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Abstract

In this thesis, we are interested in solving a problem that arises in model-based
programming, specifically in the estimation of the state a system described by a
probabilistic model. Some model-based estimators, such as the MEXEC algorithm
and the DNNF-based Belief State Estimation algorithm, use a valued and-or acyclic
graph to represent the possible estimates. These algorithms specifically use a valued
smooth deterministic decomposable negation normal form (sd-DNNF) representation,
a type of and-or acyclic graph.

Prior work has focused on extracting either all or only the best solution from the
sd-DNNF. This work develops an efficient algorithm that is able to extract the k best
solutions, where k is a parameter to the algorithm. For a graph with |E| edges, |V |
nodes and |Ev| children per non-leaf node, the algorithm presented in this thesis has a
time complexity of O(|E|k log k + |E| log |Ev|+ |V |k log |Ev|) and a space complexity
O(|E|k).

Thesis Supervisor: Howard Shrobe
Title: Principal Research Scientist in Electrical Engineering and Computer Science

Thesis Supervisor: Brian C. Williams
Title: Professor in Aeronautical and Astronautical Engineering

3



4



Acknowledgments

I would like to thank my wife Joelle Brichard for her patience. I would like to thank

Dr. Howie Shrobe for accepting this project on short notice. I would like to thank

my adviser Prof. Brian Williams and my co-worker Seung Chung who helped with

the initial versions of the algorithm.

5



6



Contents

1 Introduction 17

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 Valued sd-DNNF . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.3 sd-DNNF Properties . . . . . . . . . . . . . . . . . . . . . . 21

1.2.4 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.5 Solution Probability . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Formal Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Innovative Claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Best-Solution Algorithm 27

2.1 Find-Best-Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Find-Best-Selection Algorithm . . . . . . . . . . . . . . . . . . 30

2.1.2 Get-Solution-From-Selection Algorithm . . . . . . . . . . . . . 32

2.2 Find-Best-Solution Example . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Find-Best-Selection Example . . . . . . . . . . . . . . . . . . . 36

7



2.2.2 Get-Solution-From-Selection Example . . . . . . . . . . . . . . 38

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 K-Best-Solutions Algorithm 43

3.1 Find-K-Best-Solutions Algorithm . . . . . . . . . . . . . . . . . . . . 47

3.2 Find-K-Best-Selections Algorithm . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Find-K-Best-Selections Leaf-case Algorithm . . . . . . . . . . 50

3.2.2 Find-K-Best-Selections And-case Algorithm . . . . . . . . . . 51

3.2.3 Construct-Combinations Algorithm . . . . . . . . . . . . . . . 55

3.2.4 Reset-Combinations Algorithm . . . . . . . . . . . . . . . . . 57

3.2.5 The Find-K-Best-Selections And-case Algorithm . . . . . . . . 58

3.2.6 Inherit-First-Child Algorithm . . . . . . . . . . . . . . . . . . 60

3.2.7 Merge-Pair Algorithm . . . . . . . . . . . . . . . . . . . . . . 61

3.2.8 Insert-Successor Algorithm . . . . . . . . . . . . . . . . . . . . 63

3.2.9 Find-K-Best-Selections Or-case Algorithm . . . . . . . . . . . 67

3.2.10 Overall Find-K-Best-Selections Complexity . . . . . . . . . . . 70

3.3 Get-K-Solutions-From-Selections Algorithm . . . . . . . . . . . . . . 71

3.3.1 Get-K-Solutions-From-Selections Leaf-case Algorithm . . . . . 72

3.3.2 Get-K-Solutions-From-Selections And-case Algorithm . . . . . 73

3.3.3 Get-K-Solutions-From-Selections Or-case Algorithm . . . . . . 74

3.3.4 Overall Get-K-Solutions-From-Selections Complexity . . . . . 75

3.4 Find-K-Best-Solutions Complexity . . . . . . . . . . . . . . . . . . . . 75

3.5 Find-K-Best-Solutions Example . . . . . . . . . . . . . . . . . . . . . 76

3.5.1 Switch Example . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.2 A-B Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8



4 Results 99

5 Conclusion 113

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1.1 Depth-first search for solution extraction . . . . . . . . . . . . 113

5.1.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9



10



List of Figures

1-1 An example sd-DNNF . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1-2 An example selection of an sd-DNNF . . . . . . . . . . . . . . . . . . 22

2-1 Best selection of an sd-DNNF . . . . . . . . . . . . . . . . . . . . . . 28

2-2 Find-Best-Selection Initial State . . . . . . . . . . . . . . . . . . . . . 37

2-3 Find-Best-Selection Intermediate State . . . . . . . . . . . . . . . . . 38

2-4 Find-Best-Selection Result State . . . . . . . . . . . . . . . . . . . . . 39

2-5 Get-Solution-From-Selection Initial State . . . . . . . . . . . . . . . . 40

2-6 Get-Solution-From-Selection Next State . . . . . . . . . . . . . . . . . 41

2-7 Get-Solution-From-Selection Final State . . . . . . . . . . . . . . . . 42

3-1 Find-K-Best-Solutions algorithm hierarchy . . . . . . . . . . . . . . . 48

3-2 The enabling of And node combinations . . . . . . . . . . . . . . . . 53

3-3 The candidate structure of And node combinations for k = 4 . . . . 54

3-4 Example depicting βξ . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3-5 Switch example for k solutions . . . . . . . . . . . . . . . . . . . . . . 76

3-6 Switch example for k = 3 solutions with modified nodes . . . . . . . . 77

3-7 Switch example for k = 3 solutions with minimal modified nodes . . . 78

3-8 Switch example after running FKBS for k = 3 . . . . . . . . . . . . . 79

3-9 Switch example after running FKBS for k = 2 . . . . . . . . . . . . . 84

11



3-10 Switch example after running FKBS for k = 1 . . . . . . . . . . . . . 85

3-11 Switch example with the GKSFS algorithm for k = 3 . . . . . . . . . 86

3-12 More complex A-B example . . . . . . . . . . . . . . . . . . . . . . . 88

3-13 A-B example for k = 3 solutions and modified nodes . . . . . . . . . . 89

3-14 A-B example for k = 3 solutions and minimal modified nodes . . . . . 90

3-15 A-B example with k = 3 after FKBS Algorithm . . . . . . . . . . . . 91

3-16 The candidate structure of And node combinations for k = 3 . . . . 93

3-17 A-B example with k = 2 for FKBS Algorithm . . . . . . . . . . . . . 95

3-18 A-B example with k = 1 for FKBS Algorithm . . . . . . . . . . . . . 96

3-19 A-B example with k = 3 for GKSFS Algorithm . . . . . . . . . . . . 97

4-1 Time and memory performance of G1, k = 1− 500 . . . . . . . . . . 102

4-2 Time and memory performance of G1, k = 500− 10, 000 . . . . . . . 103

4-3 Time and memory performance of G2 . . . . . . . . . . . . . . . . . . 105

4-4 Time and memory performance of G3 . . . . . . . . . . . . . . . . . . 106

4-5 Time and memory performance of G4 . . . . . . . . . . . . . . . . . . 107

4-6 Time and memory performance of G5 . . . . . . . . . . . . . . . . . . 108

4-7 Time and memory performance of G6 . . . . . . . . . . . . . . . . . . 110

4-8 Time and memory performance of G7 . . . . . . . . . . . . . . . . . . 111

12



List of Tables

3.1 Combining children for And nodes . . . . . . . . . . . . . . . . . . . 51

3.2 Combining children for And nodes, case 2 . . . . . . . . . . . . . . . 52

3.3 Combining children for And nodes, case 3 . . . . . . . . . . . . . . . 52

4.1 Attributes of the example graphs . . . . . . . . . . . . . . . . . . . . 100

4.2 Summary of linear data trends . . . . . . . . . . . . . . . . . . . . . . 109

13



14



List of Algorithms

2.1 FindBestSolution(VO, E, LL, LP, ×, >) . . . . . . . . . . . . . . . . . 30

2.2 FindBestSelection(VO, E, LP, ×, >) . . . . . . . . . . . . . . . . . . . 31

2.3 GetSolutionFromSelection(VO, E, LL, η) . . . . . . . . . . . . . . . . . 33

3.1 FindKBestSolutions(VO, E, LL, LP, ×, >, k) . . . . . . . . . . . . . . 47

3.2 FindKBestSelections(VO, E, LP, ×, >, k) . . . . . . . . . . . . . . . . 49

3.3 FKBSelLeaf(l, PV , #Sel, LP) . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 ConstructCombinations(Ca, k, j1, j2) . . . . . . . . . . . . . . . . . . . 55

3.5 ResetCombinations(Ca) . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 FKBSelAnd(a, PV , #Sel, ξ, ×, >) . . . . . . . . . . . . . . . . . . . . 58

3.7 InheritFirstChild(n, #Sel, PV ) . . . . . . . . . . . . . . . . . . . . . . 61

3.8 MergePair(βξ, nPrev, n, Pa, PV , #a, #n) . . . . . . . . . . . . . . . . . 62

3.9 InsSucc(Q, Ca, Pa, PV , n, ×, >, max1, max2, i) . . . . . . . . . . . . 64

3.10 FKBSelOr(o, PV , #Sel, η, >) . . . . . . . . . . . . . . . . . . . . . . . 68

3.11 GetKSolutionsFromSelections(VO, E, LL, η, ξ, #r) . . . . . . . . . . . 71

3.12 GKSFSLeaf(l, m, #r, Sk, LL) . . . . . . . . . . . . . . . . . . . . . . . 72

3.13 GKSFSAnd(a, m, #r, ξ) . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.14 GKSFSOr(o, m, #r, η) . . . . . . . . . . . . . . . . . . . . . . . . . . 74

15



16



Chapter 1

Introduction

In this thesis, we are interested in solving a problem that arises in model-based

programming[15]. In model-based programming, the models written by the system

engineers can be used to diagnose and reconfigure the system online. The main

component of a model-based program is a generic software engine that is validated

for correctness once and re-used on multiple projects, changing only the engine data,

the system models.

The problem of interest to this thesis occurs in the diagnosis portion of the en-

gine, called a mode estimator. The mode estimator is capable of automatically doing

system-wide diagnostic reasoning, inferring the likely hidden state of the system. An

estimator infers the current state by reasoning over a probabilistic model of the sys-

tem dynamics, the commands that have been executed, and the resulting sensory

observations. To support real-timed interaction of the engine with the world, mode

estimators must approximate the probability distribution of the hidden state. One

type of approximation commonly used is fixing the number of states or trajectories

tracked simultaneously by the estimator, such as in the Best-First Trajectory Enumer-

ation (BFTE) algorithm [15], the Best-First Belief State Update (BFBSU) algorithm
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Figure 1-1: This is an example sd-DNNF from which we would like to extract so-
lutions. This example contains 180 solutions within the 58 nodes, where a solution
typically includes about 20 nodes. We use circles to represent Or nodes, squares for
And nodes, and triangles for leaf nodes.

[14, 13], the MEXEC algorithm [1], and the DNNF-based Belief State Estimation

(DBSE) algorithm [12].

For the mode estimator algorithms DBSE and MEXEC, the underlying represen-

tation of the estimator is a valued smooth deterministic decomposable negation normal

form (sd-DNNF) [8] representation. The valued sd-DNNF representation is related to

AND/OR Search Spaces for Graphical Models [11]. Prior work on valued sd-DNNF

representations have only shown how to extract the best solution, all solutions, or

all solutions that have the same value as the best solution, where this last type of

extraction is a composition of the first two.

The sd-DNNF representation is a directed acyclic graph, with a single root node.

18



The internal nodes are labeled as either And or Or nodes and the leaves of the graph

are partial solutions we wish to combine into a complete solution. Our sd-DNNF

is valued in that our leaves are labeled with probabilities. We expect to repeatedly

extract solutions from the same valued sd-DNNF, where we will be varying only

the values. Fig. 1-1 is an example of an sd-DNNF from which we would like to

extract solutions. The DBSE and MEXEC algorithms use an sd-DNNF as their

representation because an sd-DNNF is a compact encoding of solutions. An sd-DNNF

is compact through the use of decomposition and memoization [9].

1.1 Problem Statement

The problem we’re interested in solving is to find the k most probable solutions of a

valued sd-DNNF, a type of acyclic and-or graph with valued leaves. We will define

our sd-DNNF, a solution of an sd-DNNF, and the probability of a solution in the

next section followed by a formal definition of this problem statement in Section 1.3.

1.2 Definitions

In this section we will formally define our valued sd-DNNF, followed by the definition

of a selection of the sd-DNNF, the correspondence between selections and solutions,

and then the probability of a solution.

1.2.1 Valued sd-DNNF

Formally, our valued sd-DNNF is the tuple 〈V, E,LL,LP,×, >〉:

• V is the set of nodes of the directed, acyclic graph. V is partitioned into three

sets, A, O, and L, corresponding to the And, Or, and Leaf nodes, respectively.

19



r is the root node of this acyclic graph such that r ∈ V . Our graph has a single

root.

• E is the set of edges of the graph. An edge e ∈ E is an ordered pair of nodes

〈m, n〉. Edges are directed: m→ n. Since leaves necessarily have no out-going

edges, m ∈ A∪O and n ∈ V = A∪O∪L. We define a path v1, v2, . . . , vp in the

normal way: a path is such that for every successive pair of nodes vi and vi+1,

there is an edge 〈vi, vi+1〉 ∈ E. The graph is acyclic, so there does not exist a

path such that v1 = vp, for any p. Thus, for each edge 〈m, n〉, we designate n

as a child of m, and m as a parent of n. All And and Or nodes have at least

one child.

• LL is a function that labels L with a unique symbol or the empty symbol ∅.

This symbol can be thought of as the meaning of this leaf. This algorithm

assumes these symbols are partial solutions to a problem that we care about,

and we will explain how they are used in the algorithm momentarily when we

define a solution.

• LP : L → [0, 1] is a function that labels L with a probability, or more gener-

ally, with a cost or reward. The meaning of this probability will be explained

momentarily.

• × is a binary function that combines probabilities into a new probability. This

function is expected to combine the labels of LP.

• > is a total ordering of the probabilities of LP. If a > b, then we prefer solutions

with probability a over solutions with probability b. We will define solutions

and probabilities of solutions momentarily.

In our definition of our valued sd-DNNF, we are assuming that the most probable

solution is defined by a maximum-product, thus we use > and ×, respectively, to find

20



the probability of a solution. This work can be equivalently framed as a maximum-

sum, using > and +, should we want to use rewards instead of probabilities. Likewise,

we can minimize instead of maximize. The important part to this algorithm is that

> be a choice function and × be a function that combines independent choices.

1.2.2 Selection

A selection is a set of nodes that obey these rules:

1. A selection always includes the root node.

2. For every And node a selected, every child of a is also selected.

3. For every Or node o selected, one and only one child of o is also selected.

For example, consider the selection of Fig. 1-2. The selection shown is {o1, a2,

l4}. We denote the root o1 with a double line. In this case, our root is an Or node.

The other two valid selections are {o1, o3, a5, l7} and {o1, o3, a6, l8}. The labels

of LL and of LP are designated in the figure within the L [. . .] and the P [. . .] leaf

labels, respectively, of nodes l4, l7, and l8. For example, LL (l4) = “Switch=Off” and

LP (l4) = 0.5.

1.2.3 sd-DNNF Properties

An sd-DNNF[8] imposes three properties on an and-or acyclic graph, the properties

of smooth, deterministic, and decomposable. All three properties assume that the

symbols we use to label the leaves represent assignments to variables, either binary

or multi-valued. The smooth property states that every variable x that labels a

descendant of one child of an Or node must label a descendant of every child of the

Or node. Said another way, for an Or node o, every selection rooted at o will define
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Selection

l4

P[0.5]

L[Switch = Off]

a2

o1

o3

l7

P[0.3]

L[Switch = On]

l8

P[0.2]

L[Switch = Broken]

a5 a6

Figure 1-2: This figure shows a selection of this simple sd-DNNF. The node o1 is the
root of the tree. Our selection consists of o1, a2, and l4. This is a correct selection as
it includes the root o1; it includes exactly one child of o1, namely a2; and it includes
all of the children of a2, namely l4.

a solution with exactly the same variables as every other selection rooted at o. Fig.

1-2 is smooth because the only variable Switch appears on a leaf of some descendant

of both children of both or nodes, o1 and o3.

The deterministic property also applies to Or nodes. This property requires that

each selection, as specified by a selection per Or node, must represent a different set

of assignments to the variables. For the purpose of this thesis, this means that the

set of symbols on the leaves of a selection are unique among all selections. For Fig.

1-2, the deterministic property trivially holds as each selection has a different leaf

and each leaf has a unique assignment.

The decomposable property applies to And nodes. This property requires that

the variables of the leaves of a descendant of a child of the And node are disjoint
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from the variables of any other descendant of every other child; an And node parti-

tions variables among its children. In this way, contradictory assignments are never

included in the same selection. For this thesis, this property ensures that if a symbol

only appears on one leaf, a selection will never include the same symbol twice. This

again holds trivially for Fig. 1-2, as every And node has only one child.

1.2.4 Solution

A solution is constructed by creating a selection of nodes, and then applying LL to

all of the leaf nodes in the selection. The set of resulting leaf symbols is a solution.

We omit the empty symbol ∅ from our solution.

For example, the solution of the selection {o1, a2, l4} shown in Fig. 1-2 is

{“Switch=Off”}. Since the only leaf node of this selection is l4, our solution is

the set containing only LL (l4). As stated above, this is “Switch=Off”.

We are assuming a deterministic and-or graph, so each selection will have a unique

set of leaf symbols. We further require that these set of leaf symbols are unique even

after omitting the empty symbol ∅, and thus each selection will have a unique solution.

In the DBSE algorithm, ∅ is used to add leaves with probabilities that can alter which

solutions are the best solutions while not changing the symbols included in the best

solutions.

1.2.5 Solution Probability

To compute the probability of a solution, we apply LP to all of the leaf nodes of the

selection of the solution and then combine them with ×. Since we assume there is a

one-to-one correspondence between solutions and selections, this selection is unique.

In the example of Fig. 1-2, the probability of the selection and solution is 0.5.

Since we only have one leaf, we need not apply ×.
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1.3 Formal Problem Statement

For the valued sd-DNNF 〈V, E,LL,LP,×, >〉, we want to find the k most probable

solutions. Equivalently, we order all selections from most probable to least probable

and keep the first k selections. In this thesis, we want the k solutions of the k best

selections and the probability of these solutions1.

1.4 Innovative Claims

Given an sd-DNNF with |E| edges, |V | nodes, |Ev| children per node, and trying

to extract the k best solutions, this work provides a novel algorithm that solves our

problem with a running time of O(|E|k log k+ |E| log |Ev|+ |V |k log |Ev|) and a space

of O (k|E|). Prior work [8] was only able to extract the k best solutions, for k > 1, by

extracting all solutions and then keeping the best k. Since the number of solutions is

expected to be much larger than |E|, this is a substantial improvement.

At the core of the k best solutions algorithm is a novel algorithm that can find

the k best combinations of n sorted lists of k elements each. A combination is an

element from each of the n lists combined together using ×, and thus there are

kn combinations. This novel algorithm has a complexity of O(nk log k) time and

O(nk + k log k) space.

1.5 Related Work

This work builds on the Minimum Cardinality (MCard) work by Darwiche [8] and

valued sd-DNNF work by Barret [1]. Both provide a specification for the sd-DNNF

1We can assume that solutions can be found from selections because we assume that there is at
most one selection in an sd-DNNF that generates a particular solution. The deterministic property of
an sd-DNNF ensures this is a correct assumption. Thus, we need never combine multiple selections,
typically with +, to find the best solution.
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〈V, E,LL,LP,×, >〉 and an algorithm to extract the best solution (minimal or maxi-

mal, respectively). [8] also provides two more algorithms, one to extract all solutions

and one to extract all solutions of minimum cardinality (value). The latter algorithm

first restricts the tree to have minimum value and then extracts all solutions. This

thesis generalizes the algorithm to extract the maximal solution by allowing more

than one solution to be extracted. We present a version of the algorithm to extract

the maximal value in Chapter 2.

This work is inspired by the acyclic join-tree algorithm [10] and employs dynamic

programming [2]. A join-tree is a tree where the nodes are constraints on variables

and the edges connect together nodes whose constraints share variables. The edges

are labeled with the shared variables. A join-tree requires that every node with a

common variable a be connected through a path of edges labeled with a to every

other node that also shares the common variable a. The acyclic join-tree algorithm

looks for a solution to this constraint tree by having each node, starting at the leaves,

inform their parent as to which values of their shared variables are possible. The

parent then constrains itself with this information (by performing a join operation).

This continues to the root, at which point the root has enough information to know if

there exists a solution and which assignments are possible at the root. The root can

then make a final decision as to which assignment it chooses and this information is

then propagated back to the leaves, where a full solution can be assembled.

1.6 Approach

Qualitatively, our sd-DNNF consists of a number of local constraints at And and

Or nodes that describe how an internal node’s value depends on its children’s values.

Leaves always have a constant value. Since a node may have multiple parents, we use

dynamic programming to remember each node’s value and annotations about why
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it has that value. We want to select the final k selections at the root, as the root

will have all the information necessary to make the decision. Thus, our algorithm

propagates up the impact of the choice of leaves to the root. Once the root has made

its decision, our algorithm finds the k best solutions by traversing the tree back down

from the root to the leaves, based on the annotations. Once we reach the leaves, we

can assemble our solution from the symbols of each leaf.

This thesis will next present an algorithm for extracting the most probable solution

from the valued sd-DNNF in chapter 2. Chapter 3 presents our new algorithm that

extracts the k most probable solutions from the sd-DNNF and then results of running

this algorithm on seven graphs is presented in chapter 4. We will then conclude in

chapter 5.
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Chapter 2

Best-Solution Algorithm

This chapter introduces an algorithm to extract the best solution from an sd-DNNF.

To extract the best solution, we need to find the best selection. Intuitively, since two

selections differ based on the choices made at the Or nodes, we want to choose the

best child for every Or node.

To find this best selection, we apply three rules:

1. For each leaf node l, the probability of the leaf node is LP (l).

2. For each And node a, the probability of the And node is the combination of

the probability of all of its children using ×.

3. For each Or node o, we choose the best child v of o using > and the probability

of o is the probability of v.

The best selection is then the selection that includes the best child of each Or

node visited from the root. We visit the best child of an Or node and all children of

And nodes. Fig. 2-1 shows an example of a best selection for Fig. 1-2. In Fig. 2-1,

we have highlighted the best subgraphs for each node with a solid line. The subgraph

that starts at the root node o1 is the best overall selection.
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Best Selection

l4

P[0.5]

 L[Switch = Off] 

a2

0.5

o1

0.5

o3

0.3

l7

P[0.3]

 L[Switch = On] 

l8

P[0.2]

 L[Switch = Broken] 

a5

0.3

a6

0.2

0.3 0.2

Figure 2-1: This figure shows the best selection of this simple sd-DNNF. Solid arcs
represent the best choice for each node locally. Starting at the root, the overall best
choice is o1, a2, and then l4, which is our best selection. We label the arcs with the
probability of choosing that child.

In following these three rules, if we cache at each node the probability of the

best choice, then the parents of the node can make use of this probability locally to

compute their own best probability. We will visit each edge once: for And nodes

we apply × to each child and for Or nodes we select the largest child with >. Since

each parent needs their children’s values to evaluate their own rule, we need a way of

visiting all children before their parents. We’ve chosen to pre-order our nodes from

1 to |V |, such that the order of a node is greater than all parents of the node and

less than all children of the node1. This is called a topological sort[3]. This ordering

1Recall that we’re interested in solving the same problem multiple times, varying only the prob-
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must exist because there are no cycles in the graph, though it is not in general unique.

Using the ordering, the algorithm can walk over the nodes from |V | to 1 and guarantee

that every child is visited before its parent. We designate our ordered nodes VO. This

ordering always places the root r at position 1.

Once we have the best selection, we need to extract the corresponding solution.

For each Or node o in the graph, we record a decision η (o) ∈ Children (o). The

solution of the selection is the set of LL (l) for each l that has a path from the root

r to l such that every Or node oi in the path at position i is followed by η (oi) at

position i + 1.

Since we’re looking for all leaves connected to the root by some path, this problem

is naturally related to the transitive closure[4] of the sd-DNNF graph. A transitive

closure of a directed graph is a new graph where the nodes are the same, but there

is an edge 〈m, n〉 in the new graph if there is a path in the original graph from m to

n. The problem of determining the leaves of the selection is equivalent to examining

the leaves that are directly connected to the root node r in the transitive closure

graph of a modified sd-DNNF, where the sd-DNNF is “modified” such that the only

out-going edge of an Or node is the one specified by η. We are only interested in

the edges of the root node in the transitive closure graph, so we need not compute

the full transitive closure of the graph. Since our graph is acyclic, we can use our

topological ordering to walk once over the nodes and be sure to visit all nodes along

any path from the root to the leaves before their children. This lets us avoid adding

edges explicitly and instead only mark nodes that would be connected to the root in

the transitive closure graph.

A node is always connected to itself, so we always mark the root. For connected

And nodes, we mark all children as also connected to the root, as all of them are part

of at least one path from the root to a leaf. For connected Or nodes, we mark only

abilities, not the structure, so we can omit this sorting cost from our calculations.
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the child specified by η. Once we have marked our sd-DNNF, we can apply LL to all

of the marked leaves, as these are all part of the solution. In Alg. 2.3, we make the

optimization of applying LL to a leaf when it is visited, rather than making a second

pass of the marked sd-DNNF.

2.1 Find-Best-Solution Algorithm

Algorithm 2.1: FindBestSolution(VO, E, LL, LP, ×, >)

η ← FindBestSelection(VO, E, LP, ×, >) ;1

S ← GetSolutionFromSelection(VO, E, LL, η) ;2

return S;3

The algorithm that computes the best solution is shown in Alg. 2.1. The algorithm

is broken into the two passes specified above, a pass from the leaves to the root that

computes the best selection and a second pass from the root to the leaves that extracts

the solution of the best selection. The first pass returns η : O → V , a function that

records the best child node for each Or node. η defines a superset of a selection, as

it contains decisions for Or nodes that are not part of the selection. The parts of η

that are not part of the best selection will be ignored by GetSolutionFromSelection

as the irrelevant Or nodes will not be connected to the root node. The second pass

returns the best solution, a set of labels, corresponding to the selection.

2.1.1 Find-Best-Selection Algorithm

The first part of Alg. 2.1 is shown in Alg. 2.2. This function is propagating the

probabilities of the leaves of the valued sd-DNNF to the root, making decisions at

each Or node as to which child is best. This algorithm applies the three rules on

page 27. Line 5 applies rule 1. Lines 8-13 apply rule 2. These lines combine the
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Algorithm 2.2: FindBestSelection(VO, E, LP, ×, >)

for i = |V | to 1 do1

v ← VO [i] ;2

switch v in3

case v ∈ L4

PV (v)← LP (v) ;5

end6

case v ∈ A7

// Combine the probability of the children of v
e← some 〈v, n〉 ∈ E ;8

p← PV (n) ;9

foreach 〈v, n〉 ∈ E \ e do10

p← p×PV (n) ;11

end12

PV (v)← p ;13

end14

case v ∈ O15

// Find the best child of v
e← some 〈v, n〉 ∈ E ;16

〈b, p〉 ← 〈n,PV (n)〉 ;17

foreach 〈v, n〉 ∈ E \ e do18

if PV (n) > p then19

〈b, p〉 ← 〈n,PV (n)〉 ;20

end21

end22

PV (v)← p ;23

η (v)← b ;24

end25

end26

end27

return η ;28
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probability of each child of the And node v using × and this is the probability of v.

Lines 16-23 apply rule 3. These lines look for the most probable child of the Or node

v, using >. Line 24 then records the Or node’s most probable child in η. Finally, we

return η on line 28.

Runtime Analysis This algorithm visits every node once and every edge once. Our

nodes are stored sorted in an array, making VO [i] an O(1) operation. We perform

× or > per edge, which for our problem are both O(1) operations. We store edges

with the parent node, which means we can directly access the list of edges v → n

on lines 10 and 18 in O(1) time. We store PV with each node, and thus as a space

optimization, we can use LP (l) as PV (l) for all the leaf nodes. Storing PV with each

node makes looking up and updating PV also an O(1) operation. Finally, we also

store η with the Or nodes, likewise giving us O(1) access. We can return η to the

second part of Alg. 2.1, Alg. 2.3, by just passing Alg. 2.3 our annotated sd-DNNF.

Thus, for each edge and each node, we perform an O(1) operation, giving Alg. 2.2

a time complexity of O(|E| + |V |). Since every node v in the sd-DNNF has a path

from r to v, the sd-DNNF has at least as many edges as a tree. A tree has one more

node than edge, so for the sd-DNNF |E| + 1 ≥ |V |. This constraint lets us simplify

our complexity bound to O(|E|).

Space Analysis The sd-DNNF itself requires O(|E| + |V |) space. The algorithm

stores a probability PV per node and a reference to a node for η per Or node. This

is an O(|V |) additional space requirement.

2.1.2 Get-Solution-From-Selection Algorithm

The second part of Alg. 2.1 is shown in Alg. 2.3. This function extracts the best

solution that corresponds to the best selection η we found in the first part. Line 1

32



Algorithm 2.3: GetSolutionFromSelection(VO, E, LL, η)

Marked ← {r} ; // Initially just the root is marked1

S ← ∅ ;2

for i = 1 to |V | do3

v ← VO [i] ;4

if v ∈ Marked then5

switch v do6

case v ∈ L7

S ← S ∪ {LL (v)} ;8

end9

case v ∈ A10

foreach 〈v, n〉 ∈ E do11

Marked ← Marked ∪{n} ;12

end13

end14

case v ∈ O15

// Mark the choice made in η
Marked ← Marked ∪{η (v)} ;16

end17

end18

end19

end20

return S ;21
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initially marks the root node, in preparation for finding the leaves connected to the

root in the modified sd-DNNF. Line 2 initially sets our solution to empty. Lines 3-20

then loop over the nodes from the root to the leaves. Line 5 ensures we only extend

our paths from marked nodes, nodes that are already part of some path from the

root. Line 8 adds to our solution by applying LL to a marked leaf. Lines 11-13 marks

all the children of a marked And node. Line 16 marks the one selected child of a

marked Or node. Once lines 3-20 have visited all the nodes, all of the marked leaves

will have been visited, so S represents the solution corresponding to the selection and

we return this on line 21.

Runtime Analysis This algorithm visits every node once and every edge of every

marked node once. We store a flag with each node indicating whether or not it is

marked, thus setting and checking this flag is O(1). Since we store the flag per node,

line 1 is an O(|V |) operation, as we must clear the marks on every node except the

root, which must be set. We assume solution labels are unique and that the order

in which they need to be returned is unimportant, so adding LL (v) to S on line 8

just involves appending the symbol to a list, an O(1) operation. We only mark those

nodes that are part of the selection, so this append operation is performed O(|Leaves

in the Selection|) times by this algorithm. As stated in Section 2.1.1, we store η with

the Or nodes and edges with the parent node, thus all the operations performed per

edge and per node are O(1). Since we only mark nodes that are part of the selection,

we only visit those edges that are part of the selection. Thus, the time complexity

of this algorithm is O(|Edges in the Selection| + |V |). Since the number of edges

required to define a selection varies widely from sd-DNNF to sd-DNNF, we cannot

further simplify this bound.

An alternative formulation of this algorithm would be a recursive depth-first walk

from the root to the leaves, visiting all the marked nodes. Due to the decomposition
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and determinism of the sd-DNNF, a node that is part of a selection will always have

exactly one parent that is part of a selection (except the root, which has none). Thus,

we would not visit the same node more than once. This formulation would only visit

those nodes that are part of the selection, reducing the complexity of the algorithm

to O(|Edges in the Selection| + |Nodes in the Selection|). Since this forms a tree,

|Edges in the Selection|+ 1 = |Nodes in the Selection|, so this simplifies to O(|Nodes

in the Selection|).

Space Analysis The sd-DNNF itself requires O(|E| + |V |) space. The algorithm

stores a flag per node for Marked. We also store a list of symbols (or references to

symbols) in S, our solution. The flags require O(|V |) space and S requires O(|Leaves

in the Selection|) space.

The alternative formulation requires a stack for the And nodes along the current

path, recording which child is currently being visited. This stack will contain at most

the number of And nodes along the path with the most And nodes. This is clearly

no more than |A| as opposed to storing |V | flags.

Putting together the runtime and space analysis for Algorithms 2.2 and 2.3, we

can now state the requirements for Algorithm 2.1. The time required is dominated

by Alg. 2.2, requiring O(|E| + |V |) time, and thus this is also the time required by

Alg. 2.1. The space required is proportional to the number of nodes in the graph,

plus the graph itself, so O(|E|+ |V |) total space is used.

2.2 Find-Best-Solution Example

We will now show, as an example, the two parts of Alg. 2.1 run on the example shown

in Fig. 2-1. The progression of Alg. 2.2 is show in figures 2-2, 2-3, and 2-4. Figures

2-5, 2-6, and 2-7 show progressively how Alg. 2.3 operates on Fig. 2-1.
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The example shown in Fig. 2-1 is defined by the following sd-DNNF:

• The nodes V = {o1, a2, o3, l4, a5, a6, l7, l8}, where A = {a2, a5, a6}, O =

{o1, o3}, and L = {l4, l7, l8}. The root node r = o1. The number at the end

of each node’s name in V is its ordering by VO.

• The edges E are 〈o1, a2〉, 〈o1, o3〉, 〈a2, l4〉, 〈o3, a5〉, 〈o3, a6〉, 〈a5, l7〉, and 〈a6, l8〉.

• The symbols LL are:

– LL (l4) = “Switch = Off”

– LL (l7) = “Switch = On”

– LL (l8) = “Switch = Broken”

• The probabilities LP are: LP (l4) = 0.5, LP (l7) = 0.3, and LP (l8) = 0.2.

• Arithmetic multiplication for ×.

• Arithmetic greater-than for >.

2.2.1 Find-Best-Selection Example

The FindBestSelection algorithm is employing dynamic programming to ensure that

the probability of each node is only computed once. We store the computed proba-

bility in the variable PV . We are trying to decide the best selection locally at each

Or node, specifically o1 and o3 for our example, based on the probabilities of its

children. This selection is stored in the variable η (Eta). The initially empty state of

these variables and the graph are shown in Fig. 2-2.

Alg. 2.2 consists of one loop that runs from the leaves to the root of the valued sd-

DNNF. The first node assigned to v on line 2 is l8. This is a leaf node, so we execute

line 5. This sets PV (l8) = LP (l8) = 0.2. The next v is l7, which sets PV (l7) = 0.3.
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o1
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 P[0.3] 
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Pv Eta

Pv

Pv Pv

Pv

Pv Pv

Figure 2-2: This figure shows the initial state of the FindBestSelection function for
this simple sd-DNNF. The values of PV are initially unknown and η is initially un-
decided.

We then visit v = a6, which executes lines 8 to 13. The only edge of the form 〈a6, *〉,

that is to say the only out-going edge of a6, is the edge 〈a6, l8〉. Since PV (l8) = 0.2,

we set p = 0.2 and then set PV (a6) = 0.2. We continue, visiting v = a5 and setting

PV (a5) = 0.3; and visiting v = l4 and setting PV (l4) = 0.5. Fig. 2-3 shows the state

of PV and η at this point.

We then visit o3. The node o3 is our first Or node, and visiting this node executes

lines 16 to 24. The node o3 has two children, a5 and a6. Lets assume that n = a5 is

first, so we set b = a5 and p = PV (a5) = 0.3 on line 17. We then visit n = a6 and we

skip this node because PV (a6) = 0.2 is less than 0.3. Line 23 then sets PV (o3) = 0.3,

the value of o3’s best child. Finally, line 24 sets η (o3) = a5, recording the best choice.

The algorithm then continues on to the last two nodes, a2 and o1. Visiting the node

a2 sets PV (a2) = 0.5, and visiting the node o1 sets PV (o1) = 0.5 and η (o1) = a2.
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Figure 2-3: This figure shows the intermediate state of the FindBestSelection function
for this simple sd-DNNF. We propagated the leaves to the And nodes using lines 8-13
of Alg. 2.2.

This is the final state of the algorithm, shown in Fig. 2-4. We now return η on line

28, where η (o1) = a2 and η (o3) = a5.

2.2.2 Get-Solution-From-Selection Example

The GetSolutionFromSelection algorithm, Alg. 2.3, is determining the leaves con-

nected to the root in the modified sd-DNNF. We mark all the nodes that have a path

from the root to themselves, and we record which nodes are marked in the Marked

variable. We store the set of symbols of our solution in the variable S. Initially, the

root o1 is marked, so Marked= {o1}. The initial state at the start of the main loop

on line 3 is shown in Fig. 2-5. We denote membership in Marked by coloring the

marked nodes black.

The main loop runs from the root down to the leaves, so the first node visited
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Figure 2-4: This figure shows the final state of the FindBestSelection function for this
simple sd-DNNF, just prior to returning η. We propagated the probabilities of PV

to the root using lines 16-23 of Alg. 2.2. We also set η for both Or nodes using line
24 of Alg. 2.2.
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S: {}

o1

a2 o3

l4

 L[Switch = Off] 
a5

l7

 L[Switch = On] 

a6

l8

 L[Switch = Broken] 

Figure 2-5: This figure shows the initial state of the GetSolutionFromSelection func-
tion for this simple sd-DNNF, just after executing lines 1 and 2 of Alg. 2.3. Initially
the only marked node is the root o1. Marked nodes are black, while the remain-
ing white nodes are not marked. The solid lines connecting the nodes represent the
edges that are part of the modified sd-DNNF, while the dashed lines are currently
suppressed by the Or node choice stored in η.

is the root o1. The node o1 is marked, as we stated initially, and is an Or node.

We thus execute line 16. Since η (o1) = a2, we add a2 to Marked. Marked is now

{o1, a2}. This state is shown in Fig. 2-6.

We then visit the node a2, which is marked, and execute the lines 11 to 13. This

marks all of the children of a2, in this case only l4. Thus, after executing lines 11 to

13, Marked is now {o1, a2, l4}. We then visits o3, but o3 is not marked, so we skip

over o3. The node l4 is then visited, executing line 8. Since LL (l4) = “Switch = Off”,

we add this symbol to S: S = {“Switch = Off”}. The nodes a5, a6, l7, and l8 are

then visited in that order, but none of them are marked. The main loop is now done

and the algorithm is ready to return S on line 21. This state is shown in Fig. 2-7.
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S: {}

o1

a2 o3

l4

 L[Switch = Off] 
a5

l7

 L[Switch = On] 

a6

l8

 L[Switch = Broken] 

Figure 2-6: This figure shows the state of the GetSolutionFromSelection function for
this simple sd-DNNF after executing line 16 of Alg. 2.3 with v = o1 on Fig. 2-5.
This marks a2 as η (o1) = a2. Marked nodes are black, while the remaining white
nodes are not marked. The solid lines connecting the nodes represent the edges that
are part of the modified sd-DNNF, while the dashed lines are currently suppressed
by the Or node choice stored in η.

2.3 Summary

This chapter described the prior work of [8] and [1], an algorithm for extracting

the best solution from an sd-DNNF. The algorithm requires O(|E| + |V |) time and

space. The algorithm works in two parts, the first part passes from the leaves to the

root, deciding along the way which sub-tree of Or nodes is the optimal choice while

propagating the probability of the sub-trees to the root. The second part uses the

selection of the first part, which is defined by η, to extract a solution.
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S: {‘‘Switch = Off’’}

o1

a2 o3
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 L[Switch = Off] 
a5
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 L[Switch = On] 
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Figure 2-7: This figure shows the final state of the GetSolutionFromSelection function
for this simple sd-DNNF. After Fig. 2-6, we have executed line 12 of Alg. 2.3 with v =
a2 and n = l4, thus marking l4. We then executed line 8 with v = l4, adding “Switch
= Off” to our solution S. This S is then returned on line 21. Marked nodes are black,
while the remaining white nodes are not marked. The solid lines connecting the nodes
represent the edges that are part of the modified sd-DNNF, while the dashed lines
are currently suppressed by the Or node choice stored in η.

42



Chapter 3

K-Best-Solutions Algorithm

We are interested in finding the k best solutions of the sd-DNNF 〈V, E,LL,LP,×, >〉.

We will now extend the work algorithm developed in Chapter 2 to support k solutions.

The basic principle of this extension is that we can record at each node the k best

predecessors, rather than just the best predecessor. Each node will have up to k

selections recorded. This requires recording significantly more information than η

required before, specifically we will need to record predecessor information for both

And and Or nodes, as each node will be able to choose among the k selections of

each child. We extend our rules from page 27 to support k solutions:

1. For each leaf node l, the probability of the leaf node is LP (l).

2. For each And node a, we want the k best combinations of its children using ×,

where a combination includes a selection from each child of a. Lets assume that

a has p children, v1, . . ., vp. Each child will have between 1 and k selections

recorded. If we denote the selections of a child as Sel (vi), then there will be∏p
i=1 |Sel (vi) | combinations. The probability of a combination is computed by

using × to combine the probabilities of all of the selections included in the

combination. The k best selections for a are the k most probable combinations,
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ordered by >.

3. For each Or node o, we also want the k best selections from among its children.

Since an Or node is making a choice among its children, we consider all the

selections of the p children of o and choose the k best selections among all of

them, ordered by >.

Lets first start with an example of rule 2. For our example, the And node a has 2

children, v1 and v2 and we have k = 3. Node v1 has 3 selections, with probabilities 0.3,

0.2, and 0.1. Node v2 has 2 selections, with probabilities 0.5 and 0.2. We will denote a

combination as 〈i, j〉, where we have numbered Sel (vi) from 1 to k, and so i is the ith

selection of v1 and j is the jth selection of v2. There are 6 combinations of the selections

of a: 〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉, 〈3, 1〉, and 〈3, 2〉. Assuming multiplication for ×, the

probability of these combinations are 0.15, 0.06, 0.1, 0.04, 0.05, and 0.02, respectively.

The 3 best combinations, since k = 3, are 0.15, 0.1 and 0.06, corresponding to

〈1, 1〉, 〈2, 1〉, and 〈1, 2〉, respectively. The selections Sel (a) are set to these three

combinations.

Now consider a similar example of rule 3 for an Or node o. The node has 2

children, v1 and v2, where v1 has 3 selections and v2 has 2 selections. We let k = 3.

We will use the probabilities of 0.3, 0.2, and 0.1 for v1’s selections, and 0.2 and 0.1

for v2’s selections. The top 3 selections for o are selection 1 and 2 of v1 and selection

1 of v2, and so Sel (o) are set to these three selections. Note that we assume a total

ordering with >, so, for example, we can us the index of vi in VO to break ties when

the probabilities are equal.

Rules 2 and 3 both require a probability per each of their children’s selections,

so we extend the probability recording PV of Chapter 2 to include both the node

and the selection: PV (v, i). We need a way to know how many selections a node

actually has, as it may be less than k, so we define a new function#Sel that returns
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the number of selections of a node: #Sel (v).

As with Chapter 2, we are generating a modified graph that describes the selections

we want to find. In the modified graph, every node is effectively replicated once for

every selection it records, thus nodes are indexed by the sd-DNNF’s node and the

selection number. We denote this 〈v, j〉 for a node v and the jth selection. A leaf

always has exactly 1 selection, so for a leaf node l, our modified sd-DNNF graph has

the one node 〈l, 1〉.

To efficiently extract the k best solutions, given we’ve computed the k best se-

lections, we recorded more information than the algorithm of Chapter 2. For each

selection of an Or node o, we need to know which child’s selection was chosen for each

of o’s selections. We thus extend η to be a function O×{1, . . . , k} → V ×{1, . . . , k},

where we constrain η (o, i) = 〈v, j〉 such that v ∈ Children (o), i ≤ #Sel (o), and

j ≤ #Sel (v). This function connects selections of o to selections of v.

For And nodes, we now need to know which combination of its children was chosen

for each of the And node’s selections. We will record this information in ξ. Recall

that for an And node a, the ith best selection of a is a combination of the selections of

the children of a. We define ξ as the function A×{1, . . . , k}×V → {1, . . . , k}, where

we constrain ξ (a, i, v) = j such that v ∈ Children (a), i ≤ #Sel (a), and j ≤ #Sel (v).

ξ records the selection of the child v corresponding to the ith best selection of a,

specifically the selection 〈v, j〉. In Chapter 2 where k = 1, a, as well as every child of

a, only has one selection. There is only one combination possible when k = 1, which

is the first and only selection of every child of a. Thus, the function ξ evaluates to 1

for every node and is omitted from the algorithms of Chapter 2.

To illustrate ξ, lets look back at the And node example given above, where a has

two children, v1 and v2. The best 3 selections were 〈1, 1〉, 〈2, 1〉, and 〈1, 2〉, in that

order. Then for this fixed a, ξ (a, i, v) defines a 3× 2 table:
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v

v1 v2

1 1 1

i 2 2 1

3 1 2

where, for instance, the entry at (3, v2) has a value of 2, the value of ξ (a, 3, v2). This

entry means that 〈a, 3〉 is connected to 〈v2, 2〉. 〈a, 3〉 is also connected to 〈v1, 1〉.

The fully computed η and ξ functions define up to k selections, where the number

of selections defined is the number of selections of the root node, #Sel (r). Given the

up to k selections defined by η and ξ, we can extract the corresponding solutions.

As in 2, the solutions are defined by paths from the root to the leaves, in the graph

modified by η and ξ. The ith solution is the set of LL (l) of all the leaves that have a

path from the ith selection of the root node. A path for the ith selection of the root

starts at the node 〈r, i〉. For every And node 〈aj, i1〉 along the path at position j,

the node 〈vj+1, i2〉 at position j +1 in the path must be such that ξ (aj, i1, vj+1) = i2.

That is to say that 〈aj, i1〉 connects to 〈vj+1, i2〉 in the modified graph. For every Or

node 〈oj, i1〉 along the path at position j, the node 〈vj+1, i2〉 at position j + 1 in the

path must be such that η (oj, i1) = 〈vj+1, i2〉. That is to say that 〈oj, i1〉 connects to

〈vj+1, i2〉 in the modified graph.

We can extend the notion of marking developed in Chapter 2 by noting that each

node’s selection may be part of any subset of the k root selections, but that each root

selection i, will include either one or zero selections of the node. There will never

be more than one selection, as we noted before, due to the decomposition property

of an sd-DNNF, as a selection necessarily forms a tree in the modified graph. For

each node, rather than storing just a marking as before, we store k markings. Each

marking m (v, i) either takes on the special value ⊥ or a value j that specifies the
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jth selection of the node v is part of the ith root selection. Initially all the marks

are ⊥, except the root markings, for which m (r, i) = i for each i from 1 to #Sel (r).

To extract the k solutions, we walk over the original sd-DNNF from the root to the

leaves, propagating the k markings to the children.

For an And node a, for each i such that m (a, i) 6=⊥, and for each child v of a,

we set m (v, i) = ξ (a, m (a, i) , v). If ξ (a, m (a, i) , v) = j, then this records that 〈v, j〉

is part of the ith solution.

For an Or node o and for each i such that m (o, i) 6=⊥, let 〈v, j〉 = η (o,m (o, i)).

Then we set m (v, i) = j, again noting that 〈v, j〉 is part of the root selection i.

For a leaf node l, m (l, i) is either ⊥ or 1 as the leaf always has exactly one

selection. Thus, for each m (l, i) = 1, the ith solution includes the symbol of l, LL (l).

We will now present an algorithm to compute the k most probable solutions. The

sub-routines of this algorithm have the hierarchy shown in Fig. 3-1.

3.1 Find-K-Best-Solutions Algorithm

Algorithm 3.1: FindKBestSolutions(VO, E, LL, LP, ×, >, k)

〈η, ξ, #r〉 ← FindKBestSelections(VO, E, LP, ×, >, k) ;1

Sk ← GetKSolutionsFromSelections(VO, E, LL, η, ξ, #r) ;2

return Sk;3

As with the k = 1 algorithm, we break this algorithm down into two parts.

The first part makes a pass from the leaves to the root, computing η and ξ. This

involves internally computing up to k probabilities per node. Together, η and ξ

define a superset of between 1 and k selections. The value #r specifies the number

of selections defined by η and ξ, between 1 and k. The second part of the algorithm

makes a pass from the root to the leaves, extracting the #r best solutions from the
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3.1 FindKBestSolutions

3.2 FindKBestSelections 3.11 GetKSolutionsFromSelections

3.3 FKBSelLeaf

3.6 FKBSelAnd

3.10 FKBSelOr

3.4 ConstructCombinations 3.5 ResetCombinations

3.7 InheritFirstChild 3.8 MergePair

3.9 InsSucc

3.12 GKSFSLeaf

3.13 GKSFSAnd

3.14 GKSFSOr

Figure 3-1: This diagram shows how the various algorithms of this chapter are re-
lated. The top-level algorithm is FindKBestSolutions. The ConstructCombinations
function is the only unusual item in this diagram, as it is expected that it will be run
prior to running FindKBestSolutions so that its output can be used by MergePair.
ConstructCombinations only depends on k.
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selections. These are then returned.

3.2 Find-K-Best-Selections Algorithm

Algorithm 3.2: FindKBestSelections(VO, E, LP, ×, >, k)

for i = |V | to 1 do1

v ← VO [i] ;2

switch v in3

case v ∈ L4

〈PV , #Sel〉 ← FKBSelLeaf(v,PV , #Sel,LP) ;5

end6

case v ∈ A7

〈PV , #Sel, ξ〉 ← FKBSelAnd(v,PV , #Sel, ξ,×, >) ;8

end9

case v ∈ O10

〈PV , #Sel, η〉 ← FKBSelOr(v,PV , #Sel, η, >) ;11

end12

end13

end14

return 〈η, ξ,#Sel (1)〉 ;15

The first part of Alg. 3.1, as with the k = 1 algorithm, is processing the sd-

DNNF from the leaves to the root. This algorithm, Alg. 3.2, is computing the k best

selections using dynamic programming. At each node we compute and cache the k

most probable selections rooted at that node, where a selection is summarized at each

node based on its children’s summaries. For And nodes, a selection is summarized

by specifying, for each child, one of the child’s selections. For Or nodes, a selection

is summarized by specifying a child and a selection of that child.

The algorithm has three update rules, one for each type of node: L, A, and O.

These three rules are shown on page 43. We have broken these three rules into three

functions: rule 1 is implemented in Alg. 3.3, rule 2 is implemented in Alg. 3.6, and
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rule 3 is implemented in Alg. 3.10.

Alg. 3.2, between lines 1-14, is iterating over the nodes of the sd-DNNF, from the

leaves to the root, invoking the appropriate rule. These rules update PV , #Sel, η,

and ξ, as appropriate. PV stores the probability of each node’s k best selections. For

leaves, this always has one entry, from LP. For And and Or nodes, this stores the

probability of each selection, sorted from most probable to least probable. Keeping

this list sorted makes both And and Or node computations much more efficient.

#Sel stores exactly how many selections are available at each node. This will be

between 1 and k. η records a selection summary for Or nodes, with one summary

per selection. ξ records a selection summary for And nodes, with one summary per

selection and child pair. We store each of these variables per node, for efficient access,

passing ξ and η to the second step by passing our annotated graph.

This algorithm returns on line 15, where we return our selection summaries col-

lectively in ξ and η along with the number of selections found at the root, which is

exactly the number of corresponding solutions. In general, unless k is greater that the

total number of solutions in the sd-DNNF, or unless we suppress solutions with value

less than a certain amount, the number of solutions found at the root will be exactly

k. In our motivating domain of estimation, for example, we suppress solutions with

0 probability.

We will now present algorithms 3.3, 3.6, and 3.10 in sections 3.2.1, 3.2.2, and

3.2.9, respectively.

3.2.1 Find-K-Best-Selections Leaf-case Algorithm

The leaf node case for finding the k best selections, Alg. 3.3, turns out to be nearly

identical to that of Alg. 2.2. We set PV (l, 1) = LL (l) on line 1 and record that we

only have 1 selection on line 2. That’s all that we need to do for leaf nodes.
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Algorithm 3.3: FKBSelLeaf(l, PV , #Sel, LP)

PV (l, 1)← LP (l) ;1

#Sel (l) = 1 ;2

return 〈PV ,#Sel〉 ;3

0.4 0.3 0.2 0.1

0.4 0.16 0.12 0.08 0.04
0.3 0.12 0.09 0.06 0.03
0.2 0.08 0.06 0.04 0.02
0.1 0.04 0.03 0.02 0.01

Table 3.1: This table illustrates the combinations of the children of a hypothetical
And node with two children when k = 4. The two children have identical distribu-
tions of 0.4, 0.3, 0.2, and 0.1 for selections 1, 2, 3, and 4, respectively. The upper-left
region circumscribes all combination of the two children that could ever be part of
the best 4 selections of the And node. The four bold values forming a square in the
upper left are the 4 best selections for this example.

Time and Space Analysis We store all variables indexed by an sd-DNNF node

with the sd-DNNF node itself, so all look-up times are O(1). Since a leaf always

stores exactly one answer, a leaf need only have O(1) space to store the two values.

Thus, FKBSelLeaf requires O(1) time and space.

3.2.2 Find-K-Best-Selections And-case Algorithm

The And node case for finding the k best selections, Alg. 3.6, requires finding the k

best combinations of its children’s selections. If this node a has |Ea| children and each

has k solutions, then there are k|Ea| combinations; however, we are only interested

in k of them. Much less work is required to extract only k solutions, which we will

quantify momentarily.

Lets start with an example. Let k = 4, c = 2, and PV ’s entries 1 through 4 are

0.4, 0.3, 0.2, and 0.1, respectively, for both children. The combination of these pair
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0.4 0.3 0.2 0.1

0.4 0.16 0.12 0.08 0.04
0.3 0.12 0.09 - -

0.25 0.10 - - -
0.05 0.04 - - -

Table 3.2: This table illustrates a second possible combination of the 4 best children,
again in bold. We have omitted those entries that could never be optimal.

0.5 0.2 0.2 0.1

0.35 0.175 0.07 0.07 0.035
0.3 0.15 0.06 - -
0.2 0.1 - - -

0.15 0.075 - - -

Table 3.3: This table illustrates a third possible combination of the 4 best children,
again in bold. We have omitted those entries that could never be optimal.

of children is illustrated in Table 3.1. The biggest combinations of the children are

〈1, 1〉, 〈1, 2〉, 〈2, 1〉, and 〈2, 2〉. The double-edge region defined around the upper left

section of the matrix illustrates the region in which all k-best combinations reside. We

illustrate two other combinations in tables 3.2 and 3.3, which with their reflections,

represent all k-best combinations of 4.

The key to realize here is that, since our probabilities are sorted by >, and we only

want the first k of them, we can start with the guaranteed best pair, the combination

〈1, 1〉. We will now show why this is the guaranteed best pair. The product of two

numbers is monotonically increasing (unless one value is 0); when you increase either

value of the product, the value of the product increases. Thus, the product of the two

largest values will be the largest value among all products. The next best product

will be a combination of the largest value of one of the two children and the second

largest of the other child. Again, if we select the second best value for both children,

the result will be smaller than if we only decrease one of the values.

52



1,1 1,2

2,1

1,3

2,2

1,4

2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Figure 3-2: This figure shows which combinations of an And node is enabled in the
case where k = 4 and the And node has two children. A node is enabled if all of
its parents have been included in the solution. Thus the root node, 1, 1, is always
enabled.

For a combination 〈i, j〉, the children of this combination are the combinations

〈i + 1, j〉 and 〈i, j + 1〉, subject to neither child index exceeding k. The parent/child

relationship between combinations is illustrated for k = 4 in Fig. 3-2. The value of

a combination 〈i, j〉 is always greater than that of its children. Again, this trivially

holds as one of the two values of the child is equal to one of this combination’s values

and the other child’s value is less than this combination’s other value.

As a corollary, a combination 〈i, j〉 need not be considered until all of its parents

are considered. Since 〈1, 1〉 is the only node with no parents, this is the only possible

maximal node, as we said above. We use this fact in Alg. 3.6 to pre-build a struc-

ture Ca to hold all possible combinations of k and then only consider among those

combinations that have had all their parents selected.

To bound the number of combinations needed in Ca, we note that to ever consider

the candidate at 〈i, j〉, both its parents along with their parents and so on back to

the first candidate 〈1, 1〉 must have all be already accepted as part of the And node’s

selection. This means there has been less than k combinations accepted, and 〈i, j〉

may be the kth combination, so i ∗ j ≤ k. Since everything is positive, j ≤ k
i
. All the
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1,1 1,2

2,1

1,3

2,2

1,4

3,1

4,1

Figure 3-3: This figure shows the set of combinations that are part of the Ca structure
when k = 4. A combination will be enabled if both of its parents are accepted as part
of the k best selections. 1, 1 is always enabled.

values are integers, so j ≤
⌊

k
i

⌋
. i varies from 1 to k, so the total number of possible

candidates is:
k∑

i=1

⌊
k

i

⌋
Each term of this equation is the floor of k times a term in the harmonic series[5].

The sum of the first k terms of the harmonic series is upper-bounded by (log k) + 1,

and thus the number of possible candidates is upper-bounded by (k log k) + k or

O(k log k).

Fig. 3-3 shows the combinations of Ca trimmed down from Fig. 3-2. Combinations

are all indexed to allow for O(1) look-up. Specifically, a combination ca in Ca is a

tuple 〈i, j1, j2, i1, i2, #P , #E〉. The combination is located at Ca[i]. The pair 〈j1, j2〉 is

the combination of ca. The two values i1 and i2 are indices in Ca referring to the two

children of ca. These can have the special value ⊥ if the combination has only 0 or 1

child. #P is the number of parents of ca. #E is set when we use Ca, and correspond

to the current number of un-accepted parents. When we reset Ca, we set #E = #P .

Each time a parent is accepted, it decrements its two children’s #E value. When
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#E reaches 0, the combination is enabled and can be added to the queue of enabled

combinations. We require that the combination 〈j1, j2〉 = 〈1, 1〉 have a known index

so we can start Alg. 3.6. Our algorithm for indexing Ca currently indexes the 〈1, 1〉

combination as the last index of Ca.

3.2.3 Construct-Combinations Algorithm

Algorithm 3.4: ConstructCombinations(Ca, k, j1, j2)

if j1 ∗ j2 > k then1

return 〈Ca,⊥〉 ;2

end3

if 〈j1, j2〉 is in Ca then4

i← Index of 〈j1, j2〉 in Ca ;5

return 〈Ca, i〉 ;6

end7

〈Ca, i1〉 ← ConstructCombinations(Ca, k, j1 + 1, j2) ;8

〈Ca, i2〉 ← ConstructCombinations(Ca, k, j1, j2 + 1) ;9

#P ← 0 ;10

if j1 > 1 then11

#P ← #P + 1 ;12

end13

if j2 > 1 then14

#P ← #P + 1 ;15

end16

i← |Ca|+ 1 ;17

Ca[i]← 〈i, j1, j2, i1, i2, #P , #P 〉 ;18

return 〈Ca, i〉 ;19

We show the code used to construct and initialize Ca in Alg. 3.4 and 3.5, respec-

tively. Alg. 3.4 is assumed to run prior to the algorithm of this chapter, Alg. 3.1, as

the data of Ca with the exception of #E is constant for a constant k. The recursive

Alg. 3.4 is called as ConstructCombinations(Ca, k, 1, 1), with an empty Ca, and

returns a constructed Ca along with the location i of our entry ca = 〈i, 1, 1, ∗, ∗, 0, 0〉.
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In general, this algorithm returns the updated Ca and the index of the entry with the

combination 〈j1, j2〉, or ⊥ if it isn’t one of the possible combinations. This is done

recursively, where we return the index of a entry if it has already been inserted into

Ca and we insert a new entry into Ca, otherwise. An entry is inserted after all of its

children have been inserted. If we assume k log k entries are generated, this algorithm

looks through this list once for each edge in the graph to be sure the entry has not

yet been created, where there are two edges per entry. Otherwise, it only performs

O(1) steps computing the elements of the new entry.

Line 1 is the base case of Alg. 3.4. We return the non-entry index ⊥ if there is

no way for both parents of this entry to be accepted at the same time. Line 4 makes

sure that we do not insert a combination more than once. If the combination already

exists, we return the index of the combination’s entry. As stated above, this is an

O(k log k) operation in general1. Lines 8 and 9 recursively look-up or construct the

two children of this combination.

Lines 10-16 set the number of parents of the entry. This is easily computed as

most entries have two parents. An entry that has a value of 1 for one of its two

combination values has only 1 parent, as the parent in the value-of-1 direction would

have a 0 value, and 0 is an invalid value (our values start at 1). The combination

〈1, 1〉 is the only combination where both values of the combination are 1, and so it

has 0 parents.

Line 17 computes the index of this new entry. We insert this entry at the end of

Ca. We then add our new node on line 18 and return it on line 19.

Time and Space Analysis We do intend ConstructCombinations to be an off-line

algorithm, as it generates a constant structure that depends only on k, thus the time

1We could speed this up to O(log (k log k)) if we add an explicit indexing map or O(1) if we used
an appropriate hashing function of 〈j1, j2〉. These optimizations are ignored in this thesis because
this is a pre-processing step and is fast enough for all our values of k.
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it takes to generate Ca is not included in the other algorithms, just the space. Lines

1 and 10-19 are all O(1) operations: reading or setting a field, or appending to the

end of a vector. We stated above that line 4 is currently just a linear search through

a vector of length O(k log k), which is thus an O(k log k) operation. We could create

an index that maps 〈j1, j2〉 to an index in Ca or ⊥ to reduce this search cost, using a

map or hash map. Lines 8 and 9 are recursive calls. We construct at most O(k log k)

entries and we only recurse twice for constructed entries, so ConstructCombinations

is called at most twice as many times as there are entries, still O(k log k). We only

run line 4 for entries that we would otherwise construct. Since an entry has at most

two parents, line 4 is run at most twice per entry constructed, an O(n2) step for the

algorithm, where n = k log k. Thus, the overall complexity of ConstructCombinations

is O(k2 log2 k) time. We generate only enough space to hold the entries we want, so the

space required is the space of Ca, which we explained above is bounded by O(k log k).

3.2.4 Reset-Combinations Algorithm

Algorithm 3.5: ResetCombinations(Ca)

foreach 〈i, j1, j2, i1, i2, #P , #E〉 = Ca[i] do1

Ca[i]← 〈i, j1, j2, i1, i2, #P , #P 〉 ;2

end3

return Ca ;4

The Alg 3.5 is just responsible for setting #E = #P for each entry in Ca, specif-

ically on line 2. This is done iteratively. Thus the complexity of this algorithm is

O(|Ca|) time where |Ca| is O(k log k).
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3.2.5 The Find-K-Best-Selections And-case Algorithm

Algorithm 3.6: FKBSelAnd(a, PV , #Sel, ξ, ×, >)

e← some 〈a, nPrev〉 ∈ E ;1

〈#a,Pa, βξ〉 ← InheritFirstChild(nPrev, #Sel, PV ) ;2

foreach 〈a, n〉 ∈ E \ {e} do3

〈#a,Pa, βξ, nPrev〉 ← MergePair(βξ, nPrev, n, Pa, PV , #a, #Sel (n)) ;4

end5

for i = 1 to #a do6

PV (a, i)← Pa (i) ;7

〈n, j1〉 ← 〈nPrev, i〉 ;8

while n 6=⊥ do9

〈n′, j′
1, j2〉 ← βξ (n, j1) ;10

ξ (a, i, n)← j2 ;11

〈n, j1〉 ← 〈n′, j′
1〉 ;12

end13

end14

#Sel (a) = #a ;15

return 〈PV ,#Sel, ξ〉 ;16

Lets now explain the parts of Alg. 3.6. This algorithm is pair-wise combining all of

the children’s selections into this And node a’s best k selections. The algorithm starts

out by inheriting the selections of one of its children. Then, for all the other children,

it computes the best k selections from the combination of a’s current selections and

the next child’s selections. Once all children have been combined, the algorithm’s

current k best selections are the actual k best selections and the algorithm is done.

In Alg. 3.6, line 1 starts out by getting some out-going edge of the And node

a, with some child n. Line 2 inherits the best selections of the child n as a’s best

selections, noting which child these selections came from, using Alg. 3.7. The variable

#a stores the current number of selections, between 1 and k. The variable Pa is a

local version of PV specific to a.

The variable βξ is used to compute the entries for ξ. βξ is an acyclic graph that
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i=1 i=2

1

i=3

2 1

n1 1

n2 1

n3

2 3

1 2

Figure 3-4: This is an example of a possible configuration of βξ for an example that
assumes k = 3 and |Ev| = 3. The labels on the nodes are the value j for the entry
βξ (n, i) = 〈n2, i2, j〉.

captures the best combinations of a child n of a with all other children that have

already been combined. βξ is a function V × {1, . . . , k} → (V ∪ {⊥})× {1, . . . , k} ×

{1, . . . , k}. For a particular entry βξ (v, i) = 〈v2, i2, j〉, the entry means that the

modified node 〈v, j〉 is part of the ith best combination of a and that the ith2 best

entry for v2 is also part of the ith best combination of a. A leaf of this graph an entry

of the form 〈⊥, 1, j〉, for some j.

Consider an example where k = 3 and |Ev| = 3. In this example, the children

are n1, n2, and n3 and all of them have three selections. These selections have

probabilities such that the three best combinations of n1 and n2 are 〈1, 1〉, 〈2, 1〉,

and 〈1, 2〉. Given these three best combinations of n1 and n2, the probabilities are

such that the three best combinations of these combinations and n3 are 〈1, 1〉, 〈1, 2〉,

and 〈2, 1〉, where the first number is the ith best combination of n1 and n2. We can

rewrite these combinations without indices as 〈〈1, 1〉 , 1〉, 〈〈1, 1〉 , 2〉, and 〈〈2, 1〉 , 1〉,

respectively. This example is depicted in Fig. 3-4. The three best combinations of a

can be read from Fig. 3-4 by looking at the three sequences that start at the three
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top nodes 〈n3, 1〉, 〈n3, 2〉, and 〈n3, 3〉, respectively. Reading off the three sequences,

in reverse – from n1 to n3, we get the same three best combinations 〈1, 1, 1〉, 〈1, 1, 2〉,

and 〈2, 1, 1〉. The nine entries of βξ that correspond to Fig. 3-4 are:

βξ (n3, 1) = 〈n2, 1, 1〉 βξ (n3, 2) = 〈n2, 1, 2〉 βξ (n3, 3) = 〈n2, 2, 1〉

βξ (n2, 1) = 〈n1, 1, 1〉 βξ (n2, 2) = 〈n1, 2, 1〉 βξ (n2, 3) = 〈n1, 1, 2〉

βξ (n1, 1) = 〈⊥, 1, 1〉 βξ (n1, 2) = 〈⊥, 1, 2〉 βξ (n1, 3) = 〈⊥, 1, 3〉

Alg. 3.6 constructs βξ one row at a time, where Alg. 3.7 constructs the bottom row

of βξ, and each subsequent row is added by Alg. 3.8. After calling Alg. 3.7 on line 2,

βξ contains #a entries, where the ith entry is βξ (nPrev, i) = 〈⊥, 1, i〉.

Lines 3-5 loop over all the remaining children of a, taking the k best combinations

of a’s current k best combinations and the child’s k best combinations, inserting

another row in βξ. This loop utilizes the function MergePair, Alg. 3.8. Finally, lines

6-15 copy the local versions of these variables over to the final version. Lines 8-13

copies the ith best combination of a from βξ into ξ (a, i, ∗). Line 8 sets our current

node in βξ to the root node of the ith best combination in βξ; the root is the ith

position of the top row. Lines 9-13 loop from the root node in βξ to the leaf, where

at the end n =⊥. For each node in βξ visited, the algorithm grabs the node’s data on

line 10. This data specifies the next node in the sequence as well as a modified node

〈n, j2〉 that belongs to ith combination of a. The algorithm connects this modified

node to 〈a, i〉 on line 11 and then the loop moves on to the next βξ node in the

sequence on line 12.

3.2.6 Inherit-First-Child Algorithm

The first subroutine of Alg. 3.6 is InheritFirstChild, Alg. 3.7. This algorithm is

responsible for initializing the And node’s local versions of the selection variables

based on the child’s best selections. The And node inherits the selections of the child
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Algorithm 3.7: InheritFirstChild(n, #Sel, PV )

#a = #Sel (n) ;1

for i = 1 to #a do2

Pa (i) = PV (n, i) ;3

βξ (n, i)← 〈⊥, 1, i〉 ;4

end5

return 〈#a,Pa, βξ〉 ;6

node, so line 1 sets #a to the number of selections of the child. The probabilities

are the same and in the same order, so these can also be copied. The variable βξ is

initialized for the child n to the selection number that was borrowed. These initialized

values are returned on line 6.

Time and Space Complexity This algorithm performs an O(1) step on line 1,

copying the number of selections of a’s first child. We then copy up to k values on

lines 3 and 4. Both take O(1) time. Thus, the time complexity of this algorithm

is O(k). The space required is dominated by βξ, requiring O(k|Ea|) space, though

this space is not specific to InheritFirstChild, as it is space returned to the calling

function FKBSelAnd, Alg. 3.6.

3.2.7 Merge-Pair Algorithm

The other subroutine of Alg. 3.6 is MergePair, Alg. 3.8. This algorithm is respon-

sible for computing the k best pairings between the current k best combinations of

the And node’s processed children and the next child’s k best combinations. The

variable βξ summarizes the combinations of the processed children. We use our com-

bination structure Ca from Alg. 3.4 and 3.5 to help decide which combinations are

available as we select our k best combinations. MergePair will extract up to k values

and store them in βξ and a second probability vector. It is assumed these two prob-
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Algorithm 3.8: MergePair(βξ, nPrev, n, Pa, PV , #a, #n)

Let Ca be the pre-constructed combinations structure and #1,1 be the index of1

the combination 〈1, 1〉 ;
Ca ← ResetCombinations(Ca) ;2

#′
a ← 0 ;3

p← Pa (1)×PV (n, 1) ;4

Insert 〈p, #1,1〉 into Q ;5

while #′
a < k and |Q| > 0 do6

〈p, i〉 ← Remove best element of Q ordered by p using > ;7

〈i, j1, j2, i1, i2, #P , #E〉 ← Ca[i] ;8

#′
a ← #′

a + 1 ;9

P′
a (#′

a) = p ;10

βξ (n, #′
a)← 〈nPrev, j1, j2〉 ;11

〈Q, Ca〉 ← InsSucc(Q, Ca, Pa, PV , n, ×, >, #a, #n, i1) ;12

〈Q, Ca〉 ← InsSucc(Q, Ca, Pa, PV , n, ×, >, #a, #n, i2) ;13

end14

return 〈#′
a,P

′
a, βξ, n〉 ;15

ability vectors, Pa and P′
a, are swapped between pairings, so the probability vector

is only copied once, when it is copied to PV . This algorithm uses a priority queue

of possible candidate combinations to efficiently insert combinations and extract the

best combination. Combinations are sorted by their value using >.

The algorithm starts out on line 2 by setting #E = #P for all combinations in Ca.

This marks each node as initially having none of their parents accepted. We initialize

our next local best selection count to 0 on line 3. The best combination is 〈1, 1〉, and

we compute the probability of this combination on line 4. We then insert this best

value into the queue Q on line 5. We’re now ready to extract the best k combinations

between the And node’s current best combinations and the new nodes best selections.

Lines 6-14 are responsible for getting the next best combination, recording it, and

the adding that combinations successors to Q, as appropriate. Successors, here, are

defined by the relationship stored in Ca.

Within this loop, line 7 finds the next most probable combination, ordered with >.
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Since a candidate is only inserted in the queue once all of its parents have already been

added to P′
a and βξ, the maximal node in Q is the next most maximal combination

of a. Line 8 looks up the combination associated with the index we got from Q. This

gives us the combo 〈j1, j2〉 and up to two successors i1 and i2. Line 9 increments our

number of accepted combinations by one as we just got a new one off the queue. Line

10 sets the probability of our next accepted combination to p, the value we computed

for sorting in Q. Line 11 points our next combination to the previous combination

starting at 〈nPrev, j1〉 and adds an entry for the child n based on its selection of j2.

Lines 12 and 13 call InsSucc on the first and second possible successors, respectively.

InsSucc will update Ca by recording that one more parent of i1 and i2 has been

accepted. If all of the child’s parents have been accepted, InsSucc will compute the

probability of the combination of the child and add it to the queue. Once the loop

is done getting up to k combinations, the function returns the new local variables on

15.

3.2.8 Insert-Successor Algorithm

The last subroutine used by the And node case is the InsSucc algorithm. As was

just stated, this routine is updating the value of #E of the entry i in Ca. This

involves subtracting one, as this function is called whenever a parent of this entry

has been accepted. If #E is then zero, then the entry’s combination becomes enabled

and we insert it in the queue. This requires first computing the probability of the

combination.

There are two special cases for this routine. First, i may be equal to ⊥, in

which case this isn’t actually referring to an entry and there isn’t anything to do.

Recall that this means that it was not possible for this child of the parent to have

ever been enabled, so this child reference was set to ⊥. The other case is that
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Algorithm 3.9: InsSucc(Q, Ca, Pa, PV , n, ×, >, max1, max2, i)

if i =⊥ then1

return 〈Q,Ca〉 ;2

end3

〈i, j1, j2, i1, i2, #P , #E〉 ← Ca[i] ;4

if j1 > max1 or j2 > max2 then5

return 〈Q, Ca〉 ;6

end7

#E ← #E − 1 ;8

Ca[i]← 〈i, j1, j2, i1, i2, #P , #E〉 ;9

if #E = 0 then10

p← Pa (j1)×PV (n, j2) ;11

Insert 〈p, i〉 into Q ordered by p using > ;12

end13

return 〈Q, Ca〉 ;14

one or both of the nodes a and n may not have a full k selections. This matters

because we cannot compute the probability of a combination if one of the values of

the combination exceeds the number of selections of the corresponding node. We thus

prune combinations that exceed our actual number of selections.

The algorithm starts out on line 1 by returning if i is ⊥. Line 4 gets the entry in

Ca corresponding to i so we can update #E. Before updating i, the algorithm returns

if the combination of i exceeds the number of selections of either sd-DNNF node on

line 5. Lines 8 and 9 update #E in Ca. Lines 10-13 add the combination to Q if #E

is 0, which is to say if the combination is enabled. Line 11 computes the probability

of the combination, while line 12 adds the combination to Q.

Runtime Analysis We will start with the InsSucc routine and work up to the Find-

K-Best-Selections, And-case algorithm. Every time the InsSucc routine is called, it

looks up an entry in Ca, decrementing the value #E. Lines 1-9 are all O(1), as we

assume we update in-place and that we access directly by index. Lines 11 and 12 are
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only run once per combination inserted into the queue. Line 11 applies × once, an

O(1) operation. Line 12’s complexity depends on the size of the queue. For a queue

of length |Q|, line 12 has a time complexity of O(log |Q|). This complexity arises from

O(log |Q|) applications of > to determine where in the heap the combination belongs.

We will show that |Q| ≤
⌊√

2k
⌋

+ 1, so line 12’s complexity is O(log k). Thus, if the

candidate is not added to the queue, InsSucc has O(1) time complexity, and if it is

added to the queue, InsSucc has O(log k) complexity. InsSucc requires O(1) space for

everything but Q. The queue, as we said, is of size O(
√

k).

We will now justify the claim that the queue will never be larger that
⌊√

2k
⌋

+ 1.

First, note that the algorithm accepts at most k combinations before terminating.

Also note that we only add a combination 〈i, j〉 to the queue if all their parents have

been accepted, and they will have only been accepted if all their parents have been

accepted, etc. For 〈i, j〉 to be added to the queue, (i ∗ j)− 1 ≤ k combinations have

been accepted. Additionally, note that at most one combination per row and per

column is enabled and thus in the queue. Lets assume without loss of generality that

there are two in the same row i. Let the column of the two combinations be j1 and j2,

such that j1 < j2. The combination 〈i, j1〉 is an ancestor of 〈i, j2〉, and both are only

enabled. This violates our constraint that a combination be accepted prior to any of

its children being enabled, and thus any of their descendants being enabled. So there

is at most one enabled combination per row and column. The configuration with k

combinations accepted that has the maximal number of combinations enabled has one

enabled combination per row and per column, lets say w rows and h columns. This is

maximal for a fixed area k as inserting just a row or column anywhere would increase

the number of combinations accepted while not changing the number of enabled

combinations. To compensate for the extra area added, we would need to remove a

column or row, which would in turn reduce the number of enabled combinations. This

maximal form is square, so w = h, and forms a triangle, which has area 1
2
w2. The area
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of the triangle is equal to the number of accepted combinations, so 1
2
w2 ≤ k. Solving

for w, we get w ≤
√

2k. Since w is an integer, a tighter bound is w ≤
⌊√

2k
⌋
. If we

have at most one enabled combination per column, at most one enabled combination

to the right of the right most accepted combination, and w columns of accepted

combinations, then we can have at most w + 1 enabled combinations, or
⌊√

2k
⌋

+ 1.

We showed previously that ResetCombinations has a complexity of O(k log k) time

and O(1) space, required to reset the #E values of each entry of Ca. Thus, with the

complexity of InsSucc, we can now analyze the complexity of the MergePair algorithm.

The MergePair algorithm calls ResetCombinations once on line 2, requiring O(k log k)

time. Lines 3-5 are O(1) time operations. The queue Q is needed only for this sub-

routine, starting at line 5, and has a maximal space requirement of O(
√

k). Our

loop from lines 6-14 will run at most k times. Within the loop, we dequeue an

element from Q once on line 7 with complexity O(log k). Lines 8-11 perform O(1)

operations, setting values. Lines 12 and 13 each call InsSucc. InsSucc will insert

at most k +
⌊√

2k
⌋

combinations into Q, with an O(log k) time complexity each

time something is inserted into Q. The remaining times it is called it has an O(1)

time complexity. Thus, the loop excluding the InsSucc part has an O(k log k) time

complexity. The InsSucc part has O((k+
⌊√

2k
⌋
) log k) = O(k log k) time complexity.

Thus, together the whole loop has time complexity O(k log k). The final line 15

can have an O(k) time complexity if the data P′
a is copied to Pa or O(1) if the

data is swapped. Given all three parts, the initial part, the loop, and the return

(either version), the overall time complexity of MergePair is O(k log k). We will now

summarize the space required. The Ca uses O(k log k) space. The Q uses O(
√

k)

space. Our local copy of P′
a uses O(k) space. The βξ uses O(|Ea|k) space, where each

call to MergePair adds O(k) data to βξ. Thus, the total space required for this step

is O(|Ea|k + k log k).

We can now finally determine the complexity of the Find-K-Best-Selections, And-
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case (FKBSelAnd) algorithm. First recall that the complexity of InheritFirstChild

was O(k) time and O(|Ea|k) space. We assume that out-going edges of a node are

stored with the node, so line 1 of Alg. 3.6 just involves selecting the first out-going

edge, an O(1) operation. Line 2 invokes InheritFirstChild once, returning our local

variables 〈#a,Pa, βξ〉. The local variables take O(|Ea|k) space, where |Ea| is the

number of children of a, or equivalently the number of out-going edges. The algo-

rithm then iterates over the remaining |Ea| − 1 edges on line 3, and for each edge,

it invokes MergePair. MergePair requires O(k log k) time and space, so the loop re-

quires O(|Ea|k log k) time and, as we need not keep the previous local variable copies,

only O(|Ea|k + k log k) space. Lines 6-15 copy the local variables to their final loca-

tion on the node, an O(|Ea|k) time operation. All together, this algorithm has an

O(|Ea|k log k) time and an O(|Ea|k + k log k) space complexity.

3.2.9 Find-K-Best-Selections Or-case Algorithm

The Or node case for finding the k best selections, Alg. 3.10, requires grabbing the

best k selections from all its children. This can be likened to performing the traditional

merge step of a merge-sort[6], with two modifications. First, there are multiple lists,

not just two. There is a list per child, so since there are |Eo| children, there are |Eo|

lists. Second, while each list may contain k elements, we are only interested in the

first k merged elements, not all k|Eo|. We solve this problem by keeping a priority

queue of the leading selections for each list. The algorithm repeatedly takes the best

option from the queue and then adds the associated lists next best element to the

queue, if any.

Alg. 3.10 starts out by getting a reference to all of its edges on line 1. We record

the number of edges on line 2. Lines 3-7 setup our |Eo| lists for merging, inserting

each one into the priority queue Q. Since each child’s selections are sorted, to get the
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Algorithm 3.10: FKBSelOr(o, PV , #Sel, η, >)

Eo ← All edges matching 〈o, n〉 ∈ E, in any order ;1

#E ← |Eo| ;2

for i = 1 to #E do3

〈o, n〉 ← Eo[i] ;4

p← PV (n, 1) ;5

Insert 〈p, n, 1, #Sel (n)〉 in Q ordered by p using > ;6

end7

#o ← 0 ;8

while #o < k and |Q| > 0 do9

〈p, n, j, maxj〉 ← Remove best element of Q ordered by p using > ;10

#o ← #o + 1 ;11

PV (o, #o)← p ;12

η (o, #o)← 〈n, j〉 ;13

if j + 1 ≤ maxj then14

p← PV (n, j + 1) ;15

Insert 〈p, n, j + 1, maxj〉 in Q ordered by p using > ;16

end17

end18

#Sel (o) = #o ;19

return 〈PV ,#Sel, η〉 ;20

next best answer for the child we need only look at the next selection for the child.

Thus, we record in Q the probability of this list’s best option as well as its index so

we can easily compute the next best index. The probability of the best selection of

each child is always the first one, PV (n, 1), and this is looked-up on line 5. We record

4 elements in an entry in Q on line 6: 〈p, n, j, maxj〉. p is the probability of the entry,

n is the child node of o, j is the selection number of node n that has probability p,

and maxj is the number of selections that n has. Only p, n, and j are necessary, as

maxj can be looked-up based on n, but it is convenient to include maxj. Line 8 sets

the number of selections gathered to 0.

Lines 9-18 grab the next best selection from among the current selections of each

list from the Q and records it. If there is another selection after this current selection,
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it is re-inserted in Q. Line 10 gets our best element from the queue. Lines 11-13 record

this next best entry into o’s variables and increments the number of selections found.

Lines 14-17 check to see if there is another selection for node n at position j + 1. If

so, these lines get the probability of this next selection and inserts an entry for this

next selection in Q. Line 19 sets the number answers we found in this node’s local

variable and then the algorithm returns on line 20.

Runtime Analysis The FKBSelOr algorithm has two loops, one that generates

an initial set of candidates among its |Eo| children. The other extracts up to k

selections. We assume out-going edges are stored with the node, so lines 1 and 2 are

O(1) operations. The loop from lines 3-7 performs |Eo| iterations. Each iteration, we

perform two O(1) operations and then insert a fixed-size entry in Q. The enqueue

operation, assuming a heap implementation, requires O(log |Q|) time to insert. We

insert |Eo| items for a total complexity of O(|Eo| log |Eo|) time and O(|Eo|) space.

The loop from lines 9-18 perform O(k) iterations. For each iteration, we dequeue

one element of Q on line 10. We then perform O(1) operations between lines 11-13,

setting some constant-size data. Finally, we sometimes add one element back into Q

on line 16. If all of o’s children have k selections, then we will insert a new element

in Q either k or k − 1 times. The enqueue and dequeue operations both have an

O(log |Eo|) time complexity, as the queue will have at most |Eo| elements in it at

all times. Thus, this loop has complexity O(k log |Eo|). Combined with the first

loop, the overall complexity of this algorithm is O(|Eo| log |Eo|+ k log |Eo|) time and

O(|Eo|+ k) space.
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3.2.10 Overall Find-K-Best-Selections Complexity

Given that we’ve now determined the complexity of all three sub-routines of Find-

KBestSelections, we’re now able to compute the complexity of FindKBestSelections.

This entire algorithm consists of looping over all the nodes once, calling the appropri-

ate sub-routine based on the type of node. Thus, the complexity is just the number

of each type of node times the complexity of that type of node. Specifically,

O(|L|+ |A||Ea|k log k + |O||Eo| log |Eo|+ |O|k log |Eo|)

time, where |Ea| and |Eo| are the number of children of an average And and Or

node, respectively. If one assumes that there are approximately an equal number of

each type of node and about the same number of children on average, this simplifies

to

O(|V ||Ev|k log k + |V ||Ev| log |Ev|+ |V |k log |Ev|).

We can substitute |E| for |V ||Ev| as the latter just represents the number of edges in

the graph, giving us

O(|E|k log k + |E| log |Ev|+ |V |k log |Ev|).

The space required by this algorithm is dominated by two structures, Ca and

ξ. The former requires O(k log k) space. The latter requires O(|E|k) space. So the

FindKBestSelections algorithm requires O(k log k + |E|k) space. Note that η requires

O(|V |k) space, but this is never more than O(|E|k) space. Likewise, βξ requires

O(|Ev|k) space, but |Ev| < |E|, so we can ignore this term.
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3.3 Get-K-Solutions-From-Selections Algorithm

Algorithm 3.11: GetKSolutionsFromSelections(VO, E, LL, η, ξ, #r)

m(∗, ∗)←⊥ ;1

for i = 1 to #r do2

m(r, i) = i ;3

Sk[i] = ∅ ;4

end5

for i = 1 to |V | do6

v ← VO [i] ;7

switch v in8

case v ∈ L9

Sk ← GKSFSLeaf(v, m, #r, Sk, LL) ;10

end11

case v ∈ A12

m← GKSFSAnd(v, m, #r, ξ) ;13

end14

case v ∈ O15

m← GKSFSOr(v, m, #r, η) ;16

end17

end18

end19

return Sk ;20

The premise of this algorithm is that we’ve described a modified graph with ξ and

η built upon the sd-DNNF nodes. This modified graph has up to k root nodes, each

of which is a tree that defines a selection. In our modified graph, a node is a pair:

〈n, i〉. The node n is an sd-DNNF node, and i corresponds to the ith best selection

for n. Thus, if k = 3 and the root has three selections, the best three selections start

at 〈r, 1〉, 〈r, 2〉, and 〈r, 3〉.

We use the marking system described at the start of the chapter, namely each

node has a list of k markings m (v, i), i ∈ {1, . . . , k}. The ith marking records which

of v’s local modified nodes, or local selections, belong to the selection that starts at
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〈r, i〉. If there isn’t such a local selection, the marking is set to ⊥.

Otherwise, the marking rules are the same as Chapter 2 in the modified graph.

Namely, the leaves of the tree rooted by the ith root node include their symbols

in the ith solution. The modified And nodes mark all of their modified children.

The modified Or nodes mark their only modified child. The implementation of this

algorithm is shown in Alg. 3.11.

Alg. 3.11 starts out on line 1 clearing all the marks by setting them to ⊥. There

are O(|V |k) markings, of which we must clear O(|V |#r) markings. Lines 2-5 sets

the root markings and clears our solutions. A modified root node 〈r, i〉 is marked

as part of the ith solution. Lines 6-19 loop over all the sd-DNNF nodes, from the

root to the leaves. For each node, we call the appropriate GKSFS function. These

functions move the markings down the modified graph and set the solutions. The

algorithm returns the set of solutions Sk on line 20, once every modified leaf has had

the opportunity to add itself to the appropriate solutions.

3.3.1 Get-K-Solutions-From-Selections Leaf-case Algorithm

Algorithm 3.12: GKSFSLeaf(l, m, #r, Sk, LL)

for i = 1 to #r do1

if m (l, i) 6=⊥ then2

Sk[i]← Sk[i] ∪ {LL (v)} ;3

end4

end5

return Sk ;6

The leaf case, like all cases, must process all the possible root markings to see if

any of them include this leaf. Since the leaf only has one modified node, 〈l, 1〉, m (l, i)

will always be 1 or ⊥. When m (l, i) = 1, the root node includes this leaf, so we add

this leaf’s symbol to the appropriate solution.
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Time and Space Complexity The algorithm will always loop #r times, where

#r is the actual number of selections found, between 1 and k. In general, this will

be k. We again assume appending symbols is an O(1) operation, so for each loop,

this algorithm does an O(1) operation. Thus, the time complexity of this algorithm

is O(#r). The algorithm requires only O(1) local space.

3.3.2 Get-K-Solutions-From-Selections And-case Algorithm

Algorithm 3.13: GKSFSAnd(a, m, #r, ξ)

for i = 1 to #r do1

if m (a, i) 6=⊥ then2

ja ← m (a, i) ;3

foreach 〈a, n〉 ∈ E do4

jn ← ξ (a, ja, n) ;5

m (n, i)← jn ;6

end7

end8

end9

return Sk ;10

The And node case is pushing each root marking that includes one of this And

node’s modified nodes to the appropriate combination of modified child nodes. If

m (a, i) is not ⊥ on line 2, then it specifies which modified node of a is marked for the

ith solution, specifically 〈a, ja〉. Given that 〈a, ja〉 is part of the ith solution, we mark

each modified member of the ja combination of a, specified by ξ. For a child n of a,

jn on line 5 is the index of the modified child node 〈n, jn〉. ξ captures the relation

that 〈a, ja〉 is connected to 〈n, jn〉 in our modified graph. We thus mark 〈n, jn〉 as

also being part of the solution i by setting m (n, i) = jn.

73



Time and Space Complexity All of the operations of this algorithm are O(1)

within the double loop. Thus, the time complexity of the double-loop is O(|Ea|#r),

where |Ea| is the number of out-going edges of a and the number of iterations of the

inner loop. The algorithm requires only O(1) space locally.

3.3.3 Get-K-Solutions-From-Selections Or-case Algorithm

Algorithm 3.14: GKSFSOr(o, m, #r, η)

for i = 1 to #r do1

if m (o, i) 6=⊥ then2

jo ← m (o, i) ;3

〈n, jo〉 ← η (o, jo) ;4

m (n, i)← jn ;5

end6

end7

return Sk ;8

The Or node case is also pushing each root marking that includes one of this

Or node’s modified nodes to the appropriate modified child node. If m (o, i) is not

⊥ on line 2, then it specifies which modified node of o is marked for the solution i,

specifically 〈o, jo〉. The modified node 〈o, jo〉 is connected to exactly one modified

child node, namely 〈n, jn〉 = η (o, jo). So line 5 marks this modified child by setting

m (n, i) = jn.

Time and Space Complexity This algorithm has only one loop and everything

else is looked up by index, an O(1) operation, so the overall complexity is O(#r)

time. The algorithm only requires O(1) local space.
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3.3.4 Overall Get-K-Solutions-From-Selections Complexity

We can now analyze the complexity of the whole GetKSolutionsFromSelections al-

gorithm. The algorithm starts by clearing O(|V |#r) markings on line 1, requiring

O(|V |#r) time and space. Lines 2-5 set and additional O(#r) terms, each of which

is of size O(1). Finally, lines 6-19 loop over all the nodes once from the root to the

leaves. If |S| is the size of an average solution, this loop will generate #r solutions of

size |S|. The time complexity of the loop is

O(|L|#r + |A||Ea|#r + |O|#r).

The term |A||Ea| represents the total number of out-going edges that have And node

parents. If this is O(|E|), then we can simplify our time complexity to O(|E|#r). The

space complexity is dominated by the space required to store the O(|V |#r) markings.

As was the case with the FindBestSolutionFromSelection algorithm, this can be

re-framed as a depth-first search, where our first step is to iterate over the #r root

nodes and then keep track of which modified And node child we’re visiting along

the path. This change would reduce the complexity of this part to O(|Sel|#r), where

|Sel| is the number of nodes in a selection. The amount of space can be reduced

substantially to O(|aSel|), where |aSel| is the largest number of And nodes along any

path from the root to a leaf. This is the same space required to store the k = 1 case,

as we can perform our depth-first search #r times with the same stack.

3.4 Find-K-Best-Solutions Complexity

The overall complexity of the FindKBestSolutions algorithm is dominated by the first

part of the algorithm. This chapter’s algorithm has a time complexity of O(|E|k log k

+ |E| log |Ev|+ |V |k log |Ev|) and a space complexity of O(|E|k).
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P[0.3]
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P[0.2]

L[SBrk]

Figure 3-5: Our simple sd-DNNF example, identical to previous sections except with
shorter labels LL.

3.5 Find-K-Best-Solutions Example

In this section we demonstrate the sub-routines of Alg. 3.1 FindKBestSolutions: how

they generate the modified graph, and then how they read out the k best solutions.

We present the algorithms twice, first on the simple switch example from the previous

chapter, Fig. 3-5, and then on a more complicated A-B example, Fig. 3-12.

3.5.1 Switch Example

The switch example exercises the sub-routines of Alg. 3.1 with the exception of Alg.

3.4, 3.5, 3.8, and 3.9, all of which are related to the MergePair sub-routine, Alg. 3.8.

MergePair is never run for the simple example because all of the And nodes have

only one child.

Recall that Alg. 3.1 is first generating a modified graph, described by η and ξ,

and then extracting up to k solutions. The modified graph has up to k replicas of

each internal node, A and O. We denote each of these modified nodes 〈v, i〉. Fig. 3-6
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o1,3o1,2

a2,2 o3,2
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Pv[0.3]

a5,1 a6,3a6,2

l8,1

Pv[0.2]

a6,1

o3,3o3,1

Figure 3-6: These are the modified nodes of the sd-DNNF for k = 3; there are 3
copies of all of the internal nodes. The modified nodes in this figure do not yet
have any edges, which is the form of the modified graph when first starting the
FindKBestSolutions algorithm, Alg. 3.1
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o1,3o1,2

a2,1 o3,1
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Pv[0.5]
a5,1

l7,1

Pv[0.3]
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l8,1

Pv[0.2]
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Figure 3-7: This figure is the same as Fig. 3-6 except that nodes in Fig. 3-6 that
will never have edges, or be part of a selection, have been omitted. These nodes are
unnecessary and need not be allocated.

shows the modified nodes of Fig. 3-5 explicitly for k = 3. Initially, when Alg. 3.1

begins, all of these modified nodes exist but have no edges. The objective of Alg. 3.2

is to add the appropriate edges in ξ and η, to define the solutions we want.

For the switch problem, when k = 3, some modified nodes will never have edges

because there are less than 3 selections rooted at the unmodified node. For example,

a2 has only one selection, which includes itself and l4. We thus omit these nodes from

the figure to save space. We omit 〈a2, 2〉, 〈a2, 3〉, 〈o3, 3〉, 〈a5, 2〉, 〈a5, 3〉, 〈a6, 2〉, and

〈a6, 3〉 from Fig. 3-6 in Fig. 3-7.
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Figure 3-8: For the simple switch example and k = 3, this figure shows the modified
graph with the edges added by FindKBestSelections, Alg. 3.2.

Find-K-Best-Solutions Switch Example

Alg. 3.1 is broken down into the same two steps as Chapter 2, namely a step that

finds the k best selections, Alg. 3.2, and a step that extracts the k solutions of

the k selections, Alg. 3.11. We now show how the first step, Alg. 3.2, generates the

modified graph defined by ξ and η. This algorithm adds the appropriate edges to Fig.

3-7 to arrive at Fig. 3-8 for k = 3. Fig. 3-8 has three selections with probabilities

0.5, 0.3, and 0.2. We will then describe Alg. 3.11, which will find that the top three

solutions are {“SOff”}, {“SOn”}, and {“SBrk”}, in that order.
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Find-K-Best-Selections Switch Example

Alg. 3.2 loops over all the sd-DNNF nodes from the leaves to the root, adding edges

to ξ and η. For the switch example, the nodes are processed in the order: l8, l7,

a6, a5, l4, o3, a2, and then o1. The first iteration of Alg. 3.2 will invoke Alg. 3.3,

FKBSelLeaf, on the leaf l8, on line 5.

In Alg. 3.3, #Sel (l8) is set to 1 and PV (l8, 1) is set to LP (l8) = 0.2. The next

node processed by Alg. 3.2 is another leaf, l7, and Alg. 3.3 sets #Sel (l7) = 1 and

PV (l7, 1) = 0.3.

Alg. 3.2 continues and visits a6. This And node is the first internal node we have

examined and Alg. 3.2 invokes Alg. 3.6 FKBSelAnd on this node, on line 8. Alg. 3.6

sets #Sel (a6) = 1 and PV (a6, 1) = 0.2. It also adds our first edge ξ (a6, 1, l8) = 1,

which is to say 〈a6, 1〉 → 〈l8, 1〉. We will go into the details of how Alg. 3.6 computes

these values after we have finished with Alg. 3.2.

The next node visited is a5, and this sets #Sel (a5) = 1, PV (a5, 1) = 0.3, and

ξ (a5, 1, l7) = 1, or equivalently 〈a5, 1〉 → 〈l7, 1〉. Visiting the node l4 sets #Sel (l4) =

1 and PV (l4, 1) = 0.5.

Alg. 3.2 then visits the Or node o3. Alg. 3.2 invokes Alg. 3.10, FKBSelOr, on

o3, on line 11. This sub-routine sets several values. It sets #Sel (o3) = 2, indicating

there are two selections. For the first selection, it sets PV (o3, 1) = 0.3 and η (o3, 1) =

〈a5, 1〉, or equivalently 〈o3, 1〉 → 〈a5, 1〉. For the second selection, the sub-routine

sets PV (o3, 2) = 0.2 and η (o3, 2) = 〈a6, 1〉, or equivalently 〈o3, 2〉 → 〈a6, 1〉. We will

go into the details of how Alg. 3.10 computes these values after we have finished with

Alg. 3.2.

Alg. 3.2 then moves on to the And node a2 and sets #Sel (a2) = 1, PV (a2, 1) =

0.5, and ξ (a2, 1, l4) = 1, or equivalently 〈a2, 1〉 → 〈l4, 1〉. The final node visited by

Alg. 3.2 is the root o1. Alg. 3.2 invokes Alg. 3.10 on this Or node. Alg. 3.10 sets
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#Sel (o1) = 3, indicating there are 3 selections. For the first selection, the sub-routine

sets PV (o1, 1) = 0.5 and η (o1, 1) = 〈a2, 1〉. For the second selection, the sub-routine

sets PV (o1, 2) = 0.3 and η (o1, 2) = 〈a5, 1〉. For the third and last selection, the

sub-routine sets PV (o1, 3) = 0.2 and η (o1, 3) = 〈a6, 1〉.

This concludes Alg. 3.2. The algorithm generated 3 selections starting at 〈o1, 1〉,

〈o1, 2〉, and 〈o1, 3〉, respectively. The probabilities of these three selections are 0.5,

0.3, and 0.2, respectively. The five edges added to the modified graph with η and the

three edges added to the modified graph with ξ are shown in Fig. 3-8.

Find-K-Best-Solutions, And Case, Switch Example

In this section, we show the FKBSelAnd algorithm, Alg. 3.6, running on node a6

of the simple switch example. In this example, only the sub-routine Alg. 3.7 In-

heritFirstChild is called. FKBSelAnd sets #Sel (a6) = 1, PV (a6, 1) = 0.2, and

ξ (a6, 1, l8) = 1.

Alg. 3.6 starts by getting its only child l8 and putting it in e on line 1. The

algorithm then calls Alg. 3.7 on line 2, which sets the local variables #a = 1, Pa (1) =

0.2, and βξ (l8, 1) = 〈⊥, 1, 1〉. Since the algorithm has no other children, lines 3-5 are

skipped.

Since #a = 1, lines 6-14 are only run once. The algorithm sets PV (a, 1) = 0.2

on line 7. Line 8 sets n = l8 and j1 = 1. Within the inner loop, line 10 gets

βξ (l8, 1) = 〈⊥, 1, 1〉. Line 11 sets ξ (a6, 1, l8) = 1 and line 12 sets n =⊥ and j1 = 1,

ending the loop. Line 15 sets #Sel (a6) = 1.

Inherit-First-Child Switch Example

Continuing our simple switch example from within the FKBSelAnd algorithm, Alg.

3.6, this function sets #a = 1, Pa (1) = 0.2, and βξ (l8, 1) = 〈⊥, 1, 1〉 when invoked
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on the child l8 of the node a6.

On line 1 of the algorithm looks up the number of selections of l8. The node l8

has only 1 selection, the modified node 〈l8, 1〉. For this one selection, line 3 copies

PV (l8, 1) = 0.2 into Pa (1). Line 4 sets βξ (l8, 1) = 〈⊥, 1, 1〉, which records both

that the modified node 〈a6, 1〉 gets its probability from the modified node 〈l8, 1〉, and

thus it has the edge 〈a6, 1〉 → 〈l8, 1〉, and it also records that l8 is the last variable,

as its successor is ⊥. This sub-routine then returns, concluding the FKBSelAnd

sub-routines.

Find-K-Best-Selections, Or Case, Switch Example

We demonstrate Alg. 3.10, in this section, running on node o1 of the switch exam-

ple. In this sub-routine, three selections are identified with the three modified nodes

〈o1, 1〉, 〈o1, 2〉, and 〈o1, 3〉. These modified nodes are assigned probabilities in PV

and children in η.

The node o1 has three children, a2, a5, and a6. It thus sets #E = 3 on line

2. For each of these three children, the algorithm enqueues an entry of the form

〈p, n, j, maxj〉. The children of o1 have the entries:

• a2: 〈0.5, a2, 1, 1〉

• a5: 〈0.3, a5, 1, 1〉

• a6: 〈0.2, a6, 1, 1〉

These are all inserted into Q on line 6. Thus the queue has these three entries on line

8. Line 8 sets our current number of selections, #o, equal to 0.

The first iteration of lines 9-18 starts out on line 10 by removing the best entry,

〈0.5, a2, 1, 1〉 from Q. After this, Q contains only two entries: 〈0.3, a5, 1, 1〉 and

〈0.2, a6, 1, 1〉. Line 11 sets the number of selections to 1. Line 12 sets PV (o1, 1) = 0.5.
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Line 13 records the modified child of o1 that had this probability, namely 〈a2, 1〉.

Thus, η now contains the edge 〈o1, 1〉 → 〈a2, 1〉.

Line 14 checks if j + 1 ≤ 1, but, since j = 1, it does not. Thus, the loop from

lines 9-18 starts again at the beginning. If maxj was 2, line 16 would have inserted

〈p, a2, 2, 2〉 into Q, where p = PV (a2, 2).

The second iteration of the loop starts out by again removing the best entry from

Q. In this case the best entry is 〈0.3, a5, 1, 1〉. The loop sets #o = 2, PV (o1, 2) = 0.3,

and η (o1, 2) = 〈a5, 1〉. Again, this loop skips lines 14-17. The third and final iteration

of the loop starts out by removing the last entry from Q, the entry 〈0.2, a6, 1, 1〉. This

iteration sets #o = 3, which is also k, PV (o1, 3) = 0.2, and η (o1, 3) = 〈a6, 1〉. The

loop then exits, setting the final number of selections of o1, #Sel (o3), to 3 on line 19.

This concludes the activities of Alg. 3.2, FindKBestSelections, operating on the

simple switch example. This algorithm generates the modified graph with edges show

in Fig. 3-8. For comparison, figures 3-9 and 3-10 show the modified graph generated

by Alg. 3.2 on the same switch example, but with k = 2 and k = 1, respectively.

When k = 1, Alg 3.2 is expected generate the same modified graph as Alg. 2.2, so it

is important to observe that their modified graphs are in fact the same. The modified

graph of Alg. 2.2 is shown in figures 2-4 and 2-5. The modified graph of Alg. 3.2 is

shown in Fig. 3-10.

Get-K-Solutions-From-Selections Algorithm

Alg. 3.11, GetKSolutionsFromSelections, is responsible for extracting the 3 solutions

corresponding to the 3 selections we found in the proceeding section by running Alg.

3.2, FindKBestSelections. We have boxed these three selections in Fig. 3-11 as well

as reporting the probability of each selection. The three best solutions are, in order,

{“SOff”}, {“SOn”}, and {“SBrk”}.
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Figure 3-9: For the simple switch example and k = 2, this figure shows the modified
graph with the edges added by FindKBestSelections, Alg. 3.2. The nodes and edges
in the modified graph are a proper subset of the nodes and edges of Fig. 3-8.
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Figure 3-10: For the simple switch example and k = 1, this figure shows the modified
graph with the edges added by FindKBestSelections, Alg. 3.2. The nodes and edges
in the modified graph are a proper subset of the nodes and edges of Fig. 3-9. This
figure contains the same edges as those created by the FindBestSelection algorithm,
Alg. 2.2. The modified graph produced by FindBestSelection is shown in Fig. 2-4
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Figure 3-11: This figure boxes the 3 selections of the modified graph produced by
FindKBestSelections, Alg. 3.2, along with their probability. For each selection, the
GKSFS algorithm, Alg. 3.11, gathers the labels LL of each leaf in the selection box.
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Alg. 3.11 starts out on line 1 by clearing all of our markings. Lines 2-5 loop

once for each of the root node o1’s modified nodes: 〈o1, 1〉, 〈o1, 2〉, and 〈o1, 3〉. For

each modified node 〈o1, i〉, the algorithm marks that modified node as part of the ith

selection, and thus m (o1, 1) = 1, m (o1, 2) = 2, and m (o1, 3) = 3. The algorithm

also clears Sk[i] for each i.

Alg. 3.11 then continues by iterating over all the sd-DNNF nodes from the root

to the leaves between lines 6 and 19. The algorithm starts with the root node o1,

and calls Alg. 3.14, GKSFSOr on o1. Alg. 3.14 sets m (a2, 1) = 1, m (o3, 2) = 1, and

m (o3, 3) = 2. These three values mean that 〈a2, 1〉 is part of the first selection, 〈o3, 1〉

is part of the second selection, and 〈o3, 2〉 is part of the third selection, respectively.

For the next node, the And node a2, the algorithm calls Alg. 3.13, GKSFSAnd.

Alg. 3.13 sets m (l4, 1) = 1. Alg. 3.11 continues onto the next node o3, and Alg.

3.14, GKSFSOr, sets the markings m (a5, 2) = 1, m (a6, 3) = 1, meaning 〈a5, 1〉 is

part of the second selection and 〈a6, 1〉 is part of the third selection.

Alg. 3.11 then visits node l4. For this node, the algorithm calls Alg. 3.12,

GKSFSLeaf. This function observes that m (l4, 1) = 1, and thus adds LL (l4) =

“SOff” to the first solution, Sk[1].

Continuing with Alg. 3.11, the nodes a5 and a6 are visited, setting m (l7, 2) = 1

and m (l8, 3) = 1, respectively. Visiting the nodes l7 and l8 add “SOn” to Sk[2] and

“SBrk” to Sk[3], respectively. The algorithm is then done and returns the solutions:

• Sk[1] = {“SOff”}

• Sk[2] = {“SOn”}

• Sk[3] = {“SBrk”}
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Figure 3-12: This figures shows a more complicated valued sd-DNNF than that of
Fig 3-5. This graph has 5 solutions: {“a1”, “b1”}, {“a2”, “b1”}, {“a2”, “b2”},
{“a3”, “b2”}, and {“a3”, “b3”}.

3.5.2 A-B Example

For a more complicated example of this algorithm, we now present a contrived ex-

ample with two types of labels, A and B. Each type of label has three values, for

example a1, a2, and a3. The truth table for these two variables is:

a1 a2 a3

b1 1 1 0

b2 0 1 1

b3 0 0 1

The sd-DNNF shown in Fig. 3-12 represents this truth table. There are six leaves,

three of which are l3, l8, and l9 with labels “a1”, “a2”, and “a3” from A, respectively.

The other three are l10, l11, and l12 with labels “b1”, “b2”, and “b3” from B,

respectively. The complete list of nodes is: o1, a2, l3, a4, a5, o6, o7, l8, l9, l10, l11,

and l12. The probabilities LP of these six leaves are LP (l3) = 0.5, LP (l8) = 0.4,

LP (l9) = 0.1, LP (l10) = 0.3, LP (l11) = 0.4, and LP (l12) = 0.3. There are 13 edges
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Figure 3-13: This figure shows the modified nodes of the A-B example when k = 3.

E, all of which are drawn in Fig. 3-12 and will thus be omitted from this textual

description. We are again assuming a maximum-product.

Find-K-Best-Solutions A-B Example

We will again highlight running Alg. 3.1, FindKBestSolutions, on this new A-B exam-

ple. We will focus primarily on the And node case of Alg. 3.2 FindKBestSelections,

Alg. 3.6 FKBSelAnd, since in the previous example, Alg. 3.8 MergePair and its

sub-routines were unnecessary.

As with the switch example, we have shown the modified nodes of Fig. 3-12 in

Fig. 3-13 for k = 3 and then pruned them down to only those that will have edges in

Fig. 3-14. Fig. 3-14 represents the starting point of Alg. 3.1.

For this example and k = 3, Alg. 3.1, FindKBestSolutions, calls Alg. 3.2, Find-

KBestSelections, which generates the edges shown in Fig. 3-15. Due to space con-

straints, we have abbreviated ξ by omitting the last term n in ξ (a, j, n), as the last
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Figure 3-14: This figure shows just the modified nodes of the A-B example, when
k = 3, that will have an edge after running FindKBestSolutions, Alg. 3.1.
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Figure 3-15: This is the modified graph of the A-B example once the FKBS algorithm,
Alg. 3.2 has run.
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term is the node to which the arc points. Alg. 3.1 then calls Alg. 3.11, GetKSolu-

tionsFromSelections, which extracts the three solutions of the selections rooted at o1.

The three solutions are, in order, {“a2”, “b2”}, {“a1”, “b1”}, and {“a2”, “b1”}. The

first two selections are highlighted in Fig. 3-19. The third selection overlaps with the

first two, so it was not drawn.

Find-K-Best-Selections A-B Example

Alg. 3.2, FindKBestSelections, adds the edges shown in Fig. 3-15 to the A-B example,

for k = 3. For the purpose of this example, we will focus on the edges added to o6

and a4.

When Alg. 3.2 visits o6, the algorithm calls the sub-routine FKBSelOr, Alg. 3.10.

This sub-routine sets #Sel (o6) = 2. For the first selection, Alg. 3.10 sets PV (o6, 1) =

0.4 and η (o6, 1) = 〈l11, 1〉, where the modified child node 〈l11, 1〉 has probability 0.4.

For the second selection, Alg. 3.10 sets PV (o6, 2) = 0.3 and η (o6, 2) = 〈l10, 1〉.

When Alg. 3.2 visits a4, the algorithm calls the sub-routine FKBSelAnd, Alg.

3.6. This sub-routine sets #Sel (a4) = 2. For the first selection, Alg. 3.6 sets

PV (a4, 1) = 0.16, ξ (a4, 1, l8) = 1, and ξ (a4, 1, o6) = 1. For the second selection,

Alg. 3.6 sets PV (a4, 2) = 0.12, ξ (a4, 2, l8) = 1, and ξ (a4, 2, o6) = 2. Thus we have

〈a4, 1〉 → 〈o6, 1〉 and 〈a4, 2〉 → 〈o6, 2〉 along with 〈a4, 1〉 → 〈l8, 1〉 and 〈a4, 2〉 →

〈l8, 1〉.

We will now delve into the And case for this example.

Find-K-Best-Selections, And Case, A-B Example

Within Alg. 3.6, FKBSelAnd, we will assume that the first edge we choose was

towards l8. Then line 2 initializes our three local And node variables to: #a = 1,

Pa (1) = 0.4, and βξ (l8, 1) = 〈⊥, 1, 1〉. The function MergePair, Alg. 3.8, is then run
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1,1 1,2

2,1

1,3

3,1

Figure 3-16: This figure shows the set of combinations that are part of the Ca structure
when k = 3. A combination will be enabled if both of its parents are accepted as part
of the k best selections. 1, 1 is always enabled.

on the only pairing, between l8 and o6. This pairing will set βξ (o6, 1) = 〈l8, 1, 1〉 and

βξ (o6, 2) = 〈l8, 1, 2〉. These three entries summarize two combinations, 〈1, 1〉 and

〈1, 2〉, with two edges each, thus describing the four edges presented just previously

for ξ.

Merge-Pair A-B Example

MergePair, Alg. 3.8, requires that we have already constructed Ca for k = 3. Ca for

k = 3 is shown in Fig. 3-16. The entries 〈i, j1, j2, i1, i2, #P , #E〉 of Ca are:

• Ca[1] = 〈1, 3, 1,⊥,⊥, 1, 1〉

• Ca[2] = 〈2, 2, 1, 1,⊥, 1, 1〉

• Ca[3] = 〈3, 1, 3,⊥,⊥, 1, 1〉

• Ca[4] = 〈4, 1, 2,⊥, 3, 1, 1〉

• Ca[5] = 〈5, 1, 1, 2, 4, 0, 0〉

The first step of Alg. 3.8 sets the number of remaining parents #E equal to the

number of actual parents #P for each entry by calling ResetCombinations Alg. 3.5.
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The entries listed above already have the two values equal. MergePair then sets our

new number of solutions #′
a = 0 and computes the probability of the first combination

〈1, 1〉. The probability of the first combination is 0.4× 0.4 = 0.16. Line 5 inserts the

entry 〈0.16, 5〉 into Q, where 5 is the index of the 〈1, 1〉 combination in Ca.

Alg. 3.8 then loops over lines 6-14. In the first iteration, the only element in Q is

removed, the entry 〈0.16, 5〉. The loop records that #′
a = 1, sets P′

a (1) = 0.16, and

sets βξ (o6, 1) = 〈l8, 1, 1〉.

Line 12 then calls InsSucc, Alg. 3.9, for the combination 〈2, 1〉, but this isn’t a

valid combination as l8 does not have 2 selections, so InsSucc does nothing. Line 13

then calls InsSucc for the combination 〈1, 2〉 and this both exists and is now enabled,

so InsSucc computes the probability of this combination 0.4× 0.3 = 0.12 and inserts

〈0.12, 4〉 into Q.

In the second iteration of Alg. 3.8, the entry 〈0.12, 4〉 is dequeued from Q. The

iteration records that #′
a = 2, sets P′

a (2) = 0.12, and sets βξ (o6, 2) = 〈l8, 1, 2〉. Alg.

3.8 then calls InsSucc on i1 =⊥ in Ca[4], so InsSucc immediately returns. Alg. 3.8

then calls InsSucc on i2 = 3, which has the combination 〈1, 3〉. Since 3 > #Sel (o6),

InsSucc also immediately returns. The queue Q is then empty, with only 2 selections,

and the algorithm returns with just these two selections.

Figures 3-17 and 3-17 illustrate the modified graph of the A-B example with k = 2,

and k = 1, respectively. These figures show how the modified nodes in Fig. 3-15 are

eliminated as the number of selections we seek is reduced.

Get-K-Solutions-From-Selections

For the A-B example, when k = 3, the GetKSolutionsFromSelections algorithm, Alg.

3.11, is performing much the same steps as in the switch example. The one interesting

variation to the switch example is that two nodes are part of more than one solution,
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Figure 3-17: This figure shows how the modified nodes and edges change when k = 2
as opposed to k = 3.
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Figure 3-18: This figure shows how the modified nodes and edges change when k = 1
as opposed to k = 2.
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Figure 3-19: This figure shows the result of applying the GKSFS algorithm to the A-B
example. We have highlighted the best 2 selections out of the 3 selections generated.
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namely l8 and l10. For the node l8, for example, both m (l8, 1) = 1 and m (l8, 3) = 1,

which means that l8 is part of the first and third solution. The label “a2” of l8 is thus

added to Sk[1] and Sk[3]. The three solutions returned are {“a2”, “b2”}, {“a1”, “b1”},

and {“a2”, “b1”}.

3.6 Summary

In this chapter, we presented an extension of the find-best-solution algorithm of Chap-

ter 2 that is able to find up to k solutions. The extension, Alg. 3.1, has a time

complexity of O(|E|k log k + |E| log |Ev| + |V |k log |Ev|) and a space complexity of

O(|E|k). We also demonstrated this algorithm on two examples, first on the simple

switch example of Chapter 2 and then on the A-B example.
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Chapter 4

Results

We implemented the algorithm presented in Chapter 3 in C++. We used a visitor

pattern for the switch statements in Algs. 3.2 and 3.11. The implementation was

compiled with the g++ v3.4.4 package that comes with cygwin. We used the Windows

built-in QueryPerformanceCounter function to obtain timing data, which reports

the real-time elapsed. The results were gathered on a 1.7GHz Intel Pentium M

computer with 1.5GB of RAM running Windows XP. All data points, unless otherwise

noted, are the average of 200 runs of the algorithm, where, for each run, we vary the

probability labels LP by choosing pseudo-random values with the C language built-in

rand function.

The implementation was written for comprehensibility and correctness, not per-

formance, in terms of both time and space. For example, standard template library

vectors were used in several places to store edges and entries for ξ and η. The al-

gorithm uses doubles, as opposed to floats, to store probabilities, and uses integer

indices or pointers everywhere else.

Table 4.1 summarizes the seven graphs presented in this section. For example,

G1 has 359 nodes and 863 edges, where 118 nodes are leaves, 169 are And nodes,
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G |E| |V | |L| |A| |O|
G1 863 359 118 169 72
G2 2,154 750 154 423 173
G3 2,559 809 190 434 185
G4 39,247 4,832 1,018 2,590 1,224
G5 6,992 1,549 794 504 251
G6 13,324 4,141 508 2,476 1,157
G7 308,084 80,754 866 55,115 24,773

G |Solutions| #Symbols

Solution

#Edges

Node
Avg σ Max

G1 6,800 21 3.58 2.87 14
G2 226,800 26 3.61 3.39 19
G3 1.5× 108 34 4.13 3.80 16
G4 > 1019 172 10.3 15.2 59
G5 1.7× 109 62 9.26 12.7 78
G6 2.3× 109 67 3.67 4.79 36
G7 > 1019 87 3.86 8.37 103

Table 4.1: This table shows the attributes of the graphs used in this section.
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and the remaining 72 nodes are Or nodes. A solution to G1 has 21 symbols; G1 has

6,800 solutions. The internal nodes have 3.58 children, on average, with a standard

deviation of 2.87. No internal node has more than 14 children.

The graphs vary in size between 900 and 308,000 edges, with between 3.5 and 10

children per internal node, on average. These are the terms |E| and |Ev|, respectively,

in the time complexity of the Get-K-Best-Solutions algorithm:

O(|E|k log k + |E| log |Ev|+ |V |k log |Ev|)

In the rest of this section, we empirically show how much time and memory it takes

to extract k solutions from these seven graphs. We vary k between 1 and 10,000 for

G1 and vary k between 1 and 500 for the remaining graphs except the last one, for

which we only vary k between 1 and 100.

The performance data for the graph G1 is shown in Fig. 4-1. G1 is taken from

a simple switched or-gate propagation example. Fig. 4-1 (top) shows the time it

takes to extract a solution from G1. We believe the slight increase at around k = 200

is caused by a partial loss of locality in the algorithm, and is thus related to the

processor cache size. The line itself is otherwise basically linear, implying the linear

parts are more significant than the k log k part. The time complexity grows at a rate

of 0.036 ms per k with a time of 28.919 ms for k = 1, using least-square fitting.

Fig. 4-1 (bottom) shows the memory used by the algorithm. The graph plots the

amount of memory that all of the data structures are calculated to use and includes

the space required to store the graph itself. As expected, this is linear in k. The

memory required grows at a rate of 7.0 KB per k with a minimum requirement of

35.4 KB for k = 1, using least squares fitting.

Fig. 4-2 shows the same graph G1 as Fig. 4-1 for values of k up to 10,000.

Since G1 has only 6,800 solutions, the actual number of solutions extracted peaks at
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Figure 4-1: This figure shows the amount of time taken (top) and memory required
(bottom) to extract k solutions from this first graph, G1. G1 has 359 nodes and 863
edges. k varies from 1 to 500.
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Figure 4-2: This figure shows the amount of time taken (top) and memory used
(bottom) to extract k solutions from G1. k varies from 500 to 10,000 in increments
of 50 for the first 3,000 and increments of 100 for the rest.
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6,800. The implementation presently pre-allocates based on k alone, so the memory

required continues to grow past this point, as before. The algorithm could be modified

to first determine the maximal number of solutions rooted at each node and then only

allocate enough space for that number of solutions. The algorithm already makes this

optimization for the leaves, allocating only one copy.

The time required starts growing at a much larger rate, though still linear, at

about k = 4, 400. We speculate this shift is also due to cache size, as at this size, the

amount of memory needed per node exceeds the processor’s cache size.

Fig. 4-3 shows the time and memory required to extract k solutions from G2.

G2, like G1, is taken from a simple switched or-gate propagation example, but for a

propagation breadth of 2. G2 has almost two and a half times more edges than G1

and twice as many nodes. Extracting solutions from G2 requires 0.12 ms per k with

a minimum of 63.38 ms for k = 1. The algorithm uses 16.3 KB per k and 86.5 KB

for k = 1.

Fig. 4-4 shows the time and memory required to extract k solutions from G3. G3 is

also taken from a simple switched or-gate propagation example, but for a propagation

breadth of 4. G3 is about 20% larger than G2, but it has significantly more solutions

and the time complexity grows more than twice as fast as the time complexity of G2.

Extracting solutions from G3 requires 0.28 ms per k and 66.08 ms for k = 1. The

algorithm uses 18.3 KB per k and 98.9 KB for k = 1, only about 20% more than G2.

Fig. 4-5 shows the time and memory required to extract k solutions from G4. G4 is

also taken from a simple switched or-gate propagation example, but for a propagation

breadth of 50. G4 is more than an order of magnitude larger than G3 and has more

solutions than fit in a 64-bit number (1019). Extracting solutions from G4 requires

5.4 ms per k and 423.9 ms for k = 1. The algorithm uses 0.20 MB per k and 1.14

MB for k = 1.

Fig. 4-6 shows the time and memory required to extract k solutions from G5. G5
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Figure 4-3: This figure shows the amount of time taken (top) and amount of memory
required (bottom) to extract k solutions from G2. G2 has 750 nodes and 2,154 edges.
k varies from 1 to 500 in increments of 2.
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Figure 4-4: This figure shows the amount of time taken (top) and amount of memory
required (bottom) to extract k solutions from G3. G3 has 809 nodes and 2,559 edges.
k varies from 1 to 500 in increments of 4.
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Figure 4-5: This figure shows the amount of time taken (top) and amount of memory
required (bottom) to extract k solutions from G4. G4 has 4,832 nodes and 39,247
edges. k varies from 1 to 500 in increments of 5.
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Figure 4-6: This figure shows the amount of time taken (top) and amount of memory
required (bottom) to extract k solutions from G5. G5 has 1,549 nodes and 6,992
edges. k varies from 1 to 500 in increments of 10.
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G Time
Time

k

Time

k|E|
Time

|O|k log |Ev|
G1 28.919 ms 0.036 ms 41.7 ps 272 ps
G2 63.38 ms 0.12 ms 53.9 ps 362 ps
G3 66.08 ms 0.28 ms 109.0 ps 740 ps
G4 423.9 ms 5.4 ms 137.6 ps 620 ps
G5 124.92 ms 0.26 ms 37.2 ps 323 ps
G6 357.82 ms 0.90 ms 67.5 ps 415 ps
G7 7.473 s 21 ms 68.2 ps 435 ps

G Space
Space

k

Space

k|E|
Space

k|V |
G1 35.4 KB 7.0 KB 8.3 Bytes 20.0 Bytes
G2 86.5 KB 16.3 KB 7.7 Bytes 22.3 Bytes
G3 99.1 KB 18.3 KB 7.3 Bytes 23.2 Bytes
G4 1.14 MB 0.20 MB 5.3 Bytes 43.4 Bytes
G5 242 KB 40 KB 5.9 Bytes 26.4 Bytes
G6 525 KB 97 KB 7.5 Bytes 24.0 Bytes
G7 11.2 MB 2.1 MB 7.1 Bytes 27.3 Bytes

Table 4.2: This table summarizes the linear trends of the data presented in this
section.

is taken from an automotive cruise control propagation example.

Fig. 4-7 shows the time and memory required to extract k solutions from G6. G6

is taken from a data transmission via a dual-band antenna example.

Fig. 4-8 shows the time and memory required to extract k solutions from G7. G7

is taken from a orbital entry propagation example.

Table 4.2 shows a summary of the linear trends demonstrated by the Find-K-Best-

Solutions algorithm on the four graph examples. We used the average number of edges

per node from Table 4.1 for |Ev|. The time term appears to be most consistent with

O(k|O| log |Ev|), though there isn’t enough data to confirm this. It appears different

factors contribute to the actual amount of time it takes, as G2 and G3 are similar

in size and come from a similar problem but G3 is many more solutions than G2
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Figure 4-7: This figure shows the amount of time taken (top) and amount of memory
required (bottom) to extract k solutions from G6. G6 has 4,141 nodes and 13,324
edges. k varies from 1 to 500 in increments of 10.
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Figure 4-8: This figure shows the amount of time taken (top) and amount of memory
required (bottom) to extract k solutions from G7. G7 has 80,754 nodes and 308,084
edges. k varies from 1 to 100 in increments of 10. Moreover, unlike other examples,
a data point only represents 20 runs of the algorithm instead of the normal 200 runs.
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and the highest value for the ratio of time to k|O| log |Ev|, but this difference may be

related to the actual |Eo|, which we did not measure. The memory required is much

better behaved. The number of bytes needed grows slower than O(k|E|) but faster

than O(k|V |).

112



Chapter 5

Conclusion

We now present some promising future work and then conclude.

5.1 Future Work

5.1.1 Depth-first search for solution extraction

As was stated on pages 34 and 75, the second phase of the algorithm currently need-

lessly walks over the whole graph pushing around markings to extract all the solutions.

Since the end algorithm ended up being mostly linear, this linear cost is expected to

be significant in the total time cost, as well as the space cost.

Since we’re interested in all leaves connected to each root, we can just walk down

the trees defined at each root copy and only store a next-child stack for And nodes.

This reduces the time complexity of the extraction step to O(k|Sel|) time, where |Sel|

is the number of nodes in a selection. Since each root copy is the root of a tree, and

the number of leaves in a tree is one more than the number of non-leaves, we assume

that |Sel| is proportional to the number of symbols in a solution1. The space required

1Note that extensive use of the empty label ∅ will make the proportionality constant very large,
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will reduce from O(k|V |) to O(|Sel|) space for the data structure plus O(k|Sel|) for

the solution itself, because we need to store at most a value per And nodes in the

selection.

5.1.2 Memory

Memory has two problems that can be addressed. First, it lacks locality. Nodes are

allocated in three blocks, one for each type, and then edges and the edge functions

ξ and η are allocated inter-mixed. We speculate that the algorithm will have better

time performance if each node contained all of its own data locally. Since the total

memory needed for the whole algorithm can be pre-computed, the memory required

can be allocated in one block and then each node can be placed in sequence based on

the node ordering, including all of its edge data. To improve locality between nodes

and their children, the graph can be sorted so as to minimize the average number of

nodes between a parent and its children.

The second problem with memory is that the algorithm allocates more node copies

than it needs to. Each internal node currently allocates a full set of k copies of itself.

As we demonstrated in the examples of Chapter 3, a number of node copies will

never have edges and will never take part in a final solution. The number of nodes

that could ever have edges is equal to the number of selections rooted at that node

(assuming this count is less than k). Counting the number of selections is a linear

operation and an algorithm for doing so is provided in [8].

as it does not contribute to the number of symbols in the solution but it does contribute to the
number of nodes in the selection.
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5.2 Summary

This thesis has presented an novel algorithm for extracting the k best solutions from

a valued and-or acyclic graph, where prior work did not exist in this area. The

algorithm has a time complexity of O(|E|k log k + |E| log |Ev| + |V |k log |Ev|) and a

space complexity of O(k|E|). We then present experimental results confirming our

complexity on a set of seven graphs.

The algorithm works by incrementally generating a modified graph in which every

node has up to k copies, sorted by value. In the modified graph, each copy of the

root node is a tree that represents a selection in the unmodified graph. The k best

solutions are then the solutions of these k trees rooted at each root node copy.
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