Computer Science and Artificial Intelligence Laboratory Technical Report

Block Heavy Hitters Alexandr Andoni, Khanh Do Ba, and Piotr Indyk

Block Heavy Hitters

Alexandr Andoni
MIT

Khanh Do Ba
MIT

Piotr Indyk
MIT

April 11, 2008

Abstract

We study a natural generalization of the heavy hitters problem in the streaming context. We term this generalization block heavy hitters and define it as follows. We are to stream over a matrix A, and report all rows that are heavy, where a row is heavy if its ℓ_{1}-norm is at least ϕ fraction of the ℓ_{1} norm of the entire matrix A. In comparison, in the standard heavy hitters problem, we are required to report the matrix entries that are heavy. As is common in streaming, we solve the problem approximately: we return all rows with weight at least ϕ, but also possibly some other rows that have weight no less than $(1-\epsilon) \phi$. To solve the block heavy hitters problem, we show how to construct a linear sketch of A from which we can recover the heavy rows of A.

The block heavy hitters problem has already found applications for other streaming problems. In particular, it is a crucial building block in a streaming algorithm of [AIK08] that constructs a small-size sketch for the Ulam metric, a metric on non-repetitive strings under the edit (Levenshtein) distance.

We prove the following theorem. Let $M_{n, m}$ be the set of real matrices A of size n by m, with entries from $E=\frac{1}{n m} \cdot\{0,1, \ldots n m\}$. For a matrix A, let A_{i} denote its $i^{\text {th }}$ row.

Theorem 0.1. Fix some $\epsilon>0$, and $n, m \geq 1$, and $\phi \in[0,1]$. There exists a randomized linear map (sketch) $\mu: M_{n, m} \rightarrow\{0,1\}^{s}$, where $s=O\left(\frac{1}{\epsilon^{5} \phi^{2}} \log n\right)$, such that the following holds. For a matrix $A \in M_{n, m}$, it is possible, given $\mu(A)$, to find a set $W \subset[n]$ of rows such that, with probability at least $1-1 / n$, we have:

- for any $i \in W, \frac{\left\|A_{i}\right\|_{1}}{\|A\|_{1}} \geq(1-\epsilon) \phi$ and
- if $\frac{\left\|A_{i}\right\|_{1}}{\|A\|_{1}} \geq \phi$, then $i \in W$.

Moreover, μ can be of the form $\mu(A)=\mu^{\prime}\left(\rho\left(A_{1}\right), \rho\left(A_{2}\right), \ldots \rho\left(A_{n}\right)\right)$, where $\rho: E^{m} \rightarrow \mathbb{R}^{k}$ and $\mu^{\prime}: \mathbb{R}^{k n} \rightarrow\{0,1\}^{s}$ are randomized linear mappings. That is, the sketch μ is obtained by first sketching the rows of A (using the same function ρ) and then sketching those sketches.

Our construction is inspired by the CountMin sketch of [CM05], and may be seen as a CountMin sketch on the projections of the rows of A.

Proof. Construction of the sketch. We define the function ρ as an ℓ_{1} projection into a space with $k=O\left(\frac{1}{\epsilon^{2}} \log n\right)$ dimensions, achieved through a standard Cauchy distribution projection.

Namely, the function ρ is determined by k vectors $\vec{c}_{1}, \ldots \vec{c}_{k} \in \mathbb{R}^{m}$, with coordinates chosen iid from the Cauchy distribution with pdf $f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$. Then $\rho(\vec{x})$, for some $\vec{x} \in E^{m}$, is given by

$$
\rho(\vec{x})=\left(\vec{c}_{1} \vec{x}, \vec{c}_{2} \vec{x}, \ldots \vec{c}_{k} \vec{x}\right)
$$

The function μ^{\prime} takes as input $\rho\left(A_{1}\right), \ldots \rho\left(A_{n}\right)$, and produces k hash tables, each having $l=$ $O\left(\frac{1}{\epsilon^{2} \phi}\right)$ cells. The $j^{\text {th }}$ cell of the i th hash table $H^{(i)}$, for $j \in[l]$, is given by

$$
H_{j}^{(i)}=\sum_{q: h_{i}(q)=j}\left[\rho\left(A_{q}\right)\right]_{i} .
$$

See Figure 1 for an illustration.

Figure 1: Illustration of μ as a double sketch.
Reconstruction. Given a sketch $\mu(A)=\mu^{\prime}\left(\rho\left(A_{1}\right), \ldots \rho\left(A_{n}\right)\right)$, we construct the desired set W as follows. For each $w \in[n]$, consider the vector $\vec{r}_{w}=\left(\left|H_{h_{i}(w)}^{(i)}\right|\right)_{i \in[k]}$. Then w is included in W iff median $\left(\vec{r}_{w}\right)>(1-\epsilon / 2) \phi$. In words, for any block w we consider the cell of a hash table $H^{(i)}$ into which w falls (one for each i). If the majority of these cells contain a value greater or equal to $(1-\epsilon / 2) \phi$ (in magnitude), then w is included in W.

Sketch size. As described, the sketch $\mu(A)=\mu^{\prime}\left(\rho\left(A_{1}\right), \ldots \rho\left(A_{n}\right)\right)$ consists of $k \cdot l=O\left(\frac{1}{\epsilon^{4} \phi} \log n\right)$ real numbers. We note that, by usual arguments, it is enough to store all the real numbers up to precision $O(\epsilon \phi)$ and cut off when the absolute value is beyond a constant such as 2 . The resulting size of the sketch (in bits) is $s=O\left(\frac{1}{\epsilon^{5} \phi^{2}} \log n\right)$.

Analysis of correctness. We proceed to proving that the set W satisfies the desired properties. Since our sketches are linear, we assume without loss of generality that $\|A\|_{1}=1$.

First, consider any w such that $\left\|A_{w}\right\|_{1} \geq \phi$. We would like to prove that $w \in W$ w.h.p. For this purpose, it is sufficient to prove that, for fixed $i \in[k]$, we have that $\left|H_{h_{i}(w)}^{(i)}\right|>(1-\epsilon / 2) \phi$ with probability $\geq 1 / 2+\Omega(\epsilon)$. Then, a standard application of the Chernoff bound will imply that $\operatorname{median}\left(\vec{r}_{w}\right)>(1-\epsilon / 2) \phi$ w.h.p.

So fix some $i \in[k]$, and consider the cell $h_{i}(w)$ of the hash table $H^{(i)}$. Let $\chi[E]$ denote the indicator variable of an event E. The mass that falls into the cell $h_{i}(w)$ is equal to the following quantity:

$$
\begin{aligned}
H_{h_{i}(w)}^{(i)} & =\left[\rho\left(A_{w}\right)\right]_{i}+\sum_{j \in[n], j \neq w}\left[\rho\left(A_{j}\right)\right]_{i} \cdot \chi\left[h_{i}(j)=h_{i}(w)\right] \\
& =\vec{c}_{i} \cdot A_{w}+\vec{c}_{i} \cdot\left(\sum_{j \in[n], j \neq w} A_{j} \cdot \chi\left[h_{i}(j)=h_{w}(j)\right]\right) \\
& =\vec{c}_{i} \cdot\left(A_{w}+\left(\sum_{j \in[n], j \neq w} A_{j} \cdot \chi\left[h_{i}(j)=h_{w}(j)\right]\right)\right) .
\end{aligned}
$$

Now, consider the vector $\vec{z}=\left(\sum_{j \in[n], j \neq w} A_{j} \cdot \chi\left[h_{i}(j)=h_{w}(j)\right]\right)$. The expected norm of \vec{z} is at most

$$
\mathbb{E}_{h_{i}}\left[\|\vec{z}\|_{1}\right] \leq \frac{1}{l} \sum_{j \in[n], j \neq w}\left\|A_{j}\right\|_{1} \leq 1 / l=O\left(\epsilon^{2} \phi\right) .
$$

By Markov's inequality, with probability at least $1-O(\epsilon)$, we have $\|\vec{z}\|_{1} \leq \epsilon \phi / 4$ and thus $\left\|A_{w}+\vec{z}\right\|_{1} \geq$ $(1-\epsilon / 4) \phi$. It follows that the random variable $\left|\left(A_{w}+\vec{z}\right) \cdot \vec{c}_{i}\right|$ has a Cauchy distribution with median $\left\|A_{w}+\vec{z}\right\|_{1} \geq(1-\epsilon / 4) \phi$. By standard properties of Cauchy distributions we have

$$
\left|H_{h_{i}(w)}^{(i)}\right| \geq(1-\epsilon / 4) \cdot(1-\epsilon / 4) \phi>(1-\epsilon / 2) \phi
$$

with probability at least $(1 / 2+\Omega(\epsilon))(1-O(\epsilon))=1 / 2+\Omega(\epsilon)$.
Next we prove that if $\left\|A_{w}\right\|_{1} \leq(1-\epsilon) \phi$, then $w \notin W$ w.h.p. As above, we just need to prove that $\left|H_{h_{i}(w)}^{(i)}\right|<(1-\epsilon / 2) \phi$ with probability $\geq 1 / 2+\Omega(\epsilon)$. We again consider the vector $\vec{z}=\left(\sum_{j \in[n], j \neq w} A_{j} \cdot \chi\left[h_{i}(j)=h_{j}(w)\right]\right)$, and similarly deduce that, with probability at least $1-O(\epsilon)$, we have $\|\vec{z}\|_{1} \leq \epsilon \phi / 4$ and thus $\left\|A_{w}+z\right\|_{1} \leq\left(1-\frac{3}{4} \epsilon\right) \phi$. Again by standard properties of Cauchy distributions, we conclude that

$$
\left|H_{h_{i}(w)}^{(i)}\right| \leq(1+\epsilon / 4) \cdot\left(1-\frac{3}{4} \epsilon\right) \phi<(1-\epsilon / 2) \phi
$$

with probability at least $(1 / 2+\Omega(\epsilon))(1-O(\epsilon))=1 / 2+\Omega(\epsilon)$.

References

[AIK08] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Overcoming the ℓ_{1} nonembeddability barrier: Algorithms for product metrics. Manuscript, 2008.
[CM05] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its applications. J. Algorithms, 55(1):58-75, 2005.

