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Abstract

Motivated by emerging applications in workforce management, we consider a class of revenue man-
agement problems in systems with reusable resources. The corresponding applications are modeled
using the well-known loss network systems.

We use an extremely simple linear program (LP) that provides an upper bound on the best achievable
expected long-run revenue rate. The optimal solution of the LP is used to devise a conceptually simple
control policy that we call the class selection policy (CSP). Moreover, the LP is used to analyze the
performance of the CSP policy. We obtain the �rst control policy with uniform performance guarantees.
In particular, for the model with single resource and uniform resource requirements, the CSP policy
is guaranteed to have expected long-run revenue rate that is at least half of the best achievable. More
generally, as the ratio between the capacity of the system and the maximum resource requirement grows
to in�nity, the CSP policy is asymptotically optimal, regardless of any other parameter of the problem.
The asymptotic performance analysis that we obtain is more general than existing results in several
important dimensions. It is based on several novel ideas that we believe will be useful in other settings.
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1 Introduction

In this paper, we consider a class of revenue management problems that arise in systems with reusable

resources. The paper is motivated by several application domains, and, in particular, by several emerging

applications in workforce management. In many industries, a signi�cant part of the workforce is hired ad-

hoc to perform a speci�c project. Thus, professional manpower services is a growing market that brings

up new challenges in workforce revenue management. Similar problems arise in large corporations, such

as IBM that need to manage their internal workforce in the face of dynamic and evolving tasks. The major

issue in all of these scenarios is how to manage capacitated resources over time in dynamic environments

with many uncertainties, speci�cally, how to choose the most pro�table customers/projects to maximize the

resulting revenue. Other notable applications are hotel room booking and car rentals.

Typically, these systems consist of several capacitated resources that are used to serve multiple classes of

customers, each of which has different characteristics, such as arrival rate, price, resource and service time

requirements. The goal is to devise a policy that selects pro�table customers and maximizes the resulting

revenue. There are three key characteristics of these systems. The �rst characteristic is the reusability of

resources. That is, resources that are allocated to serve a certain customer/project will become available to

serve other customers after the service/project is over. The second characteristic is that the decision whether

to serve customers should be made upon their arrival. In particular, if a customer is not served upon arrival,

either because the system decides she/he is not pro�table enough, or because the available capacity in the

system is not suf�cient to satisfy her/him, she/he is assumed to be lost and leaves the system. (In many of

the corresponding applications customers are not willing to wait or only willing to wait a very short time

relative to the service times.) The third characteristic is that the arrival process of customers, as well as their

service time requirements, are stochastic. This generates stochastic optimization models that are usually

computationally challenging.

In this paper, we model the corresponding revenue management problems as loss network models. These

are well-known models that have been introduced over four decades ago, and have been studied extensively

in the context of communication networks (see, for example, the survey paper by Kelly ([13])). The classical

loss network model consists of a system with several capacitated resources that faces multiple classes of

customers. Customers of different classes arrive according to mutually independent homogenous Poisson

processes, each of which requires a certain combination of resources for a time that is a-priori random

(with �nite mean), and is willing to pay a certain price per unit of service time. Customers must be served

upon their arrival, or otherwise, they leave the system. If a customer is served, the required combination

1



of resources must be engaged for the (random) duration of the service time, and can not be used by other

customers until the service is over. The system may deny service from customers in order to keep the

capacity free for more pro�table future customers. A customer can be served only if at the moment of arrival

the available capacity in the system is suf�cient to satisfy her/his speci�c requirements. The goal is to �nd

an admission policy that maximizes the long-run revenue rate. Like many stochastic optimization models,

one can formulate the problem using a dynamic programming approach. However, even in special cases

(e.g., with exponentially distributed service times), the resulting dynamic program seems computationally

intractable as the corresponding state-space grows very fast. (This is known as the `curse of dimensionality'.)

Thus, �nding provably good policies is a very challenging task.

We �rst focus on revenue management model with single reusable resource, where there is only a single

resource in the system that is used to serve multiple classes of customers as described above. (In the liter-

ature on loss network models this is sometimes called the stochastic knapsack problem.) We use a simple

knapsack-type linear program (LP) that provides an upper bound on the expected long-run revenue rate.

The LP can be easily solved, and the optimal solution is used to construct a conceptually simple admission

control policy for the original model; the policy is called the class selection policy (CSP). The LP optimal

solution guides the policy to select the more pro�table classes. The CSP policy admits all the customers of

the selected (pro�table) classes as long as capacity permits, and always rejects customers from other classes.

Moreover, the LP is used to analyze the performance of the CSP policy. We use the fact that the CSP

policy induces a stochastic process that can be reduced to a classical loss network model. Facilitating the

results from [21, 11, 10, 4, 23], which characterize the stationary distributions of the corresponding loss

network models, we are able to develop explicit expressions for the resulting blocking probabilities induced

by the CSP policy. That is, for each one of the pro�table classes, we derive an exact expression for the

stationary probability that a customer arrives at some random time, and the available capacity in the system

is not suf�cient to satisfy her/his requirement. We then bound the customer blocking probabilities and

analyze their asymptotic behavior as the capacity of the system grows large. In particular, the bounds on the

blocking probabilities are used to obtain uniform and asymptotic performance guarantees.

For the case, where all the classes requirements are identical, we obtain an explicit lower bound on the

ratio between the expected long-run revenue rate of the CSP policy and the best achievable rate. The bound

is a function only of the capacity of the system, regardless of the other parameters, such as arrival rates,

number of classes, prices and service time distributions. It is shown that this bound is at least 0.5, uniformly

for all capacity values, and that it approaches 1 as the capacity of the system grows to in�nity. That is, the

CSP policy is guaranteed to have expected long-run revenue rate that is at least half of the best achievable,
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and it is asymptotically optimal as the capacity of the system grows large. To the best of our knowledge,

this is the �rst proof of uniform performance guarantees that hold for all capacity values.

These results are then extended to the more general case with arbitrary, possibly non-identical, resource

requirements. In this case, the underlying combinatorics of the blocking states is more complex, and hence,

it is much harder to bound the corresponding blocking probabilities. In particular, the lower bounds on the

ratio between the long run average revenue rate of the CSP policy and the best achievable rate depend only

on the ratio between the capacity of the system and the maximum resource requirement of a class raised

to the power of seven. Moreover, if the ratio between the capacity and the maximum resource requirement

raised to the power of seven grows to in�nity, the CSP policy is asymptotically optimal, regardless of the

other parameters of the problem. For each �xed value of maximum resource requirement, it is possible to

derive uniform performance guarantees that depend only on the system capacity value.

The CSP policy and the asymptotic performance analysis can be extended to the revenue management

model with multiple reusable resources as long as the number of resources is bounded. In this case, the

resulting linear program is a packing-type LP that is again very easy to solve.

Finally, we incorporate static pricing to the single resource model. In this model we �rst determine the

respective prices that each class is charged. The respective arrival rate of each class depends on the price

it is charged. After the prices are set, we wish to �nd the best admission control policy that maximizes

the expected long-run revenue rate. The CSP policy and its performance analysis can be extended to this

more general model. However, the policy is derived based on a non-linear program (NLP). We show how to

simplify the resulting NLP, and discuss several scenarios in which it can be solved ef�ciently.

As we already mentioned loss networks have been studied extensively in the context of communication

networks, and there is a huge body of literature. The study of loss networks has been focused on two major

issues, the study of heuristics and sensitivity analysis.

Since it is apparent that computing optimal policies is likely to be intractable, researchers have proposed

different heuristics, studied their properties and analyzed their performance (see, for example, [17, 19, 14,

13, 8, 18, 7]). The knapsack-type LP used in this paper has been discussed by several researchers (see for

example, [14, 8]). In fact variants of the CSP policy have been discussed by Key [14] and Kelly [13], who

proposed the randomized thinning policy. Moreover, Key [14] has shown that the variant of the CSP policy

for the single resource case is asymptotically optimal, but in a very speci�c heavy traf�c regime. (We discuss

this further in the next paragraph.) Iyengar and Sigman [9] have also used an LP identical to the one used in

this paper to devise a heuristic for the same model. However, the policy they have proposed is very different

than ours. Speci�cally, they have used the LP to generate a `desirable' target performance mode, and, then,
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exploit exponential penalty functions to maintain the system as close as possible to the target mode. Another

policy that has been studied extensively is the trunk reservation policy. According to this policy, each class

of customers is associated with a trunk reservation level, and a customer of that class is admitted to the

system only if upon arrival the available capacity in the system exceeds the corresponding trunk reservation

level. Key [14] has shown that for the single resource model this policy is asymptotically optimal in the

corresponding heavy traf�c regime. (It is interesting to note that the CSP policy can be viewed as a special

trunk reservation policy, where the trunk reservation of a class is either 0 or the capacity of the system.)

Other mathematical-programming-based approximation have been used to study models similar to the one

discussed in this paper (see, for example, Adelman [2]).

However, the performance analysis of the policies described above and their asymptotic optimality are

obtained only in very speci�c regimes, usually called heavy traf�c regimes. Speci�cally, the capacity and

the arrival rates are scaled simultaneously at the same (linear) rate, while all the other parameters of the

problem, such as service time distributions, resource requirements, number of classes and price rates are

kept �xed. In some scenarios one also needs to assume that the service times are exponentially distributed.

Moreover, in models with multiple resources it was usually required to assume a very speci�c structure of

the different class resource requirements. The performance of the corresponding policies is then analyzed

in the resulting limiting regimes. While these might be reasonable assumptions in the context of communi-

cation networks, they are less likely to hold in the application domains that motivate this paper. In contrast,

our analysis provides uniform performance guarantees that hold for any capacity value. Our asymptotic

performance analysis holds under very general assumptions. Speci�cally, the asymptotic analysis holds for

general service time distributions, and only requires that the ratio between the capacity of the system and

the maximum resource requirement (raised to the power of seven) grows to in�nity, allowing all the other

parameters of the problem to change arbitrarily. In addition, we can easily characterize the corresponding

rate of convergence. Thus, as a by-product of our work, we obtain generalizations for some of the results in

[14, 13].

The second major issue that has been studied is the sensitivity of the corresponding loss system to

changes in various parameters, especially the capacity and the arrival rates (see, for example, [20]). The

main effort has been to study changes in the resulting blocking probabilities. (By blocking we refer to the

event that a customer arrives at some random time, and can not be served upon arrival because the available

capacity in the system is not suf�cient.) Since computing blocking probabilities is known to be #P -Hard

[16], there have been efforts to propose methods to approximately compute blocking probabilities and bound

them (see, for example, [6, 21, 10, 4, 23, 12, 13, 25]). We note that there have been several approaches that
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use linear and non-linear programs to bound blocking probabilities (see, for example, [15, 3]). One of

the key features in our performance analysis is the bounds that we develop on the corresponding blocking

probabilities induced by the CSP policy. The techniques that we use are signi�cantly different than the

ones used in the existing literature, and we believe that they will have applications in other settings. It is

interesting to note that our asymptotic analysis in the multiple resources case captures the speci�c regime

analyzed by Kelly in [13], where he analyzed the blocking probabilities in loss network models with multiple

resources.

The rest of the paper is organized as follows. In Section 2, we provide the mathematical formulation

of the revenue management model with a single reusable resource. In Section 3, we develop the LP and

describe the CSP policy. In Section 4, we discuss the performance analysis of the CSP policy. Finally, in

Section 5, we discuss the extensions to multiple resources and static pricing.

2 Model Formulation

In this section, we provide a mathematical formulation of the revenue management model with a single

reusable resource discussed in this paper. Consider a system with a single resource pool of integer capacity

C < ∞ that is facing demands from M different classes of customers. The customers of each class i =

1, . . . , M , arrive according to an independent Poisson process with rate λi. Each class-i customer requests

Ai ∈ Z+ units of the resource for a certain period of time that is a-priori random and has �nite mean µi.

During the time a class-i customer is served, the requested Ai units can not be used by other customers; after

the service is over, the units become available again to serve other customers. (While a customer is served

we only know the conditional distribution of the residual service time of this customers.) In particular, we

allow generally distributed service times, and assume that service times are independent of the customer

arrival process and among different customers. If served, a class-i customer is willing to pay ri dollars per

time unit of service. A customer can be served only if the available capacity in the system at the moment

of her/his arrival is suf�cient to satisfy its requirement. That is, a class-i customer can be served only if

there are currently at least Ai units available in the system. However, customers can be rejected even if

the available capacity is suf�cient to serve them. (Rejecting a customer now possibly enables serving more

pro�table customers in the future.) The assumption is that customers that are not satis�ed upon arrival,

either due lack of suf�cient capacity or because they are rejected, are lost and leave the system immediately.

The goal is to �nd an admission policy that maximizes the expected long-run revenue rate.

For each policy π, let Rπ(T ) be the revenue achieved by policy π over the interval [0, T ]. Next de�ne
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R(π), the expected long-run revenue rate of a policy π as

R(π) =: lim
T→∞

Eπ[Rπ(T )]
T

, (1)

where the expectation Eπ is taken with respect to probability measure induced by policy π.

At any point of time t, the state of the system is speci�ed by the class of each customer currently being

served, as well as the time that elapsed from the moment of her/his arrival. Without loss of generality, we

restrict attention to state-dependent policies. That is, policies that are represented as measurable functions

from the state-space de�ned above to actions. (The actions are whether to accept a class-i customer in the

current state, for each i = 1, . . . , N .) It is straightforward to verify that for each feasible policy, there

exists a state-dependent policy that achieves at least the same expected long-run average revenue. Note

that each state-dependent policy induces a Markov process over the state-space. Moreover, using analogous

arguments to those used in Theorems 4, 5 and 6 of [21], one can show that conditions in the statement of

Theorem 1 in [21] hold and, therefore, the Markov process homogeneous in time that is induced by the

state dependent policy has a unique stationary distribution which is ergodic. Thus, for each state-dependent

policy π, the limit in (1) above is well-de�ned and the expectation in the numerator of (1) can be omitted.

As in most stochastic control optimization models, dynamic programming framework is the most com-

mon way to formulate the problem. However, it is straightforward to see that the corresponding state-space

of the underlying dynamics program is very large even for simple special cases. In particular, it seems com-

putationally intractable to solve the dynamic program and compute an optimal policy. For example, consider

the special case with service times that follow exponential distributions. The state in this case is speci�ed

merely by the number of customers of each class currently being served. However, the corresponding state-

space grows exponentially fast in the capacity C, and becomes computationally intractable.

3 LP-Based Approach

In this section, we construct a simple linear program (LP) that provides an upper bound on the achievable

long-run average revenue rate. Our LP is identical to the one used by Key [14] and Iyengar and Sigman [9],

and it is also similar to the one used by Adelman [2] in the queueing networks framework with unit resource

requirements. We shall show how to use the optimal solution of the LP to construct a simple admission

control policy that is called class selection policy (CSP). Moreover, the LP will be used to analyze the

performance of the proposed CSP policy. In particular, we shall show that the expected long-run revenue

rate of the CSP policy is guaranteed to be near-optimal for any capacity value C (above a certain threshold)
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and that the policy is asymptotically optimal. More speci�cally, we shall show that

R(CSP ) ≥ β(C/A7)R(OPT ), (2)

where OPT denotes the optimal control policy, A denotes the maximum resource requirement (i.e., A =

maxi=1,...,M Ai) and β(C/A7) is a positive scalar for each value of C/A7. (If no optimal policy exists, we

think about R(OPT ) as the corresponding supreme of the achievable expected revenue rate.) Furthermore,

if the resource requirements of all classes are identical, i.e., Ai = 1 for each i = 1, . . . ,M , then β(C) ≥ 1/2

for all C ≥ 1. Moreover, as C grows larger the CSP policy becomes asymptotically optimal. That is, β(C)

approaches 1 as C grows to in�nity, and this occurs irrespective of other model parameters, such as the

number of classes, arrival rates, service durations and price rates. For the model with non-uniform resource

requirements, we establish a similar results. The CSP policy is asymptotically optimal as C/A7 grows large.

That is, we show that β(C/A7) approaches 1 as C/A7 grows to in�nity. In addition, for each �xed value

A, it is possible to compute a threshold C̄, such that for each capacity values C ≥ C̄, the CSP policy is

guaranteed to have expected long-run revenue rate at least half of the best achievable.

3.1 An LP

We have already discussed in Section 2 that any state-dependent policy induces a Markov process on the

state-space of the system with a unique stationary distribution that is ergodic. In particular, for each class

i and a given state-dependent policy π, there exists a stationary probability α
(π)
i for accepting a class-i

customer, which is equal to the long-run proportion of accepted customers of class i while running the policy

π. Thus, any state-dependent policy π is associated with the stationary probabilities α
(π)
1 , α

(π)
2 , . . . , α

(π)
M .

Furthermore, by applying Little's law, we can use the stationary probability α
(π)
i to express the expected

number of class-i customers being served in the system under state-dependent policy π as λiµiα
(π)
i =

ρiα
(π)
i . (Note that ρi = λiµi is the expected number of class-i customers being served in the system with

in�nite capacity and no rejections; in the context of communication networks it is usually called the traf�c

intensity.) It follows that the expected long-run revenue rate of policy π can be expressed as

M∑

i=1

riα
(π)
i λiµi =

M∑

i=1

riα
(π)
i ρi.

Similarly, the overall expected long-run number of resource units being engaged to serve customers can be

expressed as
M∑

i=1

α
(π)
i ρiAi.
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The physical constrains of the system discussed in this paper imply that, for any feasible policy, it is not

possible to �nd more than C units being used to serve customers. We conclude that
∑M

i=1 α
(π)
i ρiAi ≤ C

for any feasible state-dependent policy π. This suggests the following LP:

max
α1,...,αM

M∑

i=1

riαiρi (3)

s.t.
M∑

i=1

αiρiAi ≤ C (4)

0 ≤ αi ≤ 1, ∀1 ≤ i ≤ M. (5)

Note that, for each feasible state-dependent policy π, the corresponding vector

α(Π) = (α(π)
1 , α

(π)
2 , . . . , α

(π)
M ) is a feasible solution for the LP de�ned by (3)-(5) above, and has objective

value that is equal to the expected long-run revenue rate of policy π. In fact, the LP enforces the capacity

constraint of the system only in expectation, while in the original problem this constraint has to hold for

every sample path. It follows that the LP de�ned by (3)-(5) relaxes the original problem and provides an

upper bound on the optimal expected long-run revenue rate. Moreover, the LP de�ned above is a knapsack

LP. Thus, it can be solved optimally by applying the following greedy rule. Without loss of generality,

assume that classes are renumbered such that r1/A1 ≥ r2/A2 ≥ · · · ≥ rM/AM . Then, for each i =

1, . . . , M , we set αi = 1 as long as constraint (4) is satis�ed. In particular, the optimal solution has the

following structure: α1 = α2 = · · · = αM ′−1 = 1, for some 1 ≤ M ′ ≤ M ; for M ′ the corresponding

value of αM ′ is possibly a fraction, i.e., 0 < αM ′ ≤ 1; and, for i = M ′ + 1, . . . , M , we have αi = 0.

Next we shall use the optimal solution of the knapsack LP de�ned above to construct an extremely simple

admission policy, and show that its expected long-run revenue rate is guaranteed to be near-optimal in the

sense de�ned in (2) above.

3.2 The Class Selection Policy

Let α∗ = (α∗1, . . . , α
∗
M ) be the optimal solution of the knapsack LP de�ned by (3)-(5) above. We propose

the following policy that we call class selection policy:

Consider an arrival of a class-i customer (i = 1, . . . ,M ):

• For each i = 1, . . . ,M ′ − 1, accept the customer as long as the available capacity in the system upon

arrival is suf�cient (i.e., greater than Ai units);

• If i = M ′, accept with probability 0 < αM ′ ≤ 1 and as long as there available capacity in the system

upon arrival is suf�cient (i.e., greater than AM ′ units);
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• For each i = M ′ + 1, . . . , M , reject.

The CSP policy has a very simple structure. It always admits customers from the classes for which the

corresponding value α∗i in the optimal LP solution equals to 1, as long as capacity permits; it never admits

customers from classes for which the corresponding value α∗i equals to 0; it �ips a coin for the possibly one

class with fractional value α∗M ′ . The CSP policy is conceptually very intuitive in that it splits the classes

into pro�table and non-pro�table that should be ignored.

4 Performance Analysis

In this section, we analyze the performance of the CSP policy. The special properties of the CSP policy

induce a well-structured stochastic process. Each class i = 1, . . . , M generates an independent Poisson

arrival stream with respective rate α∗i λi. Thus, each class i with α∗i = 1 generates the original process,

each class i with α∗i = 0 can be ignored, and possibly one class with fractional 0 < α∗M ′ < 1 generates

a thinned Poisson process. Moreover, the induced stochastic process can be described as a classical loss

network model with a single resource. There are C servers that are used to serve M ′ independent Poisson

streams of requests. The requests of stream (class) i arrive at rate λi, and each requires Ai servers for some

random service time with mean µi; whenever a request arrives and the number of idle servers is not suf�cient

to serve it, the request is lost and leaves the system. It can be easily veri�ed that the loss network model

described above is identical to the stochastic process induced by the CSP policy.

One of the natural questions studied in the context of loss networks is what is the stationary blocking

probability of a given request. That is, what is the stationary probability that a certain request arrives at

some random time and the number of idle servers in the system is not suf�cient to serve it. The latter

question is directly related to the performance analysis of the CSP policy. Focus on the classes with positive

α∗i , say there are M ′ of them. Without loss of generality, assume that there is no fractional variable in

the optimal solution α∗, i.e., for each i = 1, . . . ,M ′, α∗i = 1. (If α∗M ′ is fractional, we think of class

M ′ as having an arrival rate λ′M ′ = α∗M ′λi and then eliminate the fractional variable from α∗.) For each

i = 1, . . . , M ′, let Pi be the stationary probability of rejecting a class-i customer under the CSP policy. It

is straightforward to verify that probability Pi is equal to the stationary blocking probability of a stream-i

request in the corresponding loss network model described above. Speci�cally, let Xi be the the stationary

(random) number of class-i (stream-i) customers being served in the system at some random time under the
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CSP policy. Then by the PASTA property (see [24]), it follows that, for each i = 1, . . . , M ′:

Pi = P

(
M ′∑

k=1

XkAk > C −Ai

)
. (6)

Moreover, since the corresponding stochastic process is ergodic, it follows that the long-run proportion of

class-i customers being served equals to 1−Pi. Thus, the expected long-run revenue rate of the CSP policy

can be expressed as

M ′∑

i=1

riα
∗
i ρi(1− Pi) =

M ′∑

i=1

riρi(1− Pi). (7)

However,
∑M ′

i=1 riα
∗
i ρi is the optimal value of the LP, which is an upper bound on the achievable expected

long-run revenue rate for any feasible policy. Thus, a key aspect of the performance analysis of the CSP

policy is lower bounding probabilities 1 − Pi, or equivalently, upper bounding the probabilities Pi. In

particular, (7) above implies that any uniform constant bound on these probabilities can be directly translated

to a performance guarantee of the CSP policy. Speci�cally, if 1−Pi ≥ β for each i = 1, . . . , M ′, it follows

that

R(CSP ) =
M ′∑

i=1

riα
∗
i ρi(1− Pi) ≥

M ′∑

i=1

riα
∗
i ρiβ ≥ βR(OPT ).

In the rest of the analysis, we shall establish upper bounds on the corresponding blocking probabilities

P1, . . . , PM ′ , and analyze their asymptotic behavior.

Recall that the CSP policy induces a stochastic process that can be reduced to a classical loss network

with a single resource. A central tool in our analysis is the result of Burman et. al. [4], who characterized the

stationary probabilities for general loss network models (see Theorem 2 in [4]). In fact, the result of Burman

et. al. [4] implies that the stationary probabilities of the corresponding loss network model can be expressed

through the counterpart system with no capacity constrains. That is, consider an in�nite capacity system

that faces Poisson streams of requests/customers of class 1, . . . , M ′, with respective rates λ1, . . . , λM ′ and

service time distributions with respective means µ1, . . . , µM ′ , and accept all the requests/customers. In

particular, for each i = 1, . . . , M ′, let Yi be the stationary number of class-i customers being served in the

in�nite capacity system described above. Then, for each n = 0, . . . , C, we have

P

(
M ′∑

k=1

AkXk = n

)
=
P

(∑M ′
k=1 AkYk = n

)

P
(∑M ′

k=1 AkYk ≤ C
) . (8)

Equation (8) is very useful, since the variables Y1, . . . , YM ′ are independent of each other, and for each

i = 1, . . . , M ′, the random variable Yi follows a Poisson distribution with parameter ρi. Thus, in conjunction
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with (6) above, we get that, for each i = 1, . . . , M ′

Pi =

∑C
n=C−Ai

∑
y∈Y(n)

ρ
y1
1

y1! . . .
ρ

yM′
M′

yM′ !
∑C

n=0

∑
y∈Y(n)

ρ
y1
1

y1! . . .
ρ

yM′
M′

yM′ !

, (9)

where we de�ne Y(n) = {y ∈ ZM ′
+ :

∑M ′
j=1 Ajyj = n}.

Next we use the explicit expression in (9) and the LP Constraint (4) to uniformly bound customer

rejection probabilities, and obtain uniform and asymptotic performance guarantees of the CSP policy.

4.1 Identical Resource Requirements

In this section, we discuss the special case, in which the resource requirements of all classes are identical;

without loss of generality, Ai = 1, for each i = 1, . . . , M . In this special case, in view of (6), the rejection

probabilities are identical for all classes 1, . . . ,M ′. Speci�cally, Pi = P(
∑M ′

k=1 Xk = C), where Xk, as

before, denotes the stationary (random) number of class-k customers being served in the system under the

CSP policy.

Lemma 4.1 Consider the revenue management model with a single reusable resource and identical re-

source requirements, i.e., A1 = A2 = · · · = AM = 1. Without loss of generality, assume that there is no

fractional variable in the solution α∗, and that for each class i = 1, . . . ,M ′ (M ′ ≤ M ), we have α∗i = 1.

Then, for each i = 1, . . . ,M ′, the blocking probabilities Pi has the following properties:

(i) Pi ≤ 0.5 for all capacity values C ≥ 1.

(ii) The probability Pi diminishes to 0 as C grows to in�nity, regardless of other parameters of the problem

such as the price rates, service time distributions and number of classes.

Proof: Recall that, in view of discussion above, probabilities Pis are the same and equal to blocking

probabilities in the corresponding loss network model described above. That is, Pi = P(
∑M ′

k=1 Xk = C).

We use the following identity

∑

y∈Y(n)

ρy1
1

y1!
. . .

ρ
yM′
M ′

yM ′ !
=

(ρ1 + · · ·+ ρM ′)n

n!
,

that holds for each n = 0, . . . , C. In conjunction with (9) above we obtain

Pi =
(ρ1+···+ρM′ )C

C!∑C
n=0

(ρ1+···+ρM′ )n

n!

.
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Consider the function f(z) = zC/C!PC
k=0 zk/k!

. By looking on the derivative it is straightforward to check that

f(z) is increasing in z on (0, C]. This and Constraint (4) imply that

Pi ≤
CC

C!∑C
n=0

Cn

n!

. (10)

However, from the properties of the Poisson distribution, it follows that function g(C) , e−C CC

C!PC
n=0 e−C Cn

n!

is decreasing in C. One way to show this is by replacing x! using identity 6.1.38 from [1] �rst, and, then,

showing that function log(g(C)) is decreasing since its derivative with respect to C is negative for all C ≥ 1.

More speci�cally, for any x > 0,

x! =
√

2πxx+1/2e−x+ θ
12x , (11)

for some θ ∈ (0, 1). Then, it is not hard to show that, for all C ≥ 1,

d

dC
log(g(C)) ≤ − 1

2C
+

1
12C2

< 0.

Thus, in view of the previous observation, the maximum value of g(C) is g(1) = 1/2. Moreover, expression
∑C

n=0
Cn

n! e−C approaches 0 as C grows to in�nity (see 6.5.34 of [1]). Using Stirling approximation, we can

characterize the rate of convergence. Speci�cally, we know that

CC

C!∑C
k=0

Ck

k!

∼
√

2
π

1√
C

for large values of C. This concludes the proof of the lemma.

We have obtained the following theorem.

Theorem 4.2 Consider the revenue management model with a single reusable resource and identical re-

source requirements, i.e., A1 = A2 = · · · = AM = 1. Then, for each capacity value C the long-run

expected revenue rate of the CSP policy is guaranteed to be at least g(C) = e−C CC

C!PC
n=0 e−C Cn

n!

of the best achiev-

able long-run expected revenue rate. In particular, the long-run expected revenue rate of the CSP policy

is guaranteed to be at least half of the best achievable, for all capacity values C ≥ 1. Moreover, the CSP

policy is asymptotically optimal as capacity C grows to in�nity.

In light of Theorem 4.2 above, we note that if C = 1, it is usually straightforward to compute the optimal

policy. In fact, one can improve the performance guarantee of the CSP policy by solving the problem exactly

for small values of C, and apply the LP-based policy only for values of C, where it becomes computation-

ally intractable to compute the optimal policy. Taking this strategy will improve the overall performance

guarantee.
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We also note that the bound in Theorem 4.2 above is tight with respect to the LP de�ned by (3)-(5)

above. Speci�cally, consider the case where there is a single class with ρ1 = 1 = C. Clearly, the optimal

policy is to accept every customer as long as capacity permits. It can be veri�ed that the expected long-run

revenue rate of the optimal policy is half the optimal value of the LP. Thus, there is no hope of proving

uniform performance guarantees stronger than half using the LP as the only upper bound.

Finally, note that the performance analysis presented above still holds if the price rate of each class is a

random variable with mean ri.

4.2 Non-identical Resource Requirements

In this section, we consider the case, where each class may have different resource requirement Ai ∈ Z+.

Again, we assume without loss of generality that there is no fractional variable in α∗, the optimal solution

of the LP, and that there are M ′ ≤ M classes with positive α∗i variable. That is, α∗i = 1, for each i =

1, . . . , M ′. It is now clear that the respective rejection (blocking) probabilities P1, . . . , PM ′ are not identical.

In particular, by Theorem 2 of [4], for each i = 1, . . . , M ′, the rejection probability Pi can be expressed as

Pi = P

(
M ′∑

k=1

XkAk > C −Ai

)
=
P

(
C −Ai <

∑M ′
k=1 YkAk ≤ C

)

P
(∑M ′

k=1 YkAk ≤ C
) . (12)

It follows that if Ai ≥ Aj then Pi ≥ Pj .

However, the analysis in this case is more involved compared to the analysis in the case with identical

resource requirements. The main dif�culty comes from the fact that if there are several classes with different

resource requirements, then
∑M ′

k=1 YkAk follows a compound Poisson distribution, whereas in the case of

identical requirements it follows a Poisson distribution. (In the latter case we can assume that all the resource

requirements are equal 1.) This makes the analysis signi�cantly harder. Nevertheless, we will show that the

CSP policy is asymptotically optimal, even if the resource requirements are not identical.

Let A = maxi=1,...,M ′ Ai be the maximum resource requirement by a class. We shall show that all

blocking probabilities P1, . . . , PM ′ diminish to zero as ratio C/A7 grows to in�nity. In light of (12) and

the monotonicity of the blocking probabilities in the respective class resource requirement, it is suf�cient

to show that P(C−A<
PM′

k=1 YkAk≤C)

P(PM′
k=1 YkAk≤C)

diminishes to 0 as the ratio C/A7 grows to the in�nity. Speci�cally,

we will show that P(C − A <
∑M ′

k=1 YkAk ≤ C) diminishes to 0, and that P(
∑M ′

k=1 YkAk ≤ C) is

asymptotically at least 0.25 as the ratio C/A7 grows to in�nity. Indeed, this implies that the blocking

probabilities P1, . . . , PM ′ diminish to 0 as the ratio C/A7 grows to in�nity. We �rst focus on the case where

λ =
∑M ′

i=1 ρi ≥ C
2A . That is, the total traf�c intensity is relatively high.
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Lemma 4.3 Assume that λ ≥ C
2A . Then probability P(C − A <

∑M ′
k=1 YkAk ≤ C) diminishes to 0 as the

ratio C/A4 grows to in�nity.

Proof: Without loss of generality, we assume that M ′ ≤ A. Otherwise, there are two classes with the same

resource requirement, and we can consider them in the analysis as one class with intensity equal to the sum of

the intensities of the original classes. (This will not change the probability P(C −A <
∑M ′

k=1 YkAk ≤ C).)

Thus, A maxi ρi ≥ λ ≥ C
2A and, therefore, there exists at least one class with ρi ≥ C

2A2 ; without loss of

generality, assume that M ′ is that class. Let S be the set of all feasible states. That is, S = {y ∈ ZM ′
+ :

0 ≤ ∑M ′
i=1 yiAi ≤ C}. Let B ⊆ S be the set of all blocking states. That is,

B =

{
y ∈ ZM ′

+ : C −A <
M ′∑

i=1

yiAi ≤ C

}
.

Let SM ′ be the projection of S onto the space of the variables (y1, . . . , yM ′−1). Speci�cally,

SM ′
=

{
y ∈ ZM ′−1

+ : 0 ≤
M ′−1∑

i=1

yiAi ≤ C

}
.

For each y ∈ SM ′ , let P (y) = Pr(Y1 = y1, . . . , YM ′−1 = yM ′−1). Focus now on y′ ∈ SM ′ , and

consider the set of values of yM ′ , for which state (y′, yM ′) is a blocking state, i.e., (y′, yM ′) ∈ B. Denote

this set by BM ′
(y′). By de�nition BM ′

(y′) = {yM ′ ∈ Z+ : C − A <
∑M ′−1

i=1 y′iAi + yM ′AM ′ ≤ C}.

We conclude that the set BM ′
(y′) consists of at most d A

AM′ e ≤ A consecutive integers. Moreover, since the

random variables Y1, . . . , YM ′ are independent, it follows that

P

(
C −A <

M ′∑

i=1

YiAi ≤ C

)
=

∑

y∈SM′
P (y)

∑

yM′∈BM′ (y)

P(YM ′ = yM ′) (13)

≤ max
z≥0

P(z −A < YM ′ ≤ z) ≤ A
ρ

ρM′
M ′

ρM ′ !
e−ρM′ .

The �rst inequality follows from the fact that for each y ∈ SM ′ , the set BM ′
(y) consists of at most A

consecutive integers and
∑

y∈SM′ P (y) ≤ 1. (This is the sum of probabilities of disjoint events.) The second

inequality follows from the properties of the Poisson distribution. In particular, the maximum probability

assigned to a speci�c value is at most ρ
ρM′
M′

ρM′ ! e
−ρM′ , and as we have already seen, the set BM ′

(y) contains at

most A values.

Finally, it is straightforward to check that function h(z) , zz

z! e
−z is monotone decreasing in z. This

would follow from identical arguments used to justify monotonicity of function g(z) in the proof of Lemma

4.1. Then, since ρM ′ ≥ C
2A2 , we obtain

P

(
C −A <

M ′∑

i=1

YiAi ≤ C

)
≤ A

C
2A2

C
2A2

C
2A2 !

e−
C

2A2 , (14)
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where, for any positive x, x! satis�es identity (11). Moreover, using Stirling approximation, we know that

the function
C

2A2

C
2A2

C
2A2 !

e−
C

2A2 behaves like 1√
2π

1q
C

2A2

as C/A2 grows to in�nity. Therefore, as C/A4 grows to

in�nity, probability P(C − A <
∑M ′

i=1 YiAi ≤ C) diminishes to 0. This concludes the proof of the lemma.

Next, we show that as C/A7 grows to in�nity, probability P(0 ≤ ∑M ′
i=1 YiAi ≤ C) is asymptotically at

least 0.25.

Lemma 4.4 Assume that λ ≥ C
2A . Then probability P(0 ≤ ∑M ′

k=1 YkAk ≤ C) is asymptotically at least

0.25 as C/A7 grows to in�nity.

Proof: Recall that random variable
∑M ′

k=1 YkAk follows a compound Poisson distribution. Let W be a

Poisson random variable with parameter λ =
∑M ′

i=1 ρi, and let Q be a discrete random variable that takes

value Ak with probability ρk/λ, for each k = 1, . . . , M ′. Next, we express random variable
∑M ′

k=1 YkAk as
∑W

i=0 Qi, where {Qi}∞i=1 is a sequence of independent and identically distributed random variables equal

in distribution to Q, and are independent of W . (It is easy to verify that random variable
∑W

i=0 Qi has the

same distribution as
∑M ′

k=1 YkAk.)

In order to prove the lemma, we develop two lower bounds for probability P(0 ≤ ∑W
i=0 Qi ≤ C); one

of the bounds is based on the Central Limit Theorem and the other on Chebyshev inequality. Then, we show

that, as the ratio C/A7 grows to in�nity, at least one of the two lower bounds is asymptotically at least 0.25.

Clearly,

P

(
W∑

i=0

Qi ≤ C

)
≥ P(W ≤ λ)P

(
W∑

i=0

Qi ≤ C|W ≤ λ

)
(15)

≥ P(W ≤ λ)P



bλc∑

i=0

Qi ≤ C|W ≤ λ




= P(W ≤ λ)P



bλc∑

i=0

Qi ≤ C


 .

The �rst inequality follows from the fact that we restrict attention only to event [W ≤ λ]. The second

inequality follows from the fact that Qi's are nonnegative, W is an integer-valued random variable and we

restrict attention to event [W ≤ λ]. The equality follows from the fact that W is independent of
∑bλc

i=0 Qi.

First, consider the last expression in (15) above. Focus on term P(W ≤ λ). By the properties of the

median of the Poisson distribution (see [22]), we know that P(W ≤ λ) ≥ 0.5− 0.5P(W = dλe). However,

we have already seen that probability P(W = dλe) diminishes to 0 as λ ≥ C
2A grows to in�nity. Thus, it

follows that as C
2A grows to in�nity, probability P(W ≤ λ) is asymptotically at least 0.5.
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Next, focus on term P(
∑bλc

i=0 Qi ≤ C). From Constraint (4) it follows that C ≥ λE[Q1] ≥ bλcE[Q1],

and we obtain

P



bλc∑

i=0

Qi ≤ C


 ≥ P



bλc∑

i=0

(Qi −E[Q1]) ≤ 0


 .

However, the random variables Qis are independent and identically distributed and bλc ≥ C
A grows to

in�nity. Thus, a Central Limit argument can be applied. In particular, we use the well-known Berry-

Essen bound to express deviation from the Normal distribution (see, for example, [5]). Speci�cally, let

σ2 = V ar[Q] be the variance of Q and γ = E[Q3] its third moment. (Both exist and are �nite.) Then,

P



bλc∑

i=0

(Qi −E[Q1]) ≤ 0


 ≥ Φ(0)− τ0

γ

σ3
√
bλc (16)

= 0.5− τ0
γ

σ3
√
bλc ,

where τ0 > 0 is a universal constant independent of Q, and Φ(x) is the cumulative distribution function of

the standard normal distribution. Since γ ≤ A3, we can extend (16) above to get P(
∑bλc

i=0(Qi − E[Q1]) ≤
0) ≥ 0.5 − τ0A3

σ3
√
bλc . Since λ ≥ C

2A it follows that, as C/A7 grows to in�nity, and unless σ3 is going to 0

faster than (C/A7)−1/2, the lower bound developed in (15) above approaches 0.25.

Note that we only assume that the ratio C/A7 grows to in�nity, irrespective of other parameters of the

model (which can be arbitrary). In particular, we can not assume that σ is a bounded from below. Indeed

the bound in (16) above becomes meaningless when σ3 approaches zero faster than (C/A7)−1/2. Thus,

we develop the second lower bound for P(
∑W

i=0 Qi ≤ C) that is based on Chebyshev inequality, and is

strong when σ is close to 0. Using similar arguments to those in (15) above, we can condition on event

[W ≤ λ−
√

λ], and obtain

P

(
W∑

i=0

Qi ≤ C

)
≥ P

(
W ≤ λ−

√
λ
)
P



bλ−

√
λc∑

i=0

Qi ≤ C


 . (17)

Focus on the �rst term P(W ≤ λ −
√

λ). We claim that, as λ ≥ C
2A grows to in�nity, the probability

P(W ≤ λ−
√

λ) approaches ∆ = 0.5− 1√
2π

. We have already seen that P(W ≤ λ) approaches 0.5. Thus,

it is suf�cient to show that P(λ −
√

λ < W ≤ λ) is asymptotically at most 1√
2π

. However, by arguments

identical to the one used in the proof of Lemma 4.3 above, we obtain thatP(λ−
√

λ < W ≤ λ) ≤ λλ

λ! e
−λ
√

λ.

Using Stirling approximation, we conclude that, indeed, P(λ−
√

λ < W ≤ λ) approaches 1√
2π

as λ ≥ C
2A

grows to in�nity.

Now, we focus on the second term P
(∑bλ−

√
λc

i=0 Qi ≤ C
)

. Observe that C ≥ λE[Q], the expectation

E
[∑bλ−

√
λc

i=0 Qi

]
= bλ −

√
λcE[Q] and the variance V ar

[∑bλ−
√

λc
i=0 Qi

]
= bλ −

√
λcσ2 . Thus, by
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applying Chebyshev inequality, we derive

P



bλ−

√
λc∑

i=0

Qi > C


 ≤ P



bλ−

√
λc∑

i=0

(Qi −E[Q1]) > b
√

λcE[Q1]


 (18)

≤ (λ−
√

λ)σ2

(
√

λ− 1)2(E[Q])2

≤
√

λσ2/(
√

λ− 1),

where the last inequality follows from the fact that E[Q] ≥ 1.

Now, if
√

λσ2/(
√

λ − 1) ≤ 1 − 0.25/∆, it follows that the lower bound developed in (17) above

approaches 0.25 as C/A grows to in�nity. Otherwise, we get

σ2 > (1− 0.25/∆)

√
λ− 1√

λ
,

and the lower bound developed in (15) above is asymptotically at least 0.25 as C/A7 grows to in�nity. This

concludes the proof of the lemma.

Lemmas 4.3 and 4.4 imply the following theorem.

Theorem 4.5 Assume that λ ≥ C
2A . Then the blocking probabilities P1, . . . , PM ′ diminish to 0 as the ratio

C/A7 grows to in�nity.

Finally, we discuss the case where λ =
∑M ′

i=1 ρi < C
2A . Using the notation introduced above, we wish

to show that probability P(
∑W

i=1 Qi > C − A) diminishes to 0 as ratio C/A grows to in�nity. Indeed,

P(
∑W

i=1 Qi > C − A) ≤ P(W > C−A
A ). (If W ≤ C−A

A , it is clear that
∑W

i=1 Qi ≤ C − A since Q ≤
A.) However, by the properties of Poisson random variable (see 6.5.34 of [1]), it follows that probability

P(W > C−A
A ) diminishes to 0 as C

A grows to in�nity. (The mean of W is at most C
2A .) We have obtained

the following theorem.

Theorem 4.6 The CSP policy is asymptotically optimal for the revenue management model with single

reusable resource as the ratio C/A7 grows to in�nity, regardless of other parameters of the problem.

We note that, for each �xed value of A one can use Lemmas 4.3 and 4.4 to derive uniform performance

guarantees similar to the one developed in Theorem 4.2.

4.3 A Comparison of the Performance Analysis with Existing Approaches

Next we would like to contrast our performance analysis with existing literature. As already mentioned,

there are several results that establish the asymptotic optimality of different policies. However, most if not
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all of the existing results assume at least one of the following: (i) simultaneous scaling of the arrival rates

and the capacity (That is, we set Cn = nC and λn = nλ, and let n grow to in�nity.); (ii) other parameters

of the problem, such as the number of classes and resource requirements and service time distributions, are

kept �xed; (iii) (in some cases) exponentially distributed service time.

In contrast, our analysis holds for general service time distributions, and it only requires that the ratio

C/A7 grows to in�nity, letting other parameters of the problem, such as arrival rates, number of classes and

resource requirements, be arbitrary. The analysis highlights the fact that the most important characteristic of

the problem is the ratio between the capacity and the resource requirements of different classes. Moreover,

the fact that our performance analysis relies on the LP-based upper bound enables us to compute explicit

and uniform performance bounds. As we shall show in the next section this analysis extends to models with

multiple resources.

5 Extensions

5.1 Revenue Management Model with Multiple Reusable Resources

In this section, we show how to use ideas analogous to those used in the single resource case to extend the

CSP policy and the performance analysis to models with multiple resources. We present a packing-type LP

that provides an upper bound on the best achievable revenue rate and use its optimal solution to construct the

CSP policy and analyze its performance. As before we can use general Erlang formulas (see, for example,

Burman et. al. [4]) to express the stationary class rejection (blocking) probabilities. This is again used to

show the asymptotic optimality of the CSP policy in a way similar to the analysis of the single resource case

discussed in Section 4 above.

Let Cj be the capacity of resource j = 1, . . . , N , and let Aij ∈ Z+ be the number of units of re-

source j requested by class i. One can write a packing-type LP that provides a similar upper bound on

the best achievable revenue rate. Speci�cally, the objective is the same as (3), but we have a constraint
∑M

i=1 αiρiAij ≤ Cj , for each j = 1, . . . , N . This LP can be solved and one can derive the CSP policy that

accepts class-i customer with probability αi as long as there is suf�cient amount of available resources to

satisfy her/his requirement. In view of the discussion at the beginning of Section 4, one can extend the same

arguments to this case as well, and express the rejection probability of a class k ≤ M customer as

Pk =
P

(
∪N

j=1{Cj −Akj <
∑M

k=1 YkAkj ≤ Cj}
)

P
(
∩N

j=1{
∑M

k=1 YkAkj ≤ Cj}
) , (19)

where Yk, 1 ≤ k ≤ M , are independent Poisson random variables with mean values αkρk, 1 ≤ k ≤
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M . Next, note that for every 1 ≤ j ≤ N , random variable
∑M

k=1 YkAkj follows a compound Poisson

distribution. Let W be a Poisson random variable with parameter λ =
∑M

i=1 ρiαi, and let Q(j), 1 ≤ j ≤
N , be a discrete random variable that takes value Akj with probability ρk/λ. Next, we express random

variable
∑M

k=1 YkAkj , 1 ≤ j ≤ N , as
∑W

i=1 Q
(j)
i , where for each 1 ≤ j ≤ N , {Q(j)

i }∞i=1 is a sequence

of independent and identically distributed random variables equal in distribution to Q(j) and independent of

W .

First, we show that the numerator in (19) diminishes to zero as minj Cj/A
4
j approaches in�nity, where

Aj , max1≤k≤M Akj . By union bound,

P

(
∪N

j=1

{
Cj −Aij <

M∑

k=1

YkAkj ≤ Cj

})
≤

N∑

j=1

P

(
Cj −Aij <

W∑

l=0

Q
(j)
l ≤ Cj

)
.

Using arguments analogous to one used in the proof of Lemma 4.3, each summand on the right hand side

of the previous expression approaches zero as min1≤j≤N (Cj/A
4
j ) approaches in�nity. Since the number of

resources N is a �nite constant, we obtain that P(∪N
j=1{Cj − Aij <

∑M
k=1 YkAkj ≤ Cj}) diminishes to

zero as min1≤j≤N (Cj/A
4
j ) grows to in�nity.

Next, we show that the denominator in (19) can be bounded by some positive constant as min1≤j≤N Cj/A
7
j

approaches in�nity. In view of the previous discussions,

P

(
∩N

j=1

{
M∑

k=1

YkAkj ≤ Cj

})
= P

(
∩N

j=1

{
W∑

l=0

Q
(j)
l ≤ Cj

})
,

and, similarly as in (15), we lower bound this expression by conditioning on event [W ≤ λ − f(N)
√

λ],

with f(N) = Na, where a is the smallest positive real number such that N maxj Φ̄
(

f(N)
Aj

)
< 1. (We use

Φ̄(x) to denote the tail of the standard normal distribution at x.) Therefore, we obtain

P

(
∩N

j=1

{
W∑

l=0

Q
(j)
l ≤ Cj

})
≥ P(W ≤ λ− f(N)

√
λ)P


∩N

j=1




bλ−f(N)

√
λc∑

i=0

Q
(j)
i ≤ Cj






 . (20)

Furthermore, by applying the union bound, we further lower bound the left hand side of (20) and get

P

(
∩N

j=1

{
W∑

l=0

Q
(j)
l ≤ Cj

})
≥ P(W ≤ λ− f(N)

√
λ)


1−

N∑

j=1

P



bλ−f(N)

√
λc∑

i=0

Q
(j)
i > Cj





 . (21)

Next, we show that both terms on the right hand side of (21) can be lower bounded by positive constants

as minj Cj/A
7
j approaches in�nity. Before proceeding, we will differentiate between two cases: (i) λ ≥

minj Cj/2Aj , and (ii) λ < minj Cj/2Aj .

We �rst focus on the �rst case. Since W is a Poisson random variable, the probability P(W ≤
λ − f(N)

√
λ) ≥ P(

∑dλ−f(N)
√

λe
i=1 εi ≥ λ), where {εi}i≥1 is a sequence of independent exponentially
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distributed random variables with mean 1. Thus,

P(W ≤ λ− f(N)
√

λ) ≥ P


dλ−f(N)

√
λe∑

i=1

εi ≥ λ




≥ P


dλ−f(N)

√
λe∑

i=1

(εi − 1) ≥ f(N)
√

λ




= P




∑dλ−f(N)
√

λe
i=1 (εi − 1)√
dλ− f(N)

√
λe

≥ f(N)

√
λ√

dλ− f(N)
√

λe




≥ Φ̄


 f(N)

√
λ√

λ− f(N)
√

λ


− τ0

1√
λ− f(N)

√
λ− 1

,

where in the last inequality we applied Berry-Essen inequality analogously as in (16). Now, if minj Cj/A
7
j

grows to in�nity, then λ ≥ minj Cj/2Aj grows to in�nity as well, implying that P(W ≤ λ − f(N)
√

λ)

approaches Φ̄(f(N)). Finally, since the number of resources N is �nite, Φ̄(f(N)) > 0.

Next, we shall show that the sum in the second term of (21) can be upper bounded by a constant less than

1 as minj Cj/A
7
j approaches in�nity. In particular, we upper bound each summand P(

∑bλ−f(N)
√

λc
i=1 Q

(j)
i >

Cj), 1 ≤ j ≤ N . De�ne σ2
j , V ar[Q(j)]. Then, similarly as in the proof of Lemma 4.4, depending

on whether σ3
j approaches zero faster than (Cj/A

7
j )
−1/2, or not, the upper bound is based on Chebyshev

inequality, or Berry-Essen bound. In particular, by Berry-Essen inequality and λE[Q(j)] ≤ Cj , we obtain

P



bλ−f(N)

√
λc∑

i=0

Q
(j)
i > Cj


 ≤ P



bλ−f(N)

√
λc∑

i=1

(Q(j)
i − E[Q(j)]) > f(N)

√
λE[Q(j)]


 (22)

≤ P



∑bλ−√f(N)λc
i=1 (Q(j)

i − E[Q(j)
i ])

σjb
√

λ− f(N)
√

λc
>

f(N)
√

λE[Q(j)]

σj

√
λ− f(N)

√
λ




≤ Φ̄


 f(N)

√
λE[Q(j)]

σj

√
λ− f(N)

√
λ


 + τ0

A3
j

σ3
j

√
λ− f(N)

√
λ

.

Now, when λ ≥ Cj/2Aj and σ3
j does not go to zero faster than (Cj/A

7
j )
−1/2, we apply the bound in (22)

and obtain that P
(∑bλ−f(N)

√
λc

i=0 Q
(j)
i > Cj

)
does not exceed Φ̄(f(N)/Aj) as Cj/A

7
j approaches in�nity.

On the other hand, if σ3
j approaches zero faster than (Cj/A

7
j )
−1/2, we apply Chebyshev inequality (using

the facts that λE[Q(j)] ≤ Cj and E[Q(j)] ≥ 1) to obtain

P



bλ−f(N)

√
λc∑

i=0

Q
(j)
i > Cj


 ≤ P



bλ−f(N)

√
λc∑

i=1

(Q(j)
i − E[Q(j)]) > f(N)

√
λE[Q(j)]


 (23)

≤
√

λ− f(N)
(f(N))2

√
λ

σ2
j .
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It follows that if σ2
j satis�es

(
√

λ− f(N))σ2
j

(f(N))2
√

λ
≤ Φ̄

(
f(N)
Aj

)
,

then bound (23) implies that the probability P
(∑bλ−f(N)

√
λc

i=0 Q
(j)
i > Cj

)
does not exceed Φ̄(f(N)/Aj) as

Cj/A
7
j approaches in�nity. Otherwise, the same asymptotic upper bound holds by (22).

Finally, we show that when λ ≥ minj Cj/2Aj and minj Cj/A
7
j approaches in�nity, then for each 1 ≤

j ≤ N , the probability P
(∑bλ−f(N)

√
λc

i=0 Q
(j)
i > Cj

)
does not exceed asymptotically Φ̄(f(N)/Aj). Given

the assumption that N maxj Φ̄(f(N)/Aj) < 1, the asymptotic lower bound for P(W ≤ λ − f(N)
√

λ)

derived above, and (21) above, it follows that P
(
∩N

j=1

{∑W
l=0 Q

(j)
l ≤ Cj

})
can be lower bounded by a

positive constant as minj Cj/A
7
j approaches in�nity.

In a way similar to one used in the case with a single resource with non-uniform requirements, we show

that when λ < minj Cj/2Aj , then for each 1 ≤ j ≤ N , the probability P(
∑W

l=1 Q
(j)
l > Cj) ≤ P(W >

Cj/Aj) diminishes to zero as Cj/Aj approaches in�nity. This implies that the probabilityP
(
∩N

j=1

{∑W
l=1 Q

(j)
l ≤ Cj

})
≥

1−∑N
j=1 P

(∑W
l=1 Q

(j)
l ≤ Cj

)
approaches 1 as minj Cj/A

7
j approaches in�nity. This concludes the anal-

ysis in the multiple resource case.

5.2 Price-Driven Customer Arrivals

In this section, we consider an extension of the model discussed in Section 2, in which the arrival rates of

the different classes of customers are affected by prices. Speci�cally, consider a two stage decision. At the

�rst stage we set the respective prices r1, . . . , rM for each class. This determines the respective arrival rates

λ1(r1), . . . , λM (rM ). (The rate of class i is affected only by price ri.) Then, given the arrival rates, we wish

to �nd the optimal admission policy that maximizes the expected long-run revenue rate. In particular, we

assume that λi(ri) is nonnegative, differentiable and decreasing in ri for every 1 ≤ i ≤ M . In addition,

there exists a price, say r∞, such that for each i = 1, . . . , M , we have λi(r) = 0 for r ≥ r∞.

Using arguments analogous to the discussion in Section 3, we construct an upper bound on the achievable

expected long-run revenue rate through the following nonlinear program (NLP1):

max
α1,...,αM ,r1,...,rM

M∑

i=1

riαiρi(ri) (24)

s.t.
M∑

i=1

αiρi(ri)Ai ≤ C (25)

0 ≤ αk ≤ 1, ∀ 1 ≤ i ≤ M. (26)
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As before, for each i = 1, . . . , M , de�ne ρi(ri) = λi(ri)µi. In particular, it can be veri�ed that any

optimal solution of (NLP1) has only nonnegative prices. Also, observe that for any �xed prices r1, . . . , rM ,

the corresponding solution of α1, . . . , αM has the same knapsack structure de�ned above. We renumber

the classes according to decreasing order of ratio ri/Ai, 1 ≤ i ≤ M , and denote the optimal prices by

r∗ = (r∗1, . . . , r
∗
M ). Let α∗ = (α∗1, . . . , α

∗
M ) be the corresponding optimal α values. Then, for some

M ′ ≤ M , the vector α∗ has the following structure:

α∗1 = 1, . . . , α∗M ′−1 = 1, 0 < α∗M ′ ≤ 1, α∗M ′+1 = 0, . . . , α∗M = 0. (27)

Note that if one can solve (NLP1) and obtain the solution (r∗, α∗) then one can construct a similar CSP

policy that will be amenable to the same performance analysis discussed in Section 4 above. However,

solving (NLP1) directly may be computationally hard. Next, we show that under relatively mild conditions

imposed on the functions λ1(r1), . . . , λM (rM ), one can reduce (NLP1) to an equivalent nonlinear program

that is more tractable and we denote by (NLP2). (By equivalent we mean that they have the same set of

optimal solutions.) consider (NLP2) as follows:

max
r1,...,rM

M∑

i=1

riρi(ri) (28)

s.t.
M∑

i=1

ρi(ri)Ai ≤ C (29)

It can be readily veri�ed that as long as ρi(ri) is nonnegative (and decreasing) it is always optimal to have

nonnegative prices.

Lemma 5.1 The programs (NLP1) and (NLP2) are equivalent.

Proof: First, we show that for each solution r = (r1, . . . , rM ) of (NLP 2), we can construct a solution of

(NLP1) with the same objective value. Speci�cally, consider solution (r′, α′), such that r′ = r and α′i = 1

if and only if riρi(ri) > 0. It can be veri�ed that the resulting solution is feasible for (NLP1) and has the

same objective value.

Next, we show how to map optimal solution (r∗, α∗) of (NLP1) to a feasible solution of (NLP2) with the

same objective function. For each i = 1, . . . ,M ′− 1, set ri = r∗i , and for each i = M ′+ 1, . . . , M set ri =

r∞. It is clear that, for each i 6= M ′−1, the resulting contributions to the objective value and Constraint (29)

are the same as in (NLP1). Consider now possibly fractional αM ′ . The respective contribution of class M ′ to

the objective value is α∗M ′r∗M ′ρM ′(r∗M ′). Similarly, the contribution to Constraint (29) is α∗M ′ρM ′(r∗M ′)AM ′ .

Thus, it is suf�cient to show that there exists a price rM ′ such that rM ′ρM ′(rM ′) ≥ α∗M ′r∗M ′ρM ′(r∗M ′) and

ρM ′(rM ′)AM ′ ≤ α∗M ′ρM ′(r∗M ′)AM ′ .
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Since r∗M ′ρM ′(r∗M ′) ≥ α∗M ′r∗M ′ρM ′(r∗M ′), by the continuity and monotonicity of λM ′(rM ′), we know

that there exists r̄ ∈ [r∗M ′ , r∞) such that r̄ρM ′(r̄) = α∗M ′r∗M ′ρM ′(r∗M ′). Note that r̄ ≥ r∗M ′ , and, therefore,

we obtain

r∗M ′ρM ′(r̄) ≤ r̄ρM ′(r̄) = α∗M ′r∗M ′ρM ′(r∗M ′).

We conclude that ρM ′(r̄) ≤ α∗M ′ρM ′(r∗M ′), which concludes the proof of this lemma.

Lemma 5.1 above implies that instead of solving (NLP1) we can, instead, solve (NLP2). However,

(NLP2) is computationally more tractable, and can be solved relatively easy in many scenarios. Speci�cally,

if we Lagrangify Constraint (29) with some Lagrange multiplier Θ, then, the resulting problem is separable

in r1, . . . , rM ′ . Speci�cally, we obtain

max
ri∈[ΘAi,r∞)

∑

1≤i≤M

(ri −ΘAi)ρi(ri).

If the separable maximization problem from above can be solved and the resulting solution is feasible

with respect to Constraint (29), we obtain the solution to the KKT conditions. (Observe that the linear

quali�cation constrains always hold in this problem.) In fact, one aims to �nd the minimal Θ for which the

resulting solution satis�es Constraint (29), and this can be done by applying bi-section search on interval

[0, r∞]. The complexity of this procedure depends on the complexity of maximizing (ri − ΘAi)ρi(ri) for

each 1 ≤ i ≤ M . It is not hard to check that there are at least two tractable cases are:

• ρi(ri) is a concave function on [0, r∞] for every 1 ≤ i ≤ M ;

• ρi(ri) is convex, but riρi(ri) is a concave function on [0, r∞], for every 1 ≤ i ≤ M .

In both of the two previous cases, objective functions (ri −ΘAi)ρi(ri), 1 ≤ i ≤ M , are concave and could

be solved using standard methods.
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