
OpenBlocks: An Extendable Framework for Graphical Block

Programming Systems

by

Ricarose Vallarta Roque

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 25, 2007

Certified by. .
Eric Klopfer

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4406141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OpenBlocks: An Extendable Framework for Graphical Block

Programming Systems

by

Ricarose Vallarta Roque

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2007, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

Graphical programming systems have been built to lower the threshold to programming
for beginners. However, because these systems were designed to make programming more
accessible to novices, they were developed with narrower intentions for their users and
applications. For example, in StarLogo TNG, a graphical block programming environment,
users may create games and simulations, but they cannot use this same system to create
programs that can automate their computer processes, like the text-based scripting system
AppleScript. Application developers can create their own programming systems, but doing
so can take a significant amount of time to design and implement. This thesis describes
an extendable framework called OpenBlocks that enables application developers to build
and iterate their own graphical block programming systems by specifying a single XML
file. Application developers can focus more on the design of their systems instead of on the
details of implementation. The design and implementation of OpenBlocks are described,
along with a user study conducted to test its usability and extendability.

Thesis Supervisor: Eric Klopfer
Title: Associate Professor

2

Acknowledgments

I would first like to thank my advisor Eric Klopfer for his tireless support, endless patience,
and for inviting me to join his team, where I have gained invaluable experience and met
people who are more my friends than my teammates. His passion for the StarLogo TNG
project is contagious.

Thanks to Daniel Wendel and Corey McCaffrey, who had both already graduated and
moved onto a full-time jobs, still joined me for weekend hacking sessions and many design
discussions through email and phone. They have both acted as mentors for me, helping
me get started and guiding me through my time here in the group. Brett Warne made
the code blocks as beautiful as they are today. Brett and Daniel made this such a fun
experience for me as well. Eric Rosenbaum has been a valuable source of advice, acting as
a sounding board for my various concerns and ideas in design. Thanks also to the crucial
contributions of my other teammates: John Jackman, David Greenberg, Thomas Robinson,
Mark Burroughs, and John Pope.

Thanks to the support of the EvoBeaker team, who’s interest in integrating blocks into
their application inspired the OpenBlocks framework. I am excited for their future students
to learn and delve into block programming.

Thanks to Tammy Stern for always giving me the strength to keep going, even during
my lowest of lows. I feel so lucky to have her as my friend and confidant. Brian Kee-
gan proofread this thesis and his unending patience, love, and encouragement helped me
through this stressful process by keeping me sane and grounded. I can’t imagine my MIT
experience without either of them.

And finally, I’d like to express my gratitude to my family for their sacrifices, support,
and love. I owe them all the success and happiness in my life.

3

Contents

1 Introduction 8

1.1 OpenBlocks Framework . 10

1.2 Thesis Summary . 12

2 Background 14

2.1 Text-Based Programming Environments . 14

2.1.1 Assistive Features for Text-Based Programming 14

2.1.2 Debuggers . 16

2.1.3 GUI Builders . 16

2.2 Graphical Programming Environments . 16

2.2.1 Node-based Visual Programming . 17

2.2.2 Graphical Rewrite Rules . 18

2.2.3 Block Programming . 20

3 Assessing StarLogo TNG 22

3.1 Background . 22

3.2 Programming Features of StarLogo TNG 24

3.3 Evaluations . 28

3.3.1 Field Tests . 28

3.3.2 User Tests . 28

4 Design of OpenBlocks 32

4.1 Requirements and Goals . 32

4.1.1 Target Audience . 32

4.1.2 Requirements . 33

4

4.2 User Interface of OpenBlocks . 34

4.2.1 Block Design . 34

4.2.2 Workspace: Programming Environment 36

4.3 Software Optimizations . 39

4.4 Format of Save Files . 40

4.5 Limitations . 40

5 Extending OpenBlocks 42

5.1 Designing a Programming System . 42

5.1.1 Language Guidelines . 43

5.1.2 Usability Guidelines . 44

5.2 Building the Programming System . 45

5.2.1 Language Definition File . 45

5.2.2 WorkspaceController . 46

5.3 Other Extendable Components . 46

5.3.1 Customized Block Shapes . 46

5.3.2 Link Rules . 47

5.3.3 Listening to Workspace Events . 47

5.3.4 Other Public Classes within Library 48

6 EvoBeaker: A Case Study 49

6.1 Documentation and Support . 49

6.2 Testing Framework with EvoBeaker . 49

6.2.1 EvoBeaker Collaboration . 50

6.2.2 Evaluation of EvoBeaker’s OpenBlocks Experience 51

6.2.3 Additions and Modifications to Framework 52

7 Conclusion 54

7.1 Future Work . 54

7.1.1 Further Development of OpenBlocks 54

7.1.2 Further Evaluation and User Testing 56

7.1.3 An Open Source Library . 58

7.2 Closing Remarks . 58

5

List of Figures

1-1 StarLogo TNG’s block programming environment. 9

1-2 Before and after states of a girl agent stepping over a vase in StageCast . . 10

1-3 Code folding can help save space in a crowded workspace. 11

1-4 A block factory can be a floating window over the block canvas. 12

2-1 Keywords are rendered in different colors. 15

2-2 The Intellisense popup in Visual C++. 15

2-3 A simple project in Quartz Composer . 17

2-4 A more complex project in Quartz Composer. 18

2-5 A sample graphical rewrite rule from StageCast. 18

2-6 Sample Stagecast rule list. 19

2-7 The LogoBlocks programming environment. 20

2-8 A more complex project in StarLogo TNG 21

3-1 A comparison of StarLogo code and StarLogo TNG code. 23

3-2 The StarLogo TNG programming environment. 23

3-3 Auto-complete popup in StarLogo TNG. 24

3-4 Block search in StarLogo TNG. 25

3-5 Minimap in StarLogo TNG. 25

3-6 Block search in StarLogo TNG. 26

3-7 A block family in StarLogo TNG . 27

3-8 Polymorphic connector in StarLogo TNG. 27

3-9 The command hook connector shape. 29

3-10 A sample overloaded connector shape. 30

4-1 A sample set of code blocks from StarLogo TNG 35

6

4-2 Four of the fourteen types of connector shapes. 35

4-3 A sample workspace implemented using OpenBlocks. 37

4-4 Static and dynamic drawers. 38

4-5 Comments appear as post it notes and are linked to blocks. 39

5-1 A sample XML specification of a block. 45

5-2 A custom block used in StarLogo TNG. 47

6-1 The current set of blocks used by EvoBeaker. 51

7

Chapter 1

Introduction

Learning to program can be a difficult task. In addition to learning confusing and non-

intuitive syntax, beginners must learn how to structure their thinking and solutions and

understand the execution of their programs [1]. However, once these obstacles are overcome,

programming can be a very useful and beneficial skill. Advantages include but are not

limited to [1]:

• Learning how to solve problems in a structured and logical way.

• Building software customized for personal use.

• Exploring subject areas such as studying biological simulations or creating interactive

animations.

In education, computer programming can be “an ideal medium for students to express

creativity, develop new ideas, learn how to communicate their ideas, and collaborate with

others” [2].

Many graphical programming systems exist to break down the barriers to computer

programming, helping to reduce the threshold for beginners to learn how to program and

reap the benefits of programming. Instead of working exclusively with text and recalling

language syntax and rules, many graphical programming systems have users manipulate and

interact with visual objects or images to build their programming projects. For example,

StarLogo TNG is a graphical programming environment for secondary students and teachers

to study and create 3D simulations and games [3]. This system only requires users to connect

puzzle-piece like objects called blocks of varying shapes and colors to build their programs,

8

as shown in Figure 1-1. Users drag blocks from a palette of blocks to the side called the block

factory to the main work area or the block canvas. Blocks are labeled with the program’s

commands and users can only connect blocks of complementary shapes. Thus, the syntax

of this language is visually apparent and encoded in the shapes of the blocks, relieving the

work and stress of learning and recalling confusing syntax.

Figure 1-1: StarLogo TNG’s block programming environment.

Some graphical programming systems have even eliminated text altogether in their lan-

guages and allow their users to manipulate images instead. In StageCast, users manipulate

images of agents or avatars in a 2D-grid-like environment [4]. To specify how one of these

agents should behave, users create before and after states for each agent. For example, if

the user wants a girl to step on top of a vase, the user must specify the before state by

creating an image with the girl next to the vase, and then, specify the after state by creating

an image with the girl on top of the vase, as shown in Figure 1-2.

However, because graphical programming systems were built to make programming

more accessible to novice users, they were designed with narrower intentions for their users

and applications. This limited focus restricts the possibilities that users can do with most

graphical programming systems. For example, in StarLogo TNG, users may create games

9

Figure 1-2: Before and after states of a girl agent stepping over a vase in StageCast

and simulations that they control through block programming, but they cannot use this

same system to create programs that can automate their computer processes, like the text-

based scripting system AppleScript [5]. And while users can attempt to use StarLogo TNG

to perform matrix operations, it may not be the appropriate environment. The resulting

project in TNG would be messy and complex compared to the more elegant implementation

in numerical computing environments such as Matlab [6]. Finally, because commands in

TNG are represented as text labels on block shapes, StarLogo TNG may be difficult for

younger audiences who are still learning to read.

Thus, if application developers want to add a graphical programming component into

their applications, they must build their own system to match their specific goals, end-user

needs, and tasks. However, building a graphical programing system can take a significant

amount of time to design and implement. When designing their systems, developers must

choose a language that maps closely to the natural language of their end-users and has

the right level of abstraction for their users to understand the language. Solving these two

problems may require extensive design iterations. Implementing the system would also take

a substantial amount of time and effort, and so can modifying the system after each design

evaluation.

1.1 OpenBlocks Framework

This thesis introduces OpenBlocks, an extendable framework to create block programming

systems like StarLogo TNG. By specifying a single XML file called the Language Definition

file, application developers can have a running block programming system. Further itera-

tions of the designed system can be done by modifying the same XML file, shortening the

time to loop through each design iteration of the programming system.

10

OpenBlocks actually inherits many of the generic and user-tested block programming

features of StarLogo TNG, such as the graphical blocks and the programming environment

to contain and manipulate those blocks. Other basic programming system features have

already been implemented, such as dragging and dropping blocks, connecting blocks to form

stacks, undoing and redoing user actions, and saving and loading projects. OpenBlocks,

however, does not have a pre-built block compiler or interpreter, as such a module depends

on the block language.

OpenBlocks also implements many StarLogo TNG features that help users manage the

complexity of their projects and tools to make them more efficient block programmers. For

example, one criticism of graphical programming environments is how visual objects such as

blocks can rapidly soak up screen real estate as projects grow. StarLogo TNG implemented

a zooming feature to help users manage their work space. It also implemented a code folding

feature, where a stack of blocks can “collapse” or hide its set of blocks, leaving only one

block to represent the stack, as shown in Figure 1-3.

Figure 1-3: Code folding can help save space in a crowded workspace.

This framework also includes features that further improve upon StarLogo TNG’s feature

set. For example, OpenBlocks adds eight more block connector shapes to the six that

StarLogo TNG had. OpenBlocks also enables developers to create their own custom block

shapes.

User tests of StarLogo TNG revealed some usability problems that OpenBlocks ad-

dresses. In one set of tests, when we asked users to remove the blocks they had dropped

onto the block canvas, many users immediately dragged the blocks back to the block factory

to “bring back” or “return” blocks to where they came from. However, StarLogo TNG only

allowed users to remove blocks by dragging them to a trash can icon at the bottom right

corner of the canvas. OpenBlocks offers more ways to remove a block, one of them being

11

the option to drag blocks back to the block factory.

Finally, the user interface configuration of StarLogo TNG may not apply to all possible

applications of OpenBlocks. Thus, this framework enables application developers to select

which user interface elements to include in their programming environment. For example, in

StarLogo TNG, the block factory is static. In OpenBlocks, however, application developers

can configure their block factory to be a floating window over the main work area, as shown

in Figure 1-4.

Figure 1-4: A block factory can be a floating window over the block canvas.

1.2 Thesis Summary

Chapter 2 offers an overview of existing programming systems that use textual, graphical,

or a mix of both types of language representations. Chapter 3 discusses StarLogo TNG,

from which OpenBlocks derives many of its features. Chapter 4 presents the design of Open-

Blocks, starting with an enumeration of the goals and requirements of the system, and then

describes the user interface design of OpenBlocks. Chapter 5 explains how to extend the

OpenBlocks framework to design and develop a programming system. By performing a

case study, Chapter 7 assesses the usability of the OpenBlocks framework from the perspec-

12

tive of application developers and language designers. Finally, Chapter 8 recapitulates the

contributions of this thesis and discusses future extensions and research on this framework.

13

Chapter 2

Background

This chapter describes previous work on various programming environments. Section 2.1

describes textual programming environments and accesses some of their features and uses.

Section 2.2 explores different types of graphical programming environments including block

programming environments.

2.1 Text-Based Programming Environments

Text-based programming environments can be as simple as a text editor or sophisticated as a

integrated development environment (IDE). IDEs may include some or all of the following:

a source code editor, a compiler or interpreter, build tools, team synchronization tools,

and a debugger. Tools within the IDE and its user interface features are meant to help

developers program and manage their software projects. Some IDEs come equipped with

GUI builders so developers can rapidly create the user interface for their applications. In

general these features help developers cope with some of the difficulties of programming:

learning and remembering syntax, understanding the execution of their code, debugging

unexpected behaviors, and managing the complexity of their projects.

2.1.1 Assistive Features for Text-Based Programming

Text or source code editors are equipped with several features to help developers to become

more efficient, to catch and prevent syntax errors, and to manage the complexity of their

code. These assistive features do not necessarily lower the barrier to entry for novice users,

but act as guides and tools for current developers. Some of these common assistive features

14

are:

• Syntax highlighting: Significant keywords are rendered in different colors and fonts,

as shown in Figure 2-1. This feature helps to improve the readability and context of

code and help catch syntax errors.

Figure 2-1: Keywords are rendered in different colors.

• Auto-format: This feature automatically formats source code to standard styles. Some

editors allow developers to specify the type of formatting to enforce.

• Outline view for classes, methods, fields: This feature can show the overall structure

of project.

• Re-factoring tools: When renaming variables or redefining method signatures, refac-

toring tools will trace calls to these fields and methods and change them accordingly.

• Code completion: The text editor makes suggestions to the developer based on the

current text input. In Microsoft’s InteliSense [7], a popup becomes visible showing

the possible completions to the current text input, as shown in Figure 2-2.

Figure 2-2: The Intellisense in Visual C++ popup shows the developer the possible com-
pletions of the current text input.

• Code-folding: Developers can selectively hide or show defined regions of their code.

Such folding helps to manage large projects, as developers can hide large sections of

code and only show relevant regions instead.

15

• Code documentation and commenting: Text-based languages include special charac-

ters or character sequences that enable developers to write comments alongside their

code. The corresponding compiler or interpreter of the language will ignore strings

that follow these special characters. In addition to ignoring the characters ‘//’ as

comments, Eclipse will automatically generate web pages featuring the Java docu-

mentation encoded in sections enclosed in ‘/** */’ [8].

2.1.2 Debuggers

Debugging mechanisms are also available in some IDEs to help developers better understand

the execution of their code. Eclipse modifies the layout of its programming environment

to display a ”debugging perspective,” where developers can step through their source code,

examine the state of objects, and explore the stack trace at specified breakpoints [8].

2.1.3 GUI Builders

Some IDEs provide Graphical User Interface (GUI) builders that enable developers to

rapidly build their application’s user interface or the entire application through direct ma-

nipulation of GUI elements. In Microsoft’s Visual Basic [9], programmers can manipulate

forms and form objects such as text fields, buttons, and labels. Programmers specify at-

tributes and actions for each of these objects and may write lines of code to add more

functionality. Visual Basic has the compiler within the GUI building environment and so

application developers may immediately have a running application after manipulating their

GUI elements without writing large sections of code.

2.2 Graphical Programming Environments

Graphical programming languages and their associated programming environments grew

from motivations to lower the barriers to programming. Text-based programming languages,

while very powerful, can still be difficult to learn for beginners. Not only must they learn

to form solutions in a structured way and understand how a computer executes their code,

they must also learn confusing and inflexible syntax and commands [1].

16

2.2.1 Node-based Visual Programming

In node-based programming, users manipulate and link nodes that each perform specific

operations and return output based on the node’s inputs. The links between the nodes

represent the flow of data from one node to another. The resulting structure looks like a

directed graph that provides users with a visual overview of the data and program flow.

And by inspecting the data received and returned at each node, users are also provided

with the before and after states of their data at that node. For example, Quartz Composer

is a node-based programming language that can process and render graphical data [10]. If

a user wants to render an image with a gaussian blur, the user links the node representing

the image to a node that performs Guassian blurs as shown in Figure 2-3. Users can also

group a collection of nodes within Quartz Composer to build a macro node that represents

the overall operation of the nodes it comprises.

Figure 2-3: By connecting the Image Importer node to the Gaussian Blur node, a Gaussian
blur transformation is applied to the image.

Node-based programming languages are also useful in visualizing parallel processes, as

programs do not flow from a single point, but instead can begin from several points, making

that data proceed through an asynchronous network of nodes.

However, node-based programming languages do not scale well as projects grow and

become more complex. Nodes can take up screen real estate. Links can become messy and

hard to follow. Figure 2-4 a more complex project in Quartz Composer that renders the

17

Photo screen saver on Macs.

Figure 2-4: A more complex project in Quartz Composer.

2.2.2 Graphical Rewrite Rules

Instead of forcing their users to translate their solutions into “code,” these systems allow

the users to dictate the behavior agents or objects within a rigid world through graphical

rewrite rules: specifying before and after states of their agents and objects. Figure 2-5

shows a sample rule from StageCast, a graphical rewrite rule environment for kids, that

specifies that an agent should go on top of the blue vase if if the agent is initially to the left

of the vase [4]. By directly manipulating these graphical rules, these programming systems

make it easy to create animations, movies, or even simulations that are purely visual.

Figure 2-5: In this rule, the girl should hop over the blue vase if she is to the left of it. The
before image has the girl on the left side of the vase and the after image has the girl on top
of the vase.

StageCast also has some built in debugging features to help users step through their

code. During the execution of a simulation, users may select a sprite and step through the

execution of that agent’s rules, watching as some rules are skipped or executed depending

on the current conditions and environment of the chosen agent. Users may also specify

18

breakpoints ahead of time between rules to pause the execution at those breakpoints. Figure

2-6 shows a sample graphical rule list with a user specified breakpoint.

Figure 2-6: StageCast lists the rules that an agent follows. Rule 1 is being executed as
indicated by the green circle next to the rule. A user may step through an agent’s rule
list and place breakpoints between rules, as indicated by the red circle with the white line
across it.

In AgentSheets, another graphical rewrite rule environment, users can create games and

simulations. This system was also designed as a framework to build other visual program-

ming languages that were more domain oriented [11]. Application developers could program

behaviors of agents and add additional functionality through AgentSheet’s programming

language called AgentTalk. These programmed agents then become the language compo-

nents of the new visual programming language that end-users will interact with. Using

AgentSheets as a framework, several visual languages were built such as an application to

support the design and simulation of voice dialog interfaces.

These graphical rewrite rules, however, do not scale well when trying to express more

conditions for a particular agent. For example, the set rules for a sprite like a lion to walk

around a maze made with different objects can grow rapidly as the user tries to specify rules

for all types of combinations. In addition, graphical rewrite rules can not be generalized

and reused. A rule to turn left at a particular wall must be created for all sprites within

the system.

19

2.2.3 Block Programming

In graphical block programming, users manipulate and connect puzzle-piece like objects

to build their programs. The shape of these blocks dictates the syntax of the language:

only blocks with complementary shapes can connect. Thus, users are not forced to learn

and recall confusing syntax, helping to reduce the learning curve. In addition, allowing

only complementary blocks to connect prevents users from making syntax errors. Figure

2-7 shows some block code from LogoBlocks, a block programming environment where

each block represents a command to control Programmable Bricks. This system influenced

many other languages[1] such as Bongo, Flogo, Mindstroms, Tangible Programming Bricks,

Scratch, and StarLogo TNG.

Figure 2-7: The LogoBlocks programming environment.

The shapes and colors of blocks also provide a visual overview of code, allowing users

to more easily browse and follow the pathways of their code[12].

As projects grow, however, these graphical blocks like the nodes in node-based program-

ming can take up a lot of screen real estate. In addition, repeatedly dragging and dropping

blocks can be tedious for building block configurations like algebraic expressions. Dragging

and dropping every operand and operator in the expression 2 + 3− 5 can take some work.

Figure 2-8 shows a more complex project of a strategy game developed in StarLogo TNG,

another graphical programming environment for secondary students and teachers to create

3D simulations and games.

From StarLogo TNG, we designed the OpenBlocks framework, as OpenBlocks inherits

20

Figure 2-8: A more complex project in StarLogo TNG

many of its generic block programming features. StarLogo TNG addressed the space prob-

lem of blocks by allowing users to manipulate the zoom level or overall size of the blocks.

Also, to make code or project building more efficient, StarLogo TNG has a feature called

TypeBlocking that automatically bring blocks from the block factory to the main work area

by entering the block names [13].

The next chapter describes the features of StarLogo TNG further as well as some of its

shortcomings.

21

Chapter 3

Assessing StarLogo TNG

This chapter describes and assesses the block programming environment StarLogo TNG

from which OpenBlocks was derived.

3.1 Background

StarLogo “The Next Generation” (TNG) is based upon the text-based programming en-

vironment StarLogo. StarLogo was designed to create and study models of decentralized

systems, where interesting patterns would arise from interactions between individual objects

or agents [14]. For example, a student can program a car to follow rules such as moving at

the speed limit and stopping if the car in front of it has stopped or if it hits a ‘stop’ sign.

When running several cars with these rules, a student can observe how traffic patterns can

form from these individual behaviors.

StarLogo TNG extended StarLogo to use the block programming model of LogoBlocks

(discussed in section 2.2.3) to leverage the benefits of block programming such as visually

apparent language and syntax. Figure 3-1 shows a procedure called wiggle, which performs

random movement, implemented in both StarLogo and StarLogo TNG code. Like LogoB-

locks, users drag blocks from a categorized palette of blocks on the side onto a main work

area called the block canvas. Each block in StarLogo TNG represents a command or a

value. Users can build a program by stacking blocks from top to bottom. These programs

control turtles or other 3D agents in an environment called Spaceland.

The shapes and colors of blocks can also provide a visual overview of code, allowing users

to more easily follow the pathways of their code [12]. Figure 3-2 illustrates the browsability

22

and organization of block code within StarLogo TNG, especially juxtaposed to the textual

programming environment of StarLogo. The code from both environments create the same

biological simulation of how termites construct their mounds. Looking at the StarLogo

code, users may discern sections of text within the environment, but users can not easily

see if these sections represent procedures or setup code. Looking at the block code, users

can also locate sections of block code, but they can also determine the content of these

block collections or stacks by examining the colors and shapes of the blocks. For example,

procedure blocks in StarLogo TNG have a slanted left edge, are dark green in color, and

are always the top block of its stack. With these graphical qualities, users can immediately

resolve which stacks of blocks belong to a procedure block stack.

Figure 3-1: The StarLogo and StarLogo TNG code are both expressing the same commands
for the procedure wiggle.

Figure 3-2: Users can drag blocks from the palette of blocks on the left side to the main
work area called the block canvas.

23

StarLogo and StarLogo TNG target similar audiences, namely middle school, high

school, and college students and their teachers. In addition to supporting the creation

of simulations, StarLogo TNG was also designed to facilitate game construction to entice

younger audiences into programming [3]. The computer programming experiences of these

audiences vary, from none to a significant amount of experience. The user interface design

of StarLogo TNG aimed at novice programmers, but StarLogo TNG also implemented fea-

tures to help users become more efficient and manage the complexity of their projects as

these users became more advanced programmers.

3.2 Programming Features of StarLogo TNG

StarLogo TNG adopted the block programming model of LogoBlocks and further refined

the programming model by adding features to address some of the problems of block pro-

gramming environments discussed in section 2.2.3 and to help users manage the size and

complexity of their projects. OpenBlocks inherits some of these new features that StarLogo

TNG implemented, such as the following:

• Typeblocking: More advanced programmers can type the names of blocks onto the

canvas and the block instance requested will “fly” out from the block factory [13].

This feature is an alternative to repeatedly dragging and dropping blocks from the

palette to the workspace.

• Auto-complete: As programmers invoke blocks by using typeblocking, a popup ap-

pears suggesting blocks to the programmer that can connect to the currently selected

block, based on the current input, as shown in Figure 3-3.

Figure 3-3: The popup suggests blocks to the user based on the current input.

24

• Block search: As the number of blocks in the main palette and canvas grow, users can

search for a block and the desired blocks highlight themselves for the user to locate,

as shown in Figure 3-4.

Figure 3-4: As users enter text in the top left search bar, blocks with labels that contain
the current query are outlined in yellow.

• Syntax highlighting: Colors of the block denote what collection of blocks or commands

a block belongs to.

• Code folding: For blocks that enclose or represent an entire block stack such as proce-

dures, the block stack can be “folded” such that the only the representative top block

is visible, as shown in Figure 3-5.

Figure 3-5: The minimap in the top right corner shows users a tiny birds-eye view of their
block canvas.

25

• Minimap: A small panel shows a tiny representation of the entire canvas of blocks to

give users an instant birds-eye view of their programming project, as shown in Figure

3-6. Users can also use the minimap to navigate around the entire block canvas.

Figure 3-6: As users enter text in the top left search bar, blocks with labels that contain
the current query are outlined in yellow.

• Zooming: Users can manipulate the zoom level of their entire block canvas and choose

a zoom level to work in. By controlling the zoom level, users also control amount of

visible space they have on their block canvas.

• Pages: The main work area or block canvas is a large horizontal space that is divided

into ‘pages’ to help users organize their code.

• Block drawers: Block drawers are dynamic block palettes or containers that can show

and hide itself as well as change its content of blocks. Unlike the block factory to the

left of the block canvas, the dynamic nature of these drawers helps to save space on

the block canvas.

• Block Families: Blocks with very similar properties, usually with only one difference,

are grouped into block families. Blocks within families have a combo box around the

text label of the block. Users can change these blocks by selecting another related

block from the same family, saving them the time of dragging out a new block, dis-

connecting the old one, and connecting the new block. Figure 3-7 shows the forward

26

and back block family, two commands that can move agents forward and backward in

Spaceland.

Figure 3-7: A combo box appears over the ‘forward’ label of the block. Users can change
this block to a back block, which is in the same family as forward.

StarLogo TNG also added more features to the graphical blocks themselves that Open-

Blocks inherited as well:

• Polymorphic block connectors: Connecters can have a variable block shape and once

a block connects at that connector, the connector shape will assume the shape of the

opposite connector, as shown in Figure 3-8.

Figure 3-8: Polymorphic connectors take on the type of the opposite block connector at-
tached to it.

• Expanding sockets: When a block is connected to another block with expanding

sockets, the block will add another socket to itself.

27

3.3 Evaluations

StarLogo TNG has undergone both focused user tests and field tests in classrooms. Users

in all of these tests had very little or no computer programming experience.

3.3.1 Field Tests

In field tests [2, 15], students were given some instruction on block programming, such as

dragging and dropping blocks and connecting them to form programs to control agents in

Spaceland. In field and pilot tests, StarLogo TNG appealed to both girls and boys. Students

followed the flow of programs more easily by using the shapes and colors of the blocks as

guides. In addition, because of the restriction on connecting blocks of complementary

shapes, students spent more time building their projects and debugging only logical errors

within their code instead of syntax errors. Finally, while one of the pilot tests occurred

on a weekly basis, the visual nature of the blocks helped students recall the meanings and

commands of blocks they worked with the previous week.

3.3.2 User Tests

In the more focused user tests, we gathered detailed observations regarding the usability of

its programming features. In these user tests, we tested one user at a time and provided

each of them with a set of tasks to perform. Users were given only a description of what

block programming is, instead of an explanation of how to program using the blocks. For

example, we did not demonstrate how to build a simple program. Some of these user tasks

were as simple as dragging and dropping specific blocks, to test how users performed such

basic tasks. Other tasks required users to build large block stacks to test how each user

managed their growing projects.

In the first phase of tasks, we asked users to perform simple tasks such as dragging and

dropping blocks from the block factory to the canvas, removing blocks from the canvas,

connecting blocks to form a stack. The following enumerates recommendations based on

the usability problems we discovered:

• More drag and drop affordance needed in blocks. Dragging and dropping was

not obvious to all the users. Changing the mouse cursor to an open hand icon when

the user mouses over a block can suggest to the user that this object can be dragged.

28

• Add more ways to remove a block. Users wanted to “bring back” or “return”

the blocks when we asked them to remove them. Others clicked on blocks and pressed

delete, while some right-clicked on blocks and waited for a context menu to appear.

Not all users noticed the trash can icon in the bottom of the canvas immediately.

Multiple ways should be provided to perform basic and common tasks.

• Implement consistent and visual feedback when connecting blocks. When

asked to build block stacks, users were confused by one kind of connector shape

shown in Figure 3-9 called the command hook. Users would connect blocks with

complementary shapes like the forward block to the left side of the forever block’s

opening, instead of connecting to the nub at the end of the command hook. Enabling

block connection to happen at a wider radius or at the left side connection space can

prevent this problem. Also, providing the user with more visual feedback, such as

highlighting possible connectors, can act as a guide for the user.

Figure 3-9: Users would try to connect blocks on the left side of the opening for the forever
block instead of the nub at the end of the command hook.

• Do not overload block connector shapes. Some blocks in StarLogo TNG lan-

guage should connect based on their block shapes, but do not when users attempt

to connect them, which contradicts one of the basic contracts of block programming.

This contradiction occurs because a block connector shape has an overloaded mean-

ing in StarLogo TNG, allowing only blocks that both match in shape and syntactical

meaning to connect. For example, the forward block in Figure 3-10 seems like it can

connect with the setup block, but only blocks that perform setup operation like clear

all can connect to it. Such blocks caused much confusion with users. While there are

a limited number of connector shapes, block connector overloading should be avoided

as much as possible.

• All block factories should be visually apparent. Some block drawers only

appeared if the user clicked on the button to activate the drawer. These hidden

drawers frustrated some users, when they needed to locate blocks that only resided in

29

Figure 3-10: Users would try to connect blocks that match the connector shape at the Setup
block but find they can not for syntactical reasons even though they visually can.

these drawers. Only after users began randomly clicking buttons did some users find

the drawers and the blocks within them. While StarLogo TNG has a block searching

tool located above the block factory, users could not use this tool immediately since

they were not familiar with all the blocks in the language and could not recall what

the names were of particular blocks yet. Instead of separating block drawers from the

main facotry of blocks, users can find these drawers and their blocks more easily if

they were more integrated or physically closer to the main factory of blocks.

As their projects grew in size, many users developed their own strategies to manage the

complexity of their projects, while some felt overwhelmed by the size of their projects.

• Provide feature to automatically clean up canvas blocks. Users would spend

time manually organizing the stacks of blocks in the canvas themselves, moving stacks

of blocks to make room for new ones. An automatic arrange feature could help users

clean up their workspace.

• Implement multiple block selection. As users cleaned up or organized their

canvas space, users would move blocks or stacks individually. Multiple selection of

stacks can save them time and effort.

• Available canvas space needs to be more apparent to users. Some users would

also only limit themselves to the visible space of the block canvas. They were not aware

that it was much larger than it appeared to be. In order to access other parts of the

workspace, users must drag the block canvas or use the minimap, which most users

did not notice. Applying scroll bars to the block canvas can be one indication to the

user that there is available space.

• Optimize basic functionality. As programming projects grew, users ran into per-

formance issues that made simple tasks such as dragging and dropping blocks and

scrolling through the workspace difficult.

30

The next chapter discusses the design of OpenBlocks and how OpenBlocks integrated

the generic features of StarLogo TNG and some of the improvements in the usability and

performance of its inherited features.

31

Chapter 4

Design of OpenBlocks

This chapter presents the design of the OpenBlocks framework, which adopts many block

programming system features from Starlogo TNG described in the previous chapter. It also

introduces improvements in the user interface design based on the evaluation performed on

Starlogo TNG discussed in section 3.3.2.

4.1 Requirements and Goals

From past research work on and evaluations of Starlogo TNG and other programming

environments, the following sections highlight our target audiences and list the requirements

and goals considered in the design of OpenBlocks.

4.1.1 Target Audience

Because OpenBlocks is a programming environment development framework, its primary

audience consists of application developers and language designers. However, in designing

OpenBlocks we also took the secondary audience into account: end-user programmers that

would be using the systems built by our primary audiences.

Application developers. Application developers have significant programming experi-

ence and may have degrees in Computer Science and other related fields. However, they

may not have programming experience in Java or Swing. Application developers may or

may not be involved with the design of the language.

32

Language designers. Language designers must have significant knowledge of the in-

tended domain, audiences, and user tasks that their programming system will be built for.

They may have less programming experience than application developers, but they must

have an understanding of the process and difficulties of programming as they are developing

a programming language.

Programming system users. The extended system implemented by application devel-

opers and language designers are built for these set of users. This audience is very broad,

spanning all ages, especially those with little or no programming experience. The types of

environments and task these users have varies as well: personal, educational, or professional.

4.1.2 Requirements

We developed a set of requirements that appeals to the needs of the programming system

designers and to the needs of the programming system users who may have little or no

programming experience. For application developers and language designers, extendability

and the ease of extending OpenBlocks are important factors.

• Essential programming environment features are provided. These essential

features include the graphical blocks, a workspace to manipulate those blocks, and

drawers to store those blocks. Back-end features include mechanisms to save and load

projects and undo and redo user actions.

• Muliptle ways to configure specific UI elements. The system should provide

more than one way to configure particular user interface elements. For example,

application developers should be able to choose whether their block drawers, which

contain blocks, either float above the block canvas or remain in one static location.

• Customizable programming environment. The system should provide devel-

opers’ ways to customize the programming environment such as turning certain UI

elements on or off, positioning elements in multiple locations, and changing the look

and feel of the overall environment.

• Easy to extend. Application developers and language designers should only need to

work with as few components as possible to create a very simple block programming

environment.

33

• Easy to understand. The features and components of the system should be easy to

understand for all users. The software components should make sense to application

developers. In other words, they should not have to dig through a lot of documentation

and source code to get started. The features of the system should be understandable

to both application developers and language designers so they can work with its entire

feature set. And finally, the user interface elements and actions of the system should

be intuitive for the end-user programmers.

• Comprehensive Documentation. Multiple sources of clear and detailed docu-

mentation should be provided in the form of tutorials, examples, specifications, and

a public API for OpenBlocks framework.

• Optimized functionality. Common functionality such as dragging and dropping

blocks within the environment should be optimized and well-tested.

4.2 User Interface of OpenBlocks

The OpenBlocks interface includes many of the basic features of a block programming en-

vironment, such as graphical blocks, block drawers that contain these blocks, and a canvas

where block programs are built. In addition to these features, OpenBlocks enables applica-

tion developers and language designers the ability to customize the UI of their programming

system, selecting which features to support and deciding particular behaviors for some of

them. These features have been user tested and evaluated to increase the effectiveness and

usability of them.

4.2.1 Block Design

The graphical block design in StarLogo TNG inspired the graphical block design in Open-

Blocks. We took from StarLogo TNG the primary look and feel of its blocks such as the

block beveling and connector shapes. From these base set of features from StarLogo TNG,

we modified some and added more features to enhance the look and usability of the blocks

as described in the following sections. Figure 4-1 shows a sample set of blocks from the

StarLogo TNG language implemented using OpenBlocks.

34

Block and Connector Shapes

Figure 4-1: A sample set of code blocks from StarLogo TNG

Block shapes are similar to puzzle piece shapes. They are connected like puzzle pieces,

by matching the blocks at their connector shapes. It is at these connector shapes where the

programming language syntax is specified, as each connector shape will only connect with

its complementary connector shape. OpenBlocks currently provides 14 distinct connector

shapes as opposed to StarLogo TNG’s six. Figure 4-2 shows four of the 14 connectors

shapes.

Figure 4-2: Four of the fourteen types of connector shapes. The top left conenctor is a
special connector, that resides at the top and bottom of blocks. They allow blocks to be
stacked on top of one another.

The Look of Blocks

The blocks are meant to be manipulated directly by the user through clicks, drags, and

drops. To encourage users to directly interact with blocks with their mouse, StarLogo TNG

rendered blocks using a beveling effect. To further emphasize that these blocks can be

dragged and dropped, OpenBlocks implemented an open hand cursor that appears when

35

the user mouses over a block and a closed hand cursor that appears when the user picks

up the block. To visually differentiate the user selected block from other blocks in the

workspace, OpenBlocks renders a drop shadow behind the block.

Connecting Blocks

The OpenBlocks framework improves visual feedback to inform users which blocks they can

or cannot connect. When a user selects a block to drag, connectors from other blocks, that

the selected block can attach to, begin to highlight. In addition to highlighting connecters,

OpenBlocks includes the “block stretching” feature in StarLogo TNG, such that when the

selected block comes closer to the target block, the target block will “stretch” to accommo-

date the selected block. However, when a user selects a block and drags it to another block

it cannot connect to, the selected block will be “repelled” by the target block, such that,

when the user drops the block, it will be automatically moved away.

4.2.2 Workspace: Programming Environment

The programming environment or the Workspace is divided by multiple user interface com-

ponents called widgets. Each widget serves a different function with regards to the blocks.

Figure 4-3 shows a sample workspace with its different components. Like in StarLogo TNG,

the primary space where users develop their code is called the block canvas. The canvas

itself can be divided into pages to provide further organization.

Multiple Block Drawers

Blocks are initially stored in Block Drawers. These drawers can be separated from each

other in the environment, but this layout is not recommended. Many users during the

StarLogo TNG user tests did not notice or use drawers that were separated from the main

set of factory drawers. Thus, users had difficulty locating blocks that were contained in

these drawers. The different types of drawers that developers and designers may choose

from are as follows:

• Factory: This drawer contains blocks that produce multiple instances of themselves.

Also, when a block is dragged and dropped over a factory drawer, the block is removed,

since users are bringing the block “back” to where it came from. In the StarLogo TNG

36

Figure 4-3: A sample workspace implemented using OpenBlocks.

user tests, many of the users attempted to remove blocks by returning blocks to the

factory, but this technique was not supported by TNG.

• Page: This drawer is associated with a page that resides in the canvas and can contain

blocks that are unique to that page. It can consist of blocks that produce multiple or

singles instances of itself.

• Custom: Factory and Page drawers and their block content are specified by the pro-

gramming system designers in the Language Definition file, which is discussed in

section 5.2.1. Users, however, can create their own drawers and determine its block

content using Custom drawers. Users can drag blocks into and out of this drawer and

then save their custom drawer for later use.

Block drawers can either be static or dynamic. Figure 4-4 illustrates the two types

of drawer states. Static drawers remain in their specified location throughout an entire

programming session. Dynamic drawers float above the block canvas and can be moved

around within the workspace. Users can also toggle the visibility of these drawers.

37

Figure 4-4: Static and dynamic drawers.

Managing Project Complexity

To manage the size and complexity of block projects, OpenBlocks assumes many of the

tools StarLogo TNG implemented such as zooming, code folding, and the minimap. These

tools are described in more detail in section 3.2.

This framework also adds an automatic clean up feature that arranges block stacks

within the canvas. The current implementation, however, naively arranges block stacks by

the y-coordinate of their top block. Future implementations would provide multiple options

to organize block stacks.

To help users document their code, OpenBlocks adds a new way to comment on blocks

using floating “post-it” panels that are linked to specific blocks, as shown in Figure 4-5.

These comments can be created by right-clicking on a block and selecting ‘Comment Block’

from the context menu that pops up. More ways to create a comment should be added in

the future, as OpenBlocks only supports the right-clicking option. The comment panel can

be hidden or removed, and it moves wherever the blocks moves.

38

Figure 4-5: Comments appear as post it notes and are linked to blocks.

4.3 Software Optimizations

In developing the software of the OpenBlocks framework, we optimized as much common

functionality that we could anticipate, such as dragging and dropping blocks. Since we can-

not anticipate every usage scenario for OpenBlocks, future applications and evaluations of

this framework will determine any further optimizations. The set of optimizations described

below originated from evaluations of StarLogo TNG:

• Dragging and dropping of blocks over the block canvas: This operation slowed dras-

tically as projects grew because the dragged block would be compared against all

blocks within the canvas. Now OpenBlocks checks over a bounded region instead of

the whole canvas.

• Scrolling and moving the canvas: Whenever the canvas view changed, all blocks on

the canvas were redrawn, which involved recalculating their shapes and rearranging

their components such as their labels. Now instead of redrawing all the blocks, it

repaints buffered images, espeically since the blocks do not change in appearance as

the user scrolls.

• Rendering of blocks: Blocks are only redrawn if their appearance needs to change.

Otherwise, a buffered image of the block is repainted.

• Saving and loading projects: Between the saving and loading different projects, only

39

the differences are loaded instead of re-loading the entire block language and default

set of workspace widgets.

4.4 Format of Save Files

OpenBlocks has saving and loading mechanisms built in that application developers can

immediately use. The format of the saved files is similar to the format of the language

definition file. The contents of saved files, however, only contain modified data. For example,

if a user modified a block label, that new label will be saved. However, if a block’s label

never changed, then that block label will be omitted from the save file.

Saving only the modified information will be useful in internationalization, particularly

when sharing programming projects across different languages. For example, if a user

creates a project in Spanish, saves it, and then loads it in another environment in English,

the blocks within the English programming environment will remain in English, except for

the blocks that were modified by the Spanish user.

4.5 Limitations

This section enumerates some of the limitations of this framework.

• At most one return type allowed per block. Like Starlogo TNG, OpenBlocks

limits blocks to have at most one return type. Implementing multiple return types

introduces complexity. For example, with multiple outputs for a block, a user can

potentially connect multiple independent stacks to each output of that block. Also,

if a block language implements procedures, language designers must determine the

interface for their users to return multiple values. Finally, what can be done by using

a block with multiple return types can be done using multiple blocks with single return

types.

• Compiler/Interpretor for language must be built from scratch. The frame-

work does not have a built-in compiler to parse and interpret the language created.

As each language is different, the compiler or interpretor, which are responsible for

understanding and placing meaning to blocks and their configurations, must be im-

plemented by the application developer. However, implementing the compiler or in-

40

terpretor from scratch enables greater flexibility and specialization for the language

of the programming system.

• Framework developed in Java and Swing. These technologies were chosen to

enable platform independence. In addition, we wanted to exploit the already imple-

mented and tested features of Swing to develop the GUI. The development of this

framework in Java and Swing does not limit developers to these technologies, as Java

can still work and interact with other modules implemented in different languages.

Starlogo TNG, for example, has a virtual machine written in C and an 3D environment

written in OpenGL.

• Limited look and feel of the programming system. Currently, in order to

change the look and feel of the programming system, application developers must dig

through the source code of OpenBlocks. An interface to more easily modify the look

and feel is proposed in Chapter 7, which discusses future work.

41

Chapter 5

Extending OpenBlocks

This chapter describes how to extend the OpenBlocks framework to create a block program-

ming system. We recommend that language designers spend the first phase of their design

process thinking about the design of the language itself without taking the features of Open-

Blocks into account. Language designers must make sure that OpenBlocks can satisfy the

requirements of their language instead of fitting their language within the requirements of

OpenBlocks. A user-center design approach is recommended when designing the language

and programming environment [16].

Once language designers have determined that OpenBlocks can be used, section 5.1

provides additional guidelines for the language design so that designers can take advantage

of OpenBlocks’ full feature set and how to represent that language graphically. Once the

language has been specified, section 5.2 describes how to build the programming system to

support the language.

5.1 Designing a Programming System

Probably the most difficult step in building a programming system is designing the language.

Language designers are faced with the following problems:

• Understanding the target users to anticipate their needs and expectations.

• Aiming for a language that closely maps to end-users’ natural language, so that users

can easily “read” and “write” in the programming language.

• Achieving the right level of abstraction, so that users can understand the language.

42

• Having all the necessary components to express solutions, so that users can translate

their ideas to code.

Fortunately, OpenBlocks makes it easy to generate a running programming system by

simply specifying a single file called the Language Definition file, which is described in

section 5.2.1. Little programming knowledge is required to specify this file as it is done in

XML.

5.1.1 Language Guidelines

The following are some guidelines to follow to further refine a block language. These guide-

lines were gathered from experiences in developing StarLogo TNG and EvoBeaker, the case

study described in Chapter 6, and background research of past programming systems.

• Prevent users from making syntax errors. The shapes of blocks represents a

contract that only blocks with complementary shapes can connect and syntactically

make sense. This contract can be breached if the system allows users to connect blocks

that fit visually, but are not correct within the bounds of the language. For example,

if a move block expects a number block, make sure that the blocks that can connect

to movemake sense. In other words, it doesn’t make sense to move true values.

• Do not overload connector shape type. Each connector shape should map to a

unique data type and vice versa. StarLogo TNG has three data types: number, string,

and boolean. Each data type has its own connector shape. Giving a connector shape

more than one associated data type can cause the user to make syntax mistakes.

• Keep block color consistent. Block color can be a guide for users to understand

and later recall what a block does or means. In StarLogo TNG, all blocks related to

movement were colored red. Users then would associate any red block to mean some

form of movement. Having all the blocks of related color residing in one drawer also

helps users locate blocks better.

• Use sockets labels as needed. Sockets labels add more meaning to a block con-

nected at another block’s socket. A forward block accepts any number block. By

labeling the socket of the forward blocks “steps,” users can determine that this num-

ber will determine how far an agent moves.

43

5.1.2 Usability Guidelines

The following are some usability guidelines to help design both the block programming

language and environment. These guidelines were gathered from designs and usability tests

of StarLogo TNG and EvoBeaker.

• Constrain the environment for novice users. Allowing novice users too much

freedom to change the interface of the programming environment can lead them into

a configuration that would not be conducive for learning and understanding this new

system. For example, factory drawers are best kept as static for novice users. If they

were able to hide factory drawers, the entire language now becomes invisible to them

until they bring the drawers up again.

• Enable more expert users to configure environment. Expert users, unlike

novices, have an understanding of the different tools and features of an environment.

And with experience they can perform the basic tasks much faster. Allowing them

to configure their environment allows them to set up their workspace to match their

new needs as more experienced programmers. For example, some expert users may

want typeblocking enabled by default.

• Provide constant visible feedback for user actions. OpenBlocks tries to provide

as much visual feedback to the user, but it cannot anticipate what all user or program

actions must display feedback. For example, if a block or set of blocks have a compile

error, OpenBlocks will not know this since the compiler is not within the framework.

Thus, application developers must notify the framework with the appropriate feedback

to display.

• Large subsets of blocks may overwhelm novice users, consider a small sub-

set of blocks. Adding blocks to the framework is easy with the Language Definition

file, and so, the number of blocks in the system can increase rapidly. However, in

user tests, we found that too many blocks overwhelmed novice users and made them

unsure of which blocks were more useful and important from the rest.

44

5.2 Building the Programming System

Once the language and the programming environment are designed, application developers

can then specify the Language Definition File, which is described in section 5.2.1. After-

wards application developers can immediately run the WorkspaceController class described

in section 5.2.2 to see a visual representation of their design and specifications.

5.2.1 Language Definition File

Developers can use the Language Definition file and its specified XML schema to describe

the layout of the programming environment as well as the components and properties of

every single block. Figure 5-1 shows a sample XML specification for a forward block in

StarLogo TNG. Certain block properties may be specified as immutable or mutable, such

as block labels. Some blocks may have labels that do not change over time, whereas others

may have labels that can be edited by the user. Changes to the block language can be made

quickly by changing values of properties within the XML Language Definition file.

Figure 5-1: A sample XML specification of a forward block.

In addition to specifying the language and programming environment, the file also spec-

ifies the following:

• Mapping between block connector type (i.e. number, string) to block connector shape

(i.e. round, square).

• Location and block content of block drawers.

45

• Default set of pages.

5.2.2 WorkspaceController

The WorkspaceController (WC) is an abstract Java class that acts as an interface be-

tween the programming environment, the Workspace, and the application enclosing the

OpenBlocks framework. To immediately get a programming environment started once the

Language Definition file has been specified, application developers only need to run from the

main method of this class. The WC will pass the Language Definition file to the OpenBlocks

library and generate the language and programming environment.

In addition to loading and generating components from the language definition file, the

WC provides the following functionality for application developers to use:

• Saving and loading in the OpenBlocks save format.

• Reseting the project state.

• Relaying undo/redo commands to the Workspace.

• Setting the Workspace zoom level.

Application developers may either extend this class or modify its source code to cus-

tomize and further control the flow of particular processes such as saving and loading.

5.3 Other Extendable Components

While the following features enable more customization of the programming system pro-

cesses, they require the application developer to write and modify some source code.

5.3.1 Customized Block Shapes

Code block shapes are rectangular with connectors shapes along its sides. The top and

bottom connectors slightly modify the tops and bottoms of blocks, that is if a block has

them.

By implementing the CustomBlockShape class, application developers can specify the

four corners of a block shape: its top left, top right, bottom left, and bottom right corners.

OpenBlocks will then interpolate between the four corners and render the rest of the block

components accordingly. Figure 5-2 shows a custom block used in StarLogo TNG.

46

Figure 5-2: A custom block used in StarLogo TNG. This procedure block has its bottom
left corner offset from its top left.

5.3.2 Link Rules

The basic rules of connecting between blocks are through their connector shapes. One

connector shape can only connect with its complementary connector shape. However, if

language designers would like to add a level of complexity to their block linking rules, ap-

plication developers can create extra rules by implementing the LinkRule class. Developers

can implement methods within this LinkRule interface so that, given two blocks and their

connectors, developers can apply more complex rules that rely on other properties of blocks

besides their connector shapes. The rules that the developer specifies are checked every

time a user moves a block within the canvas. Thus, the implementation of these added

rules should be efficient.

While adding more complex rules may seem like a common feature among block lan-

guages especially since only 14 connector types are provided in the framework, we decided to

discourage application developers and language designers from adding more complex rules

than necessary, as it puts more load on the user to remember or understand these additional

rules. It is confusing for users to see that the connectors shapes match, form an idea to

connect them, and finally attempt to connect them, but discover that the blocks cannot

connect. Thus, adding more complex rules can waste users’ time and cause confusion.

5.3.3 Listening to Workspace Events

If the developer would like to perform more customization or respond to particular user

actions within the workspace, developers can implement WorkspaceListeners that listen for

significant user actions. For every event, workspace listeners receive WorkspaceEvent in-

stances that contain information regarding the block, workspace widget, and other relevant

objects and data. Some of the events that workspace listeners receive are:

• Individual block events: block added, removed, renamed

• Block connection events: block connected, disconnected

47

• Page events: page added, removed, renamed

5.3.4 Other Public Classes within Library

The OpenBlocks Library is packaged as a Java jar file. Application developers may import

public classes of the library such as the following:

• BlockGenus: A block genus describes the properties that define a common set of

blocks. For example, the forward block in the StarLogo TNG language has a Block-

Genus to describe the common properties that all forward block instances inherit. All

the data in this class is immutable.

• Block: Block holds all the mutable data regarding each instance of a graphical block.

Developers can access and modify this mutable data such as the block label (if the

block is editable). Developers can also set their own properties within each block.

• Workspace: This class provides access to the current state of the Workspace, or

the programming environment. For example, developers can access all the blocks

currently on the block canvas.

• BlockDrawer: This class acts as a container for block instances. Developers can

access the contents of a BlockDrawer and add and remove blocks within it.

These public classes will be especially useful for developers that build a block language

compiler or interpreter to parse through the current block stacks within the block canvas.

48

Chapter 6

EvoBeaker: A Case Study

This chapter describes our evaluation of the usability of the OpenBlocks Framework by

performing a case study on EvoBeaker, an educational software tool to teach middle school

students micro- and macro-evolutionary biology [17].

6.1 Documentation and Support

Before the case study with EvoBeaker, OpenBlocks had the following documentation and

support materials:

• An API for the OpenBlocks Java library: This API includes a brief description

of all public classes within OpenBlocks and their public method signatures.

• An XML specification of Language Deinition file: This document explains how

to build a language definition file and describes all the necessary elements to specify.

• Sample Language Definition file: This file includes example specifications for

different blocks and a simple workspace layout.

6.2 Testing Framework with EvoBeaker

Creating the OpenBlocks framework was partly inspired by collaboration with EvoBeaker,

an educational simulation software for middle school students in Maine. EvoBeaker features

experiments where students can explore biological and ecological models such as the dynam-

ics between predators and prey. However, students could only work within the pre-defined

49

parameters of each experiment. Modifying these experiments would require students to

understand and parse through complicated XML files that described these experiments.

The EvoBeaker development team became attracted to the visual nature of StarLogo

TNG’s block programming system and decided to incorporate a similar system into their

application for students to edit their experiments by block programming. However, the

source code of StarLogo TNG was very specific and dependent on the StarLogo TNG

language and could not be easily be reused by another system. Thus, we developed the

OpenBlocks framework, which inherited many of the features from StarLogo TNG, for

their developers to extend.

6.2.1 EvoBeaker Collaboration

The EvoBeaker team will use OpenBlocks to allow their students to create new rules and

behavior for models within each of their experiments. For example, a student may be

examining the foraging strategies of rabbits in one experiment. Currently, the rabbits

forage for food only within a small radius from their burrows. The student wants to modify

the foraging behavior of rabbits to wander beyond their burrows. The following is a sample

usage scenario for the student to edit rabbits’ foraging behavior:

1. Student is working on experiment studying foraging habits of rabbits in the main

workspace of EvoBeaker.

2. Student wants to change the behavior of the rabbits.

3. Student clicks on a “special button” that launches the block programming environ-

ment. The environment already contains the blocks that define the behavior of rabbits.

4. Student edits rabbits’ behavior by manipulating the blocks, such that the rabbits

forage farther from their burrows.

5. Student saves edited blocks by pressing another “special button” that sends the block

code back to the experiment and returns to the original EvoBeaker screen. The

experiment will now run with the edited behavior.

The EvoBeaker application was developed in Cocoa and Objective-C. Before using the

Java OpenBlocks framework, we built an interface between the Cocoa and Java components

50

using the Java Native Interface (JNI). The two components can exchange string data and

messages through this JNI communication channel.

EvoBeaker began working with the OpenBlocks framework in January 2007. The frame-

work included the documentation materials described in section 6.1. In the months follow-

ing, I collaborated with the EvoBeaker team to set up their language file and programming

environment. Their team did not use the documentation to get started. Instead, I met

their team personally to explain the system, how to use the Language Definition file, how

to build a simple system, and to explain the file format of save files. Figure 6-1 exhibits a set

of blocks currently defined by EvoBeaker, which represent the different rules or behaviors

of a rabbit for an experiment to study their foraging habits.

Figure 6-1: EvoBeaker’s initial set of blocks are derived from an experiment that studies the
foraging strategies of rabbits. Each block on the canvas represents the different behaviors
of a rabbit.

6.2.2 Evaluation of EvoBeaker’s OpenBlocks Experience

The assessment described in this section only evaluates the first iteration of EvoBeaker’s

programming system. After three months, they have created a simple language and pro-

gramming environment layout, with one static block factory and a block canvas with no

pages. In the following months, they will begin evaluating their language, designing their

programming environment, and testing their system with students.

51

The following is an enumeration of our observations:

• The language definition file was easy to use. They learned how to use the file, however,

because I personally met with them to explain the details of it.

• The provided sample definition was a good reference to help them get started.

• The public API of OpenBlocks Java library was sufficient in getting an overview of

the system.

• EvoBeaker found the 14 provided block connector shapes to be very limiting. They

requested more shapes or a way to overload the meaning of the current set of block

connectors. We discouraged both features. Adding more block connector shapes

would mean creating more complicated shapes that could be less distinct from the

other shapes. Regarding the latter feature, if block connecters were overloaded, the

block language would lose the ability to specify their syntax visually within the shapes

of blocks. The resulting language would only confuse the user.

• The EvoBeaker team had difficulty understanding the relationships and differences

between the different programming environment components: the different types of

drawers, pages, the block canvas, and the workspace. A document visually noting the

differences and describing each component would have been helpful.

• The EvoBeaker team needed more interfaces to easily access, modify data or create

OpenBlocks Java objects like Blocks during the runtime of their programming sys-

tem. The framework however does not prevent developers from doing such operations

currently. They can perform such operations through less obvious ways: they must

understand the public API and write their own Java classes to directly interact with

the framework.

6.2.3 Additions and Modifications to Framework

From this initial evaluation of EvoBeaker’s experience with OpenBlocks, we plan to add

the following support materials and modifications to the framework:

• Design and implement more interfaces for applications developers to better integrate

the framework to existing applications, to acquire and modify current programming

52

system information, and to create instances of Blocks and other significant workspace

objects during runtime.

• More sample language definitions files of varying languages. This diverse set of files

can help illustrate how specifications differ between languages.

• A simple abstract WorkspaceController class to load the specified language to a visual

representation within a programming environment.

• Sample java classes that use the more complicated extensions to OpenBlocks, like

LinkRules and WorkspaceListener.

• Tutorials to create a simple language and programming environment.

53

Chapter 7

Conclusion

This chapter describes some ideas to further extend this framework and recapitulates the

contributions of this thesis work.

7.1 Future Work

This section enumerates further research and development of OpenBlocks.

7.1.1 Further Development of OpenBlocks

We tried to anticipate as many basic features that language designers would need to create

their programming system. OpenBlocks currently includes the minimal set of features to

create a usable block programming environment.

Facilitating Interaction with Framework

As noted in the EvoBeaker case study in section 6.2, there were no obvious ways to ex-

change information to and from the framework. The EvoBeaker developer also found no

clear ways to modify and create objects once the programming system was launched from

the Language Definition file. Currently, the only way to get information regarding current

system information is to request the save string from the WorkspaceController. Further

collaboration with EvoBeaker as they continue to use OpenBlocks will be useful in devel-

oping the appropriate interfaces to implement for external modules to better interact with

the framework.

54

A More Customizable Look and Feel

Application developers and language designers can decide how their workspace elements

are laid out, but they cannot specify the look and feel of their programming environment.

Look and feel includes the overall visual design, such as colors, font-faces, and textures,

and the interaction design of the interface, such as how buttons respond based on mouse

input from the user. For example, designers may want to change the look and feel of their

scroll bars such that they appear more metallic and change to a lighter shade when the

user mouses over them. Currently, the look and feel of OpenBlocks is determined by Java’s

native look and feel. To change the look and feel, developers must either replace the look

and feel specifications in the Swing properties file or set the look and feel in the source code

themselves.

A potential solution using a properties file would allow developers to control the look

and feel, similar to how the Language Definition file controls the block language and pro-

gramming environment. This properties file would allow the specification of features such

as:

• Font-faces and sizes of labels in blocks and buttons.

• Color schemes for the programming environment, such as the background color within

block drawers and the color of the block canvas.

• Button appearance when users mouse over, press, or release buttons.

• Default block size when users initially open the environment.

• Texture of the blocks.

• Ability to enable or disable block beveling.

Multiple Open Projects

Currently, the framework only allows one active programming project. However, as users

build more projects, having multiple projects open at once is a more efficient way for users

to compare and exchange code between them.

55

Printing Block Code

From field tests of StarLogo TNG, many teachers requested the ability to print block code

to have a hard copy of their students’ work and to manually grade projects. When designing

this feature, future developers may consider printing out the code textually or graphically.

By printing the code textually, users save space and ink on paper. However, by just printing

out the text labels, users lose the graphical information of blocks such as their locations

within the block canvas, the shapes of their block connectors, and the visual verification

of the syntax through block connections. Designers of this feature can let users decide for

themselves by providing options to print textually or graphically.

Debugging Support and Features

We found in StarLogo TNG that as users become more advanced and develop more complex

projects, their projects become large and unwieldy. While the programming system should

be preventing users from making mistakes, language designers cannot anticipate logical

bugs that users make. Logical bugs result in unintended or unexpected behavior. With

the current set of features in OpenBlocks, users may need to resort to manually stepping

through their projects or examining the resulting behavior or their code.

Some possible solutions to alleviate the tedious and timely work of debugging include

include building a stepper interface within the programming environment that highlights

the code blocks currently executing. Another interface can be created to show project state

or variables. Note, however, that these proposed solutions are dependent on the language

design. For example, project state and the types of variables available (if the language has

any) will differ between languages. Any solution will need to be generic enough to cover

some of the common usages.

7.1.2 Further Evaluation and User Testing

Studying EvoBeaker’s experience with OpenBlocks showed some of the strengths and weak-

ness of the framework. However, additional research and assessment is needed to refine

OpenBlocks.

56

Testing New User Interface Features

OpenBlocks implemented many features to address the usability problems discovered in

StarLogo TNG, such as block connector highlighting to offer more visual feedback. User

tests should be performed to evaluate these new features and how they compare to StarLogo

TNG under the same set of user tasks.

Applying OpenBlocks in More Diverse Contexts

Currently, both StarLogo TNG and EvoBeaker are utilizing the OpenBlocks system. Be-

cause both projects are educational and agent-based simulation environments, there is sig-

nificant overlap in their user base and goals. Thus, our evaluation of OpenBlocks has been

limited in these educational contexts.

However, OpenBlocks is intended for a diverse set of uses. As OpenBlocks becomes

adopted in other contexts such as professional contexts, further evaluation and testing of

these set of users should be done.

Developing an OpenBlocks Design Process

In addition to studying OpenBlocks usage in more diverse contexts, a more comprehensive

study of how language designers and application developers create and build their program-

ming systems using OpenBlocks can help provide insight to what worked and what did not

for some languages. These studies can also give us insight to the limits of OpenBlocks’

feature sets, identifying places for improvement in the framework, while also providing ear-

lier warning to future application developers and language designers what the OpenBlocks

framework is not capable of. Such prevention could help designers decide earlier if the

framework is appropriate for their intentions.

This further evaluation can also focus on developing a design process that application

developers and language designers can follow to help in the process of developing their

programming systems using OpenBlocks. Some goals to develop this design process include:

• Improving understanding of the intended domain and anticipating and matching end-

user needs and tasks.

• Encouraging application developers and language designers to design around their

57

problem, goals, and set of users instead of designing around the features of Open-

Blocks.

• Facilitating the translation of their programming system design to features of Open-

Blocks and ensuring that this translation makes sense to them and to their users.

In addition to developing a design process, further evaluation can help to develop the

language and usability guidelines presented in section 5.1.

7.1.3 An Open Source Library

After performing the evaluations suggested in the previous section, OpenBlocks should

be released as an open source library, which was one the original goals of this thesis work.

Before the release, substantial code reviews should be conducted to revise any programming

shortcuts or inconsistencies and clarify documentation. Also, tutorials for future developers

should be developed to easily extend the library.

7.2 Closing Remarks

OpenBlocks is an extendable framework designed to make it easy for application designers

and developers to create their own graphical block programming system. Constructing their

graphical language and laying out their programming environment only requires defining a

single XML file. And any further modifications of their programming system can be done

by changing that same XML file, increasing the speed of design iteration.

Because OpenBlocks derived from Starlogo TNG, applications of OpenBlocks will lever-

age the many benefits of graphical block programming systems such as a visually apparent

language and syntax. While the inherited features of StarLogo TNG help end-users manage

the complexity of their code such as a zoomable block canvas and other features mentioned

in section 3.2, OpenBlocks provides further improvements in usability over its predecessor

such as displaying more visual feedback when users connect blocks.

The OpenBlocks framework is also customizable, so application designers and developers

can create a programming environment that better matches their application’s purposes and

needs of their end-users. However, we could not anticipate all purposes and needs, as the

the case study conducted with EvoBeaker revealed that we needed to create more interfaces

58

for external components to interact with the framework. Future work on this framework

will require evaluation of OpenBlocks usage in more diverse contexts. Such a study can

help in the ongoing development of OpenBlocks as an extendable and useful framework

and in the creation of a design process for future application designers and developers to

appropriately leverage the benefits of this framework.

Finally, because OpenBlocks allows for rapid development and iteration of a working

block programming system, application designers and developers can concentrate on the

design, rather than the implementation, of their programming system. Such ease and

speed can help developers create a programming language at the right level of abstraction

and expression for their end-users and a programming environment that properly supports

the use of that language. The OpenBlocks framework not only makes graphical block

programming systems more attainable for application designers and developers, but it also

facilitates the creation of applications that can further make programming more accessible

to larger audiences.

59

Bibliography

[1] C. Kelleher and R. Pausch, “Lowering the Barriers to Programming: A Taxonomy of

Programming Environments and Languages for Novice Programmers,” ACM Comput.

Surv., vol. 37, no. 2, pp. 83–137, 2005.

[2] A. Begel and E. Klopfer, “Starlogo tng: An Introduction to Game Development,”

Journal of E-Learning, 2005.

[3] “Starlogo TNG,” 2007. [Online]. Available: http://education.mit.edu/starlogo-tng

[4] “Stagecast,” 2007. [Online]. Available: http://www.stagecast.com/index.html

[5] “Apple - Mac OS X - Applescript,” 2007. [Online]. Available: http://www.ap-

ple.com/macosx/

[6] “The Mathworks - Matlab - The Language of Technical Computing,” 2007. [Online].

Available: http://www.mathworks.com/products/matlab/

[7] “Using Intellisense,” 2007. [Online]. Available: http://msdn2.microsoft.com/en-

us/library/hcw1s69b(VS.71).aspx

[8] “Eclipse,” 2007. [Online]. Available: http://www.eclipse.org

[9] “Visual Basic Developer Center,” 2007. [Online]. Available: http://msdn2.micro-

soft.com/en-us/vbasic/default.aspx

[10] “Quartz Composer,” 2007. [Online]. Available: http://developer.apple.com/documen-

tation/GraphicsImaging/Conceptual/QuartzComposer

[11] A. Repenning and S. T., “Agentsheets: A Medium for Creating Domain-Oriented

Visual Languages,” Computer, vol. 28, no. 3, pp. 17–25, 1995.

60

[12] A. Begel, “Logoblocks: A Graphical Programming Language for Interacting with the

World,” Master’s thesis, Massachusetts Institute of Technology, 1996.

[13] C. McCaffrey, “Starlogo TNG: The Convergence of Graphical Programming and Text

Processing,” Master’s thesis, Massachusetts Institute of Technology, 2006.

[14] M. Resnick, “Starlogo: An Environment for Decentralized Modeling and Decentral-

ized Thinking,” in CHI ’96: Conference Companion on Human Factors in Computing

Systems. New York, NY, USA: ACM Press, 1996, pp. 11–12.

[15] K. Wang, C. McCaffrey, D. Wendel, and E. Klopfer, “3D Game Design with Pro-

gramming Blocks in Starlogo TNG,” in ICLS ’06: Proceedings of the 7th International

Conference on Learning Sciences. International Society of the Learning Sciences, 2006,

pp. 1008–1009.

[16] J. F. Pane, “Designing a Programming System for Children with a Focus on Usability,”

in CHI ’98: CHI 98 conference summary on Human factors in Computing Systems.

New York, NY, USA: ACM Press, 1998, pp. 62–63.

[17] “Evobeaker,” 2007. [Online]. Available: http://www.simbio.com

61

