principled.

Previous attempts at comparing syntactic trees have done so in an ad hoc man-

ner, choosing, for example, to disregard most of the tree structure and com-

puting instead the percentage of dependency triples that overlap between the

20



question and the candidate. SMARTQA uses a principled approach that takes

into account the structure of the whole tree.

" Formalism Independence.

The algorithm SMARTQA uses to compare syntactic trees is independent of any

specific syntactic formalism. The only requirement placed on syntactic struc-

tures is that they be represented as trees. As linguists improve their theoretical

understanding of grammar, SMARTQA can easily update its representation to

reflect better theories.

" Tunable Precision.

In most information access systems there is usually a tradeoff between recall and

precision. The ideal balance between the two is often application dependent. In

certain applications it is preferable to provide a user with no information than

with misleading information. In others, it is preferable for users to sift through

somewhat relevant information, and make their own judgments, than to obtain

no information at all.

SMARTQA provides a confidence score with each answer that, along with a

tunable threshold, allows users to set the balance they prefer for their respective

application. In addition SMARTQA returns a supporting source of knowledge

with every answer so that users may inspect it if desired.

2.2 Knowledge Representation

In order to take advantage of syntax, SMARTQA moves away from the representation

of sentences as a bag of words, and instead uses dependency trees-a tree-based

structure with labeled edges that makes explicit the syntactic relationships between

the different nodes. Section 2.2.2 describes dependency trees in more detail.

Questions are represented similarly, but before their corresponding trees are gen-

erated, they are converted into an assertive sentence with a variable. We perform

the transformation to bring the syntactic structure of the question closer to that of

21



a candidate answer; essentially, the result of the transformation serves as a template

against which we want to match candidate answers. The examples below show some

questions with their corresponding assertive forms and expected answers.

(2.1) Question: Who invented the radio?

Template: ${who} invented the radio

Answer: Marconi invented the radio. 1

(2.2) Question: When did the Iron Curtain fall?

Template: the Iron Curtain fell ${when}

Answer: The Iron Curtain fell in 1989.

(2.3) Question: What country invaded Italy in 1494?

Template: ${what country} invaded Italy in 1494

Answer: France invaded Italy in 1494.

Examples of questions transformed into assertive templates. Variables are denoted
by a dollar sign and enclosing braces.

2.2.1 Linguistic Background

Linguists generally agree that the best way to represent the grammatical structure of

a sentence is using a labeled ordered tree known as a syntactic tree2 . The words of a

sentence are represented as leaves in the tree. Mother3 nodes represent constituents,

groups of words and subconstituents that form a larger functional unit. Daughter

nodes are referred to as elements of a constituent. Figure 2-1 shows an example of a

syntactic tree.

'Sources disagree on whether the radio was actually invented by Marconi, Tesla or Popov.
2There is a wide variety of syntactic formalisms that use trees as their main representational

structure, including Government Binding (GB), Head-Driven Phrase Structure Grammar (HPSG),
Lexical Functional Grammar (LFG), and Tree Adjoining Grammar (TAG). Even some formalisms
that don't naturally use trees in their formulation have been show to be equivalent to tree-based
formalisms. Combinatory Categorical Grammar (CCG), for example, is weakly equivalent to TAG.

31t is traditional in the linguistic literature to refer to parent nodes and child nodes as mother
nodes and daughter nodes respectively.
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DP VP

PP

NP DP

NP NP

D A A N V P D A N

The uick fox ur s over the lazy do

Figure 2-1: A syntactic tree for the sentence "The quick fox jumps over the lazy

dog". Words are represented as rectangles and constituents are represented as circles

labeled with their corresponding categories. Heads are depicted by the color gray.

Heads

Each constituent contains a head, a special element that determines the syntactic

function of its mother and often determines the presence of other elements. Intuitively,

the head of a constituent corresponds to the most important element, often the one

that captures the most prominent semantic idea. In Figure 2-1 heads are denoted by

the color gray; for example, the head of the noun phrase "lazy dog" is "dog".

Types of Constituents

Constituents are labeled with categories that indicate the syntactic function they

perform. For example, phrases that have a noun as a head are known as noun

phrases, and are labeled with the category NP. Similarly, phrases that have a verb as

23



a head are known as verb phrases and are labeled with the category VP. In Figure 2-1,

"jumps over the lazy dog" is a verb phrase since it is headed by the verb "jumps".

Arguments and Modifiers

Besides heads, constituents have two other types of elements: arguments and modi-

fiers.

Arguments are elements necessary to complete the meaning of the constituent;

the sentence would be ungrammatical without them. In general, their semantic role

depends not only on the contents of the argument but also on the head itself. The

examples below show sentences with and without arguments. Notice that the versions

without arguments are ungrammatical.

(2.4) a) Louise abandoned the project.

b) *Louise abandoned.

(2.5) a) Thelma put the text on the desk.

b) *Thelma put the text.

c) *Thelma put on the desk.

Examples of sentences with and without arguments (some examples taken from [12]).
In each case the head of the relevant phrase is set in boldface and the arguments are
underlined. Ungrammaticality is denoted by a * as is usual in linguistics.

Modifiers or adjuncts are optional elements of a constituent that modify its mean-

ing. The sentence remains grammatical if they are removed, and in general their

semantic role is independent of the head. The examples below show sentences with

and without modifiers.

(2.6) a) Louise abandoned the project.

b) Louise abandoned the project on a Sunday.

(2.7) a) Thelma put the parcel on the desk.
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b) Because it was heavy, Thelma put the parcel on the desk.

c) Thelma probably put the parcel on the desk.

d) Thelma put the parcel on the desk last night.

e) Because it was heavy, Thelma probably put the parcel on the desk

last night.

(2.8) a) The fox jumps over the dog.

b) The quick fox jumps over the dog.

Examples of sentences with and without modifiers (some examples taken from [12]).

In each case the head of the relevant phrase is set in boldface and the modifiers are

underlined.

2.2.2 Dependency Trees

Syntactic trees, as described so far, make explicit the phrase structure of sentences

and implicit the syntactic relations between a constituent's head and its other ele-

ments. For computational purposes, we are interested in making syntactic relations

explicit even at the cost of making the phrase structure implicit. We therefore seek

an alternate representation of grammatical structure known as a dependency tree.

A dependency [13] [32] is an asymmetric binary relationship between a word called

the head and a word called the dependent. Dependencies usually have a label known

as its type. A dependency triple is the 3-tuple formed by the head, the type and the

dependent.

A dependency tree is a tree-based representation of a sentence where each node

represents a word and each labeled, directed edge represents a dependency between

two words. Figure 2-2 shows an example of a dependency tree. Note that in this

representation there is an explicit link between a head and its adjuncts or arguments.

For example, there's a labeled edge between "fox" and "quick" indicating that "quick"

is an adjectival modification of "fox". Notice, also, that in this representation "the"

plays a much less prominent role. In Figure 2-1 the word "the" is the head of both
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DPs, in Figure 2-2 "the" is not the head, but rather the dependent, of the det depen-

dency. This is because dependecy trees, in comparison to syntactic trees, emphasize

semantics instead of phrase structure.

prep

nsubj

pobj

fox

det amod amod det amod

Figure 2-2: The dependency tree for the sentence "The quick fox jumps over the

lazy dog". Words are represented as rectangles and dependencies are represented as

labeled, directed edges.

2.3 Similarity Measure

Given that both the question and a candidate sentence are represented as dependency

trees, and that the question has been transformed into a template that a correct

answer is expected to match, it is natural to choose a variant of tree edit-distance as

the appropriate similarity measure.

2.3.1 Tree Edit-Distance and Variants

Tree edit-distance on ordered trees was originally studied by Tai [40] as a generaliza-

tion of the well-known string edit-distance [46] or Levenshtein distance [24].

Given a small set of basic operations for transforming trees, where each operation

has an associated cost, the edit-distance between two trees is defined as the minimum

cost necessary to make the two trees identical. Trees can be transformed using only

the given basic operations, and the total cost of a transformation is defined as the
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sum of the cost of each of the operations applied. Figure 2-3 gives an example of the

edit-distance between two trees.

A A

B C B,

D E D

(a) Source (b) Target

Figure 2-3: If we assume unit costs for each operation, the above trees have an edit-

distance of 2: the source tree can be made identical to the target tree by performing a

minimum of two modifications. Namely, node C should be deleted and node E should

be relabeled as G.

In the original formulation of the problem, trees were rooted and ordered (see

Figure 2-4 for the different types of trees); the set of basic operations consisted of

node insertion, node deletion, and node relabeling (Figure 2-5 illustrates these oper-

ations). Since then several variants have been proposed (see [3] for a survey of the

different variants). Proposed variants usually change the problem along two possible

dimensions: (i) the types of the trees being compared, and (ii) the operations and

costs permitted when modifying trees. The next section examines which variant is

appropriate for question answering.

2.3.2 Requirements for Question Answering

By looking at an example question and a corresponding answer, we can glean some

of the properties necessary for a tree edit-distance variant to be useful for question

answering.

Recall that we are converting a question into an assertion that serves as a template

for possible answers. Intuitively, a candidate answer matches a template if they share

the same concepts, and if those concepts are interrelated by semantically equivalent
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A

B C

(a)

A

C B

(b)

C

A

B

(c)

Figure 2-4: Trees can be rooted or unrooted, and ordered or unordered.

A tree is said to be rooted if it has a special node designated as the root or origin.

If we consider the above trees to be rooted at their highest node, then (a) and (c)

are different trees. If we consider the trees to be unrooted, however, (a) and (c) are

identical trees.
A tree is said to be ordered if the order of a node's children is significant. If we

consider the above trees to be ordered, then (a) and (b) are different trees. If we

consider the trees to be unordered, however, (a) and (b) are identical trees.

A

B C

D E F G

(a) Original

A

H C

D E F G

(c) Replacement

A

B C

H F {G

DE

(b) Insertion

A

D E C

FG

(d) Deletion

Figure 2-5: Permitted operations in the original formulation of tree edit-distance. All

operations are being performed on the grayed node.
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syntactic relations.

We can model this intuition by aligning the template tree with the candidate

tree. Two nodes are aligned if they represent the same concept. A path between two

aligned nodes is the linear sequence of nodes and edges that connects the two. An

alignment is considered desirable if the paths between aligned nodes in the template

and aligned nodes in the candidate represent similar syntactic relationships.

Take for example the question "Who was the commander of the Russian submarine

Kursk?", which has the assertive form "the commander of the Russian submarine

Kursk was ${who}". A correct answer is found in the sentence "Gennady Lyachin,

the Kursk commander, was awarded posthumously the title of Hero of Russia." by

virtue of the alignment shown in Figure 2-6.

cop auxpass advmod dobj

nsubj nsubjpass det prep

~der pobj
det prep appos det nn

dobj nn prep

det pobj

The commander of the Kursk was ${who} Gennady Lyachin, the Kursk commander, was awarded posthumously the title of Hero of Russia

Figure 2-6: The ideal alignment between the template "the commander of the Rus-

sian submarine Kursk was ${who}" and the answer "Gennady Lyachin, the Kursk

commander, was awarded posthumously the title of Hero of Russia.". Aligned nodes

are connected using dotted lines. Observe that node alignments implicitly define

alignments between paths. For example, ${who} - was -n > commander is aligned

with Lyachin <- commander.

From the discussion and example above, we infer the following properties about

the tree-edit variant:

* Permitted operations should reflect the alignment model. Our version

of tree edit-distance will have two permitted operations: node alignment, and

29



edge contraction. Node alignment pairs a node from the template with a node

from the candidate. Pairings between semantically similar nodes are desirable.

Edge contraction substitutes a node by one of its neighbors, destroying at the

same time the edge that connects them. In general, contractions are unde-

sirable; their application implies that the syntactic relationships between two

aligned nodes do not match perfectly. Note however, that not all contractions

should be penalized as heavily as others; some are necessary to find appropriate

alignments. For example, in order to find the alignment shown in Figure 2-6,

a tree edit-distance algorithm would have to first contract the dobj edge in

the template path commander -rp+ of d-b0: Kursk so that the path becomes

commander -re> Kursk (bringing it closer to the corresponding candidate path

commander nn) Kursk).

Notice that the type of the syntactic dependencies between nodes is important.

Without them, the alignment in Figure 2-7 would be more desirable than the

one in Figure 2-6 since the latter also finds an alignment for the "was" node.

To simplify the tree edit-distance algorithm and obviate the need for another

operation, the implementation described in Chapter 4 takes into account any

relevant neighboring syntactic dependencies within the node alignment cost.

An alternative would be to make all edges unlabeled, and instead model syn-

tactic types as additional nodes. Either way, the theoretical exposition of the

algorithm can ignore edge labels without any loss of generality.

Templates often match subtrees of candidate sentences. Often the an-

swer to a posed question is contained within a sentence fragment. For example,

in Figure 2-6 the question is really being answered by the sentence fragment

"Gennady Lyachin, the Kursk commander". There is no need to penalize the

alignment because other fragments in the candidate, such as "the Hero of Rus-

si a", were not aligned with any nodes in the template.4 On the other hand, not

4This is a simplification. Certain terms outside a fragment can change its meaning (e.g., condi-
tional expressions, modal expressions, negations, etc.). In practice the issues discussed in Section 5.2
have a greater impact on performance. The framework presented here is still sound-a modification
of Function 2.10 on page 33 could handle these cases by penalizing the appropriate constructions.
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cop auxpass advmod dobj

.... ... ... .... ... ... ... .... ... ... ... .... ... ... t sthum ously

nsub nsubjpass det prep

det prep 
p s e

dobj --------.---- nn -prep

det pobj

The commander of the Kursk was ${who Gennady Lyachin, the Kursk commander, was awarded posthumously the title of Hero of Russia

Figure 2-7: A suboptimal alignment that results from ignoring the type of the syn-
tactic dependencies in the tree. If dependency types are ignored, an algorithm will
consider this alignment preferable since "wase is now aligned.

aligning nodes from the template should heavily penalize alignments (consider

alignments where "Kursk" or "commander" are not paired at all).

F Trees are unrooted. To be able to obtain the alignment in Figure 2-6, we

have to view the dependency trees as unrooted trees. An alignment between

rooted trees will necessarily maintain the same ancestor-descendant dominance

in both trees. The node alignments ${who} 4-> Lyachin and commander 4=->

commander show that this dominance is violated in Figure 2-6.

" Trees are unordered. The alignment in Figure 2-6 also suggests that de-

pendency trees should be viewed as unordered. This might be easier to see

by considering that "Mother Teresa died on September 5, 1997, in India." and

"Mother Teresa died in India on September 5, 1997." are two sentences with

different orderings that have the same meaning.

Unfortunately, while there have been a number of increasingly efficient algo-

rithms for determining the edit-distance between ordered trees [22] [49] [9], the

unordered case has proven especially difficult to compute. Zhang et al. showed
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that the problem is NP-complete [47] [50]. Later Zhang and Jiang showed

that the problem is MAX-SNP 5 hard [481, so unless P=NP there is not even a

polynomial time approximation scheme (PTAS) [1].

Fortunately, we will see that it is possible to design an algorithm that, at least

for question answering applications, runs fast enough in practice.

2.3.3 Aligning Unordered Trees

Most algorithms for computing the edit-distance between trees are based on a dy-

namic program that minimizes the transformation cost necessary to make the trees

identical. It is fairly straightforward to write a similar dynamic program for unrooted,

unordered, labeled trees. Below I present such a program but describe it as maximiz-

ing a similarity score between two trees instead of minimizing their transformation

cost. This is done only for expository purposes; the two formulations are equivalent

to each other.

The Dynamic Programming Algorithm

Let G be a graph, we denote by V(G) the set of vertices in the graph, and by

E(G) the set of edges in the graph. Given a vertex v c V(G), we denote by E(v)

the set of outgoing edges of vertex v. We use the symbol 0 to denote the empty

graph. Recall that our dynamic program admits two operations: node alignment

and edge contraction. The score obtained from aligning a node v with a node v'

is denoted by ALIGNSCORE(v, v'). The cost of contracting an edge e is denoted by

CONTRACTCOST(e). The numeric score/cost of these two operations is purposefully

not specified at the moment. The algorithm does not depend on their particular values

and only assumes that they are greater than or equal to zero; several possibilities can

in fact be tried depending on the desired results. Chapter 4 describes the values

actually used in the implementation of SMARTQA.

5MAX-SNP stands for MAXimization-Strict NP. It is the complexity class containing problems
with constant-factor approximation algorithms but no polynomial time approximation scheme unless
P=NP.
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The base case for the dynamic programming algorithm is given by Functions 2.9,

2.10 and 2.11. As discussed on page 30, Function 2.9 penalizes for failing to align

nodes in the template, but Function 2.10 does not penalize for failing to align nodes

in the candidate.

SCORE(G, 0) = - E CONTRACTCOST(e) (2.9)
eEE(G)

SCORE(0, G') = 0 (2.10)

SCORE(0, 0) = 0 (2.11)

The rest of the dynamic programming algorithm is specified by defining the score

functions for three different cases: unrooted trees, rooted trees, and unordered forests

of rooted trees.

Let T be an unrooted tree. We denote by T, the rooted tree obtained by selecting

the vertex v in V(T) as the root of the tree. Given two unrooted, unordered trees T

and T' we can calculate their similarity score according to Function 2.12.

SCORE(T 1 , T',)

SCORE(T, T') = max for each v' in V(T') (2.12)

SCORE(TI, Tv,

Let T, be a rooted tree. We denote by Tv - v the forest obtained by removing

the root vertex v from the tree. Figure 2-8 illustrates the resulting forest. Similarly,

we denote by Tv - e the tree obtained by contracting the edge e in E(Tv). Figure 2-

9 illustrates the resulting tree. Given two unordered, rooted trees Tv and T, we

can calculate their similarity score according to Function 2.13. The case for scoring

forests, SCORE(F, F'), is defined later in Function 2.14.
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Figure 2-9: Tree obtained after contracting an edge. The edge being contracted is

the only one labeled in the original tree.
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SCORE(Tv, Tv,) = max <

SCORE(T, - V, T , - v') + ALIGNSCORE(V, v')

SCORE(Tv - ei, Tl,) - CONTRACTCOST(el)

for each e in E(v)

SCORE(Tv - e,, Ti,) - CONTRACTCOST(e,)

SCORE(T,Tv, - e') - CONTRACTCOST(C')

for each e' in E(v')

SCORE(T, T,, - e'n) - CONTRACTCOST(e')

Let F be a forest. We denote by F - Tv the forest resulting from removing the

rooted tree Tv from F. Given two unordered forests of rooted, unordered trees we

can calculate their similarity score according to Function 2.14. Note that most of the

running time complexity of the given algorithm comes from this definition. Because

the forests are assumed to be unordered, we essentially have to try all possible tree

permutations in order to determine the optimal one.

SCORE(F, F') = max

SCORE(TI, 0) + SCORE(F - Tvl, F')

SCORE(Tol, T', ) + SCORE(F - Tv, F' -T'
V 1 V1

for each T,, in F'

SCORE(Tl, Tv,) + SCORE(F - Tv1, F' - T' )

Speeding up Computation

The algorithm, as described so far, runs in an unacceptable exponential time with

respect to the number of nodes in the input trees. In practice, two key observations

allow us to cut the running time significantly.

1. Upper and lower bounds for each branch of the computation can be

calculated efficiently. Recall that node alignments increase the score of an
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alignment, and that edge contractions decrease its score. It is easy to see, then,

that given graphs G and G' the score of their optimal alignment can't be more

than the bound given by Function 2.15. Note that the function can be computed

efficiently; it has a polynomial running time of O(IV(G)IIV(G')1).

ALIGNSCORE(V, v')

UPPERBOUND(G, G') = Z max for each v' in V(G') (2.15)
vEV(G)

ALIGNSCORE(V, v')

Similarly, given graphs G and G' the score of their worst alignment can't be

less than the bound given by Function 2.16. Note that the function can be

computed efficiently; it has a polynomial running time of O(IE(G)j).

LOWERBOUND(G, G') = SCORE(G, 0) (2.16)

2. Most possible alignments are far from the optimum and don't need

to be computed. A naive implementation of the algorithm would try all

possible operations and corresponding alignments and then return the optimal

one. A better implementation would use upper and lower bounds for each

computational branch to determine which possibilities should be tried at all. A

significant amount of branches can be cut in practice since almost all possible

alignments are far from the optimal one.

For example, take the template and candidate from Figure 2-6. Each word in the

template has at most 3 or 4 possible alignments that would contribute anything

to the total score. For example, an algorithm should try all alignments that pair

any of the occurrences of the in the template with any of the occurrences of the

in the candidate, but it shouldn't waste much time trying to pair the with, say,

Russia. In fact, even if some individual words can be aligned, there are certain

tree alignments that we would like to avoid calculating all together. Take for
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example any alignment between the template "the commander of the Russian

submarine Kursk is ${who}" and the fragment "was awarded posthumously the

title of Hero of Russia". It is clear that we won't find any useful alignments

within that fragment.

The notion of branch cutting can be formalized as follows. Given two computa-

tional branches SCORE(G, G') and SCORE(H, H') there is no need to compute

SCORE(G, G') if UPPERBOUND(G, G') < LOWERBOUND(H, H'). Under these

conditions SCORE(H, H') will always yield a score closer to the optimum.
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Chapter 3

Related Work

The idea of relying on syntax for question answering is not new. However, when

compared to keyword-based approaches, the use of syntactic relations for question

answering has been much more sparse, possibly because of the computational costs

of generating parse trees and comparing them in a principled manner.

3.1 START

START is an information access system developed by Katz over the past two decades.

START stands for Syntactic Analysis using Reversible Transformations and was the

first question answering system to use a dependency-based representation [15] [19]

[18]. START heavily influenced the work in this thesis, so it is not surprising that its

approach to question answering is somewhat similar.

In its most fundamental mode of operation, START matches English questions to

English assertions that have been previously submitted to the system. START parses

all questions and assertions it receives and transforms them into sets of ternary ex-

pressions 1, which are then matched-questions to potential answers-using sentence-

level linguistic processing techniques that account for such phenomena as synonymy,

'A version of dependency triples that permits embedding (other triples can serve as heads or
dependents). Ternary expressions can capture exactly the same structural information that depen-
dency trees can.
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hyponymy, use of passive voice and verb alternations 2 [17]. To illustrate one of

these techniques: START uses a rule-based engine, with knowledge about property-

factoring alternations, to infer that "Miriam amused Jessica with her performance."

and "Miriam's performance amused Jessica." are two sentences with essentially the

same semantic content.

To provide access to free text, structured databases, semi-structured data, im-

ages and other types of multimedia, START matches questions to natural language

annotations-content-describing English phrases and sentences composed by human

annotators-that have been associated with various retrievable information segments

[16]. Natural language annotations can be parameterized, so that in many cases,

a few, simple annotations can describe entire information resources for purposes of

information access. START currently provides access to information in approximately

two hundred sources, and its use of natural language annotations and matching at

the level of ternary expressions has been extensively proof-tested, with START having

answered several million questions submitted by users of the World Wide Web since

START's appearance on the Web in 19933.

This thesis bypasses the human annotation process that enables START to provide

access to information. It demonstrates that useful answers can often be obtained by

matching syntactically analyzed questions directly to syntactically processed state-

ments within documents. In addition, the approach taken in this thesis allows for

partial matches, which increases the robustness of the matching process for applica-

tion to large corpora.

3.2 Surface Pattern Approaches

Many of the early systems that exploited syntactic relationships did so through the

use of textual patterns.

In 1993, Kupiec developed MURAX [23], a question answering system that used

2 For a detailed study of verb alternations, see Levin's work [25].
3 START is available at http://start.csail.mit.edu
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Grolier's online encyclopedia as its knowledge base. MURAX used a two-staged ap-

proach to question answering. Stage one consisted of finding relevant documents using

a boolean, proximity-based IR engine, along with a set of heuristics for broadening

or narrowing the search. Stage two used a series of regular expressions to analyze

the articles and select answers. The regular expressions captured certain syntactic

relations such as: apposition, conjunctions, and copular verbs.

In an informal evaluation done on 70 Trivial Pursuit questions 4 , Kupiec reported

an accuracy of 53%, with 74% of the answers found in the top 5 returned results.

Similar results were later obtained by pattern-based systems participating in

TREC. Soubbotin [38] developed a system for TREC-10 that selected answers based

on a predefined series of surface patterns. The patterns were constructed from sim-

ple units, such as letters and punctuation marks, but were used to capture similar

syntactic relations to those in MURAX in addition to a few more domain-specific

ones (for example, there were specific patterns for finding birth dates in encyclopedia

style contexts: "John Lennon (October 9, 1940 - December 8, 1980)"). At the time,

the system was the leading participant in TREC, obtaining a mean reciprocal rank

(MRR) [45] of 0.676

Despite their early promise, surface patterns are not able to capture the full range

of syntactic relations. They are only capable of capturing syntactic relations that

occur between elements that appear fairly close to each other in the surface text,

and are unable of recognizing relations between elements that are farther away, such

as a series of prepositional phrases all modifying the same head (only one of the

prepositional phrases would appear next to the modified head in the surface text).

3.3 Parsing-Based Approaches

Approaches that make use of syntactic relations obtained through parsing have also

been tried.
4 The TREC Question Answering track was not introduced until TREC-8 in 1999.
5Note that TREC has gotten progressively harder over the years, and its evaluation methodology

has changed. It is therefore not straightforward to compare results obtained in different years.
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For TREC-8, Litkowski developed a question answering system based on semantic

triples [28]. The system worked by parsing each sentence of the knowledge base

documents, and using the resulting parse trees to generate selected relational triples

that were stored in a database. Upon receiving a question, the system would obtain

a similar set of semantic triples from the question, this time with some unbound

variable, and use them to query the database for possible answers. While semantic

triples were supposed to capture semantic roles as generally understood in linguistics

(roles such as agent, theme, location, etc.), in practice semantic analysis is still an

open problem, so the system settled for a few syntactic relations including subject-

object relations, adjectival modifications, and prepositional phrase attachments. The

system received an MRR score of 0.281, which was slightly below the average 0.331

for that year.

While early results were less than ideal, recently there has been a resurging interest

in parsing-based, syntactically-motivated approaches to question answering.

Attardi et al. developed the PiQASso question answering system in 2001 [2],

that relied heavily on the Minipar parser by Lin [26] to perform syntactic analysis.

Before answer selection, a series of rules normalized Minipar's output to overcome

some cases of inaccurate parsing and to select only the dependencies Attardi et al.

identified as the most relevant for question answering. Candidate answers were then

filtered according to the expected answer type (as determined by the type of question

that was asked). In this case the type was one of person, organization, time, quantity

and location. Finally, candidates were scored based on how many dependency triples

overlapped with the question. Triples were assigned different weights depending on

their deemed importance-the rest of the tree structure was ignored. PiQASso

received an MRR score of 0.271 and was ranked 15th out of 36 participants in that

year's TREC.

For TREC- 11, Litkowski developed a system that relied heavily on discourse anal-

ysis and tree-structure patterns to answer questions [30]. Sentences in the knowledge

base were parsed using his PROXIMITY parser [29]. The resulting parse trees were

then run through a discourse analysis module that annotates the tree with the results
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of several linguistic submodules. Examples of submodules include anaphora reso-

lution, named entity tagging, and segmentation of sentences into smaller discourse

units. Finally, a series of predetermined XPath patterns6, that differ based on the

type of question, were used to select answers. For factoid questions7 , the system had

an accuracy of 0.070.

Echihabi and Marcu proposed a noisy channel approach to question answering [10].

Candidate sentences were scored according to the probability that they generated the

original question. The probabilities were calculated according to a generative story

in which the candidate parse tree is transformed into the question tree through a

series of sequential transformations, including: deleting complete subtrees, deleting

nodes, duplicating nodes, replacing candidate nodes by nodes in the question, and

permuting the order of nodes. To determine the probability of each operation, they

trained their model using approximately 2000 question/answer pairs extracted from

the web. They reported an MRR score of 0.354 when tested against the TREC 2002

questions.

Punyakanok et al. [36] take an approach similar to this thesis, in that the similar-

ity measure they used was the tree edit-distance between questions and candidates.

In their case however, the edit-distance used was for ordered trees as opposed to un-

ordered trees. The system also performed candidate filtering using a named entity

recognizer to verify expected answer types. They performed an evaluation on the

TREC 2002 questions, but checked only if their system returned known supporting

documents and not whether it also extracted the correct answer. Their reported

accuracy was 36.6%.

MollA and Gardiner developed the ANSWERFINDER system for TREC 2004 [33].

6For those unfamiliar with XML technologies, an XPath expression is a sequence of patterns,
similar in spirit to a regular expression, that selects nodes from XML trees based on their labels and

attributes. See the XPath Technical Specification [43] for more information.
7For the first time in TREC, TREC-11 predivided questions according to 3 categories: factoid

questions that have a single, correct, factual answer ("Who killed John F. Kennedy?"), list questions

that have several correct answers ("Name countries that produce coffee"), and definition questions

that are answered with information nuggets that "define" the topic ("Tell me about John Lennon").

The evaluation methodology was also changed-reported scores for factoid questions were no longer

based on MRR but rather on accuracy (precision at 1).
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Sentences were parsed using the CONNEXOR dependency parser [41] and then con-

verted into logical forms8 . The system used answer type filtering along with a weighed

average of three similarity measures: a lexical one that measured the number of over-

lapping words between the question and the candidate, a syntactic one that measured

the number of overlapping dependency triples, and a semantic one that measured

the number of overlapping terms in the logical forms. For factoid questions, AN-

SWERFINDER obtained an accuracy of 10%.

Sun et al. [39] developed a question answering system for TREC 2005 that used

the ASSERT shallow semantic parser [35]. Their similarity measure focused heavily

on verbs. The similarity score between two verb-rooted trees was a weighed average

between (i) a WordNet 9 -based score that captured the semantic closeness between

the two verbs, and (ii) a keyword overlap score between the arguments of the verb

(stopwords were removed and repeated words were counted only once). The similarity

between a question and a candidate was computed by choosing the optimal alignment

between all verb-rooted subtrees. The system reported an accuracy of 0.666 for factoid

questions and was the 2nd highest ranked system in 2005. This system also had the

best IR module in TREC 2005-it is unclear how much of the performance is due to

the system's excellent IR and how much is due to its matching algorithm.

In fact, for all of these systems it is hard to determine exactly how beneficial their

different syntactic approaches have been. Evaluations are generally done only on

the end-to-end systems with no detailed study of the contributions that each module

makes. From a thorough reading of all the different system descriptions and a careful

study of many of the answers that these systems reportedly miss, it seems that the

biggest problems that have plagued previous work are: the lack of a mechanism for

coping with phrasing variability, and the use of ad hoc methods that ignore most of

the structure of syntactic trees. It is precisely these two problems that SMARTQA

attempts to tackle with its alignment algorithm.

8 A Prolog-like expression that attempts to capture the semantic content of a sentence.
9A lexical database for the English language developed by the Cognitive Science Laboratory at

Princeton University [11].
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Chapter 4

Implementation

4.1 Knowledge Representation

As discussed in Section 2.2, we would like our representation to make overt the

predicate-argument structure present between between a head of a constituent and

any of its adjuncts. This requirement naturally leads to a dependency-tree represen-

tation. The question still remains, however, of which dependency formalism should

be used.

For the proof-of-concept implementation of SMARTQA described in this thesis,

the choice was pragmatically motivated. I chose the formalism of the Stanford natural

language parser [21], whose dependencies are based on those by Carroll et al. [5] and

King et al. [20], because the parser had the following features:

" Open Source. The parser binaries and source code are made freely available

under the GPL license. Access to the code was particularly useful; it allowed

me to modify small portions of the parser code to better integrate it with the

rest of the system.

" Wide Coverage. The parser is based on a probabilistic context-free grammar

(PCFG) that was trained on the Penn Treebank corpus. Klein and Manning,

the parser authors, report a performance of 86.36% (LP/LR F) [21].

" Phrase and Dependency Representation Support. There are a number of
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parsers based on dependency grammars, such as Minipar by Lin [26 or the Link

Parser by Sleator and Temperley [37], but they are less robust and accurate than

phrase parsers trained on large corpora. There are also a number of treebank-

trained statistical parsers, such as Charniak's [6] or Collins' [7], but they don't

provide a dependency-based representation. Stanford's parser is the only parser

I'm aware of that provides the best of both worlds: it is a treebank-trained

phrase parser that in addition uses a series of patterns to provide syntactic

dependencies [8].

4.2 Architecture

SMARTQA follows the general question answering architecture outlined in the ques-

tion answering survey by Hirschman and Gaizauskas [14]. In particular, it is composed

of four main modules: question analysis, document selection, document analysis and

answer extraction. Figure 4-1 illustrates how the modules interconnect.

4.2.1 Question Analysis

The question analysis module is responsible for turning the question into an assertive

template and generating the corresponding dependency tree. The Stanford parser

performs poorly on questions-statistical parsers are generally not trained to parse

questions-so this transformation is performed by the START system.

Once the question has been turned into a template, the Stanford parser is used to

create the corresponding dependency tree. Because templates contain variables, the

Stanford parser was slightly modified to parse all variables as nouns.

4.2.2 Document Selection

The document selection module is responsible for returning a set of relevant doc-

uments in which to look for answers. SMARTQA uses the open-source Lucene en-

gine [42] as its IR engine. Queries are generated by removing all variables from the
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Question Response

Question Analysis Template Answer Extraction

Query Candidate Sentences

Candidate Document Candidate Documents Candidate Document
Selection Analysis

Corpus

Figure 4-1: Architecture of SMARTQA. Modules are represented as rectangular boxes.

Communication between modules is denoted by arrows with labels indicating the type

of information that is transmitted.

analyzed question and performing a boolean OR query of all the remaining keywords.

Note that Lucene automatically removes stopwords and weights query terms accord-

ing to a variant of tf - idf.

Ideally we would like to look at every document returned by Lucene, but because

that is too computationally expensive, SMARTQA restricts its analysis to the top 50

documents. The implementation allows this parameter to be changed if one is willing

to expend more computational time looking at additional documents.

4.2.3 Document Analysis

Once a set of relevant documents has been selected, the document analysis module is

responsible for selecting candidate sentences and converting them into an appropriate
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representation.

In the simple approach taken by SMARTQA this module simply breaks documents

into sentences using a rule-based chunker, and then parses the sentences using the

Stanford parser. In future versions of SMARTQA this would be the ideal module

to perform other linguistic analyses such as named entity recognition and anaphora

resolution.

4.2.4 Answer Extraction

Answers are selected using the tree alignment algorithm specified in Section 2.3.3.

Because the algorithm uses the branch-cutting method defined on page 36 to speed

computation, a custom interpreter was written to evaluate it. The implementation

maintains a queue containing the computational branches that still need to be eval-

uated. During each iteration the interpreter: (i) grabs the first expression from the

queue, (ii) partially evaluates it and adds any resulting subexpressions to the queue,

(iii) computes new upper and lower bounds for the partially evaluated expression

and any of the new subexpressions, and (iv) performs branch cutting. The iteration

continues until the optimal answer is found.

Recall that Section 2.3.3 left open the definitions of both CONTRACTCOST(e)

and ALIGNSCORE(V, v'). For this first version of SMARTQA, CONTRACTCOST(e) is

implemented according to Definition 4.1. Note that it always returns a score of 0.

This doesn't mean, however, that there is no penalty for contracting edges. There

is a penalty, but because the penalty depends on the next aligned node, it was eas-

ier to compute inside the next call to ALIGNSCORE(V, v'). The implementation of

CONTRACTCOST(e) therefore stores the contracted edge in a list L so that it can be

referenced later.

CONTRACTCOST(e) = 0 and e is stored in L (4.1)

Denote by path(v) the path from node v to the last previously aligned node (this

path is computed by selecting the appropriate edges from L). Let Istem(v, v') be an
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indicator variable that is 1 if both v and v' have the same stem (according to an im-

plementation of the Porter stemmer [34]), and 0 otherwise. Then ALIGNSCORE(V, V')

is implemented according to Definition 4.2, where a is a damping factor that was set

to 0.8.

ALIGNSCORE(V, v') = Istem(V, v') - idf(v) - aFu'Epath(v' 'df(U/) (4.2)

Intuitively the definition assigns a score based on the idf of the aligned nodes,

and then penalizes for any edge contractions performed since the last alignment.
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Chapter 5

Experimental Results

5.1 Results

To evaluate the impact that syntactic information has on question answering, the

following systems were run against the 362 factoid questions from TREC 2005:

* SENTENCE. A dummy system based on the same architecture as SMARTQA

that simply returns every sentence from every document selected by the IR en-

gine. Sentences are returned in the same order as they appear in the document.

" KEYWORD OVERLAP. A base-line system based on the same architecture as

SMARTQA that returns sentences based on how many keywords overlap with

the questions. In particular, each candidate sentence S receives a score accord-

ing to the following formula:

E idf (w) - IQ(w)
word w G S

where IQ (w) is an indicator variable that is 1 if the word is also present in the

question, and 0 otherwise.

Sentences are sorted according to the assigned score and returned in that order.

" ARANEA. A keyword-based question answering system that uses a set of filters

and heuristics to ensure the validity of its answers [27]. ARANEA was used as
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the basis of MIT's entry in the 2005 TREC QA Track and obtained an accuracy

of 0.273.

Traditionally ARANEA first finds answers on the web and then tries to project

those answers into the relevant corpus. For purposes of this evaluation, however,

ARANEA was modified to rely only on the TREC corpus. While it is undeniable

that the web is an excellent source of knowledge, this evaluation is interested in

measuring the usefulness of syntactic approaches to question answering. Using

the web as a resource would hinder this comparison. The sheer size of the web

often voids the need to handle phrasing variability-on the web, there's almost

always a document with the same phrasing as the posed question.

* SEMANTIC OVERLAP. The passage retrieval algorithm introduced by Marton

in [31] that was the top-scoring, fully-automated system for the Relationship

Task in the TREC 2005 Question Answering Track.

The algorithm scores sentences using variants of two standard IR measures:

precision and recall. Given a similarity measure s(q, w) between two words,

the implemented version of the SEMANTIC OVERLAP algorithm computes the

similarity between a candidate sentence S and a given question Q, according to

following equations:

Q* ={q E Q s(qw) > 0 for some w E S} (5.1)

S* = {w E S I s(q,w) > 0 for some q G Q} (5.2)

recall(Q, S) = i:Zdf (q) (5.3)
qE Q*

precision(Q, S) = ZqEQ*(I - 1- s(qw)) (5.4)
IQ*I

3 - recall(Q, S) -precision(Q, S)
t ) 2 - recall(Q, S) + precision(Q, S)
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As suggested by Marton in a private conversation, s(q, w) was set to 1 for

words that have the same stem, and for words that are synonyms according to

WordNet. For all other cases it was set to 0.

0 SMARTQA. The system described in this thesis.

Each system returned a set of ranked sentences as its answers1 , and these were

evaluated using the official answer patterns from TREC 2005. The measured accuracy

for each system is shown in Table 5.1.

Table 5.1: Measured accuracies for each of the systems evaluated against the TREC
2005 questions.

If we allow each system to return more than one answer per question, it is possible

to measure the percentage of questions that have a correct answer within the top k

sentences. Figure 5-1 plots this percentage for values of k between 1 and 10.

5.2 Discussion

The obtained results are promising. SMARTQA's accuracy outperformed all of the

keyword-based systems it was compared against.

Examination of the results show that there were 84 questions for which the IR

system never returned a sentence containing a valid answer, so SMARTQA never had

a chance of answering those. If we evaluate the accuracy of the system based only

on the remaining 278 questions, SMARTQA obtains an accuracy of 0.329. This is

1This is not exactly accurate. ARANEA traditionally returns answer nuggets and has no concept

of sentences. For purposes of this evaluation, ARANEA was modified to return a window of 90

characters around a selected nugget.
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System Accuracy

SENTENCE 0.035
KEYWORD OVERLAP 0.150
ARANEA 0.162
SEMANTIC OVERLAP 0.192
SMARTQA 0.253
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Figure 5-1: Performance of the evaluated systems as a function of cutoff rank.
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as expected; in a pipeline architecture the performance of the IR module can have a

significant impact on the end-to-end performance of the system.

For comparison purposes Table 5.2 shows the accuracies of the top 10 ranked

systems for TREC 2005. Similarly, Table 5.3 shows the performance of the top 13 IR

modules, with the position that SMARTQA's would occupy.

Table 5.2: Reported accuracies for the top 10 systems in TREC 2005.

System R-Precision

National University of Singapore 0.4570

Hummingbird 0.4127
IBM T.J. Watson Research 0.3978
National Security Agency (NSA) 0.3414
Johns Hopkins University-Applied Physics Lab 0.3201
Arizona State University 0.2958
University of North Texas 0.3205
Sabir Research 0.3366
Language Computer Corporation 0.2921
Macquarie University 0.3038
Peking University 0.2732
MIT 0.2699
SMARTQA 0.2667
University of Albany 0.2445

Table 5.3: Reported R-Precision for the top 13 IR modules in TREC 2005.

It is quite impressive that SMARTQA is able to achieve such an accuracy relying

purely on syntax and looking at only 50 documents. Detailed inspection of the results
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System Accuracy
Language Computer Corp 0.713
National University of Singapore 0.666
IBM TJ Watson Research 0.326
University of Albany 0.309
Harbin Institute of Technology 0.293
MIT 0.273
Fudan University 0.260
National Security Agency 0.257
Saarland University 0.235
University of Edinburgh 0.215



shows that, if coupled with many of the additional modules full-fledged question

answering systems normally have, SMARTQA has the potential of outperforming

most of the top 10 systems from TREC 2005. Specifically, the incorrect answers

returned by the system suggest that SMARTQA would particularly benefit from the

adding the following features:

* Improved Node Alignment

A fundamental assumption in SMARTQA's alignment algorithm is that it is

able to align the appropriate terms between a template and a candidate answer.

In the current implementation, alignments are permitted between words that

have the same stem. Clearly, this not enough to handle all cases. Consider

the question "Which countries expressed regret about the loss of the Russian

submarine Kursk?" and the sentence

(5.6) Czech President Vaclav Havel has expressed grief and sorrow over the

victims of the disaster aboard the Russian nuclear submarine Kursk.

Ideally, it should be possible to align "regret" from the question with "grief" or

"sorrow" in 5.6. A possibility might be to allow matches between related terms

according to WordNet or some other lexical resource.

9 Question Typing

In some cases, syntax alone is not enough to discriminate between a correct and

an incorrect answer. Consider for example the question "When did the Russian

submarine Kursk sink?". The following two sentences would obtain a perfect

score when only their syntax is compared with the template:

(5.7) The Russian submarine Kursk sank in the Barents Sea.

(5.8) The Russian submarine Kursk sank in August, 2000.

This problem can be solved by filtering candidate sentences according to the

expected answer type. In this case the posed question was a "when" question,

and the expected answer type is therefore a date. A named-entity recognizer
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should be able to identify that in Example 5.7 the returned answer contains a

location, while in Example 5.8 the returned answer contains a date. The system

would therefore discard 5.7 and choose 5.8.

* Coreference Resolution

Sometimes SMARTQA is unable to identify a sentence as a correct answer be-

cause key entities are not mentioned explicitly but rather referred to through

pronominal and definite NP anaphora.

Consider for example the sentence

(5.9) If the submarine were left at the bottom of the Barents Sea, where it

sank on August 12, 2000, the public would remain alarmed.

It correctly answers the question "When did the Kursk sink?", but SMARTQA

assigns it a poor score because it is unable to tell that "it" refers to the Kursk.

A coreference resolution module would allow SMARTQA to handle such cases.

" Integrating Knowledge from Multiple Sources

At the moment, SMARTQA uses sentences as the basic unit of knowledge. In

some cases however, information necessary to answer a question is spread across

two or more sentences.

Consider the question "Who is the President of the largest country in Asia?"

and the two sentences

(5.10) China is the largest country in Asia with a total area of 9,596,960

square meters.

(5.11) The President of China, Hu Jintao, was elected to office the 15th of

March, 2003.

Taken individually, SMARTQA finds both sentences unsatisfactory. Taken to-

gether, they correctly answer the posed question.
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Notice that a solution to this problem is closely related to coreference resolution.

In order to combine both sources of knowledge, a system must first determine

that "China" refers to the same entity in both sentences.

Off-line Preprocessing

Despite the branch-cutting technique that SMARTQA uses to make unordered

tree matching feasible, running the system over a large corpus is still too

computationally expensive. To lessen the time before an answer is returned,

SMARTQA currently processes at most 50 documents per question, and some-

times misses important information that is contained outside those 50 docu-

ments.

To further speed up the response time, it should be possible to perform certain

computation beforehand. In particular, one could preprocess the corpus by

tokenizing and parsing every sentence ahead of time. Increased speed would

enable SMARTQA to consider more documents in the same amount of time,

allowing it to find relevant answers outside the top 50 documents.
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Chapter 6

Conclusion

The main contribution of this thesis was the design and implementation of SMARTQA,

a proof-of-concept question answering system that compares syntactic trees in a prin-

cipled way. In particular, this thesis provides:

" A clear formulation of the dynamic programming algorithm necessary for com-

paring unrooted, unordered syntactic trees.

" A formalization of a branch-cutting technique useful for speeding up computa-

tion of a dynamic program while still guaranteeing optimality.

" An implementation of the above-mentioned algorithm, fully integrated into an

end-to-end question answering system.

" Experimental results that demonstrate the viability of syntax-based approaches

to question answering.
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