
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2008-028 May 8, 2008

Perfect Implementation of Normal-Form Mechanisms
Sergei Izmalkov, Matt Lepinski, and Silvio Micali

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4406123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Perfect Implementation of Normal-Form Mechanisms

By Sergei Izmalkov, Matt Lepinski, and Silvio Micali∗

May 5, 2008

Abstract
Privacy and trust affect our strategic thinking, yet they have not been precisely modeled in mechanism

design. In settings of incomplete information, traditional implementations of a normal-form mechanism
—by disregarding the players’ privacy, or assuming trust in a mediator— may not be realistic and fail to
reach the mechanism’s objectives. We thus investigate implementations of a new type.

We put forward the notion of a perfect implementation of a normal-form mechanism M: in essence,
an extensive-form mechanism exactly preserving all strategic properties ofM, without relying on a trusted
mediator or violating the privacy of the players.

We prove that any normal-form mechanism can be perfectly implemented by a public mediator using
envelopes and an envelope-randomizing device (i.e., the same tools used for running fair lotteries or tallying
secret votes). Differently from a trusted mediator, a public one only performs prescribed public actions, so
that everyone can verify that he is acting properly, and never learns any information that should remain
private.

1 Introduction

A game consists of a context —describing the outcomes, the players (including their types and beliefs), and the
players’ preferences over the outcomes— and a mechanism (or a game form), describing the actions available
to the players, and the way in which actions lead to outcomes. The usual goal of mechanism design consists
of finding a mechanism that, for a given class of contexts, defines a game whose equilibria yield a desired
outcome. While contexts can be arbitrarily complex, mechanism design strives to find simple mechanisms.
A normal-form mechanism consists of a set of reports (or messages) for each player, and an outcome function
mapping these reports to outcomes.

Normal-form mechanisms are designed so as to enjoy valuable theoretical properties. As defined, however,
they are abstractions. Outcome functions do not spontaneously evaluate themselves on players’ reports.
To be useful in real strategic settings, normal-form mechanisms are concretely implemented with the help
of a mediator. But such concrete implementations present theoretical difficulties that are far from being
understood. Indeed, we argue that

Unless they satisfy several new goals, not achieved and often not addressed so far, concrete mediated
implementations of normal-form mechanisms not only are not very meaningful, but fail to enjoy the very
properties achieved by their abstract counterparts.

We contend that without a rigorous and sufficiently powerful theory of concrete implementation, the practical
meaningfulness of normal-form mechanisms is at risk. Providing such a theory is the goal of this paper.

1.1 Our Goals for Mediated Mechanisms

Our goals for mediated mechanisms are very stringent. They pertain to privacy and trust, physical as-
sumptions, operational efficiency, neutrality to collusion, and constructiveness. Proceeding informally, this
introduction first illustrates our goals, and then explains in what sense they can be simultaneously achieved.
∗We would like to thank participants to numerous seminars, and especially Ran Canetti, Dino Gerardi, Sergiu Hart, Bart

Lipman, and Dave Parks, for their comments. We are grateful to the NSF grant SES-0551244 for financial support.

1

1.1.1 Privacy and Trust

Among auctions in the private-value setting, the famous second-price sealed-bid mechanism is a normal-form
mechanism whose reports consist of numerical bids —one for each player— and whose outcome function
returns the player with the highest bid as the winner, and the value of the second-highest bid as the price.
The characteristic property of this mechanism is economic efficiency achieved in dominant strategies. Indeed,
because it is optimal for each player to report his true valuation no matter what the others may report, the
player with the highest valuation wins the item for sale. We shall use this mechanism to illustrate the
problems of privacy and trust when abstract normal-form mechanisms are concretely implemented with the
help of a mediator.

Private vs. Public Mediators. Consider the following two mediated implementations of the second-price
sealed-bid mechanism.

M1 (With a Private Mediator): The players seal their bids into envelopes and hand them to the mediator,
who then privately opens them, privately evaluates the outcome function, and finally publicly announces
the winner and the price.

M2 (With a Public Mediator): The players seal their bids into envelopes and hand them to the mediator,
who then publicly opens all of them, so as to enable everyone to compute the winner and the price.

Notice that the mediators of these two implementations are asked to perform different types of actions. The
mediator of implementation M2 only performs public actions, so that everyone can verify that the right
actions have been performed. By contrast, the mediator of M1 is asked to perform private actions, so that
only he knows whether he has performed the right actions. Accordingly, these two implementations are at
opposite ends with respect to privacy and trust. On the one extreme, implementation M1 reveals nothing
more than the announced outcome, but requires total trust in the mediator. Indeed, the players cannot
verify whether the mediator announces the correct outcome, nor whether he will keep all bids secret after
the auction is over.1 On the other extreme, M2 guarantees the correctness of the outcome, but makes the
entire players’ reports public knowledge. In sum, M1 requires total trust and offers total privacy, while M2

requires no trust and offers no privacy.
To be sure, a public mediator is still trusted, but in a different, “public” sense: he is trusted to really

perform whatever public actions he is asked to perform. For instance, in implementation M2 he is trusted
not to open just the first half of the envelopes and destroy the other half. Clearly such trust is much milder:
because any deviation from prescribed public actions is immediately observed, a public mediator can be kept
accountable.

Privacy and Trust as Strategic Problems. Privacy-valuing players may avoid participating in imple-
mentation M2, and distrustful players in implementation M1. Such reduced participation not only causes
the seller to fetch lower prices, but negatively affects efficiency. Indeed, the requirement that “the item be
won by the player who values it the most” applies to all potential bidders, not just the ones trusting a given
mediator. Thus, no implementation that deters some players from bidding can be efficient in a general sense.
In addition, whenever (for lack of other ways of getting a desired item) distrustful players participate in M1

or privacy-valuing players participate in M2, neither mechanism can be efficient, even with respect to just the
participating players. Let us explain.

• In M1, a player who truly distrusts the mediator may fear that the price will always be artificially close
to the winner’s bid.2 Such a player will not find it optimal to report his true valuation to the mediator;

1According to Rothkopf, Teisberg and Kahn (1990), such concerns explain why second-price auctions are rarely used in
practice.

2If player i bids $1000 dollars and the mediator (auctioneer) announces that i is the winner and must pay $999 dollars, it is
impossible for i to know if there was really a bid of $999. Certainly, an auctioneer has incentives to manipulate the outcome
(e.g., if he is paid a percentage of the generated revenue for his services) and to betray a player’s secret (e.g., if he is offered a

2

instead, he will have a strong incentive to “underbid.” Thus, the item for sale might very well go to
another player, who values it less but trusts the mediator more. Therefore, concrete implementation M1

may not be efficient.
• In M2, a player truly valuing the privacy of his valuation receives, by definition, some negative utility from

its publicity. But then the only way for him to prevent his true valuation from becoming public is to bid
a different value, perhaps in a randomized fashion. This distortion may make concrete implementation
M2 inefficient as well.

More generally, privacy and trust affect the players’ strategic thinking, making it unclear whether mediated
implementations satisfy the strategic properties of the abstract mechanisms they purportedly implement.

Novelty and Relative Nature of the Problem. In the second-price auction context, to preserve M2’s
efficiency, one may be tempted to handle privacy-valuing players by (a) monetizing —somehow— privacy loss;
(b) revising the players’ valuations accordingly; and then (c) relying on the traditional Vickrey machinery. In
so doing, however, the resulting auction would at best be efficient in the “revised” valuations, while Society’s
interest is that it be efficient in the “original” valuations. Integrating privacy and strategic concerns in the
design of concrete implementations of normal-form mechanisms is a new problem, and requires new techniques
and conceptual frameworks.

Our Goal. At a closer look, not even the abstract second-price auction itself may be perfectly efficient in
a private-value setting. For instance, even in a magic world where the outcome function evaluates itself on
players’ reports, everyone is bound to learn that the winner’s valuation is higher than the price; and this
small loss of the winner’s privacy may suffice to miss the target of efficiency in its purest form. But if the
abstract second-price auction itself does not achieve perfect efficiency, what goal can we set for its concrete
implementations? We answer this question with the strongest possible relativism:

A concrete implementation of the second-price mechanism should always enjoy economic efficiency (or
any other desired property) to exactly the same degree (whatever it may be) as the abstract mechanism.

More generally, any normal-form mechanism implies some loss of privacy. This is the case because the
outcome itself (being a function of the players’ reports) contains information about these reports. We regard
this loss of privacy (which potentially affects all kinds of strategic concerns) as inherent, and do not wish to
rectify or modify this —or any other— property of a normal-form mechanism. That is:

A meaningful mediated implementation of a normal-form mechanism M should preserve exactly all of
M’s theoretical properties, including its privacy properties, without trusting the mediator at all.

1.1.2 Physical Assumptions

Concrete implementations, by definition, ultimately “live” in our physical world, and thus Nature has some-
thing to say on whether sufficiently good mediated implementations exist. (At a minimum, one must assume
the existence of a physical way —such an opaque envelope— enabling the players to privately transfer their
messages to the mediator.) Accordingly, nothing can be rigorously proved about concrete implementations
of normal-form mechanisms without making explicit assumptions about Nature.3 Theorems require axioms,
and theorems about physical implementation require physical axioms. But after realizing that physical as-
sumptions are necessary, we must resist the temptation of assuming anything we want, without any concern
about reasonableness.

bribe for his disclosure).
3 Note that we speak about physical “assumptions” rather than “laws” because we are interested in formal proofs rather than

experiments, and from a mathematical point of view any current physical law (whose “truthfulness” depends on the current body
of experiments) is an assumption about Nature. Indeed, physical laws are refined over time —to say the least.

3

A Common Temptation. An easy temptation in implementing normal-form mechanisms is to replace
their mediators with computers, de facto damping all difficulties about privacy and trust on Nature’s shoul-
ders. That is, rather than providing his own message mi to the mediator, every player i privately inputs
mi to a computer. After that, the computer runs (the software for) the outcome function on the received
inputs and then publicly outputs the desired result. Although conceptually very simple, this approach is
also very naive. Indeed, it is trivial to manufacture computers so as to hide a functionality different from
the declared one. So: whose computer should the players choose? (“If you do not mind, let it be mine!”)
In addition, as for all electronic devices, computers’ functionality can be electronically altered “from afar.”
Accordingly, a computer’s correctness —especially in the presence of malicious external influences— cannot
be too easily guaranteed by realistic physical assumptions and “inspection procedures.” But even taking for
granted that correctness could be guaranteed, a lot of “cooperation” would still be required from Nature in
order to guarantee a computer’s privacy. Computers are in fact notorious to leak information about the data
they operate upon in unlimited (and beforehand unpredictable) ways. For instance, Kocher, Jaffe and June
(1999) show how cryptographic keys, stored within a computer and typically consisting of a few thousand
bits, can be easily reconstructed from monitoring the amperage used during a cryptographic computation.
This is so because processing a 1 is a more complex operation —and thus absorbs “more electricity”— than
processing a 0. Thus, in our envisaged application, a player with a reasonably good amperometer connected
to the outlet to which the trusted computer is plugged into, can get excellent information about the reports of
other players. To prevent this loss of privacy, one may require that the envisaged computer works on batteries
instead. Even so, the electro-magnetic radiation alone (even measured by very rudimentary devices) has been
showed to be totally sufficient in the reconstruction of cryptographic keys —e.g., see Agrawal, Archambeault,
Rao, and Rohatgi (2002). What’s next? The danger is that every “fix” may have a new vulnerability.

In sum, computers are just the wrong way to go when looking for meaningful and concrete implementa-
tions. If one aims to prove that they can be relied upon to remove any trust from mediators, while provably
guaranteeing total privacy, he must be prepared to explicitly state extraordinary assumptions about Nature.

Our Goal. While some explicit assumptions about Nature are necessary to prove that sufficiently good
mediated implementations of normal-form mechanisms exist, one should not simply assume that “if mediators
cannot guarantee privacy and trust, then Nature will.” Accordingly,

Implementations of normal-form mechanisms should be based on few, simple, and reasonable physical
assumptions.

1.1.3 Operational Efficiency

Any mechanism needs resources to be executed. An abstract mechanism solely requires computational re-
sources, as dictated by the complexity of its outcome function. A concrete mechanism, because it is executed
in the physical world, also requires physical resources. Clearly, concrete mechanisms cannot use less resources
than the abstract mechanisms they implement, but neither can they be deemed meaningful if they use so
many more resources that they cannot be implemented in our physical universe.
Focusing on finite mechanisms, we consider only outcome functions with finite domain and range. In computer
science, the traditional way to measure the complexity of a finite function f is the number of elementary
computational operations that must be performed to evaluate f on any possible input. A typical such
operation is AND: the function mapping any two bits to 1 if they are equal to each other, and to 0 otherwise.

A Common Source of Operational Inefficiency. Concrete implementations are often operationally
inefficient because they conceptualize finite functions as tables rather than algorithms. That is, an outcome
function g is treated as an ordered list —indexed by all possible inputs x— of all possible outputs g(x).
In this fashion, all functions have no structure at all, and thus all are equally simple to describe, but also
equally inefficient to implement. For instance, consider the following mediated implementation of a two-

4

player normal-form mechanism, whose outcome function g has k-bit inputs. (The implementation aims to
preserve the privacy of the players’ reports.)

Concrete Implementation Naive

1. A public mediator generates a 2k × 2k matrix of envelopes as follows. For each possible pair of reports
(mi,mj), a mediator publicly seals g(mi,mj) into a separate envelope, and makes it the (i, j) item of
the matrix. The mediator then hands the entire “envelope matrix” to Player 1.

2. Player 1 secretly permutes the rows, so that the jth row of envelopes becomes the first row if his secret
report is j, and hands the permuted matrix to Player 2.

3. Player 2 secretly permutes the columns, so that his intended report corresponds to the first column, and
hands the further permuted matrix to the mediator.

4. The mediator finally opens the top-left corner envelope of the matrix to reveal the outcome.

We do not consider Naive a meaningful implementation, because its extreme simplicity is accompanied by
its extreme inefficiency.4 Indeed, even when the players’ reports consists of just 150 bits (less than those
necessary to described the players’ “types” in many practical contexts), Naive requires a number of envelopes
and a number of physical operations (i.e., stuffing and permuting envelopes) greater than the total number
of elementary particles. Informally, therefore, the universe does not have enough “matter” to manufacture
Naive’s required envelopes.

Can an implementation requiring more resources than those available in the Universe be deemed concrete?
Perhaps yes, if the outcome function g itself had complexity exponential in k. (In this case, in fact, it
could not be feasibly evaluated, independently of any considerations about privacy, trust, collusion, and so
on.) But absolutely NO, if g’s complexity were polynomial in k. The latter is very often the case. For
instance, putting aside the fact the reports are typically short in single-good auctions, the complexity of the
second-price outcome function is actually linear in k.5

Remark. As we shall discuss, the entire literature on pre-play communication treats functions as tables.
Accordingly, all their concrete protocols are totally inefficient.

Our Goal. Without ruling out Naive and similar approaches, any theory of concrete implementation will
remain just “theory.” Accordingly, we should treat outcome functions as algorithms rather than tables, and
demand that

If the outcome function of a normal-form mechanismM has complexity k, a meaningful implementation
of M should have complexity close to k.

1.1.4 Neutrality to Collusion

The properties of a mechanism must hold at equilibrium, and equilibria are typically defined with respect to
“single-player deviations”. Accordingly, a mechanism might very well be vulnerable to collusion. That is,
its desired properties may no longer hold if two or more players deviate in a coordinated manner from their
equilibrium strategies.

Letting M′ be a concrete implementation of a normal-form mechanism M, it is clear that M′ cannot
be less vulnerable to collusion than M. However, vulnerability to collusion may be a small problem for M
(because its outcome function provides only small incentives to colluding players, and thus no collusion may
actually occur), and instead be a huge problem for M′. This phenomenon is actually quite common for the
concrete implementations proposed in the literature so far. And it should be avoided at all costs, because

4In addition, without some crucial additions and changes, it risks of not being private —see the discussion of logical structure
of Section 1.3.

5In fact, it only needs to compare the bits of the two reported bids one at a time, starting with the most significant one, until
it finds a bit-position for which one bids has 1 and the other has 0.

5

coalitions will surely form when executing M′, causing its plays to be vastly different from those of M. To
illustrate this phenomenon in an elementary way, consider the following “extreme” implementation of the
second-price auction mechanism (SPA for short).

Concrete Implementation Extreme SPA

In a first step, all players simultaneously and privately submit their bids to players 1 and 2, who wait
for such bids in the same private room. In a second step, players 1 and 2 simultaneously announce the
winner w and the price p. If the announced outcome is the same, then the good is sold as announced.
Else, the good is not sold and all players are fined.

Notice that implementation Extreme SPA maintains the economically efficient equilibrium of SPA —although
not in dominant strategies. Notice too, however, that SPA and Extreme SPA are quite different in their
vulnerability to collusion. In SPA, no pair of players can “control the outcome.” (For instance, no matter
how two collusive players might behave, the revenue generated by SPA is always greater than or equal to the
second-highest bid of the “independent” players.) Quite differently, in Extreme SPA, players 1 and 2 fully
and undetectably control the outcome, that is, they can choose —without fear of being discovered and without
recourse— any winner and price they want. In particular, based on the bids received in the first step, they can
implement the second-price auction only “between the two of them.” That is, they can announce the winner
to be the one of them with the highest bid, and the bid of the other as the price —which is individually
incentive compatible. In other words, while SPA does not provide much incentives for a coalition of two
players to form, in Extreme SPA players 1 and 2 have plenty of motivation and indeed the means to collude.
Accordingly, quite differently from SPA, we should expect players 1 and 2 to collude in Extreme SPA and the
revenue generated to be negligible. Notice that the real problem here is allowing the outcome to be controlled
by just two players, not in providing a private room for these two players. Indeed, being rational, players
1 and 2 are aware of their power, and we should expect that they will find a way to exercise it in a purely
non-cooperative way.

Remark. The entire pre-play communication literature empowers a subset of the players (ranging from
just two players to half of the players) to totally and undetectably control the outcome. Accordingly, if one
were to use pre-play protocols as concrete implementations, it would be highly questionable whether their
actual plays would resemble those of their abstract counter-parts.

Our Goal. True to its name, Extreme SPA provides a subset of the players such extraordinary powers that
it is hard to consider it a meaningful implementation of the second-price mechanism. But even giving a set
of players a moderate additional power (i.e., a power they do not have in the original abstract mechanism)
should not be easily condoned in a concrete implementation. Ideally, we should demand that

A concrete implementation of a normal-form mechanism should not provide any additional power (or
information) to any subset of players.

1.1.5 Constructiveness and Context Independence

In line with the ontological argument, a necessary pre-requisite of a perfect implementation is its existence!
However, even a theorem guaranteeing that “perfect” implementations always exist might not have any
potential relevance to practice. If its proof were totally non-constructive, we would not know where to start
looking for the perfect implementations we need. But constructiveness in its most generic sense —namely, the
ability of finding perfect implementations by means of an automatic procedure— might not be satisfactory
either. Should such a procedure take astronomical time, we would not live long enough to see its results.
Therefore, perfect implementations not only should be efficient to play, but also efficient to find.

6

The Wilson’s Doctrine for Mechanism Design. Even an efficient procedure to construct perfect im-
plementations would be of scarce potential applicability if it did not have a proper “structure”. Let us
explain. A mechanism, considered in different contexts, yields games that may enjoy different properties.
(For example, the unique Bayesian-Nash equilibrium of the first-price sealed-bid auction is efficient in the
symmetric independent private-values setting, and not efficient in settings with any degree of asymmetry.)
In principle, therefore, an automatic and universal procedure for obtaining perfect implementations might
very well consist of an algorithm that, on input both a normal-form mechanism M and a context C, outputs
a concrete mechanism M′C “equivalent” to M in context C. The applicability of such a procedure, however,
would be quite limited: while M is a simple object (a set of messages and an outcome function), C may not
be. For instance, as part of C, the distribution on the players’ types may be prohibitively complex to specify.
We instead want a procedure that is context-free. Namely, a procedure that, on input an arbitrary normal-
form mechanism M, generates a concrete mechanism M′ such that, for all possible contexts C, the players
are totally indifferent between playing the games (M, C) and (M′, C). In essence, we want to achieve for
mechanism implementation what Wilson (1987) advocates for mechanism design: namely, to find solutions
minimizing dependence on the details of the problems at hand (the “Wilson’s Doctrine”).

Let us now put together the two desiderata of this sub-section.

Goal. We want a universal and efficient procedure that, given just the specification of an abstract normal-
form mechanism, quickly specifies an equivalent and perfect implementation of it in any possible context.

1.2 Our Results

Our contribution consists of rigorously defining the above goals and then showing that all of them can be
simultaneously achieved. In essence, we prove that

Any finite normal-form mechanism (with any number of players) has a perfect implementation, based
on the ability of randomizing perfect ballots, which is both easy to construct and easy to play.

Let us now proceed to informally explain the above statement.

Our Notion of a Perfect Implementation. Informally, we say that an extensive-form mediated mech-
anism M′ perfectly implements a normal-form mechanism M if the following properties hold:

No Personal Trust: The mediator of M′ is public —i.e., only performs a publicly and uniquely specified
sequence of public actions.

Strategy Equivalence: There is a one-to-one correspondence between each player’s strategies in M and his
strategies inM′ such that the outcome of any profile of strategies inM is identical to the outcome of the
profile of the corresponding strategies in M′.

Privacy Equivalence: No set of players gains more information (about the other players’ strategies) in M′
than they do inM. In essence, except for the outcome, all information divulged consists of random noise.

Consequently, from a strategy/privacy perspective, individual players as well as arbitrary subsets of the
players are indifferent, for any context C, between playing the games G = (C,M) and G′ = (C,M′). In
particular, the two games enjoy identical solutions. Indeed, although M′ is extensive-form, strategy equiv-
alence states that M and M′ have identical —up to renaming and reordering of strategies— normal-form
representations. Of course, all traditional equilibrium concepts (such as Nash, Bayesian, dominant strategy,
ex post, undominated Nash, and trembling hand Nash equilibria) and set-valued solution concepts (such as
rationalizability and iterated elimination of dominated strategies) are invariant to isomorphic transforma-
tions of normal-forms. In particular, therefore, perfect implementations preserve all traditional equilibria
and set-valued solutions.

7

Our Physical Assumptions. Our construction relies on two physical assumptions, summarized as follows.

• Perfect Ballots. We essentially rely on ballots of two different sizes, envelopes and super-envelopes,
satisfying the following properties: (1) any two ballots of the same size are identical from the outside,
(2) any ballot provides no information about its content, and (3) any ballot guarantees the integrity of
its content until it is opened.
• Perfect Ballot-Box. We essentially rely on a bingo-like machine, the ballot-box, that randomly and

secretly permutes a sequence of ballots of the same size. That is, given k ballots, the ballot-box returns
with equal probability one of the k! permutations of these ballots, without revealing any information
about the actual permutation.

In essence, therefore, we rely on the same “hardware” used for running fair lotteries and tallying secret
votes in the real world and from time immemorial. We thus use classical primitives to achieve new desiderata.

Our Operational Efficiency. Our concrete implementations are as efficient as theoretically possible.
Namely, if a normal-form mechanism has an outcome function of complexity k, then it also has a perfect
implementation whose complexity is linear in k. Informally, we define the complexity of a perfect implemen-
tation to consist of the total number of its elementary steps, whether computational or physical. For our
implementations, an elementary physical step consists of a simple operation on a set of ballots —such as
publicly opening a ballot to reveal its content to everyone, or “ballot-boxing” at most five ballots.

To achieve this operational efficiency our implementations take advantage and indeed closely mirror the
algorithmic structure of the relevant outcome functions g. That is, if g consists of k elementary computing
steps, then a perfect implementation simulates each such step individually, by means of a constant number
of public and elementary operations on ballots.

Specifically, in our implementations each bit corresponds to a sequence of 5 envelopes, whose contents
indeed encode the bit in question in a special way; and each elementary computational step corresponds to a
fixed number of elementary and public ballots operations. For instance, if a sequence of 5 envelopes encodes
a bit a and a disjoint sequence a bit b, then the prescribed sequence of public operations corresponding to
an AND transforms these ten envelopes into a new sequence of 5 envelopes, whose content is guaranteed to
contain an encoding of the bit c = AND(a, b), without revealing any information whatsoever about a or b.
Thus, if g consists of k elementary computational steps, then our “enveloped computation” of g consists of
ck elementary physical operations, where c is a number of ballot operations sufficient to implement each of
the elementary computational steps of g. (As we shall see, any finite function can be evaluated with just 4
types of elementary computational steps.)

Our Neutrality to Collusion. Note that, unlike for Extreme SPA, a perfect implementation M′ of a
normal-form mechanismM guarantees that no additional collusive power exists. Indeed, strategy equivalence
and privacy equivalence guarantee that not only any individual player but also any subset of players (including
the set of all players) have identical strategic opportunities and information in a play of M and in a play of
its perfect implementation M′. Therefore, perfect implementations provide no additional incentives for any
coalition of players —of any size— to form. (Such bounding of collusive power was first studied, in a slightly
weaker sense, by Lepinski, Micali, Peikert and Shelat (2004).)

Our Constructiveness and Context Independence. The automatic and efficient constructibility of
our perfect implementations is an immediate corollary of the fact that we implement each elementary com-
putational step, in isolation, via a fixed number of public and elementary operations on ballots. Thus we can
immediately translate any convenient sequence of elementary computational steps to compute an outcome
function g into a constant-factor longer sequence of public ballot operations.

Moreover, since we directly translate the outcome function of the normal-form mechanism and not the
context in which the abstract mechanism is envisaged to be played, our perfect implementations are auto-
matically context-free.

8

1.3 Additional Aspects of Our Results

Logical Structure. Our perfect implementations of normal-form mechanisms work in three stages. In
the input stage each player simultaneously hands over to the public mediator a sequence of envelopes whose
contents encode —in a special way— his intended report. In the computation stage, the public mediator
performs a sequence of public operations on the received sequences of envelopes so as to obtain a final
sequence of envelopes that is guaranteed to encode the correct outcome. In the output stage, the public
mediator opens all final envelopes so as to enable everyone to find what the outcome is. Thus:

Perfect implementations have the same logical structure of traditional mediated ones.

That is, the players touch only the envelopes containing their respective secret reports, hand them to the
mediator at the very start of a play, and take no further actions. Let us point out some immediate advantages
of this structure.

• No Privacy Risks. In contrast with our logical structure, recall that implementation Naive of Section
1.1.3 entrusts player 2 with the sequence of envelopes encoding the secret report of player 1, thus
putting player 1’s privacy at risk. For instance, it would be easy for player 2 to run away with player
1’s envelopes. But since his doing so would be publicly observed, a possible way to prevent this loss of
privacy might consist of explicitly modifying Naive so that a suitable fine is imposed on player 2 if he so
misbehaves. For such a fine to be an effective deterrent, however, the mechanism designer should know
beforehand an upperbound for the value to player 2 of learning player 1’s report. And such knowledge is
not always available to the designer: in mechanism design in its purest form, it resides with the players.
But even if the context at hand made it possible to find a sufficient fine, in a play of Naive player 2
might instead (without being caught) have a peak into player 1’s envelopes when he is given the privacy
necessary to permute the columns of the envelope matrix. Perhaps these privacy problems could be
fixed by appropriate changes to Naive —although the value of fixing a totally inefficient solution can
be questioned. But it is certainly better to insist on a logical structure in which no player handles the
reports of the others in any way.

To appreciate this point, consider Israelis and Palestinians implementing a negotiating mechanism.
Then, our construction asks Israelis and Palestinians to hand envelopes encoding their respective negoti-
ating positions to the UN security council, so that the latter can perform on these envelopes a sequence of
public actions proven to yield the desired negotiated outcome without unnecessarily revealing the initial
positions. By contrast, implementation Naive asks the Israelis (or the Palestinians) to hand envelopes
encoding their position to the other player, so that they can perform a secret operation on them. Not
quite the same thing.
• No Strategic Signaling. It is well known that the ability of signaling significantly alters the way mecha-

nisms are played. Being extensive-form mechanisms, perfect implementations are in principle affectable
by signaling. However, our logical structure prevents this from happening. In fact, the players simulta-
neously act at the very first round, and thus without signaling to each other. At that point, les jeux sont
faits: their reports are already “committed to” and cannot be altered, and only the verifiable mediator
acts from then on.
• No Random Signaling. It is also well known that even random signals, outside of the players’ control,

can alter the way games and mechanisms are played. And by divulging random noise (before revealing
the final outcome), perfect implementations in principle could be affected by random signals. It is again
our logical structure that prevents this alteration of play. Because a perfect implementation starts with
the players simultaneously handing their envelopes to the mediator, no random signal is available to
them when they choose their reports once and for all. After that, the prescribed actions of the mediator
reveal truly random noise, but by then it is too late for the players to act on such common random
signals.

9

Private Outcomes. So far, we have discussed normal-form mechanisms just with public outcome functions,
that is, mechanisms whose outcomes are publicly revealed. More generally, in addition to the public outcome,
a mechanism may have a private outcome for each player; that is, it may reveal to each player a “customized
piece of information.” For instance, one can envisage a second-price mechanism to be defined so as only the
winner (and the seller) learns that she has won and the price she has to pay, while all other bidders learn
only that they did not win.

We construct perfect implementations for such general mechanisms as well. At a high level, each player
continues to hand to the mediator a sequence of envelopes encoding his own secret report, and the mediator
continues to perform on these envelops a uniquely defined sequence of public actions. But now, letting n be
the number of players, these public actions produce n+ 1 sequences of envelopes: the jth sequence encodes
the private outcome of player j, and the last sequence encodes the public outcome. Then, the mediator
publicly opens the last sequence and publicly hands over the jth sequence to player j.

Handling Aborts. In an abstract normal-form mechanism, each player can only choose a report from his
specified message set. However, even when running the mechanism with the help of an angel (so that there
is no issue about trust) any player has the option of aborting, that is, handing to the angel an envelope
containing something outside his message set —e.g., an insult— or nothing altogether. In this case, the angel
has to be provided with precise instructions on what to do. Else, ultimately, the angelically mediated game
is not fully specified and cannot be properly analyzed.

It should be realized that, in any concrete setting, there are infinitely many ways of aborting. For instance,
consider an implementation of the second-price auction with a public mediator in which (a) each player —
simultaneously with the others— is supposed to deliver to the mediator a sealed envelope containing a 20-bit
bid, and (b) the mediator is supposed to publicly open all received envelopes. Then, what if a player i instead
delivers a cat or an envelope containing a drawing? In both cases, everyone will realize that player i has
aborted, either immediately or after all envelopes are publicly opened, but what should the mediator do?
A natural way to complete the specification of this or any other publicly mediated normal-form mechanism
consists of (1) treating all possible “illegitimate” actions as the single strategy abort and (2) treating an
aborting player as having publicly submitted a specific message —e.g., the bid 0 in our auction example.6

Technically, the original normal-form mechanismM is augmented so that (1′) the distinguished strategy
abort is added to the original strategy set Mi of each player i; and (2′) the input abort from player i is
replaced with a specific message mi ∈ Mi when evaluating the original outcome function. For an extensive-
form, publicly mediated mechanism M′ to be a perfect implementation of the so augmented M, strategy
equivalence and privacy equivalence must be modified so as to account for aborting strategies. First, it must
be guaranteed that the set of strategies of each player i inM′ can be decomposed into two sets: a finite set of
“legitimate” strategies M ′i and a (possibly infinite) set of aborting strategies, all outcome-equivalent to each
other so that they can be represented by a single strategy abort′. Then, strategy equivalence states that, for
every player i, there is a one-to-one correspondence between Mi∪{abort} and M ′i∪{abort′}, mapping abort
to abort′, such that the outcome of any profile of strategies in M is identical to the outcome of the profile
of the corresponding strategies in M′. Privacy equivalence states that no set of players, whether aborting
or not, gains more information about the non-aborting strategies of the other players in M′ than they do in
M. (Aborting players publicly reveal that they have aborted, and no privacy protection applies to them.)

1.4 Answers to Selective Criticism

Privacy. Privacy has different meanings in different settings —economic settings of course, but also legal
ones, psychological ones, and so on. Accordingly, some readers might be disappointed about the fact that
no definitions of such versions of privacy can be found in our paper. Indeed, we have defined privacy
preservation, rather than various “privacies.” We would like to stress, however, that our approach is a major

6Such a complete specification absorbs “aborts” into the abstract normal-form mechanism itself. But we are not constrained
by this specific choice, and can adjust our construction to work with other specific ways to handle aborts.

10

advantage. Indeed, our definition of privacy preservation is so strong as to apply to economic privacy, legal
privacy, psychological privacy, and indeed “privacy in any sense one might care about” —now or in the future.
Adopting setting-sensitive definitions would have obliged us to provide different “perfect” mechanisms for
the legal world, the psychological one, and so on. (And, quite possibly, we might have failed to deliver
privacy-preserving mechanisms in some reasonable settings.)

Theory. Some readers may be concerned about the practicality of our result. Our paper is unapologetically
theoretical. Indeed, we want to initiate a rigorous and unified treatment of privacy, trust, and efficiency in
mechanism implementation. We focus on perfect implementations, admittedly the hardest case, as it is in the
extreme that difficulties are best understood. Yet, our conceptual frameworks and techniques a fortiori apply
to less-than-perfect implementation goals. But before negotiating compromises it is important to understand
what our initial negotiating position can be. That is, it is important to understand what can be feasibly
achieved with the maximum intransigence. This is indeed what our paper intends to do.

(We appreciate that a reason for future compromises is the inconvenience of randomizing ballots. It will
indeed be useful to investigate what can be achieved with other primitives. But it should also be appreci-
ated that there is a major distinction between our practical inconvenience and the practical impossibility of
implementations such as Naive of Section 1.1.3.)

Proofs. Concerns might be raised about the length and non-traditional nature of our proofs. Let us point
out, however, that solving non-traditional problems should be expected to require non-traditional concepts
and techniques —else, we would already have traditional solutions. Besides, what is traditional depends on
our current mind set. When concerns about privacy and efficiency will be become integral part of our view
of human interactions, our techniques and conceptual frameworks will appear quite natural. Also, while our
proofs may be long in some “absolute” sense, it should be appreciated that they actually are very simple.
Indeed, we just show how to perfectly implement each of 4 elementary functions: AND, NOT, COIN, and
DUPLICATE. Because, every finite outcome function —no matter how complex— can be constructed from
such building blocks, we actually provide a very short and natural proof that every normal-form mechanism
can be perfectly implemented.

Simple Cases. Some readers may wonder why we do not first illustrate our construction for a simple case,
such as the second-price mechanism. The reason is that, in order to guarantee the operational efficiency
that we believe crucial for any meaningful theory of concrete implementation, we implement any outcome
function g by implementing —separately, in the same order, and with a fixed sequence of elementary physical
operations— each of the elementary computational operations involved in a computation of g. Thus, by the
time we show how to perfectly implement each of AND, NOT, COIN, and DUPLICATE, we also show how to
implement not only the second-price mechanism, but also any mechanism whatsoever. Hence, by illustrating
our construction for some simpler mechanisms first, we would only duplicate our proofs.

Trust. Our construction could be misinterpreted as just replacing trust in the mediator with trust in
Nature. More correctly, however, our construction replaces (vague) trust in both the mediator and Nature
with (well-defined) trust in Nature alone. Indeed, even if the mediator were a former president (a rare and
yet not universally trusted party), one would still need suitable physical assumptions to concretely implement
normal-form mechanisms. Namely, in addition to the mediator’s trustworthiness, one would need to assume

• The existence of a suitably secure form of “envelopes” —as it is necessary for the players to privately
transfer their reports to the mediator; and
• The existence of a suitably secure form of a “randomization device” —as it is necessary for the mediator

to evaluate a probabilistic outcome function g in a way that at least keeps secret g’s coin tosses.

Notice that, properly formalized, these are the very physical assumptions we rely on in our construction of
perfect implementations. In a sense, therefore, we prove that by strengthening assumptions about Nature,

11

that are necessary anyway, we can dismiss all assumptions about people. That is, rather than capriciously
and vaguely assuming trust on people or physical processes, we distil the trust capable of guaranteeing perfect
implementations.

1.5 Analysis of Our Physical Assumptions

Since the benefits of our implementations (no trust, privacy, efficiency, etc.) derive from our physical as-
sumptions, it is only proper to have a closer look at such assumptions. To begin with, it should be realized
that physical assumptions are actually ubiquitous (at least implicitly) in most of game theory.

Physical Assumptions in Game Theory at Large. “Acts of Nature” (i.e., physical ways of sampling
a given distribution outside of any possible influence of players or mediators) are implicitly necessary to the
meaningfulness of very basic game theoretic concepts. For instance, games with public randomization rely
on the existence of a fair coin. That is, such games trust Nature for the correctness (but not the privacy) of
the elementary process consisting of the selection of a random bit. As clear and abstract fair coins can be,
their existence is not guaranteed by Mathematics: it is a physical assumption.

More fundamentally for game theory, the meaningfulness of the very notion of a mixed strategy relies on
a more complex act of Nature: the existence of a private fair coin. This time, Nature is trusted to provide
each player i with a physical process capable of selecting a bit in a way that, not only is non influenceable
by others, but is also private to i. Private coin tossing too is a physical assumption, and without it “secretly
and randomly selecting an action” would be meaningless in practice. Indeed, if tossing a coin perturbed the
universe in such a way that measurements made far away yielded information about the outcome of the coin
toss, mixed strategies would be of no practical strategic significance.

Note that game theory often does not need to make its physical assumptions explicit. In fact, games with
public randomization and mixed strategies are notions, and notions need not to be proved, but motivated.
Quite differently, we not only wish to put forward the notion of a perfect implementation, but also prove that
such implementations exist under some reasonable physical assumptions. Note too that a public coin is not
adequate for our purposes, because the randomness used by the outcome function needs to remain secret.
And a private fair coin is not appropriate either, since then we would need to trust the mediator to use the
results of his privately obtained coin tosses.

Our Ballot Assumption. Our ballot assumption is formalized in Section 3. For now, just recall that we
assume the existence of ballots of two different sizes enjoying two main properties: security, that is, each
ballot perfectly hides and guarantees the integrity of its contents; and indistinguishability, that is, ballots
of the same size are identical from the outside. (We actually need only the ballots used by the verifiable
mediator to be indistinguishable.) The difference in size enables us to nest up to 5 smaller ballots into a
larger one. We actually refer to smaller ballots as envelopes and to larger ones as super-envelopes, and thus
use the term “ballot” when we do not want to distinguish between envelopes and super-envelopes.

Identical assumptions about ballots have been made by Ben-Porath (1998), and more explicitly and with
additional explanations by Krishna (2006) —cfr. pages 2, 6 and 7.

(Envelopes with just the security property are absolutely common in pre-play communication literature.7)

Our Ballot-Box Assumption. Our ballot-box assumption too is formalized in Section 3. Recall that,
intuitively, it states that it is possible to randomize a sequence of identical envelopes so that no one —player
or mediator— can control or predict the permutation used in the process. In practice, such act of Nature
might be realized by using spherical ballots, inserting them in a bingo-like machine, and cranking it several
times. But: Is it possible to achieve our goals without this —or an equivalent— physical assumption?

7The papers that do not explicitly rely on envelopes, do rely on abstract channels of communication, assumed to guarantee
(1) the integrity of the message, (2) the secrecy of the message, (3) the identity of the sender, and (4) the “auditability” of past
messages. All properties that are indeed guaranteed by envelopes.

12

We conjecture that the answer is NO, and wish to motivate our answer by analyzing an elementary case.
Let G be the following two-player game, and E be the correlated equilibrium of G which assigns probability
1/5 to each of outcomes (A,A), (B,B), (C,C), (C,D) and (D,C). Consider now the problem of concretely
implementing E.

A B C D
A 9, 6 −100,−100 −100,−100 −100,−100
B −100,−100 6, 9 −100,−100 −100,−100
C −100,−100 −100,−100 4, 4 1, 5
D −100,−100 −100,−100 5, 1 0, 0

Providing such concrete implementations was the original motivation of Ben-Porath’s and Krishna’s for
assuming perfect (two-size) ballots. Their solutions were very inefficient, but this does not transpire in the
simple case at hand. Indeed, to implement E, their protocol requires constructing 5 super-envelopes, each
containing two distinct envelopes, one marked “player 1” and the other marked “player 2”.8 The envelopes
of the first super-envelope respectively contain “A” and “A”, those of the second super-envelope contain “B”
and “B”, those of the third “C” and “C”, those of the forth “C” and “D”, and those of the fifth “D” and “C”.
Following Ben-Porath, Krishna recommends that one of the players secretely prepares all such envelopes and
super-envelopes, and that afterwards a “joint lottery” is used to (1) with suitably high probability, inspect all
envelopes and super-envelopes, and verify that their contents are as prescribed, and (2) with complementary
probability, select at random a super-envelope e from the 5 possible ones. But since all envelopes, super-
envelopes, and their contents can be publicly prepared, for simplicity it suffices to consider a joint lottery
whose only goal is to pick a super-envelope e at random. As it is intuitively clear, if such e is then opened
and its first (still sealed) envelope is given to player 1 and its second envelope to player 2, then both players,
by privately opening their own envelopes, enter in possession of recommendations correlated according to E,
and have no incentive to deviate from them in the immediately following play of G. However: how should e
be selected? We consider two possible answers:

• The simplest option (adopted by us) is to rely on our ballot-box assumption. Essentially: have a
bingo-like device return the 5 super-envelopes in random order, and then pick the first one.
• Another option (adopted by Krishna) is to rely on an elementary pre-play protocol. Essentially: first

player 1, in private, randomly permutes the 5 super-envelopes; then player 2, in private, randomly picks
one of them.

Thus the first option requires a physical assumption beyond the existence of perfect ballots, while the second
one does not appear to do so. In principle, of course, the fewer the assumptions the better. But two main
reasons make the first option preferable, if one wishes to provably construct a strong implementation of E.

1. Informality of the Assumptions. To begin with, the lottery protocol’s precise details must be specified
if one wants to prove that it works. In particular, after being handed the 5 super-envelopes already
(suppositively) randomized by player 1, player 2 must be given some privacy to randomly pick one of
them. Else, player 1 will know which e is picked and thus player 2’s recommendation. Thus, once
the envelopes are no longer in public view, the danger exists that player 2 may open and reseal the
super-envelopes and then choose the one he prefers (or even “emerge” with a completely different super-
envelope that he prepared in advance, or...). Accordingly, a rigorously analyzable lottery protocol would
ultimately require additional physical assumptions of its own: for instance, a perfect sealing property,
that is, an assumption guaranteeing that any physical way of reading e’s content will leave a public and
non-erasable trace.

8Rather than marking envelops, in our paper we let super-envelopes have a “top” side and be only slightly larger than the
envelopes they contain. Thus, upon by opening them one recovers their (sub)envelopes in the same order in which they were
originally inserted.

13

2. Failure of Strong Implementation. Further, the envisaged lottery protocol implementing E allows ra-
tional players to reach, without any outside communication, outcomes not distributed according to E
and not reachable otherwise. In mechanism design, the traditional objective, and the designer’s duty,
is to “make it in the players’ interest to obtain the outcomes desired by Society.” Assuming now that
Society’s interest is to have G’s outcomes distributed according to E, let us illustrate how the above
mechanism fails to reach this objective in a strong sense: that is, it fails to match the set of equilibrium
outcomes reachable by playing G with the assistance of a private and trusted mediator who generates a
profile of private recommendations distributed according to E (and E only).

Indeed, the payoffs being as described, the players would much prefer the correlated equilibrium E′

which assigns probability 1/2 to each of outcomes (A,A) and (B,B). Note that E′ actually is the best
correlated equilibrium from the players’ combined perspectives, and that it cannot be achieved “with
E-recommendations alone.” Now, the problem is that the above lottery protocol makes it trivial for the
two players to implement E′ (instead of E) without Society realizing what is going on. This can be done
as follows. Rather than randomly permuting all 5 super-envelopes, player 1 first randomizes the two
envelopes respectively containing the recommendations (A,A) and (B,B), and puts them in positions
1 and 2. Then he randomizes the other 3 super-envelopes and puts them in positions 3, 4, and 5. At
this point, player 2 randomly selects one of the first two super-envelopes. Accordingly, (a) by so acting
the players implement E′ rather than E; (b) neither player has an incentive to deviate; and (c) Society
cannot observe that something is about to go wrong. Occasional inspection of all envelopes only verifies
that the proper contents were there, but not whether their positions looked “suspicious.” (Besides, can
one reject as “non random” a permutation of 5 elements whoe first two elements “remain local?”)

Of course, by way of hindsight, to prevent the players from hijacking Society’s desired equilibrium into the
direction they want, one might envisage adding an outside entity that further randomizes the super-envelopes
immediately after player 1. However, this additional randomization cannot happen in slow motion and full
public view, as the players would be able trace the positions of the super-envelopes. And if such outside
entity is envisaged to privately perform this randomization, then he/she/it must be assumed to do so correctly.
Ultimately, therefore, such an external entity should be trusted at least as much as our ballot box!

Could be ballot box become redundant if there were more players? That is: could a formal assumption
weaker than the ballot box provably guarantee strong implementation of correlated equilibrium in games
with three or more players? Very hard to say. Strong implementations (never mind perfect ones!) ultimately
require analyzing the strategic opportunities of groups of players. And the higher the number of players, the
harder this analysis gets. With more players, deviations from the envisaged strategies much more subtle than
those discussed above may lead to more unexpected consequences.

Completeness of Our Assumptions. It should be realized that correlated equilibrium is a particularly
simple outcome function: indeed, one that does not require any private inputs from the players. And if
unexpected consequences arise in concrete implementations of correlated equilibrium, one can only speculate
what might go wrong in more general incomplete-information settings and with much more stringent goals.
As we just saw, our ballot-box assumption was naturally brought in to resolve a specific problem with the
above joint lottery. If fixing each glitch in concrete implementations required a new physical assumption, one
would risk ending up with an infinite list of natural requirements, since there may not be an upper-bound to
the number of possible glitches. Therefore, the fact that perfect ballots and a ballot box suffice to construct
perfect implementations for any possible normal-form mechanism is somewhat surprising. In a sense, our
result proves the “completeness” of a very small set of physical axioms.

Reasonableness of Our Assumptions. The simplicity, completeness and long history of ballots and
ballot boxes may be appealing, but ultimately: Are these assumptions true? Of course this is impossible to
know in a mathematical sense, and perhaps no true envelopes, ballot boxes, or fair coins exist in Nature.
Thus, a more pertinent question is: Are our physical axioms reasonable?

14

Certainly, identical ballots and their randomizers are reasonable enough to have been relied upon for a
long, long time. Not only are they the very ingredients for fair lotteries and tallying secret votes, but also for
card playing. Indeed, similarly to our ballots, cards can be viewed as a sequence of objects perfectly equal on
one side and carrying distinct, secret and unalterable contents on the other side. And card playing relies on
an act of Nature for randomization. Is there such an act of Nature? Perhaps not, but it is certain that, for
centuries, people and casinos have been behaving as if there is. Thus it may be worth to re-state our result
in the following alternative way:

“Any normal-form mechanism has a perfect implementation if and only if playing cards is possible.”

1.6 Road Map

After discussing the connection of our work with existing literature in Section 2, we proceed to prove that
perfect ballot-box implementations exist in stages. In Section 3 we formalize ballots and ballot-boxes, and in
Section 4 the notion of a public mediator. Then, in Sections 5 through 7 we present our main technical result.
Namely that it is possible for a public mediator, given a sequence of envelopes whose contents properly encode
inputs x1, . . . , xn, to publicly manipulate these envelopes so as to produce a new sequence of envelopes that
are guaranteed to contain the proper encoding of g(x1, . . . , xn) without revealing no information whatsoever
about the inputs. Then, in Section 8 we present how a public mediator, again without revealing anything,
can check whether a sequence of “input envelopes” contains a properly encoded input. Finally, in Section
9 we formalize the notion of a perfect implementation and prove that (1) having the players submit input
envelopes encoding their private reports, (2) having the mediator check that the input envelopes contain
proper encodings, (3) having the mediator transform input envelopes into output envelopes encoding g’
output, and finally opening them, constitutes a perfect implementation of the finite normal-form mechanism
with public outcomes whose outcome function is g. (In Appendix C we show how to extend out construction
to normal-form mechanisms that also have private outcomes.) Section 10 concludes.

2 Relation to Prior Work

2.1 Zero Knowledge and Secure Computation

The study of privacy and correctness without trust started two decades ago, in theoretical computer science,
with the zero-knowledge proofs of Goldwasser, Micali and Rackoff (1985). Assume that a prover P wishes
to prove a mathematical statement S to a verifier V , keeping private any detail of the proof. Saying “S is
true” is not convincing, and a classical proof of S, though convincing, would reveal much more than just
“S is true”.9 In contrast, a zero-knowledge proof is an interactive process that enables P to convince any
distrusting V that S is indeed true but does not reveal any additional piece of knowledge. Zero-knowledge
proofs are formalized via the notion of a simulator, a conceptual tool that is also used in our paper.

Another body of work on privacy and correctness without trust is secure computation, as introduced by
Goldreich, Micali and Wigderson (1987) (improving on earlier results of Yao (1986)). In essence, they show
that, for any finite function f with n inputs, there exists a communication protocol Pf such that, whenever
the majority of n players stick to Pf ’s instructions, f can be evaluated by the players alone so as to match
the privacy and correctness provided by the following process involving a private mediator M :

1. After having the opportunity to secretly communicate with the others, each player i privately hands to
M either an aborting signal or a private input xi.

2. If M receives an aborting signal, then he announces “the evaluation of f has been aborted.” Else, he
announces the output y obtained by privately evaluating f on the n received inputs.

9For instance, providing two large primes p and q whose product equals n is a proof of the statement S = “n is the product of
two primes.” But such proof appears to contain much more knowledge than the mere statement “n is the product of two primes”
(whatever they may be)!

15

Letting f be the outcome function of a normal-form mechanism M, at least two main problems prevent a
secure computation of f from being a perfect implementation of M.

The first problem is strategic signalling. Secure computation suffers from this problem because, as sum-
marized above, it envisages that the players secretly communicate to each another beforehand. Of course, one
could remove by fiat any secret inter-player communication in the above mediated process for evaluating f ,
but then no known secure-computation protocol Pf would match such a modification.10 As we have discussed
in Section 1.3, perfect implementations are not affected by strategic signalling.

The second problem is collusive power. Although coalitions of less than half of the players are powerless,
coalitions of more than half of the players are “omnipotent:” that is, without any recourse, they can force
any output of f they want, no matter what inputs the non-collusive players might have chosen. In essence,
in any secure computation protocol Pf , any majority of the players enjoy the same power that players 1 and
2 have in Extreme SPA of Subsection 1.1.4.11

(Accordingly, our results can be interpreted as providing a stronger notion of secure computation, namely
one that is that is immune to strategic signalling and collusion neutral.)and

2.2 Games with Pre-Play Communication

Our result can be viewed as generalizing and strengthening the extensive body of work on pre-play com-
munication games —see in particular, Bárány (1992), Forges (1990), Ben-Porath (1998), Aumann and Hart
(2003), Urbano and Vila (2002), Ben-Porath (2003), Gerardi (2004), Dodis, Halevi and Rabin (2000), Gerardi
and Myerson (2007), Krishna (2006). Such games have been designed for achieving correlated equilibrium,
communication equilibrium, or Bayesian-Nash equilibrium.

The general objective of these papers is obtaining (1) the equilibrium payoffs of a given normal-form game
G played with the help of a private mediator, by means of (2) the equilibrium payoffs of G extended by a
carefully designed communication protocol. To explain why a perfect implementation of the same mediated
version of G guarantees much more, let us summarize the pre-play approach in a way that enables an easy
comparison with ours. We start by briefly explaining the mechanics of their mediated and extended games.

Let G be a normal-form game for n players, and f a probabilistic function mapping n inputs to a strategy
profile (s1, . . . , sn) of G. (As in the case of correlated equilibrium, f ’s inputs may be empty.) Then G can
be extended in the following two ways.

– By (f,G) we denote the privately mediated game played in three stages as follows. In the first stage, the
players simultaneously provide their f -inputs to a private mediator. In the second stage, the mediator
obtains a profile of strategies (s1, . . . , sn) by privately evaluating f on the received inputs, and then

10Indeed, secure-computation protocols have been developed in two main communication models: broadcasting and private
channels. In the latter model, developed by Ben-Or, Goldwasser and Wigderson (1988) and Chaum, Crépeau and Damg̊ard
(1988), it is envisaged that between each pair of players i and j there exists a dedicated “lead pipe” that enables i and j to
exchange messages so that no one else can see, alter, or gain any information about what they say to each other, nor observe
whether they are communicating at all. A secure-computation protocol Pf in this model therefore enables secret inter-player
communication in the easiest possible way. In the broadcasting model —indeed the communication model originally envisaged by
Goldreich et al. (1987)— players speak in turns, and the identity of each speaker and what he says becomes common knowledge.
(In this setting privacy relies on encryption, and thus security is computational rather than information theoretic.) Yet, secret
inter-player communication is still inherent. Indeed, all secure-computation protocols require the players to execute probabilistic
strategies, and thus exchange messages with positive “entropy.” Whenever this is the case, Hopper, Langford and von Ahn (2002)
prove that any pair of players can implement a covert channel of communication, so called steganographic communication. That
is, while exchanging their prescribed messages, any two players may also exchange additional information without anyone else
(even a computationally unbounded observer) noticing it. By means of these covert channels, the players can signal to each
other, and thus gain additional strategic opportunities not present in an evaluation of g with a trusted mediator. (Although
this is not in the scope of the present paper, we notice that we can modify the protocol of Goldreich et al. (1987) so as to make
signalling inconsequential for the current evaluation of g.)

11To be sure, Goldreich, Micali and Wigderson also put forward a weaker notion of secure computation where no subset of
players can control f ’s output. But then any single player can prevent f ’s correct output to become public knowledge, for any
non-trivial f .

16

privately hands si to player i as his “recommendation.” In the third stage, the players play G.12

– By (P,G) we denote the game played as follows. First, the players communicate following a communi-
cation protocol Pf , so that each player i computes a strategy si in G. Then, they play G. (The protocol
P requires specific communication channels, such as exchanging messages in sealed envelopes.)

The function f is specifically chosen so that (f,G) has a desired equilibrium, Ef,G, in which the players
play their recommended strategies. With this focus, therefore, the function f itself becomes a normal-form
mechanism. Indeed, after the players simultaneously select an input profile (x1, . . . , xn) for f , the outcome
consists of the strategy profile (s1, . . . , sn) = f(x1, . . . , xn) in G.

With this preamble, the goal of pre-play is to come up with a communication protocol P such that,
sticking to P ’s instructions and then playing the computed strategies in G is an equilibrium EP,G of (P,G),
having the same payoffs as Ef,G.13 Thus, pre-play may be viewed as providing a concrete implementation of
the normal-form mechanism f .

Let us now highlight three main differences between pre-play and perfect implementations, starting with
the two easier to describe.

• Operational Inefficiency. In all pre-play literature, protocol Pf treats f as a table, and thus requires
an amount of physical resources that is exponential in the complexity of f . By contrast, a perfect
implementation of f requires a number of physical operations that is linear in f ’s complexity.
• Restrictions on the Players. To achieve correlated and communication equilibria that are not convex

combinations of, respectively, Nash and Bayesian-Nash equilibria, the constructions of Bárány (1992),
Forges (1990), Ben-Porath (1998), Aumann and Hart (2003), Ben-Porath (2003), Gerardi (2004), Gerardi
and Myerson (2007) require at least 3 players. The other cited pre-play constructions work for 2 players,
but restrict the rationality of the players by assuming that they cannot solve computationally complex
problems —such as breaking codes.14 No such restrictions are required for perfect implementations.
• Strategy Inequivalence. The requirement that (P,G) has equilibria that are payoff-equivalent to

some or even all the equilibria of (f,G) is much weaker than strategy equivalence. In fact, (P,G) may
introduce additional equilibria, that is, possess equilibria having no counterparts in (f,G). Therefore, a
rational play of (f,G) and a rational play of (P,G) may be vastly different.

Again, one main way for (P,G) to introduce additional equilibria is via signaling. Indeed, while in
the mediated game (f,G) the players do not interact with each other, in (P,G) they must do so, and
have plenty of opportunity to signal to each other. (In most pre-play constructions, the players are
actually envisaged to communicate via private channels.)

But even if f and G were such that signaling could not introduce additional equilibria in (P,G),
playing (f,G) may be vastly different from playing (P,G). This may be the case even if, in the extreme,
for each equilibrium of (f,G) there exists a payoff-equivalent equilibrium of (P,G), and viceversa! The
reason is that, even in such an extreme case, “equilibrium selection” may still be very different in the
two games. We illustrate this seemingly counterintuitive phenomenon relative to achieving correlated
equilibrium via pre-play. Consider the following normal-form game.

G : There are 4 players, each having action set {a, b}.
The payoffs of strategy profile (a, a, a, a) is (0, 1, 0, 1);

12One might consider more general versions of (Mf , G), where the players and the mediator Mf interact back and forth. Forges
(1986) and Myerson (1982) show that it suffices to consider canonical mechanisms, where the players communicate with Mf in
three stages as described.

13The proof techniques often deliver more. In particular, at equilibria Ef,G and EP,G, the distributions of —respectively— the
recommended and computed strategies are the same.

14Other types of restrictions are also present. For instance, Dodis et al. (2000) relies on min-max punishments and thus
on empty threats. Without loss of generality, assume that player 1 is the first, in the pre-play, to privately realize what his
recommendation is. If he does not like his recommendation (i.e., if the expected payoff conditioned on his recommendation
is bad for him), he may abort all communication, thus preventing player 2 from learning his own recommendation. Min-max
punishment is certainly a way to prevent this, but may not be rational once player 1 aborts.

17

that of (b, b, b, b) is (1, 0, 1, 0);
that of (a, b, a, b) is (10, 10,−100,−100); and
that of any other strategy profile is (−∞,−∞,−∞,−∞).

Note that G has the following “attractive” correlated equilibrium: E = 1
2(a, a, a, a) + 1

2(b, b, b, b), which
in expectation gives each player a payoff of 1

2 . Now,

– Let f the function that, on no inputs, returns a 4-tuple of strategies distributed as in E; and
– Let P be the following naive protocol: First players 1 and 2 flip a fair coin in a private room to

obtain a private random bit c. Then player 1 privately sends c to player 3, and player 2 privately
sends c to player 4. All players interpret c = 0 as the recommendation a, and c = 1 as the
recommendation b.

Then it is immediately seen that

– For any equilibrium e of (f,G) there exists a payoff-equivalent equilibrium e′ in (P,G), and viceversa.
– By colluding in (P,G) —and in a private room it is easy to collude!— players 1 and 2 can “hijack

any equilibrium E′ so that (a, b, a, b) is played.”
Indeed, despite the fact that the payoffs of (a, b, a, b) are extremely unattractive to players 3

and 4, it suffices for player 1 to play a and induce player 3 to do the same by sending him 0, and
for player 2 to play b and induce player 4 to do the same by sending him 1.

– In (f,G), even if players 1 and 2 were given for free means of private communication, it would be
impossible for them to collude so as to “hijack E into (a, b, a, b).”

Accordingly, although in (f,G) the equilibrium E is likely to be selected, in (P,G) —because it is so
easy and profitable to hijack E′ into (a, b, a, b)— E′ is unlikely to be played out. The example illustrates
that preserving all equilibrium payoffs can be too weak a goal for concrete implementations in some
settings. Only strategy equivalence guarantees that the players are always indifferent between playing
a mediated mechanism or its concrete implementation.

Of course, although the above P satisfies all the stated objectives of a pre-play implementation
of the above f , one might suspect that the above equilibrium-selection problem arises because P is
unnecessarily naive. In other words, one may suspect that the actual pre-play techniques “deliver more
than claimed.” Unfortunately, this is not the case. The same problem would arise if P were chosen
to be any pre-play implementation of f in the cited literature. Although much more general (i.e.,
capable of handling functions with true private inputs), sophisticated, and sequentially rational, any
such implementation of f enables a subset of the players to control the output of f without being even
suspected by the other players. (In essence, such players have a collusive power similar to that enjoyed
by players 9 and 10 in the concrete mechanism Extreme SPA of Subsection 1.3).

Secure Computation vs. Pre-Play. The above discussed weaknesses (relative to perfect implemen-
tation!) of pre-play implementations are similar to those discussed for secure computation. This is not by
chance. Retrospectively, in fact, one can prove that secure computation suffices to guarantee pre-play’s goals.
Namely, if the number of players, n, is greater or equal to 3, Pf is a secure-computation protocol for a n-input
function f , then, for any equilibrium E of (f,G), (Pf , G) has an equilibrium that is payoff-equivalent to E.
In fact, a weaker notion of secure computation suffices to guarantee this implication.15

15As recalled in Section 2.1, in any secure-computation implementation of f , correctness and privacy are guaranteed no matter
how a coordinated minority of the players deviates from their communication instructions. To guarantee pre-play’s goals it
actually suffices to consider secure computations that withstand coalitions of cardinality 1, because equilibrium conditions solely
check for individual deviations.

18

2.3 Other Prior Work

Spreading trust. Some works, in particular that of Naor, Pinkas and Sumner (1999), rather than putting
trust on a single mediator, distribute it onto multiple mediators. (Thus, correctness and privacy hold only
in so far these mediators do not collude with each other, nor signal information that they are not supposed
to.) By contrast, our emphasis is on removing all trusted parties.

Impossibility results. Whether or not a trusted mediator can be replaced by an unmediated interaction
of the players alone crucially depends on the means of interaction available to the players. Because such
a replacement is counter-intuitive, we informally expect it to be impossible in most interaction models.
Indeed, this replacement has been proved impossible, in a formal sense, in many specific interaction models,
even for a restricted class of contexts and outcome functions. Notably, Aumann and Hart (2003) prove
that two players cannot reach any non-trivial correlated equilibrium via “cheap talk,” so long as the players
communicate essentially by broadcasting messages. Brandt and Sandholm (2004) argue the impossibility
of unconditionally privacy-preserving second-price auctions in many interaction models. By contrast, we
prove that there exists a reasonable model of interaction (via ballots and a ballot box) in which replacing the
mediator is possible for all outcome functions and all contexts.

3 The Ballot-Box Model

Ballot-box mechanisms are extensive-form, imperfect-information mechanisms with Nature. Accordingly, to
specify them we must specify who acts when, the actions and the information available to the players, when
the play terminates, and how the outcome is determined upon termination.

A ballot-box mechanism ultimately is a mathematical abstraction, but possesses a quite natural physical
interpretation. The physical setting is that of a group of players, seated around a table, acting on a set of
ballots with the help of a randomizing device, the ballot-box. Within this physical setting, one has considerable
latitude in choosing reasonable actions available to the players. In this paper, we make a specific choice,
sufficient for our present goals.

3.1 Intuition

Ballots. There are two kinds of ballots: envelopes and super-envelopes. Externally, all ballots of the same
kind are identical, but super-envelopes are slightly larger than envelopes. An envelope may contain a symbol
from a finite alphabet, and a super-envelope may contain a sequence of envelopes. (Our constructions actually
needs only envelopes containing an integer between 1 and 5, and super-envelopes capable of containing at
most 5 envelopes.) An envelope perfectly hides and guarantees the integrity of the symbol it contains until it
is opened. A super-envelope tightly packs the envelopes it contains, and thus keeps them in the same order
in which they were inserted. Initially, all ballots are empty and in sufficient supply.

Ballot-Box Actions. There are 8 classes of ballot-box actions. Each action in the first 7 classes is referred
to as a public action, because it is performed in plain view, so that all players know exactly which action
has been performed. These classes are: (1) publicly writing a symbol on a piece of paper and sealing it into
a new, empty envelope; (2) publicly opening an envelope to reveal its content to all players; (3) publicly
sealing a sequence of envelopes into a new super-envelope; (4) publicly opening a super-envelope to expose
its inner envelopes; (5) publicly reordering a sequence of envelopes; (6) publicly destroying a ballot; and (7)
do nothing. The last three classes of public actions are not actually necessary, but considerably simplify the
description of our construction. Note that each public action has the same effects, no matter which player
performs it.

19

An action in the eighth class is referred to as an action of Nature. Such an action consists of “ballot
boxing” a publicly chosen sequence of ballots. That is, it consists of reordering the chosen ballots according
to a permutation randomly chosen by —and solely known to— Nature.

Public Information. Conceptually, the players observe which actions have been performed on which
ballots. Formally, (1) we associate to each ballot a unique identifier, a positive integer that is common
information to all players (these identifiers correspond to the order in which the ballots are placed on the
table for the first time or returned to the table —e.g., after being ballot-boxed); and (2) we have each action
generate, when executed, a public string of the form “A, j, k, l, ...”; where A is a string identifying the action
and j, k, l, ... are the identifiers of the ballots involved. The public record is the concatenation of the public
strings generated by all actions executed thus far.

3.2 Formalization

Basic Notation. We denote by Σ the alphabet consisting of English letters, arabic numerals, and punc-
tuation marks; by Σ∗ the set of all finite strings over Σ; by Sk the group of permutations of k elements;
by x := y the operation that assigns value y to variable x; by p := rand(Sk) the operation that assigns to
variable p a randomly selected permutation in Sk; and by ∅ the empty set.

If S is a set, by S0 we denote the empty set, and by Sk the Cartesian product of S with itself k times. If
x is a sequence, by either xi or xi we denote x’s ith element,16 and by {x} the set {z : xi = z for some i}.
If x and y are sequences, respectively of length j and k, by x ◦ y we denote their concatenation (i.e., the
sequence of j + k elements whose ith element is xi if i ≤ j, and yi−j otherwise). If x and y are strings (i.e.,
sequences with elements in Σ), we denote their concatenation by xy.

If A is a probabilistic algorithm, the distribution over A’s outputs on input x is denoted by A(x). A
probabilistic function f : X → Y is finite if X and Y are both finite sets and, for every x ∈ X and y ∈ Y ,
the probability that f(x) = y has a finite binary representation.

Ballots and Actions. An envelope is a triple (j, c, 0), where j is a positive integer, and c a symbol of Σ.
A super-envelope is a triple (j, c, L), where both j and L are positive integers, and c ∈ ΣL. A ballot is either
an envelope or a super-envelope. If (j, c, L) is a ballot, we refer to j as its identifier, to c as its content, and
to L as its level. (As we shall see, L represents the number of inner envelopes contained in a ballot.)

A set of ballots B is well-defined if distinct ballots have distinct identifiers. If B is a well-defined set
of ballots, then IB denotes the set of identifiers of B’s ballots. For j ∈ IB, Bj (or the expression ballot j)
denotes the unique ballot of B whose identifier is j. For J ⊂ IB, BJ denotes the set of ballots of B whose
identifiers belong to J . To emphasize that ballot j actually is an envelope (super-envelope) we may use the
expression envelope j (super-envelope j).

Relative to a well-defined set of ballots B: if j is an envelope in B, then contB(j) denotes the content of
j; if x = j1, . . . , jk is a sequence of envelope identifiers in IB, then contB(x) denotes the concatenation of the
contents of these envelopes, that is, the string contB(j1) · · · contB(jk).

A global memory consists of a pair (B,R), where
• B is a well defined set of ballots; and
• R is a sequence of strings in Σ∗, R = R1, R2,

We refer to B as the ballot set; to R as the public record; and to each element of R as a record. The empty
global memory is the global memory for which the ballot set and the public record are empty. We denote the
set of all possible global memories by GM .

Ballot-box actions are functions from GM to GM . The subset of ballot-box actions available at a given
global memory gm is denoted by Agm. The actions in Agm are described below, grouped in 8 classes. For each
a ∈ Agm we provide a formal identifier; an informal reference (to facilitate the high-level description of our

16For any given sequence, we shall solely use superscripts, or solely subscripts, to denote all of its elements.

20

constructions); and a functional specification. If gm = (B,R), we actually specify a(gm) as a program acting
on variables B and R. For convenience, we include in R the auxiliary variable ub, the identifier upper-bound:
a value equal to 0 for an empty global memory, and always greater than or equal to any identifier in IB.

1. (NewEn, c) —where c ∈ Σ.

“Make a new envelope with public content c.”

ub := ub + 1; B := B ∪ {(ub, c, 0)}; and R := R ◦ (NewEn, c, ub).

2. (OpenEn, j) —where j is an envelope identifier in IB.

“Publicly open envelope j to reveal content contB(j).”

B := B \ {Bj} and R := R ◦ (OpenEn, j, contB(j), ub).

3. (NewSup, j1, . . . , jL) —where L ≤ 5, and j1, . . . , jL ∈ IB are distinct envelope identifiers.

“Make a new super-envelope containing the envelopes j1, . . . , jL.”

ub := ub + 1; B := B ∪ {(ub, (contB(j1), . . . , (contB(jL)), L)};
B := B \ {Bj1 , . . . , BjL}; and R := R ◦ (NewSup, j1, . . . , jL, ub).

4. (OpenSup, j) —where j ∈ IB is the identifier of a super-envelope of level L.17

“Open super-envelope j.”

letting contB(j) = (c1, . . . , cL), B := B ∪ {(ub + 1, c1, 0), . . . , (ub + L, cL, 0)}; B := B \ {Bj};
ub := ub + L; and R := R ◦ (OpenSup, j, ub).

5. (PublicPermute, j1, . . . , jk, p) —where k ≤ 5, p ∈ Sk, and j1, . . . jk ∈ IB are distinct
identifiers of ballots with the same level L.

“Publicly permute j1, . . . , jk according to p.”

B := B ∪ {(ub + 1, contB(jp(1)), L), . . . , (ub + k, contB(jp(K)), L)}; B := B \ {Bj1 , . . . , Bjk};
ub := ub + k; and R := R ◦ (PublicPermute, j1, . . . , jk, p, ub).

6. (Destroy, j) —where j is a ballot identifier in IB.

“Destroy ballot j”

B := B \ {Bj} and R := R ◦ (Destroy, j, ub).

7. (DoNothing).

“Do nothing”

B := B and R := R ◦ (DoNothing, ub).

8. (BallotBox, j1, . . . , jk) —where k ≤ 5 and j1, . . . jk ∈ IB are distinct identifiers of ballots
with the same level L.

“Ballotbox j1, . . . , jk”

p := rand(Sk); B := B ∪ {(ub + p(1), contB(j1), L), . . . , (ub + p(k), contB(jk), L)};
B := B \ {Bj1 , . . . , Bjk}; ub := ub + k; and R := R ◦ (BallotBox, j1, . . . , jk, ub).

We refer to a member of the first 7 classes as a public action and to a member of the 8th class as an
action of Nature.

17All the ballot-box actions involving multiple super-envelopes require as inputs and produce as outputs the ballots of the
same level (see below). Thus, the level of any ballot can be deduced from the public record.

21

Remarks.
• All ballot-box actions are deterministic functions, except for the actions of Nature.
• The variable ub never decreases and coincides with the maximum of all identifiers “ever in existence.”

Notice that we never re-use the identifier of a ballot that has left, temporarily or for ever, the table.
This ensures that different ballots get different identifiers.
• Even though we could define the operations NewSup, PublicPermute, and BallotBox to handle

an arbitrary number of ballots, it is a strength of our construction that we never need to operate on
more than 5 ballots at a time. We thus find it convenient to define such bounded operations to highlight
the practical implementability of our construction.

Definition 1. A global memory gm is feasible if there exists a sequence of global memories gm0, gm1, . . . , gmk,
such that gm0 is the empty global memory; gmk = gm; and, for all i ∈ [1, k], gmi = ai(gmi−1) for some
ai ∈ Agmi−1.

If (B,R) is a feasible memory, we refer to R as a feasible public record.

Notice that if gm = (B,R) is feasible, then Agm is easily computable from R alone. Indeed, what ballots
are in play, which ballots are envelopes and which are super-envelopes, et cetera, are all deducible from R.
Therefore, different feasible global memories that have the same public record also have the same set of
available actions. This motivates the following definition.

Definition 2. If R is a feasible public record, by AR we denote the set of available actions for any feasible
global memory with public record R.

4 The Notion of a Public Ballot-Box Mediator

Definition 3. Let P be a sequence of K functions. We say that P is a public ballot-box mediator (of length
K) if, for all k ∈ [1,K] and public records R, P k(R) is a public ballot-box action in AR.

An execution of P on an initial feasible global memory (B0, R0) is a sequence of global memories
(B0, R0), . . . , (BK , RK) such that (Bk, Rk) = ak(Bk−1, Rk−1) for all k ∈ [1,K], where ak = P k(Rk−1).18

If e is an execution of P, by Bk(e) and Rk(e) we denote, respectively, the ballot set, the public record,
and the private history profile of e at round k. By RkP(e) we denote the last k records of Rk(e) (i.e., “the
records appended to R0 by executing P”).

Remarks.
• Note that the above definition captures our intuitive desideratum that no special trust is bestowed on a

public mediator. Because he performs a sequence of public ballot-box actions, any one can verify that
(i) he performs the right sequence of actions;

(ii) he does not choose these actions; and
(iii) he does not learn any information that is not publicly available.
• Note too that if P = P 1, . . . , PK and Q = Q1, . . . , QL are public mediators, then their concatenation,

that is, P 1, . . . , PK , Q1, . . . , QL is a public mediator too.

5 The Notion of a Ballot-Box Computer for a Function f

Definition 4. An address is a finite sequence x of distinct positive integers. An address vector x is a vector
of mutually disjoint addresses, that is, {xi}∩{xj} = ∅ whenever i 6= j. The identifier set of an address vector
x = (x1, . . . , xk) is denoted by Ix and defined to be the set

⋃k
i=1{xi}. If B is a set of ballots, then we define

18Note that the executions of P are, in general, random since P k(R) may return an action of Nature.

22

contB(x) to be the vector (contB(x1), . . . , contB(xk)). If i is a positive integer, then x+ i is the address vector
whose jth component is xj + i (i.e., each element of sequence xj is increased by i).

As usual, an address profile is an address vector indexed by the set of players.
A ballot-box computer P for a function f is a special public ballot-box mediator. Executed on an initial

global memory in which specific envelopes (the “input envelopes”) contain an input x for f , P replaces such
envelopes with new ones (the “output envelopes”) that will contain the corresponding output f(x). Of course,
no property is required from P if the initial memory is not of the proper form.

Definition 5. Let f : Xa → Y b be a finite function, where X,Y ⊂ Σ∗; and let x = x1, . . . , xa be an
address vector. We say that a feasible global memory gm = (B,R) is proper for f and x if Ix ⊂ IB and
contB(x) ∈ Xa.

Definition 6. Let f : Xa → Y b be a finite function, where X,Y ⊂ Σ∗; let x and w be two address vectors.
We say that a public ballot-box mediator P is a ballot-box computer for f , with input address vector x and
output address vector w, if there exists a probabilistic algorithm SIM such that, for any execution e of P on
an initial memory gm0 = (B0, R0), proper for f and x and with identifier upper-bound ub0, the following
three properties hold:

1. Correctness: contBK(e)(w + ub) = f(contB0(x)).

2. Privacy: RKP (e) = SIM(ub).

3. Clean Operation: BK(e) = B{w+ub} ∪B0 \B{x}.

We refer to SIM as P’s simulator; to B{x} as the input envelopes; and to B{y+ub} as the output envelopes.
For short, when no confusion may arise, we refer to P as a computer.

Remarks.
• Correctness. Semantically, Correctness states that the output envelopes will contain f evaluated on the

contents of the input envelopes. Syntactically, Correctness implies that each integer of each address
wj + ub is the identifier of an envelope in BK(e).
• Privacy. By running a computer P for f , the only additional information about f ’s inputs or outputs

gained by the players consists of RKP , the portion of the public record generated by P’s execution. Privacy
guarantees that this additional information is actually useless. Indeed, (1) the identifier upper-bound
ub is deducible from R0, and thus already known to the players, and (2) RKP can be generated “with
exactly the same odds as in a random execution of P” by P’s simulator only on input ub. Since such
simulator is a fixed algorithm, RKP cannot contain any information about f ’s inputs and outputs that is
not deducible from ub.
• Clean Operation. As we shall see, our construction is modular, that is, we build computers for complex

functions from computers for more elementary ones. Therefore, we actually envision that an execution
of a computer P may be preceded and/or followed by the execution of other computers. We thus insist
that P does not “touch” any ballots of the initial memory besides its input envelopes. This way, partial
results already computed, if any, will remain intact. Accordingly, Clean Operation guarantees that P

1. Never touches an initial ballot that is not an input envelope (in fact, if a ballot is acted upon, then
it is either removed from the ballot set, or receives a new identifier), and

2. Eventually replaces all input envelopes with the output envelopes (i.e., other ballots generated by
P are temporary, and will not exist in the final ballot set).

Clean Operation property is very important, because it is hard —if not impossible!— to constrain
what may happen after a mechanism ends, and thus to control what happens to any residual information

23

in the system. Indeed, if such information existed and were related to the players’ strategies, its fate
might affect the very play of the mechanism.19

6 Three Elementary Ballot-Box Computers

In this section we first provide ballot-box computers for three elementary functions. (These computers will
later on be used as building blocks for constructing computers for arbitrary finite functions.) Our three
elementary functions are:

1. Permutation Inverse, mapping a permutation p ∈ S5 to p−1.
2. Permutation Product, mapping a pair of permutations (p, q) ∈ S5 × S5 to pq —i.e., the permutation of

S5 so defined: pq(i) = p(q(i)).
3. Permutation Clone, mapping a permutation p ∈ S5 to the pair of permutations (p, p).

Encodings. Note that the notion of a ballot-box computer P for f applies to functions f from strings
to strings. (Indeed, f ’s inputs and outputs must be represented as the concatenation of, respectively, the
symbols contained in P’s input and output envelopes.) Thus we need to encode the inputs and outputs of
Permutation Inverse, Product and Clone as strings of symbols. This is naturally done as follows.

Definition 7. We identify a permutation p in S5 with the 5-long string p1pSPA3p4p5, such that pj = p(j).
Relative to a well-defined set of ballots B, we say that a sequence σ of 5 envelope identifiers is an envelope
encoding of a permutation if contB(σ) ∈ S5.

If σ is an envelope encoding of a permutation in S5, we refer to this permutation by σ̂. We consistently
use lower-case Greek letters to denote envelope encodings.

Public-Mediator Conventions. To simplify our description of a public mediator P we adopt the following
conventions.

• Rather than describing P as a sequence of K functions that, on input a public record R, output a
ballot-box action feasible for any global memory with public record R, we present P as a list of K
actions a1, . . . , aK (to be performed no matter what the public record may be). Should any such ak be
infeasible for a particular global memory, we interpret it as the “do nothing” action, which is always
feasible.
• We describe each action ak via its informal reference (as per Definition 3.2), using an explicit and

convenient reference to the identifiers it generates. For instance, when we say “Make a new envelope x
with public content c”, we mean (1) “Make a new envelope with public content c” and (2) “refer to the
identifier of the newly created envelope as x” —rather than ub + 1.
• We often collapse the actions of several rounds into a single conceptual round, providing convenient

names for the ballot identifiers generated in the process. For instance, if p is a permutation in S5, the
conceptual round “Create an envelope encoding σ of p” stands for the following 5 actions:

Make a new envelope σ1 with public content p1.
Make a new envelope σ2 with public content p2.
Make a new envelope σ3 with public content p3.
Make a new envelope σ4 with public content p4.
Make a new envelope σ5 with public content p5.

19For instance, let M be the following normal-form mechanism for running a secret referendum: player i’s message mi is either
YES or NO, and the public outcome is the tally of YES votes. Let now M′ be an implementation of M that, while correctly and
privately computing the desired tally, also generates and hands to each player i a sequence of unopened envelopes, Ei, encoding
mi. Such an M′ can hardly be considered to be a satisfactory implementation of M, as it makes “buying votes” easier than in
M. Indeed, in M′ player i can ex-post prove how he voted to some other player j by handing over Ei to j, or by opening them
in front of him. By contrast, after a play of M player i could only claim to another player j what his vote mi was.

24

6.1 A Ballot-Box Computer for Permutation Inverse

Public mediator INVσ

Input address: σ —an envelope encoding of a permutation in S5.
(1) Create an envelope encoding α of the identity permutation I = 12345.
(2) For ` = 1 to 5: make a new super-envelope A` containing the pair of envelopes (α`, σ`).
(3) Ballotbox A1, . . . , A5 to obtain A′1, . . . , A

′
5.

(4) For ` = 1 to 5: open super-envelope A′` to expose envelope pair (µ`, ν`).
(5) For ` = 1 to 5: publicly open ν`, and denote its content by ν̂`. Set ν̂ = ν̂1 ◦ · · · ◦ ν̂5.
(6) Publicly permute µ1, . . . , µ5 according to ν̂−1 to obtain ρ1, . . . , ρ5. Set ρ = ρ1, . . . , ρ5.
Output address: 26, 27, 28, 29, 30.

Lemma 1. For any 5-long address σ, INVσ is a ballot-box computer for permutation inverse, with input
address σ and output address 26, . . . , 30.

Proof. As per Definition 6, let us establish Correctness, Privacy and Clean Operation for INVσ. Consider
an execution of INVσ on any initial memory gm0 proper for permutation inverse and σ, and let ub0 be the
identifier upper-bound of gm0.

Correctness. Step 1 generates 5 new identifiers (increasing ub0 by 5). Step 2 binds together, in the same
super-envelope A`, the `th envelope of α and σ. It generates 5 new identifiers, and all of its actions are
feasible since σ ∈ IB. Step 3 applies the same, random and secret, permutation to both α̂ and σ̂, generating
5 new identifiers. Letting x be this secret permutation, Step 4 “puts on the table” the envelope encodings
µ = µ1, . . . , µ5 and ν = ν1, . . . , ν5 where µ̂ = xI = x and ν̂ = xσ̂, and generates 10 new identifiers. At the
end of Step 4, both ν̂ and µ̂ are totally secret. Step 5, however, reveals ν̂ to all players, so that all players
can compute ν̂−1 and verify that Step 6 is correctly executed. The action of Step 6 is feasible because σ̂ ∈ S5

and so ν̂ ∈ S5. Step 6 produces five new identifiers: 26th to 30th, counting from the start of the execution.
Thus, ρ = ub0 + 26, . . . , ub0 + 30; and ρ̂ = ν̂−1µ̂ = σ̂−1x−1x = σ̂−1 as desired.

Privacy. Consider the following probabilistic algorithm.

Algorithm SIM−INVσ
Input: ub —an integer.
Randomly select a permutation r ∈ S5, and output the following sequence of records (grouped so as to
correspond to the records generated by each conceptual step of protocol INVσ):

(NewEn, 1, ub+ 1) · · · (NewEn, 5, ub+ 5)
(NewSup, ub+ 1, σ1, ub+ 6) · · · (NewSup, ub+ 5, σ5, ub+ 10)
(BallotBox, ub+ 6, . . . , ub+ 10, ub+ 15)
(OpenSup, ub+ 11, ub+ 17) (OpenSup, ub+ 12, ub+ 19) · · · (OpenSup, ub+ 15, ub+ 25)
(OpenEn, ub+ 17, r1, ub+ 25) (OpenEn, ub+ 19, r2, ub+ 25) · · · (OpenEn, ub+ 25, r5, ub+ 25)
(PublicPermute, ub+ 16, ub+ 18, ub+ 20, ub+ 22, ub+ 24, r−1, ub+ 30)

To see that SIM−INVσ is the required simulator for INVσ, consider a random execution e of INVσ
on gm0 and a random output E of SIM−INVσ(ub0). First observe that the first 16 records of e and E
(corresponding to Steps 1-4) are identical. The remaining 6 records of the public record of e are:

(OpenEn, ub0 + 17, ν̂1, ub0 + 25) · · · (OpenEn, ub0 + 25, ν̂5, ub0 + 25)
(PublicPermute, ub0 + 16, ub0 + 18, ub0 + 20, ub0 + 22, ub0 + 24, ν̂−1, ub0 + 30)

25

Thus, while the last 6 records produced by e and E may very well be different, they are identically distributed.
In fact, r = r1r2r3r4r5 is the random permutation selected by the simulator; and ν̂ = ν̂1ν̂2ν̂3ν̂4ν̂5 = xσ̂, where
x is the random permutation (secretly) selected by the ballot box. Since the product of a random permutation
in S5 and a fixed permutation in S5 is a random permutation in S5, public records of e and E are identically
distributed.

Clean Operation. Trivially follows by construction. Q.E.D.

6.2 A Ballot-Box Computer for Permutation Product

Public mediator MULT σ,τ

Input addresses: σ and τ —each an envelope encoding of a permutation in S5.
(1) Execute computer INVσ to obtain the envelope encoding α.
(2) For ` = 1 to 5: make a new super-envelope A` containing the pair of envelopes (τ`, α`).
(3) Ballotbox A1, . . . , A5 to obtain A′1, . . . , A

′
5.

(4) For ` = 1 to 5: open super-envelope A′` to expose envelope pair (µ`, ν`).
(5) For ` = 1 to 5: publicly open envelope ν`, and denote its content by ν̂`. Set ν̂ = ν̂1 ◦ · · · ◦ ν̂5.
(6) Publicly permute µ according to ν̂−1 to obtain ρ.
Output address: 51, 52, 53, 54, 55.

Lemma 2. For any two, disjoint, 5-long addresses σ and τ , MULT σ,τ is a ballot-box computer for permu-
tation product, with input addresses σ and τ and output address 51, . . . , 55.

Proof. Consider an execution of MULT σ,τ on any initial memory gm0 proper for permutation product and
σ, τ , and let ub0 be the identifier upper-bound of gm0.

Correctness. Note that by Lemma 1, Step 1 generates 30 new identifiers (increasing ub0 by 30) and
produces envelope encoding α with α̂ = σ̂−1. Step 2 binds together, in the same super-envelope A`, the
`th envelope of τ and α. It generates 5 new identifiers, and all of its actions are feasible since α is an
envelope encoding. Step 3 applies the same, random and secret, permutation to both τ̂ and α̂, generating
5 new identifiers. Letting x be this secret permutation, Step 4 “puts on the table” the envelope encodings
µ = µ1, . . . , µ5 and ν = ν1, . . . , ν5 where µ̂ = xτ̂ and ν̂ = xα̂ = xσ̂−1, and generates 10 new identifiers. At
the end of Step 4, both ν̂ and µ̂ are totally secret. Step 5, however, reveals ν̂ to all players, so that all players
can compute ν̂−1 and verify that Step 6 is correctly executed. The action of Step 6 is feasible because α̂ ∈ S5

and so ν̂ ∈ S5. Step 6 produces five new identifiers: 51th to 55th, counting from the start of the execution.
Thus, ρ = ub0 + 51, . . . , ub0 + 55; and ρ̂ = ν̂−1µ̂ = σ̂x−1xτ̂ = σ̂τ̂ as desired.

Privacy. Consider the following probabilistic algorithm.

Algorithm SIM -MULT σ,τ
Input: ub —an integer;
Run SIM−INVσ(ub); randomly select a permutation r ∈ S5; and add to the output the following sequence
of records:

(NewSup, ub+ 26, τ1, ub+ 31) · · · (NewSup, ub+ 30, τ5, ub+ 35)
(BallotBox, ub+ 31, . . . , ub+ 35, ub+ 40)
(OpenSup, ub+ 36, ub+ 42) (OpenSup, ub+ 37, ub+ 44) · · · (OpenSup, ub+ 40, ub+ 50)
(OpenEn, ub+ 42, r1, ub+ 50) (OpenEn, ub+ 44, r2, ub+ 50) · · · (OpenEn, ub+ 50, r5, ub+ 50)
(PublicPermute, ub+ 41, ub+ 43, ub+ 45, ub+ 47, ub+ 49, r−1, ub+ 55)

26

To see that SIM−MULT σ,τ is the required simulator for MULT σ,τ , consider a random execution e of
MULT σ,τ on gm0 and a random execution E of SIM−MULT σ,τ (ub0). Lemma 1 implies that the 22
records produced by protocol INVσ in conceptual Step 1 of execution e are distributed identically to the
first 22 produced by SIM−invertσ(ub0) in E. Next, 11 records produced by Steps 2-4 of MULT σ,τ are
identical to the next 11 records in E by construction (they are constant).

The remaining 6 records of e and E differ only in the permutation they use, respectively, ν̂ and r. Since
both ν̂ and r are random permutations in S5, these are identically distributed. In addition, random permu-
tations of Step 1 of SIM−INVσ(ub0) and of Step 2 of SIM−MULT σ,τ (ub0) are selected independently
from each other. The same holds for (secret) permutations selected by the ballot-box in Steps 6 of INVσ
and of MULT σ,τ . Therefore, the whole records produced by e and E are identically distributed.

Clean Operation. Evident from our construction. Q.E.D.

6.3 A Ballot-Box Computer for Permutation Clone

Public mediator CLONEσ

Input address: σ —an envelope encoding of a permutation in S5.

(1) Execute computer INVσ to obtain the envelope encoding α.
(2) Create two envelope encodings, β and γ, of the identity permutation I.
(3) For ` = 1 to 5: make a new super-envelope A` containing the triple of envelopes (β`, γ`, α`).
(4) Ballotbox A1, . . . , A5 to obtain A′1, . . . , A

′
5.

(5) For ` = 1 to 5: open super-envelope A′` to expose envelope triple (µ`, ν`, η`).
(6) For ` = 1 to 5: publicly open envelope η`, and denote its content by η̂`. Set η̂ = η̂1 ◦ · · · ◦ η̂5.
(7) Publicly permute µ and ν according to η̂−1.20

Output addresses: 66, 67, 68, 69, 70 and 71, 72, 73, 74, 75.

Lemma 3. For any 5-long address σ, CLONEσ is a ballot-box computer for permutation clone, with input
address σ and output addresses 66, . . . , 70 and 71, . . . , 75.

Proof. In light of the previous two proofs, this one is quite straightforward. The simulator required by
Privacy is the probabilistic algorithm below.

Algorithm SIM−CLONEσ

Input: ub —an integer.
(1) Run SIM−INVσ(ub);
(2) Randomly select a permutation r ∈ S5 and add to the output the following sequence of records:

(NewEn, 1, ub+ 31) · · · (NewEn, 5, ub+ 35) (NewEn, 1, ub+ 36) · · · (NewEn, 5, ub+ 40)
(NewSup, ub+ 26, ub+ 31, ub+ 36, ub+ 41) · · · (NewSup, ub+ 30, ub+ 35, ub+ 40, ub+ 45)
(BallotBox, ub+ 41, . . . , ub+ 45, ub+ 50)
(OpenSup, ub+ 46, ub+ 53) (OpenSup, ub+ 47, ub+ 56) · · · (OpenSup, ub+ 50, ub+ 65)
(OpenEn, ub+ 53, r1, ub+ 65) (OpenEn, ub+ 56, r2, ub+ 65) · · ·

(OpenEn, ub+ 65, r5, ub+ 65)
(PublicPermute, ub+ 51, ub+ 54, ub+ 57, ub+ 60, ub+ 63, r−1, ub+ 70)

(PublicPermute, ub+ 52, ub+ 55, ub+ 58, ub+ 61, ub+ 64, r−1, ub+ 75)

Q.E.D.
20Note that Steps 2–7, in essence, correspond to a protocol for permutation inverse that on input α produces two identical

envelope encodings, each encoding α̂−1.

27

7 General Ballot-Box Computers

Without loss of generality, any finite function can be represented as a binary function f : {0, 1}a → {0, 1}b,
and it is well known in theoretical computer science that any such f can be represented as a fixed sequence
of the following basic functions:

• COIN , the probabilistic function that, on no input, returns a random bit;
• DUPLICATE, the function that, on input a bit b, returns a pair of bits (b, b);
• AND, the function that, on input a pair of bits (b1, b2), returns 1 if and only if b1 = b2 = 1; and
• NOT , the function that, on input a bit b, returns the bit 1− b.

We thus intend to prove that each of these basic functions has a ballot-box computer, and then obtain a
ballot-box computer for any desired f : {0, 1}a → {0, 1}b by utilizing these 4 basic computers. To this end,
we must first decide how to encode binary strings and binary functions.

Definition 8. We define the S5 encoding of a k-bit binary string z = b1, . . . , bk, denoted by z̄, to be b̄1 · · · b̄k,
where

0̄ = 12345; 1̄ = 12453.

The S5 encoding is immediately extended to binary functions as follows: f̄(z̄) = f(z) for all z.

One of our basic computer has already been constructed: namely,

Lemma 4. For any envelope encoding σ, CLONE is a ballot-box computer for DUPLICATE with input
address σ.

Proof. Because CLONE duplicates any permutation in S5, in particular it duplicates 12345 and 12453.
Q.E.D.

We thus proceed to build the other 3 basic computers.

7.1 A Ballot-Box Computer for COIN

Public mediator COIN

(1) Create an envelope encoding α of I and an envelope encoding β of a.
(2) Make new super-envelopes A and B containing envelopes α1, . . . , α5 and β1, . . . , β5, respectively.
(3) Ballotbox A and B to obtain super-envelopes C and D.
(4) Open C to expose an envelope encoding γ. Destroy D.

Output address: 15, 16, 17, 18, 19.

Lemma 5. COIN is a ballot-box computer for COIN , with no input address and output address 15, . . . , 19.

Proof. The only non-trivial part to prove Correctness is to demonstrate that contents of γ are random and
belong to {I, a}. Indeed, at the end of Step 2, A contains a sequence of 5 envelopes encoding I, and B
contains a sequence of 5 envelopes encoding permutation a. At the end of Step 3, the contents of C are either
those of A or of B with equal probabilities. Thus, at the end of Step 4, the content of address γ is random
and is either I or a.

Clean Operation is trivial, and Privacy straightforwardly follows by noting that the required simulator
for COIN is the following probabilistic algorithm.

Algorithm SIM−COIN

28

Input: ub —an integer.
Output the following sequence of records:

(NewEn, 1, ub+ 1) (NewEn, 2, ub+ 2) (NewEn, 3, ub+ 3) (NewEn, 4, ub+ 4) (NewEn, 5, ub+ 5)
(NewEn, 1, ub+ 6) (NewEn, 2, ub+ 7) (NewEn, 4, ub+ 8) (NewEn, 5, ub+ 9) (NewEn, 3, ub+ 10)
(NewSup, 1, 2, 3, 4, 5, ub+ 11) (NewSup, 6, 7, 8, 9, 10, ub+ 12)
(BallotBox, 11, 12, ub+ 14) (OpenSup, 13, ub+ 14) (Destroy, 14, ub+ 14)

Q.E.D.

7.2 Ballot-Box Computers for NOT and AND

In proving the existence of ballot-box computers for NOT and AND we rely on the result of Barrington
(1986) that the Boolean functions NOT and AND can be realized as sequences of group operations in S5.21

Here is our rendition of it.

Let I = 12345, a = 12453, b = 25341, c1 = 34125, c2 = 12354, and c3 = 42153; and let x̃, x′ and x∗ be
the operators defined to act on a permutation x ∈ S5 as follows:

x̃ = c−1
1 xc1, x′ = c−1

2 xc2, and x∗ = c−1
3 xc3.

Then, recalling that 0̄ = I and 1̄ = a, the following lemma can be verified by direct inspection.

Barrington’s Lemma. If x1 = b1 and x2 = b2, where b1 and b2 are bits, then

¬b1 = (x1a
−1)∗, and b1 ∧ b2 = (x1x̃2x

−1
1 x̃−1

2)′.

Lemma 6. There exist ballot-box computers NOT and AND for, respectively, NOT and AND.

Proof. The lemma follows by combining Barrington’s Lemma 6 and our Lemmas 1,2 and 3. That is, each
of NOT and AND is obtained in four steps. First, by expanding the operators of the formulas of Lemma
6 so as to show all relevant constants a, c1, c2 and c3. Second, by generating envelope encodings for each
occurrence of each constant. Third, in the case of AND, by using our elementary computer CLONE so as
to duplicate x1 and x2. Forth, by replacing each occurrence of permutation inverse and permutation product
in the formulas of Lemma 6 with, respectively, our elementary computers INV and MULT . Accordingly,
the simulators for NOT and AND can be obtained by running the simulators of their individual elementary
computers in the proper order (feeding them as input the right values of ub).

Q.E.D.

7.3 Ballot-Box Computers for Arbitrary Finite Functions

Theorem 1. For any finite function f there exists a ballot-box computer Pf for f .

Proof. Basic results of complexity theory guarantee that for any finite binary function f : {0, 1}a → {0, 1}b,
there exists a fixed sequence Cf = F1, F2, . . . , FK such that:

21 Note that neither DUPLICATE nor COIN can be realized in S5, and thus one cannot compute arbitrary functions in S5.
Indeed, the result of Barrington (1986) was solely concerned with implementing a restricted class of finite functions called NC1.
At high level, we bypass this limitation by (1) representing permutations in S5 as sequences of 5 envelopes and (2) using these
physical representations and our ballot-box operations for implementing DUPLICATE and COIN (in addition to NOT and
AND). That is, rather than viewing a permutation in S5 as a single, 5-symbol string, we view it a sequence of 5 distinct symbols,
and put each one of them into its own envelope, which can then be manipulated separately by our ballot-box operations. Such
“segregation” of permutations of S5 into separate envelopes is crucial to our ability of performing general computation, and in a
private way too.

29

• Each Fi is either COIN , DUPLICATE, NOT or AND;
• Each input bit of Fi is either one of the original input bits or one of the output bits of Fj for j < i; and
• For each a-bit input x, the b-bit output f(x) can be computed by evaluating (in order) all functions Fi

on their proper inputs, and then concatenating (in order) all their output bits not used as inputs by
some Fj . (Such bits are guaranteed to be exactly b in total.)

Define now Pi as follows:
Pi = COIN if Fi = COIN ;
Pi = CLONE if Fi = DUPLICATE;
Pi = NOT if Fi = NOT ;
Pi = AND if Fi = AND.

Let P be the concatenation of P1, . . . ,PK , with appropriately chosen input addresses, so that the lth input
address of Pi matches the mth output address of Pj whenever the lth input bit of Fi is the mth output bit
of Fj . Then, P is a ballot-box computer for f . In fact, P’s correctness follows from the correctness of each
computer Pi. Furthermore, P’s privacy follows from the fact that each Pi has a simulator SIMi, and thus
a simulator SIM for P can be obtained by executing (in order) SIM1, SIM2, . . . , SIMK . Specifically, on
input an identifier upper-bound ub0, SIM runs SIM1(ub0) to generate a public record R1, computes the
identifier upper-bound ub1 of R1, runs SIM2(ub1) to obtain a public record R2 and computes ub2, and so
on.22 At the end, SIM returns the public record R = R1 ◦ R2 ◦ · · · ◦ RK . Finally, the clean operation of P
follows from the clean operation of each Pi. Q.E.D.

For completeness, we explicitly exhibit the sequence Cf and our computer P in, respectively, Appendices A
and B.

Remarks.
• Note that our ballot-box computer Pf is “as efficient as” f itself. Indeed, the description of Pf is linear

in the description of Cf . This is so because, letting Cf = F1, F2, · · · , Pf replaces each Fi with a ballot-
box computer for Fi that has constant number of actions and generates a constant number of identifiers.
Moreover, assuming each function Fi is executable in constant time (since it operates on at most two
bits) and assuming that each ballot-box action is executable in constant time (since it operates on at
most 5 ballots), the time needed to run Pf is also linear in the time needed to run Cf .
• If P is executed on an initial global memory whose ballot set coincides with just the input envelopes,

then the ballot set of P’s final global memory of coincides with just the output envelopes.

8 Public Checking of Inputs

So far, we have assumed that a ballot-box computer Pf for function f is executed starting on a proper global
memories. That is, we have assumed that Pf ’s input envelopes indeed encode “legitimate” inputs for f .
Ultimately, however, Pf will be run on a global memory consisting of n sequences of envelopes, where the ith
sequence has been prepared by player i so as to encode his chosen input to f . Specifically, if f ’s inputs are
L-bit strings, i is supposed to make 5L envelopes containing the S5 encoding of his chosen string. However,
there is no guarantee that player i will indeed so prepare his sequence of envelopes. Accordingly, we must
construct a special public ballot-box mediator, the public input-checker, that, without revealing any undue
information, verifies whether or not a sequence of 5L envelopes contains the S5 encoding of an L-bit string.

Such a checker C replaces a sequence of 5L envelopes E with a new 5L-envelope sequence E′ so that:
22Notice that there are two ways of computing ubi. The first is “extracting” ubi from Ri. The second, is to add a specific

constant to ubi−1, since each of COIN , CLONE , NOT , and AND generates a fixed number of new identifiers.

30

• If E contains the S5 encoding of an L-bit string s, then so does E′.23

• Else, E′ consists of 5L envelopes, publicly made so as to contain the S5 encoding of 0L.

In other words, C must be consistent with our way of handling aborts. Let us now see how to formalize C’s
correctness and privacy.

For C to be a public mediator, its correctness should ascertainable from the public record RC it generates.
We thus demand that there exists a pre-specified function Ch —for checking— such that, Ch(RC) = 0 if the
content of E is an S5 encoding of an L-bit string, and 1 otherwise.

Let us now focus on C’s privacy requirements. If E correctly encodes an L-bit string z, then no information
—about z or anything else— should be revealed. (As usual, we formalize this no-additional-information
requirement via a simulator that, just given the current identifier upper-bound, generates a public record
identically distributed as the one generated by C.) Else, it does not matter what might be revealed about
the content of E:24 the player has chosen to abort and his input is publicly reset to 0L.

The final condition is that checking for the validity of a player’s L-bit input should not alter (or reveal
information about) the inputs of the other players. This is formalized by the “clean operation” property,
which implies that in checking the input envelopes of player i no other existing envelope is ever “touched.”25

Definition 9. Let x be a 5L-long address and C = C1, . . . , CK a public ballot-box mediator. We say that C
is an L-bit input checker with input address x if there exist a simulator SIM , a checking predicate Ch, and
a 5L-long address w such that, for any execution e of C on an initial memory gm0 = (B0, R0, H0) —with
identifier upper-bound ub and Ix ⊂ IB0— the following three properties hold:

1. Correctness: If contB0(x) = z̄ for some z ∈ {0, 1}L, then Ch(RKC (e)) = 1 and contBK(e)(w + ub) = z̄.
Else, Ch(RKC (e)) = 0 and contBK(e)(w + ub) = 0L.

2. Privacy: If contB0(x) = z̄ for some z ∈ {0, 1}L, then RKC (e) = SIM(ub).
3. Clean Operation: BK(e) = B{w+ub} ∪B0 \B{x}.

Lemma 7. For any L, there exists an L-bit input checker.

Proof. Let C1 be the public ballot-box mediator that, given an envelope encoding x of a bit b, operates as
follows:

1. run CLONE twice to generate three envelope encodings of b, namely, σ, β, γ;
2. run NOT on β to obtain the envelope encoding δ of the complementary bit, 1− b;
3. create super-envelopes A and B containing, respectively, the envelope sequence γ and the envelope

sequence δ;
4. ballot-box A and B to obtain super-envelopes C and D;
5. open C and D to reveal, respectively, a sequence of 5 envelopes ρ and κ; and
6. open all the envelopes of ρ and κ.

Then notice that the contents revealed in step 6 are, with equal probability, either (I, a) or (a, I). Notice
too, that C1 is perfectly simulatable, and thus does not reveal anything about b.

Consider now executing C1 when x is the encoding of a permutation p ∈ S5 that is neither I = 12345
nor a = 12453. Then, in Step 6, ρ and κ will continue to be envelope encoding of permutations of S5, but
neither ρ̂ nor κ̂ will equal I or a. Indeed, recall that the Barrington function for NOT , f(x) = (xa−1)∗, is
a bijection from S5 to S5. Therefore, f(x) ∈ {I, a} if and only if x ∈ {I, a}. Thus, because our ballot-box
mediator NOT “literally translates” f(x), it will generate a envelope encoding of a bit if and and only if

23Ideally, C would leave E intact after verifying that it has a legitimate content, but the ballot-box actions needed for such
verification end up “destroying” the original envelopes.

24What will be revealed will depend on the actual contents of E chosen by the player as well as on the way in which C operates.
25Indeed, any ballot-box action accessing the content of an envelope j removes j, for ever, from the set of ballot identifiers.

31

it starts with the envelope encoding of a bit. Thus, revealing ρ̂ and κ̂ in Step 6 proves that x was not the
encoding of a bit.

Finally, consider executing C1 when x is not the encoding of a permutation in S5. In this case, when
executing the first conceptual step of CLONE (i.e., when executing INV), the original envelopes of x will
be first randomly permuted and then opened, publicly proving that cont(x) 6∈ S5.

Therefore, constructing an L-bit input checker is rather simple. Given an address vector x = x1, . . . , xL,
one runs C1 on each xi. If for each i, xi is revealed to be an envelope encoding of a bit, the input checker
generates for each i envelopes σi, which content is guaranteed to be identical to the content of envelopes xi.
If for some i, it is revealed that the content of xi were different from I or a, then the input checker should
destroy any envelopes it had generated so far and publicly generate L envelope encodings of I.

Since the content of all opened envelopes becomes part of the public record, the required predicate Ch is
trivially constructed. It evaluates to 0 when it becomes clear that for some i xi is not a permutation or a
permutation different from I and a; and to 1, otherwise. The required simulator SIM is also trivially obtained
by executing, in appropriate order, simulators of the corresponding computers for CLONE and NOT and
generating records of steps 3-6 of each C1 in a manner analogous to that of our previously constructed
simulators (e.g. SIM−MULT .) Q.E.D.

9 Perfect Ballot-Box Implementations

In this Section we finally show that any normal-form mechanism has a perfect implementation. We do
so in three steps. First, as discusses in Section 1.3., we augment the notion of a normal-form mechanism
with “aborts.” Then, we formalize the notion of a perfect implementation. Lastly, we show that perfect
implementations always exist.

9.1 Augmented Normal-form Mechanisms

Let us start by formally recalling traditional normal-form mechanisms.

Definition 10. A normal-form mechanism is a tuple M = (N,M, Y, g), where:
• N , the set of players, is a finite set;
• M , the message space, is the Cartesian product of n subsets of Σ∗, M = M1 × · · · ×Mn;
• Y , the outcome set, is a subset of Σ∗; and
• g, the outcome function, is a probabilistic function, g : M → Y .

We refer to each Mi as the message space (or strategy set) of player i, and to each m ∈ Mi as a message
(or strategy) of i. M is finite if M and Y are finite sets and g is a finite function.

A normal-form mechanism M = (N,M, Y, g) is a standard normal-form mechanism if M1 = · · · = Mn =
Y = {0, 1}L for some integer L; that is, M = (N, ({0, 1}L)n, {0, 1}L, g).

Notice that, without any loss of generality, we can focus on just standard normal-form mechanisms.26 We
now include aborts into standard normal-form mechanisms.

Definition 11. We say that a normal-form mechanism M = (N,M, Y, ĝ) is an L-bit augmented normal-
form mechanism if there exists a standard normal-form mechanism (N, ({0, 1}L)n, {0, 1}L, g) such that

• For each i, Mi = {0, 1}L ∪ {abort}, and
26 Indeed, any finite, mediated normal-form mechanism M = (N,M, Y, g) can be put into standard form as follows. Let z be

the cardinality of the largest set among M1, . . . ,Mn, and Y . Choose L = dlog(z)e. Letting ci be the cardinality of message set Mi,
encode the elements of Mi as the lexicographically first ci strings in {0, 1}L and consider any string x ∈ {0, 1}L lexicographically
greater than ci as an alternative encoding of the first element of Mi. Analogously encode the outcome set Y as elements of
{0, 1}L. Define now g′ : ({0, 1}L)n → {0, 1}L to be the following function: if x′i is an encoding of xi ∈ Mi for all i ∈ N , and if
y′ is an encoding of y ∈ Y , then g′(x′1, . . . , x

′
n) = y′ if and only if g(x1, . . . , xn) = y. Then, M = (N, ({0, 1}L)n, {0, 1}L, g′) is a

standard normal-form mechanism equivalent to M.

32

• Y = ({0, 1}L)× {0, 1}N .

The outcome function ĝ : M → Y of M is defined via g as follows:

ĝ(m1, . . . ,mn) = (g(m′1, . . . ,m
′
n), (b1, . . . , bn)),

where for each i we have: m′i = mi and bi = 0 if mi ∈ {0, 1}L, and m′i = 0L and bi = 1 otherwise.

The choice of 0L as the message of an aborting player is without loss of generality. We could have chosen
any fixed element (or a random element) of {0, 1}L instead.

9.2 The Notion of a Perfect Implementation

We present our notion of a perfect implementation so as to be independent of ballots and ballot-boxes. That
is, we present it for general implementation models of imperfect information, where the set of players includes
a mediator and Nature.

Definition 12. An implementation model is a triple IM = (N∗,H,A), where:

• N∗ = N ∪ {M,N} is a finite set of players, where each of the n members of N is referred to as an
ordinary player, M as the mediator, and N as Nature.
• H = H0 ∪i∈N∗ Hi is the set of histories. A member H0 of H0 is referred to as a public history, and a

member H i of Hi as the private history of player i. Each history is a sequence of strings, called records.
• A is the set of actions. Each action of A appends a new record (possibly empty) to each of the current
n+ 3 histories.

A perfect implementation is an extensive-form mechanism of imperfect information. Such a mechanism
(see Osborne and Rubinstein (1997) for a formal definition) is a game form of an extensive-form game G,
that is, G without preferences over the termination nodes and initial moves of Nature assigning types to the
players. (Of course, for equilibrium analysis both must be added back.) Accordingly, Nature is a special
player that, at each of its decision nodes, chooses its actions according to a pre-specified and commonly
known distribution. By convention, we think of Nature’s private history as encoding the “state of the world.”

Definition 13. Let M = (N,M, Y, ĝ) be an augmented normal-form mechanism and M′ an extensive-form
mechanism, in an implementation model IM = (N∗,H,A), played starting with empty histories. We say that
M′ is a perfect implementation of M if the following properties are satisfied:

• Public Outcome. The outcome of M′ is a pre-specified function of the final public history H0.
• Public Mediation. The private history of M is always empty, and at each of M’s decision nodes there

is only one available action, determined by a pre-specified function of the then current H0.
• Strategy and Privacy Equivalence. Letting (N,S′, Y ′, g′) be the normal form representation of M′,27

1. Y ′ = Y

2. For all i ∈ N , S′i = M ′i ∪ {Ai}
(Comment: as we shall see, Ai represents the set of all “aborting” strategies of i in M′)

For all i ∈ N , there exists mi ∈M ′i such that, arbitrarily fixing s̄i ∈ Ai
3. For all si ∈ Ai and all s−i ∈ S′−i, g′(si, s−i) = g′(s̄i, s−i)

(Comment: all aborting strategies of i in M′ are outcome-equivalent to each other)

4. There exists a bijection ψi : Mi ↔M ′i ∪ {s̄i} such that ψi(abort) = s̄i, ψi(0L) = mi, and
for all (m1, . . . ,mn) ∈M , ĝ(m1, . . . ,mn) = g′(ψ1(m1), . . . , ψn(mn))

27The public mediator and Nature do not enter the set of players of the normal-form representation as they have no choice in
performing their actions and no preferences defined over final outcomes.

33

5. There exists a probabilistic function SIM such that, for any subset C ⊂ N , any strategy profile
s = (sC , s−C) such that s−C ∈ M ′−C , and any y ∈ Y ′, in a random execution of M′ with strategy
profile s and outcome y, the vector of final histories (H0, HC) is distributed as SIM(C, sC , y).
(Comment: This expresses that, provided that corresponding strategies are used and the same
outcome obtained, the information about the other players collectively available to the members
of C after a play of M′ and after a play of M coincide, provided that the players in −C use
non-aborting strategies. If a player i ∈ −C aborts, then his identity is part of y in any case, and
we do not care whether information about his specific aborting strategy is revealed.)

9.3 The Existence of Perfect Ballot-Box Implementations

Let us now transform the ballot-box model of Section 3 into the following implementation model BB =
(N∗,H,A). In Section 4, each global memory gm consists of the current set of ballots B and public record
R. In BB, the public-record sequence R is simply identified as the public history H0, and B is considered part
of N’s private record. All ballot-box actions continue to be actions in BB. Specifically, the 7 classes of public
actions are reserved to M, and actions of Nature are reserved to N. (Thus, when N ballot-boxes a sequence
of K ballots, the actual permutation π ∈ SK is appended to HN.) Finally, we complete our specification of
BB by adding the following class of actions for the n players in N .

(SimPrivEn, L1, c1), . . . , (SimPrivEn, Ln, cn) —where ci ∈ ΣLi .

“Each i ∈ N simultaneously an privately makes a sequence of Li envelopes (with contents ci).”

B := B ∪ {(ub + 1, c11, 0), . . . , (ub + L1 + · · ·+ Ln, c
Ln
n)}; ub := ub + L1 + · · ·+ Ln;

H1 := c1; . . . ;Hn := cn; and H0 := H0 ◦ (SimPrivEn, L1, . . . , Ln, ub).

We refer to the so specified BB as the ballot-box implementation model.

Theorem 2. Every L-bit augmented normal-form mechanismM = (N,M, Y, ĝ) has a perfect implementation
in BB.

Proof. Consider the following extensive-form mechanism B:
(Initialization.) For each i ∈ N , the bit variable bi is set to 0.

1. Each player i ∈ N , simultaneously and privately, makes a sequence Ei of envelopes.
2. If i did not make 5L envelopes, then the mediator (1) destroys all of i’s envelopes, if any, (2) publicly

generates a sequence of envelopes Ei consisting of L envelope encodings of 0, and (3) sets bi = 1.
3. For each i ∈ N , the public mediator (1) runs the L-bit checker constructed in Lemma 7 on the sequence
Ei, so as to generate a sequence E′i of 5L envelopes, and (2) if bi = 0, sets bi to the value of the checking
predicate.

4. The public mediator executes a ballot-box computer Pg for the function g on input envelopes E′1, . . . , E
′
n,

so as to obtain a sequence of output envelopes T1, . . . , TL.
5. The public mediator publicly opens all output envelopes so as to reveal an L-bit string y.
6. The outcome of B is the S5 decoding of y and the n-bit vector (b1, . . . , bn).

Let us now prove that B is a perfect implementation of M.
First for all, note that each player i ∈ N acts only once, in Step 1, when his information set is “empty.”

Thus, the set of i’s strategies Si consists of all possible actions (SimPrivEn, Li, ci). We now partition Si into
M ′i and Ai as follows: a strategy belongs to M ′i if and only if it coincides with the action (SimPrivEn, 5L, c),
where c is the Barrington encoding of some z ∈ {0, 1}L. For any z ∈ {0, 1}L, we refer to this strategy as
si,z. After an arbitrary selection of s̄i ∈ Ai and setting mi = si,0L , we define the bijection ψi as follows:
ψi(z) = si,z for all z ∈ {0, 1}L and ψi(abort) = s̄i.

34

For each player i, at the end of Step 3 and independently of the strategies of the other players, a strategy
si ∈ Ai leads to bi = 1 and cont(E′i) = 0L. (Indeed, if si does not make 5L envelopes, bi is set to 1 in Step
2, and the mediator publicly generates a sequence Ei of 5L envelopes consisting of L envelope encodings of
0. Thus, when the input checker is run on such Ei, it generates a new sequence E′i whose contents are the
Barrington encoding of 0L, and keeps bi = 1. Else, if i makes exactly 5L envelopes, but their contents is
not the S5 encoding of an L-bit string, then in Step 3 the input checker sets for the first time bi = 1 and
again generates a sequence of envelopes E′i with contents 0L.) If, instead, i plays a strategy si,z ∈ M ′i , then
by the correctness of the input checker, at the end of Step 3 b1 = 0 and the content of E′i is z̄. In turn, for
all players, the correctness property of computer Pg implies that the content of envelopes T coincides with
g(cont(E′1), . . . , cont(E′n)). Therefore: (a) Property 1 of Definition 13 is trivially established; (b) any strategy
si ∈ Ai leads to the same outcome as any other aborting strategy, which establishes Property 3; and (c) for
any strategy profile s so that, for all i, si ∈M ′i ∪{s̄i}, the outcome g′(s) of B equals ĝ(ψ−1

1 (s1), . . . , ψ−1
n (sn)),

which establishes Property 4.
Finally, let us establish Property 5. Arbitrarily fix a subset C ⊂ N , a strategy profile s = (sC , s−C)

such that s−C ∈ M ′−C , and a possible outcome y for a play of B with s. Note that the private histories HC

deterministically depend on sC alone. (Indeed, for each i ∈ C, the private history H i in a play of B consists
of the content of the envelopes made by i.) Accordingly, the existence of an algorithm SIM that, on input
sC , outputs the correct sub-profile of histories HC is trivial. The only difficulty is to establish the existence
of a probabilistic SIM that, on input y, outputs H0 according the proper distribution. We proceed in a
case-by-case basis. If y = (v, (0, . . . , 0)) —i.e., if no player aborts— then SIM probabilistically generates
H0 by running (n times) the simulator of the input checker, then running the simulator of the ballot-box
computer P f , and, finally, appending to H0 a sequence of OpenEn records with revealed contents being
the S5 encoding of v. Assume now that, for some i ∈ C, bi = 1. Then, part of H0 also depends on si.
Letting si = (SimPrivEn, Li, ci) we distinguish two cases: (1) Li 6= 5L, and (2) Li = 5L and ci 6= z̄ for
some z ∈ {0, 1}L. In case 1, the public record of Step 1 contains Li, and the public records appended to H0

in Step 2 are a fixed string of Li + 5L records (namely, Li destroy-envelope records and 5L new-envelope
records). Clearly SIM can generates these records on input si, or even Li only. In case 2, the specified L-bit
checker, for alleged envelope-encoding of i, reveals a random permutation of the 5 strings contained in the
corresponding 5 envelopes. Since these 5 strings are part of si (indeed part of just ci), SIM can trivially
randomly permute them. In both cases, the rest of H0 is generated (with the right odds) by the simulators
of the input checkers and computer Pf .

Q.E.D.

10 Final Remarks

The Universality of Our Construction. As for the earlier constructions of Gödel and Turing, in logic and
computation respectively, the universality of ours stems from the ability of “equating subjects and objects.”
In the case of Gödel numberings, for example, the coherence of Peano’s arithmetics is itself encoded as a
sentence in such arithmetics. In our case, we represent data and operations as permutations of the integers
1 through 5 as follows: each permutation p is encoded into a sequence of 5 envelopes, so that envelope j
contains p(j). Such a sequence of envelopes is both a piece of (really physical!) data, as well as an algorithm,
which via the ballot box is capable of operating on other data. For instance, one of the crucial subroutines
of our construction is a procedure that, given two sequences of 5 envelopes —the first sequence encoding a
permutation p and the second a permutation q— interprets the first sequence as a multiplication program
and returns (without revealing any information about p or q) a sequence of 5 envelopes encoding the product
permutation pq, that is, the permutation mapping each i between 1 and 5 to p(q(i)).

Complementing Mechanism Design. The practical meaningfulness of any abstraction depends on
whether concrete implementations that adequately approximate it exist. In a sense, therefore, our con-

35

tributions enhance the practical meaningfulness of the very notion of a normal-form mechanism: no matter
how “delicate,” its theoretical properties will continue to hold intact for at least one concrete implementation
(i.e., its ballot-box implementation).

We view our results as complementary to mechanism design. As remarkable as they may be, the solutions
offered by mechanism design are, most of the time, abstract normal-form mechanisms, which may not retain
their properties when straightforwardly played by players who value privacy or do not trust anyone.28 Thus,
while we do not help a designer in engineering new mechanisms, by perfectly implementing whatever abstract
mechanisms he finds, we do enable him to ignore issues of privacy and trust in his work.

Extensions and Conclusions. In this paper, we have shown that any single normal-form mechanism can
be implemented without altering its strategic and privacy properties. In a forthcoming paper, we generalize
the present results so as to implement perfectly multiple mediated mechanisms. Such mechanisms may also
be interdependent in an arbitrary way: that is, they can be executed simultaneously or sequentially, and
their mediators may privately communicate with each other.29 Achieving these results will require a more
general treatment of modularity in mechanism design.

These results are just a start, and much more needs to be done. People care about privacy. And to make
more accurate predictions and develop more meaningful models, privacy should intrinsically inform any
general study of human interactions. In particular, we believe and hope that a rigorous and comprehensive
treatment of privacy will become an integral part of game theory.

Department of Economics, Massachusetts Institute of Technology, 50 Memorial Drive, E52-252C, Cam-
bridge, MA 02142; izmalkov@mit.edu;

BBN Technologies, 10 Moulton Street, Cambridge, MA 02138; mlepinski@bbn.com;
and

Computer Science and Artificial Intelligence Laboratory, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, 32 Vassar Street, Room 32-G644, Cambridge, MA
02139; silvio@csail.mit.edu.

APPENDIX

A Finite Functions as Boolean Circuits

Directed Graphs. A directed graph —digraph for short— consists of a pair (V,E), where V is a finite
set and E a subset of V × V . We refer to V as the set of nodes, and to E as the set of edges. Whenever
(u, v) ∈ E, we refer to u as a parent of v, and to v as a child of u. We refer to the number of parents of a
node u as u’s in-degree, and to the number of children of u as u’s out-degree. A node of V is called a source
if it has in-degree zero, a sink if it has out-degree zero, and an internal node otherwise.

A path is a sequence of nodes s1, . . . , sk such that for all i < k, (si, si+1) ∈ E. A digraph (V,E) is acyclic
if, for any path s1, . . . , sk such that k > 1, s1 6= sk. (Note that any non-empty acyclic digraph has at least
one source and at least one sink.) In an acyclic digraph, the maxheight of a node u, denoted by maxheight(u),
is the maximum integer k for which there exists a path s1, . . . , sk in which s1 is a source and sk = u.

For an acyclic digraph with n nodes, a function ord : V → {1, . . . , n} is a natural order if
28Sjöström and Maskin (2002) provide a comprehensive survey of mechanism design and implementation theory literature.

Normal-form mechanisms are also extensively used in more applied fields, such as auction theory and contract theory, see
Krishna (2002), Bolton and Dewatripont (2005). Often the problems of privacy and trust are by-passed by explicit additional
assumptions. For instance, it is typically assumed that the seller (and similarly the principal) can fully commit to the mechanism
she offers to the buyers (and similarly to the agents)—and, since buyers know that, their rationality dictates they must trust the
seller.

29For instance, in implementing two auctions one after the other, the first mediator may announce the winner and the second
highest bid, but pass on to the second mediator some aggregate information of all bids —e.g., the average of all bids, which may
be used to set the reserve price of the second auction.

36

1. for any source u, internal node v, and sink z, ord(u) < ord(v) < ord(z); and
2. for any internal nodes u and v, ord(u) < ord(v) whenever maxheight(u) < maxheight(v).

When a natural order ord is specified, by “node j” we mean the node u such that ord(u) = j.

Boolean Circuits. A Boolean Circuit C consists of a quadruple ((V,E), ord, a, Func) where:
• (V,E) is an acyclic digraph such that every sink has maxheight ≥ 3 and

- every source has out-degree one and every sink has in-degree one;
- every internal node has in-degree 1 or 2 and out-degree 1 or 2; but
- no node has in-degree 2 and out-degree 2.

• ord is a natural order for V ;
• a is a positive integer not exceeding the number of sources in (V,E); and
• Func is a function mapping the internal nodes and the sources whose order is greater than a to the set

of functions {NOT,AND,DUPLICATE,COIN} as follows:
- if node j is a source, then Func(j) = COIN ;
- if node j has in-degree 1 and out-degree 1, then Func(j) = NOT ;
- if node j has in-degree 2 and out-degree 1, then Func(j) = AND; and
- if node j has in-degree 1 and out-degree 2, then Func(j) = DUPLICATE.

We refer to the first a sources as input nodes, to all other sources and internal nodes as computation nodes,
and to the sinks as output nodes.

Graphical Representation of Boolean Circuits. A Boolean circuit ((V,E), ord, a, Func) can be rep-
resented graphically as follows: (1) each node u is represented by a “separate” circle, shrinking the circles of
input and output nodes to a “dot”; (2) ord is represented by drawing the circle of node u “lower than or on
the left of” the circle of node v whenever ord(u) < ord(v); (3) each edge (u, v) is as an arrow directed from
the circle representing u to the circle representing v; and (4) for each computation node j, Func(j) appears
inside the circle representing node j. For brevity, we denote NOT by ¬, AND by ∧, DUPLICATE by D,
and COIN by $. See Figure 1.

r r ����$
����∧ ����D
����∧ ����¬
r r

� 6

�
��

@
@@I

J
J
JJ]

�
��
��*

6 6

Figure 1: Graphical representation of a Boolean circuit with two input nodes.

Interpreting Boolean Circuits as Functions. Let C = ((V,E), ord, a, Func) be a Boolean circuit with
a input nodes, b output nodes, and c computation nodes. Then C can be interpreted as the finite function
FC : {0, 1}a → {0, 1}b mapping an input vector x = x1 . . . xa to an output vector y = y1 . . . yb as follows:
• For i = 1 to a, label the outgoing edge of the ith source with bit xi.
• For i = a+ 1 to a+ c do:

if Func(i) = COIN , then randomly choose a bit b and label i’s out-going edge by b;

37

if Func(i) = NOT and bit b labels i’s incoming edge, label i’s outgoing edge by ¬b;30

if Func(i) = DUPLICATE and b labels i’s incoming edge, label i’s outgoing edges by b;
if Func(i) = AND and b1, b2 label i’s incoming edges, label i’s outgoing edge by b1 ∧ b2.

• For i = 1 to b, set yi to be the bit labeling the incoming edge of (sink) node a+ c+ i.
We say that function FC is deterministic if Func does not map any computation node to COIN ; and
probabilistic otherwise.

r r ����$
����∧ ����D
����∧ ����¬
r r

�1 60

�
��0 @

@@I 0

J
J
JJ] 1

��
��
�*

1

60 61

Figure 2: A computation of the Boolean circuit of Figure 1, on input 11 and coin toss 0.

Boolean-Circuit Representation of Finite Functions. A Boolean circuit representation of a finite
function f is a Boolean circuit C such that f = FC . It is well known in complexity theory that a Boolean-
circuit representation of f can be efficiently computed from any other standard representation of f .

B Constructing Ballot-Box Computers for Arbitrary Boolean Circuits.

Intuitively, we construct a ballot-box computer for any Boolean circuit C = ((V,E), ord, a, Func) by simply
“translating” C into a public ballot-box mediator PC . As we have seen above, the function FC “visits each
computation node j according to ord, evaluates Func(j) on the bits found on j’s incoming edges, and passes
the outputs along j’s outgoing edges of (V,E).” Similarly, PC “visits each computation node j in the same
order, and executes the corresponding ballot-box computer for Func(j) on the input envelopes found on j’s
incoming edges, and passes the output envelopes along j’s outgoing edges.” Technically, PC is a concatenation
of (multiple copies of) NOT , AND, CLONE , and COIN , in proper order and with proper input addresses.

The following algorithm P formalizes how circuit C is translated into the desired ballot-box computer PC .
Algorithm P uses ub0 to refer to the identifier upper-bound of the initial global memory gm0 = (B0, R0, H0)
for PC . (Recall that, when executed on gm0, the action functions of PC can deduce ub0 from R0.) Algorithm
P constructs P as the concatenation of ballot-box computers, one for each computation node of C. If j is
such a computational node, the corresponding public ballot-box mediator is denoted by Pj , and the variable
wj predicts the value of the identifier upper-bound at the start of the execution of Pj .

Algorithm P

Inputs: C = ((V,E), ord, a, Func) —a Boolean Circuit with b output nodes and c computation nodes;
x = x1, . . . , xa —an address such that each xi has length 5.

(1) Set wa+1 = ub0.
30Note: because ord is a natural order for V , when it comes time to label node i’s outgoing edges, all of node i’s incoming

edges have already been labeled.

38

(2) For i = 1 to a, label the outgoing edge of the ith source with xi.
(3) For i = a+ 1 to a+ c, do:

if Func(i) = COIN ,
then set Pi = COIN ; label i’s outgoing edge with σi = 15 + wi, . . . , 19 + wi; and set wi+1 = wi + 19;
if Func(i) = NOT and σ labels i’s incoming edge
then set Pi = NOT σ; label i’s outgoing edge with σi = 61 + wi, . . . , 65 + wi; and set wi+1 = wi + 65;
if Func(i) = AND and (σ; τ) label i’s incoming edges,
then set Pi = ANDσ,τ ; label i’s outgoing edge with σi = 451 + wi, . . . , 455 + wi; set wi+1 = wi + 455;
if Func(i) = DUPLICATE and σ labels i’s incoming edge,
then set Pi = CLONEσ; label i’s outgoing edges with σi = 61+wi, . . . , 65+wi and τi = 66+wi, . . . , 70+

wi; and set wi+1 = wi + 70;
(4) For i = 1 to b: if α labels the incoming edge of sink a+ c+ i, then set yi = α− w0;
(5) Set PC = Pa+1 ◦ · · · ◦ Pa+c.

Outputs: PC —a public ballot-box mediator; and
y = y1, . . . , yb —an address (PC ’s output address).

Lemma 8. If P(C, x) = (PC , y), where C = ((V,E), ord, a, Func) is a Boolean circuit and x = x1, . . . , xa an
address such that each xi has length 5, then public ballot-box mediator PC is a ballot-box computer for FC
with input address x and output address y.

Proof. The correctness of Pc follows from the following facts. First, observe that if ub0 is the identifier upper
bound of the initial memory gm0, proper for FC and x = x1 . . . xa, then for each computation node j, wj is
the initial identifier upper-bound at the start of execution of Pj . Indeed, wa+1 = ub0, and wj+1 is generated
off-setting wj by exactly the number of new identifiers created by any execution of its corresponding computer
Pj . (Recall that NOT always increases ub by 65, AND by 455, CLONE by 70, and COIN by 19.) Second,
P labels each edge with 5 distinct integers. Third, due to the correctness of NOT , AND, CLONE , and
COIN and the order in which PC calls for their execution: (1) at the start of Pj ’s execution, the label already
assigned by P to each incoming edge of computation node j is guaranteed to be an envelope encoding of a
bit; (2) upon termination of Pj , the label already assigned by P to each outgoing edge of j also is an envelope
encoding of a bit; and finally (3) the “underlying” output bit is that (bits are those) of Func(j) evaluated
on the “underlying” input bit(s). Thus, an execution of PC labels each edge in E with an envelope encoding
of a bit so that the underlying bits of these encodings label (V,E) exactly as does a computation of FC .

Privacy is easily established by noting that the following probabilistic algorithm SIM−PC is the required
simulator for PC .

SIM−PC
Input: ub —an integer.
Set ub0 = ub and, for each i = a+ 1 to a+ c, define ubi as in P.
(1) For i = a+ 1 to a+ c, run SIM−Pi(ubi).
Clean Operation trivially holds for PC as it holds for each individual ballot-box computer Pj . Q.E.D.

C Perfectly Implementing Any Normal-Form Mechanism with Private
Outcomes

Our results generalize to normal-form mechanismsM that, given a profile of messages (m1, . . . ,mn), produce,
not only a public outcome y, but also a private outcome yi for each player i.

Intuitively, perfect implementations of such mechanisms can be obtained by a slight modification of our
construction. First, consider the “public version” M∗ of M, that maps (m1, . . . ,mn) to a public outcome

39

with n + 1 components: namely, (y, y1, . . . , yn), and its perfect ballot-box implementation B constructed
in Theorem 2. By Step 5, B produces n + 1 sequences of envelopes, whose contents respectively encode
y, y1, . . . , yn in a private and correct manner. Thus, to perfectly implement the original M, one only needs
to modify Step 5 of B, so that (1) the public mediator opens only the envelopes of the first sequence (thus
making y publicly computable), and (2) it lets player i “privately read” the envelopes encoding yi, thus
enabling him to privately learn yi.

Let us now detail the changes to our definitions and construction necessary to formalize this intuition.

1. Definition 10 of a Normal-Form Mechanism is modified as follows:

• The outcome set Y is now the Cartesian product of n+ 1 subsets of Σ∗, Y = Y0 × Y1 · · ·Yn.

Accordingly, a standard normal-form mechanism is a mechanism M = (N,M, Y, g) such that M1 =
· · · = Mn = Y0 = · · · = Yn = {0, 1}L for some integer L.

2. The following class of ballot-box actions to be performed by a public mediator is added:

(SimHandOut, L1, . . . , Ln) —where ∀i ∈ N, Li ⊂ IB and ∀i 6= j, Li ∩ Lj = ∅.
“For each i ∈ N , simultaneously and privately hand out envelopes Li to player i.”
B := B \ {BL1 ∪ · · · ∪ BLn}; H1 := H1 ◦ contB(L1), . . . ,Hn := Hn ◦ contB(Ln); and H0 :=
H0 ◦ (SimHandOut), L1, . . . , Ln, ub).

3. The only change required to the notion of perfect implementation is adding the private inputs yC to the
set of arguments of the simulator SIM in Property 5 of Definition 12 .

4. The mechanism and the proof of Theorem 2 are modified as follows. In Step 5 of the mechanism, in
addition to publicly opening the envelopes containing public output, the public mediator also performs
(SimHandOut, L1, . . . , Ln) action, that is, privately distributes to each player i a sequence of envelopes
Li, who then privately reads the contents of Li to obtain his own private output yi. Note that the
only addition to the public history H0 is the record of (SimHandOut) action which is fixed and can
be trivially simulated by SIM . The profile of private histories HC now also contains the contents of
envelopes Li for each i ∈ C. But since these contents are guaranteed to be the S5 encoding of yi by
correctness of Pg, they also can be trivially simulated by SIM .

References

Aumann, R. J. and Hart, S.: 2003, Long cheap talk, Econometrica 71(6), 1619–1660.

Bárány, I.: 1992, Fair distribution protocols or how the players replace Fortune, Mathematics of Operations
Research 17, 329–340.

Barrington, D. A.: 1986, Bounded-width polynomial-size branching programs recognize exactly those lan-
guages in NC1, Proceedings of the 18th Symposium on Theory of Computing, ACM, pp. 1–5.

Ben-Or, M., Goldwasser, S. and Wigderson, A.: 1988, Completeness theorems for fault-tolerant distributed
computing, Proceedings of the 20th Symposium on Theory of Computing, ACM, pp. 1–10.

Ben-Porath, E.: 1998, Correlation without mediation: Expanding the set of equilibrium outcomes by cheap
pre-play procedures, Journal of Economic Theory 80, 108–122.

Ben-Porath, E.: 2003, Cheap talk in games with incomplete information, Journal of Economic Theory
108(1), 45–71.

Bolton, P. and Dewatripont, M.: 2005, Contract Theory, MIT Press, Cambridge, Massachusetts.

40

Brandt, F. and Sandholm, T.: 2004, (Im)possibility of unconditionally privacy-preserving auctions, Pro-
ceedings of the 3rd International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), IEEE, pp. 810–817.

Chaum, D., Crépeau, C. and Damg̊ard, I.: 1988, Multi-party unconditionally secure protocols, Proceedings
of the 20th Symposium on Theory of Computing, ACM, pp. 11–19.

Agrawal, D., Archambeault, B., Rao, J.R., and Rohatgi,P.: 2002, The EM side-channel(s), Proceedings of the
20th Symposium on Theory of Computing, Cryptographic Hardware and Embedded Systems Conference
(CHES ’02).

Dodis, Y., Halevi, S. and Rabin, T.: 2000, A cryptographic solution to a game theoretic problem, Advances
in Cryptology — CRYPTO 2000, LNCS, Vol. 1880, Springer-Verlag, pp. 112–130.

Forges, F. M.: 1986, An approach to communication equilibria, Econometrica 54(6), 1375–85.

Forges, F. M.: 1990, Universal mechanisms, Econometrica 58, 1341–1364.

Gerardi, D.: 2004, Unmediated communication in games with complete and incomplete information, Journal
of Economic Theory 114(1), 104–131.

Gerardi, D. and Myerson, R. B.: 2007, Sequential equilibria in bayesian games with communication, Games
and Economic Behavior 60(1), 104–134.

Goldreich, O., Micali, S. and Wigderson, A.: 1987, How to play any mental game, Proceedings of the 19th
Symposium on Theory of Computing, ACM, pp. 218–229.

Goldwasser, S., Micali, S. and Rackoff, C.: 1985, The knowledge complexity of interactive proof-systems,
Proceedings of the 17th Symposium on Theory of Computing, ACM, pp. 291–304. Final version in SIAM
Journal on Computing, 1989, 186–208.

Hopper, N., Langford, J. and von Ahn, L. a.: 2002, Provably secure steganography, Proceedings of the Crypto
2006.

Izmalkov, S., Lepinski, M. and Micali, S.: 2005, Rational secure computation and ideal mechanism design,
Proceedings of the 46th Symposium on Foundations of Computer Science, IEEE, pp. 585–594.

Kocher, P., Jaffe, J., and June, B.: 1989, Differential Power Analysis, Advances in Cryptology —CRYPTO
99, vol. 1666 of Lecture Notes in Computer Science, Springer Verlag, pp. 388—397.

Krishna, R. V.: 2006, Communication in games of incomplete information: Two players, Journal of Economic
Theory . forthcoming.

Krishna, V.: 2002, Auction Theory, Academic Press, San Diego, California.

Lepinski, M., Micali, S., Peikert, C. and Shelat, A.: 2004, Completely fair sfe and coalition-safe cheap talk,
Proceedings of the 23rd annual Symposium on Principles of distributed computing, ACM, pp. 1–10.

Myerson, R. B.: 1982, Optimal coordination mechanisms in generalized principal-agent problems, Journal of
Mathematical Economics 10(1), 67–81.

Naor, M., Pinkas, B. and Sumner, R.: 1999, Privacy preserving auctions and mechanism design, Proceedings
of the 1st conference on Electronic Commerce, ACM.

Osborne, M. J. and Rubinstein, A.: 1997, Game Theory, MIT Press, Cambridge, Massachusetts.

41

Rothkopf, M. H., Teisberg, T. J. and Kahn, E. P.: 1990, Why are Vickrey auctions rare?, Journal of Political
Economy 98, 94–109.

Sjöström, T. and Maskin, E.: 2002, Handbook of Social Choice and Welfare, Vol. 1, North-Holland, chapter
Implementation Theory, pp. 237–288.

Urbano, A. and Vila, J. E.: 2002, Computational complexity and communication: Coordination in two-player
games, Econometrica 70(5), 1893–1927.

Wilson, R.: 1987, Game-theoretic analyses of trading processes, in T. F. Bewley (ed.), Advances in Economic
Theory, Fifth World Congress, Cambridge University Press, Cambridge, UK, pp. 33–70.

Yao, A.: 1986, Protocol for secure two-party computation, never published. The result is presented in ?.

42

