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Abstract

This thesis considers the problem of securing communication among dynamic groups of
participants without relying on an online group keying service. As a solution, we offer the
design and implementation of the Public Key Group Encryption (PKGE) service. It is a
cryptography library, written in C, and designed to be shared among all communications
applications on any particular system. PKGE imposes low communication overhead and
embraces disconnected operation, making it especially appropriate for deployment in low-
bandwidth tactical environments.

PKGE provides forward-secure confidentiality and authentication among any subset
of users using small communication overhead by bringing together a number of modern
cryptographic developments, with the piece de r6sistance being the elliptic curve-based
Collusion-Resistant Broadcast Encryption.

The focus of this thesis is primarily the engineering and synthesis of known theoretical
schemes; we also present novel extensions to the Boneh-Gentry-Waters encryption scheme.

1. Forward secrecy: Add forward secrecy to the scheme at a cost of T private keys for T
security epochs.

2. Optimized session protocols: Sidestep the majority of costs in computation and band-
width.

3. Cheap over-provisioning of system capacity: Support up to 232 users for resource costs
proportional only to the number actually registered.

4. Chosen Ciphertext Attack (CCA) Security: Elevate security from CPA to CCA strength.

Using PKGE, we have developed a plugin for Gaim 2 as a motivating launch application.
The plugin both demonstrates the use of PKGE and enables secure conferencing over the
range of Gaim-supported protocols, including Jabber, IRC, AIM, and ICQ. PKGE and its
Gaim plugin may be run and further developed under MS Windows, Mac OS X, and Linux
operating systems.

Thesis Supervisor: Dr. Roger Khazan
Title: Research Scientist
MIT Lincoln Laboratory

'Boneh, Gentry, and Waters, "Collusion Resistant Broadcast Encryption With Short Ciphertexts and
Private Keys", Crypto 20052A popular open-source multi-platform IM chat client.
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Chapter 1

Underpinnings

1.1 Introduction

We present the Public Key Group Encryption (PKGE) system as a universal solution for
efficiently securing group communications, optimized for minimal bandwidth usage. It is a
shared cryptography library written in the C programming language, designed to be easily
integrable with communication applications. We present its design and implementation in
the pages that lie within, discussing the decisions made along with their justifications and
implications.

1.1.1 Motivation

First, let's elaborate on why exactly this service is so useful. The research is motivated
by the Department of Defense's vision of Network-Centric Operations[29, 16] (NCO). A
key part of this vision is improved information sharing and collaboration among dynamic
groups of participants, or "communites of interests" [44, 60].

For example, one scenario may be a unit of soldiers on foot in a hostile urban environ-
ment. They may use handheld PDAs to relay information or act as intelligent walkie-talkies.
Our solution would provide a way to secure their voice communication over the PDA ad-hoc
network, where past cryptographic solutions have been prohibitive due to the communica-
tion and processing overhead inherent to the group problem.

Another military application is that of planes carrying dozens of operators that use
an intra-plane wired network to communicate with each other and the plane's antenna to
communicate with operators in nearby planes or on the ground. Such a hybrid network,
effectively a number of small broadcast networks connected by single low-bandwidth links,
should also be efficiently supported.

A third application is a command and control tactical tool to bridge forward deployed
troops with rear commanders. Such a tool could allow common map annotations as well as
be locationally and situationally aware.

These real-life applications require a solution for secure and authenticated communica-
tion among a dynamic group of participants, without relying on an online, external group
keying service (due to the disconnected nature of some target scenarios). This can be
achieved by using pre-placed data (e.g. public keys, secret keys, certificates) and/or using
data exchanged by participants as part of a group keying protocol.

The ideal solution should be sufficiently versatile to work well across a wide spectrum
of computing power and bandwidth. It must be viable for mobile embedded platforms with



scarce resources and unreliable connections, but robust and complete so that environments
with abundant resources will not eschew it in favor of less versatile but more targeted
software.

1.1.2 Vision

We envision our contribution to be in the form of a ubiquitous secure infrastructure that
provides the services described above. All members of the Dept. of Defense would be en-
rolled upon employment, receiving a smart card to store their cryptographic keys. Existing
users may be migrated easily since they currently carry smart cards called Common Access
Cards1 (CAC's) that already are used for authenticating access and digitally signing email
and documents.

The ideal smart card would actually implement the cryptography functions2 , providing
a hardware-based API of our design and serving as a convenient black box for applications
to use. The host computer simply passes bytes to be encrypted in conjunction with a set of
recipient ids to the smart card, and takes the ciphertext that gets produced. Likewise for
decryption. The hardware device makes use of the cryptographic scheme we present in the
paper, as well as a group management protocol for optimizing bandwidth / computation
usage.

We envision the DOD setting up a system with enough capacity for all of its employees,
running a web server that authenticates users using their existing certificates, and allows
them to download the PKGE library along with their keys. Henceforth, they have the
ability to use PKGE-enabled applications. For specific applications the library may be
loaded onto a smart card to take advantage of a hardware-specific implementation. In
either case it serves as a shared library for all processes to use as a common service for
securing communication.

1.2 System Overview

1.2.1 Design Goals

Here we cover together the operations that must be performed on a regular basis by the
different participants (users, administrators, developers) in order to form design goals that
will be able to most efficiently serve these tasks and requirements. These issues deal with
the engineering aspects of the project. They are the practical items of importance for which
our secure communication scheme must be tuned for. We have outlined the tasks that need
to be performed in Table 1.1.

To these ends, we transformed the user tasks into design goals. We feel the resulting
goals reflect realistic logistical requirements that are achievable by our system. Below we
explicitly state the goals we had going into the design and research phases, as both our API
design and underlying cryptography must support these goals in order to succeed. Note that
in the context of PKGE, we use seal and unseal to refer to encryption with authentication.

1CAC's were designed primarily to be used as universal authentication and to enable the digital signing
of email and documents. Over 5.4 million have been issued as of July 2004. Quote:

The CAC ICC will have a cryptographic co-processor to enable it to carry the PKI identity,
email, and encryption certificates. ... Target Population: Approximately 4 million Active Duty
military, Selected Reserve, DoD Civilian employees, and eligible Contractors. [50, 28].

2This has already been demonstrated [66., 42].



Central Authority Users Developers
*Generate a group encryp- *Load the system on any *Able to develop secure ap-
tion system based on any communication device plications quickly and cor-
set of parameters *Obtain keys in a scalable, rectly

*Serve and Authenticate re- convenient way from the *Be unconcerned with
quests for private keys central authority specifics of the crypto-

*Change keys periodically *Not have their use of a de- graphic mechanisms
vice be hampered by the *Encrypt and decrypt data

cLow marginal deployment presence of the security for any given recipient set
cost system

*Able to use system cor-
rectly without special
training

Table 1.1: Tasks

Design Goals

* Reasonable system generation time and space overhead for tens of millions of users.

* Simple API structure:

1. Single API call to seal or unseal messages e.g. seal(recipients, message).
2. Intuitive group management e.g. add_togroup (recipients, "Rob").
3. Provide access to advanced optimizations, but do not require them.

* Ability to run on current PDA-level hardware.

* Electronic key distribution.

* Versatility: desirable for all environments, from resource-scarce real-time PDA wireless
communications up to luxurious broadband workstation email.

* Secure: confidentiality, authentication, forward secrecy.

1.2.2 Technical Foundation

The prototype is based on Boneh-Gentry-Waters (BGW) Broadcast Encryption (BCE)
scheme[35] due mostly to the promise of O(1)-overhead ciphertext, as well as the relatively
small space that elliptic curve keys require due to their 2x security multiplier3.

We perform necessary modifications and work out engineering issues to make the scheme
practical. For example, we modify it to make it forward secure, integrate authentication in
the form of X.509 certificates, discover efficient ways to handle a potentially many-gigabyte
public key vector, and implement efficient session establishment protocols that obviate the
processing power and bandwidth required by encryption. It is worth noting that our decision
between different cryptographic schemes makes the classic tradeoff: allowing a lot of space
to be used in order to optimize for bandwidth and computation. This decision is a smart
one even ignoring our predisposition for bandwidth minimimzation: space is the cheapest
commodity of any and can most easily be provisioned for.

"'Security multiplier" is the estimated factor that must be applied to synunetric key sizes in order to get
equivalent security. Examples are AES: 1, Elliptic Curves: 2, RSA: 10-20[64]. See Table E.9.



1.2.3 Communication Applications

Although the principal contribution of this thesis is the secure communication infrastruc-
ture, we also present an archetypal application that fulfills two purposes. First, it demon-
strates best programming practice for interfacing with our system in a variety of situations.
Second, it is a robust, targeted communication solution for our sponsors particular usage
scenarios. It is versatile enough to be the best option for both resource-scarce ad-hoc arenas
such as soldiers in the field, as well as for the desktop PC with wired connection. Technol-
ogy has little intrinsic value without motivating applications, so this is meant to provide
one that demonstrates the power of our system.

We decided on a plugin for Gaim[10], a popular multiplatform, multiprotocol, open-
source IM chat client, to fill the role. The choice to integrate with an established software
package saves a lot of effort of reinventing the wheel, and it allows us to leverage their
existing support for all chat protocols under the sun, as well as a large number of other
plugins. In particular, by writing a single plugin, PKGE is currently usable on 7 different
chat networks4 , runs on Windows, Mac OS X, and Linux, and works with plugins that
provide functionality such as a distributed whiteboard, voice chat, and language translation.

1.3 Broadcast Encryption

In this section we describe our thoughts behind using BGW (Boneh-Gentry-Waters) broad-
cast encryption. It is strongly recommended that the reader familiarize him/herself with
this scheme before continuing. Despite being first published in January 2005, when we
arrived on the scene in September 2005, a research implementation had already been cre-
ated by Matt Steiner using Ben Lynn's Pairing-Based Cryptography (PBC) library, both
graduate students at Stanford. They generously provided their code, and as a result we
managed to get off the ground very quickly.

Much of our thought surrounding this scheme had to do with its overhead. Specifically,
it would require a public key vector installed on every system, containing the public key
of all users. In the paper, BGW suggest that 160-bit group elements would be sufficient
for security in the present day. If that is the case, then for a symmetric mapping, each
user's public key component would require 40 bytes. In order to support 10 million users,
the public key vector would need to be 40 - 107 = 400 MB. This is the theoretically best
possible case - it is possible that symmetric curves having these optimal properties are
not available, or that their corresponding bilinear map operations intrinsically are too slow.
The different curves currently available are discussed in section 1.3.2.

This is not too much of a barrier; we can begin deploying on a smaller scale since 40
MB for 1 million users is very reasonable, and key deployment on flash drives or smart
cards remains an intriguing possibility that opens up after proof of concept. Additionally,
we describe in section 2.4 a technique we discovered for provisioning for many but only
requiring space for as many as are actually registered.

1.3.1 Keeping State

Any scheme that accomplishes some sort of key agreement must be made up of some com-
bination of stateless and stateful protocols. We define stateless encryption to be that which

"Gaim-supported protocols/networks: AIM, ICQ, MSN Messenger, Yahoo!, IRC, Jabber, Gadu-Gadu,
SILC, Novell GroupWise Messenger. Lotus Sametime, and Zephyr.



Table 1.2: Profiles of elliptic curves supported by PBC v0.2.16. Sizes in bytes. Pairing
times averaged over 10 bilinearmap operations on a 1 GHz G4 PowerPC, 1 GB SDRAM,
OS X 10.4.6.

is possible without context of prior session communication. For example, I have all of my
friends' RSA public keys, and without any prior communication I can encrypt a message
readable only by them. Essentially, it is like a piece of addressed mail that can only be read
by whomever was intended, at any point in time.

In contrast, stateful encryption requires session history in order to send a message to the
group. One example is a Group Diffie-Hellman[61] key agreement. The initial agreement
can be seen as setting up state (a symmetric key) that is subsequently used to communicate.
However, if a group participant is absent for the setup phase, he is not able to participate
in the communication without setting up a session again.

Typically, communication under stateless schemes has greater time and space overhead.
This is balanced by its more robust properties as well as by the even greater cost that is
incurred when events happen in stateful schemes that require the reestablishment of the
group state: adding a recipient, for example.

The BGW broadcast encryption methods as described do not involve the formation of
any state, and as a result it would be prudent to incorporate a protocol for agreeing on a
session key to allow an ongoing conversation among a fixed group to take advantage of much
more efficient symmetric key encryption. This should be separate from the cryptographic
implementations and managed by a set of runtime-selectabe protocols.

1.3.2 PBC Library

The Broadcast Encryption scheme makes use of the Pairing-Based Cryptography library[54].
It is very much a work in progress, on the bleeding edge of innovation (we currently use
version 0.2.16). It provides elementary data types and operations for describing elliptic
curves and representing their group elements. It currently supports four different types of
elliptic curves, on which bilinear pairings are based, each with different properties. Work is
ongoing for generating superior curves from a standpoint of faster pairings or smaller group
elements. The current selection of curves is given in Table 1.3.2. Their pairing performance
was measured using a script included with the library (./reporttimes in particular). For
mathematical details about the underlying equations or how these curves were generated,
see Appendix D.

Type IGllX G21-|IGTI Bilinear Map Symmetric?
A 128x128 -128 45 ms /

BGN 260 x 260 -260 83 ms /
C159 40x 120 Hý120 154 ms X
C201 52x 156 H156 200 ms X
C224 56x168 168 296 ms

E 256x256 -128 316 ms /
F 40x80 F240 884 ms _
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Figure 1-1: Graph of y2 = X3 + X, an example Type A elliptic curve.

Point Compression

One feature of elements on an elliptic curve is that for a given x-coordinate, there are only
2 possible y values. See Figure 1.3.2 for an example. Thus, it is possible to reduce the size
by half by storing only the x value of the point, along with a bit to disambiguate y. There
is some small computational cost associated with having to calculate y, but the savings
in bandwidth greatly outweighs the minor cost. One note is that PBC does not currently
support compression for elements in GT, that is, elements that are the result of a bilinear
map.

Curve Generation

PBC additionally provides the ability to generate new elliptic curves that may then be
used with PKGE. In particular, pbc/ecc/<curve_type>_param. c files provide functions
for generating the curve-specific parameters required by each type. Programs are even
provided that use this functionality: pbc/test/gen<curve_type>param. c in particular.
See the example in Snippet 1.

Simple, isn't it? For more in-depth information on the mathematics behind the curve
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aparamt ap;

aparam-init(ap);
aparamgen(ap, 160, 512);

aparamout_str(stdout, ap);
a_param clear (ap);

Code Snippet 1: Generating a PBC Type A elliptic curve, from pbc/test/genaparam. c.

types and their method of construction see the PBC manual, attached in section D for
convenience.

1.3.3 Forward Secrecy

Despite being one of our security requirements, there is no forward secrecy provided by the
BGW scheme. Below I present two approaches for extending the scheme to allow for it.
One scheme is interactive, meaning that it requires action on the user's part to ensure for-
ward secrecy. The other scheme is non-interactive, meaning that the cryptography/system
naturally evolves in such a way to guarantee this property.

Interactive

We can add interactive forward secrecy by allowing asynchronous updates to the public key
vector. To begin with, we will require a minimum freshness for the system to function -
the user periodically must connect to the key distribution server and update his public and
private keys. Outside of these regularly-scheduled rekeyings, the user will have the option
of obtaining a new key as often as he desires. This allows an adaptive degree of security
across the user base, which is reasonable since the communications of ensigns may only be
pertinent at the time the transmissions are made, whereas the more illustrious officials may
desire more security and would have the ability to re-key to their hearts' content.

Despite implicitly assuming the re-keying to be an onus on the user, it would be possible
to automate such a process to be either transparent or extremely painless, and it is a more
powerful, personalized approach. For example, we could provide a utility that obtains new
keys on a daily basis, prompting the user for his PIN or whatever information is necessary.
In this way, it is no more painstaking than logging in to a workstation.

This entire scheme obviously results in inconsistent keys, but may be solved by the
update process for an identity file storing the n previous keys that the user has had. Since
they may all be timestamped, and there is a well-known forced-rekey interval, there are a
bounded number of keys that a user would store in his history. At - 50 bytes a key, it is
not a large burden.

However, a more serious problem is the scalability: it requires a completely new public
key for every interval. For a realistic system size of 10 million potential users, the public
key vector would be at least 400 MB, which is an unacceptable cost.

It is not necessary to connect to the central authority every security interval to get new
keys if a series of keys can be loaded at one time (and discarded as they expire), but this
is also prohibitive. Supposing a reasonable security epoch of one day, loading enough key



data for a year would require 146 GB. Luckily, there turned out be a superior solution,
mentioned in the following section.

Non-Interactive

A non-interactive re-key in the context of our cryptography scheme means that the system
automatically cycles through keys and is able to store enough so that the user rarely has to
retrieve new ones. If a way could be discovered that it could generate new keys in secure
way independently of any central authority, that would be superior.

However, we have discovered a way to provide forward secrecy at a cost of storing T
private keys for T security epochs, with the requirement that the keys are provided by the
central authority. The users' public keys remain the same, which makes this extension a
huge improvement over the naive method of achieving forward secrecy by duplicating both
the private and public keys. The naive scheme selects the private/public set of keys for a
particular security epoch, requiring T public key vectors, whereas our scheme requires only
an extra set of private keys. The details are included in section 2.2.3.

1.4 Summary

1.4.1 Contributions

In this thesis, we have designed and implemented a shared C library that employs the
groundbreaking 0(1) ciphertext-to-any-recipient-set broadcast encryption scheme of Boneh,
Gentry, and Waters in conjunction with novel extensions to provide forward-secure confi-
dentiality and authentication for group communications. Using this library, PKGE-enabled
applications can seal (encrypt and sign) messages in such a way that the ciphertext may
be unsealed (decrypted and verified) only by those in the specified recipient groups.

Developing such a system required us to solve a number of engineering challenges. Some
of the solutions can be considered as "novel extensions":

Forward secrecy

Add forward secrecy to the scheme for a cost of T private keys for T security epochs.

The naive way of adding forward security is to duplicate the private and public keys,
essentially creating T full systems, associating each one with a particular security epoch,
and iterating through them as convention dictates. For millions of users, our public key
grows to gigabytes in size, so this solution is impractical. We have discovered a small trick
that allows us to duplicate only the private keys and not the user's public keys.

Optimized session protocols

Sidestep the majority of costs in computation and bandwidth.

PKGE implements three modes of operation (protocols). The most basic is a stateless
mode, in which each sealed message carries a full cryptographic header that allows it to be
unsealed by any authorized recipient, before the expiration of its security epoch, independent
of any other message.



Second is the sessions protocol which, transparently to the client application, adds
session-establishment information to the standard stateless message. In the session pro-
tocol, the encryption/decryption keys are hashed and reused; hence, only the first session
message incurs non-trivial processing time. Moreover, once the session is acknowledged by
all intended recipients, the BGW headers are removed from messages. This substantially
reduces the bandwidth overhead.

Third is the optimistic protocol, which is identical to the sessions protocol except
the BGW header is sent once and is henceforth omitted. The optimistic protocol assumes
reliable delivery. The optimized messages contain session ids to identify their sessions and
the corresponding keys.

Cheap over-provisioning of system capacity

Support up to 232 users for resource costs proportional only to the number actually registered.

The BGW cryptography scheme does not allow for changing the capacity of the system
after the setup phase, which puts the administrator into a quandary: by how much should
he over-provision the system? Raising the ceiling on the number of users who may regis-
ter offers more flexibility and fault-tolerance, but every extra user requires more up-front
resources in terms of public key elements that all users are required to store.

We have developed an efficient solution to this problem by using a block-based public
key (with, for example, 64 elements per block), and calculating which elements are needed
for the current membership. It turns out you can get away with only generating 3 public key
elements per new user5 , allowing the administrator to provision the maximum supported
size (232 users) without worrying about unnecessary resource drain.

Chosen Ciphertext Attack (CCA) Security

We outline a design and proof to upgrade the security from CPA to CCA strength (over the
standard broadcast encryption).

BGW is proven to be secure against Chosen Plaintext Attacks. We outline an approach
for achieving security against Chosen Ciphertext Attacks by combining BGW and authen-
tication. This approach is simpler than the extension proposed by the authors of BGW.
However, our approach is still a work-in-progress and is not part of the current PKGE
implementation.

1.4.2 Getting around

In Chapter 2, we begin describing the system by considering the process that a message goes
through to be secured. We get more and more in depth, even providing pseudo-code for our
protocol procedures. The contributions mentioned above are described in more detail in
their respective sections: forward secrecy in 2.2.3, the protocols in 2.3, the over-provisioning
trick in 2.4, and the CCA upgrade in 2.2.4.

Once the design is fully specified, Chapter 3 details our implementation, giving the C
code for functions that implement core functionality, with associated narratives to explain
any tricky parts. This is useful for developers, and it helps to make the connection between

5The full public key is 2N elements long, for N users.



our specification and the real world. In the final chapter, we discuss tests to evaluate the
performance of PKGE in terms of computational load and overhead in message size. The
Appendix contains a wealth of useful information, including a glossary, a manual for system
administrators, a manual for developers looking to integrate with PKGE or choose a new
elliptic curve or cipher to use, and even a checklist for great new features on the horizon



Chapter 2

A Design Blossoms

Here we detail the design of the Public Key Group Encryption service. It is a versatile,
robust toolkit designed to be the panacea for securing communication within any size of
organization. More specifically, it is a shared library that abstracts away incredible crypto-
graphic complexities from application developers to provide a simple API that can encrypt
and authenticate messages to arbitrary groups of users, addressed using only a textual name
present in the users' X.509 certificates.

First we discuss the cryptographic techniques used to encrypt and authenticate mes-
sages. We also justify our method of accomplishing a secure "encrypt-then-sign" and offer
overviews of our forward secrecy and CPA--CCA extensions. After, we specify stateful
protocols that may be layered on top to accomplish wondrous savings in computation and
bandwidth. Lastly, we look at our solution to the challenge of managing a public key vector
that should have the capability to scale to enormous sizes.

It is strongly suggested that the reader first review the Boneh-Gentry-Waters broadcast
encryption scheme. Familiarity is assumed in a number of places, the forward secrecy and
CPA--CCA sections in particular.

2.1 Stateless Group Encryption and Authentication

We begin with the particular cryptographic technologies that will ensure a messages confi-
dentiality and authenticity. Fundamentally, three primary phases of cryptographic process-
ing are required to secure a message (shown in Figure 2-1). After covering this sequence,
we examine the various decisions that resulted in this data flow and discuss our forward
secrecy and CPA-CCA extensions in the next section (2.2).

First, the user selects a set of recipients and the security epoch (or timestep) to address
the message to. These are the necessary inputs to select the correct BCE keys and calculate
the header + broadcast key.

The second stage is to symmetrically encrypt the message with the broadcast key. We
use AES, and to obtain a compatible key we use the PKCS#5 key derivation algorithm on
the broadcast key. The header calculated in stage 1 is appended to the encrypted message,
along with the group and appropriate timestep.

For the third, and last, stage, the encrypted message and its headers are signed, and the
signature is affixed. After this, the message is ready for delivery! Let's cover each of these
stages in a bit more detail. A basic overview is given in Figure 2-1, although it is important
to note that it offers only a simplistic view compared to the complexities seen later on.
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Figure 2-1: A block diagram showing some of the stages involved in sending a PKGE
message.

2.1.1 Stage 1: Broadcast Encryption

Messages are encrypted by choosing a random value t and calculating the pairing e(gn, gl)t
over a user-selectable elliptic curve. The bytes from this element, combined with 8 bytes
of random salt, are fed into the PKCS#5 salt-and-stretch key generation process which
outputs a valid OpenSSL user-configurable symmetric key and initialization vector. These
are used to encrypt the message. The salt is sent publicly with the message, along with a
header calculated using an encryption product that includes individual recipients associated
public key elements. This header allows the user's recipient list to calculate the random t
selected, using their private key, and then they follow an analogous process is followed to
accomplish decryption.

The elliptic curves used to compute encryption and decryption products under the BCE
scheme are elements of the PBC library. Recall the characteristics of the various choices,
given in Table 1.3.2. Despite the ostensible buffet of choices, we really don't have much
of one. However, it is possible to generate any pairing configuration using PBC tools (see
1.3.2) to use in the PKGE configuration.

2.1.2 Stage 2: Symmetric Encryption

Once the broadcast encryption scheme outputs a key, along with a header that allows any
other recipient to calculate that same key, we use the key with a symmetric encryption
algorithm to actually accomplish confidentiality. To use the broadcast key with our sym-
metric cipher of choice, AES, (section E.1.1), we need to pass it through a key derivation
algorithm.

First, we use OpenSSL's cryptographically-secure pseudo-random generator to harvest
8 bytes of salt. Then we send the salt + broadcast key through OpenSSL's PKCS#5 key
derivation algorithm (section 2.2.5). The output is an OpenSSL-compatible symmetric key
plus an initialization vector.

The time has come: we encrypt the message, along with the sender's PKGE id (see sec-
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tion 2.2.1 for the reason), using AES-256 in CBC (cipher block chaining) mode, affixing the
group, timestep, broadcast header, and salt. Any valid recipient can use that information
to derive the same AES key and thus read the message.

2.1.3 Stage 3: Signing

To digitally sign a message, the SHA-1 digest is taken and processed using a 224-bit ECDSA
key, authenticated to others by their X.509vl certificate. Each certificate contains the
user's "Common Name", the textual representation for a user that is the currency of group
membership operations. It binds this name to their public ECDSA key that others may
use to verify their signature, as well as their PKGE unique identifier which is exactly the
id referenced in the BGW scheme.

2.2 Assorted Topics in Cryptography

The previous section gave a data-flow overview of how we use cryptographic techniques to
encrypt a message. There are a number of issues relating to our cryptography use that do
not fit well into such an organization, so this section is for in-depth discussion, justification
for decisions, description of extensions, etc.

2.2.1 Order of Sign and Encrypt

The order of sign and encrypt (and the details therein) are a prickly subject that many a
professional cryptographer has gotten wrong.

Charged with the task of putting together a confidential, authenticated message using
the "sign" and "encrypt" primitive operations, how would you begin? This is an age-
old problem in cryptography where nothing is as simple as it seems[31, 33] and there are
many papers debunking previous proposals[38]; even illustrious internet standards can't
seem to get it right[39]! The current (ie. correct!) solutions boil down to identifying the
sender/signer on both sides of the encryption curtain. Mr Davis identifies the "secret sauce"
of schemes that work in his comprehensive report on the subject:

... a common feature: when signing and encryption are combined, the in-
ner crypto layer must somehow depend on the outer layer, so as to reveal any
tampering with the outer layer.[39]

We take the encrypt-then-sign approach, identifying the sender on the outside of the
encryption, so recipients know whose public key they must use to verify the signature, and
on the inside so that the message may not be surreptitiously forwarded.

For a while we considered the convention that the sender must be included in the
recipient list for a message to be valid (instead of including the sender id separately on the
inside of the encryption). It turns out this is a valid solution to the problem of outsiders
surreptitiously forwarding a message as their own, but malicious group members would still
have that power. In the end, we decided to simply include the sender id on the inside of
the encryption, due to the increase in security for little overhead.

2.2.2 Overhead of Broadcast Encryption

BGW correctly note in their paper that "for any large number of receivers, decryption time
will be dominated by the ISI-2 group operations needed to compute p = HjiCs, ji gn+l-j+i."



However, they go on to observe that had the receiver previously computed w = (decryption
product for S'), he could calculate p with just 6 group operations(add/remove a user), if S
and S' differ by 5 group operations.

In other words, beginning with user i's decryption product w for user set S', multiplying
by gn+l-j+i effectively adds user j to S' and multiplying by the inverse removes him. Again
we find that caching can save immense amounts of computation.

2.2.3 Forward Secrecy

Now we describe our novel extension of BCE to support non-interactive forward secrecy at
a marginal cost of only 1 private key per security epochl2. The birds-eye view is that each
user will get many private keys, each corresponding to a distinct security epoch. Keys are
deleted as their security epoch expires, and it becomes impossible to unseal messages sealed
with that epoch's set.

Recall from the BGW BCE scheme that the system wide public key has the following
form:

PK = (g, gl, ... , gn,+2, --- 2n, g9) E G 2n +1

where gi = g(a') and -y are chosen randomly. The calculation to encrypt a message to a user
i requires gi and g'. To decrypt, a user needs his private key di = g7 = gaz.

We introduce a new series of variables, appropriately named 7"T and consequently modify
the encryption calculation, for the security epoch T, to use glTT. The math works out so
that users may decrypt these messages by using their corresponding private key ga'yTT. A
consequence of this scheme is that users are given keys in batches - the maximum amount
of time a user may encrypt a message to the future is referred to as the lookahead. This
defines the number of T's a user is allowed to possess ahead of time.

Thus, we generate many random -'s, associating each of them with a security epoch,
or timestep. This is the maximum period of time that a message remains vulnerable to
key compromise-if an adversary compromises a key right before the end of a timestep, he
can read messages sent at the beginning, but as soon as the timestep elapses, they become
sealed forever (unless the user stored them in plaintext!).

To restate, with an endless sequence of random T's, we calculate users' private keys for
each timestep and require that their old keys are irrevocably deleted once their timestep
expires. That leads to a new version of the v public key element and private keys: they both
become arrays with one element per timestep, swapped out automatically by the system.
Specifically, for a sequence of random -r E Zp = (T, T2, ...)

V =glr , di,t -=g"Tt

Key Roll-over Upon expiration of a security epoch, the service begins using the new
set of keys and invalidates all existing sessions. However, in order to avoid the problem
of sending a message at the end of one epoch and having it rendered unreadable due to
expiration a moment later, we introduce a window. For a certain period of time at the start

'A security epoch is the discrete unit of forward secrecy - messages are only rendered forward secure
after expiration of the security epoch they are sealed to.2We do not prove our result formally here, as the focus of this thesis is the implementation. It is destined
for a future publication.



of an epoch, the previous epochs keys are kept for the purpose of unsealing but may not
be used for sealing new messages. After this (short) time period, the previous epoch's keys
are deleted. Thus we define the key roll-over process to be that of safely switching keys to
the subsequent security epoch while using a window to fend off any problems inherent in
attempting a synchronous global swap between incompatible keying material.

Updates Forward secrecy comes with a small price tag: from time to time users must
reconnect with the central authority to retrieve a new set of keys. This may be done at any
time, preferably prior to a user running out of keys. We introduce another timing parameter
in conjunction: lookahead. This refers to how far ahead of time a user is allowed to possess
keys.

An example set of forward secrecy timing parameters might be a timestep of one day, a
window of 10 minutes, and a lookahead of 1 year.

2.2.4 CPA -+ CCA

The authors of BCE prove in their paper[35] that their scheme is CPA-secure (ie. secure
against the Chosen Plaintext Attack) and fully collusion-resistant. This means that if you
are not an intended recipient of a message, there is nothing you can do to read it. However,
we desire the stronger promise of CCA-security (Chosen Ciphertext Attack). They do
propose a CCA extension in their paper, but it requires integration with an IBE (identity-
based encryption) system, which was one voyage of complexity we were unwilling to embark
on.

In the context of our grander scheme, it is possible to achieve this by using a combina-
tion of the authentication mechanism, the requirement that the message sender is always
included in the recipient set for a message to be valid, and including a HMAC (Hash Mes-
sage Authentication Code) of the plaintext contents of the encryption, recipient set, and
header, as an integrity check.

The proof works by showing that a CPA adversary can successfully simulate the system
that the CCA adversary tries to break. Since the system was shown to be CPA secure,
and our proof shows that the CPA adversary can interact with the system in such a way
to be indistinguishable to the real system as far as the CCA adversary can tell. Thus, if
the CCA adversary can be fooled into thinking the CPA adversary is actually the system,
we are guaranteed CCA-security. Remember: on the internet, no one knows you're a CPA-
adversary. O

2.2.5 Key Derivation

Key derivation is important for several purposes. Most prominently, it is used to derive a
properly formatted AES key usable by OpenSSL from the BCE-generated bytes. In other
words, the header is used to calculate the decryption key, which is then run through the
derivation algorithm to get something to use with AES. Quite involved.

It is also used to derive a key and initialization vector (IV) from the user-provided PINs,
necessary to decrypt their keys from disk. This is done in crypto. c:passwordto_key
function, using EVP_BytesToKey, an abstraction that implements the PKCS#5 (Password-
Based Encryption) standard[47]. In particular, using a configurable hash function and with
a specifiable salt and number of iterations, it takes the byte-string password and follows
this procedure (from the OpenSSL documentation):



name title localityName uniqueldentifier
givenName description stateOrProvinceName serialNumber
surName organizationalUnitName countryName dnQualifier
commonName organizationName
initials

Table 2.1: Fields available for application use in X.509vl.

notBefore pubkey version
notAfter signature

Table 2.2: Fields responsible for functionality in a X.509vl certificate.

The key and IV is derived by concatenating D1, D2, etc until enough data is
available for the key and IV. Di is defined as:

Di = HASHcount(D-1)lIdatallsalt)

where II denotes concatentaion, Do is empty, HASH is the digest algorithm in use,
HASHl(data) is simply HASH(data), HASH2 (data) is HASH(HASH(data))
and so on.

The initial bytes are used for the key and the subsequent bytes for the IV.

Of note is that since the security of the scheme comes from the ability of all intended
recipients (and no one else) to calculate the same bytes using BCE, the password-derivation
is simply a known protocol for massaging the BCE bytes into something suitable for
OpenSSL's AES to use. As such, the salt, which could itself act as a password, is sent
in the clear along with the message so that the recipient, upon calculating the BCE key,
can use it to derive the same AES key.

2.2.6 Authentication

X.509vl certificates are issued to all users as they are added to the system. The available
fields for use are shown in Table 2.1. Additionally, the certificates' correct functioning relies
on the fields in Table 2.2.

PKGE uses the commonName field as the textual human-readable/human-rememberable
identifier, and uses the certificate to bind it to the PKGE id, stored in uniqueIdentifier.
Users are added to the system using a tab-delimited user information file. The format of
the file is as follows: on the first line is the name of the CA. On the subsequent lines lie the
information for users 1..n according to the format given in Table 2.2.6.

Users that do not have information entered for them in the file are left uninitialized.
Users may be added at any time, and will be assigned sequential PKGE ids.

SurName GivenName CommonName Title GroupName

Table 2.3: PKGE accepts tab-delimited user information in a text file.



Signature Algorithm

OpenSSL 0.9.8 is the first version of OpenSSL that supports ECDSA[30] signatures. We
chose this algorithm due to its smaller key sizes - signatures are . 60 bytes instead of the
equivalent-security ; 256 bytes provided by RSA signatures. Additionally, despite elliptic
curve operations in general taking a long time, the fact that keys can be much shorter causes
the processing times to be roughly equivalent[65].

OpenSSL provides a bevy of curves that signatures that can be used, controlling the sig-
nature size, processing time, and security properties. Since the descriptions that OpenSSL
provided were Greek to me, I profiled and compared them. They are listed along with their
resource demands in Table J.1.

Hash Function

A X.509 certificate is signed by taking a digest of all of the bytes that make it up (well
known byte structure is part of the standard). This much-smaller set of bytes is signed.
The hash algorithm that takes the digest is selectable, but OpenSSL supports only SHA1
in conjunction with ECDSA. This is potentially problematic due to the ability to to gen-
erate different certificates with equivalent SHA1 digests[63]. OpenSSL supports SHA-256,
so it is likely that the ability is already present to upgrade to a more secure hash function.
(It isn't switched already because signing and digests come as a pair, e.g. we are using
ECDSA_withshal 0(), and I imagine it would be simple for someone to add the extra permu-
tation.) At any rate the risk is reduced to essentially 0 by simply doing a sanity check on the
certificate - a discovered collision would almost certainly have gibberish in the certificate
fields. Additionally, if we require that the interval of validity (e.g. timeAf ter-timeBef ore)
is exactly the "lookahead" of the system, the probability really is completely negligible.

2.2.7 Rolling Admission

One item that should be explicitly addressed is the incremental nature of the system growth:
users are admitted on a rolling basis. We do not expect the administrator to know all
possible users at creation time, and requiring a static user system membership would be
excruciatingly stifling.

However, this complicates the process of communication - you cannot possibly (non-
interactively) verify the signature of someone that had joined the system after you. This
would require preplaced knowledge binding his identity to his key (non-interactive), which
is not possible to know in advance of him signing up.

It turns out that it was not our intention for everyone to store X.509 certificates (al-
though that decision is up to the administrator) due to prohibitive space costs. Instead,
PKGE will provide functionality for the client application to use for either implementing its
own certificate-exchange mechanism or integrating with a general certificate management
framework3 . Such a mechanism is extremely common for any PKI-enabled application, and
adds little complexity. The certificate may be kept for the duration of the communication
and then deleted (or kept permanently as a type of long-term cache).

The take-away for this section is that PKGE explicitly allows and encourages dynamic
exchange of certificates as a mechanism to reduce dependence on connected operation. We

3We recommend Mozilla NSS for this purpose: http://www.mozilla. org/projects/security/nss.



feel it is both a requirement to achieve reasonable scalability as well as a strong promoter
of versatility.

2.3 Stateful Protocols

Until now, the Broadcast Encryption has been described as a stateless scheme requiring
nothing but pre-placed data to decrypt any message you happen to come across (as long as
it's addressed to you, of course!). It turns out you can do a lot better by building state and
relying on the context of a session to avoid retransmitting and/or recalculating things you
already knew.

We developed two very efficient protocols, one that is guaranteed to work over any sort
of lossy connection, e.g. UDP, and one that is guaranteed to work on orderly connections,
e.g. TCP. Henceforth we refer to the basic Broadcast Encryption scheme as the stateless
protocol.

The overarching goal of the two stateful protocols is to make an association between a
particular decryption key and a unique id. Once this association is made by all recipients,
simply prefixing encrypted bytes with this id is enough to indicate which decryption key
recipients should use. Since elliptic curve cryptography is only used in the calculation
of the symmetric encrypting/decrypting key, this completely circumvents the most time-
consuming calculations. Additionally, this saves an enormous amount of bandwidth because
instead of having to include a 2-element header along with an encrypted AES key, we simply
need to include some identifier that allows recipients to look up the already-calculated keys.

To do this, we introduce the extra structure of sessions. A session caches information
about a particular encryption or decryption calculation, so that it may be byte-copied to
outgoing messages or provided to the AES decryption. This is immediately different from
the stateless approach: the stateless procedure generates a new encryption key for every
message using a random parameter (t in the paper). A session saves the message header
and symmetric key generated and reuses them as long as possible. Note that the longest-
lived it can be is one (forward secrecy) timestep. As a result, any session-using protocol
only requires significant computation from each user once for any particular group he is a
member of.

The two protocols we describe differ only in when they stop including all of the ses-
sion information in the header, prefixing messages exclusively with a session id. One is a
pessimistic protocol: it waits until it sees equivalent headers from all members of a group
before switching to the session id. The other is optimistic, sending a header exactly once
before switching. There are a large number of security and fault-tolerance details that are
required to make these simple protocols robust. Additionally, we offer computation and
space complexity measurements achieved using these protocols under various conditions.

2.3.1 Overview

Stateless

This protocol is the basic operating mode of the BCE library. All stateless messages come
with the recipient set and timestep a message is encrypted for, according to the forward
secrecy scheme in section 2.2.3. The timestep is abbreviated ct_msg in code snippets, short
for "canonical time", in the sense that it is a timestamp that uniquely identifies a security
epoch. Additionally, the sender id appears at the front of the message so that the signature



may be verified before the decryption is attempted. This is invariant across all the protocols;
it is not mentioned again.

Sessions

As previously stated, the goal is to attach single numerical identifier to the message in
order to indicate to all recipients which key should be used to decrypt. To accomplish this
reliably, all recipients must agree on an association between the session id and the locally
cached decrypting information, and the fact that this association has been made by all
recipients must itself be made known.

Our solution calls for senders to make up a new nonce, called the session id, s_id for
short. This would be included on the inside of an encrypted message, sent with full headers.
When recipients receive this, they cache the header and resulting decryption key in a table,
associated with the session id. Each recipient keeps track of which group members he has
seen send this header, checking them off a list when they send a message to the group.
That's it; it's that simple.

Optimistic

The optimistic mode follows the same game-plan as the session protocol described above.
The difference is that here the library assume that the act of sealing a message ensures that
the message will reach all of the intended recipients. This presupposes that the message is
sent to all of them, and that it is not lost in transit. For some applications, this is a good
assumption, and for others it is terrible. At any rate, after a single header has been sent
out, the switch is made to session id's only.

2.3.2 Details

Actually, this is one case where the devil is in the details. Here is a taste of the problems
that lie just below the surface of the simplistic explanation given above:

* Session lookup

* Hiding the group

* Messages sent concurrently to the same recipient set

- Agreeing on one

- Disambiguating

* Error conditions-recipient receives a session id of which he has no record

* Collisions between session ids

Session Lookup

An observation: the encryption key depends on the set of recipients and the target decryp-
tion timestep. Thus, a session should be easily findable given this information; we enter it
in the session table by hashing the recipient set in conjunction with the desired timestep.
Also, since a session must be found based only on the session id when receiving messages,
it is entered twice in the table.



is Atproposal = Btproposal ?

yes / \ no

then return: Aidproposer < Bidproposer Atproposal > Btproposal

Figure 2-2: The total ordering of sessions A and B. The newer timestamp wins, with more
senior id as a tiebreaker.

Hiding the Group

Technically speaking, switching to the session id does nothing for us in terms of security,
since the whole header (including the recipient set) has already travelled in the clear. How-
ever, in the usage scenarios, it does make sense to broadcast such information as little as
possible. As a result, it is desirable to send the private id in the encrypted part of the mes-
sage when full headers are sent, so that upon switching, no one outside of the recipient set
could know the (session id - header) association. It is no accident this detail is observed
first - the session id being encrypted carries implications down the road.

Agreement

When designing peer-to-peer protocols, it is necessary to take "simultaneous" actions into
account especially since the large latency between users of the system effects a large temporal
window in which actions are "simultaneous". If two users send messages to the same group,
they will both generate their own headers and session ids. What is one to do when faced
with two competing sessions? He has to decide.

By imposing a total ordering on sessions, everyone has a deterministic method for deter-
mining the "winning" session when given a bevy of choices. In particular, for sessions A and
B, A preceeds B (A -< B) if time(A) > time(B), where time(A) is the creation timestamp
for header A: we take the most recent header as the "winner". If the timestamps are the
same, there is a tiebreaker userid(A) < userid(B): if the user id of the proposer of A is
less than (senior to) that of B, session A is declared the winner. A succinct summary of
this policy is given in Figure 2.3.2. For completeness, we also specify: VS : S -< null.

However, the "losing" session is not simply discarded, due to the possibility of receiving
future (header-less) messages with that session id. Instead, we employ the classic technique
of hash table chaining - the buckets in the session table actually contain linked lists, with
the "best" session at the head. This way, when the user wants to send a message to a group,
he simply calculates which bucket to look in, picking the session found at the front. When
receiving a message, he looks for a corresponding session, going down the list until he finds
one that matches. If none matches, he inserts it into the list.

This is a simple protocol for ensuring that users always use the "best" session, while
agreeing on exactly which one that is.

Disambiguation

Suppose we have just received two messages sent to the same recipient set. They both
have headers, and propose different session ids. This poses no difficulty for the agreement
algorithm, and I calmly calculate both decryption keys, store both headers under their



session ids, and begin my two-element linked list at the hash bucket serving that group,
secure in the knowledge that everything will turn out alright.

Then things get tricky. Another message comes addressed to the group (with the full
header), and I am already wheezing from the effort of calculating those keys the first time
- I definitely don't want to go through that again! But, which session do I use? Recall that
the session id is encrypted for security reasons, so I have no way to decide which session to
associate this message with.

To solve this situation, we designate a second session id: the public session id or pubid
for short. This is a nonce that accompanies headers, exactly for the purpose of accomplishing
this disambiguation.

Collisions

Another class of serious faults that must be considered are collisions for the identifiers used
for hash table insertion. In particular, the private session ids and the {group, timestep}
hashes used to insert sessions into the table are bounded size and thus different sessions
may randomly be identical in either property despite being unrelated. Let's look at the two
cases.

privateid Session ids are chosen at session creation completely at random. If a new
session is created with a randomly chosen private id that already exists, it should be re-
chosen. However, if a message arrives with a private id that belongs to a different group
altogether, we have to provision for disambiguating future messages prefixed by nothing but
a private id.

One possible solution to the private id collision is to establish a new session - the
session agreement protocol causes all participants to agree on the newest proposal, so you
could certainly suggest a session id that did not conflict. However, we decided that this
situation is too unlikely(Figure 2.4) to justify the amount of extra mechanism, and we take
the brute force approach of attempting to decrypt with each session that has a matching
private id. This is slow, but correct and unlikely to ever be encountered.

hash(group, ct_msg) To find a session in the table based on the group and timestep it
is addressed to, we take a deterministic hash. In the previous section (2.3.2), we saw
how sessions could collide due to being addressed to the same group and timestep - this
situation is different because it is a technical failure. It results from the hash function being
unable produce different output for different input, rather than the semantic challenge of
how to handle the concurrency inherent in our usage model. In fact, this is more serious
than the private id collision because the private ids are identifiers without meaning, whereas
this hash is strictly determined by the parameters of a message.

As already observed, these collisions are exceedingly unlikely (Table 2.4), so it makes
sense to use the simplest mitigation procedure. The important thing is that the result of
such a collision is well-defined and correct, rather than causing some sort of catastrophic
failure. Thus, our approach is simply to store collisions in the same session chain exactly
as the agreement procedure (section 2.3.2) dictates. Whenever we retrieve a session, simply
verify the group and timestep is the one requested, which is information we are guaranteed
to have since they serve as the hash function input.



# Numbers: N
# Pairs: (N) = (N - (N - 1))/2

Pr( 1 pair is equal ): 1/232

# Pairs required for a Pr( collision ) of 1%:
1 N 2 -N = 0.01 ==- [N] = 9269

232 2

Table 2.4: Number of random 32-bit numbers generated before reaching a 1% collision
probability.

Error Conditions

These protocols must overcome the same protocol fault situation: receiving a message
prefixed only by a session id, of which it has no record. This situation can only be the
result of some sort of fault, such as a crash or other loss of host state, or perhaps (for the
optimistic protocol) a lost packet. It should be noted that an obviously correct, if mildly
inefficient, solution is to indicate that the client must leave and rejoin the group, allowing
the standard group join procedure to take care of things. We try to do better; there are
many courses of action we considered; here are two.

1. Passive: Do a lookup for that group/timestep: if it exists, set a force_header flag; the
next message sent from the user will cause everyone to switch to that session header
via the normal session agreement protocol. If it doesn't exist, then a new session will
be started on the next message anyway.

2. Active: Return an error code from unseal, and either have the user call a geterror msg
function or register a callback that accepts data to send. A "help" message is sent to
the group, and they reply with the header.

We chose the active solution for two reasons. First, it is extremely extensible: any
message authored by the protocol can use the channels set up by this error handling
method. Second, it explicitly specifies an error recovery process the user application should
go through to be included and be able to decrypt the message, assuming the un-decryptable
message is saved until the user gets back in the loop. Third, and most importantly, the first
solution does not allow decryption of the message, since it is based on establishing a new
session, known to this user, rather than recovering the current one.

2.3.3 Protocols: Properties

Transparency

One constraint on our design for the protocols was transparency. The library should be
able to optimize and have the protocols work without the user even realizing it, except for
the leaps in speed and reduction of required bandwidth. As a result, we rely on attaching
messages to the user's data, rather than taking an active approach and sending protocol-
specific ourselves (or having the user send on our behalf).



Session Structure

Table 2.5: Structure of the session object.

Incremental Deployment

The sessions protocol is a big win. It guarantees that a packet header only gets eliminated
after all members of the group have seen it, by keeping track of the set of recipients that
have also sent a message. This in itself is not impressive. However, it has the feature
of incremental deployment: even if the session has not switched to the slim header, to
generate the header, each sender has only to copy the bytes on top, from the saved session.
Additionally, receivers that are already in the know have saved the BCE key. Thus, while
each message remains individually unsealable, (ie. stateless) all the group members may
already reap much of the benefit.

2.3.4 Protocol Pseudocode

This is the section that describes the completed protocol in all of its nuanced glory. We
put together the cryptography techniques, error handling, and stateful optimizations to end
up with the beastly procedures given below. To assist in understanding we break up the
functionality into logical pieces, separating the encryption and authentication stages, as
well as the Get and Put interactions with the session table, as these must handle a number
of error conditions.

First, for reference, the structure of the session object is given in Table 2.5. Then we
develop the algorithms, assuming the whole process is kicked off by a user wanting to send
a message plaintext to a group group, available until the timestep indicated by ctmsg has
expired. These are complex procedures, incorporating everything covered up to this point.

The authentication is layered cleanly above the encryption. The error conditions (session
agreement, private id collision) are handled by detecting the error on insertion to the hash
table. An error is signalled and a message entered into an error table, to be sent. The error
message is authenticated, and the error id is checked for and handled during decryption.

For interacting with the session table, we use functions that wrap the standard Get,
Put, and Remove primitives, for the purposes of handling collisions and disambiguation
as described previously. We call the wrapper functions Safe-Get and Safe-Put. We omit
Safe-Remove because it is not important for correctness. Additionally, these functions have
magical access to the session hash table - we do not bother to show mundane data passing
or error handling.

group The recipient set
ctmnsg Timestep encrypted for ("canonical timestamp")
header BCE Header {Co, C1, ctmsg}
key Decryption key
pub_id Public session id
priv_id Private session id
next Next session in the session chain (this -< next)
prey Previous session in the chain (prev -< this)



Algorithm 1 Seal a message.

SEAL-MESSAGE(plaintext, group, ct_msg)
1 encryptedmsg +- ENCRYPT-MESSAGE(plaintext, group, ctmsg)
2 signature -- SIGN(encryptedmsg)

3 senderid <- LOCAL-ID()
4 sealedmsg +- {encrypted.msg, signature, sender_id}
5 return sealedmsg

Algorithm 2 Unseal a message.
UNSEAL-MESSAGE(ciphertext)
1 senderid -- POP(ciphertext)

2 signature - POP(ciphertext)
3 return DECRYPT-MESSAGE(ciphertext)

Algorithm 3 Encryption subroutine.

ENCRYPT-MESSAGE(plaintext, group, ctmsg)
1 myid +- LOCAL-IDO
2 S +- SAFE-GET(group, ctmsg)

3 if S NIL then
4 ct +- ENCRYPT({plaintext, myid}, key[S])

5 return {ct, priv_id[S]}
6 else
7 header, key +- CALCULATE-HEADER(group, ct_msg)
8 S +- {group, ctmsg, header, key, RAND(), RAND()}

9 SAFE-PUT(S +-< privid[S])

10 SAFE-PUT(S +-< {group, ct_msg})
11 ciphertext +- ENCRYPT({plaintext, privid[S]}, header[S])

12 return {ciphertext, header [S], group, pubid[S]}



Algorithm 4 Decryption subroutine
DECRYPT-MESSAGE(idsigner, ciphertext)

1 id +- PoP(ciphertext)
2 if PUBLIC-ID?(id) then
3 header, group +- PoP(ciphertext)
4 if id_signer = SENDER-ID(group) then
5 return Ikey +- CALCULATE-KEY(group, header)
6 plaintext +- DECRYPT(ciphertext, key)
7 plaintext,privid +- PoP(plaintext)
8 S +- {group, ctmsg, header, key, pubid, privid}
9 PUT(S -< priv_id)

10 PUT(S f-< {group, ct_msg})
11 return plaintext
12 else if PRIVATE-ID?(id)
13 privid +- PoP(ciphertext)
14 S *-- SAFE-GET(privid)

15 plaintext +- DECRYPT(ciphertext, key[S])
16 return plaintext
17 else if ERROR-MESSAGE?(id)
18 asked_for +- PoP(ciphertext)
19 S +- LooKuP(asked_f or)
20 REGISTER-ERROR(header [S])
21 return 1
22 else
23 return I



Algorithm 5 Safe-Get & Safe-Put: Wrapping a hash table.

SAFE-GET(group, ct_msg)
1 h <- HASH(group, ct_msg)
2 S <- GET(h)
3 while group[S] 4 group[S']
4 do S +- next[S]

SAFE-PUT(S --< {group, ct_msg})

1 h ý- HASH(group, ctmsg)
2 S' <- LOOKUP(h)
3 if S' = NIL then
4 PUT(S)
5 else if S -< S'
6 REMOVE(h)
7 PUT(S *- h)
8 next[S] <-- S'
9 prev[S'] +- S

10 else
11 while S' -< S
12 do S' +- next[S']
13 next[S] ÷- S'
14 prev[S] +- prev[S']
15 next[prev[S']] +- S
16 prev[S'] +- S

SAFE-GET(privid)

1 S +- GET(privid)
2 if S -- NIL then
3 return NIL

4 else
5 return S

SAFE-PUT(S <-< priv_id)

1 S' -- SAFE-GET(privid)
2 if S' = NIL then
3 PUT(S +- privid)
4 else
5 REPORT-ERROR(PRIV_IDNOTFOUND,
6 priv_id)



Code Snippet 2: Example of memory mapping a file using Win32 API.

2.4 Big Public Key Optimization

2.4.1 Objective

In order to support a possible user base of up to - 10million, we need a solution to storing
all of the public key information which is theoretically lower-bounded by . 20 -N[35] for
N addressable users. It must require a not-unreasonable amount of system resources to
maintain and access, scaling gracefully to gigabytes of public key data. It should have the
following properties:

* Fast access, read only

* Requests likely repeated

* Caching should make this point immaterial to disk representation

* Medium speed for first-time access acceptable

* Random access

Given the scenarios we are designing for, it seems most prudent to optimize for objectives
in this order:

1. Repeated read access

2. Memory use

3. First-time read access

4. Size on disk

2.4.2 Candidates

Doing a little bit of research into the realm of representing large amounts of data on disk
yielded a few observations.

Firstly, memory-mapping large files is an excellent way to go; from the standpoint of
usability it is much easier to randomly access data in a file without having to rewind, seek,
and read for every piece. This is wonderful because our data usage pattern is effectively
random access. Additionally, it is much more efficient than any general approaches since
the OS is at liberty to play any sort of performance tricks it wants. Snippet 2 shows how
to accomplish this, using the Windows API.

Another candidate that emerged was span tables. These are effectively lists of "windows"
into the file. They are named as such because each node in the list represents a span of
data in the file. One archetypal span structure is shown in Snippet 3.

I mention these because they are interesting and possibly useful to others, but a more
critical observation is that 32-bit Windows supports a maximum file size of 4 GB. This

HANDLE hFile = CreateFile(filename, GENERIC-READ, FILESHAREREAD, 0,
OPENEXISTING, 0, 0);

hMemMap = CreateFileMapping(hFile, 0, PAGEREADONLY, 0, 0, 0);
length = GetFileSize(hFile, 0);
UnmapViewOfFile (filebuffer);

MapViewOfFile(hMemMap, FILE_MAP_READ, 0, baseoff, mappedlength);



struct span
{
unsigned int buffer; /* identifies the references */
unsigned int offset; /* start of data range this span covers */
unsigned int length; /* length of data */

span *prev, *next; /* linked-list ,/

Code Snippet 3: A span table node.

0 i (N + 1)-i (N + 1) + i N

Figure 2-3: Diagram of a partially filled public key vector, for i registered users.

basically kills the idea of relying on a single file to store all public key information. So, left
with the task of assembling an (incrementally growing) array, I proposed the following.

2.4.3 BigPK: A Scalable Block-based Public Key

We settled on a configurable block-based public key. On system creation, the number of
elements per block is specified (elements_per_block in default. cfg). Thereafter, any
given element can be located by generating the filename (<block\#>.pk), and jumping
straight to an offset in that file, based on the configuration parameters.

2.4.4 Incremental Deployment

Additionally, one observation we made is that when adding a user to the system, only 3
more group elements are necessary for the user to encrypt or decrypt, assuming the elements
are already present for all preceding users to do so. A diagram of this is given in Figure 2-3.

Hdr = gt, (v " H gn+l-j)t E G 2
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Above are equations for the encryption header and decryption key. Note that each
new user widens the range of public key elements required. In particular, for all possible
recipients i, j, and defining the halfway point A := n + 1, we require elements: i, A - i,
A + (i - j) (reading them off from the above equations). The regions required are shown
graphically in Figure 2-3.

Due to this result, none of the public key need be generated up front; instead we prefer
incremental deployment. As users are added to the system, their 3 required elements are
checked. If an element does not exist, the block it belongs to is generated and saved. This



is a big win because it allows us to provision for an unbounded number of users while only
storing key data for the users that have actually signed up.

The limitation imposed by this scheme is that users' PKGE id's must count up one at a
time: since the indices of the elements that go into the decryption product depend on i -j,
the difference of PKGE id between the receiver and other recipients, it is essential that this
difference not result in an index that references an uninitialized element (as is guaranteed
by generating id's in order). Hopefully Figure 2-3 can convince you of this.

2.4.5 A Key in the Dark

Attentive readers will surely cast me an astutely quizzical glance at this point because they
recall that the three elements required by user 1, for example, are elements 1, n, and n + 2.
They will also pointedly assert that the elements are generated by raising the generator g
to successive powers of a. What then, they aggressively opine, do I plan to do?

Well, on system creation we create a file called squarings.pk - true to its name, it
begins with a and (have you guessed yet?) successively squares it. In particular, we only
need [log 2 2N] of these. For N = 10,000,000, that means 25 elements. Once we have these
elements are our disposal, we can calculate any given public key element gi = ga i using
a linear combination of these elements to calculate the ai (requiring at most [log 2 2N]
multiplications) to which we then raise g.

2.4.6 Rolling Admission, take 2

Again we broach the subject of rolling admission (see section 2.2.7 if you missed it the first
time around!). As mentioned before, it is necessary for the application using PKGE to
engage in some sort of certificate exchange, and also necessary to contact the central server
for new keys (section 2.2.3) fairly rarely. Now the public key adds its requirements to the
heap: the user needs to somehow acquire the new public key blocks as they are generated.

To accomplish this, we have to rely on the user returning to the central authority for
new keys, at which time he can also receive any new public key blocks. It is the best we
can do - blocks are potentially too large for including in a certificate exchange protocol.





Chapter 3

The Game is Afoot

Chapter 2 laid out the specification for exactly how PKGE would meet its goals. My raison
d' eitre for the past year has been loftily sketched, and now we get into the gory details.
This chapter is devoted to details relating to our implementation of Chapter 2. All of the
major code blocks will be covered in detail as they relate to the specification, and upon
completion of this chapter the reader should feel at home developing new code within the
PKGE framework. For simplicity, checking of error codes is omitted from displayed code,
except where important for understanding, as is routine memory management.

We begin the chapter lightly (and code-free!) with the organization and format of PKGE
files and directories, enabling the reader to comfortably work with the data on disk, and even
to zero in on a particular piece of binary information. Continuing the easy introduction,
we trace the function call sequence for common library operations to get a sense of where
the important functionality lays and how the code objects interact to fulfill their roles.
Afterwards, we describe the protocol implementation, look at snapshots of sealed message
formats in the wild, and finally wax poetic on our forward secrecy extension and choice of
cryptography primitives.

3.1 Development

I want to take a second to provide some context. This section describes the environment
in which PKGE was developed, including the supporting tools and the libraries depended
upon for large swaths of functionality.

3.1.1 Tools

The development and testing environment were run on Windows XP workstations, using the
Cygwin[4] environment. I use emacs[6] to code, mingw gcc 3.4.4 to compile/build, and
make to automate the process. Finally, gdb and Dr Mingw proved invaluable for debugging,
memcheckdeluxe[15] for tracking down memory leaks, and gprof for identifying slow code.

Near the end of this one-year project, researcher Joe Cooley of MIT Lincoln Laboratories
jumped in and led the effort to make it (PKGE and its Gaim plugin) fully compatible with
the Linux and Mac OS X environments, integrating the package with GNU Autotools[21]
in the process.



3.1.2 Testing

Due to the enormous importance of the reliability of this system, testing was a top priority.
Extensive tests were written, ensuring that methods fail gracefully despite data corruption
and invalid or nonsensical parameters. The test suite is described in section 4.1.

3.1.3 Libraries

PKGE leverages a number of libraries to accomplish its goals effectively. This section
describes the dependencies and their function.

openssl-0.9.8b "The OpenSSL Project is a collaborative effort to develop a robust,
commercial-grade, full-featured, and Open Source toolkit implementing the Secure Sockets
Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols as well as a full-
strength general purpose cryptography library. The project is managed by a worldwide
community of volunteers that use the Internet to communicate, plan, and develop the
OpenSSL toolkit and its related documentation." [26]

PKGE uses OpenSSL in particular for its X.509 handling capabilities, including such
core functionality as "sign" and "verify". Fortuitously, version 0.9.8, the first version to
support elliptic curve cryptography, was released on July 5, 2005, just prior to the start of
this project.

pbc-0.2.16 The Pairing-Based Cryptography library[54], written by Ben Lynn at Stan-
ford, proved invaluable as it was the only C library we could find with support for the
bilinear_map operation. Additionally, one of his colleagues, Matt Steiner, wrote a module
implementing the BGW BCE scheme. His code was without a doubt invaluable to us, and
some of the core calculations have been directly used (in bigpk. c).

gmp-4.2.1 The GNU Multiprecision library[11] is the fastest available framework for
developing applications using arbitrary-precision arithmetic. PBC depends on this library
to implement its elliptic curves, and we use it for exponents to those group elements, the
mpzt type in particular.

hashtab We needed a hash table, and Bob Jenkins[3] obliged. He is a relatively well-
known for contributions to public-domain code'. He has spent his professional career at
Oracle (for the past 16 years), has a laundry list of impressive optimizations for their
namesake database to his name, has quite a bit of expertise in the area of hash functions
(for which he has been honored in the Wikipedia article on hash functions), and has placed
it all in the public domain. We modified his basic table to integrate better with PKGE and
verified that nothing fishy is going on.

SuperFastHash On the topic of hashing, it turns out that an engineer named Paul
Hsieh had set himself the challenge to discover the fastest hash function possible (with a
nice distribution of course), using Bob Jenkins' as a starting block. He provides a very
detailed account of his quest[45] including exactly what technical properties he investigated
and what effect they had on performance. Overall it is the most interesting and informative

'Well-known enough for his own Wikipedia article. at least!



Bytes Filename
D ./my-system

3290 ./mysystem/mysystem.pkge
4184 ./my-system/mysystem.admin

226 ./my-system/certs/ca.params
305 ./my.system/bigpk/squarings.pk

Table 3.1: File structure for newly generated "my-system". The name is provided by
the user, and file contents are specified in Appendix H. The ".pkge" system file lacks
administrative keys required to add new users or generate a user's keys.

narrative on hash functions I have yet read. More relevantly, he ends up with ostensibly the
"best" open hash function in existence. We decided to use it, integrating with Bob Jenkins'
hash table implementation.

MemCheckDeluxe MemCheckDeluxe[15] (mcd.h) manages to be an effective way to
track down memory leaks, and validate that a program is leak-free. Including the header
provides a replacement for C's malloc/free, showing allocations that have not been freed
and alerting to double-frees on request.

3.2 Directory structure and File formats

As PKGE is primarily an engineering effort, care must be taken to ensure it is simple to set
up. That means making it easy to refer to the system when configuring an application to use
it, with the additional stipulation that it should organize and make accessible files that the
user may find interesting, their key-file or certificate collection for example. The technical
challenge is to create a cross-platform file-namaing system that is resilient to relocation and
extension. I came up with the following solution.

This section also describes the files, their format, and contents. We will walk through
an example system creation, configuration, and distribution, looking at the generated files
along the way.

Let's start at the very beginning.

3.2.1 Generating a system

$ pkgegen setup my_system default.cfg2

A reasonable default.cfg is given in Appendix J.1. It is well-commented and self-
explanatory. The resulting file structure is shown in Table 3.1, for a user-generated system
named, intuitively enough, "mysystem". The binary formats of these files is included in
Appendix H.

3.2.2 Adding users

$ pkgegen add mysystem txt users.txt

2Note: running "pkgegen" displays the help, listing the options available.



MIT Lincoln Laboratory
rOb Figueiredo Robert Student Group 62
rkh Khazan Roger PI Group 62

Console Listing 1: Top 3 lines from a sample user-info text file.

Bytes Filename
2841 ./mysystem/users/_r0b.usr
2841 ./my-system/users/_rkh.usr
592 ./mysystem/certs/rOb.der
581 ./mysystem/certs/rkh.der
4737 ./mysystem/bigpk/O.pk
4737 ./mysystem/bigpk/26259.pk
4737 ./mysystem/bigpk/2625a.pk

Table 3.2: Files created when adding "rOb" and "rkh".

An excerpt from a typical user information file is given in Listing 1. The format is very
simple: the central organization of the system is meant to serve appears on the first line.
On all subsequent lines, a user's PKGE name, (often referred to as his "common name")
appears, along with his family name, given name, title, and group name. Executing the
command on this info file generates the structure given in Table 3.2.2.

The .usr files contain the users' private keys, up until their temporal "horizon" - the
time at which they need new keys due to key consumption by forward secrecy. The .usr
files are unencrypted. The certificates are filled in with the information provided in the text
file and are written in standard DER format [46]. Now that our system has users, we have
to give out the files so they can do something with them.

3.2.3 Generating a distribution

$ pkgegen dist mysystem rOb 12345

The dist command encrypts the keys with a specified PIN (via a cryptographically
secure salt-n-stretch[47]). The administrator would not distribute the generated files at
his discretion. We envision the solution to be web-based, wherein the user authenticates
himself to the central authority and is sent the package given in Table 3.2.3, but any other
way would do. The user is able - nay, recommended - to treat this package/directory
like a black box (well, really a black directory...). Once downloaded, he simply provides its
path to any application that requests it, but should never need to look inside.

Bytes Filename
2841 ./my_system/users/rOb.usr
2841 ./mysystem/users/rkh.usr

Table 3.3: Encrypted user keys, ready for distribution.



Bytes Filename
D ./mysystem

3290 ./mysystem/mysystem.pkge
2841 ./my-system/users/r0b.usr
592 ./mysystem/certs/rOb.der

4737 ./mysystem/bigpk/0.pk
4737 ./mysystem/bigpk/26259.pk
4737 ./my.system/bigpk/2625a.pk

20934 Total Size

Table 3.4: File set distribution for a new user, "rOb". "rOb. usr" is a set of BCE keys, and
one X.509 key, encrypted with r0b's PIN. The "*.pk" files contain public key elements.
The "rOb.der" is the DER-encoded X.509 certificate for rOb.



3.3 Code Trace

This section is meant to ease you into the code by giving a high level view of the code path
that PKGE takes when sealing a message. No implementation details are covered here other
than the sequence of function calls. The functions are well-named and there is a narrative
accompanying each snippet, geared to be the most straightforward possible to newcomers.

3.3.1 Objects and Conventions

PKGE is really a C++ design trapped in a C body3 . All functionality can be related to
an object that in principle carries the responsibility. The function naming convention is to
prefix the function name with the object that "owns" it, and pass a handle of that object
type as the first parameter. The code for said function would also reside in that objects
namesake file.

One notable outcast from this object-oriented policy lies in crypto. c, which stores the
identities of the crypto functions in static globals instead of in an object. The other resides
in pkge_store. c, which is a static associative list of loaded systems4 . To introduce you
to the major objects that serve as the principle data containers and calculational tools we
have drawn up Table 3.5. With that in mind, let's start tracing some code!

3.3.2 Initialization

We first cover system initialization. The action during initialization is pretty well distributed
with each object responsible for initializing itself. First the pkge_store is checked for a
loaded system associated with the given path; if extant, its protocol is set to the one given
and nothing more. Otherwise, the full load procedure is followed as shown below.

--= pkge_init
_pkge_storeget
OpenSSLadd_all_algorithms
cryptoload
curveload
certs_load
_pkge_store_add
setprotocol

3.3.3 Load a user

To do anything with PKGE, one must first load a user by providing the system path, the
user's textual PKGE name, and a PIN that is used to decrypt the user's key file. First,
the system handle is retrieved from the pkgestore, using the path (if not present, we call

_pkgeinit with that path, only failing if that also fails).

3Then why choose C? The biggest reason is that the libraries we wanted to use were also written in C
(PBC, OpenSSL, Gaim), and although one can convince C and C++ to play nicely, we figured the tedium
of passing the object as an explicit, rather than implicit, parameter was not a deal-breaker. Additionally C
offers a slight increase for hardware portability.

4The pkgyesto're maps the patll to the system handle, allowing a system to be identified by a simple string
and freeing the user from storing a system handle.



Object Identity and responsibility
pkget Top level system, carries global parameters and handles to subobjects.
elliptict Represents an elliptic curve, contains the encryption functions, manages

bigpk_t, and implements forward secrecy.
bigpk_t Manages the big public key and implements elliptic curve calculations.
squaringst Residing in bigpk. c, manages the alpha squarings.
certst Manages all certificate operations, including verification

(certs_verify()).
user_t Represents a user, container for user info, manages privkey_t, and con-

tains signing function.
privkey_t Represents a users' set of private BCE keys (there are multiple keys as a

result of forward secrecy).
group_t Represents a group, including the recipient set and current sender iden-

tity.
crypto.c No object, but contains all cryptographic operations (e.g. usersign

calls crypto_sign with appropriate information).
config_t A simple text buffer of configuration data and associated operations to

extract parameter values.
data_t A block of data, containing only a bytet pointer and a length. Has

associated functions to compose, decompose, tag, and identify blocks of
data.

protocolt Collection of functions that define a protocol.
session_t Represents a session, an encryption stream addressed to a particular re-

cipient set and timestep.

Table 3.5: Major PKGE objects and their primary purpose.

Once in possession of a system handle (pkge_t object), the handles "loaded user" list is
checked for the requested user name. If it is found, that user object is immediately returned.
If not, we resort to actually doing all the work, and user load is called.

The rest is pretty straightforward, loading the users information and private keys through
an encrypted stream (obtained from cryptofopenr). Additionally, the user's certificate
is verified, with load failing if it is either invalid or not present.

--= pkge_userload
'- _pkge_storeget

userload
userfilename(user_dir, user..name, pin)
certs_get_x509
X509_verify
crypto-fopenr (user-filename, pin)
privkeyload

d2iPrivateKey-bio



3.3.4 Add a recipient

Once the system and user are loaded, all that remains is to create useful groups, repre-
senting a chat room, for example. This is done in the simplest way possible: applications
communicate identities to PKGE by a plaintext identifier, for example their chat alias or
email address.

The procedure works by looking up the textual name using certificates. The certificates
bind such a name to its corresponding PKGE id, which are directly equivalent to the ids
of the BGW BCE scheme. Once this id is determined, it gets passed to a helper function,
groupadd, which does the real work. In particular, it first scans the recipient list, returning
if the member is already present. If not, his user id gets inserted into the list, maintaining
an ascending sorted order. The particular function calls are shown below.

=- pkgegroup_add(gchatroom, ''Rob")
c- certslookup(' 'Rob")

group_add(gchatroom, (Rob's numerical PKGE id))

3.3.5 Seal a message

Now let's look at how a message is sealed. First item of note is that the pkgeseal is actually
an alias for the slightly more complicated pkgeseal_delayed, which allows specification of
the timestep that a message is addressed to. It passes a fixed parameter of "0" for the days
parameter, indicating that it should be addressed to the present timestep. After that, most
of the action occurs in pkgeencrypt, where the currently selected protocol's functions are
called, and the encryption actually happens. The parameter gchatroom is a PKGE group
object that represents the recipient list corresponding to our example chat room, and msg
is the data to be communicated.

--- pkgeseal(gchatroom, msg);

-* pkgesealdelayed(g_chatroom, msg, 0)

-÷ pkgeencrypt (gchatroom, msg, 0)

• session_get

session_symkey

session_push_private

cryptoencrypt

sessionpush_public

freesession

user_sign

3.3.6 Unseal a message

The next point of interest is the unsealing of a message. This is accomplished by passing
in an initialized group and the message to be unsealed. First, the signature on the message
is verified, and if successful, the message is passed to the decryption function. This uses
protocol functions to unpack the message, get the group it was addressed to, and return
the associated symmetric key (calculated or cached). Then the real decryption function is
called (crypto_decrypt).



--= pkge_unseal (gchatroom, msg)

C-. certsverify

pkge_decrypt
c- sessionpoppublic

sessiongroup
grouprecipient
session_symkey
cryptodecrypt
sessionpop.private
free_session

3.3.7 Shutdown

Shutdown proceeds by removing the path - handle mapping from the store, freeing the
session hash table, and then notifying all of the primary objects. No surprises here.

- pkge shutdown(const char* path)

_pkgestoreget
_pkgestore.remove
freesessions
certs-free
curvefree
_pkge_store_free



struct protocol_s {
session_t (*session_get) (elliptic_t, htab*, group_t, time_t);
int (*sessionpushprivate)(session_t, data_t*);
int (*session_push_public) (session_t, data_t*);
sessiont (*sessionpop_public) (htab*, data_t*, const groupt);
int (*session_pop_private) (htab*, session_t, data_t*);
data_t* (*get_error_msg) (htab*, const groupt, datat*);

Code Snippet 4: Stucture of a protocol object.

3.4 Implementation of Stateful Protocols

This section describes the implementation of the session protocols. The relevant code
is located in session.c, session.h, session_stateless.h, session_sessions.h, and
session_optimistic.h. The first two handle common functionality, and the latter three
implement their namesake protocol functionality. To understand what they contain, we
need to look at the structure of a protocol object.

3.4.1 Structure of a Protocol

We use protocols structures to embody a protocol's functionality; they are packages of
function pointers (defined as a static 3-element arrays in session. h) that dispatch requests
to the real functions (in session_* .h), allowing pkge.c to do its thing in a protocol-
agnostic manner. The prototype is given in Snippet 4. In addition to those functions, two
more (protocol-independent) functions are required: session_symkey and free_session.
Let's see what these functions do during the seal/unseal procedures.

Seal:

1. sessionget returns a session object for the given { group, timestep }. The session
may be pre-existing (and have a previously-calculated key), or brand new, in which
case the header is generated.

2. session_push_private pushes any session information that is not required for the
recipient to unseal the message.

3. The symmetric key is retrieved via session_symkey.

4. (The message gets encrypted via crypto_encrypt.)

5. session_pushpublic appends everything required by recipients to unseal the mes-
sage. In particular, the sender id, the recipient set, the BCE header (Co & C1) and
the message's timestep. The sender id is required to verify the signature, the recipient
set and header are required for BCE key calculation, and the timestep is required for
the forward secrecy extension.

6. (The message gets signed via user_sign.)

7. session_free decreases the reference count on the session object.

Unseal:



typedef uint32_t session_id_t;

Code Snippet 5: Structure of the session's C representation.

1. (The signature is verified via certsverify.)

2. sessionpoppublic skims the unencrypted information off the top, returning a new
or pre-existing session object containing that information. This is where an error code
may be signaled for receiving an optimized message carrying an unrecognized id.

3. The symmetric key is retrieved via sessionsymkey.

4. (The message is decrypted via crypto_decrypt.)

5. sessionpop_private adds secured information to the session, e.g. the private id.

6. session_free decreases the reference count on the session object.

The rest of this function follows the map given above. We traverse the protocol func-
tionality paths that seal, and then unseal, a message. Regarding the location of code: in
general, the functionality common to all protocols is extracted to session. c, with protocol-
specific code in session_<protocol name>.h. Also, we cover the sessions protocol in detail
because it is the most illustrative: stateless is far simpler and optimistic is nearly identi-
cal (recall that the only difference is the point at which they switch to the private-id-only
header). And finally, we provide for reference the session structure, in Snippet 5.

3.4.2 Getting a Session

To begin, Snippet 6 shows the sessionget for the sessions protocol, which employs a call
to the common function _sessionget(). To get a session, we require a few arguments.
First, we require an elliptic curve object, in case the session does not already exist and we
want to calculate the header and symmetric key anew - however it has become vestigial
and is not actually used in this stage. Second, we require the session hash table, to be able

typedef struct session_s {
datat hdr;
datat symkey;
useridt idproposer;
timet tproposal;
timet ctmsg;
groupt group;
groupt verified;
sessionid_t priv_id;
sessionid_t pubid;
int forceheader;
int outgoing;
session_t older;
session_t newer;
int refs;
int probe;

} *session_t;



to lookup any existing sessions. The next two, the group and timestep, are necessary for
creating a new session or verifying an existing session is valid.

A couple notes about Snippet 6:

* The common function _sessionget 0() implements a simple lookup: return the session
associated with the given key or NULL.

* The group is stored in the session and frozen - a sesion may not have its recipient set
change. A caveat is that since the message sender is also stored in the group, it needs
to be set to the current user for outgoing messages to avoid accidentally impersonating
someone else (and generating invalid messages!).

* The session's outgoing flag is set to indicate an outgoing message; however, it is ves-
tigial.

* If the lookup fails, a session is created and added to the table using _sessionput 0.

3.4.3 Add private Information

The next stage in the seal is to add protocol-specific information to the message that will
end up being encrypted along with it. In particular, for an optimized header, we only put
the sender id and a tag stating that it is in optimized mode. In stateless mode, we attach
the session's private id, the time that the session was created, and the PKGE id of the user
that created it. See Snippet 7 for the code.

3.4.4 Get the symmetric key

Once we collect all the information to be secured, we need the key with which to secure it.
The code shown in Snippet 8 gives our approach to the symmetric key. This implements a
straightforward lazy calculation of the symmetric key.

3.4.5 Add public information

The message has just been encrypted with the symmetric key. At this point, we have to add
any information that a recipient might need to unseal the message. In particular, Snippet 9
details the procedure. The first if block affixes the full header onto the message: first the
common function _sessionpushpublic () adds the group, BCE header, and timestep, and
then the sessions code adds the public session id and a tag indicating that the full header
is present. The alternative is to affix only the private session id plus a tag, which is taken
(in the sessions protocol) only if the session is verified5 and there is no flag telling us that
we need to send a header next time (force_header).

3.4.6 Send the message

- whoosh -

The user's communication application takes the secured message from PKGE and sends
it across the transport medium.

"A verified means that the local user has received a message from everyone in the group with that header
and private id, guaranteeing that the association is known to everyone.



session_t sessions_session_get(elliptic_t curve, htab* tab,
const group_t g, time_t ctmsg) {

// Try to retrieve the session from the table
session_t s = _session_get(tab, g, ct_msg);

if (s) {
// sender may not be local user
group_set_sender_id(s->group, user_id(groupowner(s->group)));

} else {
// session not found in table, generate a new one
s = new_session(g, ctmsg);
_sessionput(tab, s);

}
s->outgoing = 1;
return s;

// Return session from table if present, NULL otherwise
session_t _session_get(htab* tab, const groupt g, timet ct_msg) {
uint32_t h = _session_hash(g, ct_msg);
if (FALSE == hfind(tab, h))
return NULL;

sessiont s = (sessiont)hstuff(tab);
while (s && !group.equal(g, s->group)) { s = s->next; }
if (NULL == s)
return NULL;

s->refs++;
return s;

Code Snippet 6: Getting a session (using the group and timestep) under the sessions
protocol.

3.4.7 Read the public header

Oh! We've just gotten something in our inbox! We look at the (public) header to see what
to do with it. This is accomplished by the procedure shown in Snippet 10 which can inter-
pret full headers, optimized headers, error messages, and even responses to error messages.
However, due to the large number of possibilities, the function has grown quite long. Addi-
tionally, this is where disambiguation is handled, in the while loop in the PKGE_TAG_SESSION
block.

The following list describes the functionality, so you may follow along in the code (Snip-
pet 10).

* If a full header was received:

1. A session has been created and returned using the information provided in the
header.



int sessions_session.push_private(session_t s, data_t* msg) {
// Don't need anything if we have switched to session key
if (!s->force_header && _session_verified(s)) {
// Push a placeholder tag
user_id-t sender = group_sender_id(s->group);
data_push_block(msg, PKGE_TAG_ID_SENDER, &sender, sizeof(sender));
data_push_tag(msg, PKGE_TAG_VERIFIED_SESSION, 0);
return 0;

}
_sessionid_push_private(msg, s);
return 0;

int _session_.id_pushprivate(data_t* msg, session_t s) {
datapush.block(msg, PKGE_TAG_ID_SESSION,&s->priv_id, sizeof (s->priv_id));
data_push.block(msg, PKGE_TAG_TIME_PROPOSAL,
&s->tproposal, sizeof (s->tproposal));
data_push.block(msg, PKGE_TAG_ID_PROPOSER,
&s->id_proposer, sizeof(s->id_proposer));
return 0;

Code Snippet 7: Affixing private protocol information.

const data_t* session_symkey(sessiont s, elliptic_t curve) {
if (s->symkey.data == NULL II s->symkey.len == 0)
return _session calc_symkey(s, curve);

return &s->symkey;
}

Code Snippet 8: Retrieve the symmetric key from a session object.

2. A session with the same group and timestep has been found in the session table
and returned.

3. The header was determined to be invalid/corrupt and NULL was returned.

* An optimized header was received:

1. The session was found using the private id and returned.
2. No session found, so an error message was inserted into the error table, and

PKGEERR_SESSION was returned.

* A "Unrecognized private id" error message was received6

1. Perform a lookup on the requested private id 7 . If it succeeds, the header corre-
sponding to that id is added to a blank message, and inserted into the error table.
PKGEERR_SESSION is returned.

2. The private id is not found, so ignore the message and return PKGEERR_SESSION.

6This is the only error message at present
7Prior to this, the requestor's signature has been verified, so this is not a security hole.



int sessions_session_push_public(session_t s, data_t* msg) {
if (s->forceheader II !_session_verified(s)) {

s->force_header = 0;

_sessionpush_public(msg, s);

data_pushblock(msg, PKGE_TAG_PUBLIC_ID_SESSION,
&s->pub-id, sizeof(s->pub_id));

data_push_tag(msg, PKGE_TAG_SESSION, 0);
} else {

_session_id_pushpublic(msg, s);
data_push_tag(msg, PKGE_TAG_ID_SESSION, 0);

}
return 0;

int _session_push_public(data_t* msg, session_t s) {
group_set_sender_id(s->group, user_id(group_owner(s->group)));
group_push(s->group, msg);
datapush-block(msg, PKGE_TAG_HDR, s->hdr.data, s->hdr.len);
datapush_block(msg, PKGE_TAG_CTMSG, &s->ct_msg, sizeof(s->ct_msg));

return 0;
}

int _sessionidpush_public(data_t* msg, session_t s) {
datapushblock(msg, PKGE_TAG_ID_SESSION,

&s->priv-id, sizeof(s->priv_id));
return 0;

}

Code Snippet 9: Affixing public header information.

3.4.8 Get the symmetric key

Identical to the procedure already covered (section 3.4.4)!

3.4.9 Get the private protocol information

Now that the message is decrypted, let's collect any protocol information that might aid
us later on. Again we see the two-block structure, one case for the optimized message
format and one for the stateless. The optimized case gets the id of the sender and returns.
The stateless case gets the id of the header creator (id-proposer), the time the header was
created (tLproposal), and the private session id (privid). The procedure is straightforward,
and shown in Snippet 13.

3.4.10 Session Hash

We have covered the primary functionality, but in doing so we managed to gloss over the
details surrounding the hash table and hash function. Let's look at them now. To begin,
we use the Hsieh hash function[45] (details in Appendix 3.1.3) to produce 32-bit keys from



various objects and store the objects using the Jenkins hash table[3] for our associative
lookup.

For example, in order to look up a session by the recipient set, groups are kept with
sorted recipient lists, and these recipient index arrays are simply passed directly to the hash
function which returns a 32-bit unique key which can be used to find any existing sessions
with that recipient set. Snippet 14 shows how the hash function is applied to a group and
timestep to produce 32 bits.

The private id is already a unique 32-bit identifier, so we use that directly, instead of
bothering to hash it. This can be seen in the _session_put () function, shown in Snippet 15,
which doubly inserts a session into the table. A few notes:

* If there is an equivalent session (same session ids, group, and timestep), remove that
and insert the new one (it's an updated session, so keep it).

* If an unequal session is found with the same private id, it signals a private id collision,
as discussed in section 2.3.

* If sessions already exist that are addressed to the same group and timestep, the session
object's next and prev are used to implement a linked list of sessions, sorted by the
total ordering described in section 2.3.28.

Happily, the other pieces of functionality are implemented simply. The get was previ-
ously shown in Snippet 6, and remove is too simple to bother with. Thus only a single topic
remains.

3.4.11 Error Handling

In this section we cover the method PKGE uses to recover from non-menial errors like state
or message loss. Without a communication channel to call its own, we also look at the way
PKGE attempts to transport error messages and their subsequent responses.

Here is the exact procedure PKGE follows when it receives an unknown session id.

1. Push nonce onto message

2. Insert error message into hash table keyed on nonce

3. Return PKGE_ERR_SESSION from unseal

4. Pass error to sending function registered with pkge register_sender or

5. Return error message from pkge_geterrormsg

6. Client sends this error message to the group.

Now from the point of view of someone receiving this error message:

1. Message received

2. Unseal detects the error condition, and inserts a full message header in the error table

3. Returns PKGEERRSESSION, invoking the same error message channels as a real
error

4. Response gets sent

"Briefiv, A -< B ("A precedes B") if A is newer, with the more senior id proposer preceding as a tiebreaker.



3.4.12 Message Format

Now that we have seen how the protocols are implemented, let's see what sort of messages
they produce. We also introduce the message packing primitives and tools that we use to
work effectively with a varied and complex set of data.

Working with Data

PKGE has effectively defined its own meta-language for working with data (native abilities
in C are mildly limited). The grammar was evolutionarily-realized-there was no single
design session that spawned the data-handling functions, and as a result the design is not
exactly a paragon of finesse. Even so, it has proved an extremely effective mechanism. All of
the relevant functionality is contained in data. c. In particular, here is how the "language"
turned out:

The basic unit of data is a datat structure, containing only a pointer and a size. From
this, we can add, examine, and remove data from the end, block by block, enabling the
system to work directly with first-class data rather than having to worry about serialization
details. The primary functions are shown in Snippet 16 and do not require explanation,
although a number of other convenience functions operating at finer levels (e.g. data_push
for data alone, or datapeektag to peek at the topmost tag). There are also other functions
to step through a message, printing out tags and sizes of blocks (data_str), etc.

Results

We previously calculated what the cost of our message-sealing strategy would be, in sec-
tion 2.3. Let's see how close we can get under the different protocols.

Here is the stateless message format:

msg = [ E[PT IDSENDER] SALT (GROUP (CO Ci T_MSG) CT_MSG) SIG ID_SENDER ]

Legend

Bytes I Tag Description
< 16 E[ x] AES-256-CBC, 128-bit block size

0 PT plain text
8 SALT random bytes used in key derivation(2.2.5)

4n GROUP the set of recipients
153 (CO, C1, T_MSG) two compressed curve elements and the msg timestamp9

4 CT_MSG "canonical timestamp" of a msg (= security epoch, timestep)
63 SIG ECDSA_withshal () over a 224 bit prime field10

4 .2 IDSENDER the PKGE user id of the sender, used to verify the signature
236 + 4n total bytes

This omits the data-packing overhead - the tags and block sizes that allow for dynamic
composition and decomposition of messages as well as error checking and data-driven dis-
patch using the functions in Snippet 16. The upshot is that each block has an extra 5 bytes
of overhead, making the following contribution:



236 + 4n Previous Grand Total
5 9 Overhead for tags/sizes on the nine blocks given above

281 + 4n bytes, Grand Total

Besides the 9 primary blocks, the "HDR" block is actually made up of three sub-blocks

("CO C1 TMSG"). So, it turns out that 60/281 . 21% of the total message size is made
up of nothing more than tags and block sizes. On the bright side, these can be reduced
by changing the implementation of the data handling functions to, for example, only use 2
bytes for a block size instead of 4, which would bring the total to 36 bytes, saving 40% of
the overhead for 10 minutes of work.

At any rate, let's have a look at a message formatted to support sessions. Recall that
both the pessimistic and optimistic session protocols use the same format, merely differing
in the point at which they switch to the optimized format.

Session Message Format

msg = [ E[PT IDSESSION T_PROPOSAL ID_PROPOSER]
SALT (GROUP (CO C1 T_MSG) CT_MSG) SIG ID_SENDER ]

This is what a first message looks like using either of the session protocols. This looks
even worse! However, when we finally get to the optimized session state:

msg = [ E[PT ID_SENDER] ID_SESSION SIG ID_SENDER ]

That's wonderful; the optimized message format has transformed PKGE into a lean and
mean encryption & authentication machine.

Listing 2 gives the (gently massaged) output from a message analysis routine (data. c: datastr),
as it goes through and prints out the tags and sizes of the associated block in a message.
This makes a good summary of exactly what is included in each type of message and the
all-inclusive overhead of each piece. Additionally, the message formats are broken down
graphically in Figure graphic-msgs.

The messages in these examples represent a secure 100 bytes of encrypted, signed plain-
text, addressed to 5 recipients. I have annotated sizes in bytes along the left column of each
format, giving the true size contributed, since the size reported by the routine does not take
the packing and tagging overhead into account. The graphs use exactly the numerical data
given in the listing.

3.4.13 Optimizations

By now we've seen all of the issues and costs at hand. How can we drive down the space
cost to end up with something that is really bandwidth efficient?

Group Representation

The single biggest bandwidth windfall appears to lie with efficient representations of the
recipient set. As observed before, a naifve list representation requires O(n) which, to a large
extent, nullifies the huge advantage we otherwise reap by using a constant-size ciphertext
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Figure 3-1: Graphical message component breakdown, for Stateless, Unoptimized, and
Optimized messages respectively.

encryption scheme (although the constant in front is much smaller than any O(n) encryption
scheme).

There are several things to do about this. One is to assign a "group id" to every
organizational unit. Then, a recipient list could be represented by performing a set cover
using the organizational units and individual ids. This is also good in a heuristic sense since
it seems likely that a user would be predisposed to address messages to his organizational
group.

Another option is to adopt some sort of convention for compressing recipient lists. For
example, we could specify that "3 8 12 x 30 51" includes all ids from 12 to 30. Such a con-
vention could be found by analyzing communication logs for the target usage environment,
simulating the use of each convention and choosing the optimal.

Yet another option is to offer a no-group option in the API. That is, the client can
switch PKGE to a mode where the group is not included in messages at all, and instead the



application is responsible for keeping track of it, and is required to pass in the correct group
to unseal a message. This makes sense because it is very likely that the client application
already knows who is in what group and which message belongs to which group. Thus, the
group in the message is duplicated information that should be dispensed with.

Data Packing

We have already seen how the overhead in data tags and sizes becomes a substantial con-
tribution; in the optimized message format, it is the second largest contributor, behind the
ECDSA signature! Theoretically speaking, once we are secure that our design has settled
down, it should be possible to use pure binary format, and specify offsets for particular
data within a message. Although these would act as hardcoded message formats, it could
actually be read from plaintext configuration on startup.

So, for example, if a routine in the message needed the group for something, it could
simply call a function that looks up the offset, based on a parameter (e.g. "GROUP") and
a handle to a pointer to allocate and copy the message component to. This does not allow
for treating the message as a stack and doing data-driven dispatch, but that ability has
not turned out to be incredibly useful, so this way makes a good alternative that could
completely eliminate the data packing overhead.

Signature

Using a 224 bit field for signatures is undoubtedly overkill. It might make sense to use
a 224 bit field to achieve stronger confidentiality, but I can't imagine a reason to require
signatures to be 112 symmetric bits strong, when 80 symmetric bits is deemed acceptable
for contemporary confidentiality. That being said, we could save 15 bytes on every message
ever sent by switching to the 160 bit field, for example "NIST/SECG curve over a 163 bit
binary field", which only has 50 byte signatures.



session_t sessions_sessionpop_public(htab* tab, data_t* msg, group_t g) {
session_t s;
bytet tag = datapoptag(msg);

if (tag == PKGE_TAG_SESSION) {

// Protocol specific session data; the session id hash:

uint32_t pubid;
if (PKGE_TAG_PUBLIC_ID_SESSION !=
data_pop_tagged(msg, &pub_id, sizeof(pubid))) {
return NULL;

}

// Full header included, pop it & check to see if we have already
// seen this header
s = _session_pop_public(msg, g);

session_t s2 = _session-get(tab, s->group, s->ct_msg);
session_t saved_s2 = s2;

// Make sure the session we got really is the right one
while (s2 && s2->pubid != pub_id) { s2 = s2->older; }

if (s2) {
// Yup found it, free the popped one and return this one
s2->outgoing = 0;
s2->refs++;
free_session(saveds2);
free_session(s);
group_add(s2->verified, group_senderid(g));
return s2;

// Nope, we don't have it
if (saveds2) freesession(saved_s2);
s->pubid = pubid;

s->outgoing = 0;
groupadd(s->verified, groupsenderid(g));
return s;

}
... continued...

Code Snippet 10: Interpreting public header information.



else if (tag == PKGE_TAG_ID_SESSION) {

// Got a session id, look it up to (hopefully) retrieve the session
sessionid_t privid;
data_poptagged(msg, &privid, sizeof(priv_id));

if ((s = _session_lookup(tab, priv_id))) {
// Found a session matching that id, make it incoming
s->outgoing = 0;

return s;

} else {
// No session matching that id was found in table, send an error msg
datat* d = malloc(sizeof(datat));
d->data = 0; d->len = 0;

data_pushblock(d,PKGETAG_ERR_MSG_REQUEST,&privid,sizeof(privid));

_set_error_msg(tab, g, msg, d);
return NULL;

} else if (tag == PKGE_TAG_ERR_MSG_REQUEST) {

sessionid_t priv_id;
data_pop(msg, &privid, sizeof(privid));

// Received a message indicating someone lacks the current session
if ((s = _session_lookup(tab, privid))) {
// Got the session, prepare a response to the error message
data_t* d = malloc(sizeof(data_t));
d->data = 0; d->len = 0;

s->force_header = 1;

sessions_session_pushprivate(s, d);
sessions_session_push_public(s, d);
data_pushtag(d, PKGE_TAG_ERR_MSG_RESPONSE, 0);

_seterror_msg(tab, g, msg, d);
free_session(s);
return NULL;

} else {
// We couldn't find session either, he must be mistaken
return NULL;

}
... continued...

Code Snippet 11: Interpreting header information, continued.



// Got a response from our session lookup request
} else if (tag == PKGE_TAG_ERR_MSG_RESPONSE) {

session_t s = sessions_session_pop_public(tab, msg, g);
sessions_session-popprivate(tab, s, msg);
freesession(s);
return NULL;

} else { // Unrecognized tag
return NULL;

}

Code Snippet 12: Interpreting header information, continued 2

int sessions_session_pop_private(htab* tab, sessiont s, data_t* msg) {

if (datapeektag(msg) == PKGE_TAG_VERIFIED_SESSION) {
// Don't need anything if we have switched to session key
data_pop_tag(msg);
user_id_t sender;
if (data_pop_tagged(msg, &sender, sizeof(sender)) != PKGE_TAG_IDSENDER)
return PKGEERRCORRUPT_MSG;

group set_sender_id(s->group, sender);
groupadd(s->verified, sender);
return 0;

user_idt id_p;
session_id_t id_s;
time_t tp;
if (data_pop_tagged(msg, &id_p, sizeof(id_p)) != PKGE_TAG_IDPROPOSER II

data_poptagged(msg, &t_p, sizeof(t_p)) != PKGE_TAGTIMEPROPOSAL II
data_pop_tagged(msg, &id_s, sizeof(id-s)) != PKGE_TAG_IDSESSION) {

return PKGE_ERR_CORRUPTLMSG;
}

s->id-proposer = idp;
s->tproposal = t_p;

s->priv_id = id_s;

_sessionput(tab, s);

return 0;

Code Snippet 13: Save the private protocol information.



Code Snippet 14: Hash of a session.

int _session_put(htab* tab, sessiont s) {

// If a session's already in the table, return that.

session_t s2;

if ((s2 = _session_lookup(tab, s->priv_id))) {

if (s == s2) {

free_session(s2);

return 0;

} else if (session_equal(s, s2)) {

// Refers to the same session

_session_remove(tab, s2);

free_session(s2);

} else {
// A colliding private id:

// a session with the same id that is not a duplicate

free_session(s2);

}

uint32_t h = _session_hash(s->group, s->ct_msg);

if (TRUE == htab_find(tab, h))

<insert into session ordering>

else

htab_add(tab, h, s);

htab_add(tab, s->priv_id, s)

group_freeze(s->group); // ensure the group can't change
s->refs+=2;

return 0;

}

Code Snippet 15: Putting a session into the session table.

uint32_t _session_hash(const group_t g, time_t t) {
uint32_t g_hash = group_hash(g);

data_t d = {0, 0};

data_push(&d, &g_hash, sizeof(g_hash));

data_push(&d, &t, sizeof(t));

uint32_t s_hash = SuperFastHash((char *) d.data, d.len);
free_data(&d);

return s_hash;

}



int data_push_block(data_t* stack, byte_t tag, void* to_write, int len);
bytet data_pop_block (data_t* block, data_t* stack);
bytet data_pop_tagged(data_t* stack, void* to_read, int len);

char* datastr (const datat* d);
data_t datacopy(data_t);

Code Snippet 16: Functions for working with data blocks.

Messsage component breakdown after sealing 100 bytes of plaintext.]{Messsage component br

Stateless

[Data Stack: 405

9 IDSENDER
67 SIG
9 CTMSG

154 HDR
25 GROUP
13 SALT

128 CT =>

14 [AES overhead]
114 [Data Stack: 114

9 IDSENDER
105 PT

Sessions Unoptimized

[Data Stack: 441

9
69
5
9
5

154
25
13

149

ID_SENDER
SIG
SESSION tag
PUBLIC_IDSESSION
CTMSG
HDR
GROUP
SALT
CT =>

12
132

Sessions Optimized

[Data Stack: 237

9
68

5
9

13
133

[AES overhead ]
[Data Stack: 132
9 IDPROPOSER
9 TIME_PROPOSAL
9 ID_SESSION

105 PT

IDSENDER
SIG
IDSESSION tag
ID_SESSION
SALT
CT =>

9 [AES overhead ]
119 [Data Stack: 119

5 OPTIMIZED tag
9 IDSENDER

105 PT
]

Console Listing 2: [



Code Snippet 17: Forward secrecy mapping between real-world time and timestep.

3.5 Forward Secrecy: Implementation

The challenge that the implementation must tackle is how to maintain a consistent timestamp
arrayindex mapping in the face of asynchronously updating users and incremental gener-
ation of new public key elements.

3.5.1 Mapping

Most of the implementation details lie in curve. c and privkey. c. The former provides the
mapping and uses the latter as a fairly dumb container for an array of keys. The code works
by figuring out how many keys a user might have at one time. This derived value is stored
in elliptict->fs_num_keys, and calculated as num_keys = lookahead where lookahead isT
the length of time users may possess keys ahead of time, and T is the length of a timestep.
All times are stored in seconds.

The fundamental implementation idea is not too complicated. The implementation of
the mapping code to convert between the key's storage location and physical timestep that
the key is responsible for is given in Snippet 17.

3.5.2 Keys

Now that the mapping business makes sense, you know how to find keys that you need at a
particular time. But how do you calculate the keys, and isn't there sensitive data involved
to be able to calculate any users' keys on the spot? Let's look at key generation.

// Map timestamp -> array index
int curve_fs_index(elliptic_t curve, time_t timestamp) {
return (timestamp / curve->fsT) % curve->fs numkeys;

}

// Map timestamp -> a timestep's identifying timestamp
time_t curve_fs_canonical_time(elliptict curve, time_t time) {

return time - time % curve->fs_T;
}

// Map index -> (canonical) timestamp
time_t curve_fs_timestamp(elliptic_t curve, time_t from, int index) {

from = curve_fs_canonicaltime(curve, from);
int start_index = curvefsindex(curve, from);
int indices_forward = (index - start-index) % curve->fs_numkeys;
if (indices_forward < 0)
indices_forward += curve->fs_numkeys;

time_t seconds_forward = indicesforward * curve->fs_T;
return seconds_forward + from;

}



Code Snippet 18: Generating random taus on system setup. (in curve.setup)

Recall that keys for a particular secruity epoch are generated by beginning with the
original BCE private key, di = gg^Y to a power T. So T and y form the administrative key
and must be kept secret; they are only present in administrative systems. In particular,
the administrative system generates an array of random T values, and uses them to fill
in privkey_t structures that are given to user_t objects. Snippet 18 shows the simple
initialization, and Snippet 19 continues to show how a privkeyt is created and filled in.

3.5.3 Expiration

Every time the library is directed to perform an operation using a set of user keys, it calls
the curve_fs_keyerase function. Shown in Snippet 20, it quickly scans the array for any
timesteps which have expired, deleting the corresponding key and setting the timestamp to
PKGE_TIMESTAMP_CLEARED. The function is efficient and idempotent, so call early and call
often.

3.5.4 Updates

The procedure by which a user refreshes the set of keys in his possession so that he can oper-
ate independently from the central authority is called update. The administrative function in
particular that is meant to be called by administrative software is _pkge.genupdate (user_t
u, pint pin). This function takes a loaded user and a PIN with which to encrypt the
keys, intended to be supplied by the user. The function is idempotent - it simply checks
the user's keys, generating new ones as necessary, and saves the user to file, encrypted with
the PIN. In order to generate the new user keys, it requires a set of new -'s, which are
generated and saved into the system file as a side effect. The administrative software that
is actually interacting with the user would then send the newly generated user file.

_pkge_gen_update (user_t u, pin_t pin) works by calling:

curve_update (usersys (u)->curve, user_decryptlkey (u))

followed by save functions. curveupdate () does the real work, and is shown in Snippet 21.

for (int i=O; i<curve->fs_num_keys; i++) {
mpz_init (curve->tau [i]) ;
pbcmpz_random(curve->tau[i], curve->pairing->r);
curve->fs_timestamps[i] = curve_fs timestamp(curve, now, i);

}



privkey_t curve_new_privkey(elliptic_t curve) {

pairing_ptr pairing = curve->pairing;

privkey_t key = malloc(sizeof(struct privkey_s));

key->T = curve->fsT;

key->w = curve->fs_w;

key->num_keys = curve->fs_num_keys;

element_init(key->g_i, pairing->G1);

element_init(key->g_i_gamma, pairing->G1);

key->timestamps = malloc(key->num_keys * sizeof(time_t));

key->g_i_gamma_tau = malloc(key->num_keys * sizeof(element_t));

for (int i=O; i<key->num_keys; i++)

element_init(key->g_i_gamma_tau[i], pairing->G1);
return key;

}

int curve_gen_privkey(privkey_t* out, elliptic_t curve, user_id_t index) {

privkey_t key = *out = curve_new_privkey(curve);

key->id = index;

key->T = curve->fs_T;

key->w = curve->fs_w;
key->num_keys = curve->fs_num_keys;

element_clear(key->g_i);

bigpk_add_user(curve->pk, index);

bigpk_get(key->g_i, curve->pk, index);

element_pow(key->g_i_gamma, key->g_i, curve->admin_key);

time_t now = curve_fs_canonical_time(curve, time(O));

for (int i=O; i<curve->fs_num_keys; i++) {

key->timestamps[i] = curve_fs_timestamp(curve, now, i);

if (key->timestamps[i] != curve->fs_timestamps[il)

pbc_mpz_random(curve->tau[il, curve->pairing->r);

element_pow(key->g_i_gamma_tau[i], key->g_i_gamma, curve->tau[il);

return 0;

Code Snippet 19: Procedure for calculating keys in the forward secrecy scheme.



int curve_fs_keyerase(elliptic_t curve, privkey_t key) {
timet now = curvefs-canonicaltime(curve, time(0O) - curve->fsw);

// Clear old taus for curve
for (int i=O; i<curve->fs_numkeys; i++) {
if (curve->fs-timestampsli] &&

curve->fs_timestamps[i] < now) {
mpzset_ui(curve->tau [i, 0);

curve->fs_timestamps[i] = PKGETIMESTAMP-CLEARED;
}

}

// If they passed in a key, cleanse
if (key) {
for (int i=O; i<curve->fsnum_keys; i++) {

if (key->timestamps[i] &&
key->timestamps[i] < now) {
element_setl(key->g_i_gamma_tau[i]);
key->timestamps[i] = PKGE_TIMESTAMP_CLEARED;

}
}

return 0;

}

Code Snippet 20: Procedure for deleting expired keys.



int curve_update(elliptict curve, privkeyt key) {
curvefskey_erase(curve, key);

// Generate new taus if necessary
time_t now = curvefs_canonical_time(curve, time(0));
int i_now = curve_fs_index(curve, now);

for (int i=O; i<curve->fs_num_keys; i++) {
int abs-i = (i + i_now) /. curve->fs_numnkeys;

if (curve->fs_timestamps[absi] == PKGE_TIMESTAMP_CLEARED
11 curve->fs_timestamps[abs_i] < now) {

curve->fs_timestamps[abs_i] = now + curve->fs_T * i;
pbc_mpz_random(curve->tau[abs_i], curve->pairing->r);

}
}

// Save the new bigpk elements & update private key passed in
bigpkupdate(curve->pk, curve->tau);
privkey_update(key, curve->tau, curve->fstimestamps);

int privkey_update(privkey_t key, mpz_t* tau, time_t* timestamps) {
for (int i=O; i<key->num_keys; i++) {

elementpow(key->g_i_gamma_tau[i], key->g_igamma, tau[i]);
key->timestamps[i] = timestamps[i;

}
return 0;

Code Snippet 21: Code to generate updates to temporal keys.



struct bigpks {
pairingptr pairing;
mpzt alpha;
element-t g;
elementt g-gamma;
element-t* g-gamma.tau;

unsigned num-taus;

unsigned numusers;
unsigned elementsperblock;

char* dir;
char* subdir;

typedef struct {
user_id_t* indices;
mpzt* alphas;
unsigned n;

} squaringst;

squaringst* sqrs;

Code Snippet 22: The support structure for a big public key and a structure to hold
successive squarings of a.

// Figure out which block this element is in
int block_num(bigpk_t pk, user_id_t index) {
return (index-i) / pk->elementsperblock;

}

// Reverse mapping , block # => first index it contains
int first_index_in.block(bigpk-t pk, unsigned nblock) {
return nblock * pk->elementsper_block + 1;

}

Code Snippet 23: Implementation of (block number) -+ (public key index) mapping

3.6 BigPK: Implementation

This section describes the mechanism that implements the block-based public key. For
reference, the structure of the bigpkt and squarings_t objects are given in Snippet 22.
Recall that the fundamental mechanism behind managing an effective, large public key was
using a squarings ladder to quickly calculate any given element in the long chain, after which
a simple exponentiation could generate the next elements. Random-access to the public key
is accomplished by calculating the block # and offset, generating the filename for the block,
and reading it in. The implementation for this mapping is shown in Snippet 23.

3.6.1 Setup

On system setup, the public key runs through the procedure shown in Snippet 24



Code Snippet 24: Setup procedure for the public key.

3.6.2 Calculating with Squarings

Once we have an array of successively squared a's, how do we calculate an arbitrary public
key element gi = g' '? We use the obvious approach to forming a linear combination: add
constituent elements in descending order, decrementing the target for each addition. In
other words, if we want to calculate a 7 given at i E 1..4, check if 24 < 7: nope, 23 < 7:
nope, 22 < 7: yes! Decrement 7 by 22 to indicate it's inclusion in the product, and continue:
21 < 3 and 20 < 1, leaving us with a 7 = a4 . a 2 . a = sqrs[2] * sqrs[1] * sqrs[01, in
terms of array indices. The only difference in the code is that it first checks to see if the
previous element is present, in which case it avoids this work altogether. See for yourself in
Snippet 25.

3.6.3 Adding Users

Now that we know how to calculate with the array of alpha squarings, we can painlessly
see how users are added to the system, from the public key's point of view. The exact
procedure is shown in Snippet 26; it simply calculates the three marginal elements that are
required for a new user in the system, as shown graphically back in Figure 2-3, checks if
they are present, and calculates their block if not.

3.6.4 Usage

Until now we have totally ignored the primary purpose of the public key, namely to provide
elements of the public key to the system! That's because it is anti-climatically simple. The
procedure is shown in Snippet 27. It calculates the block # in which the element must
reside ((index - 1)/elementsper_block, since public key elements are 1-based), and uses
the remainder as offset into the file.

int squaringssetup(bigpkt pk) {
squarings-t* s = pk->sqrs = malloc(sizeof(squaringst));
s->n = (unsigned)logb(pk->numusers) + 2;
s->indices = malloc(s->n * sizeof(useridt));
s->alphas = malloc(s->n * sizeof(mpz.t));

//Make the 1st element equal to g^alpha
mpz_init (s->alphas [0]);
s->indices[0] = 1;

for(unsigned i = 1; i<s->n; i++) {
// Square the current element
mpz_init (s->alphas [i]);
mpz_powui (s->alphas [i], s->alphas [i-11, 2);
s->indices[i] = 1<<i;

}
return 0;

}



Code Snippet 25: Calculating the first element of a new public key block.

This particular implementation generously leaves room for optimization: this paragraph
explains the * (len + 9) in the mapping calculation. The elements' size and tag (indicating
compressed or uncompressed) are stored with each element, which is a huge redundancy that
may easily be removed in a future version. Even worse, the elements' size is stored twice,
once for the function to read it in (elem_in.bio) and another for the data tagging system
(data. c). Our justification for not having fixed this already is that the public key resides
in cheap storage and does not contribute to message size.

3.7 Gaim-PKGE

This section describes the implementation of a plugin for the open-source chat-client jug-
gernaut, Gaim[10]. Gaim allows us to implement a single protocol-agnostic plugin and have
it work over any of the major (and even the not-so-major) chat networks. Since one of
the primary goals of the plugin was ease of integration, this was a valuable experience that
allowed us to evaluate and respond to interface usability, as well as producing a valuable
piece of software demonstrating the technology described in this thesis.

int bigpk_calc_first_block_element(elementt elem,
bigpkt pk, int nblock) {
user_id_t first_elem = first_index_in_block(pk, nblock);

// If block 'nblock - 1' exists, use that to calculate
// Else...
squaringst* s = pk->sqrs;

elementt tempelem;
element init(elem, pk->pairing->G1);
element_init(temp_elem, pk->pairing->G1);
elementsetl(elem);
int diff = first_elem;
for (int i = s->n-1; i >= 0 && diff > 0; i--) {

if (diff >= s->indices[i]) {
diff -= s->indices[i];

elementpow(temp-elem, pk->g, s->alphas [il);
elementmul(elem, elem, tempelem);

}

element-clear (tempelem);

return 0;
}



int bigpk_add_user(bigpk_t pk, user_id_t id) {
// user 'id' requires these element indices:
user_id_t ids[] = { id, pk->num_users+1-id, pk->num_users+l+id };
for (unsigned i=O; i<3; i++) {
// See if this element has to be calculated
char* fn = indexfilename(pk, ids[i]);
if (fn && !checkjfile(fn, R_OK))
continue; // Nope, file exists

// Calculate the containing block
bigpkcalc_block(pk, block_num(pk, ids[i]));

}
return 0;

Code Snippet 26: Adding a user to the big public key.

int bigpkget(element_t e, bigpk.t pk, userid_t index) {
char* fn = index_filename(pk, index);
BIO* b = crypto_fopen_r(fn, 0);
element_init(e, pk->pairing->Gi);
int len = element_lengthinbytescompressed(e);
int pos = BIO_tell(b);
BIO_seek(b, pos + ((index-1) % pk->elementsper_block) * (len + 9));
elem_inbio(b, e);
cryptofclose(b);
free(fn);
return len;

}

Code Snippet 27: Element retrieval procedure for the big public key.

3.7.1 Overview

Gaim provides a powerful hooking system that allows our plugin to register callbacks that
get called for any particular event you can imagine. The approach our plugin takes to
securing communication is message-oriented: we register a callback for the "sending-im-
msg" and "sending-chat-msg" signals (different signals for group chat and 1-to-1 instant
message). The callback gets passed the sender and recipient screen names, and the (char*)
message buffer that is in the process of being sent. The plugin has the opportunity to
mangle the message to its heart's content.

These callbacks obtain the necessary PKGE objects from a function call that manages
a static instance variable. Since a loaded PKGE system keeps track of all loaded users,
there is no reason not to let PKGE take care of managing user objects for you: every
time a message is sent, our callback is passed the sender and receiver screen name, which
we translate into the PKGE name by chopping off the "@jabber-server.com" that might be
present, and calling the pkge_user_load function to get the user object that has the ability
to seal the message.



void *conv_handle = gaim_conversations_get_handle();

gaim signalconnect (convhandle, "sending-im-msg",
plugin, GAIM_CALLBACK(sending_immsg_cb), 0);

Code Snippet 28: Registering a callback with Gaim.

Once a message is sealed, it gets encoded in base-64 and delimited (by GPKGE_TAGCT1).
Upon receiving a message, these constants are scanned for, and the string extracted. Due
to asymmetries in Gaim's message protocol, it turns out that the message seen by the
receiver's GPKGE instance is not exactly what was sent by the sender's instance - there is
extra metadata of unknown origin. The sealed message is extracted from within the tokens,
unsealed, and the buffer is reconstructed to preserve the unknown data.

The plugin also takes care of certificate transfer. When a conversation is created (and
a corresponding signal sent to our plugin), we send out the local user's certificate. Upon
receiving a certificate, the plugin notifies the user and indicates to whom it belongs, as well
as verifying that it is authentic.

The plugin additionally provides niceties like replacing undecryptable text with a friendly
notification (GPKGEUICTREPLACEMENT), allowing messages to be plaintext when explicitly
requested 12, and tagging plain text messages as insecure (GPKGE_TAGINSECURE).

Given all the capabilities of the plugin, let's examine each in a little more detail to see
exactly how it accomplishes everything.

3.7.2 Setup

As mentioned, GPKGE registers callbacks with Gaim. The exact process is shown in
Snippet 28.

When a conversation is created - "conversation" is Gaim terminology for either 1-on-1
IM or group chat - the conversation.createdcb function is called. Regardless of the
type, it retrieves the user's certificate from PKGE and encodes it in base 64. If any part
fails, a friendly message is displayed indicating the cause of failure to the user.

If all goes well, the certificate is tagged (delimited with tokens in tag_certificate)
and sent. Gaim unfortunately does not make programmatically-generated messages simple
to send, so the sending takes a slightly uglier form shown in Snippet 29.

3.7.3 PINs

Any time a user tries to send a message, his user file will be loaded. The first time requires
entry of a PIN to decrypt the user file from disk; subsequent loads return the previously-
loaded user object without going to disk, and thus the user only has to enter a PIN once.
This mechanism is accomplished by checking the return code of pkgeuserload and pop-
ping up a modal dialog demanding authentication, should PKGE_ERR_PIN_REQD be returned.
This functionality is given in the getpin function. Should the PKGE library begin imple-
menting periodic invalidation of a user object to require reauthentication, this mechanism
will not require any modification.

11All delimiting tags are specified by their base name but implicitly have _PREFIX and _SUFFIX suffixes
for the starting and tokens

12The user must type "INSECURE(msg)" for msg to be sent in plain text.



Code Snippet 29: Programmatically sending messages in Gaim.

Algorithm 6 Gaim-PKGE sends a message.
SEND-MESSAGE(conversation, msg)
1 if TAGGED-INSECURE?(msg) then
2 return msg
3 group +-- GET-GROUP(conversation)
4 SEAL(group, msg)
5 return msg

3.7.4 Seal and Unseal

The plugin demonstrates the suggested protocol for communications: it exchanges certifi-
cates on conversation startup, checks for error codes from pkge_unseal. The specifications
for the send and receive procedures are given as Algorithms 6 and 7. The actual code
looks very similar due to pleasant variable/function names, so we will not bother to show
snippets.

3.7.5 Preferences

The plugin uses the GTK+ toolkit for displaying a Settings panel in the Gaim Preferences
menu. The panel allows a user to set the PKGE system path, as well as the protocol to
be used. If the plugin is compiled with the DEBUG symbol defined, there is also a checkbox
to enable debugging output by popup windows. All preferences are stored in the Gaim
preference registry, so the settings are persistent.

3.7.6 Certificate Management

This effort also raised our awareness of the Mozilla Foundation's Network Security Services
project[17]. This is a well-developed framework for the management and sharing of crypto-
graphic material in general. This has applications to our use of certificates, since the way

GaimConnection* conn = gaim conversation_get_gc(conv);

if (gct == GAIMCONV_CHAT) {
GAIM_PLUGINPROTOCOLINFO(conn->prpl)->chat.send

(conn,
gaim conv_chat_getid(GAIM_CONVCHAT(conv)),
(char *) cert.data);

} else if(gct == GAIM_CONV_IM) {
char* buddy;
asprintf(&buddy, "1.*s", strstr(conv->name,"/")-conv->name, conv->name);
GAIM_PLUGIN_PROTOCOL_INFO(conn->prpl)->sendim

(conn, buddy, (char *) cert.data,
GAIM-MESSAGESYSTEM I GAIMMESSAGE_NO_LOG);

I



Algorithm 7 Gaim-PKGE receives a message.

RECEIVE-MESSAGE(conversation, msg)
1 if IS-CERTIFICATE?(msg) then
2 IMPORT-CERTIFICATE(msg)
3 return 1
4 else if UNTAGGED?(msg) or IS-TAGGED-INSECURE?(msg)
5 TAG-INSECURE-MSG(msg)
6 return msg
7 else
8 ciphertext -- GET-CIPHERTEXT(msg)
9 group +- GET-GROUP (conversation)

10 plaintext, error -- UNSEAL(group, ciphertext)
11 if error / NIL then
12 HANDLE-ERROR(conversation, msg, error)
13 return 1
14 else
15 RECONSTRUCT-MESSAGE(msg, plaintext)
16 return msg

PKGE handles certificates is remarkably possessive: it had better find a certificate named
<user name>. der in its certificate subdirectory or else! A centralized database that allows
lookup by fields and nicely formatted output would be great for extensibility, and so in
the short time we had I demonstrated a minor integration with NSS that will hopefully
be expanded upon in the future. Namely, when users exchange certificates, NSS is used
to display information about it, since GAIM is not linked with openssl and it would be
inappropriate to add such functionality to the PKGE API.





Chapter 4

What Have We Done?

In the previous three chapters we have introduced you to a need for securing group com-
munication that exists in the world today, described a design that correctly and efficiently
addresses that need, and then expanded on the details of the work we have done to realize
that design. In the final chapter, we must take a step back, look at the Public Key Group
Encryption system as a whole, and evaluate it in a number of meaningful ways.

The first (and most important!) part of evaluation is correctness. Does our design fulfill
the specifications we have laid out? What steps have we taken, and provided for others, to
verify that this is the case? Let us pause to observe an exceptionally pertinent aphorism.

Untested code is broken code.

Once correctness is assured, we must evaluate performance. In particular, does this
library have compatible statistics in the relevant metrics to be applied to the scenarios we
had in mind way back when we began this journey? The answer is not yes or no; an effective
answer to this question is the characteristic resource usage of PKGE. This allows anyone to
walk up and, without necessarily understanding our library at all, make a quick judgment
on whether or not our library can be of value to his application.

Part of performance evaluation is identifying bottlenecks; an explicit roadmap for how a
future developer should go about customizing it to fit his application. During development
there are literally N points in time when you have to make a tradeoff: do I want to use
more foo's or more bar's here? Some decisions have major consequences, and these should
be identified.

With all that in mind, let's dive right in to the QA dept.

4.1 Testing

For a library running on possibly life-critical systems, testing becomes an extremely impor-
tant facet of development. In this section I describe the paces that PKGE is put through.
Additionally, this section serves as a good review of the expected operation of the system.

4.1.1 It's Alive!

The first part of the test suite is very straightforward. When using PKGE as the instructions
say, in every possible situation, does it have the correct input-output characteristics? This
is a basic sanity test that exercises every API function under a wide range of (valid) user



input. We test system generation, generating key updates, loading users (with valid and
invalid PINs), sealing long sequences of random bytes, unsealing as both a recipient and
non-recipient, certificate import and export, etc.

These tests may be found in testpkge. c and provide a good guide for how the API
should be used. It is all fairly standard, though, and although it ensures that it will
perform reasonably under normal use, it says nothing about robustness or if it is meeting
the performance goals. Let's tackle robustness first.

4.1.2 Nonsense

One technique, known as fuzz testing [55], or sometimes just fuzzing, is to subject the scruti-
nized entity to a lot of completely random input. It is an interesting way of testing because
it assumes nothing about the system. It does not even request anything, not even correct
answers. To pass a round of fuzzing, the API merely has to avoid infinite loops and crashes.
This is easier said than done, especially as a C API. In fact, as far as the author can tell,
it is impossible. There is simply no way to protect against being passed random pointers
that are actually invalid.

So, the class of misuse that the tests ensure we guard against are null pointers for any
argument, strings with invalid characters being passed as a user name or path, trying to
add random bytes as a certificate, etc. In all cases, we ensure that the call did not cause a
crash, and that an appropriate error was returned.

4.1.3 Session Inspection

Now we have tests for correctness and robustness. The next step is tests for performance,
with more of an eye towards performance correctness - does the optimistic protocol actually
drop the overhead size drastically after the first message? Does the session protocol still
send big messages but spend no time computing keys? If two users send messages to the
same group, proposing different private ids, are the sessions ordered correctly in the table
so that subsequent messages use A such that A -< B?

To answer these burning questions, we reread section 2.3 very carefully and wrote down
all of the expectations we had that were implicit in the protocols, data structure organiza-
tion, and performance promises. Then we wrote a program to act out conversations and
supporting tools that allow us to reach inside the library to make sure everything is going
according to plan. Essentially, this fulfilled the function of unit tests - as a cryptography
system, parts are coupled relatively tightly and the effort it would take of setting up context
to write unit tests for each of the pieces was prohibitive, so these tests are the replacement.

That being said, it is quite a hodgepodge, operating at multiple levels of abstraction.
It calls user level functions to initialize and manage users and groups, and then replaces a
pointer to the session table inside one of the objects with one that we control, and then
runs.

We tested three distinct parts: the performance, the error message channel, and the
session handling mechanisms. They are described in detail below, and all of the relevant
code may be found in testprotocols. c.

Proper Performance Profiles

To ensure that protocols were actually performing the appropriate optimizations as they
should, we came up with some useful test primitives:



overhead_t measure (group_t gi, group_t g2);

void assert_overhead(int, int, int, overhead_t measured);

Code Snippet 30: Functions to measure and test cpu/space overhead.

rOb rkh Stateless Sessions Optimistic

Table 4.1: Scenario to ensure observed resource usage meets expectations. The arrows show
a message traversal, and the protocol columns show our expectations for the resource costs.

The anchor (1) signifies a full header (ie. heavy) message, with a leaf (0) signifying an

optimized (ie. light) message. The stop sign (0) signifies that full computation is required,
with lightning (f) for none.

Perhaps unsurprisingly, measure() simulates a message transmission: gl -+ g2. It
records the amount of overhead on the message and the number of milliseconds the seal and
unseal (separately) require, packaged into an overheadt structure. assert _overhead()
takes 3 booleans representing our expectations for the resource usage of a particular message:
1 for full size/full computation, 0 for no header/cached key. The determination on whether
the performance is "good enough" to believe that the optimized protocol is doing it's
job is done in a portable way by clearing all state and then (simulating) sending a single
message, saving that time and overhead as a reference and calculating the factor by which
subsequent tested transactions differs.

This scheme makes it really easy to write scenarios to your heart's content:

assert_overhead(1, 0, 0, measure(g_r0b, grkh))

for example, tests that a message rOb -+ rkh requires full header space but both parties
should have the key cached - the second message rOb -+ rkh in the sessions protocol
would have this profile. The scenario ran through is shown in Table 4.1.3.

Bail out, bail out!

We implemented another important class of tests: the error channels. In particular, recall
that there are two ways for a protocol to emit messages (aside from piggybacking, of course).
It may cause pkge-unseal to return an error code, such as PKGE_ERR_SESSION, in which
case we specify that the client is to call pkgeget_errormsg () and transmit the resulting
data, or the client may register a sender callback with pkge-registersender(), which
the protocol calls with its message.

These are not anticipated to experience much use, but it is imperative that they work
properly, of course. Testing the error message channels involved grabbing a handle to the
session table used by our actors, and flushing it, simulating a loss of state from a crash or
state that never arrived due to a faulty connection.



rOb rkh
'/

cooley

Figure 4-1: Initial message exchange before testing error channels.

To begin, our actors exchange messages as shown in Figure 4-1. At this point, rkh has
a verified session and prefixes his messages only with private session ids. So we clear rOb's
state, and have him try to unseal a message from rkh. We ensure that pkgeunseal()
returns PKGE_ERR_SESSION and that the sending callback we registered was called with an
appropriate "I-don't-recognize-this-id" message. For good measure we also grab the error
message from pkgeget.errormessage() and make sure they are the same.

The first time around we send the error message to rkh, repeating the process with
cooley as the "answerer" to make sure that both senders and recipients in both optimized
and unoptimized modes all provide the answer correctly. We test that the answerer's error
channel (since the answer to the error comes through their error channel) works properly
in a similar manner to rOb's. Finally, rOb unseals the answer to his cry for help, returning
success, and then unseals the message he was previously unable to read, ensuring that the
recommended strategy of caching messages until you can decrypt them is a valid one.

There can be only one

The last class of tests is specifically designed to verify the complex session table protocol. In
particular the function that inserts sessions into the table (session. c: _sessionput ()) is
responsible for enforcing the total ordering on sessions that we established previously (sec-
tion 2.3.2), as well as finding and signalling collisions that occur when inserting sessions by
hash(group, ctmsg) or privateid. Managing reference counting and double-insertion
hash tables and linked-list equivalence classes gets complicated; needless to say, this program
was invaluable for my piece of mind.

To verify this functionality, we call the protocol functions (e.g. pushsessionpublic ())
directly and examine the session objects and hash table afterward. For example, in the test-
ing function testprotocols.c:test_session_handling(), we have our actors send mes-
sages simultaneously to each other and assert that (A->older == B) && (B->newer == A).
Then they send a second message, and we ensure that the second message from both actors
uses the winning session.

In order to make testing the session handling simple, we came up with two more helpers
that may prove of interest. These are given in Snippet 31. These simulate A. the seal and
unseal of a single message, providing the resulting sessions as output, and B. a simulatenous
seal and unseal, providing the 4 sessions as output (sending and receiving sessions for both
parties should be different).

4.2 Evaluation

Having written programs to convince us of the correctness of our solution and its adherence
to the specifications, we now want to develop a performance profile. We want to describe
its performance quantitatively so a casual observer is able to evaluate just how onerous



void dosend (session_t* s sendout, session_t* s_recv_out,
group_t g_send, group_t g_recv);

void do_parallel_sendrecv(sessiont* asend_out, session_t* a_recv_out,
session_t* b_sendout, sessiont* b_recv_out,
group_t g_a, group_t g_b);

Code Snippet 31: Helper functions for testing session handling.

integration would be (in terms of resource usage). This section desribes the methods we
used and the results that we gleaned.

4.2.1 Methods

Evaluations of performance/operating characteristics are important to make an informed
decision on if integration with an application or process is feaisble and that the benefits
will outway the costs in resource usage. To these ends, I pursued three wholly separate
classes of evaluation. For lack of standardized terminology, let's call them unit, scenario,
and integration evaluation. One note is that the message is taken as a whole throughout
this section - for detail on which components in the message contribute to its size, see
section 3.4.12.

Unit Similar to unit testing, this refers to having a program run each function provided
by the PKGE API, measuring the computation time and, for message-providing functions,
the size of the output.

Scenario We describe a framework for generating and playing scripts that have the ability
to simulate a wide range of scenarios. They allow specification of the communication pat-
terns you find interesting, such as message size, drop rate, frequency of recipient add/remove
operations, etc. The simulation outputs per-message measurements of message size and
computational load.

Integration The integration looked more at the relative performance of the toolkit when
integrated in a real production setting: the Gaim environment. As proper part and parcel,
we compare the overhead of PKGE to that of other commonly-used solutions that provide
equivalent security. Naturally, we win in a big way.

4.2.2 Responsibility

Before we jump in, it bears asking what we should do with the results when we get them. In
particular, where does the responsibility lie for the computation times and message sizes? Is
the encryption procedure slow because it has to do eleventy billion exponentiations? Is the
AES encryption procedure even worth considering as a time sink? Maybe keeping groups
sorted by using the Bogosort[18]-&-check algorithm is causing a bigger hit than I expected.
At any rate, here are some possible resource hog culprits for computation time.

* BCE encryption product

* Pairings



* SHA

* ECDSA Signature / Verification

* AES

The computation questions were evaluated using the GNU Profiler (gprof). It discov-
ered, unsurprisingly, that the computation time was far and away dominated by the elliptic
curve operations, by orders of magnitude.

This means that the great majority of time can be made up by adroit avoidance of
elliptic curve operations. This is why stateful protocols are incredibly effective. Caching
products would also be an extremely good investment, that unfortunately only makes an
appearance in the "Technical Todo" in Appendix I.

Turning to message size, let's list the usual suspects:

* BCE Header (2 elliptic curve points and a timestamp)

* Signature

* Recipient set

The answer here is a little less obvious (unless you've actually read the preceding chap-
ters!). This requires no special tools to determine, since there are a relatively small number
of ways a message can be packed, which we explicitly enumerated and analyzed. Looking
at any of the message breakdowns in 2 leads to the conclusion that the header and signa-
ture, weighing in at a constant 150 bytes and 60 bytes overhead each, are the (relative)
juggernauts, with some more small change here and there. That 210 bytes of overhead is
incredibly svelte when you consider that overhead for any typical application absolutely
dwarfs that. For example, a simple email containing the word "test" sent from rkh (at)
11.mit. edu to rOb (at) mit. edu required almost exactly 1 kilobyte of headers(!!).

To be fair, email is a red herring since it naturally requires more overhead to send
stateless messages rather than a single chat packet, for example. To compare, sending
a message containing only "test" using an unencrypted Jabber connection triggered the
sending of a d 400 byte packet. So our overhead turns out to be very reasonable, a good
discovery.

However, one silent-but-deadly contribution that we have left out thus far is the group.
In particular, our implementation simply stores the recipient set as a list of their PKGE
ids, requiring exactly 4 - n space. There are a number of proposals for doing a lot better
(see section I), and regardless, the group is one of the things that gets optimized away
when using either of the stateful protocols. It should be noted that existing solutions for
encrypting to groups of recipients (actual applications, not just papers), are linear in # of
recipients, with a much bigger constant.

4.2.3 Unit Profiles

The goal here is to use knowledge of the internal workings of the system to dissect it and
put the pieces in test harnesses to see how they perform. We calculate the (very rough)
expected results of these performance tests and compare them to the actual results.

First, I created a program, profpkge. c to evaluate the following actions.

* First message to a group of participants

* Subsequent messages to the group

* Changes in membership: joins and leaves



Profiling PKGE library...

Stateless

1st 2nd many many fk left previous
time, send: 88 90 88 88 84 90
time, recv: 79 79 78 78 75 78
size of: 302 302 303 303 298 302

Completed profiling protocol 0

Sessions

1st 2nd many many fk left previous
time, send: 88 16 16 16 86 16
time, recv: 67 19 19 19 61 19
size of: 348 349 136 136 345 137

Completed profiling protocol I

Optimistic

ist 2nd many many fk left previous
time, send: 88 14 16 16 86 18
time, recv: 67 19 19 19 61 19
size of: 348 136 137 136 344 136

Completed profiling protocol 2

Console Listing 3: Output of profpkge on a Powerbook G4, 1 Ghz PowerPC, 1 GB
SDRAM, OS X 10.4.6

Key roll-over (day change)

The results are shown in Figure 3. This output is extremely interesting as it verifies the
relative performance that we were expecting and puts concrete numbers on everything.

4.2.4 Framework

In order to evaluate the viability of particular deployment scenarios, we whipped up a
framework consisting of a combination of scripts that provides simulation of any particular
workload. It outputs per-message measurements of computation time and message size in
tab-delimited form, so that it may be easily analyzed by existing tools. Here is a step-by-step
example.



1. Edit eval_sys. cfg by hand for desired system parameters.

2. $ pkgegen setup eval_sys eval_sys.cfg
Setup the system

3. $ ruby genusers.rb 100 > 100users
Automatically generate users information

4. $ pkgegen add evalsys txt 100users
Add them to the system.

5. $ ruby genscript.rb 100 30 550 0 0.1 0.1
Generate a "chat script" for the users the users to act out.

6. $ ./runscript script-100-30-550-0-0.1-0.1 evalsys 100
Execute the performance, while noting the overhead

Let's look more closely at the individual steps, so that the interested reader will be
able to understand and extend when necessary. The scenario evaluation is intentionally
done as a mish-mash of lightweight scripts, since supporting all possible interesting options
would be futile and much more effot than simply modifying the scripts to match changing
requirements.

pkgegen setup ... The first step is to generate a system you wish to use for testing. You
will probably want to change the default parameters for forward secrecy - your automatons
do not need to remain separate from the central authority for very long and it is time-
consuming to calculate a large number of unnecessary keys.

genusers; pkgegen add ... The next step is to generate users and add them to the
system. The genusers.rb script was originally done for convenience, since I am a slow
typist and have not figured out copy-and-paste yet. However, an important note is that
runscript. c relies on the system users being called "User#", so deviate from this step
carefully. Once you have generated a number of users once, I cannot think of a reason to
ever do so again, so you will likely not have need for genusers terribly often.

genscript The most interesting part of the medley, this step generates a script that the
automated users follow. It supports message payloads of plaintext up to 5 MB, joins, leaves,
and dropped messages. The tool options are shown below. Note: P(x) signifies "probability
of x" and "round robin?" refers to a boolean option between round robin chatting and
random selection.

genscript.rb options:
(# users) (# lines) (line length) (round robin?) (P(join/leave)) (P(message loss))

Example: $ ruby genscript.rb 5 1000 50 1 0.01 0.1

Translation: generate a communication script for 5 users, 1000 lines long, per-message
length of 50 characters per line using a round-robin communication pattern and a 1%
chance (per line) of a recipient joining or leaving the group, and a 10% chance per line of
that message getting lost, and store all that in script-5-1000-50-1-0.01-0.1.

The generated script is hand-editable to make it easy to insert contrived situations. A
snippet of a (hand-generated) script is shown in Figure 4-2 and is hopefully self-explanatory.



1 Sup guys!!
2 Hey man, how's it going?
join 3
4 Oh man I owe User3 money...
leave 4
drop 3 Oh, just missed User4, he owes me money
1 What did you say? Missed it...

Figure 4-2: A snippet of an evaluation script.

runscript This step takes the (painstakingly directed and produced) script in the previ-
ous step, and runs it against a specified system and user base. In particular the command
line for running a script is shown below. The number of users is specified again both for
simplicity - no reading parameters from the top of the file, or running through the file
to figure it out - and because it allows for a script to be run with varying numbers of
users. It only requires as many users are there are speakers, but the command-line used
with runscript can introduce any number of listeners. The last option is a boolean: should
we convert messages to/from base 64 as part of the process? This entails the conversion
taking its toll on the computation and message size overheads.

./runscript (script) (system) (# users) (base 64?)

4.2.5 Results

In order to simulate traffic, I observed some typical chat packets sent using the Jabber pro-
tocol. Formatted in XML, the packets are a hefty 500-600 bytes for a typical chat message,
without the SSL/TLS encryption option. As a result, I generated and ran a script:

ruby genscript.rb 5 30 550 0 0.1 0.1
./runscript script-5-30-550-0-0.1-0.1 eval_sys 5 1

This simulates 30 spoken lines in a 5-user chat room with an average payload of 550
bytes. The speaker is selected at random and there is a 10% chance of someone joining or
leaving the room, and a 10% chance of a message being dropped. This produced the graphs
seen in Figures 4-3, 4-4, 4-5, and 4-6.

4.2.6 Live

The last stage we went through was a live-action script. Using the Gaim plugin, I entered
lines from a script at 5-second intervals, capturing the resulting traffic using Ethereal.

4.2.7 Comparison

Well, we've seen that, especially when it's base64 encoded, confidentiality and authentica-
tion commands quite a premium in resources over plaintext. However, how does PKGE stack
up to existing schemes? Since there is not an equivalent tool trivially at our disposal, let's
take one accessible example in particular and extrapolate. PGP-signed-encrypted email,
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for example, is one application that provides an equivalent service in one of our target

environments.
In order to compare the two, let's consider the same situation of 5 recipients with a

payload of 550 bytes. Note that email is the weakest situation that PKGE may be put into,
since it disallows all of the stateful optimizations that we have made possible. Regardless,
we will use 1024-bit RSA keys for encryption and signing, despite these being significantly

less secure than the 224-bit EC curve we are using1 .
Our test strategy was simple: send a signed, encrypted email to 5 recipients, and measure

the overhead as compared to the bare email. One unfortunate item is that the PGP plugin

compresses the input before the operations (which is on our todo list), so we simply tested

by sending a couple bytes, so that we could measure real overhead. Then we can compare

overheads as apples-to-apples, since we do not pull any such sleazy tricks.

The result of encrypting and signing the text "test" to 5 recipients was a (base 64)

output of 2,470 bytes. This is enormous.

4.2.8 Evaluation Finale

In this section, we gave hard and fast numbers for computational and space overhead

imposed by PKGE. Now we want to connect these numbers back to the very beginning,

where we described the environments that we are targetting with this toolkit. What can

1A 1024-bit RSA key is roughly equivalent to 160-bit EC key in terms of security.
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Figure 4-4: Message size overhead.

we take away in particular from this discourse on evaluation procedure and performance?

CPU Using the computation times given by the Powerbook (on which I am merrily typing
away), can we do some order-of-magnitude calculations to figure out if this library can run
on a PDA? Probably nothing meaningful, but let's give it a shot anyway. Assuming a
current-level PocketPC (for example, the Dell Axim X5 Pocket PC), we are dealing with a
400 MHz Intel XScale CPU, with 64 MB SDRAM. Memory consumption is not an issue,
as the largest

Using top, we observed that the RSIZE was a mere 1.66 MB - VSIZE was a more
ghastly 31 MB, due to linkage with a number of heavyweight libraries like OpenSSL and
GMP. It is completely unclear what performance implications the memory requirements
have, and although I do not feel comfortable even giving estimated computation times
without a trial run, it is safe to say that header computation requires less than a second,
and that is good enough when using any of the stateful protocols.

Space Space perhaps offers less of a constraint, as the system space required has already
been shown to be reasonable, and the bandwidth hit required by sealing messages has also
been shown to be on the order of a couple hundred bytes. The keys to success in this arena
are efficient transfer of recipient sets and the incremental public key. With respect to space,
PKGE does not step on toes.



Seal: Computation Time
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Figure 4-5: Computation required to seal a sequence of messages.

Conclusion We are very heartened to find that, at the close of our tortuous journey
together, PKGE's performance comfortably meets our goals of being deployable in a variety
of scenarios. Not only that, but there are a number of optimizations I suggest that could
make things even better. So ends Evaluation, on an optimistic note.
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Unseal: Computation Time
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Figure 4-6: Computation required to unseal a sequence of messages.
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4.3 Conclusion

At long last the sun is setting on this grand adventure. Nearly freed from the shackles that
have bound my hands to this keyboard for the past month, my battle-scarred fingertips can
scarcely type with any speed or precision. In the past 104 pages we have discovered a terrible
void in the state-of-the-art in securing group communication. We have seen situations that
sorely lack this capability and we have thought critically about what properties such a
solution must have to broadly succeed in these situations.

From these musings sprang forth a design for a Public Key Group Encryption system,
offering stateless, disconnected confidentiality and authentication to any number of recipi-
ents for a constant price in space overhead. We detailed exactly how this system should be
put together, and then we executed those specifications to the best of our ability. Concur-
rently, we develop sophisticated automated tests to give confidence in the effort. After all,
there is a wise adage:

Trust, but verify.2

With a new beast in the stable, we felt compelled to take him for a ride to see what
he could do. We designed a series of trials that would give us an idea of the sort of things
he would be good for. Having become intimately familiar with our creation, we provide
manuals for the different roles of interaction and this document providing the blueprints.
We even provide a list of improvements that may be undertaken by the intrepid developer
(Appendix I)..

The synergistic duo of PKGE and Gaim was too tantalizing to ignore. We implemented
a plugin that allows PKGE to be used to secure communication across any chat network on
any computing platform3 . It is both an incredibly useful application in its own right and
also serves as a paragon of programming using the PKGE API that may be referenced by
future developers.

Basically we worked out the service architecture and engineering issues like user regis-
tration and initialization, key storage and retrieval, representation of recipient sets, authen-
tication, and encryption. We have developed a prototype, evaluated our implementation,
ran experiments, measured overhead, compared ourselves to a more conventional rival, and
developed a motivating launch application.

By producing this prototype, we demonstrated feasibility of a solution that has a clean
API on top of a straightforward cryptography scheme. It will serve as a foundation for
determining bottlenecks of this scheme for real group applications in the targeted environ-
ment. It is part of a larger effort at Lincoln Laboratories, and will be the benchmark that
future solutions will be measured against.

201d Russian proverb popularized by Ronald Reagan in his 1989 farewell address.
3Technically, it supports any known, public chat networks on any computing platform that runs

Windows, or some flavor of Linux, but my original statement covers everything except academically
pedantic cases.
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Appendix A

Terminology

This chapter serves as a glossary that offers quick reference for any terms that are frequently
used throughout this paper.

BCE Broadcast Encryption, the name given typically given in cryptographic publications
to any technique that allows (efficient) encryption to large audiences. Used interchangeably
with BCE in this paper.

BGW Boneh-Gentry-Waters, authors of the cryptographic piece-de-resistince in this the-
sis. Used interchangeably with BCE in this paper.

canonical time Relating to forward secrecy, this is essentially the "floor" function for
timestamps. All timestamps within a timestep have the same canonical time, so comparing
two messages' canonical time allows easy determination if they can use the same key.

forward secrecy/security If an adversary saves secure communications and at some
later point compromises a user's system, he should not be able to use any of that user's
abilities to read past messages.

framework When speaking of the PKGE framework, we are referring to the shared C
library implementation of the Public Key Group Encryption service as well as the supporting
system generation and profiling tools.

(key) roll-over The process by which the current private BGW/BCE key is swapped for
the next upon expiration of a security epoch. Connotes the extra bit of complexity present
with the window.

seal To encrypt and sign a plaintext message

security epoch A period of time during which the same keying information may be
used and forward secrecy is not guaranteed. This is essentially the discrete unit of forward
secrecy - messages are only rendered forward secure after expiration of the security epoch
they are sealed to.
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session The context defined by the group and timestep a message is addressed to. It
serves to cache the message header and decryption key to avoid costly computation, and
defines an id that may be referenced in subsequent messages and allows omission of the
vast majority of space overhead from the sealed message.

store Upon loading a system, its path and handle are adding to the store, where it may
subsequently be referenced by the path alone.

timestep Relating to forward secrecy, this is the domain of time during which a single
temporal key is valid. Interchangeable with security epoch.

unseal To verify the sender's signature and decrypt a ciphertext message

verified Used in the context of a session, in the sessions protocol. A session becomes
verified for a particular user when he receives a message from everyone else in the group,
containing that session's header and association with the same private session id. Once
a session becomes verified, the user begins sending only optimized messages, with only a
private session id in the way of header.

window The period of time at the start of a security epoch during which the previous
epoch's key remains accessible, for the purpose of ameliorating problems inherent in at-
tempting a global synchronous key switch. Once the window expires, the previous epoch's
keys are irrevocably deleted.
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Appendix B

Administrator Manual

This section is designed for system administrators. It details how to configure, generate,
and add users to a system. Secure handling of sensitive data is also discussed briefly.

B.1 Configure

PKGE gets a large number of settings and parameters from its configuration file. The
recommended method for producing one is to edit the default. cfg(see J.1) provided and
save it as your own. It is well-commented, so I will simply briefly mention the most relevant
parameters.

* pairing configuration - the particular elliptic curve forms the base of the system
and determines the basic performance and security properties. PBC must be used to
generate alternate configurations.

* N - how many users might you conceivably have sign up for your system during its
lifetime?

* timestep - how often do you want keys to "roll-over", that is, cause previous mes-
sages to become unreadable. The smaller the timestep, the smaller the window of
vulnerability, but the greater the resource requirements.

* window - "grace period" during which messages expiring during the previous timestep
can be unsealed in the next

* lookahead - how long should clients be able to go without retrieving updated keys
from the central server?

* sessiontablesize - how many different groups might a user form during a single
timestep? default of 210 capacity should be fine for all uses, unless you are an aggressive
optimizer.

B.1.1 An Elliptic Curve to Call Your Own

This section describes how to use PBC to generate your very own elliptic curve. This
section is meant for the administrator who took a look at what was provided, sees the

general characteristics of the different types of curves, and decides he has his heart set on
a "Type F" curve using 123.5 bit keys and won't take "no" for an answer. To get a gist of
the characteristics of the curves provided, see Table 1.3.2.
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B.2 Generate

This step takes the configuration file you caringly crafted in the previous step and boils it
down into a system file and some boilerplate cryptographic elements. In particular, run the
following command:

$ pkgegen setup /optional/path/system.name system.cfg

This creates the directory /optional/path/system_name and gives you everything you
need to start the party. Thereafter, and in general, you may reference the system using its
path - feel free to slide it around the file system, as long as the internal file structure remains
intact. The system generation takes almost no time at all - cryptographic computations
are mostly put off until they become absolutely necessary (e.g. users are added to the
system).

B.3 Add Users

Your chariot awaits, now you need to fill the seats. Presumably you have some existing
infrastructure that PKGE should fit within. This means that there is a database of every-
one for whom you are interested in providing security. Export the list to a tab-delimited
text file. The details are negotiable, but the pkgegen tool wants very badly to generate
X.509 certificates for the user base, and if you provide the following fields it will do just that:

CommonName SurName GivenName Title Position Group

The name that the central authority is known as should be alone on the first line, with
user information in the above format taking up all subsequent lines. The user's "Common
Name" is the human-readable and human-rememberable textual representation he will be
forever known to PKGE as. Once your user information is exported to that format, run
pkgegen:

$ pkgegen add /optional/path/system.name txt users.txt

This step may take a while, depending on the number of users. It generates all of the
public and private keys needed by the new progeny.

B.4 Distribute

The system is all set up, and now you need to somehow get it to the eager users. According
to the usage vision, this is best accomplished by setting up a server and using the existing
infrastructure (there is one, right??) to authenticate users that come looking to download
the latest and greatest cryptographic development of the 2 1st century. Once an authenti-
cated user makes a request, the server should require him to select a PIN to be used to
protect his keys. Once selected, the server should run the following command:

$ pkgegen dist /optional/path/system_name username 12345
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Initial Distribution Update Distribution
system-name/system.name.pkge systemname/users/Alice.usr
systemname/users/Alice.usr systemname/bigpk/<any she does not have>.pk
systemname/certs/Alice.der
system.name/bigpk/ .pk

Table B.1: Listings of files that Alice needs on setup and subsequent updates.

Of course, substitute the common name of the user, and probably disallowing 12345 as a
PIN would be a good move[37]. Note: valid PIN range is [0, 232 - 1] = [0, 4294967295J, lim-
ited to 4 bytes. Therefore, you can require up to a 9-digit PIN. At any rate, once the system
has finished encrypting the user's profile, generating, for example, systemname/Alice. usr,
it is the server's responsibility to package up the files according to Table B.4.

If Alice already has a system and merely wants to update her system (ie. get her key set
for the next "lookahead" period), the server has to generate a new .usr file for her using
the same command, as well as ensure that she receives any new public key elements that
have been generated since her last update (see Table B.4. Those are easy to determine by
first checking the date that Alice.usr was last accessed, and selecting all .pk files with
creation dates later than that. One more time because it's important and I know you've
had a long day: You are responsible for keeping track of which public key blocks
Alice needs and delivering them.

Note that $ pkgegen dist must be run in both cases. Note also that the user files
beginning with an underscore ('_') are unencrypted user keys, and must be protected at
all costs. There is no reason for any process other than pkgegen to access them. Also note
that if a user loses or forgets his PIN, he may simply follow the "Update Distribution"
protocol, since he is queried each time for a PIN with which to encrypt his .usr file.

B.5 Conclusion

That is all you need to know about administering your very own Public Key Group En-
cryption system.
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Appendix C

Client Manual

This manual is for developers that wish to leverage PKGE in their application. It de-
scribes the basic API, the different protocols, and the recommended methods for handling
certificates and protocol error messages.

C.1 Client API

So you have an advanced elliptic curve-based system for encryption and authentication of
all communication loaded; how do you use it? There are varying degrees of complexity
depending on your feature and performance requirements. Here is a simple snippet that
lets Alice send a message to Bob.

usert Alice;
pkge_user_load(&Alice, "/path/to/pkgesystem", "alice'', pin_entry);

group_t alice_and_bob = pkge-groupnew(Alice);
pkge_group_add(aliceand_bob, ' Bob");

data_t alicesays = { input, input_len };
pkgeseal(alice andbob, &alicesays);

There you have it. This relatively minimal set of instructions decrypts and loads Alice's
private keys, selects a communication protocol, creates a new recipient group to add Bob
to (after verifying his identity using a X.509 certificate mind you), calculates a unique key
using his public key, and encrypts the provided message using that calculated key. Bob
would have to do the following to read that message.

user_t Bob;
pkge_loaduser(&Bob, "Bob", bobspin);

groupt boband_alice = pkgegroupnew(Bob);
pkgeunseal(boband_alice, &alice_says);

One observation is that PKGE relies on the datat data type to represent messages. It
is a simple structure:
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struct data_t {
byte_t* data;
size_t len;

A second observation is that no mention was made of the protocol. It turns out
pkge_userload implicitly compares the given system path to every other currently loaded
system. If one matches, the user is loaded using that system, but if not, it calls pkgeinit,
loading the system using the sessions protocol. One final observation is that the argument
"const char* sys_filename" pops up a lot. There had to be some token to identify which
system a function is talking about, since this is meant to be a shared library, so the path
name is overloaded to fill that function. The client must have the path at some point in
order to load the system, so he would likely find it convenient to keep the path around,
making it a non-onerous token. Note that the path is simply string-compared for equality,
so be sure to use a single canonical form, rather than multiple strings that may refer to the
same disk entry.

C.2 Initialization

int pkge_init (const char* sys_filename, unsigned long opmode)
int pkge_user_load(user_t* user, const char* sys_filename,

const char* user_name, pint pin)

These functions handle initialization. When called, pkge_init checks if sys_filename
corresponds to any currently-loaded system. If not, it loads the system, initializing it with
the protocol given (op_mode). You may pass in one of:

PKGE_PROTOCOL_{STATELESS, SESSIONS, OPTIMISTIC}

to select a protocol. If sys_filename corresponds to an already-loaded system, the protocol
is set to op_mode, and no further action is taken. Calling pkge_userload initializes the
system if necessary, using PKGE_PROTOCOL_SESSIONS as the default protocol.

An important aside is that a system may be loaded using 3 referentially distinct paths (as
opposed to cosmetically distinct). A system residing in /usr/sys may be loaded by passing
"/usr/sys", "/usr/sys/sys. pkge", or "/usr/sys/sys. admin", assuming that the latter
two exist. In the first two cases, /usr/sys/sys.pkge, the non-administrative system, will
be loaded. In other words, to write a function that works on the administrative system, be
sure to load the ". admin" system file explicitly!

Example:

user_t alice;
pkge_user_load(&alice, "/path/to/system", "Alice", 12345);

// => Alice loaded, system init'd

pkge init ("/path/to/system", PKGE PROTOCOL_OPTIMISTIC);

// changed protocol to "optimistic"
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C.3 Groups

groupt pkge_group_new (const usert u)

int pkge_groupadd (group_t g, const char* name_toadd)
int pkge_group-remove(group_t g, const char* nameto_remove)

char* group_str (const group_t g)
int pkgegroupfree (group_t g)

No surprises here. Straight to examples.

Example:

usert alice;
pkgeuserload(&alice, "/path/to/system", "Alice", 12345);

group_t lover = pkge_groupnew(alice);
pkge_group_add(lover, "Bob");

/** flirts **/
/** Bob leaves for work **/

pkgegroupremove(lover, "Bob");

pkge_groupadd(lover, "Carl");
char* tryst_description = groupstr(lover);

/** Alice has been cheating on poor Bob all along... =[ **/

pkgegroup_free(lover);
free (tryst_description);

C.4 Certificates

int pkgeget_cert (data_t* cert, const char* sys_filename, const char* name)
int pkge_add_cert (const char* sysfilename, const data_t* cert)
int pkgehave_cert(const char* sys filename, const char* name)
int pkge_getx509 (X509** x509, const char* sysfilename, const char* name)

These functions manage user certificates. pkgegetcert returns a DER-encoded cer-
tificate as a message ready for transmission, pkgeadd_cert accepts a DER-encoded cer-
tificate and adds it to the PKGE repository, and pkgehavecert tests for a particular
certificate's presence, given a user's name.

pkge_getx509 is only available if <openssl/x509.h> is included previously, and it
allows easy extraction of the X509 OpenSSL object so that the application can play with
it using the mechanisms provided by OpenSSL.

Example:

data_t my_cert = {0,0};
pkge_get_cert(&my_cert, "/path/to/system", "Alice");
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Error code Translation
PKGE_ERRCORRUPTMSG Expected data tag was not found
PKGE_ERR_NOT_RCPT You are not authorized to read this
PKGE_ERR_CERT_MISSING I don't have the sender's certificate
PKGE_ERR_SESSION There was a message lost, or you lost state
PKGE_ERR_INVALID_SIG The sender's signature didn't verify
PKGE_ERR_EXPIRED The message was sealed to a timestep that has expired

Table C.1: Error codes for pkge-unseal.

// Alice --+ my_cert -+ Bob

pkge_have_cert("/path/to/system", "Alice"); // => 0 / FALSE
pkge_addcert ("/path/to/system", &alices_cert);
pkge_have_cert("/path/to/system", "Alice"); // => 1 / TRUE

C.5 Cryptographic Operations

int pkge_seal(const group_t to, data_t* msg)
int pkge_seal_delayed(const group_t to, datat* msg, int days)

int pkge_unseal(group_t to, data t* msg)

We finally made it to the bread 'n butter! Support for forward secrecy requires that
messages have a finite lifetime. In particular, to ensure that future key compromise pre-
serves the confidentiality of past messages, keys must be irrevocably deleted once their
timestep-in-the-sun has passed. For interactive communication applications, this is not a
concern. However, for applications such as email, where there is possibly a lengthy delay
between the sending and receiving, it may be necessary to specify a longer length of time
during which the message can be unsealed. Thus, pkge_seal_delayed offers to preserve
a message's unsealability for an integral number of days. pkge_seal is simply an alias for
pkge_seal_delayed with days=0.

The responsible developer should always check the return value of pkge_unseal, since
it has, without doubt, the widest variety of descriptive error codes to return. They are
described in Table C.1

Example:

pkgesealdelayed(addressed_to, message, 30);

/** Sits in their mailboxes **/

/** They start up their client one day **/

user_t bob;
pkgeuserload(&bob, "/path/to/system", "Bob", 12345);

groupt bobs_email = pkge.groupnew(bob);

pkgeunseal(bobs_email, msg);

114



C.6 Utility

int pkge_to64(data_t*)
int pkge_from64(data_t*)

These methods encode/decode base64 in place.

Example:

pkge_seal(group, msg);
pkge_to64(msg); -- Itext-only channel -+ pkge.from64(msg);

pkge.unseal(group, msg);

C.7 Error Handling

data_t* pkgeget_error_for(const group_t g, datat* msg)
int pkge_registersender(const group_t g, int (*send)(datat*))

These methods exist to explicitly handle the error condition that occurs when the mes-
sages being sent are optimized such that they are sent without the full header. A client
may receive such a message and not have a record of the session id that identifies which key
should be used, a scenario that may arise when the client experiences a loss of state such
as a crash, or when the Optimistic protocol is in use and a group member does not receive
the first and only setup message.

These methods provide two different ways to recover. One requires diligent checking
of the return code from pkgeunseal and the other requires a callback be written that
can accept a message to send. In particular, if an invocation of pkgeunseal returns
PKGE_ERRSESSION, pkgegeterror msg may be called, passing in the same message given
to pkge_unseal, to get an error message that should be relayed to the group to elicit
assistance. If a callback is registered, it will be called in this situation with the same error
message. An identifier is added to the message by the unseal operation and removed when
the error message is retrieved, so if both a callback is registered and pkge_geterror is
called, the latter will return a null pointer.

In any case, an error message indicates a likelihood that subsequent unseals will fail,
until a recovery message is received. The diligent application will save incoming messages
that the unseal operation fails for and retry when unseal begins to succeed.

C.8 pkge_shutdown() will set you free

int pkgeuser free(usert u)
int pkge_group_free(groupt g)
int pkge_shutdown(const char* sys_filename)

These methods free resources. All groups allocated with pkgegroup_new must be freed
by the user. However, we are more permissive with the handling of usert objects: a system
shutdown causes all loaded users to be freed as well, so if you are unloading PKGE with a
number of users loaded, it is perfectly acceptable to call pkge shutdown and assume that
everything else is taken care of (except for the groups!).
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C.9 Administrative API

This section describes the functions that may be useful when writing programs to operate
on the central authority's system. It contains functionality like creating new users and
generating key updates for users. There are few enough functions that we don't bother
breaking them into functional groups.

C.9.1 Initialization

int _pkge_setup(pkge_t* sys, const char* sys_filename, const char* cfg)
pkget _pkge_init (const char* sys filename, unsigned long mode)

A system may be created by the _pkge_setup function, using a textual configuration buffer.
This pkgeinit function exists for the dual purpose of initializing the system a la pkgeinit
but with the added utility of returning a handle to the system structure. Currently the
system handle is only necessary for adding users, serializing the system file, or getting the
authority's X.509 signing key (_pkge_calkey).

C.9.2 Users and Updates

int _pkgeuser_create (usert* pu, pkget sys, const char* orgname,
user_id_t id, char* userinfo)

int _pkge_gen update (usert u, pint pin)
int _pkgeadd_user X509(pkge t sys, X509* x509, EVP_PKEY* signkey)

int _pkge_add users txt(pkge_t sys, BIO* userinfo)
int _pkge.user_save (user t u, pint pin)

If the single user-creation procedure is too coarse for you, there are also certscreate
and user_create. The former creates a certificate using the given information, signs it with
the given CA key, and returns the newly created user key (public and private). The latter
takes such a key, plus his PKGE name and id, and returns a new user object, which may
be saved using _pkgeuser_save.

The update functionality is all rolled into this single function call: pkge.gen.update().
It deletes stale keys from the user's key file, replaces them with new keys (assuming it hasn't
been previously called during the current timestep), and encrypts it using the given pin. If
pin is 0, the file is saved unencrypted.

C.9.3 Serialization

int _pkge_save (pkge_t sys)
int _pkgeserializesanitized(pkge_t sys, BIO* fp)
int _pkgeserialize (pkget sys, BIO* fp)

The system serialization procedures have a bit of flexibility. The one-line wonder
_pkge_save works out all of the disk and file naming issues, saving both administrative
and user versions of the sytem to file. For more flexibility, intermediate functions are
provided in _pkge_serialize (admin system only) and _pkge_serialize_sanitized (user
system only). User serialization is accomplished by _pkgeuser_save - if the given PIN is
0, a fixed-key-encrypted user file (e.g. _rOb.usr) is generated.
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C.9.4 The Store

int _pkge store_add (const pkge_t sys, const char* alias)
int _pkge store_remove(const char* alias)
pkge_t _pkgestore_get (const char* alias)
int _pkge_store_free (void)

The store is where the library stores system object references, mapped to by the path that
was used to load them. Systems may be added or removed from this store; it might be
desirable to remove a system, for example, if you do not want it to be shared. In that case,
when a second instance passes the same path, no system will be found and it will be loaded
anew.
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Appendix D

PBC Library 0.2 Manual

Author: Ben Lynn

D.1 Overview

Pairing-based cryptography centers around a particular function with interesting properties.

Let G1, G2, GT be cyclic groups of prime order r. Let G1 be a generator of Gi and G2
be a generator of G2. Let e be a function:

e: 1 x G 2 =•- GT

that is efficiently computable with e(GI, G2) 4 1 (nondegenerate) and e(Ga, Gb) = e(Gi, G2 )ab

(bilinear) for all integers a,b. We refer to this function e as a bilinear map or a pairing. When
G1 = G2 we say that the pairing is symmetric, otherwise we say the pairing is asymmetric.

With a few more conditions (for example, we may require the discrete log problem to
be hard in G1 and the existence of an efficiently computable isomorphism from G2 to GI),
these pairings can be used to build a wide variety of cryptosystems.

The PBC library builds groups G1, G2, GT and a pairing from given parameters. The
underlying mathematics behind the groups are abstracted away in the interface. Routines
to generate pairing parameters of are also provided.

D.2 Testing the Library

Several test programs and curve parameters are bundled with the library.

D.2.1 Quick Start

After compilation succeeds, try:

test/testpairing < a.param
test/benchmark < c159.param
test/testibe < e.param

The *.param files contain pairing parameters one might typically use in a real cryp-
tosystem. Many of the test programs read the parameters from standard input.
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D.2.2 Test Programs

listmnt Searches for discriminants D that lead to MNT curves with subgroups of prime
order.

genaparam, gencparam, geneparam, genfparam, genbgn Prints parameters for a
curve suitable for computing pairings of a given type. The output can be fed to some of the
other test programs. The program gencparam should be given a discriminant as the first
argument.

testhilbert Prints the Hilbert polynomial for a given discriminant.

testsig, testibe These programs read curve parameters on standard input and perform
computations that would be required in an implementation of the Boneh-Lynn-Shacham
short signature scheme and the Boneh-Franklin identity-based encryption scheme. testbb,
testbls, testbbs, testibs

These test programs are more realistic, and test the implementations of the Boneh-
Boyen, Boneh-Lynn-Shacham, Boneh-Boyen-Shacham signature schemes and the Cha-Cheon
and Sakai-Kasahara-Schnorr identity-based signature schemes

benchmark Reads pairing parameters on standard input and benchmarks the pairing.

D.3 The PBC API

Programs using the PBC library should include the file pbc .h:
#include "pbc.h"

and linked against the PBC library, e.g.
gcc program.c -L. -lpbc

The file pbc. h includes gmp. h thus all GMP functions are available. To use a pairing, first
declare and initialize:

pairing_t pairing; pairing_init_inp_str(pairing, stdin);
In this case, the pairing parameters are fed to the program on standard input'. Now
pairing->G1, pairing->G2, pairing->GT and bilinear_map() can be used as follows.
Declare and initialize some group elements:

element_t x, y, z;
element init(x, pairing->G1);
element init(y, pairing->G2);
element_init(z, pairing->GT);

To pick random elements of G1, G2 and compute a pairing:

element_random(x);
element_random(y);
bilinear map(z, x, y, pairing);

Now z = e(x, y). To raise x by some random exponent r:
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elementt r;
element_init(r, pairing->Zr);
element_random (r);
element_pow_fp(x, x, r);

D.4 Pairing Types

The PBC library implements the pairing using different types of curves. Which curve to
use depends on the application. To make it easy to refer to them, I have labelled them with
letters. See below for the details.

The library provides pairing parameters useful in typical pairing-based cryptosystems.
If you're not interested in what the details are, always use Type A when a fast pairing is
desired, and Type F when short group elements are needed. Type C are not as slow as type
F, but cannot be quite as short.

D.4.1 Type A

We use the curve y2 = x3 +x over the field Fq for some prime q. It turns out #E(Fq) = q+1

and #E(F 2) = (q + 1)2. Thus the embedding degree k is 2.
We set things up so that q + 1 = r -h, for a particular r. For speed, we pick r to be a

Solinas prime, that is, r has the form 2a ± 2b ± 1 for some integers 0 < b < a.
We also choose q = -1 (mod 12) so we can implement Fq as Fq[Z] (where z = V-T).

Also, since q = -1 (mod 3), cube roots in Fq are easy to compute. This latter feature may
be removed because I have not found a use for it yet (in which case only q = -1 (mod 4)
is guaranteed).

Pairings on type A curves are the fast and ought to be used where the main concern is
efficiency. Typically, r should be about 160 bits long and q about 512 bits. In this case,
elements of groups G1 and G2 take 512 bits to represent.

Additionally, the pairing is symmetric, that is G1 and G2 are in fact the same group.

a_param struct fields:
exp2, expi, sign1, signO, r:

r = 2^exp2 + sign1 * 2^expl + signO * 1 (Solinas prime)
q, h:
r * h= q+1
q is a prime, h is a multiple of 12 (thus q = -1 mod 12)

D.4.2 Type B

This type is reserved for the curve y2 = x3 + 1 over Fq with q = -1 (mod 12). It has yet
to be implemented as I have not seen a compelling reason to use it.

There are advantages unique to this curve however. Since cube roots in Fq are fast and
guaranteed to exist, for any given value of y, it is easy to solve for x. Also, the coefficient
of x is zero in the curve equation, simplifying some equations (e.g. point doubling).

There is also at least one drawback when compared with the similar type A pairing.
If symmetry of the pairing is insisted upon, some optimizations are not possible. If ever
implemented, perhaps I will divide this case into two subtypes, one symmetric, and the
other asymmetric but slightly faster.
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D.4.3 Type C

These are ordinary curves of with embedding degree 6, whose orders are prime or a prime
multiplied by a small constant. These are constructed using the method due to MNT.

A type C curve is defined over some field Fq and has order h - r where r is a prime and
h is a small constant. Over the field F6 its order is a multiple of r 2.

Typically the order of the curve E is around 170 bits, as is Fq, the base field, thus qk is
around the 1024-bit mark which is commonly considered good enough.

Using type C pairings allows elements of group G1 to be quite short, typically 170-bits.
Because of a certain trick, elements of group G2 need only be 3 times longer, that is, about
510 bits rather than 6 times long. They are not quite as short as type F pairings, but much
faster.

cparam struct fields:
q Fq is the base field
n # of points in E(Fq)
r large prime dividing n
h n=h*r
a E is given by y^2 = x^3 + ax + b
b
nk # of points in E(Fq^k)
hk nk = hk * r * r

I sometimes refer to a type C curve as a triplet of numbers: the discriminant, the
number of bits in the prime q, and the number of bits in the prime r. The listmnt program
prints these numbers. The bundled type C curve parameters are the curves 9563-201-181,
62003-159-158 and 496659-224-224.

D.4.4 Type D

This type is reserved for supersingular curves with embedding degree 6. Pairings are fast
as optimizations specific to fields of characteristic 3 may be used. The embedding degree
of 6 also means the representations of elements of G1 are short.

On the other hand, the low characteristic also makes these curves more susceptible to
Coppersmith's attack, so slightly larger fields are needed for security.

D.4.5 Type E

The CM (Complex Multiplication) method of constructing elliptic curves starts with the
Diophantine equation

DV 2 = 4q - t 2

If t = 2 and q = Dr2h 2 + 1 for some prime r (which we choose to be a Solinas prime) and
some integer h, we find that this equation is easily solved with V = 2rh.

Thus it is easy to find a curve (over the field Fq) with order q - 1. Note r2 divides q - 1,
thus we have an embedding degree of 1. Hence all computations necessary for the pairing
can be done in Fq alone. There is never any need to extend Fq. As q is typically 1024 bits,
group elements take a lot of space to represent. Moreover, many optimizations do not apply
to this type, resulting in a slower pairing.
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This pairing is kept as a reserve, in case some day it is discovered that discrete log in
field extensions is easier to solve than previously thought.

D.4.6 Type F

Using carefully crafted polynomials, k = 12 pairings can be constructed. Only 160 bits
are needed to represent elements of one group, and 320 bits for the other. They should be
used when the top priority is to minimize bandwidth (e.g. short signatures). The pairing
is slower than the other types. Also, k = 12 allows higher security short signatures. (k = 6
curves cannot be used to scale security from 160-bits to say 256-bits because finite field
attacks are subexponential.)

D.4.7 BGN Curves

These are curves containing a subgroup of a specified order. Boneh, Goh and Nissim have
use for an elliptic curve with subgroup order N = pq for large primes p, q.

To implement them, Type A curves can be used, only instead of a Solinas prime, we
generate curves with a given group order. Type B can also be used (and that is what is
suggested in their paper) but this is less desirable.
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Appendix E

Cryptographic Fundamentals

In this section I give a brief review of the relevant cryptography. It should be enough to
refresh anyone that has seen the concepts/schemes before, and I give references to more
complete treatments for the newcomer. Cryptography is broken into functions of confiden-
tiality and authentication. The former is dealt with by the encrypt and decrypt primitives,
the latter with sign and verify.

E.1 Symmetric

Symmetric Key Cryptography is the most straightforward way to keep information con-
fidential. The two communicating entities both begin with the same key or sequence of
bits. The sender performs an agreed-upon operation on the message, using the key as a
parameter, and the receiver reverses the operation with his key. The most obvious (and
information-theoretically secure) operation is xor (denoted @). Equation E.1 shows how an
encrypted transmission might occur, for a message m, key k, and intermediate cipher text
C.

mek=c - ED ck =m (E.1)

To be secure, k must be random, and as long as the message(ie. Ikl = Iml) If one reuses
the key k, it would be possible to gain information about the encrypted messages, since
that would imply:

C1 E c2 = (mik) ( (m2 D k) = m1 E m 2  (E.2)

due to the identity Vk : k e k = 0. If Ijk < Iml, an adversary gains information about m by
observing c. Due to the non-reusable nature, k is referred to as a one-time pad.

A more advanced method of encryption that also uses symmetric keys, is extremely fast,
yet allows key reuse is the AES[56] (Advanced Encryption Standard) algorithm: the current
state-of-the-art in symmetric encryption, covered in E.1.1. It is extremely fast (and secure)
and can be used to encrypt data at a rate of - 100 megabytes/sec on a typical desktop PC.
Since we use it in PKGE, let's learn a bit more.

E.1.1 AES

Rijndael, an encryption algorithm first published in 1998 by Belgian cryptographers Joan
Daemen and Vincent Rijmen, was rechristened the "Advanced Encryption Standard" (AES)[56]
by the US Government in November 2001 (actually, a version of Rijndael with restricted
block and key sizes). It is the algorithm actually used to encrypt the message bytes in our
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Key Size 128, 192, 256 bits
Block Size 128 bits

Key Size #Rounds
128 10
192 12
256 14

Table E.1: Vital information about AES.

a Alice gb = ga Bob b

( = gab) Eve (-+ gab)
9a b

(gab = (ga)log,(gb))

Table E.2: Diffie-Hellman key agreement.

framework. The statistica vitae(e.g. batting average, etc) are shown in Table E.1.1. Also
note that the OpenSSL 0.9.8 implementation is FIPS 140-2 certified[57].

E.2 Key Agreement

A problem with symmetric keys is actually establishing the same keys for both parties
without out-of-band communication. The revolutionary solution to this problem was first
(openly) proposed in the Diffie-Hellman paper of 1976[41]. It allows two parties with no
prior knowledge of each other to establish a symmetric key over an insecure channel.

To achieve this feat between Alice and Bob, they first agree on a common finite field
F. with generator g. Then Alice picks an element a at random, computes ga, and sends it
to Bob. Bob does the same with his own random element b. Now Alice knows a and gb,
Bob knows b and ga: they both compute their new shared key, gab. The entire procedure is
shown in Table E.2.

An eavesdropper Eve only knows ga and gb, which does not permit her to calculate

gab. If Eve could solve the discrete logarithm, she could discover the private parameter:
logg(ga) = a.

Diffie-Hellman key agreement does not provide any authentication, and its security relies
on the assumed hardness of the discrete logarithm problem.

E.3 Contributory Keying

Contributory keying schemes - schemes wherein all members contribute to the group key
generation - were the first to try solving the group keying problem using new theoretical
techniques as opposed to protocols employing around old techniques.

By far the most prolific contributory group work has been relating to Group Diffie-
Hellman protocols(GDH), a term given to a DH-style exchange leading to establishment
of a key for n participants. These GDH schemes employ the same mathematics as the
original DH, but use different protocols for passing and aggregating group keys between
members. If all members perform the protocol correctly, then they have both contributed
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a piece of information to form the group key, and they have successfully calculated it. The
cost of such a key agreement depends upon the method of combination, and the particular
communication patterns between the members during establishment.

One example of the member structure formed by STR, a contributory keying scheme,
is shown in Figure 1. In Figure 1, all members are leaf nodes, with the internal nodes
being calculated from the two children. The keys are combined pairwise using blinded
exponentiation (the DH technique) all the way up the tree. Since transmissions are broad-
casts, all nodes manage to learn the final group key by piecing together transmissions they
have heard. The fact that they contributed a piece allows them to calculate it, while any
eavesdroppers snooping around are stumped.

Figure E-l: Example STR Node Tree[49].

E.4 Public Key

At this time, interested parties are directed to[40] for information on public key encryption.

E.5 Elliptic Curves

Again, this section is not yet complete and interested parties are referred to an excellent
overview of the subject provided by Certicom at [7] as well as their online interactive visu-
alization of the geometry. Additionally, elliptic curves enable another class of cryptography
referred to as identity-based.

E.6 Authentication Fundamentals

The question of authenticating an entity to be who he claims is a little trickier for various
reasons. In order to definitively connect a known identity to a particular stream of messages,
there must either be pre-placed data that was obtained from a previous authenticated
communication (e.g. in person), or there must be some sort of authority that can be
trusted to identify correctly.

This problem is solved by a combination of some public key infrastructure(PKI) such
as certificates, and a cryptographic algorithm (a digital signature) that allows possessors
of your public key to verify that you indeed have the corresponding private key, without
divulging information that could lead to the private key's compromise.
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E.7 DSA

The Digital Signature Algorithm is the US Government's standard for digital signatures.
It was introduced in 1991 by the National Institute of Science and Technology (NIST) for
the comprehensive Digital Signature Standard (DSS) adopted in 1993. Extensions to the
standard are ongoing.

The algorithm is a little bit too technical / unenlightening to be worth including in
detail, so I simply direct the interested reader to [5].

E.8 X.509 Certificates

Certificates are the current method of choice to identify others over the Internet. The idea
is that a server registers with a CA (Certificate Authority, e.g. Verisign[27]) for a fee,
and users / software knows that if Verisign says that you are Bob, for example, then that
is probably correct. By registering, you are given a certificate, which is a data structure
containing the public key you wish to use, the identifier you registered under, and a digital
signature.

It may seem as if this simply moves the authentication problem one level up the hierarchy
since now a user is faced with the problem of having to verify Verisign's signature, requiring
a public key. But how does the user know that a public key he finds is actually Verisign's,
and not supplied by the phony generator of the certificate? This bootstrapping/rendezvous
problem is solved by installing Verisign's public key on all users' machines as part of their
operating system or browser installation.

In this way, a certificate chain is formed. All users know what Verisign's public key is via
pre-placed data, and these certificates transfer the trust of Verisign to trust that a server's
public key is actually what it claims. To extend the example, Verisign might authenticate
MIT, which then has the power to authenticate any hosted servers. As such, certificate
chains can grow arbitrarily long, and make up one type of PKI

The X. 509 [46] modifier refers to the international standard format for certificate struc-
ture - what information goes into a certificate and how it gets encoded/decoded - as
well as the certification path verification algorithm, which specifies how certificate chains
may be validated. X.509 certificates are used behind the scenes by everyone, whether or
not they are aware of it, due to its adoption by SSL[23] as the authentication mechanism
of choice, and SSL is the de facto way to accomplish secure web transactions.

E.9 ECDSA

With the advent of elliptic curve cryptography, many older algorithms were due for an
upgrade. This algorithm, of course, targets DSA in particular. DSA computes over some
finite field defined by the prime modulus chosen as a public system parameter. It relies
on the standard hardness assumption of discrete logarithms for its security. ECDSA uses
exactly the same algorithm, except it operates over the algebraic group defined by a partic-
ular elliptic curve, and then gets to make use of the (believed-to-be) more powerful elliptic
curve discrete logarithm hardness assumption. The benefits are smaller element sizes for
the same level of security, with possibly faster computation times as a corollary of having
to compute using fewer bits.
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Table E.3: Key sizes (bits) for equivalent security.

Research into elliptic curve cryptography is a hot topic currently, making it difficult
to accurately specify an equivalence between key sizes under various algorithms. In its
proposal to replace DSA with ECDSA, the NSA prepared a table of their best guesses[19],
excerpted in Table E.9.

E.10 Identity Based Signature

Identity Based Signature (IBS) operates on the premise of allowing a user to pick any
arbitrary string as their public key. For example, I could decide that my public key is
"r0b@mit.edu", and if everyone used that convention, then what we have accomplished is
an intangible, omnipresent, user-friendly PKI. To verify a signature on a message coming
from someone claiming to be "rOb@mit.edu", you would simply feed that string into the
verification procedure, and with no external data (except one-time system parameters) it
can spit out a verification or repudiation of the identity.

What it accomplishes is a transfer of responsibility from the receiver to obtain a public
key through a PKI, to the sender to obtain a private key from some system authority that
can be verified by his identity.
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Appendix F

Cryptography Options

Here we give brief descriptions for the cryptography schemes that we studied. Although only
one ends up being incorporated into our project, it is valuable to understand the alternatives,
the justification for our decision, and general ideas harvested from this research. For the
interested reader, there are extremely useful surveys of key agreement protocols with an eye
toward their applicability to group[59] and mobile communication[36] in particular.

First we detail exactly which properties we desire from the supporting cryptography.

* Confidentiality

* Authentication

* Forward secrecy

* Small bandwidth overhead

We considered a large number of schemes before deciding. We judged on the basis of how
well their capabilities matched our requirements as well as their costs in time, space, and
implementation complexity. The cryptography can be broken into two parts: confidentiality
and authentication. The problem of encrypting group communications has been studied at
great length, especially in the past few years. Below we describe particular schemes that
vied for use in our system, and include brief evaluations for why they were a better or
worse fit. For the reader that does not have a background in cryptography, you may find
reading Appendix E helpful in getting quickly up to speed. Presented here are the particular
solutions built using those techniques.

All schemes are evaluated for space complexity in terms of how much fixed-size data is
required for the scheme to function. The communication complexity is a measure of how
much extra data is required to be included with each message sent to the group. A pair of
values O(a)/O(b) signifies O(a) bytes overhead on the initial message to set up some sort
of state, and O(b) while the state is valid.

We consider here only the stateless side of the schemes, since there is no contention that
a symmetric key encrypting with AES with intelligent group management to maximize the
reuse of state while remaining secure is the best option for the stateful part.

The computation required by schemes is usually not symmetric. We differentiate be-
tween the computation required of the sender and that of the receive using the notational
convention O(a)/O(b).

s - number of users in a group
r - number of revoked users
n - total number of users
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F.1 DH Key Agreement

To begin, let's take a look at a homegrown, obvious, quick and dirty reference solution
that we affectionately refer to in-house as "Brute Force". We began with the intention of
comparing any scheme we came up with to this reference implementation. For this protocol,
the user carries out a DH key agreement[41], exchanges a symmetric key, and then uses that
to encrypt messages (using AES) to any particular host. To broadcast a message to a group,
a random symmetric key k could be generated to encrypt the message with, and then the
user could prefix the message with k encrypted to all intended recipients. Unfortunately,
that scheme requires computation and bandwidth linear in the number of recipients.

Space: O(n)
Communication: O(s)
Computation: O(s)/0(1)

F.2 IPSec

The IPsec[13, 58] (IP Security) standard comprises a transport-layer set of protocols for
securing communications by encrypting and/or authenticating all IP packets. I quote a
summary given in the reference[13].

IPsec consists of a couple of separate protocols, listed below:

* Authentication Header (AH): provides authenticity guarantee for packets, by
attaching strong crypto checksum to packets. If you receive a packet with
AH and the checksum operation was successful, you can be sure about two
things if you and the peer share a secret key, and no other party knows the
key:

1. The packet was originated by the expected peer. The packet was not
generated by impersonator.

2. The packet was not modified in transit.

Unlike other protocols, AH covers the whole packet, from the IP header to
the end of the packet.

* Encapsulating Security Payload (ESP): provides confidentiality guarantee for
packets, by encrypting packets with encryption algorithms. If you receive a
packet with ESP and successfully decrypted it, you can be sure that the
packet was not wiretapped in the middle, if you and the peer share a secret
key, and no other party knows the key.

* IP payload compression (IPcomp): ESP provides encryption service to the
packets. However, encryption tend to give negative impact to compression
on the wire (such as ppp compression). IPcomp provides a way to compress
packet before encryption by ESP (Of course, you can use IPcomp alone if
you wish to).

* Internet Key Exchange (IKE): As noted above, AH and ESP needs shared
secret key between peers. For communication between distant location, we
need to provide ways to negotiate keys in secrecy. IKE will make it possible.

IPsec competes most directly with SSL: an informative, succinct comparison of the two
was written recently[32]. Since this scheme is simply symmetric key encryption made possi-
ble by IKE, it does not scale particularly well. In fact, it is based on the same cryptographic
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techniques as DH key exchange. Its implementation at the network layer is attractive from
the performance perspective, but leads to difficulty in modification, especially since it par-
tially resides in the kernel.

Space: O(n)
Communication: O(s)
Computation: O(s)/O(1)

F.3 Secure Spread

Based on a version of GDH called STR[49], The Secure Spread[43] toolkit provides pluggable
key agreement modules, effectively using the group management layer as a platform for
testing various characteristics of the cryptography in use. It is designed to be exactly the
type of toolkit that we need; unfortunately, the following quote observes a limitation of the
cryptographic techniques they used.

Particularly appropriate for relatively small collaborative peer groups...[43]

Due to the contributory nature of the protocol, it does not scale to many recipients/group
members, and requires interactive participation in the protocol, thus making it unusable
for non-interactive applications such as email. Additionally, STR (and contributory keying
schemes in general) have extremely complex protocols: complexity is often the death knell
of reliability.

Space: 0(1)
Communication: O(s)*
Computation: O(s)/O(s)

Requires interactive communication rounds

F.4 Identity Based Encryption

To introduce IBE, I quote a summary[l]:

Identity-based systems allow any party to generate a public key from a known
identity value such as an ASCII string. A trusted third party, called the Private
Key Generator (PKG), generates the corresponding private keys. To operate,
the PKG first publishes a "master" public key, and retains the corresponding
master private key. Given the master public key, any party can compute a public
key corresponding to the identity I by combining the master public key with the
identity value. To obtain a corresponding private key, the party authorized to use
the identity I contacts the PKG, which uses the master private key to generate
the private key for identity I.
As a result, parties may encrypt messages (or verify signatures) with no prior
distribution of keys between individual participants.

Work has been done recently to achieve forward security and key revocation. Even
with these nicer properties, one large problem with these schemes is that ciphertext still
grows linearly with the number of recipients. To address this, Hierarchical IBE[48, 53] was
developed, which organizes users as leaves in a large tree, and allows each of them to know
all keys on the path from them to the root. For example, a message may be encrypted
not only to a tree leaf, but also intermediate nodes, allowing any of that node's children to
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decrypt. This mitigates the recipient scaling problem to a set cover of some set of leaves.
This is much more favorable, and the tree can be constructed around existing organizational
hierarchy, making an efficient set cover extremely likely.

F.5 Broadcast Encryption

Another attractive scheme is the Boneh-Gentry-Waters elliptic curve broadcast encryption
scheme[35]. It offers flexibility to trade between public key size and per-message overhead
on the curve JPK| -. Hdr| = n. Since we design for low-bandwidth, we choose the public
key to scale linearly with number of users, giving us a constant size ( 80-256 bytes) header
that is decryptable by any number of recipients with their own unique keys.

This is a very unique scheme: it is the only stateless solution we have seen with the
ability to produce constant-size ciphertexts, which is an extremely attractive property in a
bandwidth-limited environment.

Space: O(n)
Communication: 0(1)
Computation: O(s)/O(s)

F.6 Authentication

Users must be able to prove their identity in an offline manner. Having a set of data that is
signed by the trusted certificate authority(CA) as correct suffices. Such a signature binds
the pieces of information together as unforgeable, avoiding man-in-the-middle attacks by
guaranteeing that a given public key belongs to a particular identity. In our case, it binds a
PKGE id to a users identity, incorporating any amount of information desirable, for example
position, group, location, etc.

Authentication is the smaller piece of the puzzle in this category. The current standard
remains X.509 certificates[46], and there appears to be great practical motivation to use
them. Besides an extensive support network, the Dept of Defense already has a X.509
certificate system in place to authenticate its personnel. X.509 version 3 also support
extensions, namely user-defined fields that are included in the signed data, so PKGE could
potentially define any desired fields and have them fit nicely inside the existing framework.

There is an alternative also based on elliptic curves that is very attractive from a tech-
nical perspective. The ECMQV[51] scheme provides for simultaneous key agreement and
authentication. The amount of data transferred and computation required is also signifi-
cantly less than for a DH key agreement plus X.509 certificate exchange, since the key sizes
involved are - 160 bits instead of - 1024 bits. The creators are not at all shy to observe
the quality of their scheme, as evidenced by the first paragraph of their abstract:

The MQV protocol of Law, Menezes, Qu, Solinas and Vanstone is possibly the
most efficient of all known authenticated Diffie-Hellman protocols that use public-
key authentication. In addition to great performance, the protocol has been
designed to achieve a remarkable list of security properties. As a result MQV has
been widely standardized, and has recently been chosen by the NSA as the key
exchange mechanism underlying "the next generation cryptography to protect US
government information."
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Appendix G

Group Chat

Cryptography is only one piece of this puzzle. It serves as an enabler for the real motivation
behind this thesis: efficient communication within dynamic groups. Thus, we also combed
the Internet for applications that claim to solve similar problems to the one we were faced
with. The most discriminatory criteria we had was that of requiring the software be decen-
tralized in nature and supporting encrypted group chat. It turns out the vast majority of
chat applications rely on a central server or support only secure 1-to-1 chat, leaving groups
insecure.

At the outset of this thesis, it appeared that we would implement our own group commu-
nication solution should an appropriate application not be found, so we looked more heavily
at chat applications with an eye towards their efficiency in shuttling messages like good little
peer to peer clients and their ability to hande changes in the communication group. We
studied up on technologies like IP Multicast[34] and state of art in p2p techniques[24] in
order to implement a super-efficient multicast-using p2p secure chat client.

However, the focus on optimizing a chat client for group communication gradually faded
out of scope, due in part to time constraints, but also due to the wonderful advantages offered
by Gaim integration: a mature, powerful, well-documented(!!) extension environment and a
huge existing user base. At any rate, in this section I mention a few of the chat applications
and their cryptography abilities that were more relevant to our work.

G.1 AIM

We began with the current king of IM, AOL Instant Messenger (AIM). Specifically, we
looked at the open source client GAIM in conjunction with its gaim-encryption[9] mod-
ule. Its security is based on exchange of RSA public keys, followed by a key agreement and
subsequent use of a symmetric session key. Unfortunately, it does not support group en-
cryption, the chat rooms are completely unsecured), its crypto is not applicable to groups,
and it has no authentication properties. We moved on.

G.2 Jabber

The existing open-source chat juggernaut recently publicized by Google Talk[12], Jabber[14]
is already in use and in favor by our sponsors. It stands out from the crowd since it is the
first (widely-deployed) chat protocol that was designed with security(confidentiality and
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authentication) as a cornerstone. Also, it is completely open source, well-documented, and
designed to be extensible. For these reasons, it was our strong preference a priori.

In terms of architecture, all clients maintain SSL connections to their hosting server, and
servers manage groups as follows: clients that want to be part of a group group~hostname
send join messages to the server, and subsequent messages addressed to group@hostname
get reflected by the server through the pre-established secure connections.

In general, to send a message to a user, you must address it user~hostname and provide
some sort of name lookup service that allows your server to look up and/or forward your
message to the recipient's server. Jabber lends itself naturally to secure group communi-
cations, since it requires n secure channels (that already exist in this case) rather than n2 .
Of course, the other side of the coin is that the server is a single choke point, and this
architecture results in an extremely centralized solution. Unfortunately, the centralized
architectural prevented us from proceeding with a Jabber extension.

G.3 Skype

We next turned to the state-of-the-art in p2p technology, Skype[25]. This is not an open-
source solution, however we studied its architecture for guidance in possibly implementing
our own p2p system. Since it is a commercial program, its internals are not documented, but
at least one very interesting and thorough reverse-engineering job has been published[24].
The paper covers the setup of the p2p network, specifically how nodes accomplish discovery
and routing in a scalable manner. There is a central server to authenticate login, but it
does not take part in the steady state operation of the program.

This summary of the security features may be found online[8]:

Since a Skype connection may be routed through an intermediate peer, 256-bit
AES encryption actively encodes the data stream of each call, or file transfer.
Skype uses 1536-bit RSA to secure the pairwise negotiation of an AES symmetric
session key over an untrusted channel. The proprietary session establishment
protocol is efficient and prevents both man-in-the-middle and replay attacks. The
Skype server certifies each user's public key at log in.

Regarding the centralized login server, it does not appear to be necessary at all. It
merely serves to "certify each user's public key at log in", a function served much more
efficiently by a simple certificate, signed by the central authority and distributed during
the setup phase. This p2p technology is very good, but unfortunately not open source or
extensible. Searching for extensible p2p led us to our next destination...

G.4 JXTA

There is a major Java initiative called JXTA[20]. From its home page:

JXTA technology is a set of open protocols that allow any connected device on
the network ranging from cell phones and wireless PDAs to PCs and servers to
communicate and collaborate in a P2P manner.

It is a p2p Java API available to any JVM-compatible device that allows peers to
form groups and communicate securely across public networks. Its web site provides the
development tools and a forum for JXTA developers to host their projects for publicity
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and collaboration. These projects take the form of modules that can be easily composed
into larger projects, and some of them are extremely relevant to our work. For example,
JXTA-rm[22] provides reliable UDP-based multicast.

Another project integrates thin wireless messaging clients running on J2ME1 with
enterprise-scale servers. This allows software modules on the embedded device commu-
nicate seamlessly with application or database servers.

A third project, myJXTA, is a general collaboration application that allows secure 1:1
chat, insecure groups, and is designed so that plugins may be easily developed to leverage
the pre-existing peer/group formations. For example, development is underway for plugins
to do real-time graphs, text-to-speech, shared whiteboard, etc. This choice seemed very
appropriate for extension into a launch application but ended up being in too early a stage
of development and extremely lacking in any sort of documentation (or even particularly
reliable operation).

G.5 Distributed Center

It is worth a small section to observe that centralized schemes are the most pervasive
and effective, so we considered ways to adapt them to fit our needs. One option is to
decentralize a centralized scheme: implement the central server as a distributed service.
For example, Lehane et. al. propose an Ad Hoc Key Management Infrastructure[52] that
is based around a distributed key distribution center (KDC). Even more generally, efficient
distributed hash tables (DHTs) like Chord[62] that only require per-node state to scale as
Vni make maintaining a centralized database accessible by millions of users very feasible.

This approach was considered and discarded due to our unwillingness to rely on connec-
tivity to guarantee functionality - the same reason we consider an online keying service
inappropriate. If our security library is to be used in the field, it should allow communi-
cation between two allies who possibly rendezvous out of range of network connectivity,
without prior arrangement.

'Java 2 Platform, Micro Edition: JVM for use on embedded processors e.g. cell phones
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Appendix H

PKGE File Formats

This section details the exact binary format of PKGE files. In order to be most expressive
when a number of data sizes are dependent on the parameters chosen, I adopt the following
notation:

4
4

4T

Constant # of bytes
# bytes in my example system, but varies based on configuration
(#bytes) x lookahead, for quantities linear in the number of temporal keys

Another item of note is that the EVP_PKEY OpenSSL type may be stored in conjunction
with the parameters that define its host elliptic curve, or separately. The actual key we use
in the example has space requirements given in Table H.

Other information may be deduced from the rest of the line. For example, there are
many entries representing an array of items, the length of the array depending on the
number of timesteps a user is allowed to possess at a time (their lookahead #). In my
example system, the lookahead is 365.

328 i2dPrivateKey() Private + Public + Params
302 i2d.PUBKEY() Public + Params

57 i2dPublicKey() Public

Table H.1: OpenSSL ECDSA key serialization properties.
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Admin System (e.g. mysystem.admin)
Size Type Variable Sample Value ICode Location

1 byte.t isadmin 1 _pkge-serialize
4 int strlen(usersubdir) 5

*5 char* user.subdir "users"
4 unsigned usercapacity 1000000
4 unsigned num_regdusers 74238
4 unsigned session_tablesize 10
4 int ciphernid cryptosave
4 int hashnid
4 int x509_sigalgnid
4 int x509_curvenid_
4 int pairingtxtlen_ 380 curve-savesanitized

*380 char* pairingtxt_ "type a..."
4 int strlen(subdir) 5 bigpk.save

*5 char* subdir "bigpk"
4 unsigned numusers 1000000
4 unsigned elementsperblock 64
4 unsigned numtaus 365

*24 mpzt alpha
*65 element_t g
*65 element_t ggamma

*65T elementt* ggammatau[T]
4 timet fsT 86400 curve.savesanitized
4 timet fs_w 600
4 time.t fslookahead 2629744
4 int fsnumkeys 365

ArP .:- 4- -c

4 mnt striensuDair)+ 1 o certssave_common
*5 char* subdir "certs"
4 int cache.size 10

Table H.2: File format for administrative system file (e.g.
/path/my_system/mysystem. admin). The format for the user system file (e.g.
/path/mysystem/mysystem.pkge) is nearly identical, only omitting the grayed lines and
saving a 0 in place of 1 for the first byte.
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User file
Size Type ] Variable Sample Value Code Location

4 useridt id 23483 _pkgeusersave
4 useridt id 23483 privkeysave

4T time_t* timestamps[T]
*65T elementt* gigammatau

*65 element_t gi
*65 element_t gigamma

*328 EVPPKEY* signlkey _pkge_user-save

Table H.3: File format for a .usr file.
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Appendix I

Technical Notes

This section contains technical miscellany and a laundry list of tasks that I would undertake
to improve the library and its applications were I to have the opportunity to spend more
time. More importantly, it includes explicit notes where the implementation did not live up
to the specification developed in chapter 2, as well as implementation notes that did not fit
anywhere else.

I.1 Development Environment Setup

Development in a Unix-like environment is the preferred route, in which case setup proceeds
normally. Development on Windows tends to be a bit trickier. If you go this route, install
Cygwin and a separate MinGW (ie. don't use the one Cygwin offers). Set your paths to
point to MinGW:

$ export PATH="/cygdrive/c/mingw/bin:$PATH"

You will have to edit all of your Makefiles to use the MinGW include and library paths. One
entertaining nuance is that MinGW provides gcc, ar, ld, but not install, so due to the dif-
fering path formats, remember that any paths passed to install should be Cygwin-esque,
and any paths passed to compilation commands should be Windows-esque. While download-
ing and installing the libraries, you will probably come upon items such as gettimeof day ()
which are unimplemented in MinGW. To solve this, simply implement it yourself in the
header file by downloading a code snippet found by googling the error message.

Here are some notes on getting the libraries working.

PBC

* Remove the -Wendif-labels flag from CFLAGS. It is incompatible with MinGW gcc.

* Implement gettimeofday() in gettime .h (available online).

* Change the install paths in the Makefile so that the includes and libraries get put into,
for example, /cygdrive/c/mingw/include and /cygdrive/c/mingw/lib.

GMP, OpenSSL I'm not convinced it's possible to build these in Cygwin using MinGW.
I would suggest downloading the prebuilt libraries for Win32.
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Gaim For Windows, downloading the wingaim_buildfetcher.sh script' is the best move.
It will automatically fetch Gaim's mountain of dependencies, install them, and point Gaim's
Makefiles at them. Mac or Linux can simply use the tarball and autotools.

One note: Gaim's preferences are stored in /.gaim/prefs.xml. If Gaim starts to crash
immediately after initialization, try deleting that file. Also, once all of these libraries are
installed, ensure the Makefile has paths to the include files and libs.

1.2 Conventions

During development I tried to adhere to a few conventions.

return 0; Functions almost always return 0 for success, except in the rare case that it
would be confusing. For example:

if (pkge_have cert("sys", "Alice"))
/** Cool we have Alice's cert! **/

In that situation, it would be extremely confusing if 0 was success, so an exception was
made. In general, return codes are checked using the pattern:

if ((r = user_sign(u, msg)))
/** Sign failed, either recover or return r to caller **/

(sub)dir The relative directory structure of a PKGE directory is stored and expanded
on system load to give absolute paths to resource locations, like the user file directory.
This avoids any possible ambiguity related to relative pathnames, and allows for the PKGE
directory as a whole to be location independent.

By way of example, the system file specifies that sys->usersubdir is "myusersubdir".
On system load, sys->user_dir is filled in by extracting the path to the system from the ini-
tialization path passed in, and appending an OS-dependent separator (e.g. '\' on Windows,
'/' on Unices) plus the subdirectory string, forming "path/to/system/myusersubdir" in
our example, and stuffing it in the runtime variable sys->user_dir.

pkge_store On initialization, the library adds itself to a static storage structure where it
can be looked up by alias, in particular the string used to load it. This has the feature that
the system can easily by shared between applications by passing in the same alias to load
the system. It does a simple string compare to determine alias equality, so for the testing
I have been able to add extra slashes e.g. "/usr/pkge////my_system" which the shell
doesn't mind at all - it simply discards the extra slashes. However, it allows a loophole
for loading multiple instances of the same system. Outside of a test environment, this is
probably not desirable behavior.

1.3 New Features

Throughout the course of development for any project of significant size, flashes of inspi-
ration that dazzle the mind with unrealized possibilities, ripe for the implementing. These

'Linked from the Gaim homepage.[10]
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"wouldn't that be cool" moments are the lifeblood of any successful project, but I have im-
parted all the vitality I can in the time I've had, and leave these for the daring adventurer
that comes after me.

* Plugin for Outlook

* Web server for distribution

* Migrate to X.509 V3

* More secure handling of memory: ensure not paged to disk, and "shred" memory after
done using it.

* As part of user setup procedure, add a registry key to make all PKGE-using apps
config-free.

* pkgeunseal should take a user object and sealed message, and (if successful) should
unseal the message in place, and return a pointer to a group representing the group
that the message was sealed to. The current interface makes no sense.

* Develop an application that support real-life IP multicast, as that would see huge
performance benefits in the scenarios we evaluated.

* NSS - Mozilla Network Security Services is an blossoming open-source solution to man-
aging certificates (and so much more). PKGE certificate management is amateurish,
as that was not the focus. Integrating with NSS would be beneficial because it would
allow certificates to be easily shared and it provides much more efficient certificate
lookup/handling mechanisms.

* The capability to add users that already have X.509 certificates. 90% of the code is
in place, the lack of a clear standard for how to obtain the users' private signing keys
stymied the effort.

* Cryptographically speaking, it is possible for someone not in the system to send en-
crypted messages, since it does not require a personal key. Possibly allow this mode
of operation for the case in which a system is available but the user file is not, e.g. his
device breaks so he picks up his buddy's and does not have to use plaintext. These
messages would not be signed or authenticated, of course, but still confidential.

* PINs: 4 bytes of Grade A numeric variable allows up to a 9 digit PIN. Extending the
PIN to support longer PINs or alphanumeric strings may be worthwhile. Additionally,
an idea that never materialized was requiring the user to reauthenticate himself to the
library every so often. In other words, the user would call pkge unseal and get an
error back: PKGE_ERR_REAUTH or some such mumbo jumbo. Make a successful call
to pkge user_load and continue with normal operation. Implementation would be
simple and clean.

* Reconfigurator: there is no technical reason an already-generated system could not be
reconfigured, with respect to the algorithms used or the forward secrecy parameters,
directory structure, or a million other miscellaneous details.

* Signature algorithms other than ECDSA are supported by OpenSSL but are unim-
plemented. Support for RSA, DSA, and DH signature algorithms would fit neatly in
crypto. c: crypto_gen_key.

* Support asymmetric elliptic curves - we didn't think through it well enough the first
time. An asymmetric curve requires 2x the public key, but some of them are < ½ the
size, and they do not require 2x bandwidth since you still only send 2 elements.
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Bandwidth savings may be had, but in truth it may not be significant considering the
session protocols.

* Greater security can be provided by encrypting all user files with a random PIN (on
the admin system) and storing all of the random PINs in a file that is encrypted with
an administrative PIN.

1.4 Performance Optimization

This section chronicles observations of sub-optimalities that have not been addressed due to
opportunity cost/lack of time. I do not expect any of these by itself to make a huge impact,
but depending on a particular performance goal, a selection of these may do the trick.

* Compress message input if it's text.

* Looking at 'top', the RSIZE for ./testpkge is 1.66 MB, the VSIZE is 31 MB. I believe
this means that due to linking with big libraries like GMP and OpenSSL, we incur a
large shared library loading fee if these aren't already loaded when PKGE is requested.
We use a tiny tiny fraction of OpenSSL functionality, so perhaps we could cut down
on the footprint?

* Add an option to not include the group in the sealed message, but rather rely on the
application to tell PKGE what the group is. This may avoid duplicated work, and
is one way of solving the "we have constant size ciphertext with linear size headers"
embarassment.

* To encrypt, the C1 piece may be precalculated and used for all time (e(gn, gl)t). The
t is random per message, but the bilinear mapping isn't.

* We chose CBC mode for AES encryption by default-do some research to validate the
decision or possibly discover a different mode would be better.

* Currently sessions contain a forceheader field that is never actually used. It supports
the passive recovery of errors, and we implement only the active method. The idea
was that if an unrecognized session id was received, the force.header flag would be
turned on, and the next message sent from that host would contain a full header, and
by the normal session agreement protocol, everyone else would switch to use that one.

* Currently an unrecognized session id causes the out-of-the-loop user to send a help
message to everyone in the group. This causes everyone in the group to respond with
a header. Ideally, only one would respond with a header.

* The sessions protocol may be further optimized by having the library poke the user
to send a message when first starting a new session. This would accomplish fast
switching to the optimized header, preserving a lot of bandwidth in the case where
a user is present and quietly participating in the group. This could be implemented
by using the same channels that session errors traverse. For example, it could use the
registered sending function, if available, or return PKGE_FLAG_SESSION_VERIFY from
pkge_unseal.

* When adding users, keep track of users in the same organizationalUnitName (an
X.509 field). Assign each organizational unit (e.g. Platoon 14) a "group id" that
can be used with the API (e.g. pkgegroup_add(my_group, ' 'Infantry 11"). This
identifier can get transformed to a PKGE id and decoded by recipients as the appro-
priate group of users. Groups can be versioned to support personnel changes. This is
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a big win for bandwidth(can represent many recipients with a single id), processing
time (easy to store the associated encryption product with a group), and security (the
actual recipients are obfuscated by a level of indirection).

* Not save all the EC parameters with each user key. The EC parameter file is already
generated (ec.params), but never used. Using that, we could drop the size of X.509
private/public keys to ; 60 bytes down from e 300.

* There are a number of places that caches would speed up operations. Dealing with
certificates and doing name-+id lookups would benefit. Caching elements of the public
key also makes sense.

* Index and cache for name-id lookups instead of loading certificate from disk

* When loading a private key, all g77t are loaded into memory. This is wasteful. Loading
only the current timestep (or other timesteps on demand) makes more sense.

* Compile separate libraries for client vs administrative functions =Z, less code in each,
easier to maintain, extend, and test.

* Element serialization: PKGE stores elements prefixed by their size in bytes and a tag
indicating that it's an element. All elements are the same size, and in the public key
there is nothing but elements, so 5 bytes are wasted per element, especially in the
public key. This should be easy to resolve.

* The GAIM plugin should require PINs/load profiles on Account Signon rather than
checking on each new conversation (ie. be account-oriented rather than conversation-
oriented)

* PKGE uses ERR_load_crypto_strings () and OpenSSL_add_all_algorithms (). The
ERR strings require significant memory and should not be loaded in a production envi-
ronment. Also, we use relatively little of OpenSSL's capabilities, so using EVP_add_cipher ()
and EVPadd_digest () should be done instead, for resource conservation.

* A non-admin system should not contain the code to load an unencrypted user file.
* Currently there are a number of reallocs sprinkled throughout the code. They make it

easy to write correct code, but are presumably not efficient. Consider other memory
management techniques.

* An alternative scheme to storing X.509 certificates: keep an authenticated table map-
ping ids to names. Require an X.509 certificate to add to the table. With PKGE name
length restriction, this means that you could get away with 20 bytes per user, making
an index with a complete list of everyones name to id mapping realizable. It would
allow fast lookups both ways, and it would be easy to trade "address books" since
newer indexes are supersets of older ones (as users are added).

* Make PKGE name a function of their email address, for example, to avoid having to
look through certificates to do the lookup.

* Currently the message that users pass in to unseal is duplicated in case it has to be
restored due to any problems. This is problematic for large buffers-it should not be
necessary.

1.5 Cleanup

Ah, other people cleaning up my mess :o) This section is devoted to imperfections in the
implementations, a number of which really do need to be dealt with before PKGE should
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be pronounced ready for a production environment.

* PKGE is not ready to be used concurrently, safely: there are few static structures, but
locks must be put in place

* GTK2+ preference pane was added to the GAIM plugin late in the gaim. It needs to
be double checked for correct resource management (ie. no memory leaks)

* The session protocols were intentionally kept separate to make it easy to modify them
independently. It turns out there are only a couple lines difference between sessions
and optimistic sessions, and it is badly in need of a refactoring.

* The set_errormsg function pushes a probe # on to the message so that the record in
the hash table can be found unambiguously (in case there are multiple error messages
for the same group) by geterror_msg. This setup requires either a user call to
pkge_get_error_msg or a send by the user's registered sender, but not both

* Base64 encoding is possibly not an appropriate thing to include in this library, as any
application that required it would doubtless implement its own. Gaim provides its
own, for example.

* C libraries are used extensively throughout the code. memcpy-s and strcpys are
supposedly much better form.

* The handling mechanism in case there is a collision of session ids is not implemented.
If a new session is created and put into the hash table, and it is discovered that the
private id collides, it should be assigned a new since no one else has seen it yet, anyway.
However, simply keeping a probe number associated with the session works also, and
this is what needs to be done in the case that a colliding private id is received from
another user.

* If an error message is received, the private session information is sent in the clear. This
is not terrible, since an error message must have a valid signature, and the only thing
it gives away is the private id mapping to a recipient set, but it should still be fixed.

* Unit tests for modules would be good.
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Appendix J

Listings

J.1 default.cfg

# PBC Elliptic curve parameters
# Requires a symmetric pairing
# Note: These _MUST_ come first.
# (nothing but blank lines or comments before)

type a
q 878071079966331252243778198475404981580688319941420821102865339926647563...
h 120160122648911460793888213667405342048029544012513118229196151310472072...
r 730750818665451621361119245571504901405976559617
exp2 159
expi 107
signi 1
signO 1
end pairing

# General system parameters (N = capacity)
N 10000000
user_subdir users
cert_subdir certs
pk_subdir bigpk

# Symmetric encryption settings
cipher AES-256-CBC
hash SHA256

# X509 key settings (sign/verify keys)
x509_sigalgorithm ecdsa-with-SHA1
# SN=secp224rl , nid=713 , comment=NIST/SECG curve over a 224 bit prime field
x509_elliptic_curve 713
x509_keytype id-ecPublicKey
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# default.cfg continued...

# BigPK settings

elements-perblock 64

g RANDOM

# Forward security -- all values in seconds

# 1 day = 86400, 1 month = 2629744, 1 year = 31556926

# Timestep: amount of time one tau is good for.

# Window: how long you can accept messages from the previous timestep

# Lookahead: how far ahead of time are taus generated

timestep 86400

window 3600

lookahead 2629744

# Cache size for session keys (in log_2 format, e.g. 8 => 2^8 = 256)
session_tablesize 10

J.2 OpenSSL Cipher Listing

This is a partial list of all ciphers supported under OpenSSL v0.9.8. All algorithms have a
fixed key length unless otherwise stated.

EVP_enc_null()

Null cipher: does nothing.

EVPdescbc(void), EVPdes_ecb(void), EVPdes_cfb(void),

EVP_des_ofb(void)
DES in CBC, ECB, CFB and OFB modes respectively.

EVPdes_ede_cbc(void), EVP_des_ede(), EVPdes_edeofb(void),

EVP_des_ede_cfb(void)
Two key triple DES in CBC, ECB, CFB and OFB modes respectively.

EVP_des_ede3_cbc(void), EVPdesede3(), EVP_desede3_ofb(void),

EVPdes_ede3_cfb(void)
Three key triple DES in CBC, ECB, CFB and OFB modes respectively.

EVP_desxcbc(void)

DESX algorithm in CBC mode.

EVP_rc4(void)

RC4 stream cipher. This is a variable key length cipher with

default key length 128 bits.
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EVP_rc4_40(void)
RC4 stream cipher with 40 bit key length. This is obsolete and new
code should use EVPrc4() and the EVPCIPHER_CTX_set.keylength()
function.

EVPideacbc() EVPideaecb(void), EVPideacfb(void),
EVPidea-ofb(void), EVP_idea_cbc(void)

IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respec-respectively.
tively.

EVPrc2_cbc(void), EVP.rc2_ecb(void), EVP_rc2_cfb(void),
EVPrc2_ofb(void)

RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respec-respectively.
tively. This is a variable key length cipher with an additional
parameter called "effective key bits" or "effective key length".
By default both are set to 128 bits.

EVPrc2_40_cbc(void), EVP_rc2_64_cbc(void)
RC2 algorithm in CBC mode with a default key length and effective
key length of 40 and 64 bits. These are obsolete and new code
should use EVPrc2_cbc(), EVPCIPHER_CTX_set keylength() and
EVP_CIPHER_CTX_ctrl() to set the key length and effective key
length.

EVPbf-cbc(void), EVPbfecb(void), EVPbf-cfb(void), EVP-bf ofb(void);
Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes
respectively. This is a variable key length cipher.

EVPcast5_cbc(void), EVP_cast5_ecb(void), EVPcast5_cfb(void),
EVPcast5_ofb(void)

CAST encryption algorithm in CBC, ECB, CFB and OFB modes respec-respectively.
tively. This is a variable key length cipher.

EVP_rc5_32_12_16_cbc(void), EVP_rc5_32_ 12_16ecb(void),
EVPrc5_32_12_16_cfb(void), EVP_rc5_32_12_16_ofb(void)

RC5 encryption algorithm in CBC, ECB, CFB and OFB modes respec-respectively.
tively. This is a variable key length cipher with an additional
"number of rounds" parameter. By default the key length is set to
128 bits and 12 rounds.

EVPaes_256_ecb(void), EVP_aes_256_cbc(void), EVPaes_256_cfbl(void),
EVPaes_256_cfb8(void), EVPaes 256_cfbl28(void), EVP_aes_256_ofb(void)

AES encryption modes. There are also 128 and 192 bit modes.



J.3 OpenSSL Curves

Table J.1: Comparison of elliptic curves available for the OpenSSL v0.9.8
ECDSA.with.shal () signature algorithm. Times in milliseconds, sizes in bytes.
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key Key/Sig Disk Size Time for 500 b Time for 50 kb
Curves description: NID bits pub priv sig sign verify sign verify
0: SECG/WTLS curve over a 112 bit prime field 704 112 29 201 36 0.5 0.1 0.91 0.3
1: SECG curve over a 112 bit prime field 705 110 29 200 36 0.5 0 0.8 0.4
2: SECG curve over a 128 bit prime field 706 128 33 219 40 0.5 0 0.9 0.3
3: SECG curve over a 128 bit prime field 707 126 33 218 40 0.5 0 0.8 0.4
4: SECG curve over a 160 bit prime field 708 161 41 192 50 2.91 2.9 3.3 3.41
5: SECG curve over a 160 bit prime field 709 161 41 255 50 2.81 2.7 3.1 3.11
6: SECG/WTLS curve over a 160 bit prime field 710 161 41 255 50 2.8 2.71 3.1 3.2
7: SECG curve over a 192 bit prime field 711 192 49 222 56 3.8 4.01 4.2 4.31
8: SECG curve over a 224 bit prime field 712 225 57 250 66 4.9 5.21 6.21 5.8
9: NIST/SECG curve over a 224 bit prime field 713 224 57 328 64 3.41 3.5 3.61 3.8
10: SECG curve over a 256 bit prime field 714 256 65 279 72 5.11 5.51 5.51 5.71
11: NIST/SECG curve over a 384 bit prime field 715 384 97 510 104 9.11 10.41 9.41 11.22
12: NIST/SECG curve over a 521 bit prime field 716 521 133 673 141 18.23 21.63 18.73 22.83
13: NIST/X9.62/SECG curve over a 192 bit prime field 409 192 49 292 56 2.6 2.71 3.1 3.01
14: X9.62 curve over a 192 bit prime field 410 192 49 292 56 2.7 2.6 3 3.2
15: X9.62 curve over a 192 bit prime field 411 192 49 292 56 2.71 2.6 3.11 3
16: X9.62 curve over a 239 bit prime field 412 239 61 344 68 4.21 4.3 4.51 4.81
17: X9.62 curve over a 239 bit prime field 413 239 61 344 68 4.11 4.31 4.6 4.81
18: X9.62 curve over a 239 bit prime field 414 239 61 343 68 4.2 4.51 4.5 4.81
19: X9.62/SECG curve over a 256 bit prime field 415 256 65 364 72 4.2 4.51 4.61 5.1
20: SECG curve over a 113 bit binary field 717 113 31 207 38 0.5 0 0.91 0.3
21: SECG curve over a 113 bit binary field 718 113 31 207 38 0.5 0 0.8 0.4
22: SECG/WTLS curve over a 131 bit binary field 719 131 35 235 42 0.5 0 0.9 0.3
23: SECG curve over a 131 bit binary field 720 131 35 235 42 0.5 0 0.9 0.3
24: NIST/SECG/WTLS curve over a 163 bit binary field 721 163 43 202 50 3.1 5.21 3.6 5.51
25: SECG curve over a 163 bit binary field 722 162 43 244 50 3.3 5.61 3.61 6
26: NIST/SECG curve over a 163 bit binary field 723 163 43 223 50 3.41 5.51 3.6 6.01
27: SECG curve over a 193 bit binary field 724 193 51 289 58 4.4 7.61 4.6 8.22
28: SECG curve over a 193 bit binary field 725 193 51 290 58 4.21 7.51 4.7 7.81
29: NIST/SECG/WTLS curve over a 233 bit binary field 726 232 61 249 66 5.51 10.11 5.81 10.52
30: NIST/SECG/WTLS curve over a 233 bit binary field 727 233 61 301 68 6.11 11.21 6.41 11.61
31: SECG curve over a 239 bit binary field 728 238 61 251 68 5.71 10.42 6.01 10.72
32: NIST/SECG curve over a 283 bit binary field 729 281 73 295 80 9.81 18.53 10.11 18.73
33: NIST/SECG curve over a 283 bit binary field 730 282 73 352 80 11.01 20.73 11.21 21.23
34: NIST/SECG curve over a 409 bit binary field 731 407 105 381 110 22.44 43.86 22.94 44.66
35: NIST/SECG curve over a 409 bit binary field 732 409 105 457 112 25.84 50.47 26.14 50.47
36: NIST/SECG curve over a 571 bit binary field 733 570 145 516 153 52.18 103.24 52.88 104.85
37: NIST/SECG curve over a 571 bit binary field 734 570 145 610 153 60.28 119.87 60.89 119.77
38: X9.62 curve over a 163 bit binary field 684 163 43 267 50 3.31 5.51 3.71 5.8
39: X9.62 curve over a 163 bit binary field 685 162 43 268 50 3.5 5.51 3.71 5.91
40: X9.62 curve over a 163 bit binary field 686 162 43 268 50 3.4 5.71 3.7 5.91
41: X9.62 curve over a 176 bit binary field 687 161 45 251 50 3.21 5.5 3.6 5.71
42: X9.62 curve over a 191 bit binary field 688 191 49 284 56 3.71 6.51 3.81 6.41
43: X9.62 curve over a 191 bit binary field 689 190 49 284 56 3.8 5.91 3.9 6.31
44: X9.62 curve over a 191 bit binary field 690 189 49 284 56 3.61 6 4.01 6.41
45: X9.62 curve over a 208 bit binary field 693 193 53 258 58 5.61 10.02 5.9 9.92
46: X9.62 curve over a 239 bit binary field 694 238 61 332 68 6.1 11.42 6.61 11.61
47: X9.62 curve over a 239 bit binary field 695 237 61 332 68 6.21 11.92 6.51 11.72
48: X9.62 curve over a 239 bit binary field 696 236 61 332 68 6.41 11.71 6.61 11.62
49: X9.62 curve over a 272 bit binary field 699 257 69 348 74 10.12 18.92 10.11 18.93
50: X9.62 curve over a 304 bit binary field 700 289 77 380 82 11.42 22.33 11.61 21.63
51: X9.62 curve over a 359 bit binary field 701 353 91 454 98 17.03 33.44 17.62 34.05
52: X9.62 curve over a 368 bit binary field 702 353 93 446 98 18.62 36.25 18.73 35.95
53: X9.62 curve over a 431 bit binary field 703 418 109 501 114 27.44 52.78 26.94 52.37
54: WTLS curve over a 113 bit binary field 735 112 31 156 36 0.5 0.1 0.9 0.3
55: NIST/SECG/WTLS curve over a 163 bit binary field 736 163 43 202 50 3 5.31 3.51 5.61
56: SECG curve over a 113 bit binary field 737 113 31 207 38 0.6 0 0.9 0.3
57: X9.62 curve over a 163 bit binary field 738 163 43 267 50 3.3 5.41 3.7 5.91
58: SECG/WTLS curve over a 112 bit prime field 739 112 29 201 36 0.6 0 0.9 0.3
59: SECG/WTLS curve over a 160 bit prime field 740 161 41 255 50 2.81 2.8 3.1 3.01



Table J.1: (continued)

key Key/Sig Disk Size Time for 500 b Time for 50 kb
Curves description: NID bits pub priv sig sign verify sign verify
60: WTLS curve over a 112 bit prime field 741 113 29 150 38 0.6 0 0.8 0.4
61: WTLS curve over a 160 bit prime field 742 161 41 192 50 3.1 2.71 3.2 3.31
62: NIST/SECG/WTLS curve over a 233 bit binary field 743 232 61 249 66 5.71 10.11 5.91 10.51
63: NIST/SECG/WTLS curve over a 233 bit binary field 744 233 61 301 68 6.21 11.11 6.41 11.42
64: WTLS curvs over a 224 bit prime field 745 224 57 305 64 3.41 3.5 3.7 3.91
65:00:00 749 154 41 189 48 2.61 0 2.9 0.3
IPSec/IKE/Oakley curve #3 over a 155 bit binary field.
Not suitable for ECDSA.
Questionable extension field!
66:00:00 750 184 49 212 54 3.1 0 3.41 5.4
IPSec/IKE/Oakley curve #4 over a 185 bit binary field.
Not suitable for ECDSA.
Questionable extension field!
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