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ABSTRACT

Low noise oscillators are critical building blocks in a wide range of commercial
electronics. Increased levels of integration have created a strong need for integrated
oscillator solutions despite generally inferior noise performance. The development of
non-linear noise models that can accurately and efficiently predict noise in ring
oscillators aids designers in optimizing noise performance in integrated oscillator
solutions. Extending a piecewise constant model of noise in an oscillator and the
resulting timing jitter reveals how the noise at the oscillator nodes changes during each
portion of the cycle. The model can then be used to examine the effects of changing
various process and design parameters such as threshold voltages and the effective stage
gain. This analysis tool provides a means for designers to evaluate potential
improvements of their oscillator design. In some cases approximate analytic solutions can
be found that provide better insight into the timing jitter. A simple differential oscillator
design illustrates the use of this analysis. The oscillator achieves an analog tuning range
of 259MHz-314MHz (extendable with switched capacitors) with a normalized jitter of
102ppm.
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Chapter 1

Motivation

1.1 Introduction:

Oscillators have become an increasingly important part of a great variety of

modern electronic systems, ranging from power converters to data converters to wireless

and wired communication systems. In some cases, such as power converters, the

performance specifications required of the oscillator are minimal and much greater

emphasis is placed on features such as duty cycle control. However, in many other

systems the stability and noise performance of a local oscillator can be critical to the

correct operation of the circuit. With the rapid advances in the scaling of size and speed

in digital circuitry, there is increased pressure placed on the capabilities of the

surrounding analog circuitry as it becomes the primary bottleneck to the performance of

the entire system.

The purpose of this work is to investigate the consequences of noise in integrated

oscillators in various systems and find ways to improve the noise characteristics while

minimizing power consumption and die area. Noise in an oscillator is typically

categorized into one of three general types; amplitude noise, phase noise, and timing jitter

[1]. Amplitude noise, which represents the change in the output signal's amplitude, will
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not be examined in great detail in this work since the focus here is integrated ring

oscillators that have heavily non-linear gain' and typically clip the output to one supply

rail or the other. In addition, many of the electronic systems to be discussed shortly do

not depend on the amplitude of the oscillator signal, with the exception of some

communication systems.

The category phase noise refers to the widening of the oscillator's power spectral

density in the frequency domain. Ideally the oscillator's spectrum would be a perfect

impulse at its natural frequency; however the presence of phase noise causes it to have

side skirts that fan out underneath it [2]. The impact of this spectral widening is

particularly noticeable in communication systems, and will be discussed in the next

section. The category timing jitter, on the other hand, refers to the variation of the

oscillator's period. While the terms "phase noise" and "timing jitter" fundamentally

represent the same noise process, distinguishing between the two aids in the analysis of

frequency domain and time domain problems respectively. Timing jitter can have a large

impact on the accuracy of data conversion systems, as well as the performance of large

digital systems.

1.2 Communication Systems:

Phase noise performance is critical in modern communication systems where

bandwidth is precious and communication channels are very tightly spaced. The

increasing need for faster data transfer is forcing the use of complicated modulation

' The non-linear gain of most oscillators limits the output to only one stable amplitude, causing injected
amplitude noise to decay quickly, although there are cases where for instance the amplitude may be set by a
noisy bias current.
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schemes to glean every last bit of data throughput for a given channel bandwidth. Phase

noise in the local oscillator limits both the complexity of data modulation and the

tightness of channel spacing [3]. In wireless communication systems base-band

information is modulated up to a high frequency and transmitted through the air to a

receiver some distance away. During both transmit and receive portions of the data

transfer the signal is multiplied by the local oscillator, which represents a convolution of

the two signals' spectra in the frequency domain. If the local oscillator is a perfect

impulse in the frequency domain, then the data signal is effectively just shifted in

frequency up to the carrier frequency. The presence of phase noise, however, causes

distortion in the modulated signal due to the side skirts modulating the data signal in

addition to the main carrier. The end result is a limit to the signal to noise ratio (SNR) of

the system. Since the channel bandwidth is often set by FCC rules or some other agency

out of the designer's control, the only way to send more data through the same channel is

by increasing the resolution of the symbol constellation [4], however increasing the

resolution beyond the limits imposed by the SNR provides no benefit as additional bits

would be indistinguishable from random noise. Hence there is a limit to the effective

number of bits that can be transferred at a time, which is in part set by the phase noise

performance of the local oscillator.

Oscillator phase noise not only limits the SNR of the isolated channel, but also

limits the spacing of channels due to inter-modulation of nearby carriers. Consider for a

moment a person using a cellular phone, trying to receive a signal from a cell tower a

mile away. In principle this might not be a problem as long as the tower transmits enough

power and the phone has a sensitive enough receiver. Now consider that there may be
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another cell tower only 10 meters away transmitting power in the adjacent channel. The

signal power of the adjacent channel may be several orders of magnitude greater than the

available power of the desired signal. This presents a problem when the adjacent channel

is modulated by the phase noise skirts into the base-band as shown in figure 1.1.

pp Interfering
L OJChamel

Desired
IF Channel

Interfering [F

Desired IF

Figure 1 . 1 - Illustration of reciprocal mixing of nearby interferer with noisy oscillator [51

The relative magnitudes in this figure are somewhat exaggerated as the phase noise

power should be much smaller than the fundamental carrier power, but the disparity in

signal strengths causes their product to be much closer to the received signal level, in

effect lowering the available SNR again. Because of this interaction there is a limit to

how closely channels can be spaced without causing degradation of the data transfer, or

conversely for a given channel spacing, the oscillator phase noise limits the selectivity of

the receiver in a signal rich environment.

Oscillator stability, in terms of both long term drift and short term phase noise,

has become a critical limitation to the performance of narrowband communication

systems. Excess phase noise can quickly reduce the total SNR and consequently the

achievable data throughput. Phase locked loops (PLLs) can mitigate the problem
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somewhat, but only within the bandwidth of the PLL, and ultimately a stable reference is

still required for the PLL to lock on to.

1.3 Data Converters:

When considering the performance of data converter systems, it is often more

convenient to represent oscillator noise as timing jitter due to the digital nature of A/D

and D/A conversion. The ability to convert between digital and analog signals is

predicated on the presence of a fixed timing reference at which the sampling / outputting

occurs. Uncertainty in the sampling time can cause a number of subtle problems

including aliasing, and distortion that is both frequency dependent and time varying [3].

Aliasing can occur if the input is not tightly band limited to less than one half the

sampling frequency for Nyquist-rate converters, and variation in the sampling frequency

lowers the bandwidth of the converter. The maximum bandwidth is set by the jitter in the

oscillator and the minimum SNR the converter needs to maintain accuracy over its full

resolution, since signals aliased by the phase noise will be small compared to the signal.

In addition to potential aliasing problems, there will be conversion errors due to

the variation in the sampling time for any AC signals. For a voltage that is changing in

time, a change in the sampling instant At, will result in a small change in the sampled

voltage Av, which in the limit of small jitter relative to the clock period (and hence signal

frequency) the voltage error is approximately Av = At*-v, illustrated here in figure 1.2:
dt
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V(t)

= dv

A 
M)Av, W dtA

t t+ A
nominal w/jitter

St

Figure 1 . 2 - Timing jitter leads to varying amplitude errors depending on the signal's slope [31

This voltage error is particularly nasty since as a result of the dv/dt term, it is frequency

dependent, amplitude dependent, and time varying. It is easy to see the creation of this

error for analog to digital conversion; however it is somewhat less obvious in the case of

digital to analog conversion. It may seem at first that there is no voltage error, since the

DAC will output the same voltage regardless of when it is told to do so, however if one

considers the fact that the analog signal being represented would have changed during the

time jitter, it becomes apparent that there is an error of omission2 . When the output is low

pass filtered to restore the original band-limited signal this error will become noticeable.

For large, high frequency input signals this error can add a significant amount of noise,

again reducing the resolution and dynamic range of the converter. Aperture jitter, as it is

often referred to in data converters, can become a big concern for high speed and high

resolution converters.

1.4 Digital Systems:

2 Note that this mainly applies to clocked digital to analog converters. In continuous time DACs there may
be some error from the propagation delay of the digital switches, however this is usually less of a problem
since the jitter in the propagation delay is not integrated like in an oscillator.
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The last class of circuits to be discussed here involves large complicated digital

systems that require very precise timing to function properly. Anytime there are

sequential logic components in a digital system, there are setup and hold time conditions

that must be met to ensure the correct bits are latched properly. Variation in the clock

period limits the maximum operating frequency for a given allowable bit error rate

(BER). Also in large systems operating at high frequencies, there may be a large amount

of clock skew due to clock traces being sufficient length to introduce noticeable

propagation delays. To mitigate this problem large digital chips often have multiple

clocks that must be synchronized with on-chip PLLs [3]. Depending on the number of

PLLs involved, care must also be taken to ensure there is no peaking in the closed loop

response of the PLLs to avoid a phenomenon known as jitter peaking, where repeated 2nd

order PLLs can amplify phase noise at certain frequencies.

1.5 Technology Scaling:

In addition to the tightening requirements on oscillator noise performance, there is

a strong push toward monolithic integration using scaled CMOS technologies to lower

costs and reduce power consumption. Scaled CMOS presents a number of challenges to

general analog circuit design since short channel length devices gain speed and reduce

power at the cost of increased noise, reduced signal swing, and low output resistance

[6,7]. The increased noise factor of short channel devices coupled with low supply

voltages directly reduces the achievable SNR for a given power level. Low, supply
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voltages additionally restrict the use of cascodes and other stacked topologies due to

insufficient headroom. As will be shown in later sections, coupling from a noisy supply

can greatly affect the overall phase noise of an oscillator [8,9]. Decreased output

resistance limits the power supply and common mode rejection ratios (PSRR and

CMRR), and hence can reduce the noise immunity of a current biased local oscillator.

Because of their compact size and relatively simple design, integrated ring

oscillators have become an attractive option for many applications. Ring oscillators are

particularly useful for moderate frequency ranges where traditional LC oscillators would

require bulky and expensive external components. On top of the space / cost benefit,

many ring oscillator topologies are tunable over multiple decades of frequency, making

them very useful for broadband communications [3]. Moreover, the same design can be

scaled to perform at various power levels depending on the required noise specifications.

This can be explained to first order by considering the sampling of white thermal noise

onto a capacitor. It has been shown that the voltage noise on a sampling capacitor is

proportional to kT/C, and since a ring oscillator is a type of relaxation oscillator that

charges and discharges a capacitor, the frequency of operation is roughly determined by

the available drive current and the capacitor size, where f a I/C [10,11]. Assuming a fixed

supply voltage and frequency of operation, increasing the capacitance reduces the noise,

but forces an increase in the drive current and thus power dissipation. A more detailed

analysis of this tradeoff will be given later in the next chapter; however this simple

analysis is enough to demonstrate the inherent tradeoff between power and noise for a

typical ring oscillator.
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Given the large array of circuit applications that require good low noise

oscillators, and the constant push for increased integration and decreased costs, there is

much incentive to find ways of improving the phase noise performance of simple ring

oscillators through biasing, device sizing, and load characteristics, while maintaining

flexible tuning range and good supply rejection. Additionally it is worth considering

other integrated oscillator topologies such as current-mode oscillators and active inductor

circuits. Chapter 2 will review the previous work conducted on LC oscillators as a

background lead-in to the advantages and limitations of ring oscillators as well as lay the

ground work for the noise analysis of the various ring oscillators to be studied. Chapter 3

will develop a time-domain noise analysis for single-ended ring oscillators that

accommodates changing bias and load conditions. Chapter 4 will then discuss differential

oscillators and apply the techniques developed in chapter 3 to determine the noise

characteristics and how they are different for the differential case. Chapter 5 will close

with an overall analysis of the results found during this study and potential avenues for

further research.

14



Chapter 2

Previous Work (LC Oscillators)

2.1 Introduction:

While the focus of this work is integrated ring oscillators, it behooves us to

consider the large body of previous work that has already been conducted on the

properties of oscillators that utilize a resonator tank, whether LC, crystal, or cavity.

Examining the characteristics of LC type oscillators serves as a reference for the

comparison of various advantages or disadvantages ring oscillators may have for each

application. Furthermore, it may provide valuable insight into what factors limit the

achievable phase noise performance of oscillators in general.

Resonator oscillators have the potential to exhibit very good phase noise at low to

moderate power levels due to their high Q values, but usually require relatively bulky and

expensive external components. At RF frequencies it is becoming more common to see

integrated spiral and slab inductors which have Q values in the range of 5-10, however

even these on-chip inductors are still quite large relative to the active circuitry and have

limited Q values as compared to external wound inductors. Also these on-chip inductors

are typically only practical for operation above 1GHz and thus are not suitable for

moderate frequency applications in the 100MHz - 400MHz range. LC oscillators also
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typically output low-distortion sine waves, instead of square or triangle waves that are

loaded with harmonics, which can be important in communication systems where overall

spectral purity is important, not just nearby phase noise. Because of the size and cost of

producing precision LC oscillators, ring oscillators may be an attractive alternative in

many applications provided they can meet the noise specifications.

2.2 Leeson Approach:

The extensive effort that has been put into studying the properties of various types

of LC oscillators provides a great deal of insight regarding general oscillator design. The

first real intensive analysis of LC oscillator noise was conducted by Leeson in the 1960s.

The details of the derivation will not be included here, but it follows from the linear

analysis of an LC tank with some inherent loss resistance that the minimum achievable

jitter is proportional to kT, Ps- and Q2, where Q is the unloaded Q of the physical tank.

Considering that Q is defined as the energy in the tank over the power dissipated by the

P
resistive loss, the phase noise is then proportional to S , suggesting we want to

(Etank) 2

maximize the energy stored in the tank, while minimizing the power dissipated. Note that

this is somewhat contrary to the power vs. noise tradeoff mentioned in the previous

section because of the fact that increasing the Q of an LC tank reduces the power

necessary to run the oscillator. While this allows for better phase noise at lower power

levels, it reduces the flexibility of a design in that the designer can no longer simply scale

the circuit to achieve better phase noise. Since the tank energy is in the denominator it
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also demonstrates that increasing the voltage swing will also help reduce the oscillator's

phase noise since the tank energy can be written as Etank = Ic 2. This suggests that
2

single-ended ring oscillators which typically have rail-to-rail voltage swings may be able

to achieve better phase noise performance compared to ring oscillators that employ

differential pairs.

2.3 Linear Time-Varying Approach:

A more thorough analysis was recently conducted by Hajimiri and Lee that takes

into account that all practical oscillators have a necessary non-linearity that limits the

signal amplitude and makes the oscillator "stable" 3. The analysis conducted by Hajimiri

and Lee uses a linear but time varying model to account for the changing bias conditions

for various noise sources. The analysis develops an impulse sensitivity function (ISF) that

maps the phase response of an oscillator to an impulse of current at the oscillator node 4

[12,13]. Since the oscillator waveforms are periodic in f0, it follows that the ISF as a

function of theta will be periodic in 2pi. Looking at the Fourier series of the ISF, there

will be components at DC and at multiples of the fundamental frequency, which explains

how 1/f noise gets modulated up to the carrier frequency, and gives a better

approximation of the additional noise that was empirically determined as the excess noise

factor F in the Leeson approximation [13]. If the noise injected into the oscillator node is

3 Technically speaking an oscillator is never stable, however practical oscillators settle into what is referred
to as a fixed limit cycle where the waveforms will be periodic.
4 For multiple stage oscillators like ring oscillators it is usually assumed that all oscillator stages are
identical, and hence the ISF will be equivalent but phase shifted. Also ISF functions can also be mapped for
other nodes in the circuit; however for simplicity this discussion will be limited to a single ISF.
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stationary white noise, then the excess noise factor comes from the RMS value of the

ISF, however when the noise power spectral density changes for different frequencies,

the texture of the ISF determines which frequency ranges contribute the most noise to the

oscillator output. In addition to providing a better explanation of the modulation of noise

to the oscillator spectrum, the ISF provides an easy way to account for the changing bias

conditions as they affect the amount and type of noise present. The bias conditions are

changing periodically as well, so the noise generated by a particular device can be

modeled as a white noise source multiplied by a periodically changing envelope function,

termed the noise modulation function (NMF). Multiplying the ISF by the NMF yields an

effective ISF function that responds to white noise in the same manner as the original ISF

responded to time varying noise [13].

Although similar in many respects to LC oscillators, ring and relaxation

oscillators share two critical differences hinted at in the previous section that limit their

phase noise performance. The first is that the "tank" energy in RC oscillators is discarded

after every cycle, which is essentially equivalent to limiting the Q of an LC oscillator to a

maximum of 1, as compared to high quality discrete LC resonators that can have Q

values of 1000 or more. Considering the fact that oscillator phase noise improves as a

factor of Q2, this can be a very substantial disadvantage [10]. The second difference is

that from looking at the ISF functions, the restoring energy provided by the active

devices in a ring oscillator is injected during the most sensitive portion of the oscillation

cycle [12]. In contrast for example a Colpitts oscillator injects almost no device noise

during the peak sensitivity and consequently has very good phase noise performance.
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While it has yet to be proven that these two disadvantages are absolutely unavoidable, all

commonly used ring oscillator topologies exhibit both of these properties. Disadvantages

aside, there are still a number of important design parameters that can be used to glean

the most performance out of a simple ring oscillator.

As was mentioned in the previous chapter, the amount of phase noise present in a

ring oscillator can be adjusted over a very wide range by trading off die area and power

consumption. Ring and relaxation oscillators at their core are essentially composed of an

RC time constant, or a constant current charging a capacitor. If we consider an RC

relaxation time as the oscillator core, then the frequency of operation will be proportional

to the inverse of the time constant, f a I. The thermal noise current density for a
4 R-C

resistor is -k'T, and the resulting voltage noise sampled onto the capacitor as a function
R

of frequency is (v) 2= (i n)2{. R since we are dealing with variances. To find
\ n) n/ I + i-27cf-R-C

the total noise voltage at the capacitor, we then integrate the noise density over frequency

as shown below:

(v ) 2 = +2 R 2df -+ (v ) 2  (n) 2. - 2 = k(
(I I + i-27rf-R-C n 4 C n C

10

The result is an equivalent noise bandwidth of Af = 1 and a voltage noise variance
4.R-C

that is independent of R. The minimum power required to charge and discharge this

capacitor is Pm = c.(Vdd 2 .f , so for constant frequency of operation and supply voltage,

power consumption and thermal noise are inversely related. Note that for typical IC
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processes, increasing the capacitance will also require a proportional increase in the die

area of the capacitor as the plate separation is typically fixed, although new techniques

such as fractal capacitors may alleviate this trade-off to an extent [14]. Obviously there

are practical limitations to the extent that power and noise can be traded-off, such as heat

buildup, maximum die area5 , and minimum device dimensions; however the point is that

for ring oscillators the power and area to noise efficiency, defined as the ratio of power

and area over noise, is the critical figure of merit, not the absolute phase noise

measurement.

2.4 Scaling Concerns:

Another growing concern in oscillator design today is the effects of CMOS device

scaling on the noise properties of MOSFETs. In addition to the headroom limitations

mentioned in chapter 1, CMOS scaling deteriorates the noise performance of the active

devices themselves. In particular, the FET's excess noise factor 6 y continues to increase

with short channel effects, and the flicker noise corner frequency Wi/f is increasing with

smaller device dimensions [6,7]. Unfortunately there is little that can be done about the

increase in y from the designer's side other than using longer gate length devices, and

using devices with the lowest y in critical locations where that particular device's noise

contributes greatly to the output phase noise. As far as the flicker noise corner frequency

is concerned, it is important to design the oscillator for high waveform symmetry in order

to reduce the DC component of the oscillator's ISF function discussed in the preceding

5 This limitation is typically due to yield considerations, large die decrease the usable wafer area, and
decrease the yield rate for a given defect density.
6 The thermal noise current spectral density in the channel of a MOSFET is modeled as 4kTgmy
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section [12]. Ideally speaking the linear time-varying model suggests that if the ISF could

be made completely symmetric about zero then there would be no up-conversion of

flicker noise at all (assuming the flicker noise corner is below the oscillator frequency)

[13]. In practice it is nearly impossible to completely eliminate the effects of flicker

noise; however significant improvements in the flicker noise up-conversion can be made

with careful design. Assuming the operating frequency is not already limited by the

process capabilities, extra ring stages can be used to increase the relative waveform

symmetry and thus results in a reduction of the f3 corner frequency in the oscillator

spectrum [12]. One last major area for concern is the potential effects of external noise

sources, such as the supply and substrate, on the noise performance of the oscillator.

While designing for very low intrinsic phase noise is still important, the trend of

increasingly large scale integration of both analog and digital sub-circuits means that

designers must deal with potentially large amounts of noise and voltage ripple on the

supply and substrate. Large switching currents from digital sub-circuits can jerk the

supply around quite a bit, especially if the supply is not properly decoupled with bypass

capacitors outside the chip. Noise on the supply can affect the output noise through two

of different mechanisms. The first is direct capacitive and resistive coupling, which can

be reduced by reducing the supply dependence of the voltage at the oscillator node. The

second is by modulating the natural frequency of the oscillator since the supply can act as

an unintentional VCO tuning node [7]. The result yields both an increase in the

oscillator's general phase noise, as well as the potential for spurious tones depending on

the characteristics of the supply voltage ripple. Differential topologies often show much

better resistance to supply and substrate noise, owing to their naturally higher power
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supply and common mode rejection ratios (PSRR and CMRR), however changes in the

supply still affect the oscillator frequency through the non-linear capacitances of the

active devices [8,9]. As such, differential ring oscillators may be able to achieve better

overall phase noise performance, despite their generally inferior intrinsic phase noise.
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Chapter 3

Single-Ended Ring Oscillators

This work will begin with the analysis of single ended ring oscillators in this

chapter, followed by a discussion in chapter 4 about how switching to differential

architectures affects the analysis presented here, culminating in an example design which

will touch on several important peripheral topics such as bias circuitry and VCO control.

The flow of this chapter progresses from the simplest designs working toward more

complicated ones, considering each added level of complexity one at a time. Starting with

the simple designs allows for approximate analytical solutions that provide a more

intuitive explanation of the factors that influence the generation of oscillator phase noise

from the base-band thermal and flicker noise of various circuit elements. Furthermore,

the simple designs provide a baseline for comparison so that isolated changes can be

made and their effect considered without the complications of several other changes.

Section 3.1 covers the simplest design, which is a three stage linear amplifier with

unity gain feedback. Section 3.2 details the large signal time domain noise analysis for

the oscillator in 3.1. Following the development of a noise model for the linear amplifier

oscillator is an analysis of the effects of changing device parameters. Section 3.3 covers

how changes in the effective stage gain alter the oscillation frequency and jitter. Along
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with the effects of stage gain variations is a look at the effects of current limiting, which

leads into chapter 4's discussion of differential oscillators. The differential architectures

to be examined are based on a current source biased differential pair.

3.1 Simple Amplifier Chain:

One of the simplest ways to build an oscillator is to string together three single

pole amplifiers with greater than unity gain. Each of the three stages is a resistor loaded

common source amplifier, with the output connected directly to the next stage's input, as

shown in figure 3.1.1 below.

RL { RL RL

W/L W/L W/L

CL CL CL

Figure 3. 1. 1 -- Three stage linear amplifier with unity feedback

Before delving into the precise non-linear response of this circuit, we examine the

approximate linear solution as a quick first pass analysis. Following from traditional
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linear analysis techniques we see that prior to closing the loop the transfer function from

input to output is the product of the three single stage transfer functions. Assuming each

stage is identical, the resulting input-output relation is:

VO(s) -A 3  -(gm.RL) 3

-= (Eqn. 3.1.1)
Vi(s) (,C-s + 1)3 (RL-CL-s + 1)3

Looking at the linear approximation, we get a maximum of 270 degrees of

negative phase shift from the three poles, plus a net 180 degrees of phase shift from the

three inversions. Under a purely linear assumption the gain must be set such that it is

precisely one when the total phase becomes 360 degrees to satisfy the Barkhausen

criterion, and the circuit can oscillate at any amplitude. The requisite phase shift occurs

when each stage provides 60 degrees of negative phase, allowing us to solve for the

frequency of oscillation.

Total phase shift: = -3 atan(RLCL'Co), yielding 0 1.732

RL-CL

The reality is that in order to have sustained oscillations at a fixed amplitude, the

gain must be amplitude dependent; greater than unity for small amplitudes, and less than

unity for large amplitudes. As a result of the non-linearity, the oscillation frequency will

be somewhat different from the above prediction due to the effective phase shift

associated with the non-linear gain. For this oscillator, the non-linearity comes from the

MOSFET entering the triode and cutoff regions for high and low inputs respectively7 .

Shown below in figure 3.1.2 is a typical drain current characteristic for a MOSFET with a

constant applied drain voltage.

7 High and low meaning near the supply and near ground indicating a large amplitude signal

25



0. UL 03

Q 0.011-

0 1.5

0.02

0.01

Y0.5

Input Voltage

Figure 3. 1 . 2 -- MOSFET drain current and transconductance for constant drain voltage

When in saturation the MOSFET drain current is proportional to the square of the

input voltage; thus, smaller input voltages produce smaller stage gain until the voltage

bottoms out at ground, shutting off the transistor completely. When the MOSFET is in

the triode region the transconductance levels off to a constant for constant Vd,; however,

in this circuit increasing the drain current reduces the drain voltage, causing gm to

decrease as demonstrated below8 in figure 3.1.3:

Drain Current
---- Transconductance

I I I

0.01 -

0.005 -

0.5 1.5 2

Input Voltage

Figure 3. 1 . 3 -- MOSFET drain current and gm with falling drain voltage

Now that we have established the basic characteristics of the individual gain

stages, we move on toward determining the large signal oscillator waveform, after which

we can begin the discussion of noise sources and their transformation into timing jitter. In

8 Note this graph is only first order approximation of drain voltage for illustration, not an exact solution
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this first pass, we assume the load resistor and load capacitances are linear, as well as

ignore any parasitic gate to drain capacitances. When this is the case, the time evolution

of the output voltage is governed by equation. 3.1.2, which is the differential equation

that arises from performing KCL at the output node of a single stage,

Vs - y(t)
C -y'(t) = -h(x(t), y(t)) + (Eqn. 3.1.2)

R

where h(Vgs, Vds) is the MOSFET drain current as a function of gate and drain voltage,

x(t) is the input waveform, and y(t) is the output waveform, with its corresponding time

derivative y'(t). The full oscillator is described by the system of three non-linear

differential equations identical in form to equation 3.1.2, one for each of the three drain

nodes. While there is no exact analytical solution for this entire system, particularly for

more complicated MOSFET models, the system can be solved numerically to find the

deterministic part of the oscillator waveform, which results in a stable limit cycle

surrounding an unstable equilibrium point. Figure 3.1.4 on the next page shows several

sample trajectories of one particular node voltage and its time derivative. There is an

equilibrium point near the center; however, it is an unstable one, as the figure below

shows how even the slightest deviation from this point will cause the trajectory to spiral

outward until it reaches the stable limit cycle due to the high small signal gain and ample

phase shift when the MOSFETs are biased near mid supply. If, on the other hand, the

trajectory begins outside the limit cycle, the reduced small signal gain causes the signal to

decay inward toward the limit cycle. This oscillator has only one stable limit cycle;

however, in general, oscillators may have more than one locally stable limit cycle and

may be susceptible to phenomena such as injection and harmonic locking or chaotic

oscillation. Such phenomena are beyond the scope of this work, but interested readers are
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encouraged to seek more information about non-linear dynamics and chaos theory in

[15].

2

1.5

Q
to

Sample Trajectory I
Sample Trajectory 2

Stable Limit Cycle

1 @ Unstable Equilibrium

I I 0

- 10 _8-109 -6-109 -4-109 -2 -10 9 4-109

Output Slew Rate

Figure 3. 1 . 4 -- Sample oscillator trajectories, showing unstable equilibrium and stable limit cycle

The shape of the limit cycle, and hence the oscillator waveforms, is highly

dependent on the gain per stage as well as process parameters such as the threshold

voltage and carrier mobility9 . For low gains, the oscillator can be treated as being weakly

non-linear since only a small amount of gain compression is required to limit the

oscillation amplitude. In this case the linear approximation suggested at the beginning of

this chapter is a reasonable approximation to the dynamics of this system. The simulated

waveform of this oscillator with a 150n load resistor and 4pF of added load capacitance

9 To first order these can be thought of as simply altering the effective average gain of a stage, particularly

for the mobility term. The threshold voltage has some additional effects on the DC component of the

oscillator waveform.
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is shown below in figure 3.1.5. The oscillation frequency of 410MHz corresponds well

with the linear prediction of 425MHz 0

oi

05 I I I I-.59 -9 9 9 -9 19
0 1-10 2-10 3-10 4-10 5-10 6-10

Time

Figure 3. 1 . 5 -- Weakly non-linear response for low gain case

The voltage waveforms are very nearly sinusoidal, consistent with the assumption that

the system can be treated as only being weakly non-linear. While the linear

approximation gets us a reasonably good estimate of the oscillation frequency, it does

little to help us determine the amplitude, as in a strictly linear system there is no

amplitude dependence. An estimate of the amplitude can be obtained using describing

functions for the stage gain as a function of amplitude if so desired.

For larger gains, the system becomes less and less linear, until the gain is high

enough such that the transistor essentially becomes a switch that grounds the output when

on and lets the RC load relax toward the supply when off. A somewhat more accurate

model is a switch with a non-zero on resistance, though it is important to remember that

the noise introduced by the transistor is not simply that of a real resistor. This is due to

the fact that the transistor on resistance is a function of the drain voltage, while the noise

10 This includes approximately 300fF of capacitance from the active device in addition to the 4pF load
capacitance. The device dimensions are W=200pm, L=.6pm
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current density is controlled by the gate voltage and is multiplied by the excess noise

factor, which can be large for short channel devices. Additionally there is added flicker

noise due to various mechanisms in the transistor channel. This will be discussed in more

detail in the next section when we describe the full noise analysis of this oscillator.

0

00.;z

0 1-10 2-10 3-10 4-10 5-10 6 10

Time

5-

f I I

U- J--

0 1-10 2-10 3-10 4-10 5-10 6-10

Time

Figure 3. 1 . 6 -- Oscillator waveforms for moderate gain (Top) and high gain (Bottom) cases

Figure 3.1.6 shows the oscillator response for increasing gain while holding

everything else constant. The gain is increased by increasing the carrier mobility in the

simulation, thus increasing gm without changing the load impedance. The response,

particularly in the higher gain cases, looks very similar to that of a Schmitt trigger

oscillator except that the rising and falling edges have different time constants". It is

"The other main difference is the extended time in each state, which is a result of there being multiple

stages as opposed to a traditional Schmitt trigger oscillator that only has one stage.
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interesting to note that as the gain increases, the oscillation amplitude increases at first,

but then eventually decreases. The waveform is clipped by ground on the low end and the

increasing gain requires less gate overdrive to turn on the transistor, lowering the peak

voltage. This may have implications on the overall noise performance of the oscillator

under different operating conditions, as is investigated in the next section.

3.2 Non-linear Noise Analysis:

Now that we have a good idea of what the waveforms look like under steady state

conditions, we proceed toward determining the RMS noise voltage at the oscillator nodes,

and subsequently the induced timing jitter. Since ring oscillators are typically closer to

square-waves than sine-waves, this work will primarily focus on the period jitter as

opposed to the precise phase noise spectrum. This section will begin by examining the

noise current produced by the transistor and how it varies with the applied gate voltage.

Next we look at how the noise voltage responds to the time varying noise current using a

purely time domain analysis involving autocorrelation functions and impulse responses.

This approach allows us to make changes in the linearity of the load resistance and

capacitance without requiring major changes in the aforementioned analysis. Figure 3.2.1

on the next page illustrates the noise sources present in each stage of the ring oscillator.

The noise from the load resistor is presumed to be constant for this part of the analysis,

although nothing prevents it from being replaced with other loads that may have non-

constant noise characteristics.
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Figure 3 . 2. 1 - Single stage with thermal noise sources shown

The noise from the transistor is dependent on both the input and output voltages as is the

impulse response from current to voltage at the output. When the input voltage is below

vT the transistor is in cutoff and the noise current it produces is essentially zero.12 Once

there is sufficient overdrive the MOSFET will be in strong inversion, and produce a drain

to source noise current with a uniform spectral density of i2= 4y.k.T.gdo. In terms of the

gate voltage, the zero bias drain to source conductance, gd0 , is approximately

WCox (Vgs - vT) if we ignore the back gate effect. The excess noise factor, y, is 2/3 for

long channel devices in saturation and rises to 1 when the MOSFET enters the triode

region. For short channel devices y is not as well defined, but it typically rises to around 2

or 3. The dependence on the input voltage is essentially the same whether the MOSFET

is in saturation or the triode region, consistent with the presumption that the noise is

related to the carrier density in the channel. The only change is in the y term that

12 There will be some non-zero amount of shot noise produced by the reverse biased p-n junctions, however
this leakage current is very small, and the subsequent noise current should be negligible compared to the
noise produced by the load resistor.
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increases gradually as the channel is no longer pinched off' 3 , increasing the amount of

charge in the channel. The above noise model is not very accurate when the MOSFET is

in weak and moderate inversion; however, in this case the transistor is only in those

regions for a short time. The models for weak and moderate inversion noise generation

are discussed further, as part of the discussion on current limiting mechanisms at the end

of this chapter.

Time Domain Noise Evolution:

To begin the time domain noise analysis we begin with a brief primer on the time

evolution and decay of an isolated noise source. Using that as a foundation, a piece-wise

constant model is used as a first pass, to be extended later to a nearly continuous case

using the predetermined oscillator waveforml4 . While this is not the most

computationally efficient method of analysis, it allows us to view the precise evolution of

the RMS output noise and draw insight from that. Additionally we can try to explain the

effects of non-linearities in the load impedance from the piece-wise analytic solution.

For the following analysis, we assume that the noise present in the system is small

enough such that the amplifier stage's response can be treated as a linear system whose

parameters vary over time. Since the object of this thesis is to aid in the design of low

noise ring oscillators, the assumption seems reasonable enough and provides results

consistent with full harmonic balance simulations of these oscillators. We also assume

that all of the noise sources are uncorrelated since they originate from different physical

13 In the long channel case the noise factor increases from 2/3 to 1; in the short channel case the change is
less well defined.
14 Here we make the assumption that the noise responsible for the period jitter is small enough to not alter
the trajectory of the oscillator waveforms.
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processes, and hence their variances will simply add and their autocorrelation functions

will be scaled delta functions. The exceptions are any sources of flicker noise, which will

have more complicated autocorrelation functions. However, flicker noise sources are not

examined rigorously in this work.

Traditional frequency domain analysis has shown that first order RC filtering of a

white noise current source results in a noise voltage variance of i 2.-R-, which reduces to
4-C

the well known result of C for a simple resistor where = .f. This analysis
CR

assumes, however, that the noise source has been constant for a long time, and

consequently ignores the RC rise time associated with the output noise. In the time

domain, the output voltage noise can be determined by evaluating the convolution of the

noise source's autocorrelation function with the impulse response of the system.

R,(tl,t 2) = { h(-r 1)h(t 2)Rift 1 -t 1 ,t2 -T 2)dt 2 dti (Eqn. 3.2.1)

-t

Where h(t)= Ie RL.CL -u(t) and Rjt 1,t2 ) = 2y-k.T.gm(t 1) (t1 - t 2)
CL

Note that the noise current density has a factor of 2 instead of 4 because it is a double

sided autocorrelation, as opposed to a single sided PSD [3]. For a constant noise source

turned on at time t = c, the lower limits of integration become 0 since the system is causal,

i.e. h(t) is zero for any z less than zero. The upper limits become t since that is how much

time the noise source has been on for. Since we are looking at white noise, we are only

concerned with the total noise variance, not its entire autocorrelation function, hence
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from now on R,,(ti,t 2) will be replaced by R,(t). Now equation 3.2.1 can be replaced by

equation 3.2.2 shown below.

-t

2-y-k-T-g~ R -C RL.CL

RC(t)= m L'CL. e LL'8(r2 -1) d2dr (Eqn. 3.2.2)
CL 2 10

10

The delta function from the noise current's autocorrelation is only non-zero when 'r2 is

equal to 1j, so the inner integral reduces to a single value, dependent on the current value

of ri. The final result of this is a noise voltage that has a final value equal to that which

would be predicted from standard frequency domain methods, but which also has a

transient portion that rises from zero to the final value with an exponential time constant

half that of the filter.

T 2

2-y-k-T-gm RL-CL y-k-T-gm-RL RL- CL
Rvv(t) = 2 -1 e dr= - e ) (Eqn. 3.2.3)

CL 0 CL

The halving of the time constant makes good intuitive sense when we remember that the

variance is a voltage squared term, adding a factor of two in the exponent. Knowing the

homogeneous response to this simple first order system, it follows that a known voltage

variance will decay with time if the driving noise source is shut off. Here again the time

constant will be half that of the system due to the variance being a squared term. This can

be verified using equation 3.2.1 with the appropriate changes to the limits of integration;

however, in the interest of saving space, the derivation is left as an exercise for the

reader.
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Piecewise Constant Model:

Knowing the growth and decay characteristics of an isolated noise source, we can

compute the noise voltage contribution from individual segments of time one at a time.

Since the noise sources are uncorrelated, the contributions from each time segment can be

summed together to find the total output noise. From this we can put together a piece-

wise constant model of the oscillator noise contributions. For the analysis presented in

this chapter, we will use a 5 stage ring oscillator from now on for illustrative purposes

due to the increased separation between operation regions. The methodology presented

here remains valid for any number of stages. There are three main regions of operation

for a particular stage; the first is when the input is low and the transistor is off, leaving

the output to relax toward the supply; the second is when the input is high and the output

is also high, keeping the transistor in saturation; and finally the third is when the input is

high and the output is low, forcing the transistor into the triode region.

- - 3 -- Drain Current
- - - -output

.- - -- Input .
0.004-

SII

0.003 - -

0.

0 1-10 109 3-10

Time

Figure 3 . 2 . 2 -- Stage waveforms and MOSFET drain current, illustrating main operating regions;
I) cutoff region; II) saturation region; III) triode region
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During region I the only noise source present is the thermal noise from the load

resistor. For regions I and I the load impedance, and hence the impulse response, is just

that of the nominal RC load 5 . Any residual noise at t = 0, will decay linearly with the

time constant '%RC, as previously described. The residual noise is determined at the end

of this section, but it should also be noted that the contribution of the resistor's thermal

noise will not be its steady state value due to the change in effective load resistance.

Considering that the low steady state voltage is approximately ground and the noise

voltage is proportional to the ratio of the effective resistance over the noise resistance, the

noise at to from the resistor will be quite small relative to its steady state value. The noise

at any time during region I can be determined by using 3.2.3, substituting 1/R for gm and

1 for y, and adding the residual noise decay. The noise generated from region I can be

summarized as follows:

-2t -2t

2 k-T RL-CLI 2 RLCL
vn (t)e +vn -(0)e Ot t

CL
(Eqn. 3.2.4)

- 2t I - 2(t-ti) _ 2t

2 k-T RL-CL RL.CL 2 RL.CL
Vn () -- s-e e + Vn .-(0) e tI < t <t2

CL

Where t, marks the transition from region I to region IL and t2 marks the transition from

region IL to region III. After t2 equation 3.2.4 is no longer valid since the small signal

impulse response changes when the transistor enters the triode region. During region II,

the impulse response is unchanged from region I; however the noise current is no longer

constant as the gate drive of the MOSFET is increasing. We can get a first order

approximation of the noise during this region if we calculate the average overdrive

15 Technically for region II, the output resistance of the MOSFET will be in parallel with the load, however
it should be quite large relative to the load resistor, especially when current limiting is involved.
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voltage during this period and use it to obtain the transistor gm.1 6 Equation 3.2.5 includes

both the resistor and MOSFET noise current sources in the (I + Y gm.avg'RL) term.

- 2(t-t 1) - 2(t-t 1)

2 k-T-(1 + y-gm.avg-RL) RL-CL 2 RL.CL
vn -(t) = _1 -_) e ti < t < t2  (Eqn. 3.2.5)

CL

vn2(ti) is the noise voltage at the end of region I as calculated using the first part of

equation 3.2.4. While equation 3.2.5 is not exact, it does provide a reasonable

approximation to the actual noise for now. An analytic solution for the noise in this

region is derived in the next section, when we extend the piecewise constant model

toward the limit of continuous calculation.

In region III the small signal response is shunted by the drain to source

conductance of the triode region MOSFET. For moderate to high gain configurations, the

output falls very quickly, suggesting we may be able to approximate the response during

region III as a constant with the zero bias drain to source conductance of the MOSFET in

parallel with the load. Again we use the average overdrive voltage during this region to

determine the effective drain to source resistance and noise current. The resulting noise

equation for region III is then:

L2(t-t2 2(t-t 2)k-T- - + Y-gdsO.avg Reff __

vn(t) = RL 1 - e _effL + vn (t2) e ffCL t2  t t 3 (Eqn. 3.2.6)

where vn2(t 2) is the noise voltage at the end of region II from equation 3.2.5, and Reff is

the parallel combination of RL and gdso. Rff is quite a bit smaller than RL for any ring

oscillator that swings close to ground, so the noise in region III will generally respond

16 This will be improved upon in the next section, in fact in this case there is an analytic solution to the
noise in region II
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much faster since its time constant may be as much as 10 to 100 times shorter than during

regions I and II. Putting all three regions together we get a first look at what the noise

looks like during one cycle of oscillation. Figure 3.2.3 shows the oscillator waveforms

along with the noise variance predicted from the piecewise constant model. In the figure

the noise voltage at v, 2 (T0 ) is substituted for v"2(0) as the waveform must be periodic, and

any initial noise will have long since decayed by the end of one period. In this case it is

almost entirely gone even before reaching region II, despite the fact that the significantly

faster response of region III would render anything generated prior to region III

insignificant by the end of the cycle.
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Figure 3 . 2 . 3 -- Piecewise constant noise prediction for corresponding oscillator waveforms

Near Continuous Model:

The next step in analyzing the oscillator noise is to extend the piecewise constant

model toward the limit of a continuous model. Since we know how to determine the noise

as a result of separate regions of time that may have varying noise currents and impulse
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responses, there is no reason we can't simply break up the oscillator waveform into

smaller regions until we have arbitrarily small time segments. In the limit of ever

decreasing time divisions the model becomes a continuous representation of the noise

evolution, and in some cases may yield an analytic result. From equation 3.2.3 we know
-2-Ath

i2>R; thR solated noise current density will generate a corresponding noise voltage variance

2Cj over a short time Ati of:

(Where Ri, Ci, in2i are the effective load resistance, capacitance, and noise current

at that particular time instant and Ati is the length of that particular segment.)

The noise variance will then decay according to the localized homogeneous system

response over the course of each following time step. In this case, the noise variance is

- 2.Ati

multiplied by Ri-Ci for each remaining time step between the current time and the final
e

time we wish to determine the noise at. Summing the contributions from each individual

time segment results in the following equation for the noise voltage after m time steps:

Vn - 1 J2Ati - 2 Atj

2 2 i Ri C e j C] (Eqn. 3.2.7a)

i =0 j = i+I

Which can also be rewritten in the form:

-- 2) 
-2At -2

v =2 2 .. - - j (Eqn. 3.2.7b)
i=0 -

Using the predetermined oscillator waveform from any of a number of numerical

integration methods, equation 3.2.7 can be used to determine the accumulated noise at
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each time instant. If instead of computing the noise variance using the nested form of

3.2.7, the computation is done by iteratively scaling the cumulative noise and adding the

next noise segment the computation time grows O(n) instead of O(n2 ), saving a

significant amount of computation time. Equation 3.2.8 below shows the fundamental

difference equation relating the noise variance at one time instant to the next.

. 2 - 2Atj - 2At;

-v -e ) + vn .e (Eqn. 3.2.8)
1 2C i-1 

After using equation 3.2.8 and the previously determined oscillator waveform, the precise

noise calculation is performed and is shown below in figure 3.2.4 with the piecewise

constant model for comparison.
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Figure 3 . 2 . 4 -- Comparison of piecewise constant noise prediction to near continuous calculation

During regions I and III, the piecewise constant model is quite close to the near

continuous model, owing to the reasonably constant noise parameters during those

periods. The beginning and end of region III show some disagreement, which can be
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attributed to the fact that the output voltage is high enough to alter the drain-source

conductance significantly from the value used in the piecewise constant model. Region II

is where the most discrepancy lies since the MOSFET noise current density is changing

rapidly during that time; however the piecewise model is still reasonably close and at

least shows the general trends present as the.oscillator progresses through each state.

The progression from a piecewise constant to a nearly continuous model can be

taken one step further with a little work on equation 3.2.7. If we use a first order Taylor

approximation for ex, we can make the following substitution:

- 2Ati

R Ci 2 2

R;- Ci RF-.C

Resulting in:

- -- m At-

. 2) - 2 M t
- mL Rj C.

V = -Ati-e j=i+ J (Eqn. 3.2.9)

And finally taking the limit as Ati goes to zero for all i, j:

-t
- 2

R(T C(TdT2
22 R( 2) C(t2) 2

vn (t) = j e d (Eqn. 3.2.10)

C(_c)2
0

Equation 3.2.10 has the potential of giving us analytic solutions to the noise

generation of any oscillator where we can determine the time dependence of the noise

current density and load impedance. Unfortunately, in many cases it is infeasible to
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determine the analytic time dependence1 7 of those parameters and in some cases there

may be no analytic solutions to the integrals in equation 3.2.10 even when the time

dependences are known. For region II in our ring oscillator the load characteristics are

constant and we can determine the time dependence of the noise current, hence we are

able to derive an analytic solution. With R and C being constant in this region, equation

3.2.10 simplifies to

-- -2(t-T)

in ( RL- CL

L e 
d

CL

2 w
Where i 2(1) = 2-k.T.y.i-C 0 --. (vg,) - VT)L g VT

Note that we are ignoring the noise contribution from the load resistor for the moment

since it is constant and can be determined from the second part of equation 3.2.4. When

this stage is in region II, the preceding stage driving it is in region I and the overdrive

voltage relaxes toward the positive supply allowing us to replace Vgs(t)-vT as follows

assuming a time origin of 0 at the beginning of region II:

Vgs(T) -v (V - VT)rI - e RLCL

After performing the substitutions and working out all of the

the noise caused by the transistor in region II is:

-. 2-t K 2t

Vn 2(t) = 2. ----- C03 -- RL (s T) -e -UL - + - e -C

CL L ,2 2

math, the end result is that

e RUCL (Eqn. 3.2.11)

Figure 3.2.5 below shows the noise predictions for regions I and II using the near

continuous model and the analytic solution composed of equations 3.2.4 and 3.2.11.

17 remember, simply knowing the voltage dependence of an element is not sufficient, we must also know
the exact time dependence of the node voltages, which may not be continuously differentiable curves.
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Ignoring the different initial conditions which are a result of the deviation of the two

models at the end of region III, the two noise curves line up almost exactly, particularly

in region II where we are interested the noise during switching.
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Figure 3 . 2 . 5 -- Comparison of near continuous model to analytic solution in regions I and II

Region III is much more difficult to characterize this way, as the gate voltage is

not a simple function of time as it was in region I, and we don't have an analytic

description of the drain voltage response which determines the noise response while the

transistor is in the triode region.

The last tool we need for determining the period variation of our oscillator is a

mechanism for converting the voltage noise at the output node into switching jitter. One

popular method, and the method used in this work, for doing this in ring oscillators is to

use the first-crossing approximation [3].

At2 = Vn2d V (Eqn. 3.2.12)
~dt )
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The idea behind the first-crossing approximation is that the timing uncertainty at

a particular point in time is related to the voltage uncertainty by the slope of the node

voltage as illustrated in figure 1.2 in chapter 1. When the voltage is changing quickly

large variations in the voltage result in small timing variations; suggesting that shaper

transitions will result in less jitter. This is somewhat misleading however, since in order

to maintain the same oscillation frequency, sharper transitions require integrating more

transitions, each with their own noise.'8 As we will see in the next section, attempting to

make the falling transitions excessively sharp will eventually increase the normalized

oscillator jitter.

3.3 Effects of Stage Gain:

Now that we have a good idea of what the voltage noise looks like throughout the

oscillator period and how that translates to timing jitter, we can begin studying the effects

of changing device parameters. The first modification to be examined is the effect of

changing the nominal single stage gain. The effective stage gain can be changed in

several ways such as altering the transistor dimensions, using low threshold devices,

changing the load resistance, or using CMOS processes with different carrier mobilities' .

While all of these changes affect the overall gain, they also have subtle side-effects that

are different for each parameter. For example, changing the transistor dimensions

changes the total load capacitance which in turn changes the oscillator period and the

18 In buffers, however, sharper transitions will indeed reduce jitter, as long as the noise voltage is not
increased significantly
19 While C,, could also be changed, it affects the gate capacitance for equal sized devices, and ultimately
would be equivalent to changing the transistor dimensions.
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small signal noise response; while altering the transistor threshold changes the dynamics

of the oscillator waveforms by altering the conditions for the MOSFET entering triode

and cutoff regions. In practice designers typically do not have the luxury of choosing any

carrier mobility for their devices, however the same net effect can be accomplished

through changing device sizes and appropriately reducing the added load capacitance, or

by altering W and L subject to the constraint that their product, and hence to first order

the gate capacitance, remains constant. As a result we use the carrier mobility to alter

the stage gain since it provides the simplest method of doing so without significantly

affecting the rest of the oscillator.

As we saw in section 3.1, increasing the gain increases the frequency in addition

to deforming the oscillator waveform. This complicates matters somewhat since while

lps of jitter may be inconsequential for an oscillator period of Ijps, it is quite noticeable

for an oscillator period of lns. Trying to maintain the same oscillation frequency while

changing the gain would require making changes to the load characteristics, which is

undesirable since that will in turn affect the period jitter. So instead of trying to fix the

oscillation frequency as the gain is changed, we instead focus on the normalized period

jitter.

As noted in the previous section, the total period jitter is composed of the rising

and falling edge jitter from each individual stage. Looking at the rising edge of the

oscillator waveform, one might be tempted to assume that the rise jitter is unaffected by

the stage gain as the rising edge occurs in region I where the transistor is cutoff. If we go

back to equation 3.2.4, however, we are reminded that the residual noise from region III

20 This will depend on the relative magnitudes of the oxide capacitance and overlap parasitics; this also
assumes that the output resistance of the transistor is very large relative to the load resistor.
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requires a finite amount of time to decay below the nominal region I noise level.

Additionally, the increased gain lowers the effective switch point since less gate

overdrive is required to switch the next stage. Moving the switch point down also directly

affects the induced timing jitter since the rising slope will be larger at the beginning of

region I, and from equation 3.2.12 we know that increasing the slope decreases the jitter

for a fixed noise voltage. From combining equations 3.2.4 and 3.2.12, we have a good

idea of the switching jitter on the rising edge:

2t -

2_ 2-- L R-L R- 2 20

Atr (t) = -) ± C (0) (Eqn. 3.3.1)

( )2 (V

Normalizing equation 3.3.1 in the general case becomes difficult as we do not have a

closed form solution for the oscillator period as a function of the stage gain, and as a

result, we do not know the exact dependences of the switch point and vn2 (0) either. The

switch point can be reasonably approximated by the gate voltage at which the MOSFET

drain current is equal to the mid-supply resistor current:

Vs -L

VSW = vT + (Eqn. 3.3.2)
RL-p-CO -W ,

From which we get the switching time to be:

VS - VW
tsw = -RL-CU-I Vs - V sj (Eqn. 3.3.3)

And substituting into equation 3.3.1 results in:

2 k-T-RLCL LV -Vow~ 2j + 2C 2n(2
Atr (t) = - -- + (Eqn. 3.3.4)

(Vs - VIow)2 VS - Vsw (Vs _ VIow)2I
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The absolute jitter deceases with increasing gain, since the switch point t occurs

earlier, V10w is lower, and the residual noise voltage is smaller. As demonstrated at the

end of this section, however, the period decreases faster than the rising edge jitter after a

certain point, indicating that there will be an optimal gain point. This will be examined

further after we look at the jitter caused during the falling edge.

Before we can determine the falling edge jitter, we need to derive the voltage

waveform to determine the time when switching occurs. Solving equation 3.1.2 under the

conditions of region II gives us the output voltage as a function of time and the initial

voltage at the beginning of region II:

-t -(t) -2(t)~

Vout(t) = Vs - (VS - Vout(0))e 2LCLL (Vs - vT) RLCL - 2t-e - RLCL .e _]
2CL.L

(Eqn. 3.3.5)

There is no analytic solution to equation 3.3.5 for the switch time as a function of the

switch voltage since the equation is transcendental. So again we will try to gain some

insight from these equations, but will ultimately have to resort to numerical results to

confirm and refine our predictions. When we combine equations 3.2.11 and 3.1.2 for

t -2ts

k-T .Y - x W R (s-v)I2eRL-CL +eRL-CL+

At (tsw [ (Eqn. 3.3.6)
A tf ( S W)tsw - 2 ts w

Vs - Vsw p-C-W (V -vT) - 2e L +RLCL

RL-CL 2-CL-L

region II as we did for the rising edge we get a fairly complicated result in equation 3.3.6.

If we assume that the second term in the denominator is large relative to the first, which
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seems reasonable as at the switching point the output voltage is falling, we can loosely

approximate equation 3.3.6 as shown in equation 3.3.7.

2 4-k-T-CL-y -L-RL
At2(tsw)= 'k- t. - 2-tT L (Eqn. 3.3.7)

p-.C0-W-(Vs ~ VT) I'1 - 2-e + e RLCL

By the same token, the first term in the numerator is assumed to dominate the second.

Equation 3.3.7 shows that the falling edge jitter appears to decrease for increasing gain,

although we don't know the explicit dependence of tw on the stage gain.

The peak voltage and overall oscillation period can be solved for iteratively by

using equation 3.3.5 to estimate the fall time, then using the fall and rise times to estimate

the peak output voltage. Usually two or three iterations are sufficient to determine both

the peak voltage and oscillation period.

0.2
- Falling Edge
- Rising Edge

0.15

0.15 -

0.05

0 3 4 5 6
10 100 1.10 1.10 1.10 1.10

Log Mobility

Figure 3 . 3. 1 -- Absolute edge jitter for various values of carrier mobility

Combining that with equations 3.3.4 and 3.3.6 we can quickly solve for the

normalized timing jitter for each edge for any given value of k for the pull-down
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MOSFET. Figure 3.3.1 above shows the estimated absolute jitter for the rising and falling

edges for our oscillator.

For low gain configurations the falling edge jitter is larger than the rising edge

jitter since the two slopes are of comparable magnitude, yet the falling edge has added

noise current from the MOSFET, which is not on during the rising edge. When the gain is

increased enough, the falling edge is so sharp it no longer adds very much timing jitter

compared to the rising edge, which levels off as the switch point cannot move below the

transistor threshold voltage. Figure 3.3.2 shows the rising and falling edge jitters along

with the total period jitter normalized to the oscillation period.
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Figure 3 . 3 . 2 - Normalized period jitter, along with rising and falling edge components

2

As suspected there is an optimal gain point at a carrier mobility of about 250 cm
V-s

corresponding to a small signal gain of about 6 at the switch point. The falling edge jitter

continues to decrease with increasing gain, even when normalized to the oscillator period.
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The rising edge jitter, on the other hand, clearly levels off long before the oscillation

frequency does, resulting in increasing relative jitter until the frequency also levels off. It

should be noted that the predictions for very high gains are likely to be inaccurate

because in those cases the transistor will be in moderate and weak inversion for

significant amounts of time. Entering moderate and weak inversion requires changing the

models for both the noise current density and the triode region drain conductance.

When we consider the changes in power consumption the precise optimal point

may move somewhat, but keep in mind that the oscillation frequency is also changing,

and for a fixed load capacitance more power is inherently required to increase the

frequency of operation. The difference in efficiencies between different gain setting

stems from the "static" power dissipation of each stage when it is held in the low state.

While the fraction of the oscillation that a particular stage is low remains roughly

constant, the power dissipation changes slightly as the low state voltage is pulled lower

for higher gain, in turn pulling more current through the load resistor. The optimal

efficiency point should occur at a slightly lower gain than what was predicted above due

to the increasing power dissipation.

Looking back at equation 3.1.2, if we multiply through by R and hold the gain

constant, whether by p or W and L, then the RC product time scales the oscillation

waveforms, but does not alter the dynamics. The noise calculation behaves similarly; it is

dependent on the gain term, but not the individual gm and R values, other than a scale

factor of 1/C out front as we would expect from traditional noise analysis. As such, the

optimal gain point is not dependent on the load resistance and capacitance; although it is

dependent on the value of the excess noise factor y, and the number of stages. The net
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result is that we have the necessary degrees of freedom to make an optimal oscillator

under arbitrary frequency and noise specifications. The capacitance sets the overall

noise level, while g, and R can be traded off to get the desired frequency while

maintaining the optimal gain setting.

21 This is of course subject to the physical limitations of fabricating the oscillator such as minimum gate
length, maximum die area, etc.
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Chapter 4

Differential Ring Oscillators

While single-ended ring oscillators certainly have their place, designers often

prefer to use differential designs for a few important reasons. Among the reasons for

using differential rings in place of single-ended rings are increased common-mode

rejection, trivial signal inversion, and supply independence. The common-mode rejection

is particularly useful in communications and other high frequency circuits where

electromagnetic interference (EMI) can couple into the oscillator causing unwanted jitter.

Furthermore, the differential signal is useful for balanced mixers and digital systems

where a designer may want both polarities of a control signal, as the oscillator signal can

be inverted by simply swapping the positive and negative terminals. Perhaps the most

important advantage as far as this work is concerned is the supply independence provided

by a differential architecture. As is shown in the next section, the oscillation frequency is

determined by the RC time constant of the load and the relative sizing of the switching

transistors to the bias current, independent of the supply voltage2 2. This in effect greatly

reduces one mechanism of incorporating supply noise into timing jitter, as compared to

22 To first order, assuming the bias current is designed with a sufficiently large output resistance
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the single-ended case where changing the supply voltage directly changes the nominal

oscillation frequency. The other mechanism is direct signal coupling from the supply to

the oscillator nodes; in the differential case this is also greatly reduced as the supply noise

couples in the common mode, not the differential mode.

This chapter takes the noise analysis techniques developed in chapter 3 for single-

ended ring oscillators and extends them for use with differential ring oscillators. As in

chapter 3 we begin with a very simple design in the hopes of gaining better intuition

about what aspects of the oscillator design impact the overall timing jitter the most. After

investigating the differences between the single-ended rings of chapter 3 with the

differential ones presented here, an example oscillator will be designed to demonstrate

the use of this noise analysis. Additionally, other aspects of the oscillator design will be

discussed, particularly those that may significantly affect the noise performance, such as

tuning methods and biasing.

4.1 Resistor Loaded Differential Pair:

Following in the same light as chapter 3, the simplest differential oscillator to be

considered is a multistage resistor loaded differential amplifier with unity feedback. Each

stage of the oscillator is composed of a source coupled differential pair, biased by a

current source, and loaded by equal valued resistors and capacitors. Unlike the single-

ended version, this oscillator can accommodate even numbers of stages by swapping one

of the outputs to add an extra inversion. The main benefit of this comes from using an
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oscillator with four stages to generate quadrature signals. Figure 4.1.1 below shows one

of the individual gain stages.

+V

CL RL RL CL

- Vout +

SW/L W/L |

Vin

Vbias

Figure 4. 1 . 1 -- Individual differential gain cell

For the analysis presented here we assume the signal swing is not large enough to

force the bias current source into the triode region, since doing so would compromise the

common-mode rejection that makes the differential architecture so desirable. As a result,

the load impedance characteristics are constant throughout the oscillation cycle, unlike

the single-ended case, where the pull-down transistor is forced deep into the triode

region. Equation 3.2.10 reduces to the same equation that was used for regions I and II in

chapter 3, where only the noise current density is varying.

t
- 2(t-T)

2 I2('r) R.-CL
Vn (t) ' 2 -e dt (Eqn. 4.1.1)

CL
0

To make use of equation 4.1.1 we need to establish the nature of the time-varying

noise current at the differential output node. Doing so requires that we first determine the
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nominal output waveforms in the absence of any noise. The differential equations

governing each of the output nodes are nearly the same as they were in chapter 3;

however, the pull-down current depends on both input voltages. Since we are only

interested in the differential mode signal at this time, we can combine the two equations

for each amplifier stage by subtracting them, leaving us with equation 4.1.2:

CL- Vdiff = Vdiff h(Vin1, Vin2, out , Vout 2 ) (Eqn. 4.1.2)
dtR

In general the differential current is a function of each input and output voltage,

but if we limit ourselves to oscillators with moderate signal amplitudes that do not force

the bias transistor into the triode region the differential current is only a function of the

differential input voltage. Most practical differential ring oscillators adhere to this, so the

assumption is not as limiting as it may sound and it greatly simplifies the analysis. For

large differential inputs, the output current is limited in magnitude by the bias current

source. The transition from positive to negative Ibias depends on the inversion level the

switching MOSFETs are biased. Under the assumption that the switching transistors are

in saturation, the differential output current can be solved for in terms of the input voltage

as:

pb -C -W 4
Ibias L 2  

2bis L
Iout * bias 4L "x n C -W I ini pCox -W

(Eqn. 4.1.3)

,out Ibias -sign(V )Vin 
2 1bi -L

Figure 4.1.2 on the next page shows an example of this transfer characteristic.

Along with the exact solution, there are also two approximate solutions. The dashed line

shows the linear approximation where the transconductance is treated as constant while

the output current is smaller than the bias current. The dotted line uses the exponential
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solution that would be exact for a bipolar switching stage, with the thermal voltage scaled

to provide the same transconductance in the balanced state. The former makes the math

much simpler for evaluating the differential equations governing the oscillator

waveforms, while the latter may provide a more accurate prediction as the switching

stage is biased closer to moderate and weak inversion.

1.5 1 1 1 1
- Square Law

----- Exponential
Linear

0.5-

0

S -0.5-

-0.4 -0.2 0 0.2 0.4

Input Voltage (V)

Figure 4. 1 . 2 -- Differential I-V characteristic for current source biased differential pair

Armed with the I-V characteristic of our switching transistors, we can move

forward to determining the noise current present at the output during each part of the

oscillation cycle. In the differential case, there are more noise sources to consider: two

from the load, two from the switching pair, and one from the bias current source. We

treat the load sources as constant for this analysis just as we did in chapter 3, although for

more complicated topologies they may change. The bias noise source is also treated as a

constant; however, it is important to remember that its contribution to the net differential

output current noise will not be constant. The two noise sources for the switching

transistors are the most complicated ones to analyze, since both of their magnitudes
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change and their transfer characteristics to the output noise change, depending on the

input voltage. Figure 4.1.3 shows the relevant noise sources for an individual stage.

+V

SIn, L In, L

- Vout i

+ W/L In, 1 In, 2 W/L

Vin

Vbias q In, b
-p-

Figure 4 . 1 . 3 -- Individual oscillator stage with noise sources shown explicitly

When the input voltage is zero the differential pair is in its balanced state and

each transistor carries half the bias current. In this state, any noise current from the bias

transistor splits evenly between both outputs and as a result contributes nothing to the

differential output current. As the input voltage deviates from zero, the bias current

begins to shift more to one side than the other, and correspondingly the bias noise current

will split preferentially toward that side. Now that the bias current noise splits unevenly,

there will be a net differential noise current at the output. Using a linearized small signal

model we can determine what portion of the bias current flows to each side of the output,

and from that determine the net output current. At the drain of the bias transistor an

incremental current sees the output conductance of the current source in parallel with the

source conductances of the two switching transistors. In essence we have a current

divider where each branch draws a percentage of the current equal to its conductance
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over the total conductance. The output conductance of the bias current source will

typically be much smaller than the source conductances of the differential pair, so we will

treat it as zero here. For a given gmi and gm2 the net output current contribution from the

bias is23 :

Inbo nbl - m 'nb - 2 Inb (Eqn. 4.1.4)
gm1+ gm2} sgm1+gm2) b m1+ gm2) ,

The contribution from the differential pair transistors is a bit more complicated since the

noise current generated by those transistors appears at the output both directly and

indirectly through the source coupled node. The indirect contribution behaves in the same

manner as the bias current noise except that its sign will be flipped since relative to the

direct contribution.

gm+ gm2 2gm2
Inlo = I - gI - n 2 g nl (Eqn. 4.1.5)

gml +gm2) InI m I+ gm2) In =(m I+ gm2) ,

The equation for the second transistor is the same as 4.1.5, but with the subscripts 1 and 2

switched. An important thing to notice here is that when the differential pair is fully

switched to one side, neither transistor contributes any noise to the output. For example,

when all the bias current passes through the first transistor, gm2 is zero and all of Ml's

noise is cancelled out, and with gm2 being zero the second transistor doesn't generate any

noise to begin with. Combining equations 4.1.4 and 4.1.5 and taking account of the fact

that the MOSFET noise currents are dependent on their gm's, the total differential noise

current at the output due to the active devices is:

__F 2 2 2 1
2 2gm2 22gm, gmi - 9M22

Ino= 2y.k.T. -gm1+ -gm2+ -r 9 gmbia (Eqn. 4.1.6)
sam1~gm2 y am1~gm2 ya~ml+gm

23 Here we are also assuming the frequency of the noise current is below the fT of the MOSFET, which is a
safe bet since the RC time constant would filter out frequencies that high anyway.
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Keep in mind that we are still using the double-sided noise current density for our

time domain analysis; hence, the factor of 2 appears out front instead of 4. It should also

be noted that the gmbis term represents the overall transconductance of the bias current

source, including the effects of noise from the bias circuitry and any source degeneration.

Figure 4.1.4 shows a typical breakdown of the noise contributions from each element

over the course of one oscillator cycle.
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Figure 4. 1 . 4 -- Sample oscillator waveform, with active noise current contributions

For large input voltages, the stage is fully switched to one side or the other, and

the bias current noise dominates the output noise. As the input voltage crosses zero, the

switching transistors take over and reject the bias noise. Increasing the gain24 of the

differential pair increases the noise current during switching, but not during times when

the stage is fully switched. One might be tempted to assume this means that increasing

the stage gain automatically increases the period jitter, but increasing the gain also

narrows the window of input voltage where the stage is not fully switched. As a result,

the effect of changing the stage gain is much more subtle. The peak noise voltage is

24 Note that in the differential case the gain refers to transconductance relative to the bias current
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roughly proportional to the area under the noise current curve2 5 , but the amount of time

between the burst of increased noise and the next-stage-switching also changes with the

stage gain. Figure 4.1.5 below shows the evolution of the noise voltage throughout the

oscillator cycle. As before, the noise voltage is reset when the output switches, since

under our first crossing approximation we know the voltage to be precisely zero

whenever it triggers the next stage. The effect of resetting the noise voltage appears to be

minimal however, since the oscillator period is several time constants long even for large

gains.
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Figure 4 . . 5 -- Noise current and resulting noise voltage for moderate (top) and high (bottom) gain cases

Unlike the single-ended oscillators examined in chapter 3, the switch point for the

differential oscillator is not dependent on the stage gain. In all but the lowest gain cases,

25 This is true when the integration interval is small relative to the RC load time constant, as the interval is

increased the nois e oltends toward being proportional to the height of the curve instead of the area
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the stage is fully switched prior to the output switching as seen in figure 4.1.5, so the

Ibias
slope of the output voltage stays roughly at , independent of the stage gain. It is no

CL

surprise that increasing the gain results in an increase in the relative jitter for a while, and

then levels off: the differential pair becomes indistinguishable from an ideal switch that

introduces a fixed area impulse of noise current into the oscillator output. The area of

interest to us is the low to moderate gain region where we hope to find an optimal gain

setting before the signal swing begins shrinking, causing a jump in the timing jitter.

Since the output drive current is assumed to be only a function of the input

voltage, the differential equation governing the output (4.1.2) is a separable equation and

can be solved under piecewise constraints using the linear approximation to equation

4.1.3. As in chapter 3 the result is transcendental with respect to time, and requires using

numerical methods to solve for the stage delay and RMS noise voltage.
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Figure 4. 1 . 6 -- Oscillator frequency and switching noise voltage for increasing g. but fixed Ibias

Despite not being able to glean much intuition from the equations themselves, we

can still examine the numerical results and make sense out of any trends present. Figure
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4.1.6 above illustrates how the noise and oscillation frequency change as the

transconductance of the input stage is increase for a fixed bias current. For large stage

gains, the output noise stays relatively stable, despite the increasing noise current from

each switching transistor. For smaller gains, the bias noise is rejected by the balanced

differential pair, and the switching transistors produce less noise themselves, lowering the

overall noise level. As figure 4.1.7 below shows, however, eventually the decrease in the

sharpness of the switching transitions catches up with the noise voltage and causes the

jitter to spike back up.
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Figure 4. 1 . 7 -- Normalized Jitter and Oscillation Frequency

2

The point where the normalized jitter occurs is at a mobility of 40 -'-, which
V- S

corresponds to a ratio of .8 between the switching k and the bias k. There are a couple of

important caveats to keep in mind here. As the gain decreases, eventually we find

ourselves in a situation where the output stage begins switching the next stage before the

input has fully switched the current stage. In that situation, there is amplification of noise
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from one stage to the next, requiring a more complete model of the output noise than we

have presented here. Further decreasing the gain lengthens the interval of overlap

between active stages, but also decreases the magnitude of the effect as a direct result of

the reduced gain. The tradeoff is similar in many respects to that of the noise during

switching where the magnitude and duration of the noise contributions are acting

opposite each other. The noise present at low gain will be somewhat higher than

presented here, so the optimal gain point will likely be somewhat larger than predicted.

Furthermore, when the active regions overlap, the output slope begins to decrease and

causes the stage jitter to increase.

Simulations conducted on Linear Technology's .6gm CMOS process yield similar

results, except that the optimal mobility point shifts upward by a factor of 2. The

differences can be attributed in part to the effects of noise the amplification between

overlapping stages present for low gains as mentioned before. Another important

difference to account for is the effect of the back bias on the switching transistors. In the

single-ended case we analyzed in chapter 3, the pull-down transistor had a grounded

source, so while the body effect was still present, there was not the additional effect of

having a non-zero Vbs. In this case the bodies of the switching transistors will be

grounded, while the source node will be above ground, altering the threshold voltage.

4.2 Example Oscillator Design
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At this point we will use the results of our non-linear noise analysis to design a

low noise ring oscillator. This example design also provides an opportunity to discuss

tuning methods and biasing, and how they can affect the oscillator's overall noise

performance. We would like a differential ring oscillator with a center frequency of

225MHz and a maximum power dissipation of 7mW using a standard .6ptm CMOS

process and a 2.1 volt power supply. Additionally, we would like to be able to tune the

oscillator across a full octave, in this case a range of approximately 150-300 MHz.

This design is limited to using a 5 stage oscillator, since the analysis performed in

this study is focused mostly on 5 stage oscillators. At this time we also switch to using a

PMOS switching topology. Mathematically, there is no intrinsic difference between using

PMOS or NMOS in this type of oscillator; however, PMOS transistors typically have

better noise performance than their NMOS counterparts. The reason for this is not

entirely known, but there is speculation that it has to do with the reduced carrier mobility

mitigating the short channel effects that cause excess noise [16]. With a 7mW power

budget from a 2. 1V supply, we can use a bias current of 660pA in each stage. In order to

ensure that the bias transistor remains in saturation throughout the oscillation cycle, the

bias current source transistor should be biased with a fairly low overdrive voltage. A bias

voltage of .8V (1 .3V below the supply) provides an overdrive of roughly 400mV, leaving

enough room to have an output voltage swing of around a volt. As a result, the bias

transistor should be sized with a W/L ratio of 140, however we set the ratio to 180 to

account for second order effects, like the body effect, that reduce the drain current. In a

complete design the bias voltage would be produced by a current mirror for better

robustness over process variation, but for simplicity we use a voltage source here. The
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last parameter we need to establish for the bias portion is the gate length of the bias

transistor. Picking a large gate length provides us with a high output resistance, and along

with that good common-mode rejection, but at the cost of increasing the die area of the

circuit. In this design a gate length of 1.8jim provides sufficient output resistance, without

dramatically increasing the necessary die area.

From the analysis presented in section 4.1, we see that the noise performance for

this type of oscillator is optimized when the switching and bias transistors have similar

W/L ratios, so the switching transistors are set to have a W/L ratio of 180. The gate

length for the switching transistors is chosen to be the minimum of .6[im since this is a

high speed26 design. The total load capacitance contributed by the differential pair can be

computed from the oxide and overlap capacitances and is approximately 160fF. We want

to maximize the signal swing without forcing the bias transistor into the triode region,

which in this case amounts to about 1 volt of swing. For the bias current of 660gA

chosen, the net load resistance should be 1 .5k.

In order to provide a mechanism for tuning the oscillation frequency, the

resistance is composed of a fixed resistor in parallel with a triode region MOSFET whose

drain to source resistance can be adjusted via its gate voltage. The reason for constructing

the load this way is twofold; the first part is that letting the fixed resistor dominate the

load helps preserve the linearity of the load characteristic, consistent with the

assumptions made during our analysis; the second is that the tuning range can be limited

to keep the VCO gain small. Keeping the VCO gain small helps insulate the oscillator

from noise in the control voltage, which is especially beneficial in high bandwidth PLL

environments where we cannot simply increase the bypass capacitance to reduce the

26 high speed relative to the process technology

66



noise because of the bandwidth requirements. The load resistance is thus formed by the

parallel combination of a 2kQ fixed resistor and an NMOS transistor with a W/L ratio of

5, biased with between 1.5 and 2.1V at the gate.

To approximate the tuning range from this setup, we use the drain-source

resistance of the NFET at the midpoint of the signal swing. This gives us an estimated

tuning range of 315MHz - 490MHz, however the actual center frequency will be lower

due to the added load capacitance from the tuning FETs, and the range will be smaller

because as the signal nears its maximum swing, the FET resistance increases quickly and

the resistance is effectively that of the fixed resistor. As a result changing the bias voltage

of the tuning FETs only alters the natural response for a portion of the cycle.

320.OM- -6.18OM

310.OM_ -6.175m

300.OM- --. 1 m

290.OM-

Fo 6.165m

280.OM-
-6.160m

270.OM-

250.OM 
6.150m

1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10

Vbias

Figure 4. 2. 1 -- Simulated oscillator frequencies for various tuning voltages

Figure 4.2.1 above shows simulations of the actual tuning range to be 259MHz-

314MHz, or 21%, for the specified tuning voltage range. In order to meet the desired

overall tuning range of an octave, we can add switched capacitors at the outputs of each

stage that are digitally controlled to select the local tuning range. The capacitors should
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be sized such that there is sufficient overlap between adjacent digital codes to maintain

continuous coverage over process and environmental variations.

Simulations of this example oscillator predict a total RMS period jitter of .394ps

at the baseline frequency of 259MHz, which corresponds to a normalized jitter of

102ppm. For reference, this corresponds to a phase noise of -115.7dBc at a 1 MHz offset,

ignoring flicker noise contributions. This oscillator bums an average power of 6.15mW,

and according to the work conducted by Navid and Lee it has a theoretical minimum

phase noise of -128.6dBc at 1MHz, or a wastefulness factor of 12.9dB [17]. For a

differential oscillator, this is a reasonably good result, especially for this simple oscillator

design. This design highlights one of the main disadvantages in a differential oscillator

design; the fixed current sources that bias each stage burn power and reduce the available

signal swing, the overall result being a reduction in the available signal to noise ratio and

"unused" power consumption. In comparison, single-ended ring oscillators typically have

wastefulness factors around 2-6dB [17]. While this result suggests that single-ended ring

oscillators are better than differential ones, it is important to remember that this analysis

has only looked at the intrinsic noise performance of these oscillators. In real world

circuits, supply noise, substrate noise, and EMI can all dominate the oscillator's noise

performance. When all these external influences are considered, the differential oscillator

will often prove to have better overall noise than the single-ended one, despite its initially

higher jitter. The reader should keep in mind that the results presented for this oscillator

are somewhat optimistic when comparing them to commercial solutions. In reality there

are a number of noise contributors, such as bias circuitry and supply ripple, which are not

intrinsic parts of the oscillator.
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Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusions:

This work has developed a method for determining the RMS noise voltage due to

white noise sources at any time during an oscillator cycle. Beginning with a single-ended

ring oscillator and simple MOSFET models in chapter 3, we derived analytic solutions

for much of the oscillator period. When analytic solutions could not be found, iterative

numerical approaches were taken that still provided useful results. Using this continuous

noise model we were able to predict an optimal gain setting for a simple resistor loaded

ring oscillator. As long as the stage gain is held constant, the oscillator waveforms are

simply time scaled by the RC load constant. Consequently, the oscillation frequency and

overall noise level can be set arbitrarily by trading off R and C values while maintaining

the optimal gain. While only a very simple ring oscillator was used for the analysis in this

work, the concept can be applied to more complicated designs. More complicated designs

often will not lead to analytic solutions, but we still gain insight from observing patterns

in the noise evolution. Chapter 4 took the techniques developed in chapter 3 and extended

them to analyze differential ring oscillators. Again we were able to predict an optimal
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bias setting for the switching pair relative to the bias current source. The differential stage

is more complicated than the single-ended case since the magnitude of the bias current

source noise alters the optimal gain point. When the bias noise is sufficiently small, high

stage gains can be tolerated as the output noise is mostly dominated by the bias noise

when the differential pair switches quickly. In cases where the bias noise is significant,

lower gains (to a point) reduce the differential output noise as they spend more time in

the balanced state where the bias noise is mostly rejected. Using the modifications from

section 4.1, we then proceeded to walk through an example design of a differential ring

oscillator which a predefined tuning range and power specification. While significantly

simplified from a full on-chip oscillator design, the example provides a useful

demonstration of the design process.

The noise model developed here, more than just useful for determining the overall

period jitter, allows us to see how the noise voltage variance evolves over the course of

an oscillation cycle. Similar to how the ISF function described by Hajimiri and Lee

shows what regions of the oscillation cycle are most sensitive to injected noise [13], this

model can help identify the dominant noise contributors. The advantage provided by the

model developed in this work is that the noise can be determined without simulating the

entire oscillator cycle for each time segment of injected impulse current. Once the

oscillator waveform has been solved once, the rest of the noise calculation proceeds fairly

quickly. The ability to visualize the growth and decay of output noise throughout the

oscillator cycle allows designers to try to make targeted reductions in the noise response

during sensitive portions of the cycle.
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5.2 Recommendations for Future Work:

The nature of oscillator jitter is quite complex, and this work has only scratched

the surface of this topic. There were a number of important topics touched on throughout

the development and discussion of this analysis that we did not have the time to fully

explore. While in our simulations in chapter 3 we altered the stage gain by changing the

carrier mobility to represent changing device dimensions while maintaining a fixed RC

load time constant, we did not examine the effects of changing the device threshold

voltage. In practical designs, an engineer may have the option of using low threshold

devices, or may adjust the effective threshold voltage by making use of the back gate

effect. Decreasing the threshold voltage increases the gate overdrive, and hence small

signal gain, for an oscillator stage, however recall from section 3.3 that decreasing the

threshold voltage also changes the points at which the oscillator transitions from region I

to II and from region II to III. The effect on the differential case appears to be more

subtle since we do not enter cutoff and triode regions the same way we did in the single-

ended case. Indeed in the differential case the effects of changing vT may be identical to

changing the gain as was done with the carrier mobility. Lower threshold devices for the

bias current sources should, however, allow for larger signal swings and thus better noise

performance, all else being equal.

Beyond simple process parameters like vT that may not be readily controllable, it

would be greatly beneficial to assess the impact of non-linearities in the load resistance

and capacitance. In high speed designs where there is little or no added node capacitance,

the non-linearities in the gate and parasitic capacitances may significantly alter both the
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shape of the output waveform, as well as the noise response. Furthermore, most tuning

methods for differential oscillators involve either a varactor diode or a triode region

MOSFET whose resistance can be adjusted via a control voltage. In either case,

additional non-linear characteristics are introduced into each stage's load impedance. The

analysis presented here could be applied to varying degrees of load non-linearity to

determine how the oscillator jitter is affected. In particular the magnitude and concavity

of the non-linearity could be looked at first, before moving on to more complicated load

characteristics such as that of a Maneatis load2 7 . Also potentially of interest would be to

consider what effects these non-linearities have on the supply dependence of both single

and differential oscillators, since sacrificing a small amount of intrinsic noise

performance may be acceptable if it allows the oscillator to function better in noisy real

world environments.

For lower speed designs that are not at the edge of the process limits, there has

often been much debate over the relative advantages and disadvantages of increasing the

number of stages, increasing the load capacitance, or digitally dividing the signal to

reduce the speed. A more complete investigation of the effects of increasing the number

of stages would go a long way towards clarifying the pros and cons of long ring

oscillators. Adding stages doesn't simply alter the oscillator time scale as changing the

load capacitance does, since each stage now relaxes longer between switching times.

Unlike in the case of scaling the RC time constant, the longer period results in a larger

signal swing and longer delay per stage. Not only will this affect the overall period jitter,

27 For those curious, the Maneatis load looks like an increasing resistance for small voltages, similar to a
triode region MOSFET, however as the voltage increases further, it then decreases as the incremental
resistance is dominated by a diode connected transistor.
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it may also shift the optimal gain setting in both single-ended and differential oscillator

designs.

An important point to remember is that all of the preceding analysis has been

conducted under the assumption that all noise sources present are white noise sources.

Flicker noise contributions are more difficult to analyze because their autocorrelation

functions are not simple delta functions. Equation 3.2.2 and those subsequently derived

from it are no longer valid because the inner integral must be evaluated instead of using

the sifting action [3] of the delta function for white noise. While it would require a

significant amount of additional work, if one could develop a similar analysis for flicker

noise sources we could begin to really understand the fundamental differences between

flicker and white noise in oscillators and how they are incorporated into period jitter.
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