YAMA: A System For Marking Network Traffic
by
Néstor Felipe Herndndez Gonzélez
B.S. Computer Science, M.L.T., 2005

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the Massachusetts Institute of Technology

MASSACHUSETTS INSTITUTE,
OF TECHNOLOGY

September 2006 ocT 03 2007

(© 2006 Massachusetts Institute of Technology LIBRARIES
All rights reserved.

BARKER

Author............... . e e e g
Department of Electrical Engineering a{{él Computer Science
- 77,, August 28, 2006

Certified by
Robert K7 Cunningham
Associate Grqup Leader, MIT Lincoln Laboratory
Thesis Supervisor

Accepted by....... Tt
Professor of Electrical Engineering
Chairman, Department Committee on Graduate Students

This work is sponsored by the United States Air Force under Air Force Contract
FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the

author and are not necessarily endorsed by the United States Government.

YAMA: A System For Marking Network Traffic
by

Néstor Felipe Hernandez Gonzélez

Submitted to the
Department of Electrical Engineering and Computer Science
August 28, 2006
In Partial Fulfillment of the
Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Computer security performance analysis requires precise labeling of traffic as either
background or attack traffic. When an experiment is performed on-line, it may also
be important to identify traffic from the security system. Today this is tedious and
difficult, requiring personnel with a deep understanding of multiple protocols.

YAMA (Your Able Marking Aide) is a tool that labels sessions and packets as-
sociated with a set of user actions given those actions, the traffic, and a network
configuration (host information and web page corpus). An evaluation of a version
that processes web traffic is performed using data from Alexas Top 100 Sites. YAMA
1.0 correctly associates the action of visiting a specific site with 90% of all HTTP
packets, and 99% of both HTTP GET and DNS packets. Furthermore, YAMA 1.0
produces zero false positives when given a high-level event indicating a user visited
one web site and packets from a different site.

Thesis Supervisor: Robert K. Cunningham
Title: Associate Group Leader, MIT Lincoln Laboratory

This work is sponsored by the United States Air Force under Air Force Contract FA8721-05-
C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and
are not necessarily endorsed by the United States Government.

Acknowledgments

There are a great many thanks to hand out here. First I'd like to thank my advisor,
Rob Cunningham, for his time, insight, and support over the past year, and Bill
Streilein for sitting in on our meetings and providing some outside perspective. I'd
also like to thank Lee Rossey and the rest of the LARIAT team for their continued
endorsement over the years, and the great deal of work they have put in to create a
fine testbed.

Outside of the Lab I’d like to thank my brothers at the Nu Delta Fraternity for
their general support, fun times, and distracting emails that have bettered my spirits
throughout. A special thanks goes out to those who lent their editing skills towards
the end.

Finally, and most importantly, I want to thank my family for all their boundless
love and support over the years. So many thanks to Dad, Mom, my beautiful sister

Vivian, and my very cool brother David. Los quiero mucho.

Contents

1 Introduction 15
1.1 TheProblem 15
1.2 Related Work 16
1.3 Goals and Assumptions Lo 18

1.31 Goals. 18
1.3.2 Scalability and Real-time Execution 19
1.3.3 Assumptions. 19
1.4 ThesisOutline. 21

2 A Model For Event-Driven Network Traffic 23
2.1 Agents 25
22 Events 26
23 Data 27
2.4 Relationships Between Agents, Events, and Data 29
2.5 Examples 29

2.5.1 A Simple Web Transaction 30
2.5.2 A Complex Web Transaction 31

7

3 Adversary Model

3.1 Intentions in our Event Traffic Model
3.2 The Active Adversary
3.2.1 Generation of “User” Events
3.2.2 Session Initiation
3.2.3 Packet Injection,
3.3 The Passive Adversary
3.3.1 Session Redirection
3.3.2 FileTainting,
3.3.3 Packet Alteration
3.4 Consequences for Traffic Marking
3.4.1 Dealing With The Active Adversary
3.4.2 Dealing With The Passive Adversary

Correlating User Events and Network Traffic

4.1 Bridging the Causal Gap Between User Events and Observed Traffic .
4.1.1 Generating Expectations for Events
4.1.2 Inferring Events from Network Traffic.
4.1.3 Matching Expected and Inferred Events

4.2 Correlation in the Presence of Adversaries

Design

5.1 Overview

5.2 The Simulation Approach

5.3 Data Structures and Algorithms
531 Modules

37
38
40
40
41
42
43
44
45
45
46
46
47

49
49
50
52
52
53

5.3.2 Events 59

533 Virtual Buffers o000 60
5.3.4 Generating Expectations 60
53.5 Acceptors 61
5.3.6 Acceptor Lists L 62

6 Implementation 63
6.1 Languageand Tools. 63
6.2 Architecture Lo 64
6.3 BasiclInterfaces oL o 64
6.4 Modules 65
6.5 Data Representation 66
6.5.1 Virtual Buffers: The Basic Building Block 66
6.5.2 Representing Higher Level Data 68

6.6 The Browser Module 69
6.6.1 A Two-Tiered Structure for Expected Traffic 69
6.6.2 Data Processing in the Browser Module 71
6.6.3 The Need fora Web Corpus 73

6.7 The DNSModule 73
6.7.1 Performing a Hostname Lookup Through DNS 73
6.7.2 Generating Expectations for DNS Messages 74
6.7.3 Data Processing and Expectation Matching 74

6.8 Matching Expected to Observed Traffic 74
6.9 Simulating Agents as Modules L. 75
6.9.1 Service and Network Modules 75
6.9.2 User Application Modules 76

9

6.9.3 Driving the Simulation

7 Evaluation

7.1 Metrics L
72 TheDataSets.
7.2.1 Sampled Site Characteristics
7.2.2 Data Collection

7.2.3 Traflic Capture Setup .

7.2.4 Event Generation and Logging
7.3 Buildinga Web Corpus,
7.4 General Test Procedures
7.5 Test 1: Detection Rate
7.5.1 Procedure
752 Results.
7.6 Test 2: False Positive Rate
7.6.1 Procedure
76.2 Results.

8 Conclusions and Future Work
8.1 Conclusions

82 Future Work.

A Sites in the Alexa “Clean 98”

10

79
79
81
81
85
87
87
88
88
89
89
90
95
95
96

97
97
99

101

List of Figures

A Very Simplified Model for Event-Driven Network Traffic
Example Relationships Between Model Components
Top Level Event Graph for A Simple Web Transaction
Client Side Step in a Simple Web Transaction
Top Level Event Graph for A Complex Web Transaction
Example Component Relationships when Fetching HTML Source

Relationships for Fetching HTML Sub-Entities

The Active and Passive Adversaries
Spawning a Malicious Agent
Generation of “User” Events by an Active Adversary
Session Initiation by an Active Adversary
Packet Injection by an Active Adversary
Session Redirection via a Compromised DNS Server

The Packet-Altering Passive Adversry

Given Events and Traffic, How do we bridge the gap?

A Structure for Correlation: Expectation and Inference

11

o0

52 A Module 59
53 AnEvent 60
54 A Virtual Buffer. oo o 60
5-5 Traffic is Tested Against Acceptors 62
6-1 Modules and Traffic Flow in YAMA 1.0. 64
6-2 The Browser Module L. 70
7-1 Composition of the Alexa “Clean 98" 83
7-2 Data Set Composition by Traffic and Site Type 84
7-3 Histograms Showing Number of Sites with Given Traffic Element Counts 86
7-4 Percent Coverage By Traffic Type and Data Set 90
7-5 Percent Coverage For HTTP Packets by Packet Source Type 92
7-6 Percent of HTTP Packets of Each Type Covered 93
7-7 Percent Coverage For HTTP Request by Packet Source Type 93
7-8 Percent of HTTP Requests of Each Type Covered 94
7-9 Percent Coverage For DNSQueries Broken by Packet Source Type . . 94
7-10 Percent of DNS Queries of Each Type Covered 95

12

List of Tables

7.1 Packet Classifications 80
7.2 TheDataSets 85
7.3 Web Corpora Used For Each Data Set 88
7.4 False Positives Per Traffic Type 96

13

14

Chapter 1

Introduction

1.1 The Problem

Computer network intrusion detection performance analysis requires precise labeling
of all traffic as a member of one of two and perhaps three categories, so that the
false alarm and detection rates can be correctly measured. In the first category
is background traffic and is related to the mission of those using the network. In
the second category is attack traffic. In the third category is traffic that cannot
be labeled, given available information. When an experiment is performed on-line
with an intrusion detection system, it may also be important to identify traffic that
originates from that system. Today doing this is tedious and difficult, requiring
analysis by personnel with a deep understanding of multiple protocols.

In a now-famous April Fools day RFC, The Security Flag in the IPv4 Header,
Bellovin jokingly proposed solving this by requiring attackers set an evil bit [7]. Even
if such a proposal were to be implemented in a testbed environment, however, con-

trolled evaluations cannot use such an in-packet flag, as it introduces an unwanted

15

artifact into the testing procedure. Much better is to use a tool that can mark
packets after the fact, but doing this is extremely difficult. As Bellovin noted: Fire-
walls, packet filters, intrusion detection systems, and the like often have difficulty
distinguishing between packets that have malicious intent and those that are merely
unusual.

All of those devices have the difficult problem of marking packets given only the
contents of the packet and perhaps the configuration of the network. Controlled
experiments have a significant advantage: the intent of each user action is known, so
a tool can be built to associate user actions and mark produced packets. Doing this
is difficult - a single user action produces multiple sessions using different protocols,

and the total number of packets produced can easily range into the thousands.

1.2 Related Work

This work pre-supposes the existence of moderate to large-scale security software
test infrastructures. There are several in widespread use today.

The Lincoln Adaptable Real Time Information Assurance Testbed (LARIAT) is a
network testbed which uses events at the application level (such as sending an email
or browsing to a website) to create realistic network traffic {29]. LARIAT is used
to run repeatable experiments on everything from network hardware components to
intrusion detection systems and other information assurance (IA) technologies. Be-
cause traffic is generated by user models interacting with applications, it is difficult to
know which network packets were directly or indirectly generated by LARIAT. Your
Able Marking Aide (YAMA) marks and differentiates traffic purposefully generated
by LARIAT user events from traffic which is generated by other sources.

In 1998 and 1999 DARPA sponsored evaluations of research intrusion detection

16

systems (IDSs) [20, 21]. Attack scenarios were run against a background of gen-
erated network traffic to create a corpus of material which was used to test the
effectiveness of the IDSs. Great effort was spent in order to separate attack traffic
from the background traffic, creating a ground truth against which the results pro-
duced by the IDSs could be compared. LARIAT was created as an extension of the
traffic generating testbed used in these evaluations. It can be used to perform real
time evaluations of IDSs and their responses, and can be integrated into existing net-
works or a few thousand hosts, eliminating the need for a separate group of testbed
computers.

LARIAT allows researchers to run many different experiments with great flexi-
bility. Though LARIAT greatly simplifies setup and operation of experiments [3],
analysis of data is left mostly up to the experimenters, and great effort must still be
exerted in order to separate traffic particular to the experiment from the background
traffic generated by LARIAT. Decreasing the traffic analysis time for experimenters

is the primary motivation for this project.

DETER The DETER testbed is a multi-site facility supporting information as-
surance experiments running “risky” code [5]. The testbed allows for remote and
scriptable administration of experiments, including loading of experimental nodes
with particular disk images, and connecting of the nodes into almost any network
configuration. Although there is no direct IP access to the testbed nodes, the user
has complete control of the experiment and the state of each node through a web
interface and SSH access to a “Users” machine connected to the actual testbed.
Background traffic is produced by replaying captured packets, so traffic can be easily
labeled but would not be particularly realistic when security technology alters or

limits communication.

17

Once realistic traffic is available, it needs to be marked. Detecting malicious
activity is central to the computer intrusion detection problem [13]. Even today

network intrusion detection remains an active research field.

1.3 Goals and Assumptions

1.3.1 Goals

Here we state the goals for YAMA. Though not all of these goals are meant to be

achieved in the first versions, they nevertheless play a huge role in shaping the design.

Identification of User-Generated Network Traffic

The primary goal of YAMA is the correct and complete identification and marking
of user-generated network traffic. After running YAMA it should be clear which

network packets are with which event.

Detection of Adversary Activity In Network Traffic

YAMA should support the detection of adversary traffic as discussed in Chapter 3.
Identifying the user-generated traffic gets us much of the way there. The active ad-
versary traffic is revealed by subtracting the traffic generated by users and automated
network processes from the total traffic. Passive adversary activity is a bit trickier,
as its effects can reside within the user network traffic. YAMA is to allow for the

detection of this activity.

18

1.3.2 Scalability and Real-time Execution

YAMA should be capable of handling large volumes of data. Its design should allow
for extension of the system to run in a distributed computing environment, and keep
memory use to a minimum.

In addition, its design should allow for event-by-event and packet-by-packet input;
it should not rely on complete packet or event lists. This requirement allows for
YAMA to potentially be run in real time as the relevant events and traffic are being

generated.

1.3.3 Assumptions

Here we present the assumptions upon which the design is based.

Available Inputs

Our requirements for the available inputs to YAMA stems from its eventual use in
user-event-driven network testbeds. The following items detail the information which

we assume could be collected in such a setting.

Events A time-stamped set of high-level events which affect our network. In the
case of events which carry data or context, the data or context should also be
available. For example, the event of a user visiting a website would carry with
it the host and browser that the event occurred on, and the URL of the site

visited.

Traffic A single traffic capture spanning the time frame of all events of interest.

This is a timestamped set of traffic data.

19

Network Topology A description of the interconnections between all devices on

the network at all points in the time spanning the events of interest.

Host and Network Component Configuration The initial state and settings

for devices in the network.

Server Data The data, or a representation for the data, stored by network servers.
This includes information in DNS or web servers. Depending on the type of
service, the system might require only the data initially stored in the server,
or the data at every point in time within the relevant time period. This data
might be provided by simply giving YAMA access to the relevant servers at

run time.

Quality of Input

We assume that the input data will be accurate and complete. The event list should
contain every event of interest and any related events. Traffic captures be as complete
as possible. Other data should reflect the state of the network at the time the relevant
events and traffic occurred.

Each form of input should not only be accurate as a unit, but also when cross-
referenced with the other forms of input. For example, time stamps for both user
events and network traffic should use the same reference clock. Inaccuracies or

missing data in the input will results in reduced performance.

Testbed System Characteristics

The testbed system characteristics refer to the properties of the components, both
hardware and software, that form and interact with the test network. We assume

that these components are predictable. That is, we assume that the components are

20

either deterministic or pseudorandom. If a component behaves in a pseudorandom
way, we assume that we have the necessary information to predict future actions,

and that such prediction is computationally feasible.

1.4 Thesis Outline

This thesis describes YAMA, a system for marking network traffic with the associ-
ated high-level events. Chapter 2 gives an overview of the event-traffic model that
serves as a basis for YAMA'’s design. Chapter 3 discusses the types and abilities
of the adversaries who disrupt the observed network traffic, and by whom YAMA
should not be confused. Chapter 4 develops our strategy for correlating events with
network traffic. Chapter 5 outlines our design for YAMA, and Chapter 6 describes
the implementation for YAMA 1.0, a version of YAMA that marks web traffic and
the associated DNS traffic. Chapter 7 shows the YAMA 1.0 evaluation procedures

and results. Chapter 8 includes some closing thoughts and ideas for future work.

21

22

Chapter 2

A Model For Event-Driven
Network Traffic

In this section we develop a model for traffic on a packet-switched network as a causal
system driven by events. This model explains network traffic as a consequence of
high-level events, and provides a means by which network traffic data can be linked
to those high-level events through a series of intermediate events. The model consists
of three types of components: agents, events, and data. Throughout this chapter,

we will illustrate the interactions between these components as “event graphs.”

Agents Agents are the processing components of our model. Agents generate events
and data in response to received events. In the process of generating new events,
agents may also reference stored data. Agents are represented by boxes in our

event graphs.

Events Events describe actions undertaken by agents. Events occur at a specific
time, and carry with them all data necessary to describe the undertaken action.

Events are represented by rectangles with rounded sides in our event graphs.

23

Data Data refers to static information generated by an agent in response to some
event. It can be stored, referenced, and transmitted, but in itself denotes no
action until processed by an agent. Data does not change once generated.
When stored data is altered, we say that it is replaced by new data. Network
traffic is simply data transmitted over the network. Data is represented by

parallelograms in our event graphs.

Figure 2-1 presents a simplified version of our event-driven traffic model. This
simplified model shows a user event driving an application, which then generates a
series of API call events to host-provided network services. The network services

respond by transmitting packets over the network.

Host

=| Application

APl calls)

Network

Figure 2-1: A Very Simplified Model for Event-Driven Network Traffic

In the following sections we further develop our model. We begin by describing
the main components in detail. Then we describe how the components are causally
interconnected, introducing a graph representation that links agents, events, and
data. Finally, we show some examples of how our model can be used to describe a

few simple web-based transactions.

24

2.1 Agents

Agents are responsible for generating events and data in response to received events.
The nature of the response is described as an agent’s behavior. Agent behavior varies

with the received event and the state of the agent at the time the event is processed.

Agents are abstractions for a set of behaviors and states held within a system.
Because they are abstractions, our agents may change with the depth of the model.
For example, a high-level model might include users (people) and hosts (machines) as
its agents. A very low-level model might include neurons and transistors. High-level
agents can often be described using collections of lower-level agents, and vice versa.

Figure 2-1 shows the level of abstraction that we have chosen for the purposes of
this thesis. In general, our agents can be described as users, applications, or network

services.

Users Users interact with the network to accomplish goals via a variety of infor-
mation transactions, each of which is initiated by an event. Groups of users work to

accomplish related missions by producing and reacting to data and events.

Applications Applications are running programs which users interact with in or-
der to complete certain tasks. Applications include email clients, web browsers, and

word processors. Applications must be running to serve as an agent.

Network Services Network services refer to active operating system (OS) imple-
mentations of the various network protocols. These services include OS implemen-

tations for the Ethernet, IP, TCP, and DNS protocols, among many others.

25

2.2 Events

In general, events can describe any actions performed by agents in our system. For
the purpose of this thesis, we are only concerned with the events which affect network
traffic, either by directly or indirectly producing the traffic, or by changing the state
of the system and thus affecting the form of future traffic Any event belonging to an
event chain that leads to observable bits on the network is said to generate traffic on
the network (more on chains later).

Events are generated through agent behaviors, and encapsulate all the data in-
herent in the agent’s action. For example, if the action is a function call, the event
includes the parameter data. Because events are so closely tied to agents, the types
of events in our model will be determined by our level of abstraction for agents. With
this in mind, we describe some general classes of events in our model, and provide

examples of the agent behaviors that might lead to such events.

User Events A user event is a command or action which drives a standard user-
level application. Since user-level applications include web browsers, mail clients,
word processors, messaging clients, and music players, user events include requesting
a web site, sending an email, saving a written document, blocking a buddy, and
playing a song. Some of these events may not always result in network traffic. For
example, saving a document to a local drive might not generate any network traffic,

but saving to a document to a network share would.

Application Level Events Application level events include actions initiated by
user-facing applications. These usually involve calling functions on an application
programming interface (API) provided by a separate application or service. Exam-

ples of application-level events include requesting the IP address of a given host name

26

from the DNS service in response to user web-page request, initialing a connection
to a new server in response to images referenced in received HTML, or updating the

system time through an NTP server in response to a timer.

Network Service Events Lower level events occur between the user-facing ap-
plication and the network card, and are usually performed by the operating system
on behalf of the application. Network service events include function calls between
network services within a host, and the events in the hardware which directly result
in network traffic. For example, an operating system’s TCP implementation might
decide that it should increase the window size for a certain connection. As with
application level events, events at this level can occur as responses to other events,

incoming data, or internal timers.

Physical Layer Events So far we have focused on events affecting software, how-
ever, we can easily extend our event model beyond specific hosts into the physical
domain. Physical layer events include unplugging an Ethernet connection, plugging
in a connection, or moving a wireless device between access points. These events pro-
duce setup or error traffic in most networks, and would affect future traffic. Physical
layer events might be generated by users, or represent other happenings generally

outside the scope of this model, such as natural disasters.

2.3 Data

Data forms an important component of our causal model. Referenced data can very
directly affect events and network traffic. Data also provides a pathway for events

to affect agents they do not interact with directly. Data is immutable and separate

27

from its interpretation. For example, an incremented integer is simply a new integer
that was created by referencing the old integer and adding one. An image file may
be a simple picture, but when processed by the wrong image library, may end up
containing executable code. Data can also contain attached metadata, which is
passed on as that data is referenced. We now describe some forms of data in our

model.

Application and Network Settings Application and network settings affect the
behavior of the agents to which they belong. For example, a browser might be
configured to use a proxy server or to never send cookies. Other settings include
IP addresses, default DNS servers, and operating system settings that launch select

applications at startup.

Files The content of files can greatly affect future events. For example. changes in
a source file can change the way it is compiled and eventually run. Even changes in
simple HTML can have consequences when that HT'ML is interpreted by a browser.
The HTML specifies among other things, which image files a browser should re-
quest from their respective servers. Executable programs are special files which can

generate myriad events when processed by the operating system.

Network Traffic Network traffic is any data transmitted over the network. There
are many ways to describe the series of bits that make up network traffic. In packet-
switched networks such as those using the Internet Protocol [27], these bits can be
aggregated into packets with sources and destinations. Those packets can then be
organized into flows, each forming a single channel of communication between two

hosts. With further analysis these flows can be joined into sessions, or split into the

28

application-specific data elements with which applications communicate.

2.4 Relationships Between Agents, Events, and
Data

In this section we describe the relationships between agents, events and data. These
relationships can be expressed as directed edges between agent, event and data nodes
in a graph. We will call such graphs “event graphs.”

Figure 2-2 shows some of the primary relationships between components of our
model. In general, an agent responds to an event by referencing previous data and
taking some action. This action can involve generating data or further events, and

even creating new agents.

Agent

(a) Data Generation (b) Event Generation (c) Agent Spawning

Figure 2-2: Example Relationships Between Model Components

2.5 Examples

In this section we provide some example applications of our event-traffic model. We

begin with a simple web transaction in detail, then look at a more complex web

29

transaction. In each example we assume an Ethernet network [16].

2.5.1 A Simple Web Transaction

Here we explore in detail the agents, events, and data involved in completing a simple
web transaction. The transaction can be broken up into two high-level steps: the
client request and the server response. Figure 2-3 illustrates the overall steps involved
in the transaction. 1) The user requests a page load from the host’s browser; 2) The
host sends a request to the server serving the content; 3) the server receives the
request and generates a 4) response; 5) the host receives the response and loads the

page, which the user then views.

User

" Request _&—T
/ Res nonse | Z

Figure 2-3: Top Level Event Graph for A Simple Web Transaction

The Client Request Figure 2-4 shows a more detailed view of the client request
generation. TCP, IP, and Ethernet refer the the protocol implementations provided

by the host operating system. 1) The user generates a goto event for a given IP

30

address-based URL. 2) The web browser connects to the server and sends an HTTP
GET request for the /’ resource. 3) TCP initiates and manages the connection, and
sends the request. This involves many lower level events in accordance with TCP’s
defined behavior. 4) IP generates and receives IP packets. 5) Ethernet determines
the next hop Ethernet address, and generates the 6) packets transmitted over the
network. 7) does not show a single step in the request, but highlights how the original
[P address data generated by the user is inherited by the various events and data,

including the packets transmitted on the network.

2.5.2 A Complex Web Transaction

Here we expand upon the simple web transaction of the previous page to illustrate
the events, agents, and data involved in a web transaction in which the user provides
a DNS host name for the server, and the requested html data includes a series of
sub-entities which must be fetched as part of the page (on the web these are usually
image, CSS, flash, or javascript files).

The basic flow of events and data is shown in Figure 2-5. The transactions for
the page source and each subsequent sub-entity follows the basic steps: 1) get the IP
address of the server hosting the entity (html, image, etc.) and 2) GET the entity

from the specified server.

Event, Agent and Data Relationships We can unroll the high-level event graph
in Figure 2-5 to create an event graph which more clearly shows the relationships
between the events, agents, and data involved. We continue to use a high-level
abstraction for the agents involved, and deal with application-level data rather than

the individual packets.

31

User Level

Application Level

TCP Behavior

Network Services

Y
Packet

Figure 2-4: Client Side Step in a Simple Web Transaction

32

User

s . Request /"

Network

Server

Figure 2-5: Top Level Event Graph for A Complex Web Transaction

Figure 2-6 shows the relationships between model components during the initial
HTML source fetch in a complex web transaction. We begin with 1) the user’s
generation of a goto event for the site http://web.mit.edu. 2) the host resolves
web.mit.edu by issuing a DNS query to a default DNS server, and 3) the returned
address determines the web server from which 4) the host requests the html source.
5) The web server responds by generating the HTML source and transmitting it to
the host.

Figure 2-7 shows relationships after the HTML source is received by the user
host. 1) The host processes the received HTML and determines the need to fetch
http://images.mit.edu/img.png. This prompts 2) a DNS Query for the host name
images.mit.edu. 3) The default DNS server responds with a Name Server (NS)
record [24]. This record contains the address of a new server which should be queried

for the host name. 4) The host queries this new DNS server and 5) gets an address,

33

Host Settings

Default DNS Serve|

Figure 2-6: Example Component Relationships when Fetching HTML Source

34

which is used to connect to the HTTP server containing img.png. 6) The host
requests the image from the images.mit.edu server, which responds with the image

file data.

http://images.mit.edu/img.png

; Defauit DNS Serve:ﬁ " A
' : Resolve
A, images.mit.edu

e - = -

Figure 2-7: Relationships for Fetching HTML Sub-Entities

35

36

Chapter 3

Adversary Model

In this section we develop a model for adversaries within the context of our event-
traffic model. Adversaries take the form of agents who carry malicious (or non-
mission) intentions. Adversaries propagate these intentions by generating events and
data. In the course of propagating their intentions across the network, adversaries
will cause changes in the observable network trafficc. We can describe adversaries
as either active or passive based on their action’s effects on the observable network

traffic.

Active Adversaries Active Adversaries will insert additional traffic in to the net-
work. In terms of our event traffic model, an active adversary will generate
events on a host that directly lead to the generation of network traffic, as shown

in Figure 3-1(a).

Passive Adversaries Passive Adversaries will change the form of normally occur-
ring traffic. In terms of our event traffic model, a passive adversary will alter
the data referenced by other events or agents. The referenced data leads to

changes in the observed network traffic as in Figure 3-1(b).

37

(a) The active adversary generates (b) The passive adversary alters referenced data,
events, leading to new traffic on the effectively altering otherwise normal network traf-
network. fic.

Figure 3-1: The Active and Passive Adversaries

The presence of either active or passive adversary activity has direct implications
for the appropriate marking of user-event traffic. An active adversary will generate
traffic which should not be confused with the standard user traffic. The passive
adversary will lead to traffic, which, while tainted by the adversary, should still
be considered the result of some user event. Detection of a passive adversary thus
requires a deeper validation of the observed network traffic data.

In the next sections we establish the mechanisms for intent propagation in our
event traffic model, then explore the active and passive adversaries in more detail
providing real-world examples of the powers of each. Finally, we discuss some of the

consequences of this model in relation to the marking of user-event traffic.

3.1 Intentions in our Event Traffic Model

In this section, we develop a method for determining the intentions of agents, events,
or data on the network. Adversaries, much like regular users, have missions that mo-

tivate their generation of events and data. With adversaries, these missions are based

38

on some malicious intent, whether it be to gain unauthorized control of a resource,
steal something, or disrupt the legitimate missions of benign users. Intentions are

carried and propagated by agents, events, and data alike.

Intentions and Agents Malicious intentions begin with some malicious agent.
This malicious agent produces events and data to accomplish his mission. He may
take an active or passive approach (or both) to achieve his goals directly, however, it
is often the case that an adversary will spawn other agents that further his intentions.
Figure 3-2 shows how this happens, either directly such as by the mis-compilation
of a benign piece of code [34] (Figure 3-2(a)), through a malicious event such as
the misuse of an otherwise benign application (Figure 3-2(b), or through referenced
malicious data such as a replaced executable file (Figure 3-2(c)). Agents have the
property that even if they process malicious events and data, it is not the case that
they become malicious. Thus an agent could process a malicious event and generate

malicious data, then follow by processing a benign event and generating good data.

(a) From A Malicious (b) Through a Malicious (c) By Processing Malicious
Agent Event Data

Figure 3-2: Spawning a Malicious Agent

39

Intentions and Events and Data Events and data are the vehicle by which
intentions propagate. Each carries the intentions of its source agent, parent events,
and referenced data. The main distinction is that while events will propagate their
intentions and disappear as soon as they are processed, data can be saved and refer-
enced, propagating its intentions each time. When data is overwritten, it is replaced
by new data carrying new intentions. The new data will only derive intentions from

the old data if it was produced using some information-preserving process.

3.2 The Active Adversary

The active adversary is an agent who generates his own events, resulting in additional
traffic on the network. The nature of this additional traffic can vary depending on

the level at which the adversary operates.

3.2.1 Generation of “User” Events

The generation of user events by an adversary is characterized by the adversary’s
driving of a common user application. The effect is a pattern of traffic indistinguish-
able from that of a regular user action. However, this is an event that no authorized
user intends, and possibly one that would never be performed under normal circum-
stances. Figure 3-3 illustrates how an adversary generates user events.

Adversaries which introduce user events include adware programs and some ma-
jor internet worms. For example, adware commonly drives web browsers to produce
popup windows showing advertisements. On the network, the activity is indistin-
guishable from that of a user browsing to the same advertisement site. The infamous

Melissa [10] and and LoveLetter [11] Worms also introduce user events, driving the

40

Outlook application to send email containing themselves to recipients in a user’s
address book.

User applications can be configured and run through scripting capabilities of the
application, or by altering the application itself through plugins or the replacement
of modules. In a testbed environment like LARIAT [29], the only difference between

user and adversary events may be the record of the user event.

Network
Services

Network

1 acive [
Adversary

Figure 3-3: Generation of “User” Events by an Active Adversary

3.2.2 Session Initiation

Session initiation is the direct introduction of session traffic into a network without
employing a user application. The session is initiated directly by the adversary using
network services provided by the host operating system. It may use a standard,
esoteric, or custom protocol.

Many worms initiate their own sessions for purposes ranging from downloading
of malicious code to run, to checking the time, to infecting other systems. Several

variants of the Sobig worm actively check for malicious code to run by initiating

41

connections to author-provided web sites [19]. Sobig also initiates NTP sessions with
network time servers in order to throttle its own spread. CodeRed I initiates TCP
connections to the HTTP port of pseudorandom addresses in order to propagate [33].

Initiation of sessions is achieved mainly by custom software utilizing the network-

ing functionality provided by the operating system.

Sessm Network

Figure 3-4: Session Initiation by an Active Adversary

3.2.3 Packet Injection

Packet injection is the introduction of “hand-crafted” packets into a network. The
packets might be consistent with the host operating system’s networking protocol
implementations. Injected packets may induce a response from a recipient, but
otherwise may be followed by no other related traffic. Injected packets can have
spoofed source addresses, and may interfere with existing sessions in the network.
Injected packets can be used to exploit vulnerabilities in remote hosts, hijack or
disrupt other sessions, or carry out Denial of Service (DoS) attacks. The Slammer

worm used a specially-crafted UDP packet to exploit a vulnerability in Microsoft’s

42

SQL Server [12]. TCP session hijacking is a well-documented practice which can lead
to compromise of target systems [14]. The SYN flood DoS attack often uses injection
of packets with spoofed source addresses to help hide the source (or sources) of the
attack [9)].

Packet injection can commonly be achieved using low-level networking APIs pro-

vided by a host operating system, or through specialized applications like netcat.

User

Network
1 Services

Network

Adversary

Figure 3-5: Packet Injection by an Active Adversary

3.3 The Passive Adversary

The passive adversary does not directly introduce any traffic into the network. Any
changes in the natural flow of traffic are achieved by alteration of referenced data [35].
The passive adversary can change the form of network traffic in ways not easily
detected, even by changing specific bits in user-generated outgoing packets. Passive
adversary data might stay unreferenced and dormant for long periods of time, only

to rise when activated by other activity. The next sections provide highlight some of

43

the powers that might be exercised by passive adversaries.

3.3.1 Session Redirection

Session redirection involves the alteration of data referenced by a hosts network
services so that sessions from a host are aimed at the wrong destination. One way to
do this is by confusing a host’s DNS implementation. This can be done by editing a
user’s “hosts” file, manipulating a local DNS cache, or compromising a DNS server.
Figure 3-6 shows an event graph for this last example (compare with Figure 2-6).

The overall effect is that an intended exchange is had with an unintended party.

J User

Host Settings

Default DNS Server .«

htip //iweb.mit.edu/

Figure 3-6: Session Redirection via a Compromised DNS Server

44

3.3.2 File Tainting

File tainting refers to the replacement of all or part of a file by a passive adversary.
If the file is on a server, clients accessing the file will be affected when they make use
of the file. Tainted files can be activated by execution (where an executable file is
processed by the operating system and loaded as a process), or through processing
by some other software. Tainted files are at the heart of “contagion” worms, which

spread surreptitiously through a user’s regular actions [33].

3.3.3 Packet Alteration

While session modification deals with the data at the application level, packet alter-
ation deals with everything else. Packet alteration is the modification of individual
bits of a packet. Packet alteration can also be used to perform session alteration by
directly changing the destination address of individual packets. In effect, a passive
adversary who can alter individual packets owns all the traffic that comes from the
controlled host. Figure 3-7 shows the basic operation of the packet-altering passive
adversary. The intentions of the adversary are only propagated by the bits actually

altered by the adversary, and not necessarily by the entire packet,

Packet alteration can be used for many reasons, but one of the main applications is
the hiding of data in standard user channels. There are many documented strategies
for doing this [6] [22]. Some uses of packet alteration may be legitimate and useful,

however, such as the user event information appended in [28].

45

Network
Services

User

»(Eveni)

1 Application

(_API calls

Passive Network

Adversary

Figure 3-7: The Packet-Altering Passive Adversry

3.4 Consequences for Traffic Marking

3.4.1 Dealing With The Active Adversary

Consequences of an active adversary vary somewhat with his intentions. If the ad-
versary is behaving like a single user, then this means our model for traffic generation
must be correct for the standard operating modes. We must be able to distinguish
between similar traffic patterns caused by separate events. This allows us to distin-

guish the adversary traffic from the benign user traffic.

If the adversary is attempting to disturb user activity, either by interfering with
user sessions or by rendering important services inactive through an active denial
of service attack, we must provide a model for how benign agents react to error, as
these error responses are caused both by the original event, and indirectly by the

interference from the adversary.

46

3.4.2 Dealing With The Passive Adversary

Since the passive adversary deals with data, we must be able to deal with possibly
unusual data. Any parsing or processing of the observed traffic data must be robust
enough to deal with data that might, for example, exploit a buffer overflow in another
application. Such data, crafted to confuse an application, must not confuse our traffic
marking system. Detection of the passive adversary requires the ability to validate
data. Tracking passive adversary activity requires a bit-level resolution for marking
so that the passive adversary intent is not incorrectly propagated.

The use of packet alteration for the purpose of covert communication have been
studied extensively. A framework for analysis of covert communications in TCP/IP

is presented in [22]. Others have addressed the problem in [18] and [30].

47

48

Chapter 4

Correlating User Events and

Network Traffic

As described in Chapter 2, high-level events are connected to network traffic through
a causal chain of events (Figure 2-1). For a given event/packet pair we must re-create
an event chain linking the two (Figure 4-1). In this section we describe a process
for linking high-level events and observed traffic by matching a set of expectations
derived from the high-level events with a set of inferences about possible source

events derived from the observed traffic.

4.1 Bridging the Causal Gap Between User Events
and Observed Traffic

The procedure for establishing correlations between user events and network traf-
fic relies on YAMA’s ability to generate expectations for events generated by the

user event, and inferring high-level events and their associated data from the ob-

49

Application |

The missing links in the chain!

Network

Figure 4-1: Given Events and Traffic, How do we bridge the gap?

served network traffic. We then require a method for matching our expectations and

inferences. Figure 4-2 illustrates the three steps in this process.

4.1.1 Generating Expectations for Events

Generating expectations from high-level events requires behavior models for the
agents involved. Once these models are in place, we can use them to propagate
user level events into a series of application and then network service events. The
deterministic nature of most application software makes the modeling of applica-
tion agents feasible. The behavior of lower level network service agents is largely
dictated by specified protocols, and this makes modeling possible. A few testbeds
implement network service agent models in order to generate pseudo-realistic net-
work traffic [8] [15]. However, quirks in implementations for each operating system,
as well as the many different protocol optimizations employed by each makes com-

pletely accurate behavior modeling at this stage extremely difficult [25].

50

..

Application
| Behavior Model |

Network
Services
Behavior
Model

Expected 1
/ Packets £

Generating Expectations
for Lower Levels

Interring Activity
at Higher Levels

~(__Inferred Event

Application
Inference Model |

»C_Inferred APl calls __

Network
Services
Inference
Model

Observed
/" Packets

Packet
Capture

Figure 4-2: Bridging the gap by matching expectations and inferences?

51

4.1.2 Inferring Events from Network Traffic

The inference of events from their effects is accomplished by the user of agent in-
ference models. Accurate inference models exist for many agents in our system.
The deterministic nature of applications again makes modeling plausible. Inference
models for network servicesare straightforward. As communication tools, the very
purpose of the sub-application network service protocol implementations is to allow
a recipient to reconstruct data transmitted by a sender. The encapsulation of high-
level protocols within lower level protocols also leaves a clear receipt of the agents
involved in generating the packet. We can use the protocols themselves to recon-
struct the series of events in the network services leading to each observed packet.
This is the domain of network intrusion detection systems (NIDS) such as Bro [26].
The goal of NIDS can be described as the inference, from observed network traffic,

of events that can be described as malicious.

4.1.3 Matching Expected and Inferred Events

Matching between expected and inferred events involves their comparison through
a set of common features present in the data carried by each. For a function call
event, these features include the function name, parameter values, and time of call.

Other events will have their own set of matching features.

We could choose to match the corresponding event expectations and inferences
at any level. Ease of modeling suggests matching the network API call expectations
produced by the application behavior models with the API call inferences made by

the network services.

52

4.2 Correlation in the Presence of Adversaries

Active Adversary Activity The active adversary generates activity which must
not be confused with regular user activity. Thus, events inferred from adversary
traffic should not be matched with user events. In most cases this will not be a
problem because the adversary’s malicious intent will differentiate his activity from
that of the user. In general however, identical events generated at the same time
by users and adversaries are indistinguishable at the packet level. The best we can
do is match one and not the other. Then again, in such cases it is not clear that it

matters which one we match, as their effects would be the same.

Passive Adversary Activity The passive adversary can be detected by compari-
son of expected data with inferred data. The inferred data will carry the adversary’s

intentions, distinguishing it from the data generated from the benign user event.

53

54

Chapter 5

Design

5.1 Overview

This section describes the design of Your Able Marking Aide (YAMA), a tool for
marking correlations between high-level events and network traffic. YAMA uses the
approach discussed in the previous chapter to establish links between large sets of
events and observed packets. The system is organized as objects encapsulating the
components of our event traffic model. The three types of objects are modules,

events, and virtual buffers (vbuffs).

Modules Modules encapsulate our behavior and inference models for specific agents.

Modules may reference corpora containing testbed server data.

Events Events are a direct representation of data in our event logs. Events include

a time stamp, event type, and associated event parameter data.

VBuffs Virtual buffers (vbuffs) provide a representation for data in our system.

They allow us to mark individual bits of data.

%)

These objects are used to create a structure for expectations and inferences which
mirrors the structure of agents in our event model. Figure 5-1 shows an example of
such a structure for web traffic. We will step through the expectations and inferences

generated in this structure as a single web event occurs.

Expectations 1) A user-level event to visit a web page is received by the browser
module. The browser module then 2) expects to query DNS to map the site host
name to an [P address. 3) DNS consults the DNS corpus to determine the result of
such a query, which it 4) provides for the browser immediately. The browser then 5)
expects a call to open a TCP connection to the appropriate IP address, and to send

an HTTP request for the page URL.

Inferences 6) The Ethernet module receives traffic fed from a traffic capture file,
it analyzes the Ethernet header to establish that the 7) packet was requested by
IP. The IP module then looks at the packet to determine its type. If 8) the packet
came through UDP, the UDP module processes the packet to determine that it
contains a 9) DNS message. DNS matches the query expectation it received from
the browser with this inferred DNS message to establish a correlation between the
packet and event. If the IP module 10) determines that the packet is from TCP,
the TCP module will process the packet and others like it to 11) infer incoming and
outgoing new connections and transmitted data. The browser module 12) matches
its expectations with these inferences. Once the expected request has been made, the
browser module 13) queries a web corpus to determine what future requests might
be expected.

In the following sections we first show how we perform event-traffic linking by

use of a simulation approach. We then describe the design of each object type and

56

Q

Browser |

Known

Inference »
TR

|

Expecation
P —>

Figure 5-1: A Structure for Correlation: Expectation and Inference

57

illustrate the basic inner workings of YAMA.

5.2 The Simulation Approach

The temporal nature of events and data can be exploited to ease the task of traffic
marking. Instead of attempting to match between the two complete sets of events
and observed packets, we can step through the events and packets in time order,
generating expectations and matching inferences to those expectations as each is
generated. This process can be described as an event-driven simulation [23].

The simulation approach allows us to greatly reduce the computation required,
and to automatically enforce temporal constraints in matching. For example, by
having event expectations expire after a certain amount of time, we can keep the
number of possible matches for traffic inferences to a manageable amount, and mit-
igate the effects of missing observation data. Because the order of expectation and
inference generation is based on time, we also enforce the causality between events

and their effects. We cannot match observed traffic to an event that has yet to occur.

5.3 Data Structures and Algorithms

5.3.1 Modules

Modules are the primary object for agent simulation in YAMA. They implement both
a behavior and inference model for a given agent. The behavior model is represented
in two parts. The first is an event processing interface, through which a module
accepts relevant events and sets up expectations for further events and outgoing

traffic based on them. The second is through an interface for processing incoming

o8

traffic, which can lead to both expectations and inferences. The inference model is
implemented though a traffic-processing interface for outgoing traffic.

If appropriate, outgoing traffic that matches expectations is marked. Generated
inferences about higher level activity is propagated in the form of aggregated traffic
data. For example, an Ethernet module creates an inference for the IP data sent by
the IP module. A TCP module propagates data about entire connections and stream
data sent through application modules. The expectations and inferences propagated

to and modules are shown in Figure 5-2.

/ Outgoing
Traffic

incoming
Traffic

C e —

Marks for
Outgoing
Traffic

Events 5

Outgoing
Traffic

incoming
Traffic

Figure 5-2: A Module

5.3.2 Events

The events objects in YAMA provide a package for event descriptions, be they actual
events or expected events. Events can be generated from event log files or by modules,
and delivered to destination events for processing. Figure 5-3 illustrates the data held

by events.

59

Event

/ Source / Destination /

Event Type |
Event 4
Parameters

Figure 5-3: An Event

5.3.3 Virtual Buffers

Virtual buffers represent all forms of data in our system. Virtual buffers contain
marks which can be propagated to other virtual buffers. The inclusion of markings
alongside the data allows for the propagation of event connections and intentions as
data moves around the system, even when it is referenced within events and stored

as state in modules.

Virtual Buffer

Figure 5-4: A Virtual Buffer

5.3.4 Generating Expectations

As modules are meant to mirror agents in our network model, modules should only
process data that is observed by those agents. Likewise data should only be marked

by the modules closest to the events that generated it. It is these modules which

60

hold the state necessary for validating the data. Depending on the depth of our
simulation, different modules might hold the responsibility (or rather the privilege)
of marking the specific data.

Let us consider the case of a simple client-server protocol, where a client generates
requests and a server responds. In a complete simulation, there would be separate
modules for the client and server. Each module would be responsible for generating
expectations for its output based on its input events and traffic. The client would
process an event and generate an expectation for the connected request. The server
would receive a request and generate an expectation for the response. In this way,
each module only needs access to the state of the agent it represents. Only the client
needs to process requests, and only the server needs knowledge of the server contents.

In a more shallow simulation, there might only be a client module. It is then the
responsibility of this client to mark the response which it, through its request, is in a
sense responsible for generating. The key is that within this simulation, that client
module is the one whose events are most directly connected to the server response.
In a case such as this, the “client” module requires some knowledge of the server

with which it is communicating.

5.3.5 Acceptors

Acceptors provide a mechanism for representing the expectations for specific units of
traffic. Acceptors are parametrized to accept and process one specific unit of traffic.
Modules can generate acceptors containing the information necessary to accurately
describe the expected traffic, and process it further. Often, this processing will
involve marking the unit of traffic with the event which generated the expectation.

Once an acceptor has met all its expectations, it should cease to accept traffic.

61

5.3.6 Acceptor Lists

Modules will often generate large numbers of Acceptors at a time. AcceptorLists
provide a structure for storing these Acceptors and for supplying them with traffic
to potentially accept. AcceptorLists could provide many strategies for presenting
traffic to the contained acceptors. One such strategy is to present the traffic to
each acceptor in order of creation, and allow only the first one accepting the traffic
to process it. Acceptors expire when too much tie has passed for the traffic to be

observed.

r.¢!\I:<:e;;)t0r List

Figure 5-5: Traffic is Tested Against Acceptors

62

Chapter 6

Implementation

This section describes the implementation of YAMA 1.0 (Your Able Marking Aide,
version one). YAMA 1.0 is a proof of concept for our traffic marking system con-
centrating on web traffic and the associated DNS traffic for a single host connected
to the internet. Web traffic was chosen for its ubiquity on corporate networks, and
its use as a transport for malware. Web traffic accounts for a large majority of net-

work packets observed (72% of packets on a large enterprise network as measured in

December of 2005 [32]).

6.1 Language and Tools

YAMA 1.0 is implemented in C++, and compiled using GCC 4.0.1 [3]. The pcap
library provides the tools necessary for reading and writing packet capture files. The
open source Boost C++ Libraries [4] are used heavily, especially the smart pointer

and regular expression libraries.

63

6.2 Architecture

YAMA 1.0 includes network processing modules and a browser module. User events
(YAMA 1.0 only accepts the browser ‘goto’ event) are fed directly to the browser
module. Traffic data is fed to the Ethernet module. Figure 6-1 shows the imple-
mented modules and their interconnections.

| Web
Corpus

Known

Iniererl_c_gm*

e

Expecation

Ethernet

- —— —— o — e o .~ —— = o | o ——— o]

Figure 6-1: Modules and Traffic Flow in YAMA 1.0

6.3 Basic Interfaces

Here we define the basic interfaces for event and data processing in YAMA.

64

The TrafficProcessor Interface The TrafficProcesor interface is implemented by
components which generate and receive inferences from network traffic. It provides
functions for accepting and processing both incoming and outgoing traffic. The type
of traffic dealt with is variable, allowing TrafficProcessors to deal with their traffic

data abstraction of choice.

The EventProcessor Interface The EventProcessor interface is implemented by
components which model agent behavior. EventProcessors must provide both a type
which determines the types of events that can be handled, and a name to distin-
guish the EventProcessor from others of the same type. This type/name pair forms
the basis for a hierarchical event-addressing scheme. To support event addressing,
EventProcessors keep links to both parent and child event processors. Components
implementing the EventProcessor interface can register event-processing and remote-

procedure functions to be executed when specific events or calls are received.

The Simulatable Interface The Simulatable interface provides functionality for
components that change state with the passage of time. It includes functions for
updating the simulation time of a given component, and provides implementors with
a mechanism for registering closures to be run when the the simulation reaches
a certain time. This can be used to implement timeouts and simulate periodic

automated actions within components.

6.4 Modules

Modules are the primary object for simulation in YAMA. They implement all three

of the above interfaces, allowing them to process both traffic and event data, and

65

keep track of simulation time. In addition to the functionality provided with each
of these interfaces, modules also define a TrafficProcessor target. This target is to
be invoked for further processing of traffic data. A traffic target need not deal with
the same traffic type as a module. This allows low-level traffic modules to create

abstractions of the traffic data for presentation to higher level targets.

Transports Not all components in a system will interact with both events and
traffic. Some components might simply forward relevant events and traffic to the
appropriate modules. We call these components Transports. Transports can simulate
the physical interconnections between components (for example an Ethernet network

hub or host data bus), or other high-level event and data propagation mechanisms.

6.5 Data Representation

Here we provide a framework for data representation which allows us to keep track
of interesting event connections, and to mark possible areas of passive adversary

activity.

6.5.1 Virtual Buffers: The Basic Building Block

Virtual Buffers are the basic data element in our system. They are inspired by
Ethereal’s Testy Virtual Buffers [2]. We begin by describing the common interface,
and then describe the specific virtual buffer types that provide the building blocks
for the data in YAMA.

The VBuff Interface Virtual Buffers provide functionality as described by the

VBuff interface. This interface is implemented by all virtual buffers and defines the

66

methods for both data access and marking in YAMA.

Data Access The mechanisms for data access are meant to bridge the gap
between the VBulff internal data representation and usable data types. Access to the
internal data is provided with bit-level resolution. For example, it is possible to get
the boolean bit values from the first and second bits in the VBuff. It is also possible
to get the 32-bit integer starting at the 65th bit in the VBuff. Providing such access
ensures that our data representation places no limits on the data structures which
can be processed. In general, data access is allowed only within the bounds of the
VBuff, and errors are generated when there are attempts to access data not contained

in the VBuff.

Data Marking The marking interface for VBuffs allows for the marking of
individual bit-ranges in a VBuff. Markings are a generalized form of context which
can be applied to chunks of data. In YAMA | these markings will generally be used to
denote connections from data to the affecting events. Other markings might identify
possible passive adversary activity, redundant data (for example retransmitted TCP
segment data that was received both times), or other information that might be
considered interesting.

VBuffs provide functionality for accessing marks as well, with methods for ex-
tracting the mark data for a range of bits in a VBuff. This functionality can be used

for propagation of markings between different VBuffs.

RealVBuff RealVBuffs provide the actual data and mark storage in YAMA. They
are initialized with real input data and directly store markings applied to them.

RealVBuffs in the system would be used as the initial wrapper for external data

67

such as packets and event parameters.

SubsetVBuff Subsets provide windowed views into other VBuffs. These views
take the form of specific bit-ranges in another VBuff. Data access and marking is
performed by first translating the indices (given within the windowed context) to
the context of the underlying VBuff, delegating the request to the underlying VBuff

with the translated indexes.

CompositeVBuff CompositeVBuffs provide a structured way to string individual
VBuffs into a single larger VBuff. Data access is performed by looking up the VBuff
or VBuffs containing the requested data, and filling in the bits with the data from the
relevant VBuff(s). Marking of specific data ranges follows this same basic procedure.
However, because CompositeVBuffs can be built in stages, markings applied to “en-
tire” CompositeVBuffs are stored and propagated to VBuffs that are subsequently
added.

Other VBuff Types Other VBuff types can be defined for varying reasons, in-
cluding implementation convenience. One important VBuff type is the Missing-
DataVBuff. This VBuff can be used to represent gaps in the input data, for example
in areas where the traffic data is missing from a packet capture. Such VBuff types
can use arbitrary data access and marking strategies, for example returning pseudo-

ranodom data or completely ignoring the applied markings.

6.5.2 Representing Higher Level Data

Here we provide some general strategies for representing different types of higher

level level data within a virtual buffer framework.

68

Packets Raw packet data lends itself to storage directly as a VBuff. Input packet
data should be structured as a single RealVBuff. Packets reassembled from others
can be represented as CompositeVBuffs. Exposing only the VBuff interface for data
access allows modules making use of packet data to ignore the difference between

the primitive input packet data and packet data reassembled in lower level modules.

Streams Streams lend themselves to representation using CompositeVBuffs. Mod-
ules managing the streams can append data one segment at a time by adding VBuffs
to the end of the CompositeVBuff structure. Modules that deal with the stream
data can treat the stream as one single growing buffer, much as the components they
represent might see such data. Streams should provide some form of communication
between data managing and consuming modules, for example to announce new data

or the closing of the stream by either side.

Application-Level Data Application-specific protocol data can be represented
as collections of VBuffs. The final representation completely depends on the specific
protocol structure, but separation into the relevant VBuffs allows for easy marking

of specific protocol fields or the of the entire structure if necessary.

6.6 The Browser Module

Here we describe the implementation of a web browser module.

6.6.1 A Two-Tiered Structure for Expected Traffic

A web browser processes data at two levels. At a high level, it generates HTTP

requests and processes responses. At a lower level it initiates and manages TCP

69

connections that transport the HTTP traffic. Our browser module generates expec-
tations for both the outgoing TCP connections and the HTTP messages sent through
those connections based on the received browser events and incoming traffic. These
expectations are represented in two separate TCP and HTTP acceptor lists. In the
current implementation our TCP acceptor list simply expects all outgoing connec-

tions with destination port 80, and we focus instead on the HTTP level traffic.

Browser Module

Goto Event

TCP
Connection 4

Figure 6-2: The Browser Module

70

6.6.2 Data Processing in the Browser Module

The Browser Module is a TrafficProcessor for TCP Connections. Upon receiving an
acceptable TCP Connection (in our case an outgoing connection with destination
port 80), the Browser Module attaches an HTTP parser to the corresponding TCP
streams. This parser is driven by incoming data on those streams, and presents
complete HTTP messages to the second level of the browser module for acceptance

and marking.

Generating Expectations from Events and Observed Traffic At the HTTP
level, incoming user events (of which we currently support the ‘goto’ event for vis-
iting a page) generated expectations for outgoing HTTP requests. Processing of a
goto event specifying a target URL will generate an acceptor for a single HTTP
GET request/response pair for the target resource. When the request is observed
in the outgoing network traffic, we generate additional expectations for HTTP re-
quest/response pairs necessitated by sub-entities in the page. These sub-entities
include images, CSS, and javascript code which are loaded in response to the page’s
HTML content. If these sub-entities themselves generate additional requests, those
are added to the acceptor list once the original sub-entity request is observed. The
sub-entities are determined by lookup in a “Web Corpus,” which provides descrip-
tions for entities on the internet, including a list of the sub-entities which will be
fetched when a a given entity is loaded in a web browser. A Web Corpus gives us

information about browser behavior when loading a given web page.

DNS Interaction For every HTTP request that is expected, the browser module
makes a call to a DNS service module to look up the host name for the request

URL. In YAMA 1.0, this DNS service is provided by a DNS module set during the

71

browser module initialization. The DNS lookup serves not only as a means to discover
possible connection addresses for the URL, but as a signal to the DNS module that

a given hostname lookup should be expected.

HTTP Acceptors An HTTP request/response pair acceptor uses the data within
the HTTP request to determine the URL of the requested resource. URLs for HTTP
responses are derived from the related request. For HT'TP 1.1 requests, we can derive
the entire URL from the message using the required “Host” header and the request
path. For HTTP 1.0 requests, we ignore the host. Solutions using the data from the
DNS lookup above are recommended as future work. When an HTTP message URL
matches the URL in a given acceptor, that message is marked as “GOOD.” Once an
acceptor has processed a matching request, no further requests are matched. When
an acceptor has processed a matching response, the acceptor is removed from the
- acceptor list. Timeouts are not implemented.

An HTTP acceptor is linked to a TCP connection acceptor for its URL’s host.
When an HTTP acceptor is removed, the TCP acceptor is removed. This behavior
is necessary because HTTP 1.1 allows multiple requests per TCP connection, while

the general case requires us to expect one TCP connection per request.

Loaded Documents Loaded documents in a web browser might cause periodic
web events through the use of javascript timeouts. This information should be en-
coded in the Web Corpus. YAMA 1.0 ignores this behavior. However, loaded doc-
uments do maintain a presence. As long as a document is loaded in the browser,
acceptors for its sub-entities remain in the acceptor list. Once a document is closed,
all of its active sub-entity acceptors are removed. YAMA 1.0 considers all docu-

ments closed when a ‘goto’ event is received. Thus, YAMA 1.0 is limited to users

72

who browse one page at a time.

6.6.3 The Need for a Web Corpus

A web browser determines sub-elements that it should fetch by parsing html, CSS,
and javascript received from the remote server. The ideal browser module would be
able to emulate this behavior simply by processing the captured incoming traffic.
Though possible, the handling of missing traffic data and the complexities of the
CSS and Javascript engines in modern browsers make such emulation infeasible in
YAMA 1.0. Instead, we require such data as an external input in the form of a Web
Corpus. The Web Corpus for YAMA 1.0 consists of sets of sub-entities fetched by
the browser when a given entity such as a web page is loaded. The Web Corpus
eliminates the need for decompressing and interpreting HTTP response data, and

makes it possible for YAMA 1.0 to be effective even when data is missing.

6.7 The DNS Module

6.7.1 Performing a Hostname Lookup Through DNS

When resolving a host name for an application, DNS implementations issue DNS re-
quests to different DNS servers according to various strategies. The queries sent
might include the exact hostname queried and the hostname with a variety of
network-specified suffixes appended. A response including a canonical name (CNAME)
record might prompt queries for a new hostname. The initial destinations for the
DNS queries are often dictated by a host’s network settings, either set by hand or
through DHCP. When DNS responses contain records for authorities in the given

hostname’s domain, subsequent queries might be sent to these new servers. At times

73

these queries are sent in parallel.

6.7.2 Generating Expectations for DNS Messages

The DNS implementation in YAMA 1.0 generates expectations for specific hostnames
in queries, ignoring the hostnames and addresses of the actual servers queried. Ex-
pected queries related to the same original hostname are bundled together so that
they can all be removed when one of them produces the targeted answer (in our case,
at least one address (A or AAAA) record). When a CNAME record is received in
a response, an expected query for the new hostname is generated and added to the

original bundle.

6.7.3 Data Processing and Expectation Matching

The DNS module is a TrafficProcessor for UDP packets. The implementation for
TCP input is left as future work. Received UDP data is is parsed into a DNS
message structure giving us access to the different sections including the questions
and answers sections. The hostnames in the questions section are used to match both
queries and responses with our expected queries. The records in the answers section
are used to generate new expected queries (in the case of CNAME records), and to

determine that our original hostname has been resolved (an A or AAAA record).

6.8 Matching Expected to Observed Traffic

Here we describe the general guidelines for how expectations should be generated

and describe a method for matching traffic to these expectations for marking.

74

6.9 Simulating Agents as Modules

This section goes into more detail on the general construction and capabilities of

modules.

6.9.1 Service and Network Modules

These modules represent the services usually provided by a host operating system,
and fit nicely into a tiered structure like the OSI model. Service and network modules
should process events relating to settings which affect the way they perform their
functions, and to calls or requests from other modules. The calls or events can be
implemented through event handlers and remote procedures registered through the
EventProcessor interface in the service module, and as service interfaces which can

be used directly by other modules with access to the service module.

Service Modules should parse any protocols they use and be able to construct
encapsulations of protocol structures for propagation to higher level modules. For
example, a TCP module aggregates packets and presents only TCP connections
and streams to higher-level modules. When the service protocol indicates the next
protocol in the protocol chain, the service module should provide a mechanism for
higher level modules to access this information without having to parse the lower-
level protocol. For example, an IP module would tag the data section of IP packets
with the name of the next protocol (for example TCP or UDP). A UDP or TCP
module would then look for the existence of such a tag when determining whether
to accept a packet for processing, and as an indicator for the range of packet data

that it should parse.

75

6.9.2 User Application Modules

Application modules are different from lower level modules because they generally
propagate data not to other applications, but to the user, who then interprets the
data and takes appropriate action. Because our system does not extend all the way
up to the user level, our application modules will generally not have a TrafficProcessor
target.

User application modules should provide event handlers for all the user events of
interest, and be able to parse any relevant application-level protocols. Just as appli-
cations call on operating system-provided service APIs to initiate TCP connections
and look up host names, application modules should use the APIs provided by lower
level modules. These APIs should be used either by directly generating events or
remote procedure calls addressed to the lower level modules using the EventProces-
sor interface, or by finding modules implementing the necessary services thorough
the EventProcessor interface and calling the API functions directly. The second ap-
proach has the advantage of allowing an application modules to keep a reference to an
important service once it has been discovered, eliminating the overhead of delivering

each event or remote procedure call to the appropriate EventProcessor.

6.9.3 Driving the Simulation

YAMA can be described as an event-driven simulation [23]. Processing is driven by
the input which includes the high events and the incoming and outgoing traffic. This
input is pushed to the system by a Feeder in timestamp order. The events and data
propagate through the system and are processed by the relevant modules. A Feeder
requires both an event target and traffic target. The event target should be the root

of our EventProcessor hierarchy tree, and the traffic target should be some common

76

Transport which can reach all the connected network devices. In the case of two
separate networks there might be two Feeders, each pushing the localized network
traffic to a Transport on its network. In such a case the two feeders may need to
be synchronized in order to ensure in-order presentation of events and traffic to the

system as a whole.

77

78

Chapter 7

Evaluation

The most powerful assessment of our system would be a measure of its usefulness
in the analysis of testbed network traffic. State-of-the-art security testbed sys-
tems [5] [29] employ a variety of background traffic usually directly captured from
the Internet. Because the primary purpose of YAMA is to correlate user events and
network traffic, an assessment of its ability to account for user event traffic will in-
dicate its usefulness to analysts of testbed network traffic. Thus we can use event
traffic detection and false positive rates as our primary evaluation metric for the sys-
tem. By comparing the YAMA 1.0-marked traffic to a ground truth, we can easily
identify the correctly (and incorrectly) marked traffic.

7.1 Metrics

Evaluation results are given in terms of counts for packets of varying types, marked
and unmarked. Here we describe what it means for a packet to be marked, and how

we split up the packets into their respective types.

79

Interpreting Packet Markings For the purpose of these tests, we ignore the
specific region of a packet that was marked, and count a mark in any part of the
packet as a mark for the entire packet. As all the markings were “GOOD” markings,
there is no need to merge different mark types together. For the remainder of this

thesis we will refer to packets with any kind of mark as “marked packets.”

Ground-Truth Classification for Packets In order to correctly count marked
packets of the types important to YAMA 1.0, we must have an independent method
of classifying packets. For this purpose we employ Ethereal [2], a popular open-source
network protocol analyzer to create a packet summary for a given traffic capture file.
This packet summary includes a packet number, destination, source, protocol, and
short description for every packet in the traffic capture file. The packet number
matches the packet IDs output by YAMA 1.0 with each packet marking, so we can
tell if a specific packet has been marked by YAMA 1.0. We can use the protocol and
short description output to classify individual packets. The classifications of interest

are described in Table 7.1.

Table 7.1: Packet Classifications

HTTP A packet is considered an HTTP packet if its ethe-
real summary summary protocol is HT'TP.
HTTP Request | A packet is considered an HTTP Request if it is
an HTTP packet and its ethereal short description
includes the keyword GET.

DNS A packet is considered a DNS packet if its ethereal
summary summary protocol is DNS.

DNS Query A packet is considered a DNS Query if it is a DNS
packet and its ethereal short description includes
the substring “Standard query A”. This matches
queries for both IPv4 and IPv6 addresses.

80

7.2 The Data Sets

The primary inputs to YAMA 1.0 are a time-stamped list of user events (page visits),
a time-stamped capture of the network traffic while those events were generated, and
a web-corpus capturing the state of the sites visited. Our data sets include the list
of user events and the associated data.

In order to provide some consistency between data sets, while providing complex
traffic for YAMA 1.0 to mark, we script the actions of a user browsing popular sites
on the Internet. Today’s popular Internet sites often include complex user-tracking
and advertising elements. Network traffic related to visiting such sites is thus more
complex than would be seen using approaches that replay traffic [31] or that use data
from just a few years ago [29].

The evaluation uses traffic collected from a single user host connected to the
Internet. A data set consists of the events and traffic generated by this user as he
surfs, in order, the Alexa “Top 100 English Sites” [1] as measured on July 12, 2006.
For the sake of modesty, two of these sites were excluded, leaving us with the Alexa
“Clean 98.” These sites were fixed and revisited on subsequent dates. A complete
list of these sites is included in Appendix A. Sites including an IP address as the
host will lead to activity similar to that in the simple web transaction shown in

Section 2.5.1. Others will show more complex behavior as shown in Section 2.5.2.

7.2.1 Sampled Site Characteristics

The Alexa “Clean 98” sites can be categorized based on the purpose of the site.

Figure 7-1 shows the composition of the sampled sites according to site type.

Commerce sites are those attempting to sell something. Such sites often include

81

listings for featured products that cycle often.

News sites list the day’s news stories, often including pictures for top stories. As
with their printed versions, news sites contain revenue-generating cycling ad-

vertisements.

Portal sites are those aiming to be an entry point for a user’s surfing session. They

often aggregate news, weather, user services like email, and advertisements.

Simple search sites are those which focus on search. Often, these sites will contain
little more than a search text field and a few identifying pictures. Advertise-

ments are not common until the user inputs a search.

Social sites are stages for user-provided content. They often contain rapidly up-

dated user content and advertisements.

Corporate sites include the official sites of major companies. These sites can remain

the same for long periods of time, and often include no advertisements.

Figure 7-2 shows the impact that sites of different types have on the data sets.
News sites account for a disproportionately large pergentage of the traffic at all
levels, while simple search sites produce a modest number of requests for smaller-
than-average page elements.

Figure 7-3 illustrates the complexity of traffic related to sites on the “Clean 98”
list as series of histograms generated from a single data set. Figure 7-3(a) shows that
the number of HTTP packets generated by a site ranges from the low 10s (simple
search sites) to over a thousand (social sites featuring large images). Figure 7-3(b)
shows that the number of requests for pictures and other sub-entities in a single site

varies from a few to almost 200. These often include small structural page style

82

Type Composition of Sites in Alexa Clean 98
10%

B corierce
[S

- portal

i simple search
T social
|:] corporate

14%

Figure 7-1: Composition of the Alexa “Clean 98”

83

Source of HTTP Packels By Site Type in Datasel 1

34%

I corerce
[&=
portal
simple search
D socia
corporate

(a) HTTP Packets

Source of HTTF Requests By Site Type in Dataset 1
1%

H

simple search
s P
[Jeorporate

(b) HTTP Requests

Source of DNS Queries By Site Type in Dataset 1
%

I corevece
e
ot
B simpie search
e social

[Jecorporate

(c) DNS Queries

Figure 7-2: Data Set Composition by Traffic and Site Type
84

elements and logos. Figure 7-3(c) illustrates the number of hosts that page sub-
entities reside on. A single page load may reference 30 or more servers. Often this
is the result of a large number of advertisements and HTTP redirects to different
servers used for user tracking. Some sites will also provide load balancing by having

referenced content on several mirrored servers.

7.2.2 Data Collection

Collection of the data sets was done over the period of several weeks. The first
data set, taken on July 12, 2006, served as the base for building a web corpus and
analyzing the traffic marking capabilities of YAMA 1.0. The next three data sets,
taken a week apart, are used to gauge the changing nature of the Internet. The last
four data sets were taken on the same day, an hour apart. Unlike web sites in a test
environment, sites on the Internet tend to change constantly, providing a moving
target for YAMA 1.0. Table 7.2 shows the detaﬂs of our collected data sets. Data

sets 1-4 were filtered to exclude outside traffic, thus the lower packet counts.

Table 7.2: The Data Sets

Data Set Number | Collection Date | # Collected Packets
1 2006-07-12 50036
2 2006-07-19 50764
3 2006-07-26 49995
4 2006-08-02 51783
5 2006-08-08 54591
6 2006-08-08 54502
7 2006-08-08 58395
8 2006-08-08 54857

85

Number of HTTP Packets Observed Per Site

Number of Sites

0 100 200 300 400 SO0 600 700 300 900 1000 1100 1200
Number of HTTP Packets Observed

(a) HTTP Packets

Number of HTTP Recuests Per Site

Number of Sites

20 40 B0 80 100 120 140 160 180 200
Number of HTTP Requests

(b) HTTP Requests

Number of DNS Queries Per Site

Numnber of Sites

it i =1
15 20 =] 30 s 40 45 50
Number of DNS Queries

(c) DNS Queries

Figure 7-3: Histograms Showing Number of Sites with Given Traffic Element Counts
86

7.2.3 Traffic Capture Setup

Data collection was done using a PowerBook G4 laptop on one of two networks. The
first was a switched MIT fraternity network without a firewall (data sets 1-4). The
second was a firewalled network connected to the Internet (data sets 5-8). In each
case the experiment was isolated from other hosts on the network.

Capture of traffic data is accomplished using the tcpdump utility [17], which
uses the libpcap library to get individual packets from the network card. The
“snaplength,” which specifies the maximum number of bytes to capture for a given
packet, is set above the maximum size for an Ethernet packet, allowing us to capture

entire packets.

7.2.4 Event Generation and Logging

User events for each data set were generated by using Applescript to control the
Safari 2.0.4 web browser. The Safari browser was chosen for its easy scriptability
and convenience on the development machine. It also features a “Reset Safari”
option, which allows the user to reset all browser caches and erase all personal data
including cookies. This makes it easy to generate multiple data sets with the same
base starting conditions.

The Applescript script used to generate events follows the same basic step for
every input URL. 1) Close all the existing Safari windows. 2) Open a new window
and load an empty URL (about:blank).3) Load the input URL and 4) wait 20 seconds.

For each URL visited, the event generation script appends an event record to the
event file which serves as input into YAMA 1.0. Each event record consists of a time
stamp, an event target application (in our case the browser), an event name (goto),

and event parameters (the URL).

87

7.3 Building a Web Corpus

YAMA 1.0 requires a web corpus that provides, for each URL, a list of all separately
referenced components (see Section 6.6.3). Automated analysis of the queries follow-
ing a specific web page load produces an initial corpus. This corpus is hand-edited
to remove parentheses, which YAMA 1.0 uses to denote wild-cards in URLs. We
generated two corpora, one from data set 1, the other from data set 5. The corpus

used for each data set in the evaluation is given in Table 7.3.

Table 7.3: Web Corpora Used For Each Data Set

Data Set Number | Data Set Date | Corpus Reference Data Set | Corpus Date
1 2006-07-12 1 2006-07-12
2 2006-07-19 1 2006-07-12
3 2006-07-26 1 2006-07-12
4 2006-08-02 1 2006-07-12
) 2006-08-08) 2006-08-08
6 2006-08-08 5 2006-08-08
7 2006-08-08 5 2006-08-08
8 2006-08-08 5 2006-08-08

7.4 General Test Procedures

This section describes each of the tests we performed on YAMA 1.0 and their re-
sults. The tests are meant to assess YAMA 1.0’s ability to correctly mark user event
traffic while leaving the non-event traffic unmarked. For these tests YAMA 1.0 was
configured to mark HTTP and DNS messages related to the given user events. This
means that YAMA 1.0 output markings for the data regions in each packet cor-
responding to TCP data containing those related HTTP messages, the TCP ACK

88

packets which confirmed receipt of that HT'TP data by its destination, and the UDP
data segments corresponding to the related DNS messages. All the markings were

“GOOD” markings. YAMA 1.0’s output markings are saved in a marks file.

7.5 Test 1: Detection Rate

This test evaluates YAMA 1.0’s ability to mark all user event HT'TP and DNS traffic.
Our data sets consist of only user event traffic, so ideally every HI'TP and DNS
packet would be marked. This coverage is important because unmarked user event
traffic adds to analyst load, and might confuse the analysis of testbed experiment
results.

This test also assesses YAMA 1.0’s performance, given a static corpus, as each

visited site changes over hours, days, and weeks.

7.5.1 Procedure

This test consisted of running YAMA 1.0 on several data sets, using the data set
event file as logged by our event traffic generation script. Table 7.2 shows details
for each of the data sets. For the remainder of the thesis we will refer to each data
set by its number. The web corpora given to YAMA 1.0 as input were derived in
part from reference data sets. The corpora thus reflect the state of the web as it
was on the day that its reference data set was created. Table 7.3 shows which web
corpus was used with which data set, as well as the dates for each. Data sets 1-4
use a web corpus generated from data set 1, while data sets 5-8 use a web corpus
generated from data set 5. A test run for a single data set took about ten minutes

on a Powerbook G4 1.67GHz Laptop with 2GB of memory.

89

7.5.2 Results

The data were analyzed to produce a summary of the packet markings for each data
set according to type. Figure 7-10 shows the coverage results for each data set by
traffic type. Here we clearly note the separation between data sets 1-4 and data sets
5-8 caused by the use of different web corpora. Data sets 1 and 5, used to generate
the web corpora which helps mark them, fare extremely well, while subsequent data
sets are covered in decreasing amounts. There are also marked differences between
coverage for the different packet types. HTTP Packets are more difficult to correctly
mark and asymptote lower and later than DNS packets. Furthermore, performance
is substantially worse overall than for just HT'TP request packets. DNS packet and
query coverage is nearly even because there is usually a single response packet for
every query packet sent. DNS coverage asymptotes faster - in less than an hour -

than HTTP coverage across data sets 1-4 and 5-8.

Percent Coverage For Each Dataset By Traffic Type

£ 59

Q

o

* a4
301
e HTTP Fackets

HTTP Reguests
10 1 DNS Packets
[_JONS Queries

Figure 7-4: Percent Coverage By Traffic Type and Data Set

90

The coverage within and between data sets can be explained by three factors:
the too-specific nature of the web corpora used, changes in the web over time, and

missing or mis-parsed network data.

Specificity of Web Corpora Our web corpus is generated directly from the
HTTP traffic observed in a specific data set. This accounts for drop in coverage
between data sets 1 and 2, and 5 and 6. This large drop is caused by the web corpus
containing expectations for web sub-entities that were session or time-specific (such
as cycling advertisements, and recent submissions in social sites). We can support
this by looking at the overall rates of HT'TP Request coverage in data sets 2-4 and
6-8 in Figure 7-8. The sites showing the highest overall coverage and the lowest drop
from data set 1 and 5 are the corporate and simple search sites. These are the types
of sites generally holding minimal advertisements and dynamic content. The other
types of sites, featuring plenty of dynamic content, fall prey to the specificity of the

two web corpora.

The Changing Internet Changes in the individual sampled internet sites over
time cause the gradual drop in coverage seen through data sets 2-4 and 6-8. These
changes take the form of structural updates made to the sampled web sites. The
changes can be incremental, as in news stories getting cycled through the days, or
drastic, as in a site getting completely redesigned. Figure 7-7 shows the general
trend. The HTTP coverage shown in Figure 7-8 shows some of the quirks of this
activity. The drop in coverage for portal HT'TP requests between data sets 2 and 3

is corresponds with the redesign of www.yahoo.com.

91

Missing and Mis-parsed Data The missing and misparsed data in the data
sets is the source of a of noise, especially in the packet coverage. The disparity
between HTTP request coverage and general HTTP packet coverage is the primary
result of this mismatched data. Coverage rates for single-packet HTTP requests are
unaffected by packet loss as missing packets do not count against YAMA 1.0 (it
cannot mark something that is not there). However, HTTP responses are heavily
affected by missing data. HT'TP response URLs are determined by matching with the
corresponding request. A missing request prevents YAMA 1.0 from determining the
purpose of the response, and causes it to be left unmarked. A missing response header

has the same effect, leaving all the packet carrying the response data unmarked.

HTTP Packet Coverage

I cormmerce
- I rews
[ot
] EE simple search
[social
:l corporate

Figure 7-5: Percent Coverage For HTTP Packets by Packet Source Type

92

HTTP Packet Coverage by Packet Source Type

% Marked

- commerce
| [os
| . oo
[simple search
[social
chpuraie

Data Set

Figure 7-6: Percent of HTTP Packets of Each Type Covered

HTTP Request Coverage
100 T T

90

80

60

SO

% Marked

40

30

I coerce
- news
7 . ot
imple search
E social
|:| corporate

20

Data Set

Figure 7-7: Percent Coverage For HIT'TP Request by Packet Source Type

93

HTTP Request Coverage By Source Type

% Marked

- commerce
I s
7 . ot
B simple search
T social
|::| corporate

Figure 7-8: Percent of HTTP Requests of Each Type Covered

DNS Query Coverage

% Marked

- commerce
- news

| . ot
[simple search
1 E social
—1 corporate

Figure 7-9: Percent Coverage For DNSQueries Broken by Packet Source Type

94

DNS Query Coverage By Source Type

1

I cornerce
- news
| . porta
m simple search
1 E soci
C corporate

Data Set

Figure 7-10: Percent of DNS Queries of Each Type Covered

7.6 Test 2: False Positive Rate

Our coverage test lets us know if we are missing anything, but a simple program that
marked all packets would perform great on that test while being completely useless.
If YAMA 1.0 is to be used to isolate interesting testbed experiment data, it must
not mark the non-event traffic as event traffic. Our false positive rate will evaluate

YAMA 1.0’s ability to do this.

7.6.1 Procedure

In order to measure the rate of false positives, we give YAMA 1.0 an event file
indicating a user visits one site while feeding it the traffic generated by visiting a
different site, for each of the 98 x 97 pairs. If YAMA 1.0 marks any of the recorded
network traffic as having been generated by a non-matching user event, we score that

marked packet as a false positive.

We can also create a confusion matrix showing the number of marks by each of
these event files for each of the actual events. The ideal result would show many
marks where the advertised event matched the actual event, and no marks anywhere

else.

7.6.2 Results

Table 7.4 shows the total number of false positives encountered per traffic type in all

of the 98 YAMA 1.0 runs.

Table 7.4: False Positives Per Traffic Type

Type Total False Positives
HTTP Packets 0
HTTP Requests 0
DNS Packets 0
DNS Queries 0

The lack of false positives indicates that YAMA 1.0 is resistant to confusion by
active adversaries generating web-traffic-like sessions and packets. These results are
encouraging, especially when noting that many of the sites in the Alexa Clean 98
connect to the same servers for advertising and user tracking purposes. Several of the
sites connect to the Google Analytics service for example. The lack of false positives
even in the DNS traffic is due to strict matching between the advertised event and the
observed traffic. The browser module will not generate expectations for sub-entities
such as pictures if it has not observed a request for the main page HTML. This is
because a browser’s behavior model dictates that sub-entities are fetched in response

to received HTML, and not in direct response to the user web request.

96

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we have discussed the need, theoretical framework, design, and imple-
mentation for YAMA, a tool for marking network traffic from associated high-level

events. We also performed a series of evaluations on YAMA 1.0.

The need for a tool which correlates high-level events with network traffic is
clear. The time and expertise required for analysis of network intrusion detection
experiment data would decrease greatly with the use of a tool like YAMA, leading
to quicker evaluations for intrusion detection systems, and higher accessibility for
analysts.

As part of the theoretical framework for event-traffic correlation, we developed
a causal model for event driven network traffic. In this model agents, events, and
data components interact as actions are performed on a network. We furthered this
model by introducing the notion of intentions which can be propagated across these

components, eventually making their way to the network traffic. Adversaries prop-

97

agate malicious intentions, either actively by generating new traffic on the network,
or passively by altering otherwise normal traffic. We feel that this model is powerful

enough to describe a wide variety of network interactions, both benign and malicious.

Using our event-traffic model as a tool, we described a method for re-creating the
causal chain between high-level events and network traffic. This method makes use of
behavior and inference models for agents which allow us to generate expectations for
future events based on past events, and infer previous events from observed network

data.

In designing YAMA we translated our conceptual event model components into
objects that could be implemented in an application. Agent behavior and inference
models became modules, and data became a set of bits enclosed in virtual buffers,
which keep not only the data but also a set of markings for the data. We then showed

a method for matching expectations and inferences.

For the implementation of YAMA 1.0 our proof of concept for YAMA, we decided
to focus on web traffic because of its ubiquity in enterprise networks. We implemented

some low-level traffic modules, and high-level web browser and DNS modules.

In the evaluation for YAMA 1.0 we saw that we could achieve a very high (90%)
coverage rate for general HTTP packets, and even higher coverage rates (99%) for
HTTP GET requests and DNS packets, while generating no false positives. The
coverage was impacted heavily by the accuracy of our web corpora, which YAMA
1.0 uses to determine the state of the web as it was when an experiment was run.
Our success in marking web traffic indicates that marking for other traffic types is

possible and should be attempted.

98

8.2 Future Work

YAMA 1.0 is a good first implementation for YAMA showing some promising results.
In order to become more useful as part of a network test environment, it should
be expanded in several ways. The following are refinements and suggested future

projects.

Multiple Hosts Creating a host module to encapsulate the current set of modules,
then connecting several of those together by use of a network Transport object

would yield the capability for multiple hosts.

DNS-based TCP Connection Verification Using the DNS reply to validate out-
going requests in the browser module would provide resistance against a passive
adversary who redirects user sessions. Such validation would occur at in the

TCP acceptors used by the browser module.

Simulatable Functionality Keeping the local time in modules would allow YAMA
modules to use timeouts. This would help eliminate stale acceptors and TCP
connections left unclosed due to missing data. Time in modules should be up-
dated using the time stamps in processed events and traffic. The time could be
synchronized globally or kept by each module. The individual module approach
would work better if YAMA were to be turned into a distributed system.

Deeper Network Service Modules The current modules do just enough to han-
dle standard cases. The TCP module should be expanded to handle data

retransmission. The IP module should handle packet reassembly.

DNS over TCP In rare cases, a DNS response is too large to fit in a UDP packet.

The transaction is then done over TCP. This would require the addition of

99

a TCPConnection TrafficProcessor interface to the DNS module. This would
attach a DNS parser to the streams, which would produce DNS message objects

that could be processed as usual.

Additional Protocol Modules Web is a good start, but a lot of network activity
also involves email and other services. Implementation of SMTP, POP, IMAP,
and FTP modules and parsers to support high-level mail and file transfer ap-

plication modules would be a good start.

Distributed YAMA YAMA 1.0 is a single-threaded application. When YAMA
grows to include multiple hosts or networks, it would be prudent to allow
subsets of modules to run in their own threads. Separation of each host or
network into its own thread would be good. Flexibility can be achieved by
implementing a module wrapper which runs a module in its own threads and
has its own queue for events and traffic data. Such a wrapper could be used
around modules of any type, from network service modules to entire networks.

This would allow optimization for different types of experiments.

Future versions of YAMA will eventually be integrated into LARIAT, where it

will hopefully ease the lives of future analysts.

100

Appendix A

Sites in the Alexa “Clean 98”

This appendix shows the “Alexa Clean 98.” This is the subset of the Alexa Top 100 [1]
used in the evaluations. The sites are listed in order of popularity as displayed by
Alexa on July 12, 2006. Also shown in the table is the site type, and the number of

associated traffic elements as observed in evaluation data set 2 on July 19, 2006.

[Event URL | Type | HTTP Packets | HTTP Requests | DNS Packets | DNS Queries |
www.yahoo.com portal 131 34 10 5
www.google.com simple search 14 3 2 1

WWWw.msn.com portal 252 50 26 13
WWW.myspace.com social 78 16 18 9
www.ebay.com commerce 403 49 16 8
www.passport.net corporate 4 2 6 3
WWWwW.amazon.com commerce 348 77 8 4
www.microsoft.com corporate 170 33 22 11
www.google.co.uk simple search 14 3 o 0
www.blogger.com social 216 54 4 2
www.live.com simple search 54 19 10 5
www.youtube.com social 122 37 28 14
www.bbc.co.uk news 195 51 6 3
WWwWW.go.com portal 205 28 10 5
www.cnn.com news 213 48 16 8
www.craigslist.org social 13 4 4 2
www.alibaba.com commerce 124 36 6 3
www.imdb.com corporate 1065 69 16 8
www.aol.com portal 201 51 17 8
www.orkut.com social 2 1 4 2
www.ebay.co.uk commerce 255 31 10 5

101

Event URL Type HTTP Packets HTTP Requests DNS Packets DNS Queries
www.xanga.com social 114 14 6 3
www.google.ca simple search 14 3 2
www.geocities.com corporate 97 26 16 8
www.friendster.com social 2 1 2 1
www.flickr.com social 23 7 4 2
www.comcast.net portal 590 44 14 7
www.apple.com corporate 201 40 10 5
www.facebook.com social 31 8 4 2
72.14.203.104 simple search 22 6 0 0
www.hi5.com social 300 51 26 13
www.nytimes.com news 577 111 40 20
www.megaupload.com news 209 50 10
www.about.com portal 378 61 26 13
www.cnet.com news 795 132 20 10
WWW.S080.com simple search 45 14 4 2
www.rediff.com news 208 58 26 13
www.weather.com news 338 69 12 6
www.google.co.in simple search 22 6 2 1
www.photobucket.com social 1147 29 8 4
www.mapquest.com simple search 169 46 16 8
www.imageshack.us social 98 19 15 8
www.mediaplex.com corporate 176 12 4 2
www.google.com.au simple search 14 3 2 1
www.overture.com corporate 173 58 12 6
www.statcounter.com corporate 133 21 6 3
www.sourceforge.net corporate 273 59 20 10
www.match.com social 173 28 6 3
www.download.com portal 273 77 18 9
wWww.starware.com corporate 126 39 2 1
www.adobe.com corporate 625 98 8 4
www.fotolog.net social 113 31 36 18
www.bankofamerica.com corporate 183 31 4 2
www.mywebsearch.com simple search 20 8 6 3
www.earthlink.net portal 260 59 14 7
www.webshots.com sacial 528 59 30 15
www.nba.com news 781 141 12 6
www.reference.com corporate 119 23 22 11
www.hp.com corporate 321 29 6 3
www.tripod.com corporate 234 58 19 10
www.digg.com social 311 70 5 2
www.typepad.com social 186 35 14 7
www.archive.org portal 772 26 6 3
www.nastydollars.com commerce 31 8 2 1
WWWw.myway.com portal 4 15 20 10
www.amazon.co.uk commerce 232 59 6 3
www.netflix.com corporate 220 32 6 3
www.monster.com corporate 137 31 14 7
66.249.93.104 simple search 22 6 0 0
www.mlb.com news 681 125 20 10

102

Event URL Type HTTP Packets HTTP Requests DNS Packets DNS Queries
www.ign.com news 943 158 56 28
www.altavista.com simple search 22 8 4
www.macromedia.com corporate 15 6 2
www.aebn.net corporate 93 14 2
www.dmoz.org simple search 19 6 1
www.gmx.net portal 240 67 12 6
www.digitalpoint.com corporate 71 13 2 1
www.washingtonpost.com news 553 97 24 12
WWWw.ups.com corporate 68 15 4 2
WWW.usps.com corporate 137 37 4 2
www.godaddy.com corporate 203 56 4
www.gamespot.com news 1182 137 24 12
www.netscape.com portal 113 9 2
www.expedia.com corporate 442 84 3
www.target.com commerce 530 110 3
www .ebay.com.au commerce 249 38 10 5
www.msn.co.uk portal 165 37 22 11
www.fatwallet.com commerce 107 29 6 3
www.sitesell.com commerce 226 44 7 3
www.iask.com simple search 22 9 6 3
www.slashdot.org news 245 58 14 7
www.lycos.com portal 364 77 20 10
www.ibm.com corporate 175 35 2 1
www.theplanet.com corporate 268 66 2 1
del.icio.us social 69 9 4 2
www.metacafe.com social 265 52 18 9
www.deviantart.com social 376 72 26 13
www.foxsports.com news 515 176 92 46

103

104

Bibliography

[1] Alexa’s Top 100 English Speaking Sites. http://www.aleza.com/.
[2] Ethereal: A Network Protocol Analyzer. http://www.ethereal.com/.
[3] GCC, the GNU Compiler Collection. http://gcc.gnu.org/.

[4] The Boost C++ Libraries. hitp://www.boost.org/.

[6] The DETER Testbed: Overview. http://www.isi.edu/deter/docs/testbed.overview.pdf,
August 2004.

[6] Kamran Ahsan and Deepa Kundur. Practical Data Hiding in TCP/IP. Octo-
ber 15 2002.

[7] S. Bellovin. The Security Flag in the IPv4 Header. RFC 3514, 1 April 2003.

[8] Lee Breslau, Deborah Estrin, Kevin R. Fall, Sally Floyd, John S. Heidemann,
Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and
Haobo Yu. Advances in Network Simulation. IEEE Computer, 33(5):59-67,
2000.

[9] CERT. CERT Advisory CA-1996-21 TCP SYN Flooding and IP Spoofing At-
tacks. http://www.cert.org/advisories/CA-1996-21.html, 1996.

105

[10] CERT. CERT Advisory CA-1999-04 Melissa Macro Virus. 1999.

[11] CERT. CERT Advisory CA-2000-04 Love Letter.
http:/ /www. cert.org/advisories/CA-2000-04.html, 2000.

[12] Stefan Savage Colleen Shannon Stuart Staniford David Moore, Vern Paxson
and Nicholas Weaver. Inside the Slammer Worm. I[FEE Security & Privacy,
http://www.cert.org/advisories/CA-1999-04.html:33-39, 2003.

[13] D. E. Denning. An Intrusion-Detection Model. In Proceedings of the 1986 IEEE
Symposium on Security and Privacy (SSP ’86), pages 118-133, Los Angeles,
Ca., USA, April 1990. IEEE Computer Society Press.

[14] David Dittrich. Demonstration: Session hijacking.
http://staff.washington.edu/dittrich/talks/qsm-sec/hijack.html, 1998.

[15] Mario Gerla, Lokesh Bajaj, Mineo Takai, Rajat Ahuja, and Rajive Bagrodia.
GloMoSim: A Scalable Network Simulation Environment. Technical Report

990027, University of California, Los Angeles, Computer Science Department,
May 13, 1999.

(16] IEEE. 802.3 Carrier Sense Mulitple Access with Collision Detection
(CSMA/CD). IEEEP, 1985.

[17] Van Jacobson, Craig Leres, and Steven McCanne. TCPDUMP(1), BPF..., 1990.

[18] Butler W. Lampson. A Note on the Confinement Problem. Commun. ACM,
16(10):613-615, 1973.

[19] Elias Levy. The Making of a Spam Zombie Army: Dissecting the Sobig Worms.
IEEE Security & Privacy, 1(4):58-59, 2003.

106

[20]

[21]

22]

(23]

24]

[25)

[26]

27)

Richard Lippmann, David Fried, Isaac Graf, Joshua Haines, Kristopher Kendall,
David McClung, Dan Weber, Seth Webster, Dan Wyschogrod, Robert Cunning-
ham, and Marc Zissman. Evaluating Intrusion Detection Systems: The 1998
DARPA Off-line Intrusion Detection Evaluation. In Proceedings of the DARPA
Information Survivability Conference and Ezposition, Los Alamitos, CA, 2000.

IEEE Computer Society Press.

Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and
Kumar Das. The 1999 DARPA off-line intrusion detection evaluation. Computer
Networks, 34(4):579-595, 2000.

David Llamas, Alan Miller, and Colin Allison. An Evaluation Framework for
the Analysis of Covert Channels in the TCP/IP Protocol Suite. In ECIW, pages
205-214. Academic Conferences Limited, Reading, UK, 2005.

Misra. Distributed Discrete-Event Simulation. CSURV: Computing Surveys, 18,
1986.

P. Mockapetris. Domain Names - Implementation and Specification. RFC 1035,
November 1987.

Madanlal Musuvathi and Dawson R. Engler. Model Checking Large Network
Protocol Implementations. In NSDI, pages 155-168. USENIX, 2004.

Vern Paxson. Bro: a system for detecting network intruders in real-time. Com-

put. Networks, 31(23-24):2435-2463, 1999.

Jon Postel. Internet Protocol. RFC 791, ISI, September 1981.

107

[28]

[29]

[32]

[33]

[34]

[35]

Michael Zink Carsten Griwodz Ralf Ackermann, Utz Roedig and Ralf Steinmetz.
Associating Network Flows with User and Application Information. Proceedings

of the 2000 ACM workshops on Multimedia, 2000.

Lee M. Rossey, Robert K. Cunningham, David J. Fried, Jesse C. Rabek,
Joshua W. Haines, and Marc A. Zissman. LARIAT: Lincoln Adaptable Real-
time Information Assurance Testbed, May 15 2001.

Craig H. Rowland. Covert Channels in the TCP/IP Protocol Suite. First Mon-
day, 2(5), 1997.

Stephen Schwab, Brett Wilson, and Roshan Thomas. Methodologies and Met-
rics for the Testing and Analysis of Distributed Denial of Service Attacks and
Defenses. In MILCOM 2005, 2005.

Tim Shimeall (SEI). Personal communication about data collected from a large

enterprise. 2005.

Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to Own the Inter-
net in Your Spare Time. In Proceedings of the 11th USENIX Security Sympo-
stum (SECURITY-02), pages 149-170, Berkeley, CA, USA, August 5-9 2002.
USENIX Association.

Ken Thompson. Reflections on Trusting Trust. Commun. ACM, 27(8):761-763,
1984.

N. Weaver, V. Paxson, S. Staniford,-and R. Cunningham. A Taxonomy of
Computer Worms. In Proceedings of the 2003 ACM Workshop on Rapid Malcode
(WORM-03), pages 11-18, New York, October 27 2003. ACM Press.

108

