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ABSTRACT

Hurricane Katrina showed that the current methods for handling medical 
records are minimally resilient to large scale disasters. This research presents a 
preliminary model for measuring the resilience of medical records systems 
against public policy goals and uses the model to illuminate the current state of 
medical record resilience. From this analysis, three recommendations for how to 
make medical records more resilient are presented.
The recommendations are: 

1) Federal and state governments should use the preliminary resilience 
model introduced here as the basis for compliance requirements for electronic 
medical record technical architectures. 

2) Regional Health Information Organizations (RHIOs) should consider
offering services in disaster management to healthcare organizations. This will 
help RHIOs create sustainable business models. 

3) Storage companies should consider developing distributed storage 
solutions based on Distributed Hash Table (DHT) technology for medical record 
storage. Distributed storage would alleviate public concerns over privacy with 
centralized storage of medical records. Empirical evidence is presented 
demonstrating the performance of DHT technology using a prototype medical 
record system. 

Thesis Supervisor: Peter Szolovits
Professor of Electrical Engineering and Computer Science
Professor of Health Sciences and Technology
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Chapter 1: Introduction

In late August of 2005, Hurricane Katrina made landfall on the United States 
causing large-scale devastation, a multitude of deaths, and scattered over one 
million people from their primary homes to temporary residences across the 
country. [1] Among the many people affected by the Category 5 hurricane were 
patients of the United States healthcare system who, after being displaced from 
their familiar healthcare routines, were forced to find new doctors and resume 
needed care in new and unfamiliar settings. 

Adding to the worries of many of these patients who would have included people 
with cancer, HIV, diabetes and other chronic care conditions, medical information 
that was important for their course of treatment was either destroyed by the 
hurricane or inaccessible at the point of care. While comprehensive data 
describing the state of these medical records have not been collected, two 
anecdotal accounts provide an indication. 

At the MD Anderson Cancer Center at the University of Texas, evacuees – some 
having just undergone surgery, others in need of it – filtered into the center’s 
departments. [2] Many of these patients lacked information about their 
treatment plan. The job of piecing together patients’ medical histories fell to the 
nurses who attempted to contact doctors and even left notes on Internet 
message boards hosted by the American Society of Clinical Oncology (ASCO) in 
the hope that doctors would see the messages. Without statistical data, we are 
left to wonder about the health effects of poorly-informed medical decisions in 
cases such as these.

A second example comes in the form of a “success story” from the aftermath of 
the hurricane: KatrinaHealth. This project was an online service to help 
individuals affected by Hurricane Katrina gain access to their medication 
information through authorized providers. [3] The need for this service was 
obvious as an estimated 40 percent of evacuees used one or more prescription 
medications before the storm hit. After a pilot starting September 12, 2005, the 
nationwide rollout occurred on September 22, allowing authorized doctors and 
pharmacists to access individual patients’ previous 90 days of filled prescriptions. 

KatrinaHealth certainly provided a valuable and perhaps life-saving service for 
many evacuees by giving them access to medication information, an important 
part of their medical records. However, the most striking revelation to come out 
of the KatrinaHealth project is not the speed at which such services can be 
created but rather the low expectations this country has toward medical record 
availability. Hurricane Katrina ended on August 29 yet the KatrinaHealth 
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nationwide rollout did not occur until September 22, more than three weeks later.
It took more than three weeks to send medical information – that was already in 
digital form – over largely preexisting hardware, software and network 
infrastructure to the places where the data were needed. This observation does 
not diminish the efforts of those who worked tirelessly to make KatrinaHealth a 
reality. (Indeed, their efforts were much more than technical in nature: the 
larger hurdles were policy, business and organizational.) It does, however, 
demonstrate that the US healthcare system was not prepared to handle the 
informational demands of a large-scale disaster.

Recent disasters, such as Hurricane Katrina and the events of 9/11, have kept 
disaster preparedness in the public spotlight and under political scrutiny to some 
extent. After a period of calm, attention may shift to other matters. It is 
therefore important to remember that these recent disruptions are not anomalies. 
Historical statistics show that 17 hurricanes on average directly strike the 
mainland United States each decade. Of those 17 hurricanes, six are category 3, 
4 or 5, some of which cause devastating results: in 1992 Hurricane Andrew left 
180,000 people homeless. [4, 5] Destructive natural disasters are not the sole 
province of hurricanes. The 50,000 residents of Grand Forks, ND were flooded in 
1997 when the Red River flowed over its levees. Earthquakes and tornados also 
occur regularly in the US.

In addition to natural disasters, there are many other kinds of disruption that 
might impair the usefulness of medical records, such as power outages, fires, 
and terrorist activity including physical and information attacks. In a survey of 
500 small businesses, 90% experienced at least one power outage in 1998.[6]
Kaiser Permanente suffered from a 55 hour outage of their $4 billion EMR 
system.[7] One company claims that one percent of healthcare practices 
experience some kind of office disaster each year.[8]

While disasters will likely continue to occur with regular frequency, access to 
medical records will become increasingly important as medical treatments 
become more complicated and the population continues to age. Already today, 
remembering all the medical data relevant for care is impossible for many 
chronic care patients: "the average 75-year-old in the United States swallowed 
eight different prescription medications each day." [9]

Considering that 1) disasters are likely to continue to happen as they have 
historically, 2) during the recent Hurricane Katrina, the healthcare system 
performed poorly with regard to the delivery of medical data to the point of care, 
and 3) medical treatment plans are likely to become more complicated and 
therefore even more dependent on information as knowledge of diseases grows, 
one may ask: how can patient medical data be made more resilient to disasters? 
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This thesis is an attempt to answer that question. It explores the ways in which 
the US healthcare system can advance beyond using message boards for 
contacting doctors, beyond waiting three weeks for electronic prescription lists.
This thesis attempts to understand medical record resilience and to outline how 
the US can better prepare its medical information for the catastrophic events that 
will inevitably occur.

The needed preparation has a long way to go: the vast majority of patient 
medical information is still recorded on paper, a medium which, as I discuss 
more formally, has poor resilience properties. According to a Center for Disease 
Control study, only 9.3% of office based-physicians in 2005 had full EMR 
functionality implemented.[10] Hospital EMR use is better, but still far from 
widespread: the American Hospital Association reports that 37% have moderate 
to high IT implementations.[11] The lagging adoption rate of EMRs is well-
studied and discussed often in health IT literature and in the health IT activities 
of the federal government. [12, 13] President Bush himself has called for a 
personal EMR for every American by 2014, created a federal Office of the 
National Coordinator for Health IT (ONC) and mentioned health IT-related topics 
in the four most recent State of the Union Addresses.[14] The academic and 
political attention is largely due to benefits of EMRs that go far beyond increased 
capacity for disaster resilience. [15] Resilience is then just one of many reasons 
for encouraging EMR adoption. However, putting medical data into electronic 
form will not alone cure this nation of its resilience ailments as demonstrated by 
KatrinaHealth and the ASCO message board examples in which much of the 
medical information was already in digital format but not readily accessible 
during disaster.

As healthcare transitions slowly and chaotically into the computer age, resilience 
may lag far behind EMR adoption as suggested by anecdotal estimates that only
20% of hospitals have advanced data storage architectures and by the 
sophisticated IT knowledge and maintenance demands of advanced storage 
architectures, large hurdles especially for small providers.[16] EMR systems 
implementations – including disaster resilience aspects – show huge variety as 
evidenced by the over 200 vendors of EMR systems.[17] Some resilience plans 
will be better than others. How can these differences be better understood and 
perhaps even captured empirically in a way that can be measured against policy 
goals of resilience? What policies, strategies and technologies will most 
effectively achieve these goals? This thesis addresses both of these questions.

The overarching structure of this thesis is simple: problem-solution. Part 1 “A 
Framework of Resilience and its Application to Today’s Healthcare” defines a 
resilience model and uses it to measure resilience in today’s healthcare system, 
formally showing the problem. Part 2, “Improving Resilience” suggests solutions. 
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Chapter 2 defines a preliminary resilience model in terms of policy goals as 
opposed to other definitions which have the more narrow aim of institutional 
recovery. For the model to be useful, however, it must be able to measure real 
implementations of EMR systems. Chapters 3 and 4 look at the two important 
aspects of an EMR implementation: technical architectures and communication 
channels. Chapter 3 considers a number of different technical architectures, their 
patterns of adoption, and assigns them resilience scores according to the model 
from chapter 2. Similarly, chapter 4 investigates the communication channels 
available during disasters for patient medical data, their patterns of adoption and 
how they map to resilience goals. Communication channels are found to be the 
most notable bottleneck for resilience. Chapter 5 finishes part 1 by summarizing 
the current state of resilience using data from a small survey of healthcare 
executives and offers explanations for the current state of resilience. 

Chapter 6 begins part 2 and the search for solutions to the minimal EMR 
resilience by looking at existing efforts to open the communication channels for 
patient medical information and the key challenges faced by these efforts. The 
chapter then offers a possible strategy for overcoming these challenges. Chapter 
7 continues to address the challenges of existing efforts at opening 
communication channels by introducing a technology that is new to EMR storage 
called Distributed Hash Tables (DHT), and analyzes how this new technology 
could help improve and accelerate EMR resilience. Performance results of storing 
patient records on an experimental DHT are presented. Then, chapter 8 explores 
public policy solutions by analyzing the role of government – an overwhelming
force in the healthcare sector – and the policy options that are available to it. 
Chapter 9 reviews the recommendations made in this thesis and summarizes.

A survey that was administered to several healthcare executives is appended 
along with source code from the DHT storage experiment.

The holy grail of medical record resilience analysis would be a cost-benefit 
analysis, where cost is the total price of the medical record implementation 
including supporting infrastructure and maintenance costs, and the benefit is 
health outcomes, risk-adjusted for the various kinds of disasters that could 
impair functionality of the medical record system. This thesis does not explore 
the cost of medical record systems other than through general comparison. 
Rather, it aims to contribute to the benefit side of the analysis by assigning
measurable policy goals as proxies for health outcomes and evaluating medical 
record implementations in term of these goals. A detailed analysis of the risks of 
various disasters was not performed. Rather, this research focuses on large-scale 
disasters similar to Hurricane Katrina where populations are displaced from their 
home settings. A thorough risk analysis that relates probability distributions of 
disasters to policy priorities would be an appropriate extension of this work. Even 
without a risk analysis, the limitations of current resilience practices – particularly 
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in the realm of communication channels – are made clear, illuminating 
worthwhile social and policy priorities for overcoming the limitations.

An important result of this work is that medical record resilience should not be 
viewed as an independent policy objective but rather as part of the larger 
movement to modernize and integrate healthcare. This thesis aspires to inform 
that movement by advocating resilience be used as a policy goal and by arguing 
for the strategic role that resilience could play in the evolution of modern 
healthcare. 



14

PART 1: A Framework of Resilience and its 
Application to Today’s Healthcare
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Chapter 2: Steps toward Defining Resilience as a Policy Goal

Most would readily agree that medical records should be resilient to natural 
disasters and other disruptions and that resilience is clearly a good thing for
medical records. But what exactly is the meaning of the word "resilience?" It is 
used in many different contexts such as when a person has ability to "bounce 
back" from adversity. It is also used in material science, economics, and other 
fields of study. For each context, resilience has a specific connotation.

Merriam and Webster offer a general definition: "an ability to recover from or 
adjust easily to misfortune or change".[18] This definition can help to frame a 
more precise definition of the term for the case of medical records. 

Implied in Merriam and Webster’s definition are behaviors or qualities that are 
extant in the phenomenon under study to an expected degree, a baseline at 
which recovery is directed and which misfortune impairs. These are the qualities 
that are valued. Therefore, a complete definition of resilience for a particular
thing must specify these valued qualities and the expected baseline 
measurements. Once these are clearly defined, “misfortune or change” is simply
anything that threatens the baseline measurement of these qualities.

This thesis argues that value of medical data is defined by two general qualities. 
The first is preservability: the property that a record and all its internal data 
persist over time. As a baseline, we expect all of our electronic medical data to 
persist on whatever technical storage architecture in which the data resides until 
we decide to remove it. We expect paper notes to remain legible and electronic 
notes to remain retrievable and non-corrupted. Because electronic storage media 
are prone to "change or misfortune" such as disk failures, the guardians of these 
storage implementations are expected to build technical architectures for backing 
up the data. The effectiveness of these technical architectures in persisting the 
stored data after a disruption i.e. preservability, is therefore one component of 
the data's resilience.

The second quality that defines medical data resilience is availability: the 
property that the data remain accessible. Today, the expected baseline for 
availability is that medical data are available to the healthcare provider or 
institution that generated the medical data in the first place and that the data is 
specifically unavailable to unauthorized parties to protect patient privacy. The 
availability of medical data to a healthcare institution other than the one that
generated the data is only minimally expected in today’s healthcare system. (This 
issue of exchanging health information between institutions is a crucial factor of
EMR resilience as will be explained in chapter 4.) Surprisingly, our baseline 
expectations for patient access to electronic or even paper medical records is 
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quite low despite the requirements of Health Information Portability and 
Accountability Act (HIPAA) that patients are generally entitled to a copy of their 
medical record.[19] This is illustrated by a class assignment conducted by Peter 
Szolovits in which he identifies numerous difficulties in obtaining patient records 
and notes that "no student was offered any electronic copy of a record." [20] A 
more formal study finds a wide variation in fees and delivery times for requests 
of medical records.[21]

These two qualities of resilience – preservability and availability – have been 
captured to some extent by the federal law in the HIPAA Security Rule, published 
to the Federal Register on February 20, 2003 in the section entitled “Contingency 
plan.”[22] This regulation applies to “covered entities,” which include not only 
healthcare providers but also healthcare clearinghouses and health plans. Before 
proposing a revised model for resilience, it is worthwhile to investigate the 
resilience goals expressed in the wording of this federal rule and how they 
compare with our baseline expectations. 

(A) Data backup plan (Required).
Establish and implement procedures to create and maintain retrievable exact 
copies of electronic protected health information.
(B) Disaster recovery plan (Required). 
Establish (and implement as needed) procedures to restore any loss of data.
(C) Emergency mode operation plan (Required). 
Establish (and implement as needed) procedures to enable continuation of 
critical business processes for protection of the security of electronic protected 
health information while operating in emergency mode.
(D) Testing and revision procedures (Addressable). 
Implement procedures for periodic testing and revision of contingency plans.
(E) Applications and data criticality analysis (Addressable). 
Assess the relative criticality of specific applications and data in support of other
contingency plan components. [22]

Definitions of the terms used here (data backup, disaster recover, etc.) are not 
supplied; however the Notice of Proposal Rulemaking (NPRM) which preceded
the official rule includes some cursory hints at the intention: 

i) An applications and data criticality analysis (an entity’s formal assessment of 
the sensitivity, vulnerabilities, and security of its programs and information
it receives, manipulates, stores, and/or transmits).
(ii) Data backup plan (a documented and routinely updated plan to create and 
maintain, for a specific period of time, retrievable exact copies of information).
(iii) A disaster recovery plan (the part of an overall contingency plan that 
contains a process enabling an enterprise to restore any loss of data in the event 
of fire, vandalism, natural disaster, or system failure).
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(iv) Emergency mode operation plan (the part of an overall contingency plan that 
contains a process enabling an enterprise to continue to operate in the event of 
fire, vandalism, natural disaster, or system failure). [23]

The language in this rule is vague. It does not give specific guidance as to how 
to implement a data backup plan, data recovery plan or emergency mode 
operation plan, but rather leaves the organization to self-certify or find an 
external certification body. [22] The NPRM comments elucidate the intentions 
and implications of such a flexible rule: “For example, in a small physician 
practice, a contingency plan for system emergencies might be only a few pages 
long, and cover issues such as where backup diskettes must be stored, and the 
location of a backup personal computer (PC). At a large health plan, the 
contingency plan might consist of multiple volumes, and cover issues such as 
remote hot site operations and secure off-site storage of electronic media.” [23]
The current federal rule, therefore, is that contingency plans are, for the most 
part, to be decided by the healthcare organization itself. 

The rule’s flexibility has advantages and disadvantages for medical record
resilience. The advantage is that the regulations may not overburden the 
guardians of patient data. Under this rule, the guardians can determine the 
contingency plan based on their own criteria rather than meticulously following 
the results of a bureaucratic process uninformed by the idiosyncrasies of each 
healthcare organization’s uniqueness. 

The disadvantages are, first, that each healthcare organization is left to make all 
these determinations themselves or, perhaps, with the help of consultants. 
"Traditionally, disaster recovery/business continuity (DR/DB) services have been 
based on consulting services provided by vendors such as SunGuard or IBM."[24]. 
Some provider organizations may over-prepare while others may neglect 
important aspects of contingency thereby inefficiently allocating resources. More 
clarification of the specific goals that these rules intend to promote might help 
providers decide which technical architectures to implement and create 
consistency among healthcare institutions who have comparable criticality and 
risk environments. 

A second disadvantage is that absent more specific rules, healthcare institutions
will implement these plans based on their own objectives, which may differ from 
the objectives of public policy. For example, a good data recovery plan for an 
institution may be unhelpful for an individual who was forced by a natural 
disaster to flee to another part of the country that lacks the capability to 
communicate with the original institution. The institution’s risk profile will likely 
be different from that of the patients, but the risk profile that forms the basis of 
the contingency plan will likely be that of the institution. Furthermore, because 
the healthcare institution is given so much leeway to determine its own 
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contingency plan, the institution may tend toward under-preparing for unlikely 
but catastrophic disasters to cut costs, tantamount to gambling with patient
records. This rule therefore primarily encourages business continuity of 
healthcare organizations rather than continuity and effectiveness of patient care.
More specificity in contingency plan requirements may help direct the efforts of 
the healthcare institutions toward the goal of providing patient care during and 
after disasters rather than providing patient care by the same institution during 
and after disasters. An effort to increase specificity, if done effectively, should 
also be able to avoid over-burdening healthcare organizations with excessive or 
inflexible requirements, thereby retaining the advantages of the current vague 
requirements.

Specificity can be achieved through the two qualities of resilience, preservability 
and recoverability, both of which are reflected to some extent in the HIPAA 
Security rule. Preservability of medical records is accounted for in the data 
backup plan requirement; availability is accounted for in the emergency mode 
operation plan and the disaster recovery plan. However the rule does not show 
how to measure the effectiveness of any of these plans. If healthcare 
organizations could measure their technical implementations against the policy 
goals implicit in this rule, those policy goals would stand a much greater chance 
of being achieved.

Industry standards offer a way to specify and measure resilience: recovery point 
objective (RPO) and recovery time objective (RTO). RPO is “the maximum 
amount of data loss an organization can sustain during an event.” [25] One way 
to think about RPO is the time between periodic backups. For example, if the 
RPO were one day in length, meeting the objective would require backups to 
occur daily. RTO is “the period of time within which systems, applications, or 
functions must be recovered after an outage.”[25] Many disaster recovery 
strategies establish RPO and RTO benchmarks.

This research proposes a preliminary model of resilience using metrics that 
expand upon industry RPO and RTO by answering policy goals instead of 
organizational needs, metrics that can be evaluated against technical 
architectures. Policymakers could then more precisely specify their goals and 
healthcare institutions could have more instructions on how to implement their 
storage architectures. The metrics are presented in figure 1.



19

Preservability Availability
Recoverability Delivery time to point of care
Recovery point objective (RPO) Deliver time of advanced features
Incremental data capture

Figure 1: The Qualities of Resilience

Preservability, according to the model, has three factors: recoverability, recovery 
point objective (RPO), and incremental data capture. Recoverability refers to the 
ability to recover the data after a disruption. This factor is implied by the data 
backup plan requirement in the HIPAA Security Rule, but the degree of 
recoverability under the rule is to be determined by the healthcare institution.
RPO is borrowed from the industry standard and expresses the maximum 
amount of time allowed between backups. The Security Rule does not provide a 
level of detail that covers RPO even though all designers of backup systems must 
consider this factor and the trade-offs between RPO and cost. Hence, 
enumerating it explicitly as a policy goal should lead to more clarified 
requirements. Finally, incremental data capture refers to the ability of a medical 
record system to continue recording a patient's information into the original
system during and after a disruption. This factor may not be as important as the 
other factors of preservability because the new medical data might be captured 
by another system, one that is not affected by the disruption. But it is still a 
desired policy goal for the original medical record system to continue to accept 
new patient medical data to ease the patient’s transition back to that system 
after the disruption is over. The Security Rule says nothing directly about
incremental data capture. The “emergency mode operation plan” and “data 
recovery plan” may be interpreted to include incremental data capture, but, 
again, the goals would be left up to the healthcare organization. Combined, 
these three factors define medical record preservability.

Availability, in this model, has two factors: delivery time of data and delivery 
time of advanced features (if possible). The delivery time of data refers to the 
time it takes to get medical data to the place where it is needed for patient care. 
Therefore, patient health, and not business continuity, is the explicit goal. This 
factor is similar to the RTO which defines the amount of time needed to recover 
from the disaster. The object of RTO, however, usually refers to business 
recovery rather than the availability of data for patient care and is therefore not 
used in the model. The second factor of availability is the delivery time of 
advanced features such as role-based data access and clinical decision support 
features. Because of the strong privacy concerns for medical data, it is a desired
feature for EMR systems to retain advanced access control functionality even 
during a disaster. KatrinaHealth did not use sophisticated role-based access but 
rather used a blanket authorization scheme that did not permit access to patient 
data by nurses, nurse practitioners or physician assistants.[3]
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A system that makes medical data available but does not retain access control 
settings would receive a lower score in this category. Similarly, a system that 
makes data available but does not support emergency clinical decision support, 
or allow for easy integration to other systems’ clinical decision support 
functionality, would suffer in this metric. To summarize, availability of medical 
data is availability of both the data and the expected functionality associated 
with the data at the point of care.

Resilience can be visually represented by plotting the preservability and 
availability metrics on a chart. Figures 4 and 7 in the following chapters show
preservability on the X-axis and availability plotted on the Y-axis, the ideal 
implementation receiving a plot point at the upper right.

The value of these policy goals might vary with the type of medical data. A 
recent emergency responder use case that was approved by ONC specifies 
several data fields that might be desired for higher availability than others: 
allergies, medications, diagnosis, lab results, and immunizations. [26]

This model is the first iteration of what could become a guideline for HIPAA 
compliance of medical record technical architectures. By incorporating the 
resilience scores of medical record systems, cost estimates and the risks of 
various regional disasters, a framework can be established for evaluating the 
appropriate technical design against formalized certification requirements. 

There are policy goals for EMRs other than resilience. One in particular has 
profound influence on the design of large-scale EMR storage architectures: 
privacy or, perhaps, the appearance of privacy. The idea of a centralized 
database of patient information, notwithstanding any security protection in the 
system such as encryption, raises strong public fears. According to a 
knowledgeable source on the matter, "for at least the last several years 
Massachusetts has been following an explicitly decentralized approach to all of its 
collaborative data projects.  There are other states that take a more centralized 
approach."[27] This sensitivity to centralized medical information was also 
present in the minds of the designers of KatrinaHealth: “In addition to avoiding 
centralization where possible, KatrinaHealth was structured in such a way as to 
prohibit access to aggregate data.” [3] The most resilient EMR system, if it 
contains a large centralized repository of data, may not pass muster in the harsh 
court of public opinion. 

For the policy goals described in this chapter to be useful as metrics of resilience, 
they must be demonstrably applicable to medical record systems. That is the aim 
of the next two chapters. Medical record systems are divided into two 
components: technical architectures and communication channels. Technical 
architectures are the design of where the data are physically located and the 
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mechanisms by which it is accessed. Technical architectures primarily impact 
preservability but still have some influence on availability. Communication 
channels are the connections between the sources and consumers of the data. 
Communication channels include not only physical wires and infrastructure but 
also logic connections i.e. the software infrastructure that supports 
communication, a requirement for communication to be effective.
Communication channels primarily affect the availability metrics. Chapter 3 
investigates the resilience of various medical record technical architectures 
assuming communication channels typical of today’s healthcare system. Chapter 
4 investigates changes in the communication channels and how those changes 
affect resilience metrics. The metrics are scored as rough approximations for 
illustrative purposes. More rigorous study would be needed to formalize the 
resilience scores. In both chapters 3 and 4, cost implications are perfunctorily 
considered. Factors beyond technical architectures and communication channels 
may be also be important for resilience such as employee training for 
contingency IT operations. These factors are not discussed at length but could 
be incorporated into the model in future research.
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Chapter 3: Technical Architectures and Resilience

Driven by the tendency of electronic media to fail and by the business 
requirements for high reliability, storage and backup solutions now compose a 
large industry which offers a huge and growing variety of implementation 
alternatives. Measuring the efficacy of the large diversity of technical 
architectures and storage alternatives is challenging. This chapter shows how 
technical architectures can be measured in terms of the policy objectives 
presented in chapter 2 by exploring some of the properties that characterize 
many popular storage architectures and relating those properties to policy goals 
qualitatively. Properties of technical architectures that bear upon resilience are 
described followed by some example technical architectures with various 
combinations of the properties. Each example architecture is given resilience 
scores based on qualitatively reasoned estimates of their resilience for a 
Hurricane Katrina-like disaster. This is not an exhaustive analysis of all medical 
record technical architectures but rather demonstration that some common 
categories of technical architectures can be roughly scored using the resilience 
metrics. To isolate the effect of changing the technical architecture on resilience, 
the resilience scores assume the communication channels of today. That is, the 
scores assume that medical data cannot be exchanged electronically between 
healthcare organizations and that patients cannot easily obtain an electronic 
copy of their medical record. Current practices of medical record technical 
architectures are briefly discussed at several points throughout the chapter.

A. Properties of Technical Architectures

The basic component layers of an EMR technical architecture are the storage 
medium, the storage architecture layer, and the higher-level application layer. 
The storage medium is the physical component that contains the data such as 
tape, CD, or hard disk. The storage architecture is the design that links the 
various storage media together including the hardware and software. A major 
part of the storage architecture is the database software, which may take a
crucial role in the data backup and recovery. The higher-level application layer 
includes the software and hardware that support EMR functionality such as 
clinical decision support, clinician order entry and access to knowledge 
resources.[28] The storage medium can constrain or enable various 
configurations in the storage application layer. Likewise, the storage application 
layer can constrain or enable various configurations in the higher-level 
application layer. The three component layers are shown in Figure 3.
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Figure 2: EMR Component Layers

Discussed next are five properties of technical architectures, most of which are 
best categorized at the storage architecture layer, the layer in which most of the 
backup planning is implemented. The relationships and constraints between the 
layers are also discussed in terms of the properties. The five properties are:
master model, local versus remote storage, hot versus cold backup, synchronicity, 
and hot versus cold backup site.

Master Model

Backup storage implementations in use today can be master-slave or master-
master models. This property usually describes the storage architecture layer. A 
master-slave implementation is one in which a primary (master) application 
process accepts the requests of the storage layer and one or more secondary 
storage processes (slave) replicate the backup and are used in case the master 
fails. There are variations on the master-slave model. The Google File System, 
for example, uses a master-slave for the writes but allows reads to be performed 
on many different machines.[29] A master-master model allows data reads and 
writes to be performed on multiple storage locations that are kept synchronized. 
The requirement of synchronization generally makes a master-master 
implementation much more expensive than a master-slave or results in slower 
performance. (Synchronization is discussed in more detail below.)

The master model affects several resilience metrics. It largely determines the 
recoverability score. Recoverability increases with an increase in the number of 
slaves and varies with the geographic location of the slaves. In practice, there 
will be one or two slaves for an EMR storage implementation. Some 
implementations may have crippled qualities after failover such as becoming 
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“read-only”, which would yield a lower score for “incremental data capture” and 
also a lower score possibly on the “delivery time of advanced features” under 
availability. This would depend on how much of the application layer was 
designed into the slaves. Master-master models might have performance 
constraints limiting the geographical dispersion and, therefore, also limiting the 
recoverability. Master-master models will probably have the same or better 
availability than most master-slave implementations because all sites of a 
master-master implementation would probably have higher-level application 
support. If the multiple masters were used for load balancing however, the 
failure of one master may impair the others during a disaster.

Local versus remote

Backup data copies can be made locally or remotely. To satisfy HIPAA 
compliance, even locally-made backups would have to be transported to a 
remote location, although it is unclear how far the distance would have to be. 
Some suggest that 25 miles away from the original source is an acceptable 
distance, but Hurricane Katrina has proven that general guideline to be too 
lenient. Regardless, backup sites are still only a few tens of miles away from the 
source.[30] The requirement of physically transporting the storage significantly 
limits the frequency of updating and the location of the remote storage. Several 
companies such as Iron Mountain offer these transportation services and the 
secure storage of data. Online storage offers the possibility of backup copies to 
be made remotely in any geographic location even thousands of miles from the 
original source. However, managing a remote location is impractical for many 
healthcare organizations, especially small providers. Some companies offer 
remote storage services at a premium price.[31]

The type of storage media used constrains the options for remote backup. Tape 
and CD are generally cheaper than disk; however they are difficult to implement 
on a remote site because they require managing physical components. Disk-
based storage lends itself more toward automation and it is therefore the 
medium of choice for remote storage. Disk is also commonly used locally to 
protect against storage failures. One such example is RAID technology, which 
mirrors a hard disk so that in the event of a failure, a backup copy is readily at 
hand. RAID, however, requires the backup disk to be in close proximity to the 
primary disk and will therefore not help protect against a large-scale disruption.

The decision of local versus remote backups will affect both preservability and 
availability. Locally backing up and then transporting to a remote site restricts 
the options for how distant the backup site could be because of the effort 
involved in transportation for both storing and recovery of the data, therefore 
giving a lower recoverability score compared to remote backups. These logistical 
burdens will also probably cause local backups to inevitably have higher RPO
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scores relative to an on-line remote backup, widening the window of potential 
data loss. Online remote backup, however, is dependent on a working network 
and may have restrictions on location because of performance. Online remote 
backup would more likely have the capability to record incremental patient data 
compared to locally-made tape or disk backups, but that would depend on the 
backup system functionality in the application layer. Similarly, availability of a 
locally backed up site will likely be more difficult than from online sources 
because of the effort required to physically access the data and then extract it 
into a live system, thereby increasing the “delivery time to point of care.”

Regardless of the advantages of online backup and the difficulties of managing 
local backups, many providers continue to use tape or disk backup because of 
cost considerations.[32, 33]

Hot Backup versus Cold Backup

A third property of storage architectures is whether a backup is “hot” or “cold.” 
Hot backups are defined as backups performed while the system is in active use; 
cold backups are performed when the system is not in active use.[34] Hot 
backups generally require that the backup mechanism be integrated with the 
application or storage software (often the database) because an attempt to copy 
application data while the application is running may result in an inconsistent 
snapshot of the data. The might happen because the application may not have 
saved all its information or because in the course of generating a backup copy, 
the application may change some of the data. If the backup copy is integrated in 
the application or storage software, the software can generate a hot backup 
copy that is internally consistent. Database management system software
packages often provide this functionality. Software with integrated hot backup 
functionality may be more expensive.[35] However, one low-end database 
product provides this functionality by recommending simply copying the 
database files in sequence during active operation to obtain a consistent hot 
backup.[36]

Hot backups will have better resilience scores in RPO and perhaps in availability 
than cold backups. Because hot backs can be performed more often, the window 
of potential data loss would be less. Hot backups may or may not be able to 
deliver advanced features and accept incremental data to a backup site, but cold 
backup implementations will likely not have these capabilities built-in because 
cold backups do not need to have application-level knowledge. 

Synchronicity

Hot backups may have another property: synchronicity. A backup is synchronous 
if it is continuously updated at the exact same time that the primary store in 
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updated. That is, when the application writes some data to storage, a 
synchronous system will not consider the write operation to be complete until the 
data are added to both the primary storage and the backup storage. (Cold 
backups are always asynchronous because the backup copy is created when the 
application is inactive.) If the backup site is a long distance from the primary or 
is accessed through a slow network, synchronous storage may be too slow to be 
practical. One extreme form of synchronous storage is a new storage feature 
known as Continuous Data Protection (CDP), which involves tracking every 
storage modification so that data recovery can start from any point in the past. 
Currently, CDP is targeted more for disk and database crashes rather than
disaster recovery, possibly because of the difficulty of achieving high 
performance of CDP across long distances.[35] Synchronous storage can be 
managed by hardware, the file system, or as part of the application such as 
within the database. RAID technology is an example of synchronous storage
managed by the hardware or the software depending on the implementation. 
Some use the term “disk mirroring” to describe synchronous storage to two hard 
disks. Remote mirroring is a form of synchronous backup. [37]

Asynchronous backup is when the backup copy is made or updated at some 
point in time after the primary storage mechanism receives new data or an 
update. The amount of time between when the primary store is updated and 
when the backup receives the update might be as short as milliseconds or as 
long as days if not longer.  The length of this window is the RPO for the storage 
architecture. Because the data stored on the master is not synchronized with 
what is stored on the slave, the data would be inconsistent unless the application 
software managed the backup process to ensure consistency. That is, 
asynchronous backup by simply copying files periodically independent of the 
application will have the same consistency problems that any hot backup method 
would encounter. (Not all database implementations will have these consistency 
problems though.) Synchronous backup does not have this problem because the 
data would always be consistent between the master and the slave.

The primary advantage of synchronous backup is that it shortens the RPO to
near-zero data loss.

Live Standby Site

Finally, technical architectures might have live standby sites that are fully 
operational the instant a disruption occurs or they may have cold standby sites 
that require some setup before they are operational. Some implementations may 
plan to have no standby site and buy off-the-shelf PCs in the event of a 
disruption. Live standby sites will have faster recovery times and therefore higher 
availability scores but will be costly. Cold standby sites may be cheaper, but will 
require configuration, which entails delay after a disruption. 
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B. Example Storage Architectures

Armed with some of the important properties of medical record technical 
architectures, the next step will be to give some concrete examples that have 
various combinations of these properties. Some of the properties may not make 
sense in combination such as cold backup and synchronicity. These examples are 
combinations that do make sense and may be currently in use. All of the 
examples assume some form of master-slave model.

Each example architectural design is scored on the resilience metrics for a 
Hurricane Katrina-like disaster. The scores will be different for different kinds of 
disasters. These numbers are an initial estimate of resilience on a 10 point scale 
and are therefore only ball park approximation. The estimates are meant to allow 
clear comparison of the technical architectures. 

Architecture 1: Paper

The most basic and most commonly used storage architecture is paper, a 
medium that does not lend itself well to resilience because paper is easily 
perishable and copies are labor-intensive and expensive compared to electronic 
copies. However, paper does not tend to spontaneously erase data and therefore 
require active management like electronic storage.[38] During Hurricane Katrina, 
the records in the paper facilities that were flooded were largely destroyed. 
Paper without backup – which is the common practice as there is no legal 
requirement to backup paper medical records – would have a low metric on 
recoverability and RPO. While it is certainly possible to capture new information 
on paper, that is tantamount to creating a new record rather than using the 
storage system under study, so that incremental data capture is also scored 
quite low. 

Availability metrics for paper are also rather poor. The delivery time to the point 
of care would be infinite if the paper was destroyed and would be difficult to 
transport because it can be voluminous. Paper also does not allow for advanced 
features such as clinical decision support. 

Preservability: Score (out of 10)
Recoverability of data after disruption 1

Recovery point objective (RPO) 1
Incremental data capture 1

Availability:
Delivery time to point of care 1

Deliver time of advanced features 1
Chart 1: Architecture #1 Resilience Scores
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Architecture 2: Tape backup (master-slave, local, cold, asynchronous, no live site)

An EMR system might backup the data to tape during off-hours daily or weekly 
and then transport the tape to a remote location. Tape backup systems can store 
large amounts of data cheaply, even with the price of disk space continuously 
dropping.

This storage architecture gives moderately good scores for recoverability 
especially if the backup site was not affected by the disaster. However, the 
requirement of physically transporting the data limits the destinations where the 
data can be stored. If the data is stored far away, it then becomes less available, 
so there is a tradeoff between recoverability and availability. The RPO will 
depend on the frequency of backups; cold backups cannot be made as often as 
hot backups, so the RPO will suffer, but even if the backups are made weekly, 
the RPO would still be good enough to restore a considerable amount of 
important medical data. Tape backups may not easily lend themselves to 
incremental data capture. The incremental data would have to be captured and 
then imported into the doctor’s electronic records after the disruption was over
so the incremental score for this architecture would be low. 

This architecture will have low availability scores because even if the data is 
recovered by the healthcare organization, how will it be transmitted to the point 
of care? Patients will still need to find their physicians or their healthcare 
organizations in order to get their EMR data. In addition, having to physically 
recover the data and then restore it, which may be troublesome if it requires a 
customized tape reader, will add to the delivery times. Even if the data is 
transmitted to the point of care, it will probably be done so verbally or in 
unstructured text and therefore impossible to be used with advanced features. 

Tape backup if it requires a manual process is prone to error, lowing the 
recoverability score and increasing the delivery time. 

Preservability: Score (out of 10)
Recoverability of data after disruption 5

Recovery point objective (RPO) 7
Incremental data capture 2

Availability:
Delivery time to point of care 3

Deliver time of advanced features 2
Chart 2: Architecture #2 Resilience Scores
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Architecture 3: File backup to disk (master-slave, local, cold, asynchronous, no 
live site)

This storage architecture is similar to the previous one, but uses disk instead of 
tape backup. Disk will cost more than tape in general, but it can be restored 
faster than tapes hence giving higher availability scores. As with tape, 
incremental data recorded after the event would have to be imported back into 
the original provider storage system.

Delivery time of data such as clinical decision support would be easier than tape
because the disk could potentially be used directly without a specialized reader.
However, this architecture still suffers from the same problems as previous 
architecture for availability, such as patients having to locate their physicians 
during a disaster. Advanced features would still be impaired in the destroyed 
EMR system.

Preservability: Score (out of 10)
Recoverability of data after disruption 5

Recovery point objective (RPO) 7
Incremental data capture 2

Availability:
Delivery time to point of care 4

Deliver time of advanced features 2
Chart 3: Architecture #3 Resilience Scores

Architecture 4: Online file backup (master-slave, remote, cold, asynchronous, no 
live site)

The Internet offers the possibility of online backup directly to one or more 
remote locations. This will help greatly with recoverability if the backup location 
does not have its own disruptions or if multiple backup copies are made. 
However each additional backup copy will involve additional cost. RPO is the
same as the previous architecture because a cold backup will still require the 
EMR system to be turned off. Incremental data capture will still be mostly 
infeasible.

Availability to the physician is better than the previous architecture because the 
data is accessible from anywhere online; however the patient still has no easy 
way to get the data and is forced to try to locate the displaced physician or 
organization. Also, the data will still have to be restored into a functioning EMR 



30

system, delaying the availability, but it will be faster than having to physically 
retrieve the data.

Preservability Score (out of 10)
Recoverability of data after disruption 9

Recovery point objective (RPO) 7
Incremental data capture 2

Availability
Delivery time to point of care 5

Deliver time of advanced features 2
Chart 4: Architecture #4 Resilience Scores

Architecture 5: Online database backup (master-slave, remote, hot, 
asynchronous, no live site)

As with the previous one, this setup will yield high recoverability. It will also give 
very high RPO because the hot backup can be performed while the database is 
running and therefore more frequently. Incrementally captured data will still 
have the same problems as the previous architecture. 

Availability is unchanged from the previous architecture. 

The database software is integral to this architecture. The cost of the database 
software for this additional functionality might be expensive.

Preservability Score (out of 10)
Recoverability of data after disruption 9

Recovery point objective (RPO) 9
Incremental data capture 2

Availability
Delivery time to point of care 5

Deliver time of advanced features 2
Chart 5: Architecture #5 Resilience Scores

Architecture 6: Online integrated database backup (master-slave, remote, hot, 
synchronous, hot backup site) 

This is the most expensive and best storage architecture under investigation here:
a fully enabled, synchronous backup site in a remote location. Large and small 
provider organizations will likely not have the resources for a completely 
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redundant system. The fully-enabled backup site will be able to recover all the 
data after a disruption, but only one backup site scores shy of a perfect score 
because simultaneous failures do happen. KatrinaHealth advises “Plan ‘backups 
to backups,’ for when technology inevitably breaks down.” [3] The synchronicity
shortens the RPO to zero so it gets the highest score for that category. Patients 
who use the backup site will be able to have their data added to directly to the 
new backup site, but many patients will not be able to use the backup site and 
will still have to re-import their new patient data after the disruption settles.  The 
incremental data capture score is therefore mixed.

The serendipitous patients who either move physically near the backup site or 
another site that is integrated for data sharing with the backup site would have 
their medical data highly available. For the patients who were not relocated to 
the backup hospital location, getting their information to them with advanced 
features will still be difficult with current communication channels, but a backup 
site will be better capable of answering requests for displaced patients for their 
records.

Preservability Score (out of 10)
Recoverability of data after disruption 9

Recovery point objective (RPO) 10
Incremental data capture 4

Availability
Delivery time to point of care 6

Deliver time of advanced features 3
Chart 6: Architecture #6 Resilience Scores

A summary of the different architectures and the resiliency scores for a Hurricane 
Katrina-type disaster are shown in figure 4. (Different types of disaster will yield 
different resilience scores.) The metrics are weighted to reflect relative 
importance. Incremental data capture is given 20% of the 10 point scale. While 
it is important to be able to import the post-disaster medical data back into the 
original system, patient health outcomes will not be affected by that factor as 
much as the other preservability factors. Delivery time of advanced features is 
weighted at 40% of the 10 point scale. While access controls to protect privacy 
and clinical decision support functionality are quite important, getting the data to 
the point of care is the first priority. While the weightings and scores are 
contestable, the sample architectures were described to two Chief Information 
Officers of large New England Healthcare organizations who both agreed with 
the relative rankings.
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Resilience of Example Technical Architectures for 
Hurricane Katrina-type Disruption
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Figure 3: Resilience of Example Technical Architectures

Even without a more detailed evaluation of technical architectures, this model in 
its current form is revealing and informative of the capabilities and shortcoming 
of existing technology insofar as it addresses the policy goals of resilience for
severe disasters such as Hurricane Katrina. As shown in figure 4, existing 
technology can be used to produce fairly good preservability for EMRs (except 
for the ability to incrementally capture data.) Cost may be a barrier for the high 
preservability systems, but the capability exists. Even the low cost computerized 
EMR architectures have reasonably good preservability if the secondary site is 
out of range of the disaster. Availability, however, is significantly lacking in all 
example storage architectures, even the most sophisticated and expensive. 
Notice that the right region of figure 4 – the high availability region – is 
completely barren of technical architectures. This graphically shows the 
limitations of improving only the technical architecture. To improve the crucially 
important factor of availability, communication channels must be considered, 
which is done in the next chapter. 
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Chapter 4: Communication Channels and Resilience

Chapter 3 showed that technical architectures for EMR systems are an important 
component of resilience for medical data. It also showed the limitations on
resilience of technical architecture in today’s healthcare, most importantly the 
limitations on availability. This chapter explores communication channels of 
medical information flows and demonstrates how improving these 
communication channels can increase resilience beyond the limits of technical 
architectures. Communication channels are divided into two categories: 
institution-institution and institution-patient. The institution-institution channel is 
primarily the exchange of information from one healthcare provider to another 
healthcare provider but it could include sources of medical information from 
other types of organizations such as laboratories and pharmacies. The
destination however must be a point of care, usually a provider, for it to be 
relevant to the resilience model defined in chapter 2. The institution-patient 
channel refers to patient access to their own healthcare information. Patients are 
always at the point of care since patients are the ones receiving the care; 
therefore institution-patient communication is relevant to the resilience model 
without qualification. The transfer of medical information between health 
information systems is sometimes called Health Information Exchange (HIE). 
This chapter describes the currently deployed alternatives for each type of 
communication channel and, for each alternative, the extent of usage and effects
on resilience.

Institution-institution channel

Of the currently deployed alternatives for inter-institutional exchange of medical 
records, almost none involve electronic HIE. Institutions have deployed very 
sophisticated methods of exchanging data inside their organizations, but very 
few examples can be found of electronic transfer of medical information between 
organizations.1 In non-disaster situations today, when medical records must be 
exchanged between institutions, the records are typically photocopied, printed or, 
for image files, saved to CD and then carried or mailed to the destination 
healthcare provider. In disaster situations, when there is no time to prepare 
records, ad hoc projects such as KatrinaHealth are created or treatment 
uninformed by medical records is given.

Because disasters – such as Hurricane Katrina – often force patients to visit new 
providers who do not have previous copies of the patients’ medical records, 

                                                
1 Even exchanging electronic medical records within institutions is rarely a trivial objective especially for 
healthcare providers who use best-of-breed systems made by different vendors.
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disasters tend to stress the already weak institution-institution communication 
channel. (It is interesting that under the pressure of Hurricane Katrina, a system 
of health information exchange was created that provided better institution-
institution communication than what is available today, almost two years after 
the hurricane.) Fortifying inter-institutional communication for normal, non-
disaster situations by creating electronic HIE would indubitably strengthen inter-
institutional communication during disasters as well.

HIE would likely have a profound effect on resilience. It would potentially 
decrease both the delivery time to point of care and delivery time of advanced 
features. It might also increase the capacity for incremental data capture if the 
post-disaster records could be easily integrated back into the original providers 
EMR system. Because of the lack of working examples and variation in possible 
designs of an HIE, this chapter does not evaluate any specific HIE designs 
against the resilience model. (Part 2 explores new ways to increase resilience 
through HIE which does involve evaluating HIE designs against the resilience 
model.)

Institution-Patient Channel

Similar to the institution-institution communication channel, the institution-
patient communication channel has few glowing examples. As described 
previously, patients often have difficulty obtaining their medical record in paper,
let alone in electronic form.[20, 21] One website advises patients by offering a 
"Scheme for getting patient medical records from recalcitrant HMOs."[39]
According for Forrester Research Inc., 28% of US consumers track their medical 
information in some form of medical record.[40] However the figure for 
electronic personal health records is much lower, estimated by the Markle 
Foundation at only “250000 to 500000 people.” [41]

When patients do manage to obtain a copy of their medical data, they might 
store the information in a personal health record (PHR). PHRs are a dynamic and 
actively developing industry receiving growing attention in government and 
industry. The Secretary of the DHHS has identified PHRs as a top priority.[42]
What exactly is a PHR? The National Committee on Vital Health Statistics (NCVHS) 
“found that there is no uniform definition of ‘personal health record’ in industry 
or government, and the concept continues to evolve.”[43] However most PHRs 
can be loosely divided into three categories: standalone, tethered and 
interconnected.[42] These PHR categories can be evaluated against the 
resilience metrics.
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Standalone

The standalone PHR is the simplest approach. It involves the patient entering 
data herself into her record which might be a website or a USB drive. For a 
standalone PHR, the patient is responsible for assembling the record from 
various medical sources. Several companies offer these kinds of PHRs such as 
Medem Inc. and MedicAlert. The main problem with standalone PHRs is the 
considerable inconvenience of creating and maintaining them with updated 
information. Especially for patients with complex conditions, inputting all of a 
patient’s medical information can be tiresome and error-prone. However, without
better institution-patient communication, this is the only option for many patients
who would want their medical information to be available during a disaster.

Chart 7 shows the resilience scores for architecture 7 which is composed of the 
most advanced technical architecture – number 6 described above – with the 
addition of a standalone PHR. The resilience scores are also determined in part 
by the technical architecture of the PHR – such as whether the PHR is carried by 
the patient or provided through a website. This example uses the architectures 
that yield the best resilience scores. Recoverability receives the highest score if 
the PHR is carried by the patient. If the PHR is an application service provider 
(ASP), the PHR would receive the recoverability score of ASP’s technical 
architecture. The RPO would depend in part on how often the patient updates 
her PHR. Updating a standalone PHR continuously would be logistically near 
impossible.[44] Delivery time to point of care receives the highest score for 
patient-carried PHRs; however other variations of stand alone PHRs – such as 
access through a website - would lower the delivery time score for some 
scenarios such as when the patient was unconscious and could not log into a
websites. A standalone PHR could potentially deliver some advanced access 
control features depending on how the software was constructed, because the 
patient would control the data. Clinical decision support and incremental data 
capture would not be improved because the EMR system of the patient’s post-
disaster provider would not be integrated with the PHR. 

Preservability Score (out of 10)
Recoverability of data after disruption 10

Recovery point objective (RPO) 10
Incremental data capture 4

Availability
Delivery time to point of care 10

Deliver time of advanced features 5
Chart 7: Architecture #7 Resilience Scores with Standalone Patient-Carried, Fully 
Updated PHR (master-slave, remote, hot, synchronous, hot backup site, stand 
alone PHR) 
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It is believed that most PHRs in used today are not standalone but rather 
integrated with a provider’s EMRs in some way.[42] The next two approaches for 
PHRs both involve PHRs that are integrated with EMRs.

Tethered

Tethered PHRs are more convenient than standalone PHRs because they are 
populated by the healthcare provider’s EMR system automatically, ensuring a 
degree of reliability and saving time compared with the patient-entered approach. 
These advantages of convenience make tethered PHRs much more usable for
patients compared with standalone PHRs. This can explain their greater – but still 
low – adoption rate. Tethered PHRs are tied (tethered) to one healthcare 
provider or institution that hosts the PHR service as illustrated by figure 5. 
Examples of tethered PHRs include the Veterans Health Administration’s My 
HealtheVet, Beth Israel Deaconess Medical Center’s PatientSite and United 
Healthcare’s myUHC.com. 

Figure 4: Tethered PHR

Interestingly, healthcare providers are not the only purveyors of tethered PHRs. 
Health plans (payers) such as United Healthcare and employers are also entering 
the PHR business. Wellpoint, for example, recognized the resilience advantages 
of PHRs and automatically added 18,000 affected members from the region hit 
by Hurricane Katrina to its PHR pilot.[45] The records stored by health plans, 
however, are limited in that they only store claims information rather than 
detailed patient records. A group of large employers including Walmart have 
recently announced an initiative to give their 2.5 million employees online 
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PHRs.[46] But employees may be hesitant to give health information to their 
employer for fear of discrimination. Without the participation of providers, 
tethered PHRs have limited value.

Tethered PHRs have significant drawbacks. Designing and operating a tethered 
PHR requires significant resources and they are therefore only provided by large 
institutions. Even if all healthcare institutions offered a tethered PHR, patients 
would have to manage a separate account for each institution, a logistical 
burden for patients with multiple providers. 

The resilience scores of tethered PHRs are the same as those of a standalone 
PHR offered through an ASP. However, the enormous convenience and reliability 
advantages of tethered PHRs make them much more likely to achieve 
widespread adoption.

Interconnected

The holy grail of institution-patient communication is the interconnected PHR, 
which gathers patient data from all healthcare institutions relevant to a patient’s 
health and integrates the data into a longitudinal record of the patient’s medical 
history. Such a PHR would be paramount to a form of HIE. This is shown in 
Figure 6.

Figure 5: Interconnected PHR

The resilience scores of an interconnected PHR, architecture 8, would be the 
highest for every category, shown in chart 8. (This assumes a highly recoverable 
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PHR technical architecture). Incremental data could be captured into the 
interconnected PHR and advanced features would be delivered through the 
interface between the PHR and the provider’s EMR. Today, no examples of this 
kind of PHR are in substantial use in the United States. One research 
implementation of an interconnected PHR, called Indivo, is discussed later in this 
thesis.

Preservability Score (out of 10)
Recoverability of data after disruption 10

Recovery point objective (RPO) 10
Incremental data capture 10

Availability
Delivery time to point of care 10

Deliver time of advanced features 10
Chart 8: Architecture #8 Resilience Scores with Interconnected PHR (master-
slave, remote, hot, synchronous, hot backup site, interconnected PHR)

Figure 4 from above is reproduced here as figure 7 with the addition of the 
architectures 7 and 8. As the chart visibly demonstrates, opening the 
communication channels in healthcare has the potential to improve resilience.

Resilience of Example Technical Architectures for 
Hurricane Katrina-type Disruption
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Figure 6: Resilience of Example Architectures with Opened Communication 
Channels

Significant improvements in availability could be obtained by simply allowing 
patients to gain easy access to an electronic copy of their medical record in a
readable format. The more sophisticated PHRs – which would mean some form 
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of HIE – would raise the scores of all the resilience metrics to near the maximum 
that could reasonably be expected. Limitations in communication channels are 
therefore arguably a greater bottleneck to medical record resilience than 
limitations in storage architectures.
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Chapter 5: Current State of Resilience

The previous two chapters include some discussion of the usage intensities of 
various medical record technical architectures and healthcare communication 
channels. This chapter summarizes the current state of medical record resilience 
supplemented with the results of a survey of four healthcare executives from 
New England healthcare provider organizations and then offers some 
explanations for today’s resilience (or lack thereof). The explanations will help 
inform the proposed solutions described in part 2. 

A. Current Practices of Medical Record Resilience

As shown above, numerous technical architectures exist for storing and backing 
up medical information. Indeed, the commercial alternatives for backup storage 
are abundant. Of the various architectural alternatives, which are actually being 
used for EMRs today? Publicly available data is sparse. As stated above, 
anecdotal estimates say that 20% of hospitals have advanced storage 
architectures, but it is not clear what is meant by “advanced.”[16] Legacy 
systems generally use tape backup – architecture 2 – perhaps involving 
transporting the tape to the clinicians home in the trunk of a car for storage. 

Four executives of large New England healthcare provider organizations (each 
employing over 100 physicians) agreed to answer a survey on their institution’s 
contingency plans. The survey questions are displayed in Appendix A. All four 
organizations do formal contingency planning, three of the four having used 
external consultants for auditing or to help design the contingency plans. 
Preservability and availability in these plans showed some variation. 

The institution with the most advanced resilience plan makes two backup copies 
of all medical data, two miles and 35 miles away from the primary location. 
Another institution currently has only one backup center two miles away and has 
plans to establish another at a more remote location about 35 mile away. The 
remote location currently stores tape backups of EMR data. A third institution 
makes two local backup copies of all data and one remote copy 20 miles away. 
Remote backups of 20 to 35 miles may be an informal industry standard goal. 
These contingency plans, while probably exhibiting better recoverability than 
most healthcare organizations in the country, may not suffice for Hurricane 
Katrina-like disasters that encompass a large area. All institutions backup all 
parts of patient medical records. 

The frequency of backup varied somewhat across the four institutions. One 
institution claims continuous backup to two backup sites. Another uses a 
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combination of nightly backups and intervals of 15 minutes. The third uses a 
mirror site and makes daily tape backups. 

The interviewees also diverged on availability for their medical record systems. 
One executive specified the institution’s goals in terms an RTO of 15 minutes.
Another claimed 12 hours, hastily adding that this was unacceptable and they 
have plans to improve it. A third claimed that the RTO varied from five minutes 
to three days. The failure-over process was a combination of automated and 
manual for two institutions and fully automated for a third. 

For all four institutions, the EMR system came with the contingency plan 
integrated. (One institution uses a home-grown EMR system.)

The institutions in the survey are not typical of healthcare institutions in the 
country, but do give an indication of some of relatively advanced resilience 
practices. The dominant form of backup for medical records is the complete lack 
of a backup system because the vast majority of medical records are still paper-
based, the architecture with lowest resilience scores. Electronic data for all but 
the large provider organizations will likely use primitive electronic backup 
architectures such as tape and, as revealed by the survey, even some large 
institutions still rely on tape backup. Even a completely redundant backup 
storage site – such as architectural example 6 above – will not alone yield high 
scores in availability or in incremental data loss. HIE or PHRs, which can connect 
displaced patients to their providers, are necessary to increase these metrics.
The next section offers explanations for the current state of both storage 
architectures and communication channels. 

B. Explanations

Absent empirical studies of resilience, the current state of resilience can be 
explained through qualitative reasoning. The low resilience of many providers’ 
EMR technical architectures, complete lack of HIE, and the low numbers of PHRs 
integrated with EMRs have many overlapping causes. The most significant factor 
is the slow adoption of EMR systems by healthcare providers. EMR adoption 
alone, however, is not a panacea for resilience as illustrated in the previous 
chapters. This chapter presents technical, political, economic, industrial structure 
and cultural explanations for the current state of resilience.

Technical

A provider who intends to upgrade an EMR system with high-resilience storage 
technology will undoubtedly meet technical integration difficulties. Integration 
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problems are not unique to healthcare; however because healthcare involves 
many different kinds of complex technologies with no one single company 
capable of making everything necessary, integration issues are especially severe 
in healthcare settings. This will cause providers to postpone the decision to 
upgrade to more resilient storage architectures and remain using tape backup or 
other low-resilience systems.

HIE and PHRs face an enormous technical obstacle: lack of standards for 
interoperability. Until recently, healthcare used an unmanageably large number 
of overlapping and conflicting technical formats and communication standards. 
(Recent developments to establish technical standards are discussed in part 2.) 
Without interoperability, EMRs and PHRs can only be integrated on point-to-point
basis, an absurd proposition considering the number of integration projects that 
that would need to be performed.

Political

As argued in chapter 2, provider organizations are given huge flexibility in 
contingency planning under federal law and will therefore direct their efforts at 
business continuity rather than the policy goals of resilience. By letting the 
healthcare organizations determine their degree of resilience themselves without 
specific guidance or compliance certification, other factors will determine the 
degree of resilience that actually gets implemented. The lack of more strict laws 
governing a healthcare system that is largely shaped by government policies 
argues that low EMR resilience could be viewed as political or governmental 
failure. 

Economic

Probably the most important reason for low resilience of medical records is a lack 
of economic incentives. If providers had strong incentives to make medical 
records more resilient, all other obstacles would likely be surmounted. 

The economic reasons for low EMR resilience have significant commonality with 
the economic reasons for slow EMR adoption: inability to measure quality and 
externalities. For EMR adoption, because healthcare quality cannot be measured
accurately, providers are not reimbursed based on the quality of healthcare 
delivery; rather, they are reimbursed based on fee-for-service.2 Providers,
therefore, are not compensated for the improved quality that comes with EMR 
usage.  The fee-for-service payment mechanism and inability to measure quality 
therefore results in an externality: the benefits of EMRs are given to the patients 
(fewer unnecessary tests and procedures, possibility of alerts, ability to do 
                                                
2 Not all providers are reimbursed using the fee-for-service model. Other models such as “capitation” may 
reward providers more for increased quality if it results in fewer physician visits.
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clinical decision support) and health plans (fewer unnecessary services for 
reimbursement) while the providers would have to foot the bill, not only paying 
the cost of the EMR itself, but also the down-time costs for learning a new 
system and drastically changing workflow patterns.[47] (Providers may benefit 
from EMRs in the long run through more effective workflow and competitive 
advantage in attracting patients and in hiring other providers into a practice but 
the initial hurdle is high.) Also, EMRs have been empirically shown to exhibit 
network externalities, indicating that their value increases with more providers 
who adopt them.[48] Providers are less motivated to adopt EMRs until enough 
providers already have them, reaching a “tipping point.” 

Slow adoption of advanced EMR storage architectures can be explained as an 
externality as well: patients benefit from disaster resilient storage but providers 
must pay the purchase and operation costs. Also similar to EMR adoption, EMR 
resilience cannot currently be measured; so an optimal reimbursement 
mechanism would be impossible. (The resilience model in this thesis begins to 
address this problem.) Until measurements are established, providers will not 
likely be able to use resilience as a competitive weapon to attract patients. Even 
with resilience measurements, patients may not optimally consider resilience as a 
factor for choosing a provider, but they may then regret their inattention to 
resilience after a disaster occurs. Without the ability to use resilience to attract 
new patients, provider organizations will tend to invest in backup functionality 
that will help their organization in a practical way, for continuity of business 
operations during a disruption so as to retain customers. Disasters that happen 
frequently will be planned for. However, it is likely that most providers will not 
prepare for the less common – but potentially severe – disasters such as 
hurricanes or floods. Healthcare organizations, like all businesses, are going to 
try to control costs and spend only the amount of money needed for disaster 
recovery. "Regardless of how it is used, redundancy entails additional cost to any 
enterprise. It reduces efficiency and therefore is not congruent with 
management's goals and objectives." [49] Formally disaster planning can be 
expensive and may require the services of expensive consulting organizations,
which is an option for large hospitals and providers organizations, but smaller 
providers will probably do the minimal necessary to satisfy HIPAA.

The economic reason for the lack of HIE can also be explained as an externality
and as a network externality. Payers and patients would benefit from HIE 
because patients would receive fewer redundant tests and more informed 
healthcare, resulting in healthier patients and fewer doctor visits, which saves
the payer reimbursement costs but eliminates provider fees. Providers will also 
likely resist sharing patient data in an attempt to prevent patients from easily 
switching to a competitor. During a disaster, HIE would increase resilience, but 
the original provider would not benefit because the patient would likely be using 
a different provider (as was the case with Hurricane Katrina). HIE exhibits a 
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network externality because the value of exchanging data increase with the size 
of the sharing network. Until the network grows to a significant size, providers 
cannot use HIE as a competitive weapon because the value would not be high 
enough. 

PHRs also exhibit an externality where patients benefit but providers have to pay
as well as a network externality similar to HIE. Patients would undoubtedly have 
better care from PHR by being able to more carefully manage their health 
information and having access to that information during a disaster. Providing 
high availability PHR services would require technical expertise and would be 
expensive, as described previously, which would make PHRs affordable only to 
the larger providers. It is conceivable that providers would charge patients for 
using PHRs but the business case has not been made that shows that patients 
are willing to pay for PHRs. Especially if the PHR was tethered to a provider, 
patients would be very skeptical of paying a PHR fee for every provider they visit. 
An interconnected PHR system would have a network externality, resulting in 
slowing the adoption until it reaches a critical mass. 

Industrial Structure

Another reason for low resilience is the fractured nature of the US healthcare 
system. “The health care ‘system’ in America is not a system. It's a disconnected 
collection of large and small medical businesses, health care professionals, 
treatment centers, hospitals, and all who provide support for them.”[50] With so 
many different healthcare institutions operating independently, establishing 
sensible and consistent policies for the entire healthcare system is challenging if 
not impossible. It might be easier to improve the resilience of a more tightly 
coordinated or centralized healthcare system. As it is, getting providers to adopt 
EMR systems with resilient storage architectures, integrating their systems with 
other organizations for HIE, and supplying highly-resilience PHRs for all patients 
requires a formidable amount of coordination to have it done with any degree of 
efficiency. The US government, even though it plays a huge role in healthcare, 
paying for approximately 40% of healthcare bills, has not effectively used its 
power as a payer to increase EMR resilience. [51]

The fractured and decentralized nature of the US healthcare “system” inhibits 
collective action that might overcome the externalities. For example, one might 
suggest that the payer could buy PHRs for the providers as a Coasian bribe since 
the payers might benefit from lower cost of healthcare during a disaster.[52]
Similarly, the payers could potentially build a network for HIE and supply highly 
resilient storage architectures. Why has this not already been done? It can be 
explained, in part, as the result of yet another network externality, among 
payers.[53] If a payer funded the construction of an HIE network or purchased 
advanced storage architectures for a provider, competing payers would be able 



45

to free ride off the donor payer’s gift. But it is in the interests of all of the payers 
to establish the HIE network. This is a classic Olsonian collective action problem: 
payers are not concentrated enough to coordinate so tightly.[54] Some insurance 
companies have shown an ability to coordinate and to pay for EMRs and HIE in 
New England.[55] But while we are waiting for the payers to organize, resilience 
lags. Patients could also potentially coordinate and solve this problem themselves, 
but the chances of patients – a tragically diffuse stakeholder – overcoming a 
mammoth collective action problem are very small.

Cultural

Cultural attributes might also contribute to the low levels of EMR resilience. 
Specifically, public perception of centralized storage, public expectations of 
medical record resilience, and the US healthcare provider culture of autonomy 
may impede progress toward resilience. 

As stated previously, centralized storage evokes public fears of privacy 
vulnerabilities. This concern may prevent companies from taking advantage of 
economies of scale in building large storage facilities and collaborating. Large
companies that specialize in backing up medical records might provoke these 
fears, but at least one is trying to offer this service.[56]

Because extracting medical data from a healthcare institution is so onerous if not 
impossible, public expectations for resilience – especially availability – may be 
comparably low, resulting in little pressure on providers to increase resilience. 
These expectations may rise as the public becomes more accustomed to the 
technological capabilities of electronic systems and with the occurrence of large 
disasters such as Hurricane Katrina that provide stark reminders of the 
importance of resilience. More empirical evidence of the negative health effects 
caused by low resilience would help raise public expectation and perhaps lead to 
political attention and policy changes.

US healthcare providers view themselves as autonomous practices and therefore 
may be hesitant to cooperate on HIE projects. If an integration project involves 
surrendering some control over their organizational operations, they may view it 
as infringing upon their autonomy. 

These are some of the possible explanations for the current state of resilience. 
The forces described may change, motivating an increase in medical record 
resilience. In the meantime, mediocre resilience – mediocre availability scores, in 
particular – will remain.
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PART 2: Improving Resilience

Having clear policy goals and a rough measure of the current state of resilience 
relative to those goals is an important part of understanding how to make 
medical records more resilient. The next step, discussed in part 2, makes specific 
recommendations through strategy, technology and policy. Chapter 6 describes
existing efforts to bypass the largest blockage to medical record resilience today: 
lack of open communication channels in healthcare. It then offers the current 
initiatives a strategic solution to help accelerate the opening of these 
communication channels. Entailed by some of the current HIE organizational 
designs is the problem of centralized medical record storage, which is 
investigated in Chapter 7. Distributed storage technology is explored as a 
solution to this problem. Chapter 8 looks beyond current initiatives to new public 
policy options for regulating an increase in resilience above current requirements 
and the factors that should influence such changes in policy. Finally, chapter 9
summarizes and concludes.
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Chapter 6: Opening the Communications Channels

As shown in part 1, the path toward higher medical record resilience – for 
Hurricane Katrina-like disasters at least – must involve bettering communication 
channels among healthcare institutions and between the institutions and patients.
The ideal for both institution-institution communication and institution-patient 
communication involves interconnecting and integrating with provider-generated 
EMR data, which implies some form of HIE. Since its inception, ONC has 
emphasized institution-institution communication as the highest priority, but 
recently the politically-appointed coordinator, Robert Kolodner, has placed PHRs 
as a top priority, claiming that “most Americans will have EHRs by 2014, and 
personal health records will drive that effort.” [57] This chapter describes current 
efforts to open the communication channels of healthcare and explores one of its 
formidable challenges: establishing a sustainable business model for HIE 
organizations. A strategic recommendation for establishing sustainable business 
models for these organizations is then presented. 

A. Stirrings of HIE 

Current efforts at realizing HIE hope to avoid the fate of previous efforts to 
accomplish the same goal. The 1980s and 1990s saw a movement to establish 
community health information networks (CHIN) with the purpose of exchanging 
health information between institutions. The failure of the CHIN movement is still
heavy on the minds of many leading figures in present-day HIE initiatives.

The establishment of the ONC in 2004 elevated HIE and other health IT 
objectives to national priority. ONC has created four organizations as part of the 
initiative: Health IT Standards Panel (HITSP), Certification Commission on Health 
IT (CCHIT), Health Information Security and Privacy Collaboration (HISPC), and 
the National Health Information Network (NHIN). Briefly, the work of each is as 
follows. HITSP is a standards development organization (SDO) that convenes 
numerous stakeholders who have an interest in EMR interoperability and creates
standards out of the numerous overlapping standards that already exist. CCHIT 
certifies EMR products based on various criterion including standards approved 
by HITSP. HISPC is the newest of the four and works on privacy and security 
issues. Finally, the NHIN aims to create a national system of HIE. The NHIN has 
four ongoing pilot projects and hopes to glean from these projects valuable 
insights as to how medical records might be exchanged at a national scale. All of 
these organizations answer to a federal advisory board called the American 
Health Information Community (AHIC) which has monthly meetings at DHHS, 
often attended and led by the Secretary himself, Mike Leavitt. 
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Often discussed when talking about the NHIN are Regional Health Information 
Organizations (RHIOs). RHIOs, stated simply, are organizations that implement 
HIE. Currently, numerous RHIOs across the country exist in various stages of 
development.[58] Skeptics will point out that the RHIO movement in many ways 
resembles the failed CHINs movement of the 1980s. Indeed, RHIOs face many 
obstacles and difficult choices on their road to HIE. Recently, some luminaries 
have suggested that many RHIOs will go out of business because of the lack of a 
sustainable business model. [59, 60] Some have speculated that a national 
network may rise to do HIE, but nothing resembling such as network currently 
exists nor are there even preliminary plans for one. Today, RHIOs are the best 
hope for HIE.

HIE could be implemented by creating an interconnected PHR system, as 
discussed in part 1. One research project at Children Hospital in Boston called 
Indivo (formerly PING) has an open source PHR prototype that is designed to 
integrate with any EMR system via subscription agents.[61] Indivo gives the 
patient a single point of access to her medical record and allows the patient fine-
grain control of access permissions. It is based on open standards and software, 
which supports long-term survivability of the data. It uses cryptographic methods 
to assure that only authenticated and authorized users can access or modify 
records and cryptographic signatures to assure that data are never decoupled 
from their provenance. It also incorporates logging and auditing, and thus 
provides direct accountability to the patient. Indivo’s working prototype is in beta 
version and is expected to be piloted in the near future. It is possible that a 
RHIO or RHIO-type organization might use a model similar to Indivo to host a 
PHR. Indivo also allows data to be exchanged among healthcare institutions by 
letting the patient directly move it: the cryptographic technologies that Indivo 
uses would protect the integrity of the data while enabling patients to hide parts 
of their medical history when transferring data between providers. This would 
require providers’ EMR systems to use a standardized authentication method but 
would not require RHIOs to transfer or store the data thereby possibly easing the 
sustainability issues that RHIOs face. Widespread adoption of an authentication 
standard, however, is no small feat.

The next section of this chapter investigates some proposed RHIO business 
models to overcome the sustainability hurdles.

B. RHIO Business Models

Numerous proposals for RHIO business models hope to achieve sustainability. It
may be that unique stakeholder environments in many localities will dictate 
disparate requirements for a local RHIO. Regional laws, concentrations of Health 
Plans and healthcare provider markets and local cultural preferences may all 
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influence the way a region can achieve HIE. I discuss three proposed RHIO
business models: health data banks, infomediaries and charity-based.

Health Data Banks

Pioneered and promoted by William Yasnoff, this business model analogizes
RHIOs to the financial banking system so that doctors would receive payments 
for making “deposits” of information into the RHIO and patient would pay for the 
“withdrawal” of information or pay a monthly subscription fee.[62] The elegance 
of this model is that it uses Coasian principles of the free market to internalize 
the externalities. With health data banks, patients can look at the data directly, 
share it with other providers, or make it part of a personal health record. The fee 
might be paid by the patients directly or by the patients’ health plans or 
employers. Yasnoff hopes the ability of providers to get paid for releasing the 
information electronically will also encourage EMR adoption. Details of the 
payment mechanism would have to be designed and could prove to be 
insurmountable obstacles. Washington State has recently adopted this
approach.[63] If it proves successful, it may serve as a model for other regions.

A key component of this business model is that patients would have access to 
their data which they could potentially store in a PHR or with an organization 
that provides such services. Patients who use RHIOs to extract their medical data 
into PHR provider organizations would have a veritable backup of their data, 
even if the RHIO does not store a copy. (The question of RHIO storage is 
addressed in the next chapter.) The PHR organizations will likely have higher 
resilience for their customers’ data because they are directly accountable to the 
patient for giving access to the patient’s medical data, even during an emergency. 
It is not clear how many patients would use PHRs, but RHIO business models 
such as this one that are oriented toward getting the data into direct contact 
with patients generally yield better resilience. (There are certainly many more 
reasons besides resilience for giving patients access to their own data.) 

Infomediary

A recent article lays out a vision of RHIOs to serve as infomediaries between the 
numerous stakeholders.[64] An infomediary is an organization that manages 
information that is used by different stakeholders as an intermediary. The term is 
taken from ecommerce applications where it is used in examples such as entities 
that gather information about products for consumers (aggregators) or that 
gather information about consumers for marketing purposes.[65]

In an infomediary business model, RHIOs would sell data to drug companies and 
to medical devices companies who would use the data to monitor the
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effectiveness of their products. The RHIO might also facilitate providers in 
submitting reporting requirements to government agencies and health plans. It is 
unclear if providers should pay, get paid, or have the service for free. Under this 
model, the patients may have to pay directly to access their data or indirectly 
through providers of PHRs that would connect to the RHIO. Payers might be 
willing to fund much of the operation if better health outcomes can be 
demonstrated, saving them money in claims fees. Many variations of this 
business model are possible. In a way, the infomediary business model is just a 
generalized data health banks model discussed above in that it also 
fundamentally relies on Coasian exchanges where each party would pay or get 
paid according to the direction of value flow. The infomediary model is 
reproduced visually in figure 8. [64]

Figure 7: Infomediary RHIO business model

One enormous hurdle for this business model is coordinating all the important 
stakeholders. Stakeholders that benefit from this RHIO model but refuse to 
participate will be free-riding and might derail the entire initiative. This is yet 
another example of an Olsonian collective action problem and might be 
surmountable only in special cases where enough of the stakeholders are 
concentrated and their interests are aligned. Perhaps the most advanced 
initiative along these lines is the Massachusetts eHealth Collaborative in which a 
large local payer has agreed to fund HIE between three communities to evaluate 
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whether better health outcomes (and therefore lower claims) will result. The 
project involves donating EMRs to every provider in three Massachusetts 
communities.[66] Overcoming the collective action problems might be more 
difficult in other States that have more diffuse interests, especially if the payers 
and provider organizations are accountable to central organizations outside of 
the local regions. 

Charity-based 

Another option for RHIOs is to not even try to form sustainable business models 
but rather rely on grants. A white paper from the HIT Transition group makes
this case forcefully: “RHIOs are charitable organizations which serve the public 
good, and RHIO leadership can accelerate their development by embracing the 
identity and operational behaviors consistent with established and proven 
charitably-supported NPO (non-profit organization) models.”[58]  The white 
paper further points out that non-profit organizations in healthcare operate much 
like commercial businesses and do not rely to a large extent on contributed 
income, making them different from most non-profits in other industries such as 
the American Red Cross, the United Way and the YMCA, which do rely on grants 
and donations. RHIOs should devote more energy toward fund raising, the paper 
says, which they can do strategically by using the donations for capital-intensive 
infrastructure projects to show donors something tangible; operating expenses 
can rely on subscription fees.

The white paper argues that times have changed since the CHINs’ debacle and 
that there is growing public awareness of the importance of HIE and therefore 
the public would be willing to sustain HIE indefinitely as a public good funded 
through grants.

C. RHIOs and Disaster management

All proposed business models (and almost all regional initiative) have significant 
challenges. Many RHIOs may dissolve as their grant money runs out, just like the 
Santa Barbara County Care Data Exchange, an 8 year and over $10 million 
project. If RHIOs could offer services other than HIE that would leverage HIE-
related investments, perhaps a sustainable business model might be easier to 
establish. Michael Porter, the famous Harvard Business School professor, argues 
that offering new products and services is one of the five forces that contribute 
to profitability.[67] Even a charity-based business model would benefit from an 
added revenue stream. An extra service that RHIOs might offer local healthcare 
providers could be disaster management such as providing best practice advice, 
consulting, or storing the provider’s medical data in a disaster resilient manner.
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There are many reasons that disaster management might be a suitable service 
for RHIOs to offer. First, both HIE and disaster management involve managing 
medical data according the laws of a specific region. RHIOs, because they will 
inevitably have to implement systems that obey the regional security and privacy 
laws, would be in a position to give legal planning advice for providers who are 
creating backup solutions and have to obey the same laws. 

Second, since the data that are exchanged by RHIOs and the data that are
required during a disaster are the same data (i.e. patient medical information),
additional services for that data can come relatively cheaply. Once a provider’s 
EMR system is integrated with a RHIO, allowing the RHIO to perform an 
additional backup service would have low marginal cost compared to making a 
separate full-fledged backup system to store the same data. 

Third, once a relationship between a RHIO and provider is established, the 
“relationship cost” of adding a new service such as disaster management is small,
whereas “locating and maintaining a relationship with a second, new customer is 
much more expensive.” [58] RHIO should take advantage of this efficiency and 
offer a “two for the price of one” deal.

Fourth, RHIOs could ostensibly solve an information asymmetry problem among 
providers who are at a disadvantage: they do not know which disaster 
management consulting company to believe. RHIOs could therefore help 
providers discern which advice is closer to industry best practices for their 
specific region’s degree of risk and avoid spending more than is necessary, 
lending credibility to the practice of disaster management and more efficiently 
allocating investments. 

Fifth, the RHIO might store all the data centrally, relieving the provider of all 
storage costs just as some online word processing providers store all the data on 
their company servers. Alternatively, RHIOs could store only a backup copy and 
serve as hot sites for all local providers. In the survey administered to four 
healthcare executives, each was asked “Would you consider participating in a 
collaborative effort with other local healthcare delivery organizations to 
coordinate practices and resources for contingency planning and operations?” All 
four of the executives surveyed answered yes to this question. One of them, a 
CIO of a large New England healthcare organization, wrote “Willing to discuss 
creating shared hot sites.” Another executive was already engaged in 
conversation with a different hospital for sharing backup sites. (The issue of 
RHIO storage is fundamental and discussed more extensively in the next section.)

Sixth, if RHIOs catch on, patients will naturally look to the RHIOs during a 
disaster to find their medical information because RHIOs provide access to their
data from outside their usual healthcare institutions. RHIOs will therefore be 
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expected by the public to have planned for disasters. They could leverage their
expertise in this area by offering similar services to providers or doing the 
disaster management for the providers. 

Seventh, both resilience and HIE are public goals that are not valued by the 
market as much as by the public. The additional service of disaster management 
might make patients or employers more likely to pay for the data and donors 
more willing to contribute depending on which business model is used.

Eighth, and finally, disaster planning might serve as a good excuse for providers 
to come together for discussion on forming a RHIO. One HIE luminary suggested 
that a big hurdle for RHIO formation is simply that provider organizations are not 
accustomed to working together; rather they view each other as competitors. 
Resilience planning might be a first step for organizations to work collectively 
and, as the luminary put it, "do laundry together."[68]

Resilience planning and HIE can therefore be synergistic; RHIOs should exploit 
this synergy to their strategic advantage. One healthcare executive supported 
this strategic argument, saying that having RHIOs do disaster management was 
“right on the mark.” RHIOs might start helping providers by recommending
disaster management consulting companies or publishing some information 
regarding best practices for participating members. As trust between the RHIOs 
and providers builds, the RHIOs may consider providing more advanced 
resilience services such as storage services for the providers. Government 
regulations could also potentially facilitate the development of RHIOs as 
providers of disaster management services in addition to HIE, which is discussed 
in chapter 8. 

Offering disaster management services is a possible solution to the lack of 
medical record resilience because offering these services would help RHIOs 
establish more sustainable business models and therefore help open the 
communication channels in healthcare. Sustainable business models are not, 
however, the only impediment that RHIOs face. Public concerns with centralized 
storage of health data also put significant restrictions on RHIOs. The next 
chapter investigates RHIO storage alternatives and presents a possible 
technology solution to address the public concerns over privacy of centralized 
electronic data storage. 



54

Chapter 7: RHIO Storage and Distributed Hash Tables

A fundamental design choice for RHIOs is the location of the data. The 
possibilities fall into two general categories: centralized and decentralized. This 
chapter evaluates both possibilities, arguing that centralized is currently 
preferable but that it is hobbled by privacy concerns. The chapter then presents 
experimental results of a potential technology solution, Distributed Hash Tables 
(DHT). This is an experimental software mechanism that would allow data to be 
easily administered by a centralized organization such as a RHIO but stored in a 
decentralized manner. The chapter includes a background of DHT technology; a 
background of the medical record project Indivo (formerly PING) that is used in 
the experiment and how Indivo might be used by a RHIO; the experimental 
setup and results of using a DHT implementation as the storage mechanism for 
medical records; and an evaluation of the experimental results as applied to the 
use of DHT technology as a mechanism for medical record storage. 

A. RHIO Storage

RHIOs must decide whether data will be centralized or decentralized. Centralized 
storage means that participating providers store their data at the RHIO’s location 
in one specific place (and presumably at least one backup location). The famous 
RHIO Indiana Health Information Exchange uses centralized storage but the data 
is logically isolated in “vaults” that keep each provider’s data separate.[69] A 
decentralized storage approach generally means than each provider will store 
data in a server that they maintain themselves but is accessible by other 
providers either directly or via centralized RHIO servers that coordinate the 
information exchanges but does not store medical data. This approach is 
described by the Markle foundation’s “Connecting for Health” project.[70] The 
decision of centralized versus decentralized storage involves important trade-offs.

Centralized storage in a RHIO would allow for high resilience because all the data 
would be stored in a consistent, disaster resilient manner. Providers would 
potentially be able to use the RHIO’s data storage as their contingency plan. 
Using centralized storage would therefore facilitate RHIOs in offering disaster 
management services and therefore – as argued in the previous chapter –
achieving sustainable business models. Centralized storage has the additional 
advantages of being generally easy to manage. 

For decentralized storage, the RHIO would not be able to provide backup storage 
services because it would not be storing the data in one place. Providers would 
then still need to make their own contingency plans, which they would probably 
be slow to implement as argued in part 1. Therefore, a decentralized approach is 
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generally worse for resilience compared with a centralized approach. Also, 
decentralized storage would probably be more expensive in total and harder to 
manage than a centralized approach because of its increased complexity and the 
requirement of every provider to host a server.

A centralized approach is generally preferable from the perspectives of resilience
and practicality; however, it has the disadvantage of raising privacy concerns.3

Massachusetts, for example, follows an explicitly decentralized approach. Public 
fears may not allow the centralization to happen on a large scale for many 
regions. Public fears regarding privacy may be assuaged over time as some pilot 
projects are demonstrated to be functional and secure; however, this change 
might take many years. One way to overcome the public fear of centralized 
storage is to centralize only the medical data from patients who give their explicit 
permission to use centralized storage. But that way, providers would still need to 
manage backup services for those patients who do not agree to centralized 
storage. Also, if the public is truly concerned with privacy, many patients will 
hesitate to give permission to store their medical data in a large centralized 
repository.

It is important to separate perceived privacy vulnerabilities from real privacy 
vulnerabilities. A centralized repository may have better privacy safeguards than 
a decentralized repository because of factors beyond storage location, such as 
software design, encryption, authentication architecture and physical protection 
of the storage media. The location of the data is thus one of many factors that 
determine its vulnerability, but it is perhaps the factor that is most visible to the 
public. However, for a large-scale project to receive public support, it must be 
attractive to public perceptions in addition to demonstrating resistance to failure.

Because centralized storage is a more viable option – perhaps the only viable 
option – for RHIOs compared with decentralized storage, privacy concerns with 
centralized storage will likely continue to impede the resilience possibilities 
offered by RHIOs. A solution to this problem may be found in Distributed Hash 
Table technology. 

                                                
3 In addition to privacy concerns, some providers may fear giving up their data to a centralized location that 
was not under their control; however relieving the providers of the burden of operating a server and 
managing a backup site might persuade them to participate. 
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B. DHT Background

DHTs provide the underlying technology for a distributed file system. The core 
advance of DHTs is the ability to find specific data items quickly within a network
given an identifier.[71] This advance allows data to be strewn across multiple 
computers that consist of nodes of the DHT and then recovered in a time-
efficient manner. A DHT-based file system consists of a collection of these nodes 
which are configured to operate as one unified file system. The nodes store 
copies of the data and interact with one another to keep track of the data’s 
location. Each node serves as an access point for an application program to read 
or write data into the file system. DHTs emphasize the following properties: 
decentralization, scalability and fault tolerance.[72] With these properties, DHTs 
were originally designed to be the basis of an unerasable publishing medium. 
The requirements of medical data – which is rarely deleted – are quite similar. 

Decentralization in this context refers to the network of nodes that maintain the 
data. These nodes can be in any geographical location that is connected to the 
Internet, although network latencies will significantly affect data access times. 
The physical location of these nodes will affect the resilience scores of the 
storage architecture, with widely dispersed nodes generally achieving higher 
resilience. The specific relationship between node topology and resilience would 
be an interesting area for future research.

Scalability refers to the ability of the network to expand and still function 
effectively. DHTs – born out the peer-to-peer research – can be expanded with 
commodity hardware: simply adding a new computer to the network effectively 
increases the network’s storage capacity, avoiding complex configuration
changes.

Fault tolerance means than in the event of one or more node failures, the 
network can recover. By maintaining replicas of the data at various nodes, DHTs 
have redundancy built-in. For some DHT implementations, the degree of 
redundancy can be adjusted through configurations settings. The technical 
advantage of DHTs is that when a node fails, the software will automatically 
detect the failure and reestablish the desired degree of redundancy among the 
remaining nodes. Therefore, data loss will only occur if a sufficient number of 
nodes fail nearly simultaneously, and one can achieve lower likelihoods of that 
occurring by investing in greater redundancy. 

DHT-base files systems can be implemented with a technique called erasure 
codes where a block of data is encoded into k fragments, of which only some 
subset m, are needed to reassemble the original data.[73] When k equals m, 
there is no redundancy because all fragments must be retrieved to reassemble 
the original data. The level of redundancy increases as the ratio of k to m 
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increases. However, with increased redundancy, the size of the fragments also 
increases, requiring more disk space. For example, if k and m are set to 10 and 5, 
respectively, and the size of the original data is 100 bytes, there would be 10 
fragments, each 20 bytes in length and any 5 of the 10 fragments would be 
required to reassemble the original data. Notice that the k/m ratio is 2 (10 
divided by 5) and that the total number of bytes is 200 (that is, 20 times 10), 
which is twice the original size of the data. Erasures code greatly increase fault 
tolerance for a given level of redundancy above a simple copy. In this example, 
even if up to 5 fragments were unavailable due to node failures, the original data 
could still be reassembled from the remaining fragments. Without DHTs, if the 
100 bytes were merely copied to a backup location, failures in only two nodes 
(the primary and the backup) would render the data irretrievable. Erasure codes 
therefore provide the potential for higher fault tolerance per disk space used.[74, 
75]

Qualitatively, DHT technology appears to fit the requirements of RHIOs for 
storing large amounts of medical records if the RHIO maintains a distributed 
collection of computers hosting the DHT. 4 Decentralization, scalability and fault 
tolerance are all desired qualities for EMR storage. However, the performance 
requirements of medical record storage and retrieval have not been tested 
empirically against DHT implementations. Without reasonable performance, 
DHTs would be useless in a healthcare environment. The next section presents 
background information about a medical record project that was used to 
experimentally test EMR storage performance on a DHT-based file system. 

C. Indivo Background

The open source software project Indivo, described previously, was selected to 
test DHT performance. Indivo is one architecture that would be one possible for 
RHIOs to use as the basis of HIE. By replacing Indivo’s underlying data store 
with a DHT-based file system, we investigate DHT technology’s potential 
advantage of providing increased resilience. 

                                                
4 While DHTs were originally designed for peer-to-peer applications, a cooperative file system where each 
node was maintained by a different provider institution would probably be rejected because it could not 
easily be held accountable. RHIOs, on the other hand, would be a natural fit for hosting a DHT-based file 
system even though it would not make use of all the peer-to-peer optimizations in DHTs.  
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Figure 8: Indivo (formerly PING) Architecture Layers

The high-level architecture is visually presented in Figure 9.[61] The Ping Actor 
as shown could be a patient, physician or other member of the healthcare 
system. The Ping Actor is given access to medical data based on access 
permissions. A patient could then, for example, give her physician access to 
some or all of her medical data or transfer data between medical laboratories, 
pharmacies and other healthcare institutions. Assuming the physician and other 
sources of healthcare information participate in this system by importing new 
patient data, this would be tantamount to HIE, integrating all the actors in the 
healthcare system under a unified system. 

Particularly relevant to resilience is Indivo’s data storage layer. The current 
Indivo system is designed for centralized storage. This means that all medical 
data relevant to a particular Ping Actor is stored in one location that would, 
perhaps, be administered by a RHIO. (Other organizations could host an Indivo 
server for use within the organization.) Indivo’s prototype implementation makes 
use of a transactional open source software package called Berkeley DB. Because 
Indivo is a prototype project, a professional contingency plan has not been 
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designed for it, but software that makes one or more backup copies of the data 
has been partially implemented. This backup software is asynchronous i.e. 
backing up occurs at regular intervals rather than as data is written. Indivo 
currently does not support synchronous backup functionality.

Indivo stores all medical records including binary records in XML format. Large 
files such as medical images are stored as one large XML file, a design that does 
not scale well for increasing file sizes and number of users because the XML 
parser puts the entire file into memory. However, Indivo’s modular design allows 
portions of a patient record to be accessed without fetching the entire record, 
mitigating some of the performance issues.

D. Medical Record Storage Performance on DHT Experiment

The storing of medical data has unique application characteristics particularly 
with regard to sophisticated access control features and audit trail requirements 
that will result in unique performance requirements. The goal of this experiment 
is to evaluate performance and resilience qualities of DHT technology for storing 
medical data. A research project called DHash was selected to provide the DHT 
implementation.[73] For the medical record application, the project mentioned 
earlier, Indivo was used.[61] The experimental setup and results are described 
below. 

Experimental Setup

Indivo and DHash both provide interfaces that would allow them to be integrated
with each other; however, the interfaces require customized code to make them 
compatible. New software, called hearingaid, was created to translate between
the interfaces of the two projects. Indivo was written in Java while DHash was 
written in C++. The hearingaid code makes use of the Java Native Interface (JNI) 
to translate between Java and C++. The hearingaid code is shown in appendix B.

Indivo is modularized so that all accesses to the storage layer are performed in 
one Java class. A custom storage class was written to direct all storage accesses 
to the hearingaid layer. Indivo expects the storage layer to accept any arbitrary 
key-value pairs, as shown in the following read and write methods:

write (key, data_value);
data_value read (key);

The length of the keys and values are determined by Indivo. 
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DHash has more restrictions than Indivo. DHash is optimized for smaller chunks 
of data on the order of 16 kilobytes (KB). Also, DHash uses keys that are fixed at 
20 bytes in length. More significantly, DHash uses asynchronous communication 
for its read and write methods. That is, when a read or write method call finishes, 
DHash will return the result of the method call in a separate thread. It was 
implemented in this manner to allow large numbers of reads and writes to occur 
in parallel. DHash surfaces the following methods:

insert (key, data_value);
data_value retrieve (key);

The hearingaid code accepts read and write requests from Invido, converts all 
keys to 20 bytes in length, and translates the calls into DHash method calls. To 
translate the write requests, hearingaid breaks the data to be written into 16 
kilobytes or smaller chunks, stores each chunk into DHash while saving the keys 
of these chunks in an intermediary block. It then stores the intermediary block 
under the desired key specified by Indivo. For reads, hearingaid does everything 
in reverse: it reads the intermediary block of keys, fetches the 16 KB chunks for 
each key, and assembles the original data block for Indivo. Through 
experimentation, it was found that Indivo would often write data to DHash and 
then read it right away expecting to get the same value, but DHash sometimes 
returned a previous value that was written to that particular key because of its 
asynchronous operation. To correct for this problem, code was added to 
repeatedly read data from the key to which data was just previous written until 
the expected result was returned. Unfortunately, this has obvious deleterious 
effects on performance.

Indivo supports both encryption and transactions however both were disabled for 
this experiment. Transactions are not supported by DHash, a significant 
limitation discussed more below.

This experiment tested, first, performance and, second, redundancy. For the 
performance test, the control case was to use Indivo with the storage software 
that it supports: Berkeley DB. The experimental case swapped out Berkeley DB 
for DHash nodes. The control and experimental cases are illustrated in figure 10 
and 11 respectively.
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Figure 9: DHT Control Case: store to Berkeley DB

Figure 10: DHT Experimental case

For each scenario, sample medical records consisting of binary data converted to 
ASCII text in an XML file were written and then read back, recording the amount 
of time for the complete operation to occur which included authentication of a 
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sample patient. The sample sizes were: 1.2 KB, 539 KB, 6.0 MB, 10.1 MB, and 
16.1 MB. When some larger file sizes were attempted, Indivo’s server ran out of 
memory. For the DHash operations, the experiment was performed with 5 nodes 
and with 18 nodes. Replication values (i.e. erasure code settings) of 6 and 3 
were used for k and m respectively. While testing, it was found that the 
implementation of DHash occasionally exhibited unstable behavior. Only small
files could be added for the 18 node experiment before the software crashed. It 
was found that DHash was more stable when multiple “virtual nodes” were used 
at each computer in the DHash network. Therefore, for the 5 node case, virtual 
nodes were used at the five computers in the following degree: 15, 5, 5, 5, and 
3. The 18 node case involved adding 13 more nodes with 3 virtual nodes each. 
Also, a stable testing environment could not be found for testing the nodes in a 
geographically distributed setup, so all nodes were within a local area network. 
In a realistic case where the nodes are distributed around a region or country, 
the performance results will be significantly worse than the results obtained here 
depending on the network latencies. However, the control case for 
geographically distributed nodes would arguably require a synchronous copy 
made to a remote machine and would therefore also have long latencies. An 
exploratory test was performed with a geographically distributed network of 
computers using the Planetlab platform.[76]

For the redundancy test, the computer with 3 virtual nodes was removed from 
the 5 node experimental case and the file of size 6.0 MB was read from the 
remaining nodes.  

Results

The results of the performance tests are shown in figure 12. Because only small 
files were testable on the 18 node DHT test, the subset consisting of just the 
smaller files are put in figure 13 to allow better visibility. It is apparent that the 
time for writing and reading both scale roughly linearly with the file size of the 
sample file. The control case exhibits reads and writes taking approximately the 
same amount of time. For the DHash test with 5 nodes, the writes take roughly 
twice as long as reads. This might be partly because of the time it takes to make 
the extra redundancy, which does not occur in the control case as Indivo does 
not currently support synchronous backup to remote locations. It also might be 
due to the extra read operation is performed after every write operation to 
ensure that the data is written correctly. For larger files, writes to DHash roughly 
approached 0.25 MB/second and reads approached 0.5 MB/seconds compared 
with 2 MB/second for both reads and writes to the control case. Therefore DHash 
is slower than the control case by factors of roughly 4 and 8 for reads and writes 
respectively. The experimental case with 18 nodes showed somewhat slower 
read and write times for the few data points that were recorded. This makes 
sense because more nodes will take longer to find the location of each data 
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storage point. It is a bit puzzling that for the 18 node case some of the reads 
take longer than the writes. A more thorough and rigorous test with a more 
stable version of DHash would have to be performed to better understand why 
this happens. 

Storage Performance Test - All Data
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Figure 11: Storage Performance test results
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Storage Performance Test - Small Files
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Figure 12: Storage Performance test results for smaller files.

A significant factor of performance which was not explicitly taken into 
consideration is the network bandwidth. Each node’s network bandwidth could 
affect the performance of a read or write if the DHT chooses to access that node. 
Therefore a slow network connection might disproportionately slow down access 
times. However, DHTs enable increased parallelism for reads because data can 
be read from multiple nodes at the same time, possibly making the network 
connection less of a bottleneck.  

For the exploratory test on Planetlab, the results were that occasionally the file 
operations would freeze for a period of time, presumably waiting for a slow node 
of the network. Because Planetlab gives no guarantees of network latencies or 
load on the various computers, it is difficult to diagnose the cause of these 
sporadic delays. These delays might be due to slow nodes or fast nodes that 
suddenly become slow, as suggested in the DHT literature.[77]

The result of the redundancy test, which was performed three times on different 
occasions, was that the file was read successfully from the remaining nodes after 
one (with three virtual nodes) had been detached from the DHT network.
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E. Evaluating DHTs

While the relatively slower performance of DHTs may prove impractical for some 
use cases, optimizations may make the performance problems less severe. DHT’s 
are at a point in research progress where their advantages may outweigh their 
disadvantages for storing medical records, thereby justifying closer scrutiny by 
storage companies and open source developers. 

Several design changes both within DHash and in the EMR application can be 
made that would make the performance problems of DHash less of an obstacle. 
For DHash, optimizations that consider bandwidth and computer usage could 
make it work on a system like Planetlab. However, a medical storage 
environment would likely involve dedicated machines with known bandwidth and 
therefore avoid the problems exhibited in the Planetlab experiment. Still, these 
kinds of optimizations would make DHash more robust in a dynamic computing 
environment.

EMR applications might use DHash as a permanent repository, but use a local file 
system as a temporary cache for more common or more recent data accesses. 
This would amount to a form of asynchronous communication which may leave a 
small window of potential data loss for write operations but would also greatly 
increase performance. Also, Indivo’s current method of storing all files as 
individual XML files does not lend itself to storing large files. A better approach 
would be to buffer the data so that memory is used more efficiently and in a 
scalable fashion. This would involve breaking the XML file into smaller pieces to 
be stored incrementally. 

The slower access times of DHTs may be irrelevant in most situations. Smaller 
files, which contain the relevant data during emergencies, can still be read in a 
matter of seconds. The larger files such as image files will likely only be looked at 
when there is sufficient time to fetch the file from the DHT in advance. Preparing 
a subset of emergency data could obviate time-consuming searches. Indivo’s 
modular approach allows parts of a record to be retrieved individually so that 
smaller files containing text information could be still be retrieved without the 
entire patient record. Also, the write operations to DHTs, while significantly more 
time consuming than storing directly to disk, is a less urgent operation compared 
to reading the data and therefore can tolerate more delay. 

With the addition of mitigating optimizations, DHTs’ performance is within 
reasonable bounds for use in storing medical data.

The advantages of DHTs are, first, they are decentralized: no one physical 
location contains all the data. This directly addresses the problem with public 
perception of centralized storage of medical data. Second, there is a high level of 
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redundancy per disk space used because of erase codes and the level of 
redundancy is easily configurable. Third, performance and cost will scale with 
increased size because DHTs use commodity hardware for nodes. Therefore
large amounts of data can be stored among an increasingly large set of nodes 
with only moderate decreases in performance. Delay increases on the order of 
log N, where N is the number of nodes.[71] Fourth, expensive database software 
for managing and synchronizing the replicas is not needed. Backup is done as an 
intrinsic part of the file system and is easily manageable by simply inserting and 
removing nodes. Fifth, DHTs replace the expenses involved with leasing high 
speed lines for mirroring with many cheaper network connections that might 
achieve high performance through parallelism. 

Disadvantages over traditional centralized backup systems are, first, DHTs 
require more physical locations to achieve their disaster resilience. Managing so 
many locations might be expensive but will be required for increased 
preservability. Second, performance of current DHT technology can be severely 
hurt by one slow node, as shown in the experiment with Planetlab. This problem 
is less severe if it is accessed asynchronously or with dedicated computers and 
bandwidth. Third, distributed transactions have not yet been implemented. While 
this constraint may be relaxed for medical data since medical data are rarely 
deleted or changed5 (in computer parlance, the term is immutable), potential 
lack of consistency might still prevent the large scale deployment of DHTs or it 
may allow them to be used only as a backup rather than as a replacement for all 
medical storage systems. If the application server is centralized, consistency may 
be enforced within the server application; however, managing backup servers
may then prove somewhat burdensome.

To be used for medical record storage, DHT technology must demonstrate 
several additional capabilities. First, performance for queries must be shown to 
be reasonable. Second, DHT technology must be demonstrated to maintain its 
functionality under heavy load. Third, because DHTs are not available as 
professional products, the cost of DHT software is unknown. Similarly, no 
estimates exist of the cost of supporting the required hardware and bandwidth 
infrastructure. 

DHTs may be close to a stage in research where they are ready to cross the 
chasm from academic research into real world deployment. As medical records 
become increasingly digitized, the market for decentralized storage may similarly 
grow. Storage companies or open source communities should consider 
investigating DHT-based file systems as replacements to modern databases,
which are complex, hard to administer and expensive.[78]

                                                
5 In fact, in the Indivo model, although stored data may be made inaccessible by the patient, they are never 
deleted. Even when modified, the old data are retained as part of the auditing facility, and merely marked as 
no longer current.
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Chapter 8: The Role of Government  

The previous two chapters argue for potential ways to achieve increased 
resilience by focusing mostly on what RHIOs could do differently, strategically 
and technologically. Absent from the discussion so far is the role of government. 
Does the government have an interest in increasing medical record resilience? If 
so, what laws or regulations would best support the government’s objectives?
This chapter addresses both of these questions in turn.

The US federal government has already taken an interest in regulating medical 
record resilience with the HIPAA Security Rule’s section on contingency plans as 
described in part 1, implying that resilience of medical records is an appropriate 
place for government involvement. Plans issued from the Department of 
Homeland Security further support this view.[79] However, it is worthwhile to 
consider why the government might have such an interest. 

Foremost among the reasons is that the current poor state of medical record 
resilience is the result of a market failure, particularly for communication 
channels but also for the adoption of advanced backup storage architectures. 
The policy goals described in part 1 are clearly distant targets today. Some 
possible reasons for this state are described in chapter 5, such as the powerful 
externalities in US healthcare. A market failure is, arguably, an opportunity for 
government intervention to correct the problem. “The argument for speeding up 
adoption for any type of innovation must satisfy two conditions: (1) adoption is 
better than no adoption, and (2) adoption today is better than waiting and 
adopting tomorrow. In this framework, the basic reason for intervention is 
correcting a market failure.”[12] Increased resilience would satisfy both of these 
reasons and would therefore warrant government involvement provided the 
government could ameliorate this condition without causing more harm.

It is possible that the industry will self-regulate to some degree. For example, 
medical associations may establish certification bodies to verify disaster resilience 
plans, EMR systems and even communication channels. So far, the industry has 
not initiated such a plan, probably primarily due to the low adoption rate of EMRs 
in the first place. Even with higher EMR adoption, all of the reasons for low 
resilience described in chapter 2 will likely prevent any kind of momentum from 
building organically within the healthcare sector. 

If the government were to get involved, how should it proceed? The current 
federal effort led by ONC will, if successful, significantly increase resilience,
especially though opening the communication channels via HIE and PHRs. 
Because EMRs are crucial to resilience, any acceleration of EMR adoption through 
legal mandates, subsidies or other incentives would, if implemented effectively, 
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undoubtedly facilitate an increase in medical record resilience. Another avenue 
would be to directly regulate resilience by tightening HIPAA’s contingency plan 
requirements such as requiring certain preservability or availability scores for 
every provider.

The decision of how to tighten resilience requirements above the minimal level 
set by HIPAA will involve a sophisticated cost-benefit calculation. Public policies 
create uniform rules and therefore will inevitably have some negative 
consequences. The goal should be, of course, for the positive to outweigh the 
negative.

The following is a preliminary list of some of the important factors that should be 
considered as part of this calculation. Because regional differences will affect 
resilience planning, State or regional governments would likely be the ones 
performing these calculations and enacting the regulations. 

1. Risk of disaster in region. Certification requirements should be tighter 
for states that are more prone to high risks. This would be a form of 
legally mandated insurance mediated by regional risk, similar to the way 
car insurance rates are adjusted according – in part – to the risk of 
accidents in a particular region. 

2. Adoption rate of EMR. When tightening contingency plan regulations, 
probably the most important thing is to make sure the regulations do not 
slow the adoption of EMRs. If the backup requirements are too high 
without commensurate subsidies, the cost to providers of adopting EMRs 
will add to the already high barriers for EMR adoption. Therefore, it may 
be preferable to wait until EMR adoption is already over the “tipping point” 
before instituting new resilience requirements. 

3. Local RHIO storage architecture. RHIOs that offer centralized storage
could do much of the resilience planning and would therefore perhaps 
greatly benefit from tighter resilience laws because providers would be 
motivated to join a RHIO to fulfill its legal resilience obligation. RHIOs that 
offered strong disaster management services would see their membership 
climb as a result of tighter contingency laws and HIE might then happen 
as a side-effect in some cases.

4. Stakeholder willingness to pay for resilience. Payers may in some cases 
be willing to support greater resilience because they have an interest in 
patients receiving better healthcare during disasters. (Healthier patients 
file fewer claims.) If this happens without government involvement, 
certification may be unnecessary. Time will tell if this will happen in 
significant magnitudes.
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5. Portion of providers who have access to the Internet. The Internet is 
still not universal. For regions that do not have extensive Internet 
infrastructure, higher requirements for resilience might prove impossible 
for some providers.

States should consider incrementally tightening medical record resilience 
requirements and initiating certification programs for contingency plans informed 
by these factors.
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Chapter 9: Summary and Conclusions

In a system as complex and decentralized as the US healthcare system, making 
large-scale improvements such as increasing the resilience of medical records will
be a challenging undertaking. Yet, it is an undertaking that is worthwhile if 
healthcare is to be adequately prepared for large-scale disasters. 

An essential first step toward improving resilience is specifically defining the 
socially desirable goals that could serve as the basis for public policy. Part 1 of 
this thesis attempts to do that by creating a preliminary policy model of resilience
in terms of preservability and availability, emphasizing that one overlooked public 
policy goal of resilience is that medical data should be available to the point of 
care. Once the public policy goals and their priorities are established and agreed 
upon, the next step is to explore the mechanisms for achieving those goals. 

Thus far, the US has relied on the free market as the mechanism to implement 
resilience in medical record systems as well as flexible regulations such as the 
HIPAA Security Rule. Despite advances in information technology that make high 
levels of resilience feasible, the current level of resilience is notably minimal,
suggesting that the market is failing and an increased government role is 
justified. 

Government efforts to increase resilience as well as technological advances that 
might help the government efforts are explored in part 2. Several 
recommendations that are interrelated and aim to nudge the healthcare system 
into increased resilience are presented. These recommendations apply only to 
the healthcare system in the United States as it exists today. More centralized 
healthcare systems in countries that have less public concern for privacy may be 
best served by taking a different approach to improving medical record resilience. 
The recommendations are summarized here, categorized by the three general 
stakeholder groups at which they are targeted: RHIO designers, storage 
companies, and policymakers. 

RHIO designers

RHIOs should take on a role in disaster management through centralized storage,
if possible, and through advising providers on their contingency plans. 
Centralized storage would be a sensible approach because the patient medical 
data stored by the RHIO is the same data that would be needed during and after 
an emergency. This way RHIOs would relieve providers of the burden of creating 
an expensive contingency plan, effectively supplying providers with a shared hot-
site. Even for RHIOs with decentralized storage, RHIOs would be expected to 
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play a significant role in resilience planning because of the importance of HIE 
during a disruptive event. It would therefore be sensible for RHIOs to also 
provide services such as spreading best practices, which would replace
consulting services for providers and help forge standardized contingency plans. 

In addition to providing disaster management services, RHIO business models 
that give patients access to their own data would further promote resilience by 
making for more direct accountability to the patient for medical record storage.

Storage Companies

Storage companies or open source communities should consider developing 
DHT-based file systems. This would help solve the privacy concerns that some 
RHIO, face, allowing for data to be centrally controlled as well as stored among 
many nodes in a distributed fashion. DHTs also offer the potential for lower cost 
compared to current database management software, high scalability, and high 
resilience because of their fault tolerance characteristics.

Policy makers

Policymakers at the federal and state levels should consider establishing a HIPAA 
compliance certification program for contingency plans that supports the policy 
goals described in part 1. The implementation of such a certification should be 
through a state government certification mechanism if the industry does not 
show efforts at self-regulation as EMRs are adopted. Increasing the legal 
requirements for resilience should be made carefully and should consider many 
factors such as the level of EMR adoption, risk of large-scale disaster and RHIO 
business models in the particular region. 

In conclusion, medical record resilience can be defined as a goal of public policy 
and can be realized through a mix of strategic, technology, and policy 
mechanisms. The policy model expresses the social goals of medical record 
resilience; the recommendations are the means for implementing those goals. 
As the recommendations are further shown to be feasible, the policy goals are 
justified as worth pursuing. 
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Appendix A: Healthcare Contingency Planning Survey

Healthcare CIO Survey on EMR Contingency Planning

Directions: Please answer the following questions as best you can. Completion of this 
survey is completely voluntary. You are not required to answer any or all of the questions. 
The results of this survey will be presented in a way that does not allow you to be 
identified with your answers. Thank you very much for your participation.

Please email results and questions to Bob Rudin: bobrudin@mit.edu

Background: I am a graduate student at MIT studying Technology and Policy. This 
survey is part of my Masters research on the resilience of electronic medical records.

Q1. How big is your healthcare delivery organization? 
A) 100+ physicians
B) 50-100 physicians
C) Less than 50 physicians

Q2. Does your organization do formal contingency planning?
A) Yes
B) No; how would you describe your planning efforts? _____________________

Comments:

Q3. How has your organization developed and implemented a contingency plan for data 
backup and recovery of electronic medical records? (Choose all that apply.)

A) Hired external consultants. Were you satisfied with their work? _________
B) Developed and implemented internally.

Comments:
Q4. Which kinds of disruptions have you planned for in your contingency plan? (Choose 
all that apply)

A) Application or database host failures
B) Storage device failures
C) Regional floods
D) Earthquakes
E) Tornadoes
F) Other _____________________

Which have occurred?

Q5. Would you consider participating in a collaborative effort with other local healthcare 
delivery organizations to coordinate practices and resources for contingency planning and 
operations?

A) Yes
B) No

Comments: (Please explain your answer.)
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Q6. In the event of a disruption, which processes are automated and which are manual? 
(Circle manual OR automated for each.)

1) Application host failover to backup: manual OR automated
2) Database failover to backup: manual OR automated
3) Storage device failover to backup: manual OR automated

Q7. What is your recovery time object (RTO) for data to be restored and accessible in the 
event of a disruption?

Q8. What kinds of patient data have backup copies made regularly? (Choose all that 
apply)

A) All
B) Doctor’s notes
C) Lab results
D) Images
E) Other________

Comments:

Q9. How many backup copies are made? How far geographically are the backups located 
from the original source? (Choose all that apply.)

A) 1 copy; distance_______ (Kinds of data: _____________)
B) 2 copies; distances_____, ______ (Kinds of data: ______________)
C) More: __________

Q10. How frequent are the backup copies made? (Choose all that apply)
A) Weekly (Kinds of data: _____________________________)
B) Daily (Kinds of data: ______________________________)
C) Continuously (Kinds of data: ______________________________)
D) Other______

Comments:

Q11. What technologies does your organization use for backup and recovery?  (Choose 
all that apply.)

A) Database replication (Kinds of data: _____________________________)
B) File replication (Kinds of data: _____________________________)
C) Online disk backup (Kinds of data: _____________________________)
D) Tape backup (Kinds of data: _____________________________)
E) Other: _______________________

Q12. Were backup and recovery plans for patient data integrated into the EMR software 
when it was purchased?

A) Yes
B) No
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Please describe any integration difficulties encountered when setting up the backup and 
recovery plans:

Q13. I am formulating a model for defining the policy goals of EMR resilience in terms 
of preservability and availability.

Preservability Availability
Recoverability of data after disruption Delivery time to point of care
Recovery point objective (RPO) Delivery time of advanced features
Incremental data capture

Definitions:

1) Recoverability - the ability to recover the data after a disruption.
2) Recovery point objective (RPO) – the time between periodic updates.
3) Incremental data capture - the ability to continue recording a patient's information 
during and after a disruption.
4) Delivery time to point of care - time it takes to get data to the point of care.
5) Delivery time of advanced features – time it takes to reestablish features such as roll-
based data access and clinical decision support features.

Do you agree with this model as the foundation for a definition of EMR resilience as a 
policy goal? 

A) Yes
B) No; why not? _____________

Do you have any feedback on this model?
Comments:

If possible, please send me a copy of any written documents containing your data backup 
and recovery plans. 

Thank you for your participation!
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Appendix B: Source code for Hearingaid

Hearingaid.c:

#include <chord.h>

//stl
#include <3.3/vector>

#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <stdio.h>
//#include <pthread.h>

//#include <dhash.h>
#include <dhash_common.h>
#include <dhashclient.h>
//#include <verify.h>
#include <dhblock.h>

#include <jni.h>
#include "CallBackData.h"

//#include "test_TestChord.h"
//#define CLASSPREFIX(a) Java_test_TestChord_##a
//#define VARIABLEPREFIX(a) test_TestChord_##a

//#include "org_chip_ping_phr_datastore_file_DistributedStore.h"
//#define CLASSPREFIX(a) Java_org_chip_ping_phr_datastore_file_DistributedStore_##a
//#define VARIABLEPREFIX(a) org_chip_ping_phr_datastore_file_DistributedStore_##a

#include "org_chip_ping_iostore_file_DistributedStore.h"
#define CLASSPREFIX(a) Java_org_chip_ping_iostore_file_DistributedStore_##a
#define VARIABLEPREFIX(a) org_chip_ping_iostore_file_DistributedStore_##a

//#define BLOCKSIZE 16384
// supports files up to (BLOCKSIZE-260)/20 * BLOCKSIZE/20 * BLOCKSIZE
// currently:  10815307776 bytes

dhashclient *dhash = NULL;
FILE *outfile;

void logme(char * buffer, bool detailed = false)
{
//     if (!detailed) //comment this out to print detailed
//     {
          fprintf(outfile, buffer);         
          warn << buffer;
//     }
}
void logmeln(bool detailed = false)
{
     logme("\n", detailed);
}

char hexLUT(unsigned char i)
{
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     if (i<10) return i + '0';
     if (i>15) return 0;
     return 'a' + (i - 10);

}

char * getChordIDstr(const char * chordIDbytes)
{
     unsigned char * usstr = (unsigned char *) chordIDbytes;     
     char * str1 = new char[2*VARIABLEPREFIX(CHORDLENGTH)+1];
     for(int i=0; i < VARIABLEPREFIX(CHORDLENGTH); i++)
     {
          str1[i*2] = hexLUT(usstr[i] / 16);
          str1[i*2 + 1] = hexLUT(usstr[i] & 15);
//          warnx << "str1[" << i*2 << "] = "; printf("%c\n", str1[i*2]);
//          warnx << "str1[" << i*2 + 1 << "] = "; printf("%c\n", str1[i*2 + 1]);
     }
     str1[2*VARIABLEPREFIX(CHORDLENGTH)] = '\0'; //end the string
     return str1;     
}

char * getChordIDstr(chordID chID)
{
     char * pchchordID = new char[VARIABLEPREFIX(CHORDLENGTH)];
     mpz_get_raw (pchchordID, sha1::hashsize, &chID);
     return getChordIDstr(pchchordID);
}

JNIEXPORT void JNICALL CLASSPREFIX(chordInit)
  (JNIEnv *env, jclass obj, jstring socketpath, jstring logfile)
{
     outfile = fopen(env->GetStringUTFChars(logfile, NULL), "w");
     logme ("Hello World\n");
     
     dhash = New dhashclient(env->GetStringUTFChars(socketpath, NULL));
     return;
}

void store_cb(CallBackData * cbData, dhash_stat st, ptr<insert_info> pii) 
{
  char str1[255]; sprintf(str1, "store_cb: cbData->GetCount is this %d\n", cbData->GetCount());
  logme(str1);
  if(st != DHASH_OK) 
  {
     logme("C: bad store\n");
     cbData->SetError();
  }
  if (cbData->GetCount() <= 0) 
  {
     logme("C: Strange. Some weirdo is calling me back unexpectedly.\n");
     cbData->SetError();
  }
  else cbData->DecrementCount();
}

chordID write_block(char *buf, int len, CallBackData *cbData) 
{
  chordID ID = compute_hash(buf, len);
  dhash->insert (ID, buf, len, wrap(&store_cb, cbData));
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  return ID;
}

JNIEXPORT jbyteArray JNICALL CLASSPREFIX(store)
  (JNIEnv * env, jclass obj1, jbyteArray databyteAr)
  {
     char str1[250];
     logme("Inside hearingaid store\n", true);
     
       //extract char's from byte array of data
     jbyte *databytes = env->GetByteArrayElements(databyteAr, 0); 
     jsize databyteArlength = env->GetArrayLength(databyteAr);
     char * pchdata = (char *) databytes; 

     logme("C: Storing data.\n");
     sprintf(str1, "C: Datasize = %d\n", databyteArlength); 
     logme(str1);   
     
     //divide the data into 16K chunks and write each chunk into chord

     char * pchIndex = pchdata;
     int numberOfChunks = (databyteArlength / VARIABLEPREFIX(BLOCKSIZE)) + 1;

     //make array of chordIDs to store in afterward: as large as necessary for now
     char chordIDChunk[numberOfChunks * VARIABLEPREFIX(CHORDLENGTH)]; 
     chordID ID;
     int i;
     
     CallBackData *cbData = new CallBackData(numberOfChunks);
     
     sprintf(str1, "C: numberOfChunks = %d:\n", numberOfChunks); 
     logme(str1);
     
     for (i = 0; i < numberOfChunks - 1 ; i++)
     {

 ID = write_block(pchIndex, VARIABLEPREFIX(BLOCKSIZE), cbData); 
         mpz_get_raw (&(chordIDChunk[i*VARIABLEPREFIX(CHORDLENGTH)]), sha1::hashsize, &ID);

 pchIndex += VARIABLEPREFIX(BLOCKSIZE);
     }
     //finish up the last write
     int remainingBytes = databyteArlength % VARIABLEPREFIX(BLOCKSIZE);
     
     sprintf(str1, "C: remainingBytes = %d:\n", remainingBytes); 
     logme(str1);
     
     ID = write_block(pchIndex, remainingBytes, cbData);
     mpz_get_raw (&(chordIDChunk[i*VARIABLEPREFIX(CHORDLENGTH)]), sha1::hashsize, &ID);
     //poll until all data arrives
     while (0 < cbData->GetCount() && !cbData->GetError()){
                acheck ();
     }
     
     char str2[255]; sprintf(str2, "store: cbData->GetCount() is this %d\n", cbData->GetCount());
     logme(str2);
     
     //write chordIDChunks
     cbData->SetCount(1);
     ID = write_block(chordIDChunk, numberOfChunks*VARIABLEPREFIX(CHORDLENGTH), cbData);
     while (0 < cbData->GetCount()  && !cbData->GetError()){
          acheck ();
     }
     if (cbData->GetError()) logme("C: There was an error involving chord");
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     //make byte array from chordID
     char * pchchordID = new char[VARIABLEPREFIX(CHORDLENGTH)];
     mpz_get_raw (pchchordID, sha1::hashsize, &ID);
     
     sprintf(str1, "C: Returning this chordID: %s\n", getChordIDstr(pchchordID));
     logme(str1);
     
     jbyte * ResultChordArbytes = (jbyte *) pchchordID;
     jbyteArray resultChordAr = env->NewByteArray(VARIABLEPREFIX(CHORDLENGTH));
     jsize resultArlength = env->GetArrayLength(resultChordAr);
     env->SetByteArrayRegion(resultChordAr, 0, resultArlength, ResultChordArbytes); 

     return resultChordAr; 
  }

  
void retrieve_cb(CallBackData * cbData, int offset, dhash_stat st, ptr<dhash_block> bl, vec<chordID> vc) 
{
     if (cbData->GetCount() <= 0) 
     {
          logme("C: Strange. Some weirdo is calling me back unexpectedly.\n");
          cbData->SetError(); return;
     }
     if(st != DHASH_OK)
     {
          logme("C: bad retrieve");
          cbData->SetError(); return;
     }
     if (NULL == bl->data.cstr()) 
     {
          logme("C: Received data was NULL.\n");
          cbData->SetError(); return;
     } 
         
     if (NULL == cbData->GetData())
     {// must now make the memory since it wasn't supplied
      //that means it is either the chordID block, or the last chunk; we don't know the sizes before hand
          cbData->NewData(bl->data.len());
          cbData->SetData(bl->data.cstr(), bl->data.len()); 
     }
     else 
     {// use the data and offset that was supplied
      // that means the data is just an ordinary chunk of size BLOCKSIZE
          if (VARIABLEPREFIX(BLOCKSIZE) != bl->data.len() )
          {
               logme("C: Unexpected Block size.");
               cbData->SetError(); return;
          }

  cbData->SetData((char*) bl->data.cstr(), bl->data.len(), offset);  

     }
      
     char str1 [255];
     sprintf(str1, "C: retrieve_cb: bl->data.len() = %d;\n", bl->data.len());
     logme(str1, true);
     cbData->DecrementCount();
    
}
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JNIEXPORT jbyteArray JNICALL CLASSPREFIX(retrieve)
  (JNIEnv *env, jclass obj1, jbyteArray chordByteAr)
  {
     logme("C: Inside retrieve.\n", true);
     char str2[250];
     
       //make chordID from byte array
     jbyte *chordBytes = env->GetByteArrayElements(chordByteAr, 0);   
     char * chordChars = (char *) chordBytes;
     chordID crdID;
     mpz_set_rawmag_be(&crdID, chordChars, sha1::hashsize);
     
     //get the chordID block
     CallBackData *cbData= new CallBackData(1);
          
     dhash->retrieve(crdID, wrap(&retrieve_cb, cbData, 0));  
     while (0 < cbData->GetCount() && !cbData->GetError()){
          acheck ();
     }

     if (0 != cbData->GetLength() % VARIABLEPREFIX(CHORDLENGTH)) 
     {

char str1 [255];
        sprintf(str1, "C: cbData->GetLength() is %d which is not divisible by VARIABLEPREFIX(CHORDLENGTH)\n", 
(int) cbData->GetLength());
        logme(str1);

return NULL;
     }  
     
     sprintf(str2, "C: retrieve: chordID block: cbData->GetLength() = %d\n", cbData->GetLength()); //for apach    
     logme(str2, true);  
      
     //take the chordIDs from cbData, put them in readChordIDs, 
     //and read the results of those IDs into cbData
     int numberofChunks = cbData->GetLength() / VARIABLEPREFIX(CHORDLENGTH);
     char * data = cbData->GetData();
     
     CallBackData * cbChunkData = new CallBackData(numberofChunks-1);
     cbChunkData->NewData(VARIABLEPREFIX(BLOCKSIZE)*numberofChunks);
     
     //make vector of chordIDs to read
     std::vector<chordID> readChordIDs;     
     readChordIDs.clear();
     for (int i = 0; i < numberofChunks; i++)
     {
          char chordIDBytes[VARIABLEPREFIX(CHORDLENGTH)];

  memcpy(chordIDBytes, &(data[i*VARIABLEPREFIX(CHORDLENGTH)]), 
VARIABLEPREFIX(CHORDLENGTH));
          mpz_set_rawmag_be(&crdID, chordIDBytes, sha1::hashsize);

  readChordIDs.push_back(crdID);
     }     
     
     for (int i = 0; i < numberofChunks - 1; i++)
     {

  dhash->retrieve(readChordIDs[i], wrap(&retrieve_cb, cbChunkData, 
i*VARIABLEPREFIX(BLOCKSIZE)));

      
     }
     //get the last one
     CallBackData * cbLastChunkData = new CallBackData(1);
     dhash->retrieve(readChordIDs[numberofChunks-1], wrap(&retrieve_cb, cbLastChunkData, 0));
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     while ( ((0 < cbChunkData->GetCount()) || (0 < cbLastChunkData->GetCount() ) ) &&
                              !cbChunkData->GetError() && !cbLastChunkData->GetError())
     {
         acheck (); 
     }

     
     if (cbChunkData->GetError() || cbLastChunkData->GetError()) logme("C: Error in getting chunk", true);
   
     //copy cbLastChunkData's bytes to cbChunkData
     size_t retrievedDataLength = VARIABLEPREFIX(BLOCKSIZE)*(numberofChunks - 1) + cbLastChunkData-
>GetLength();
     sprintf(str2, "retrievedDataLength = %d\n", retrievedDataLength); //for apach    
     logme(str2, true); 
     sprintf(str2, "numberofChunks = %d\n", numberofChunks); //for apach    
     logme(str2, true);
     sprintf(str2, "cbLastChunkData->GetLength() = %d\n", cbLastChunkData->GetLength()); //for apach    
     logme(str2, true);
     //recycling the variable from above
     data = cbChunkData->GetData();
     memcpy(&(data[VARIABLEPREFIX(BLOCKSIZE)*(numberofChunks - 1)]), cbLastChunkData->GetData(), 
cbLastChunkData->GetLength());
     
     jbyte *resultbytes = (jbyte*) data;
     jbyteArray resultbyteAr =  env->NewByteArray(retrievedDataLength);
     jsize resultbyteArlength = env->GetArrayLength(resultbyteAr);
     env->SetByteArrayRegion(resultbyteAr, 0, resultbyteArlength, resultbytes);
      
    // delete [] G_RESULT_DATA; //should get rid of memory leak
     return resultbyteAr;
  }

  
JNIEXPORT jbyteArray JNICALL CLASSPREFIX(gethash)
  (JNIEnv * env, jclass obj1, jbyteArray databyteAr)
  {
     char str1[250];
     logme("Inside hearingaid gethash\n", true);
     
       //extract char's from byte array of data
     jbyte *databytes = env->GetByteArrayElements(databyteAr, 0); 
     jsize databyteArlength = env->GetArrayLength(databyteAr);
     char * pchdata = (char *) databytes; 
     int keylength = databyteArlength;
      
     chordID ID = compute_hash(pchdata, keylength);

     logme("C: Getting Hash.\n");
     sprintf(str1, "C: Getting Hash: Datasize = %d\n", keylength); 
     logme(str1);   

     char * pchchordID = new char[VARIABLEPREFIX(CHORDLENGTH)];
     mpz_get_raw (pchchordID, sha1::hashsize, &ID);
     
     sprintf(str1, "C: Returning this chordID: %s\n", getChordIDstr(pchchordID));
     logme(str1);     
     
     jbyte * ResultChordArbytes = (jbyte *) pchchordID;
     jbyteArray resultChordAr = env->NewByteArray(VARIABLEPREFIX(CHORDLENGTH));
     jsize resultArlength = env->GetArrayLength(resultChordAr);
     env->SetByteArrayRegion(resultChordAr, 0, resultArlength, ResultChordArbytes); 
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     return resultChordAr;     
  }

  
  
/*
 * Class:     org_chip_ping_datastore_file_DistributedStore
 * Method:    storeKey
 * Signature: ([B[B)V
 */
JNIEXPORT void JNICALL CLASSPREFIX(storeKey)
  (JNIEnv *env, jclass obj1, jbyteArray chordByteAr, jbyteArray dataByteAr)
{
     char str1[250];
     logme("C: inside storeKey.\n", true);       //make chordID from byte array
     
     jbyte *chordBytes = env->GetByteArrayElements(chordByteAr, 0);
     char * chordChars = (char *) chordBytes;
     char * strChordID = getChordIDstr(chordChars);

     //extract char's from byte array of data
     jbyte *databytes = env->GetByteArrayElements(dataByteAr, 0);     
     jsize databyteArlength = env->GetArrayLength(dataByteAr);   
     if (databyteArlength != VARIABLEPREFIX(CHORDLENGTH))
     {
          sprintf(str1, "C: Trying to store to an ID that is not %d in length.\n", (int) 
VARIABLEPREFIX(CHORDLENGTH));
          logme(str1);
          return; //FIXME: throw an exception... return false or something.
     }
     
     char * pchdata = (char *) databytes;
     char * strData = getChordIDstr(pchdata);    
     logme("C: Storing. Key:"); logme(strChordID); 
     logme(";\nC: Data: "); logme(strData);
     sprintf(str1, "; Datasize = %d\n\n", databyteArlength); //for apache
     logme(str1);       //make chordID from byte array     

     CallBackData *cbData = new CallBackData(1);
     //insert into chord
     dhash->insert (compute_hash(chordChars, VARIABLEPREFIX(CHORDLENGTH)), pchdata, 
VARIABLEPREFIX(CHORDLENGTH) , 
             wrap (store_cb, cbData), NULL, DHASH_NOAUTH); // doesn't compile without the getusec() thing

      while (0 < cbData->GetCount() && !cbData->GetError()){
          acheck ();
     }
  }

 void retrievelatest_cb(CallBackData * cbData, dhash_stat st, ptr<dhash_block> bl, vec<chordID> vc)
{
    logme("C: Inside retrievelatest_cb.\n", true);  
    if (cbData->GetCount() <= 0) logme("C: Strange. Some weirdo is calling me back unexpectedly.\n");
    else cbData->DecrementCount();    
    
    if (st != DHASH_OK) 
    {
         logme("C: st != DHASH_OK\n");
         cbData->SetError();

 return;
    }
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    char str1[255];
    sprintf(str1, "C: bl->vData.size() = %d\n", bl->vData.size()); logme(str1, true);
    
    if (bl->vData.size() > 0)
    {
         for (unsigned int j=0; j < bl->vData.size(); j++)
         {    
              sprintf(str1, "C: Stored version %d: ", j); logme(str1, true);
              logme(getChordIDstr(bl->vData[j]), true); logmeln(true);
         }

 if (VARIABLEPREFIX(CHORDLENGTH) != (int) bl->vData[bl->vData.size() - 1].len())
 {

              sprintf(str1, "C: Latest value is not size of chordID. Rather it is: %d\n", bl->vData[bl->vData.size() - 1].len());
              logme(str1);
              cbData->SetError();
              return;                                         
         }

 else
 { //we have found the latest written chordID

              cbData->NewData(VARIABLEPREFIX(CHORDLENGTH));
              bool berror = cbData->SetData((char*) bl->vData[bl->vData.size() - 1].cstr(),
                                                     VARIABLEPREFIX(CHORDLENGTH));
              if (berror) logme("Size of callback data doesn't match size of data you are trying to set");

 }
    }
    else
    {//take the one and only chordID in there
         long lversionResultSize = (long) bl->data.len();
         if (lversionResultSize != VARIABLEPREFIX(CHORDLENGTH)) 
         {
            sprintf(str1, "C: Latest value is not size of chordID. Rather it is: %d\n", (int)lversionResultSize);
            cbData->SetError();
            return;
         }
         cbData->NewData(VARIABLEPREFIX(CHORDLENGTH));
         bool berror = cbData->SetData((char*) bl->data.cstr(),  VARIABLEPREFIX(CHORDLENGTH));
         if (berror) logme("Size of callback data doesn't match size of data you are trying to set");
    }
} 
  
  
/*
 * Class:     org_chip_ping_datastore_file_DistributedStore
 * Method:    retrieveLatest
 * Signature: ([B)[B
 */
JNIEXPORT jbyteArray JNICALL CLASSPREFIX(retrieveLatest)
  (JNIEnv *env, jclass obj1, jbyteArray chordBytesAr)
  {
       //make chordID from byte array
     jbyte *chordBytes = env->GetByteArrayElements(chordBytesAr, 0);
     char * chordChars = (char *) chordBytes;
     char * strChordID = getChordIDstr(chordChars);
     logme("C: Getting from this key: "); logme(strChordID); logmeln();

     //prepare callback object   
     CallBackData *cbData = new CallBackData(1);
     
     //get version block
     dhash->retrieve(compute_hash(chordChars, VARIABLEPREFIX(CHORDLENGTH)), 
                              DHASH_NOAUTH, wrap (retrievelatest_cb, cbData));
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     while (0 < cbData->GetCount() && !cbData->GetError()){
         acheck ();
     }
     
     if (0 == cbData->GetLength()) 
     {
          logme("C: No data found.\n");
          return NULL;
     }
              
     logme("C: Got latest chordID: ");logme(getChordIDstr(cbData->GetData())); logme("\n");
     
     //now that you have the latest chordID, don't for get to go get the data stored under it, dude!
     
     //copy last chordID into an array and return it
     jbyte *resultbytes = (jbyte*) cbData->GetData();
     jbyteArray resultbyteAr =  env->NewByteArray(VARIABLEPREFIX(CHORDLENGTH));     
  
     jsize resultbyteArlength = env->GetArrayLength(resultbyteAr);
     env->SetByteArrayRegion(resultbyteAr, 0, resultbyteArlength, resultbytes);
     return resultbyteAr;
  }
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CallBackData.c:

class CallBackData
{

public:
CallBackData()
{

m_count = 0;
m_data = NULL;
m_size = 0;
m_error = false;

}
CallBackData(int count)
{

m_count = count;
m_data = NULL;
m_size = 0;
m_error = false;

}
void SetCount(int i)
{

m_count = i;
}
void DecrementCount()//make sychronous
{

m_count--;
}
int GetCount()//make sychronous
{

return m_count;
}
void SetError()//make sychronous
{

m_error = true;
}
bool GetError()//make sychronous
{

return m_error;
}
bool SetData(const char * data, size_t size, size_t offset = 0)//make sychronous
{

if (size > (m_size - offset)) 
{

//logme
return true; // avoid buffer overrun

}
memcpy(&(m_data[offset]), data, size);
return false; //no error

}
void NewData(size_t size)
{

if (NULL != m_data) delete []m_data;
m_data = new char[size];
m_size = size;

}
int GetLength()
{

return m_size;
}
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char * GetData()
{

return m_data;
}

private:
int m_count;
char * m_data;
size_t m_size;
bool m_error;

};


