
ELVIS iLab: A Flexible Platform for Online

Laboratory Experiments in Electrical Engineering

by

Samuel Gikandi

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2006

© Samuel Gikandi, MMVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

A u th or
Department of Electrical Engineering and Computer Science

September, 8 2006

Certified by...........
Jesus del Alamo

Professor

Jhesis Supervisor

Accepted by

Arthur C. Smith

1ACI4USMS INSTITUTE. Chairman, Department Committee on Graduate Students
OF TECHNOLOGY

OCT 0 3 2007 ARCHNES

LIBRARIES

2

ELVIS iLab: A Flexible Platform for Online Laboratory

Experiments in Electrical Engineering

by

Samuel Gikandi

Submitted to the Department of Electrical Engineering and Computer Science
on September, 8 2006, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes a project that is part of the collaboration between MIT and
universities in sub-Sahara Africa to exploit the value of iLabs in the developing world.
The main goal of this project is to develop software that will exploit the value of the
National Instruments Educational Laboratory Virtual Instrumentation Suite (ELVIS)
system in Africa by integrating it into the iLabs shared architecture, while taking into
consideration the special circumstances surrounding the deployment of iLabs in Africa
such as bandwidth limitations, limited access to networked computers and lack of
computer skills on the part of students. Integrating ELVIS into iLabs will facilitate the
rapid deployment of new online labs to augment the Physics and Electrical engineering
curricula in these universities.

iLab development efforts for this project are being done in parallel with developers
at the Obafemi Awolowo University (OAU) in Nigeria. One of the main goals of the
new system is to fill the gap of laboratory experiences in introductory level electronics
and physics classes, which are hardest hit by the lack of equipment due to their
typically large enrollment. Our goal is to support the development of electronic circuit
building skills by providing an environment where students can easily try different
circuit configurations before submitting experiments for execution. We are therefore
investigating new iLab client user interface designs that will enable students to create
and edit circuit schematics from provided electronic components.

Our ELVIS iLab design will also formalize and simplify the process of creating
and administering such labs for instructors, thereby speeding up the deployment of
new labs in an environment where software development skills are not at a premium.
This will be achieved by recycling many of the components that are currently behind
the success of the microelectronics weblab, which have already been adapted before
for new iLabs. Besides reusing existing software, the project hopes to make a ma-
jor contribution towards enhancing students experiences with iLabs through its new
interactive client design.

3

Thesis Supervisor: Jesus del Alamo
Title: Professor

4

Acknowledgments

I would like to express my gratitude to my Thesis advisor, Prof. Jesus del Alamo,

for giving me the opportunity of working on a project that greatlty impacts the way

technology education is conducted in universities in Africa. Through this project,

I have had the opportunity to interact with highly intelligent and moticvated indi-

viduals in the iLab Africa team that are looking to shape the way students learn in

developing countries. Getting a chance to contribute in this environment has been

very rewarding for me, being from an African country myself.

I would also like to express deep gratitude to the entire iLab team at MIT for

providing the atmosphere and tools that I needed in order to bring some of my ideas

into fruition. The iLab network was extremely accessible and helpful, especially in

getting my software development efforts off the ground.

Lastly, I would like to express my gratitude to our colleagues in Africa, with

whom I have worked extensively and developed meaningful relationships. I am also

very grateful for the level of hospitality that was accorded to us when we went to

the Obafemi Awolowo University (OAU) in Nigeria. The ideas that were generated

during that visit were critical towards helping my thesis project move along. It was

also a very rewarding experience to realize that there is a growing network of very

talented and motivated indivituals in Africa who are committed to improving the

quality of higher education in the continent.

5

6

Contents

1 Introduction

1.1 Background on iLabs .

1.2 Background on iLabs in Africa

1.3 The NI-ELVIS iLab .

1.4 Overview of this Thesis .

2 ELVIS and iLabs: Bringing the two together

2.1 ELVIS Platform .

2.1.1 NI ELVIS workstation

2.1.2 NI ELVIS and LabVIEW

2.1.3 Why the ELVIS system is suitable for deploying iLabs

2.2 iLabs Shared Architecture

2.2.1 The iLab Framework

2.2.2 The batched experiment Architecture

2.3 Vision for an online ELVIS

2.3.1 Make the instructors job easy

2.3.2 Minimize new software development requirements

2.3.3 Make the students experience as real as possible .

2.3.4 Costs versus number of experiments

2.3.5 Adding value to iLabs

11

. 12

. 12

. 13

. 14

17

. 17

. 19

. 19

in Africa 21

. 23

. 24

. 26

. 28

. 28

. 28

. 29

. 29

. 29

3 ELVIS Weblab: Initial Approaches

3.1 First versions of ELVIS iLab software

31

31

7

3.1.1 MIT Approach: ELVIS weblab v.1 31

3.1.2 OAU Approach: The OpLab 41

3.2 Motivation for the new software architecture 45

3.3 Specifications of a new design . 46

4 ELVIS Weblab v2: A unified Approach 49

4.1 Architecture Overview . 49

4.2 Design Process . 50

4.2.1 Describing the Experiment Domain 50

4.2.2 XML Document Specification 52

4.2.3 Lab Server . 54

4.2.4 Lab Client . 60

4.3 R esults . 62

5 Conclusion and Future Work 65

5.1 Future iLab-Africa software development efforts 65

A XML Specification Documents 69

A.1 ELVIS Weblab v1 . 69

A. 1.1 LabConfiguration.xml . 69

A.1.2 ExperimentSpecification.xml 70

A.1.3 ExperimentResult.xml . 71

A.1.4 ExperimentSpecification.xml 74

A.1.5 ExperimentResult.xml . 76

B Report of visit to OAU 77

8

List of Figures

2-1 This diagram shows the three components that make up the ELVIS

platform . 18

2-2 This is a diagram of the ELVIS workstation with a simple circuit con-

structed on its prototyping board. The knobs on the front can be used

to control the workstation manually. 19

2-3 The ELVIS instrument launcher gives users access to LabVIEW built

virtual instruments that can control the ELVIS workstation. The

source code for these instruments is provided and can be added to

LabVIEW virtual instruments. 20

2-4 This figure shows an overview of the three-tiered iLab system. The Ser-

vice Broker handles all administrative tasks, thus freeing the Lab Server

(and its developers) from having to implement custom administrative

solutions for each different weblab. The Service Broker architecture

also simplifies the sharing of iLabs between universities, by alleviat-

ing the lab-side (host) university from administering guest users. The

host university can grant access to the student-side (guest) universitys

Service Broker, and the guest university can then administrate its own

users. 25

3-1 This diagram shows the modifications made in order to incorporate

the ELVIS workstation into the Microelectronics weblab sofwtare ar-

chitectiure . 33

9

3-2 This diagram shows the modules used to implement the Microelectron-

ics weblab server and how they interact with each other. 33

3-3 This diagram shows how the experiment execution engine communi-

cates with the ELVIS work station using virtual instruments. The

numbered arrows indicate the flow of method calls and parameters

from the experiment execution engine to the dll that conducts the ex-

periment and back. 37

3-4 A comparison of the front end of the Microelectronics weblab client

and the ELVIS weblab client. The striking similarity demonstrates how

most of the concepts used to implement the Microelectronics weblab

were recycled in the first version of the ELVIS weblab. 39

3-5 A comparison of the dialogs used by the user to specify parameters for

experiment execution for the Microelectronics weblab client and the

ELVIS weblab client. 40

3-6 This page of the OAU opLab client presents the user with a choice of

operational amplifier configurations. 42

3-7 This page of the OAU opLab client presents the user with the compo-

nents required to create an inverting opAmp configuration. The user

is then required to figure out which components to connect together

before submitting the experiment to the lab server for execution. . . . 43

3-8 This page of the OAU opLab client displaye the results of executing

an experiment to the user . 44

4-1 This figure shows the classification of circuit components that the user

can interact with and their features. This model motivates the design

of other lab server and client components. 52

4-2 This figure shows the database structure used to store information

about experiment setups for ELVIS weblab v2. Note: In the diagram,

PK refers to Primary Key while FK refers to Foreign Key. 58

10

Chapter 1

Introduction

The need for hands on experience in electrical engineering and physics classes at

the university level cannot be overstated. Students have been shown to develop a

much better understanding of complex technical concepts when teaching is comple-

mented by laboratory experience. The value of interacting with live devices through

experiments to complement theoretical models presented during lectures cannot be

overstated [7].

However, the administration of laboratory experiments to students requires a large

investment in time, money and personnel. This is especially evident in developing

countries, where the inadequacy of laboratory space, equipment and personnel cou-

pled with the over-enrollment of students in technical courses aggravate the situation.

Coping with these demands can lead to a dearth of experiments in technical classes,

which impedes on the learning experience for students enrolled in these classes.

In order to address this need, three Universities in Africa are now turning towards

online laboratories, particularly those implemented using the MIT iLabs architecture,

to improve their science and engineering curriculum. The MIT iLabs architecture fa-

cilitates the deployment, management and sharing of online laboratories that interface

with real hardware devices [5, 3]. This interest has led to a rich collaboration between

MIT and the universities in Africa, dubbed the iLab Africa Project [17].

This thesis outlines one of the projects that have been started under the auspices of

this initiative. The project involves the development of a software framework within

11

which to create and deploy new iLabs based on the National Instruments Educational

Laboratory Virtual Instrumentation Suite [13].

1.1 Background on iLabs

The iLabs project was conceived in 1998 by Prof. Jesus del Alamo to provide students

with hands on laboratory experience in classes where equipment may be expensive and

difficult to set up. The project also facilitates easy sharing of labs across institutions

and simplifies the logistics involved in administering labs to large groups of students.

Since its inception, the concept has been adopted in physics, electrical engineering,

chemical engineering and mechanical engineering classes, and has been successfully

deployed and tested by students and faculty at MIT and across the world [3, 6, 22].

The concept of iLabs has been very well received by both instructors and students.

Instructors enjoy the benefits of a greatly simplified logistics model when adminis-

tering laboratory experiments and accessing laboratories that have been built using

devices located at other universities. Students on the other hand value the ability to

access sophisticated and expensive devices at any time of the day, which gives them

hands on experiences in classes where the organization of such labs may otherwise be

too complex or expensive [11].

1.2 Background on iLabs in Africa

The idea of introducing iLabs to Africa was proposed in 2003 by Prof del Alamo. This

was followed by a feasibility study to determine the potential of iLabs in enriching the

educational experience for university students and the problems that implementation

of iLabs in Africa would potentially face. The study was conducted at three leading

universities: Nigerias Obafemi Awolowo University (OAU), Tanzanias University of

Dar es Salaam (UDSM) and Ugandas Makerere University [3].

The study showed that the iLabs concept is very relevant and could be beneficial

to African universities for several reasons. First, the course material that iLabs com-

12

plement is widely taught to many students at these universities. These universities

also have world class faculty and enthusiastic students who could help adopt and

propagate the iLabs concept. The idea of iLabs could also help alleviate the lack of

adequate physical laboratories and equipment, which deprives many African students

of hands on experience in their engineering and physics curriculum.

The study also noted that the current situation in Africa requires the develop-

ment of solutions unlike those used at MIT in order to make the deployment of ilabs

effective. Some of the factors which led to this conclusion include limited access

to networked computers, limited student exposure to computers, severe bandwidth

limitations, power outages and fragile local networks at these institutions.

As a result of this study, the iLabs Africa project was officially launched in the

summer of 2005. The goals of the project include the deployment of current MIT

iLabs throughout the curriculum in African universities, the development of new labs

within the iLabs architecture, creating opportunities for internships for MIT and

African students and staff and the creation of a scalable iLabs research network in

Africa.

Since this study was conducted, a lot of progress has been made towards realizing

the goals of the iLab Africa project. iLab Africa Teams have been created at MIT and

at all three universities in Africa in order to facilitate the development, deployment

and sharing of iLabs at the African universities. The project has also seen several

exchanges between student and faculty at the collaborating institutions to facilitate

the exchange of expertise and ideas. More recently, collaboration between developers

at MIT and at OAU has led to the development and deployment of new iLabs. These

are the software efforts that form the basis of this MEng thesis.

1.3 The NI-ELVIS iLab

The NI ELVIS iLab project was born when students and faculty from OAU, who had

come to MIT over the summer of 2005, were given a donation of an ELVIS board [13]

and LabVIEW [14] software to take back to Nigeria with them. Since then, the iLab

13

Africa team. at MIT has been working closely with them to develop new content and

iLabs based on the ELVIS platform.

The goal of the ELVIS iLab project is to use the ELVIS platform as a launching pad

for guiding future iLab software development efforts in Africa, while enhancing the

collaboration between MIT and African universities and adding value to the current

iLabs architecture. Eventually, the experience accrued from these exchanges should

form a basis for enabling OAU to become a hub for the development and deployment

of iLabs in Africa.

A major component of successful completion of the project was a visit to OAU

by MIT students in January 2006, where two of us spent three weeks working with

the iLab team to determine the best approach for deploying online laboratories based

on the ELVIS platform and familiarizing ourselves with the resources available and

problems faced while developing labs to be incorporated into the iLabs software ar-

chitecture.

As it turned out, this visit was crucial in advancing the software development

efforts of the iLab Africa project, especially since both groups (MIT and OAU) had

been working independently on separate solutions for incorporating ELVIS into iL-

abs. The exchange of ideas during the January visit has led to a unified software

development approach, which takes advantage of the most promising features of each

of the two approaches and heralds a new, enhanced architecture that should speed up

the deployment iLabs based on ELVIS in future. This unified approach is discussed

in detail in Chapter 4 of this document.

1.4 Overview of this Thesis

Chapter 2 of this thesis will discuss the ELVIS system in greater detail and explain

some of the factors that make it especially suited for developing and deploying iLabs

in Africa. This chapter will also discuss the iLabs shared architecture in detail to

provide a background for the software architecture discussed in chapter 4 of this

document, as well as outline characteristics that make this architecture suitable for

14

development of online laboratories in developing countries. This chapter will conclude

with a discussion of out vision for an online ELVIS platform.

Chapter 3 will discuss the different software approaches that were initially imple-

mented by the MIT and the OAU teams to incorporate ELVIS based experiments

into the iLabs Shared Architecture. This chapter will focus on the strengths and

weaknesses of these approaches, thereby motivating the implementation of a unified

software architecture that captures the strengths of both approaches and alleviates

their weaknesses.

Chapter 4 will contain a detailed discussion the unified software architecture mo-

tivated in chapter 3. This chapter will also discuss the results of this software im-

plementation and its effectiveness in meeting the requirements specified in chapter

3.

Chapter 5 will wrap up the thesis with a discussion of proposed future work to

enhance the success of software development efforts for iLabs in Africa.

15

16

Chapter 2

ELVIS and iLabs: Bringing the two

together

This chapter introduces the tools used to facilitate the software development efforts

for the iLab Africa project. In particular, this section discusses the features of the Na-

tional Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS)

platform, LabVIEW software and the iLabs shared architecture that make them suit-

able for developing and deploying iLabs in developing countries.

2.1 ELVIS Platform

The National Instruments Educational Laboratory Virtual Instrumentation Suite is

a LabVIEW-based design and prototype environment for university science and en-

gineering laboratories [4]. NI ELVIS consists of LabVIEW-based virtual instrument

suite, a multifunction data acquisition (DAQ) device and bench-top workstation with

a prototype board. A diagram of the ELVIS system is shown in figure 2-1.

NI ELVIS functions as a three-part system. The ELVIS workstation interfaces

with National Instruments LabVIEW software and an NI data acquisition (DAQ)

device to perform measurements and transmit signals.

17

LabVlEWand NI ELVIS
Software

NI ELVIS Workstdion NI Data AcquisltIon
aid Prototype Board System

Figure 2-1: This diagram shows the three components that make up the ELVIS
platform.

18

2.1.1 NI ELVIS workstation

The ELVIS workstation can be manipulated by users either from the built-in con-

trol panel located ion the front of the workstation, or programmatically through the

included NI ELVIS software suit (see figure 2-2 below).

Figure 2-2: This is a diagram of the ELVIS workstation with a simple circuit con-
structed on its prototyping board. The knobs on the front can be used to control the
workstation manually.

The workstation also comes with a removable prototype board with over 2800

tie points. This board can be used to build electrical circuits and connect them to

the programmatically controlled instruments that come with ELVIS. In addition to

variable power supplies that are included in the instrument suit, the board also offers

built in 15 Volts and +5 Volts power supplies, which can be used to build a wide

array of circuits.

2.1.2 NI ELVIS and LabVIEW

LabVIEW [14] is a graphical programming environment for test, measurement, and

automation applications. The main benefit of LabVIEW as far as this project is

concerned is its extensive support for accessing instrumentation hardware. Drivers

and abstraction layers for many different types of instruments are available and are

19

presented as graphical nodes. This abstraction layer presents as standard software

interface for communicating with a wide range of hardware devices. The provided

driver interfaces also saves program development time. Because of its flexibility,

modular nature, and ease of programming, LabVIEW has become a language of

choice for laboratory use in top universities worldwide [161. In fact, one of the future

goals of the iLabs project is to develop software that will integrate LabVIEW into

the existing iLabs architecture [1].
The ELVIS platform comes with LabVIEW based software virtual instruments,

which can be modified using the LabVIEW application programming interface to

create custom instruments and build elaborate lab exercises to suit the needs of

instructors (See figure 2-3). The source code for all the included ELVIS virtual

instruments is available to developers for possible modification and extension.

*n 11 A -

NI ELVIS Instrumeut NI ELVIS
Launcher L abVIEW API

Figure 2-3: The ELVIS instrument launcher gives users access to LabVIEW built
virtual instruments that can control the ELVIS workstation. The source code for
these instruments is provided and can be added to LabVIEW virtual instruments.

The software instruments included with the ELVIS platform can be categorized

into two:

e Signal sources: Function Generator, Variable Power Supplies, Arbitrary Wave-

form Generator, and Digital Writer

20

* Signal analyzers: Oscilloscope, Dynamic Signal Analyzer, Digital Multimeter,

Bode analyzer, and Current-Voltage Analyzers

As an example of how these instruments integrate with the ELVIS hardware,

a waveform can be generated using two different methods: using the built-in full-

featured function generator that can be controlled using knobs on the control panel

or programmatically with a specially designed LabVIEW software suite included with

NI ELVIS.

Because of the workstation prototype boards design, the user has the added ca-

pability of connecting signals between various instruments and DAQ system inputs.

For example, the output of the function generator can be connected to a specific

input channel of the DAQ board, ultimately displaying it on a desired channel of the

oscilloscope included with the instrument suite [4].

2.1.3 Why the ELVIS system is suitable for deploying iLabs

in Africa

There are several attributes of the ELVIS system that make it an attractive platform

for developing iLabs for this project:

Basic to complex experiment support

During our visit to Nigeria, we observed the greatest need for laboratory equipment

in the electrical engineering and physics departments at the introductory level of the

curriculum. Introductory level classes are extremely over subscribed at the university,

putting tremendous pressure on scarce laboratory space and equipment. It is not

uncommon for single workstations to be shared amongst ten or more students. Access

to lab space at this stage is also time-limited, with large groups of students taking

turns to attend the lab for one to two hour shift (see Appendix b for a detailed report

on the visit to Nigeria).

From our discussion with faculty at the university, we also noted that access to

advanced electrical engineering equipment could lead to a marked improvement in

21

the variety and effectiveness of courses offered to students taking advanced classes.

A good example of this is the positive effect that access to the Microelectronics

weblab [20], which is implemented using the iLabs Shared Architecture, has had on

the corresponding course at the university.

As its name suggests, the ELVIS platform was primarily designed to support ex-

periments conducted within an educational context. The three components of the

platform make it extremely versatile, enabling it to support experiments that range

from the most basic to those conducted in project based classes [19] There is there-

fore immense potential in a software architecture that complements the versatility of

ELVIS with the ability to share and administer laboratories amongst large groups of

students provided by the iLabs Shared Architecture.

LabVIEW integration

The LabVIEW programming environment is widely used in educational and industrial

environments [14]. As a result, there is a tremendous amount of documentation and

support available, as well as a host of educational experiments for university level

courses implemented using LabVIEW. The success of LabVIEW can be attributed

to the fact that it is very versatile and intuitive to use, even for users with limited

programming experience. It is also a platform that is well understood by faculty

members in Africa, as we noted during our visit to Nigeria in January.

It is therefore of great importance that the ELVIS platform comes complete with

a suite of LabVIEW virtual instruments, as this provides us with access to most of

the ELVIS functionality within an environment that instructors are already familiar

with.

Since one of LabVIEWs strongest selling points are its support for accessing instru-

mentation hardware, a software framework that communicates with ELVIS through

LabVIEW could also form a basis for developing new labs that are built to inter-

face other LabVIEW-ready hardware equipment with iLabs. This framework would

open iLabs to a wide range of equipment that is used through out the Engineering

curriculum, increasing the range and effectiveness of iLabs in Africa.

22

Easy to use Interface

One of the characteristics of good software architecture for creating online laboratories

should be the ease with which new labs can be deployed in an environment where

software development skills are limited. This is the case at OAU, where the high

student to faculty ratio means that instructors frequently take on administrative

functions and have little time to conduct research, let alone develop software. This

dearth of skills is compounded by the fact that research funding for students is not

easily acquired.

The ease with which ELVIS integrates with LabVIEW makes it a good choice

in this respect. The ELVIS platform includes LabVIEW based virtual instruments,

which can be readily accessed and used to create and deploy experiments. This easy

integration with LabVIEW also gives ELVIS the computer connectivity required to

for interfacing with the iLabs shared architecture.

Wide Use and support

As mentioned in its manual, the ELVIS system was specifically designed for use within

an educational context. As a result, there are already a large number of universities

that are developing experiments based on ELVIS to supplement their engineering and

science curriculum [15]. Providing a way of connecting ELVIS to iLabs could therefore

enhance the sharing of a wide range of experiments with immense pedagogical value.

2.2 iLabs Shared Architecture

The iLab project was developed as part of the iCampus initiative [101 at MIT to

enhance the learning experience of students in science and engineering by provid-

ing more hands-on experience. The project was developed to alleviate some of the

problems that are common with conventional laboratories.

Some of the problems associated with conventional laboratories include high cost

and complex logistics. Also, if expensive equipment is used, administering conven-

tional laboratories requires the presence of trained personnel. Even this does not

23

guarantee the safety of the equipment, which often results in students being denied

access to sensitive equipment that is costly to replace if damaged during an exper-

iment. Another problem arises when the laboratory equipment being used is not

widely accessible, with time-sharing schemes being required to provide all students

access to the equipment. Conventional labs may also not scale well; the above prob-

lems increasing dramatically with the number of students [2].

Online labs share the advantages of conventional labs while overcoming some of

their limitations. They provide hands on experience with real devices, which can be

accessed from any location and at any time over the internet. Besides being convenient

for students, who no longer have to go to the lab in order to conduct experiments on

these devices, online labs are also very flexible and easy to manage from the point

of view of the instructors. Online labs also give students access to experiment data,

allowing them to analyze the data using different software packages [22].

The motivations for the development of online laboratories are especially pro-

nounced in developing countries. The problem of scarce laboratory equipment and

space is aggravated by a large demand due to over-enrollment in many engineering

disciplines. The high student to faculty ratio in universities in these countries also

makes lab administration extremely difficult to manage. As a result of these factors,

many students do not get a chance to interact with real hardware devices often in

their curriculum, a component that is extremely useful to reinforce concepts presented

in class.

2.2.1 The iLab Framework

The iLab framework refers to a software architecture that was created at MIT in

order to facilitate the creation, management and distribution of laboratory exercises

designed for Engineering and science courses. The software framework provides the

functionality necessary to give geographically distributed users access to real elec-

trical devices. Consequently, the iLab framework provides a set of generic services

relating to user authentication and authorization, group management, experiment

specification and result storage, as well as lab access scheduling. This architecture is

24

demonstrated in Figure 2-4[21].

Lab-Silde CCpsampus

Intemet

Figure 2-4: This figure shows an overview of the three-tiered iLab system. The Service

Broker handles all administrative tasks, thus freeing the Lab Server (and its devel-

opers) from having to implement custom administrative solutions for each different

weblab. The Service Broker architecture also simplifies the sharing of iLabs between

universities, by alleviating the lab-side (host) university from administering guest

users. The host university can grant access to the student-side (guest) universitys

Service Broker, and the guest university can then administrate its own users.

The long term vision of the iLab project is for the educational content of online labs

to be broadly shared around the globe, enhancing science and engineering education

by multiplying the lab experiences students will ultimately have access to [2].

The iLab framework defines and supports three broad categories of experiments

[5]:

" Batched experiments: In this experiment type, the user submits a set of

specifications informing the lab hardware what parameters to use to conduct

the entire experiment. The lab hardware then conducts the requested experi-

ment and sends the resulting values back to the user. In this experiment type,

therefore, the user does not need to maintain connection with the lab server

over the duration of the experiment.

" Interactive experiments: In this case, the user can dynamically access and

change various parameters over the duration of the experiment. The user there-

fore needs to maintain an internet connection with the lab server as the exper-

iment is being conducted.

25

* Sensor experiments: In this experiment type, users monitor or analyze real

time data without influencing the phenomenon being measured.

Of these three experiment types, only batched experiments have been fully tested

and deployed currently. Nonetheless, this is the experiment type that lends itself

particularly well to deployment in developing countries, where conditions such as

limited bandwidth, limited computer access and network failures are prevalent.

2.2.2 The batched experiment Architecture

The current batched architecture (dubbed the iLabs shared architecture) is based on

a 3-tier system [5, 3). The three components are:

" A client that displays a list of existing experiment setups and allows the user

to specify parameters that will determine what values will be used when the

experiment is conducted. These experiment specifications are sent via an XML

document to the service broker, which forms the second tier in this architecture.

* A service broker, which manages communication between the client and the

lab server.

" A lab server that manages communication with the actual hardware and con-

ducts experiments requested by the user. The lab server sends the results of the

experiments to the service broker, which notifies the client that the experiment

has been completed.

The service broker in this architecture consists of completely lab independent and

generic code. It handles the authentication of students wishing to gain access to

different labs by assigning them to groups. These groups, which usually correspond

to courses offered in participating universities, are then passed on to the lab server,

which determines whether to grant them access to the hardware.

The lab server and the client on the other hand need to understand a common

protocol for describing the nature of the experiments to be conducted. This protocol

26

is completely abstracted away from the service broker, which passes on messages as-is

from the lab server to the client and vice versa.

The lab server and the service broker are currently implemented as .NET web

services [18]. They both export methods which can be called through the SOAP [23]

standard, which provides a platform independent standard for exchanging information

in a decentralized and distributed environment. The lab client is usually implemented

using technologies that can be accessed from web browsers. Currently, the client is

implemented as a Java applet, with a back end that supports communication with

the service broker via the SOAP standard.

In order for iLab-enabled online laboratories (referred to as weblabs from here on)

to be truly distributed, the different layers must adhere to the set of standardized

operations stipulated in the iLab API. These operations are implemented over web

services and the SOAP protocol for message exchange. The iLab shared architecture

defines two sets of web service methods composing the iLab API: service calls from

Lab Client to Service Broker [24], and service calls from Service Broker to Lab Server

[9]. In fact, the bulk of the iLab API consists of pass-through methods, whose function

is simply for the Lab Client to call a corresponding method from the Lab Server API.

The most important methods are listed below:

* GetLabStatus: checks on the status of the Lab Server.

" GetEffectiveQueueLength: checks on the effective queue length of the Lab Server.

" GetLabInfo: gets general information about a Lab Server.

* GetLab Configuration: gets the lab configuration of a Lab Server.

" Validate: checks whether an experiment specification would be accepted if sub-

mitted for execution.

" Submit: submits an experiment specification to the Lab Server for execution.

" Cancel: cancels a previously submitted experiment.

* GetExperimentStatus: checks on the status of a previously submitted experiment.

27

* RetrieveResult: retrieves the results from a previously submitted experiment.

The iLab architecture provides a lot of the functionality that is required to set up

stable and deployable weblabs with minimal software development efforts. Institu-

tions hoping to put up new iLabs can have access to the service brokers functionality

without having to write any software. The lab server and client software is also easy

to customize for new experiments as we will see in the next two chapters.

The iLab architecture also renders itself particularly well to sharing of online

laboratories amongst different institution, a feature that would be invaluable for stu-

dents in developing countries hoping to access equipment that is not available at their

institution.

2.3 Vision for an online ELVIS

The goal of this project is to determine how best to develop solutions that will enhance

the experiences of both users and instructors with an ELVIS weblab. The clear benefit

of putting ELVIS online is greater access to all its instrumentation capabilities, while

offering instructors in developing countries an alternative to conventional laboratories

that is stable, easy to set up and easy to manage. The design of the system that is

proposed in this project is motivated by the following goals:

2.3.1 Make the instructors job easy

We want to make the instructors job as easy as possible. It is easy to create new

experiments on the ELVIS platform and it should therefore be easy to deploy these

experiments on iLabs

2.3.2 Minimize new software development requirements

We want to provide a very generic software framework that will take care of most

of the steps involved in creating and managing ELVIS weblabs, thereby reducing

the magnitude of software development work required to create new experiments.

28

This will involve encapsulating the administrative aspects of the experiment into a

pluggable module and capturing the nature of experiments built on ELVIS using a

generic software model. This software model should capture all the aspects involved

in creating, managing and displaying an experiment on ELVIS.

2.3.3 Make the students experience as real as possible

One of the main observations made about users of online laboratories is their skep-

ticism about whether they are communicating with actual hardware or not. In fact,

it has been observed that the more students believe that they are communicating

with actual hardware as opposed to simulations, the more value they derive from the

online experiments [21]. As a result, a substantial portion of whether the project will

be successful will depend on providing a client that mirrors the hardware as best as

possible, providing the kind of flexibility that students expect with actual hardware.

2.3.4 Costs versus number of experiments

The ELVIS system itself costs about 2000 US Dollars, which can be prohibitive in

developing countries. In fact, the initial advances made in this project are largely

due to donations of hardware and software made by National Instruments. In order

to extract maximum value from a single ELVIS board therefore, it is desirable to be

able to create more than one experiment at a time on the board. This is largely an

exercise in circuit design, as well as choosing the right hardware that will multiplex

some of the channels available to connect ELVIS instruments to the actual hardware

2.3.5 Adding value to iLabs

Besides being deployed and used by students around the world, another main goal of

the new ELVIS weblab is to add value to the existing iLabs software architecture. This

can be achieved by providing components that improve on the existing capabilities

of already implemented weblabs. This motivation led to a lot of new ideas emerging

during the implementation of the ELVIS weblab.

29

30

Chapter 3

ELVIS Weblab: Initial Approaches

When this project was conceived, the iLab Africa teams at OAU and MIT adopted

different approaches to incorporate the ELVIS workstation into the iLabs shared archi-

tecture. This chapter discusses these approaches in detail and outlines the strengths

and weakness of each approach. The chapter concludes by motivating a unified ap-

proach software development approach to help the iLab Africa project grow to the

next level.

3.1 First versions of ELVIS iLab software

Over the fall semester of 2005, we at MIT worked in parallel with the iLab team at

OAU to develop lab server and client software that would help connect the ELVIS

platform to the iLabs shared architecture. This section will outline the main ideas

followed in the development of these two approaches and then motivate the need for

a unified approach that leverages the lessons learned during the development of these

initial versions.

3.1.1 MIT Approach: ELVIS weblab v.1

The first version of the ELVIS software (dubbed ELVIS weblab v1) that we developed

here at MIT recycled most of the software that already existed for the Microelectronics

31

weblab [6, 20]. The MIT Microelectronics Weblab is an online semiconductor char-

acterization laboratory that has been successfully deployed and tested in universities

around the world.

By working with deployed components, our approach enabled us to create a stable

release that contained a lot of the functionality that had already been worked into an

existing weblab and thoroughly tested. In order to develop a weblab for ELVIS, we

made changes that enabled the existing software to conform to a new software model

for representing experiments built on ELVIS. The key difference is that while the

user interacts with a single physical device on the client side in the Microelectronics

weblab (such as a diode or a transistor), the user in the ELVIS weblab interacts with

an experiment setup, which represents a complete circuit that is constructed on the

ELVIS prototyping board for that particular experiment.

As a result, the functionality of ELVIS weblab v.1 closely mirrors that of the Mi-

croelectronics weblab, with the main difference being the terminology used to describe

experiments. Despite this difference, there is nonetheless an almost a direct mapping

between how devices are represented in the Microelectronics weblab to how experi-

ment setups are represented in the ELVIS weblab. Modifying the Microelectronics

weblab software to work with ELVIS was therefore reduced to a rather straightfor-

ward task that mainly involved changing the terminology used in the existing software.

Figure 3-1 outlines this process graphically.

Lab server

The Microelectronics weblab lab server is implemented as a three-tier .NET web ap-

plication as shown in 3-2 [6, 8]. The first tier consists of an SQL database, which stores

all the information that supports the servers functionality. The data in this database

is manipulated by a set of visual basic modules (Data management interfaces), which

export functions to be used by the .ASP user interface layer. The server commu-

nicates with the experiment hardware through a stand-alone Experiment Execution

Engine and exports its functionality via web services using the SOAP standard.

The main components of the Microelectronics weblab lab server that were modified

32

.EMVIS Board

ELVIS weblab v.1 Graphical Client

4,

Lab Server
- Modfied Microelectronics webtab database
- Modified Micrielectronics webW,
Experirnent Exec Engine that uses LabVIEW
dAs

Mcxled) ML4
Docummnm

Service Broker
Unmodfied

WAcuime XAL

tLab Client
- Modified Microelectronics Weblab applet
client that displays Experiment Setup images
as opposed to device images

Figure 3-1: This diagram shows the modifications made in order to incorporate the
ELVIS workstation into the Microelectronics weblab sofwtare architectiure.

Publi Vfte
(SOAP/XML)
ic$Nardbp Lab nstrumens

S(Opts)

Figure 3-2: This diagram shows the modules used to implement the Microelectronics
weblab server and how they interact with each other.

33

I

1I

in order to implement the ELVIS weblab lab server are:

" The Lab Configuration XML document: This document is created by the lab

server to inform clients about the experiment setups that are available for exe-

cution. Whereas the layout of the document was maintained, the terminology

used was changed to convey information about Experiment Setups as opposed

to Devices.

" The device specific tables in the lab server database: These are the tables that

store the information necessary to generate the Lab Configuration XML docu-

ment described above. The names of these tables and corresponding columns

were changed in order to conform to the new terminology.

" In order to work with the new database structure, the Visual Basic back end

and the ASP front end of the lab servers device specific sections also needed to

be modified.

" The Experiment Execution Engine: This module was modified substantially to

enable it communicate with ELVIS hardware. These modifications are described

in detail below.

These changes did not impact the functionality of the lab server in any major way.

The process of creating and managing new experiments was still strikingly similar to

that followed in the Microelectronics weblab, as was the rest of the administrative

functionality.

Experiment Execution Engine

The only component of the lab server whose functionality was greatly modified was

the Experiment Execution Engine. This is the stand alone module that interacts with

the hardware and runs experiments that are queued in the lab servers database. This

module is radically different from its corresponding counterpart in the Microelectron-

ics weblab because it communicates with an entirely different piece of hardware (the

ELVIS workstation as opposed to a parameter analyzer).

34

For the first version of the ELVIS weblab, the experiment execution engine com-

municates with a simple Operational Amplifier circuit that is set up in the inverting

configuration. The approach used to communicate with the actual hardware required

the following steps to be completed in order to set up the lab exercise:

1. The circuit representing the lab exercise was constructed on the ELVIS pro-

totyping board. For this first implementation, the lab server was limited to

conducting only one experiment at a time.

2. A LabVIEW Virtual Instrument (VIs) was then constructed to handle commu-

nication with the ELVIS board for this experiment. The virtual instrument is

responsible for:

" Initializing communication with the ELVIS board. This was achieved by

interfacing our custom virtual instrument with the virtual instrument re-

sponsible for initializing communication with ELVIS board in the source

code for ELVIS.

* Driving the circuit built in the first step with a function whose parameters

(waveform type, frequency, amplitude and offset) are to be specified by

the user. This was achieved by interfacing our virtual instrument with the

Function Generator virtual instrument that came bundled with the ELVIS

instrumentation suit.

" Reading the waveform values that represent both the input and output

values from the ELVIS workstation at predetermined ports. This task was

achieved by a custom LabVIEW data acquisition virtual instrument (the

DAQ assistant) that reads data from a specified port at a given sampling

rate.

* Closing the connection with ELVIS and releasing all the resources neces-

sary to communicate with it. This task is again delegated to a virtual

instrument that came with the source code for ELVIS.

3. The virtual instrument built in step 2 was then exported as a C++ dynamic link

35

library (dll). The functionality required to build dlls from virtual instruments

is provided within the LabVIEW development environment [12]. It allows each

virtual instrument to be represented in software as a single function that can

take in a set of specified arguments. In our case, the VI was built into a dll

that takes in inputs to specify the type, frequency, amplitude and offset of the

waveform to use to drive to the circuit and returns as the output an array of

values that represent the resulting input and output waveforms.

4. The final step involved creating visual basic wrapper classes around the C++

dlls [12]in order to enable them interoperate correctly with the code used in

the experiment execution engine. This allows the experiment execution engine

to handle communication with the ELVIS hardware using regular visual basic

calls.

Figure 3-3 shows the resulting cascade of calls that occurs in order for the experiment

execution engine to communicate with ELVIS.

Despite having these modifications, the experiment execution loop in the experi-

ment execution engine is identical to that used in the Microelectronics weblab. The

key steps followed are:

1. Checking the database for any queued experiments. If these exist, the record

associated with that experiment is fetched.

2. The Experiment Specification XML (See appendix A Experiment Specification

XML Document) document stored with that record is parsed to extract the ID

of the experiment to conduct and the parameters to use when conducting the

experiment.

3. The validation engine module is called. This module checks to see whether the

inputs passed in are legal and within the specified limits. If this is not the case,

an error message is constructed and sent back to the user.

4. If the parameters specify a valid experiment, this experiment is conducted by

36

Expeornment Execution Engine Module
- Implemented in Visual Basic
- References OpAmpInverter V8 Module
- Experint Execu on Loop calls methods
implemented in the opAp inverter class

1I veform 4. Input and ogCputParameters waveform values

OpArnpinoerwe V8 Module
- IrnPlemented in Visual Basic. Manages C++ code

expared by OpArnpmInverter.d0

- Contains Visual basic methods that wrap around
the C++ mnethods wxorted by the di

2. Mvefbrm 3. Input and outuPararmeters wavfrnaus

OpAmpinverwe~dl
- Runs the ftual Instrumnft that mnanage the

exewution of the experirent
- Export C++ methods that can beimored into
other modules

Figure 3-3: This diagram shows how the experiment execution engine communicates
with the ELVIS work station using virtual instruments. The numbered arrows indi-
cate the flow of method calls and parameters from the experiment execution engine
to the dll that conducts the experiment and back.

37

the ELVIS workstation and the results read back to the experiment execution

engine.

5. An Experiments Result XML document that contains arrays of the time, input

and output values is created and stored with the database record that corre-

sponds to the current experiment. The status of the experiment is updated to

indicate that it has been completed.

Lab Client

For the first version of the ELVIS weblab, a lot of the functionality involved in model-

ing experiments, displaying them to the user and collecting parameters from them are

borrowed entirely from the Microelectronics weblab. In the Microelectronics weblab,

the user specifies the parameters to be used when running an experiment by configur-

ing signal measurement units (SMUs) that are connected to the parameter analyzer

on the lab server side. These SMUs are displayed on the client as being connected to

the image of the device being characterized. The client determines where to connect

the SMUs to the device image by using information on the pixel location of their

connection point sent by the lab server.

The ELVIS weblab uses the same approach to give users access to ELVIS instru-

ments. In the first version of the ELVIS weblab, the user can specify the parameters

to pass into the ELVIS Function Generator instrument (such as waveform type, fre-

quency, amplitude and offset) by configuring an FGEN port that is connected to

an image of the circuit being characterized. A comparison of the front ends of the

Microelectronics and ELVIS v1 clients is shown in figure 3-4.

In order to specify experiments being sent to the lab server, the Microelectronics

weblab used the notion of functions, which specified how each of the inputs to the

SMUs would be applied. For example, some functions specified how voltages would

be swept from a low to a high value at a given interval, while other functions encoded

constant voltages. These functions were associated with respective SMUs and then

encoded in the Experiment Specification XML document sent from the client to the

38

em ~A~*WSfw~wtogfl

nwaa Al

'At

w.*.

4

4t"'

Figure 3-4: A comparison of the front end of the Microelectronics weblab client

and the ELVIS weblab client. The striking similarity demonstrates how most of the

concepts used to implement the Microelectronics weblab were recycled in the first

version of the ELVIS weblab.

39

W te*- I

lab server. This document was enough to determine what values the lab server was

to use when conducting the experiment.

For the case of ELVIS, we defined a new function type, whose parameters (type,

frequency, amplitude and offset) specified the nature of the waveform to drive the

opAmp circuit with. This function can be configured by the user on the client by

clicking on the Function Generator instrument label displayed with the experiment.

This action will bring up a dialog, which is similar to the one used to configure SMUs

in the Microelectronics weblab. A comparison of the two dialog boxes is shown in

figure 3-5.

Input Voltage (Vin): VName IName

WaveForm IVinI

Frequency 10.00 Hz [RV Download RJ Download

Amplitude 500. 0 FVVAmliud 50 - m Mode Function

offset 0,000_

Apply cance Scale LinearE j
Start 0.Z000 v

J ava Applet Window --
Stop 0.000V

Step 1 00.0 m

Points

Compliance 10.0

LApply Cancel

Figure 3-5: A comparison of the dialogs used by the user to specify parameters for

experiment execution for the Microelectronics weblab client and the ELVIS weblab

client.

40

Strengths and weaknesses

By wholly adopting components of the Microelectronics weblab, the first ELVIS we-

blab implementation implicitly benefited from a wealth of software development work

that had been ongoing for a number of years and which had introduced many great

and necessary features for any online laboratory. This resulted in a feature rich lab

server and client with minimum effort, eliminating the need to recreate features that

have already been implemented and debugged.

The MIT approach also made it very easy to create new ELVIS based experi-

ments without concerted software development efforts. All the functionality in the

lab server and the client could be reused wholesome for new experiments, with the

only modifications being required in the experiment execution engine.

Using LabVIEW to connect to ELVIS enables us to take advantage of the provided

ELVIS source code, which gives us access to much of the functionality that comes with

the ELVIS platform. The visual interface that comes with the LabVIEW program-

ming environment also means that instructors do not need to be well versed in writing

code in order to create and test new laboratory exercises. We were also able to utilize

the processing, data manipulation and instrument communication capabilities of the

LabVIEW API to enhance the execution of our experiments.

A major weakness of the MIT approach was the fact that only one experiment

could feasibly be set up on the ELVIS work station at a time .

3.1.2 OAU Approach: The OpLab

The iLab team at OAU adopted a different approach in their development of the first

version of the ELVIS iLab software, dubbed the OAU opLab. On the hardware side,

they designed a circuit that uses a software-controlled switching matrix to allow the

realization of up to six different operational amplifier configurations.

On the software side, their lab server and client implementations departs greatly

from previous weblab implementations. They do away with the entire lab server as

implemented in the Microelectronics weblab and implement an experiment execution

41

engine as a stand alone module within the service broker. As a result, the lab lacks all

the administrative functionality that was already implemented in the Microelectronics

weblab lab server. This design decision was largely driven by the need to complete

their implementation before a hard deadline.

Their experiment execution engine communicates directly with C++ dlls that

come bundled with the ELVIS platform. As a result, they do not have to go through

the route of creating custom LabVIEW virtual instruments and dynamic link libraries

to communicate with the ELVIS board, as is the case with the MIT design.

The main innovation in opLab is their client implementation. Departing com-

pletely from the iLabs tradition of using java applets as clients, the OAU team im-

plemented a C# form based client that can be accessed from a web browser on a

windows machine. The user interface presents the user with a choice of the six imple-

mented operational amplifier configurations and asked him/her to choose which one

to analyze (see figure 3-6).

P~ 1- If the experiment area on the ieft is
empty, you probably do not have the
MicrosofLNet Framework instatled.
Please download it HERE and
Iastall it

2 Ensure that you read the
introducty oment here betore
carrying out this experiment

3 To Make a connection from a
node, click on It and select'connecd
to". Then, click ve node you want to
connect to

4- To disconnect a connectn
between two nodes, click on either
of them and select "disconnect
from. Then click on the otler node.

Figure 3-6: This page of the OAU opLab client presents the user with a choice of

operational amplifier configurations.

42

Based on the users choice, the client selects from a set of available components

and displays the ones necessary to realize that configuration as shown in figure 3-7.

For example, the components displayed for an inverting configuration were different

from those displayed for an integrator or differentiator. The client then requires the

user to connect the different components in order to realize the configuration that

he/she had chosen. Wrong connections are automatically detected and reported to

the user.

aee 'te LQuick Hints

Signal source -

39k
4

1. tf the experiment area on the left is
empty, you probably do not have the
Microsoft .Net Framework installed,
Please download it HERE and
install it

2. Ensure that you read the
introductory document here before
carryig out this experiment

I To make a connection from a
node, click on it and select'connect
to'. Then, clik the node you want to
connectto

4. To disconnect a conner-ion
between two nodes, cck on either
of them and select'disconnect
fronr. Then dick on the other node.

Figure 3-7: This page of the OAU opLab client presents the user with the components

required to create an inverting opAmp configuration. The user is then required to

figure out which components to connect together before submitting the experiment

to the lab server for execution.

Once the right configuration is realized, the user can then submit the experiment

to the lab server for execution. The results of running the experiment are displayed

on an oscilloscope as shown in figure 3-8.

43

l

036110sape

instantaneous Voltage (IV) slider

Figure 3-8: This page of the OAU opLab client displaye the results of executing an

experiment to the user

44

Strengths and weaknesses

The main strengths of the OAU approach lie in the great interactivity of its client.

Requiring the user to connect the components adds great pedagogical value to the lab,

ensuring that students in the most basic classes have a good understanding of which

components are used to create the different operational amplifier configurations.

The OAU approach also solved the problem of having only one experiment at a

time on the ELVIS work station by using a software-controlled switching matrix.

By stripping most of the lab server functionality, however, the opLab lost a lot

of the functionality that had been added to previous weblabs over time, depriving

it of important administrative functionality and experiment data management. The

opLab also modifies the service broker, which is generally undesirable.

The design of the opLab also makes most of the client software very experiment

specific, which means that a lot of code would need to be rewritten should a new exper-

iment be set up. This can be avoided by specifying XML documents that determine

how the client is to display experiments of this nature. In addition, implementing the

client in C# means that only users running windows on their machines will be able

to use it, which is undesirable.

Finally, the opLab did not give students the ability to manipulate the nature of

the input signals used to drive the implemented circuit, a feature that would have

added pedagogical value to their experience with the lab.

3.2 Motivation for the new software architecture

After comparing the approaches adopted by the two teams and presented in the

previous section, we decided to come up with a unified approach that would help

advance software development efforts for the iLab Africa project to the next level by

leveraging the strengths demonstrated by both approaches.

From the relative ease with which the MIT approach adopted the microelectronics

weblab software to work with the ELVIS work station, it is fair to suppose that the

current weblab software architecture is a good starting point for ELVIS development.

45

This is because it implements many well thought out features that should be im-

portant to incorporate into any new weblabs that we develop and deploy in Africa,

making them sustainable, manageable and usable by users in all parts of the world.

However, the implementation of these features means that the software itself is

fairly complex and modifying it to support new labs can be quite tedious. This is

a tradeoff that the OAU team faced during the development of the OpLab, which

forced them to strip a lot of functionality from existing components. We also went

through the same experience while developing software for the first version of the

ELVIS weblab here at MIT.

Developing labs around ELVIS has also brought forth the observation that the

existing user interface to the microelectronics lab is more suitable for purely analyt-

ical labs. This was especially demonstrated by the design of the OpLab and from

my interaction with students and teachers at OAU. The consensus seems to be that

pedagogical value could be added to the labs by having students actually wire up

components of the circuit that they wanted to analyze to better simulate the actual

experience with physical components and also stimulate the students by getting them

to think more about the actual circuit connections. The OpLab builds on this observa-

tion and allows students to connect circuit components in order to create and analyze

different circuit configurations. The software development efforts for this project will

need to take this into consideration in order to exploit this new capability.

3.3 Specifications of a new design

Stemming from these observations, we came up with a new design that captures the

essence of these "interactive" experiments, while speeding up the development of new

labs. The proposed design will draw on the strengths of the opLab, which gives

students a lot of flexibility when performing experiments, and from the strengths

of the current microelectronics weblab architecture, which allows the easy, intuitive

creation, management and deployment of new labs by instructors.

The design will provide a simple web based lab management interface that can be

46

used by instructors to specify how the client will display different components and

what connections are valid for a given configuration. This should eliminate the need

to rewrite client software for every new lab and substantially simplify the process of

new lab deployment.

The graphical user interface will allow students to add arbitrary components from

a pre-determined set to a circuit configuration and create connections between these

components. The components available to students will range from actual physical

devices such amplifiers, diodes, transistors, resistors and capacitors to the wide range

of virtual instruments that come bundled with ELVIS and other analytical devices

connected to the lab server machine.

The design will also need to be transparent to the method that is used to com-

municate with the actual hardware. This means that ideally, only the experiment

execution engine should contain hardware specific code. This will enable labs that

communicate with instruments through proprietary software such as LabVIEW to co-

exist harmoniously with those that talk to the hardware directly, such as the opLab.

The next chapter focuses on a more detailed specification and implementation of

a unified approach that fulfils the goals outlined in this section.

47

48

Chapter 4

ELVIS Weblab v2: A unified

Approach

This chapter describes the software architecture an ELVIS weblab (dubbed ELVIS

weblab version 2) that unifies the ideas generated by the first two implementations

of software to develop weblabs based on the ELVIS platform and the iLabs shared

architecture described in chapter 3. The main feature of the new design is the support

for a client that enables the manipulation of multiple electric components and ELVIS

instruments by the user.

4.1 Architecture Overview

The architecture of ELVIS weblab v.2 is based on the iLabs batched software archi-

tecture. In particular, this ELVIS weblab extends a lot of the functionality that is

implemented in the first version of the ELVIS weblab in order to satisfy the design

specifications outlined in the last section of chapter 3. As with previous weblabs, the

functionality of the ELVIS weblab is contained in three components: the client, the

service broker and the lab server.

The ELVIS weblab clients main job is to display an experiment setup to a student

and allow the student to interact with software representations of different electronic

components by connecting them together and specifying input values to be used to

49

drive the resulting circuit. The client for this lab is implemented as a java applet.

The service broker is a web service that mediates communication between the

lab server and the client. The service broker specifies an interface which must be

implemented by both the client and the lab server in order for them to communicate

successfully. As with the previous implementation of the ELVIS weblab, there is

no modification made to the service broker to support the new functionality in this

weblab.

The job of the lab server is to receive experiment specifications from the client

(through the service broker), validate the experiment and either perform the requested

experiment or provide feedback if the specification is invalid. The lab server is imple-

mented as a web service. It contains within it the experiment execution engine that

communicates with the actual hardware and performs the experiment.

The main feature that distinguishes this version of the ELVIS weblab from the

first version is its support for more user interaction on the client side. The client

allows students to drag and connect electric components on a drawing canvas before

sending the experiment specifications to the lab server for validation.

4.2 Design Process

4.2.1 Describing the Experiment Domain

In order to describe experiments conducted by students in software, we developed the

model described below. This model is mainly motivated by the way in which users

will be interacting with representations of various electric components on the client.

Since the user will be able to manipulate electric components and ELVIS instruments,

the model contains terms for describing the different types of electric components that

can be used in an experiment.

50

Experiment Setup

The technical term used in the software to refer to a circuit that has been constructed

on the ELVIS Board to conduct a single experiment is Experiment Setup. An Exper-

iment Setup will contain attributes such as name, description and unique numerical

ID. An Experiment Setup will also contain a list of Electric Components that are used

to construct it.

Electric Component

Electric Component refers to any of the components used to create the circuit used

in the experiment. Each Electric Component will have a name, a symbol, an icon

associated with it and pixel information on the locations of the terminals that can be

used to connect it to other components.

Electric components are further subdivided into two categories:

* ELVIS Instruments: ELVIS Instrument refers to any of the instruments in-

cluded in the ELVIS instrumentation suite to source signals and analyze the

output from circuits built on the prototyping board. The list of available ELVIS

instruments includes a function generator, an arbitrary waveform generator, an

oscilloscope, a multimeter, a digital reader/writer and a variable power source.

The client will allow users to specify instrument parameters that will determine

the nature of the signals used to drive the circuit, as well as the nature of the

output. Besides inheriting the attributes of Electric Components, each instru-

ment will also have associated with it a type and a list of its compliance values,

such as maximum current, maximum voltage and maximum frequency.

e Component Profiles: Component Profile refers to any of the physical devices

such as operational amplifiers, diodes, transistors, resistors, capacitors or in-

ductors used to create the circuit in the experiment. Besides inheriting the

attributes of Electric Component, each Component Profile will also have associ-

ated with it information on its specifications, such as resistance, inductance and

capacitance, and a number that will distinguish it from other similar profiles.

51

Figure 4-1 below illustrates the relationship between the terms introduced above.

Contains

ELVIS Instruments

Attributes:
- Type (Function Generator,

Oscilloscope, power source
etc)
- Comnpliance values

Component Profiles

Attributes:
- Type (Resistor, transistor,

diode etc)
- Specificmons

Figure 4-1: This figure shows the classification of circuit components that the user
can interact with and their features. This model motivates the design of other lab
server and client components.

4.2.2 XML Document Specification

The architecture of the lab server and client software is greatly influenced by the

nature of the XML documents that will be used to specify the Lab Configuration

(created by the lab server and sent to the client), the Experiment Specification (cre-

ated by the client and sent to the lab server) and the Experiment Results (created

by the client and sent to the lab server). In order to maximize code reuse, the XML

documents are structured in such a way that client code can be reused across different

52

Experiment Setup

Attributes:
- Name
- Descnption
- Unique ID
- List of Electric Components

Electric Component

Attributes:
- Name
- Description
- Symbol
- image
- Terminal Locations

experiments.

Lab Configuration XML Document

This document is created by the lab server. It contains information about which

experiments that can be performed on the lab server at a particular time. This

information is drawn from the lab servers database. Information contained in this

document should be adequate for the client to display information on any experiment

that is built on the ELVIS board. This ability will enable us recycle client code for

different experiments.

The nature of this document captures the model that was described for experi-

ments above. An example of the XML document that I used for this version of the

ELVIS weblab is shown in the appendix A.

Experiment Specification XML Document

This document is generated by the client in order to specify the nature of the exper-

iment to be conducted on the lab server. For this version of the ELVIS weblab, this

document should contain the following information:

* The ID of the experiment which the user has submitted. This is the same ID

that was assigned by the lab server in the Lab Configuration XML document.

" A list of all the component profiles that are used by the user in this experiment.

For each component profile, the document should contain a list of all the termi-

nals, each of which should contain a list of other terminals that it is connected

to. This cascade of information will help recreate the circuit as it was connected

by the user for validation.

" A list of the ELVIS instruments that are used by the user in this experiment.

For each instrument, the document should not only contain a list of terminals

and their connections, but also information on how the instrument has been

configured by the user. Instruments are configured in the same way as in version

1 of the ELVIS weblab (see Page REFEFENCE).

53

An example of an Experiment Specification XML document is included in ap-

pendix A.

Experiment Result XML Document

This document is generated by the lab server upon the successful completion of an

experiment. The document contains entries of data that correspond to each of the

parameters that the user wants to measure for the given experiment. For a simple

experiment that contains an input waveform, an output waveform and time values, the

document would contain an array of double values for each of the three parameters.

The clients graphing API would then use this information to recreate these waveforms

for the user.

An example of an Experiment Result XML document is included in appendix A.

4.2.3 Lab Server

Besides storing information necessary to generate the Lab Configuration XML doc-

ument, the lab server has an administrative structure that handles roles such as

managing communication with the service broker, managing instruments and com-

ponent profiles, viewing and analyzing pertinent server data such as web method

activity and experiment queue status and access control management. Most of this

functionality is already implemented in the first version of the ELVIS weblab, having

been borrowed entirely from the Microelectronics weblab.

Only the device-specific sections of the first version of the ELVIS weblab lab

server therefore needed to be redesigned for the second version. Since the lab server

is implemented as a three tier web application, enhancing new functionality involves

modifying all three levels:

* The database tables needed to be redesigned in order to store information that

can be used to generate a lab configuration XML document of the nature de-

scribed in the previous section.

54

" The backend code that interfaces the database to the actual lab server user

interface needed to be changed.

* The user interface (.ASP files that the user interacts with) also had to change

as a result.

Database Design

The database is the most important component of the lab server. It determines the

nature of the information that can be stored in the application and hence to a large

extent the extent of the functionality that can be built upon that information. De-

signing the device specific tables in the database requires a good understanding of

how the experiments will be represented on the client side to the user and ensuring

that all the necessary relationships are represented in the resulting table structure. It

also requires examining the information to be exchanged carefully in order to deter-

mine what aspects can be hard-coded in the system, as opposed to being represented

in the database.

Based on the experiment domain model presented earlier in this chapter, deciding

which tables to create in the database was pretty straightforward. The first and most

obvious table that was required for this lab was the ExperimentSetup table. This

table stores general information about every experiment setup that is created on the

ELVIS board. The necessary fields in this table include name and description, as well

as a unique, auto-generated, numeric ID that identifies the experiment setup.

In order to store information about electric components, we decided to distinguish

slightly between devices and instruments. We decided to hard-code most of the

information about ELVIS instruments in the client, thereby reducing the complexity

of the database structure in the lab server. Information about devices is stored in

a series of tables that store the names, descriptions, icon file locations, terminal

information and specification information for each device type, while instruments are

all stored in a single table.

When a device type is created (for example a resistor), one entry is made in the

55

Component Type table, detailing the name, description, symbol and icon location for

that device type. Entries are also made in the terminals table (Component Type Ter-

minalConfig), indicating the pixel locations of all the terminals and their orientation

in the icon. The last set of entries is made in the specifications table (Component-

TypeSpecConfig), indicating what specifications will be required for the component

type (such as resistance in the case of a resistor).

It should be noted that a device type entry in the database does not correspond

to an actual physical device. It is merely a template that will be used to determine

what characteristics the actual devices will possess. The actual devices are referred to

as Component Profiles in the system(see figure 4-1); they correspond to single entries

in the ComponentProfile table. When the lab administrator creates a new experiment

setup and adds a component profile to it, a single entry is made in this table.

A component profile refers to a specific instance of a component type, with the

values for the required specifications filled in. An example of a component profile

would be a 100KOhm resistor, or a 10microFarad Capacitor. One component profile

needs to be created for each electric component to be used in the experiment being

created. The ComponentProfile table stores the relationship between the generated

unique ID belonging to that component profile and the experiment setup that it

belongs to, as well as mappings to the specification values in the ProfileSpecs table

that belong to it.

It is important to note, therefore, that it is not component types that end up

being added to the experiment setups; it is component profiles.

Since we hard-coded a lot of information about ELVIS instruments in the client,

this eliminated the need to store information such as name, description and image

location for the different instrument types. Instead, we use a separate table named

Instruments, similar to the ComponentProfile table, which stores the relationship

between unique instances of an instrument used in an experiment setup and the

experiment setup it belongs to. This table also contains fields that store compliance

values detailing the limits to the values that can be applied to that instance of the

instrument.

56

Just like in the case of component profiles, the lab server administrator will need

to create a new record for each instance of an instrument to be used in the experiment.

When modifying the database to reflect the new table structure, we realized that

database tables for the first version of the ELVIS weblab can be categorized into

two broad categories: device specific tables that stored information about the actual

devices on which experiments are conducted, and administrative tables, which store

the information necessary to support functions such as managing communication

with the service broker, viewing and analyzing data on web method activity and

queue status, managing permissions and usage classes etc.

Only the first set of tables (device specific tables) needed to be modified in order to

enable the lab server to work with the new lab configuration document. As a result of

this observation, we decided to create a separate database that stores device specific

information, a decision that will hopefully simplify the modifications necessary to

enhance the functionality of this lab in future implementations.

The resulting database structure is shown in figure 4-2.

Once we created the database structure, the next step involved creating the set

of procedures necessary to manipulate the information stores in these tables. These

procedures are stored in the database (as SQL stored procedures) and they completely

specify the process of creating and deleting experiment setups, component types,

component profiles and instruments.

Back end and User interface

With the new database structure in place, modifying the rest of the Microelectronics

weblab lab server back end to work with the new lab was pretty straightforward.

The first step that we took was to create a separate visual basic module named De-

viceManager, which provides the visual basic methods that interface with the stored

procedures in our new database. This module exposes these methods to the User In-

terface layer (implemented using .ASP), enabling lab server users to perform all the

operations necessary to manipulate the stored data from the lab servers web interface.

Besides creating the DeviceManager module, we also modified the code in the

57

ExperlmentSetups
ActiveSetups

setupJd (PK)
activejid (PK) name
setupjd (FK) description
is active terminal-string

date-created
date-Modified

Instruments

instrument-id (PK)
setupid (FK)
number
type ComponentProffles
max votage
max current profile id (PK)
max frequency setupJd (FK)
date created type Id (FK)
date modified number

datejcreated
datejnodited

ProfileSpecs

specjd (PK.)
typespecjd (FK)
profileid (FK)
specyalue
date created
date modified

ComponentTypes

typejd (PK)
name
symbol
description
icon_path
date-created
datejmodified

ComponentType-
Spcconfig

typespec_id(PK)
typejd(FK)
number
name
units
date-created
date modified

Figure 4-2: This figure shows the database structure used to store information about
experiment setups for ELVIS weblab v2. Note: In the diagram, PK refers to Primary
Key while FK refers to Foreign Key.

58

Cam netve

typetermjid (PK)
typeJd (FK)
number
xjpixeluloc
y pixel toc
orientation
datescreated
datejmodified

Experiment Validation Module, whose job it is to examine the specifications passed

in by a student performing an experiment and ensure that they are compliant with

the corresponding experiment setup on ELVIS. Besides checking to ensure that com-

pliance values for all the configured instruments are met, this module also ensures

that the terminals in all the components are connected in the right manner.

Most of the other modules in the back end of the ELVIS weblab V.1 are completely

device independent and are therefore incorporated unmodified into ELVIS weblab v.2.

User Interface

The user interface for the lab server for v.1 gives the user to all the functionality

described in the previous section via a secure, login requiring, web interface. This

interface is implemented as a .NET web application using .ASP. The .ASP pages

import the back end modules described previously and make calls to them in order

to interact with the underlying SQL database.

Since most of the back end functionality of the v.1 lab server can be imported

wholesome into the v.2, the same case applies to most of the .ASP pages in the front

end. The only sections that needed to be redesigned and re-implemented were the

pages that managed the creation and editing of experiment setups.

The v.2 lab server has two .ASP pages that manage the creation and editing of

experiments on ELVIS. The first page allows users to create, edit and delete compo-

nent types, while the second page allows users to create, view and edit experiment

setups.

Each of the pages operates in one of two modes. In the first mode, the page

displays a listing of all the experiment setups or component types that exist in the

system, with a brief summary of each entry. This mode also allows the user to delete

existing entries, or create new entries. The second mode allows the user to edit a

specific experiment setup or component type. For experiment setups, this page also

allows the user to instruments and component profiles of different types.

One feature of the User Interface that is not yet implemented is an allowance for

users to specify the terminal connections that will lead to a valid experiment setup

59

through the web. Currently, the user has to enter all the terminal connections for a

valid configuration by hand, which can be tedious for an elaborate experiment.

Experiment Hardware and Execution Engine

One aspect of v.2 that was not implemented at all is the switching matrix. This was

mainly due to delays in securing the necessary hardware from National Instruments.

The goal of infusing the switching matrix is to replicate the desirable characteristics of

the OAU opLab experiment discussed in Chapter 3, which allows multiple circuits to

be built on the ELVIS board at the same time. Future versions of the ELVIS weblab

will incorporate this aspect, hence increasing the options offered by the Experiment

Execution Engine.

As a result, the hardware setup and the experiment execution engine used in v.2

are identical to those used in v.1, which are described conclusively on chapter 3 of

this document.

4.2.4 Lab Client

The client implemented for v.2 is based largely on v.1 client, which is in turn based

on the Microelectronics weblab client. The client is therefore implemented as a Java

applet that can be loaded from any Java-enabled web browser. The client handles

experiments based solely on the information passed in through the lab configuration

XML document. It enables users to select from a list of provided electric components

and connect then on a drawing canvas.

There already existed a robust back end for the client in the Microelectronics

weblab and in v.1 of the ELVIS weblab. This back end supports many features that

are desirable for any online laboratorys client, such as saving experiment specifica-

tions, graphing results, loading saved experiment specifications, defining user-defined

functions and tracking experiment progress. Furthermore, the existing client software

cleanly manages communication between the client and the lab server regardless of

the user interface. As a result, a lot of code in the existing client can be reused in

60

the new client design.

The functionality of the weblab client is implemented using 5 java packages. Three

packages are imported wholesale from v.1. These are the graphing package, which

handles the back end that supports the display of experiment results, the xml package

that handles parsing of XML documents and the server interface package that handles

messages to and from the service broker using the SOAP standard.

The rest of the weblab functionality is implemented in a back end package named

client that manages and manipulates the object model for experiments displayed to

the user, and a front end package named graphicalUl that handles all the aspects of

displaying experiments to the user and displaying the results of the users input.

In order to implement a client that handles experiments specified using the new

experiment model, we designed classes that belong to the client package, and which

correspond to the main components of our experiment model. In particular, we de-

signed classes that model experiment setups, electric components, component profiles,

component types and instruments. The relationships between these different classes

mirror their relationships in the experiment model presented earlier in this chapter.

In addition to these classes, we also reused classes representing concepts that were

already present in v.1, such as terminals, functions, experiment specifications, lab

configurations and a weblab client class that manages the interaction between the

graphical layer and the underlying object model.

The front end of the client was also radically redesigned to enable clicking, drag-

ging and connecting electric components, something that was completely absent from

earlier weblab implementations. When the user chooses the experiment to conduct,

the new client presents the user with a blank drawing canvas. On right clicking

anywhere on this canvas, the user is presented with a menu that contains all the

component profiles and instruments that are associated with the current experiment

setup. The user can then select from amongst these components and drag them

from the menu onto the drawing canvas. The user can place the selected component

anywhere on the drawing canvas.

In order to simplify the first implementation, we introduced the concept of a

61

special component known as a node. A node allows the user to connect components.

The user cannot make these connections directly; components can only be connected

to a node. This greatly simplified the drawing algorithms required to keep track of

different components and their connections.

Once the user is satisfied with the established connections, he/she can then submit

the experiment to the lab server for execution. When the user does this, the client

will generate an Experiment Specification XML document (described earlier in this

chapter) and send this to the lab server through the service broker. The results of

experiments submitted by this client are handled in exactly the same way as in the

version 1 of the ELVIS weblab.

The entire front end of the client was implemented using javas graphic packages

(swing and AWT).

4.3 Results

The first prototype of the system described in this chapter has already been fully

implemented. This first run is mainly a proof of concept; most of its functionality of

not yet ready to be deployed.

For the purpose of demonstrating the system, the implemented software has been

successfully used to manage a simple operational amplifier experiment that accepts a

user-specified waveform as its input, inverts it, and displays both the input and the

resulting output waveform on the client.

Besides fixing any latent bugs, a number of enhancements can be made to the

system based on initial interactions with it.

For the lab server:

o This was discussed earlier, but it is worth mentioning again that adding a

switching matrix to the ELVIS hardware could enable support for multiple ex-

periments on the same board, which would add a lot of value to the implemented

weblab.

62

" The validation module could be given more deductive ability, thereby enabling

it to give more constructive feedback to the user when an experiment specifi-

cation is invalid. For example, the engine should be clever enough to realize

when the user creates a non-inverting configuration as opposed to an inverting

configuration as is required by the experiment, instead of simply lumping all

errors into one category.

* The LabVIEW dlls that execute the actual experiment could be improved to

enhance their error detection capabilities, thereby increasing their tolerance for

extreme inputs from users.

" The .ASP page that manages editing experiment setups could be improved on

to give instructors an easier way of specifying the correct configuration for a

given experiment. A suggestion that is explored in this chapter is having an

applet popup that duplicates the clients functionality, enables the instructor

connect the components as should be done by students and stores a string with

the resulting configuration.

For the client:

" A lot of work could be done in cleaning up the user interface. The current

implementation is largely a proof of concept that used the first idea that came

to our mind and may not be adequate for a distribution version.

" We also noted that the size of the client increased considerably when the new

functionality was incorporated, something that should be guarded against by

exploring other software design patterns and data models that can support the

same functionality with less overhead.

" Currently, the functionality for saving experiment specifications and loading

saved specifications from the service broker is disabled. This is because sup-

porting it would require storing information on how components are laid put

and connected on the board, which we have not explored yet. Such an en-

63

hancement that would greatly improve the usability of future releases of the

client..

64

Chapter 5

Conclusion and Future Work

Conclusion and future work Our experiences with the first two versions of the ELVIS

software demonstrate the enormous potential of the ELVIS platform to support we-

blabs that span the entire range of the Electrical Engineering and physics curriculum.

The first implementations have also shown a reliable model that can be used to bring

various ELVIS instruments online and enable students to interact with them and con-

duct experiments. The existing ELVIS weblab implementations therefore represents a

solid foundation on which to base future weblabs, which should exercise more ELVIS

instruments and give users more control over the nature of the experiments being

conducted.

The experience of writing software to bring the ELVIS equipment online should

also herald efforts to bring other devices in developing countries online and share

labs amongst different institutions. This will make previously inaccessible devices

available to students, thereby enriching their learning experience.

5.1 Future iLab-Africa software development ef-

forts

The process of developing software for the ELVIS weblabs has been a great learning

experience in software design experience and project management for those involved.

65

The breadth and depth of the tools and software skills involved has tested and devel-

oped our capabilities immensely. It has also been a unique experience because of the

collaboration between the group at MIT and developers in Africa.

A few lessons have been learnt in the course of our one-year software develop-

ment collaboration with the team at OAU, some of which apply generally to the

development of iLabs in developing countries.

During our collaboration, one enhancement that was missing was a clear channel

for communicating software specifications, current progress and actual code between

the two groups. As the software around ELVIS becomes more complex and well

defined, we at MIT will need to engage our colleagues more strongly in the develop-

ment process, to the extent that we can hand over the management of lab software

to them. Stronger interaction will also enable the development of complementary

software components that can interface cleanly with each other, thereby distributing

the software development load.

In view of the resources required to develop and deploy weblabs under the cur-

rent software architecture, the future of iLabs in developing countries will most likely

hinge on solutions that use less proprietary software products and fewer man hours.

The shortage of competent software developers willing to handle projects such as

this one and the high cost of necessary software tools might hinder the addition

of necessary features to future weblab implementations, or discourage other depart-

ments/institutions from embracing the iLabs concept.

In order to counter this, the software architecture of future weblabs will probably

need to contain a generic pluggable module that can be incorporated into any lab

server/client, leaving lab administrators to bear a very small subset of the software

development load. Future implementations of the lab server may also need to look

into solutions implemented in non-proprietary software (currently .NET and Windows

SQL server) in order to lower the costs and encourage more departments to put their

labs online.

In parallel with these efforts, the cost of the hardware used to support iLabs in

developing countries may also need to be trimmed. In fact, there are already ongoing

66

efforts to develop a cheap parameter analyzer that can handle a range of experiments

commonly used in introductory level Electrical Engineering classes. These efforts will

need the support of similarly inclined software development efforts in order to make

them effective in developing countries.

67

68

Appendix A

XML Specification Documents

A.1 ELVIS Weblab v1

A.1.1 LabConfiguration.xml

<?xml version="1 .0" encoding="utf-8" standalone="no" ?>

<!DOCTYPE labConfiguration SYSTEM

"http://ilab-labview.mit.edu/LabServer/xml/labConfiguration.dtd">

<labConfiguration lab="MIT ELVIS Weblab" specversion="0.1">

<setup id="5">

<name>OpAmp Differentiator Circuit</name>

<description>Aren't opAmpss just swell?</description>

<imageURL>http://localhost/labServer/setupImages/opAmpDifferentiator .gif</imageURL>

<terminal instrumentType="FGEN" instrumentNumber="1">

<label>Input Waveform</label>

<pixelLocation>

<x>121</x>

<y>94 </y>

</pixelLocation>

<maxVoltage>2.0</maxVoltage>

<maxCurrent>0.1</maxCurrent>

69

<maxFrequency>1000</maxFrequency>

</terminal>

<terminal instrumentType="SCOPE" instrumentNumber="2">

<label>Oscilloscope</label>

<pixelLocation>

<x>195</x>

<y>156</y>

</pixelLocation>

<maxVoltage>2.0</maxVoltage>

<maxCurrent>0.1</maxCurrent>

<maxFrequency>1000</maxFrequency>

</terminal>

<maxDataPoints>500</maxDataPo ints>

</setup>

</labConf igurat ion>

A.1.2 ExperimentSpecification.xml

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<!DOCTYPE experimentSpecification SYSTEM

"http: //ilab-labview.mit edu/labServer/xml/experimentSpecification.dtd">

<experimentSpecification lab="MIT NI-ELVIS Weblab" specversion="0.1">

<setupID>1</setupID>

<terminal instrumentType="FGEN" instrumentNumber="1">

<vname download="true">VIN</vname>

<iname download="true ">ID</iname>

<mode>V</mode>

<function type="WAVEFORM">

<waveformType>SINE</waveformType>

<frequency>100</frequency>

<amplitude>0.5</amplitude>

70

<offset>0.1</offset>

</function>

<compliance>0.1</compliance>

</terminal>

<userDefinedFunction>

<name download="true">SQRTID</name>

<units>A</units>

<body>SQRT(VIN)</body>

</userDef inedFunct ion>

</experimentSpecification>

A.1.3 ExperimentResult.xml

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<!DOCTYPE experimentResult SYSTEM

"http://ilab-labview.mit.edu/labServer/xml/experimentResult.dtd">

<experimentResult lab="MIT NI-ELVIS Weblab" specversion="0.1">

<datavector name="TIME" units="s">0 0.002 0.004 0.006 0.008</datavector>

<datavector name="VIN" units="V">-0.615234375 -0.6005859375 -0.581054687

-0.556640625 -0.5224609375 </datavector>

<datavector name="VOUT" units="I">6.1474609375 5.9912109375 5.8203125

5.56640625 5.2294921875 </datavector>

</experimentResult>

\end{f igure}

\section {ELVIS Weblab v2}

\subsection{LabConfiguration.xml}

\begin{verbatim}

<?xml version="1 .0" encoding="utf-8" standalone="no" ?>

<!DOCTYPE labConfiguration SYSTEM

"http: //ilab-labview.mit . edu/LabServer/xml/labConf iguration . dtd">

<labConfiguration lab="MIT NI-ELVIS Weblab" specversion="0.1">

71

<experimentSetup setupId = 1>

<name>Inverting Amplifier</name>

<description>Characterizing an operational amplifier in the inverting configuration.

</description>

<!-- component types -- >

<componentType typeId = 1>

<name>Resistor</name>

<symbol>R</symbol>

<description>Resistor</description>

<imageURL>http://ilab-labview.mit.edu/LabServer/images/components/Resistor.gif

</imageURL>

<terminal number = 1>

<pixelLocation>

<x>I0</x>

<y>25</y>

</pixelLocation>

<orientation>LEFT</orientation>

</terminal>

<terminal number = 2>

<pixelLocation>

<x>40</x>

<y>25</y>

</pixelLocation>

<orientation>RIGHT</orientation>

</terminal>

<profile profileId = 1 profileNumber = 1>

<spec name = "Resistance">

<specValue>100 KOhms</specValue>

</spec>

72

</profile>

<profile profileId = 2 profileNumber = 2>

<spec name = "Resistance">

<specValue>10 KOhms</specValue>

</spec>

</profile>

</componentType>

<componentType typeId = 13>

<name>OpAmp</name>

<description>Operational Amplifier</description>

<imageURL>http://ilab-labview.mit.edu/LabServer/

componentIcons/amplifier.gif</imageURL>

<terminal number = 1>

<pixelLocation>

<x>12</x>

<y>10</y>

</pixelLocation>

<orientation>LEFT</orientation>

</terminal>

<terminal number = 2>

<pixelLocation>

<x>12</x>

<y>40</y>

</pixelLocation>

<orientation>LEFT</orientation>

</terminal>

<terminal number = 3>

<pixelLocation>

<x>12</x>

73

<y>25</y>

</pixelLocation>

<orientation>RIGHT</orientation>

</terminal>

<profile profileNumber = 1 profileId = 3></profile>

</component>

<!-- Instruments -- >

<instrument type = "FGEN" instrumentID = 1>

<maxVoltage>2.0</maxVoltage>

<maxCurrent>0.1</maxCurrent>

<maxFrequency>1000</maxFrequency>

</instrument>

</experimentSetup>

</labConfiguration>

A.1.4 ExperimentSpecification.xml

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<!DOCTYPE experimentSpecification SYSTEM

"http://ilab-labview.mit.edu/labServer/xml/experimentSpecification.dtd">

<experimentSpecification lab="MIT NI-ELVIS Weblab" specversion="0.1">

<setupID>1</setupID>

<componentProfile id = 1>

<terminal number = 1>

<connString>4:5:6:8</connString>

</terminal>

<terminal number = 2>

<connString>5:8</connString>

</terminal>

</componentProfile>

74

<componentProfile id = 3>

<terminal number = 4>

<connString>1</connString>

</terminal>

<terminal number = 5>

<connString>1:2</connString>

</terminal>

</componentProfile>

<instrument type = FGEN number = 1>

<terminal number = 1>

<connstring>5</connstring>

</terminal>

<vname download="true">VIN</vname>

<function type="WAVEFORM">

<waveformType>SINE</waveformType>

<frequency>100</frequency>

<amplitude>0.5</amplitude>

<offset>0. 1</offset>

</function>

<compliance>0.1</compliance>

</instrument>

<instrument type = SCOPE number = 2>

<terminal number = 1>

<connstring>8</connstring>

</terminal>

<vname download="true">VOUT</vname>

</instrument>

75

<userDefinedFunction>

<name download="true">SQRTID</name>

<units>A</units>

<body>SQRT(VIN)</body>

</userDef inedFunct ion>

</experimentSpecification>

A.1.5 ExperimentResult.xml

ELVIS weblab v2 uses the same document as vi.

76

Appendix B

Report of visit to OAU

Samuel Gikandi 2/13/2006

Report on visit to Nigeria for the iLabAfrica project

This past January, I spent three weeks at the Obafemi Awolowo University in Ife

Nigeria, working with the iLabs group there as part of the MIT iLab Africa project.

I was able to achieve most of the goals that I outlined in my proposal for the

trip. My first goal was to discuss with the software development team at OAU

on how to approach the integration of the NI ELVIS board into the iLabs shared

architecture. I was able to work closely with Jonah (lead developer) at OAU towards

the end of my trip and I demonstrated the features of my approach as well as learning

about their implementation of an OpAmp characterization iLab. This discussion was

especially fruitful because our approaches were different, with each approach having

its strengths and weaknesses. We discovered that we could each borrow aspects from

our approaches and will be collaborating on a unified design for future lab deployment.

I will briefly outline what I learnt about the development of the OpAmp lab at

OAU for their first deployment. The starting points for developing this lab were the

weblab components, namely Jims lab server and the java applet client. From these,

the team at OAU stripped most of the functionality from the lab server and developed

an entirely new client for their OpAmp lab. This was mainly necessitated by the need

to develop this first version rapidly, but it also meant that the finished lab has lacked

a lot of the structure that has been built into weblab over time. To assist with this,

77

I have been able to modify the weblab server for the purposes of ELVIS. The only

problem is that my lab server works with a different approach of communicating with

the ELVIS board. Instead of talking to the board directly as the team at OAU does

(using C++ calls to dlls that come with ELVIS), I create my own dlls using labview

and talk to ELVIS virtual instruments. From our discussions, we decided that the

team at OAU will look into the labview approach, because I was able to show that it

speeds up the process of deploying new labs.

One of the main strengths of the OAU approach was the use of switches, which

allowed them to have a large number of circuits on the same ELVIS board. Their

first implementation allows users to characterize six different OpAmp configurations.

Due to this observation, I will be working on integrating a switching mechanism into

future lab server implementations.

Another great strength is the client design, which allows students to connect com-

ponents to each other, as opposed to simply running experiments on an already con-

structed circuit. This gives students more intuition on connecting components, while

giving feedback when students wire the components wrongly. The feeling was that

this greatly improves the pedagogical value of online labs, especially those developed

for introductory level classes.

The OAU client is however implemented using C# and this limits its use to

windows platforms only. This is something that we agreed to move away from, given

that the main reason they used C# was because they were more comfortable with

C# than java. Towards this end, I have been working on developing a java client

that borrows from the pedagogical strengths of the C# client, and hence makes it

available on all platforms.

I should note here that my discussion with the OAU team was hampered by

the fact that members of the software development team, whom I was to work with

closely, were extremely busy with administrative and teaching work at the university.

I nonetheless took advantage of the free time I found myself with to put final touches

on an implementation of an ELVIS lab and client that maximizes the reuse of weblab

components. I was also slightly limited in my implementation by the inability to

78

connect my ELVIS board to my laptop, because I could not get the PCI card necessary

for this in good time. I nonetheless made substantial progress with my work, because

my approach is more Labview specific, as opposed to ELVIS specific.

During the three weeks I spent in Nigeria, I was also able to appreciate the lim-

itations within facing the team at OAU when developing iLabs. One of the main

limitations was manpower, as the people who were developing software for the labs

had heavy administrative and lecturing responsibilities. Piotr and I suggested to

them the possibility of hiring students to assist in developing new labs, which they

did towards the end of the trip. However, the students who were assigned to develop-

ing lab software may not have enough time to understand and develop software based

on the iLabs shared architecture, mainly because they are final year students hoping

to graduate by June this year. This is clearly not enough time for them to make

enough headway in understanding and modifying existing iLabs components. We did

suggest to them the possibility of hiring students at freshman/sophomore levels and

Prof. Kehinde promised to look into this.

It was nonetheless very clear that online labs would add a great deal to the aca-

demic experience of students. We were able to appreciate this on touring the campus,

where we saw the immense shortage of equipment for conducting experiments that

iLabs would alleviate. This shortage is especially acute for students in the introduc-

tory level classes, which tend to be extremely large. Luckily, the ELVIS board is

especially useful for conducting experiments based on the curriculum in these early

classes.

We also noted that the internal network connection at the university was extremely

fast, and bandwidth should therefore not be a big limitation when considering locally

deployed solutions for the university. Nonetheless, most students do not have access to

private computers, a factor that may necessitate the design of an extremely intuitive

client for these students to minimize the time spent at public workstations (which

they sometimes have to pay for).

All in all, I was greatly impressed by the enthusiasm with which the team at OAU

has adopted the iLabs concept and the efforts taken to infuse iLabs into the university

79

curriculum. This was especially manifested in seminars organized to introduce faculty

and students at the university to the concept of iLabs. Many ideas were brought up

and discussed at these seminars and they really gave us a good idea of the attitude

towards online laboratories at the university and the design decisions that would make

them more effective for classes at the university.

Based on the visit in January, I will be engaging my colleagues at OAU further to

exploit the wide array of virtual instruments that come with ELVIS. This will begin

with the development of a new lab for logic gate characterization, which is what the

group at OAU is currently working on. We will also explore more ELVIS functionality

using new labs, to provide a basis for building future labs more easily.

Another project that will be immensely significant will be integrating Piotrs mini

into the iLabs shared architecture, since it was so warmly received at the university

by both faculty and students. This will open up the integration of a wide array of

cheap labs into the iLabs shared architecture, engage students more intensely with

the development of labs and thereby enrich the effectiveness of iLabs in Africa.

I also hope to engage colleagues in Africa more closely with the development of lab

server and client software because it was apparent that they had difficulty customizing

what already exists for their own needs. This is based on the observation that most

of the features of the current implementation are well thought out and crucial for the

deployment of labs that can be reliably administered to students.

Finally, there was the shared concern that there was not much communication be-

tween African universities involved in iLabs. The team at OAU did not communicate

regularly with the teams in Uganda and Tanzania, although they felt this exchange

of ideas would be beneficial for the future of iLabs in Africa. After the trip, I also

noted that the concept of iLabs was now spreading to other countries (namely Kenya

and Zambia) and it would be a great step forward if we can take advantage of the

advanced involvement and understanding of the concept at OAU to establish a hub

for the further deployment of iLabs at Africa. Indeed this would be a great spring-

board for further collaboration amongst African universities, which could only enrich

the experiences of students at these institutions further.

80

Bibliography

[1] Phil Bailey. The ilabs shared architecture and the fu-

ture of web-based laboratory experiments. [online]. available:

http://como.cheng.cam.ac.uk/pdfs/workshop/phil.bailey-ws.pdf.

[2] J. del Alamo, J. Harward, S. Lerman, and K. Amaratunga.

A web-service architecture to bring labs online. available:

https://faculty.university.microsoft.com/2004/. Microsoft Faculty Summit,

August 2004.

[3] J.A. del Alamo. Realizing the potential of ilabs in africa. MTL Annual Research

Report, 2005.

[4] NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS).

National instruments, (date downloaded: August 1, 2006) . [on-

line].available:http://zone.ni.com/zone/jsp/zone.jsp.

[5] J. Harward et al. ilab: A scalable architecture for sharing online experiments.

Gainesville, Fl, October 2004. ICEE.

[6] J. Harward et al. ilab: A scalable architecture for sharing online experiments.

Gainesville, Fl, October 2004. ICEE.

[7] R.M. Fleder and R.Brent. Designing and teaching courses to satisfy the abet

engineering criteria. Journal of Engineering Education, 92(1):7-25, 2003.

[8] Jim Hardison. Increasing reliability, reusability and measurement flexibility in

the microelectronics weblab.

81

[9] J. Harward. Service broker to lab server api. (date

downloaded: August 1, 2006). [online]. available:

http://icampus.mit.edu/ilabs/architecture/downloads/default.aspx.

[10] iCampus. icampus: The mit-microsoft alliance. (date downloaded: August 1,

2006). [online].available: http://icampus.mit.edu.

[11] MIT iCampus. ilab: Remote online laboratories, (date downloaded: August 1,

2006) . [online].available:http://icampus.mit.edu/projects/ilabs.shtml.

[12] National Instruments. Creating and calling labview

types from microsoft visual basic, (date downloaded:

line]. available: http://zone.ni.com/zone/jsp/zone.js.

dlls with various data

August 1, 2006) . [on-

[13] National Instruments. Elvis: Instrumentation, data acquisition, and pro-

totyping for labs, (date downloaded: August 1, 2006). [online]. avail-

able:http://sine.ni.com/nips/cds/view/p/lang/en/nid/13137.

[14] National Instruments. Labview:

instrumentation, (date downloaded:

able:http://www.ni.com/labview/.

The software

August 1,

that powers

2006). [online].

[15] National Instruments. Universities using nielvis.

(date downloaded: August 1, 2006). [online].available:

http://www.ni.com/academic/ni.elvis/universities-using..nielvis.htm.

[16] National Instruments. Why should i use labview in education?, (date down-

loaded: August 1, 2006) . [online].available:http://zone.ni.com/zone/jsp/zone.js.

[17] Microelectronics Techology Lab. ilab in africa:

downloaded: August 1, 2006). [online].available:

mtl.mit.edu/ alamo/ilaboverview.htm.

Overview. (date

http://www-

[18] Microsoft. Microsoft .net homepage (date downloaded: August 1, 2006) . [online].

available: http://www.microsoft.com/net/default.mspx.

82

virtual

avail-

[19] Chandan Nair. Enriched science and engineering education using the educational

laboratory virtual instrumentation suite (elvis): Sharing successes across asean.

available: http://www.cdtl.nus.edu.sg/link/nov2004/lit2.htm.

[20] Massachusetts Institute of Technology. Microelectronics weblab. (date down-

loaded: August 1, 2006) . [online] .available:http://weblab.mit.edu.

[21] Geraldo Viedma. Design and implementation of the feedback systems web lab-

oratory. Master's thesis, Massachusetts Institute of Technology, 2005.

[22] Gerardo Viedma, Isaac J. Dancy, and Kent H. Lundberg. A web-based linear-

systems ilab. Portland Ore, June 2005. American Control Conference.

[23] The World Wide Web Consortium (W3C). Soap specifications. (date down-

loaded: August 1, 2006). [online]. available:: http://www.w3.org/tr/soap/.

[24] D. Zych. Lab client to service broker api. (date

downloaded: August 1, 2006). [online]. available:

http://icampus.mit.edu/ilabs/architecture/downloads/default.aspx.

83

