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ABSTRACT

New geochronological, thermochronological, geological and isotopic data from an
extensive (> 20,000 km®) exposure of high-pressure granulites (0.8 to > 1.5 GPa, >750
°C) in the East Lake Athabasca region of the Snowbird tectonic zone provide important
constraints on the stabilization, reactivation and exhumation of continental lithosphere in
the western Canadian Shield. The exhumed lower crust of this craton comprises several
disparate domains that preserve a complex record of tectonic, magmatic and metamorphic
processes from formation to exhumation.

U-Pb zircon geochronology documents two episodes of metamorphic zircon growth at
2.55 Ga and 1.9 Ga, linked with two high-pressure granulite facies assemblages
preserved in Chipman domain mafic granulites. The intervening 650 m.y. of relative
quiescence implies a period of lithospheric stability during which the granulites
continued to reside in the deep crust. Disruption of the stable Archean craton at 1.9 Ga
broadly coincides with the assembly of the Laurentian supercontinent. The correlation of
1.9 Ga mafic magmatism and metamorphism in the Chipman domain with
contemporaneous mafic magmatism along > 1200 km strike-length of the Snowbird
tectonic zone indicates that regional asthenospheric upwelling was an important aspect of
this reactivation event.

U-Pb (titanite, apatite, rutile), “’Ar/*Ar (hornblende, muscovite, apatite) and (U-Th)/He
(zircon, apatite) thermochronometry documents the cooling history of domains in the
East Lake Athabasca region during the 200 m.y. multistage history of unroofing
following 1.9 Ga metamorphism. Linkage of reconstructed temperature-time histories
with existing pressure-temperature-deformation paths reveals spatial and temporal
heterogeneity in exhumation patterns, with domain juxtaposition during episodes of
unroofing separated by intervals of crustal residence. Low temperature (U-Th)/He zircon
and apatite dates are the oldest reported for terrestrial rocks, and confirm the protracted
residence of rocks at shallow (< 2 km) crustal depths following the re-attainment of a
stable lithospheric configuration in the western Canadian shield at ca. 1.7 Ga.
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INTRODUCTION

Rare exposures of lower continental crust exert a tremendous influence on our
understanding of deep crustal processes, because these terranes offer the best opportunity
to directly examine this generally inaccessible level of continents. These regions allow
scrutiny of the rock types and structural relationships commonly imaged by seismic
techniques in the deep crust, provide a critical in situ context for more robust
interpretation of the record contained in lower crustal xenolith samples, and allow more
thorough evaluation of models for the rheological, metamorphic and chemical evolution
of the deep portions of continents. The character and behavior of the deep crust has an
important impact on how this signal is manifested as magmatism, deformation and/or
metamorphism at higher levels of the crustal column. Because the lower crust retains the
most direct crustal signature of activity within the underlying mantle, this region can also
yield essential insights into mantle dynamics. Thus, constraining the tectonic and thermal
evolution of the lower crust is necessary for a more comprehensive understanding of the
evolution of the continents.

The East Lake Athabasca region in the western Canadian Shield contains vast
tracts (>20,000 km?®) of high-pressure (HP) (1.0 to >1.5 GPa) granulites that represent one
of the largest and best-preserved exposures of lower continental crust on the planet. This
area spans the Snowbird tectonic zone, a ~2800 km long gravity and magnetic anomaly
that separates the Rae and Hearne crustal provinces of the western Churchill Province.
This dramatic geophysical feature has alternatively been interpreted as a Paleoproterozoic
suture (Hoffman, 1989) and as an Archean intracratonic shear zone that was reactivated
in the Paleoproterozoic (Hanmer, 1997). Deciphering the complex record of repeated HP
granulite facies metamorphic events, overprinted by the unroofing history, has posed the
central problem in the ongoing controversy over the formation and maturation of this
cratonic region. This thesis focuses on constraining the tectonic and thermal evolution of
continental lithosphere in the western Canadian Shield by deconvolving this complex
record using a variety of geochronological, thermochronological, and isotopic techniques.
The following chapters sequentially translate the deep crustal record into an interpreted

history of 1) lithospheric stabilization in the Archean, 2) dramatic lithospheric
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reactivation in the Proterozoic, 3) subsequent multistage exhumation and juxtaposition of
HP granulite domains, and 4) re-attainment of a stable lithospheric configuration
responsible for the long-term preservation of this portion of the continental lithosphere.

Chapter 1 highlights the exceptional value of zircon for deciphering complex
metamorphic records in deep crustal rocks. This study uses an integrated U-Pb TIMS,
ion microprobe, and imaging effort to determine the timing of two distinct HP granulite
facies events preserved in rocks of the East Lake Athabasca region. Thermobarometric
analysis of mafic granulites in the Chipman domain has revealed two granulite facies
metamorphic assemblages that record conditions of ~1.3 GPa, 850 °C and ~1.0 GPa, 800
°C (Mahan et al., 2005). Our analysis of metamorphic zircon grains from mafic and
felsic granulite gneisses documents a dominant population of ca. 2.55 Ga zircon that is
linked with the first HP assemblage. The U-Pb systematics of these metamorphic zircon
grains show a complex response to a perturbation at 1.9 Ga, with limited new zircon
growth at this time. Independent documentation of HP granulite facies metamorphism in
the Chipman domain at 1.9 Ga (Chapter 2) is consistent with the conditions preserved in
the second granulite assemblage of the mafic gneisses. Together, these results provide
strong evidence for subjection of the Chipman domain to two HP granulite facies events
separated by 650 m.y. This dataset is used to argue for extended residence of the
granulites in the deep crust between 2.55 Ga and 1.9 Ga HP granulite facies metamorphic
events, during a 650 m.y. period of relative quiescence and lithospheric stability. This
implies an event of fundamental importance was required to disrupt this stable Archean
craton in the Proterozoic.

Chapter 2 examines the nature and significance of lithospheric destabilization at
1.9 Ga. This record contrasts dramatically with the stability of most preserved Archean
cratons following assembly. High precision U-Pb TIMS zircon geochronology, in
conjunction with whole rock Sm-Nd isotopic data, whole rock geochemistry data, and
field observations, are used to constrain the timescales and intensity of HP granulite
facies metamorphism and anatexis during 1.9 Ga lithospheric reactivation. Mafic dike
anatexis during syntectonic and synmetamorphic intrusion of Chipman mafic dikes at
1.0-1.2 GPa, ~ 800 °C conditions (Williams et al., 1995) occurred at 1896.2 + 0.3 Ma,

and was followed by the protracted maintenance of elevated temperatures for 5-15 m.y.
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Limited melting of the host rocks during high temperatures at this time is attributed to
their dehydrated character owing to previous metamorphism in the Archean. Chipman
domain mafic magmatism is correlated with contemporaneous focused mafic intrusive
activity along > 1200 km strike-length of the Snowbird tectonic zone. These data provide
compelling evidence for a regional episode of asthenospheric upwelling associated with
the destabilization of this Archean craton that coincided with the assembly of the
Laurentian supercontinent.

Chapter 3 explores the tempo, duration and rates of exhumation of disparate
domains in the East Lake Athabasca region following 1.9 Ga lithospheric reactivation.
The nature and rates of processes that juxtapose and exhume crustal domains are of
central importance for understanding the significance and representativeness of lower
crustal exposures, and for evaluating the degree of lower crustal terrane modification
during transport to the Earth’s surface. A ~200 m.y. interval for exhumation of lower
crustal rocks in the East Lake Athabasca region is constrained by the timing of 1.9 Ga HP
granulite facies metamorphism, and the subsequent ca. 1.7 Ga deposition of Athabasca
basin sediments over the exhumed granulites. High-resolution U-Pb (titanite, apatite,
rutile) and *’Ar/*’Ar (hornblende, muscovite, biotite) thermochronometry, linked with
existing thermobarometric and structural data, reveals an exhumation history
characterized by multiple pulses of unroofing at different rates separated by intervals of
crustal residence for variable durations. The convergence of domainal thermal histories
places constraints on the timing of domain juxtaposition relative to regional unroofing.
The temporally and spatially heterogeneous patterns of lower crustal exhumation in the
East Lake Athabasca region may be a common feature of the unroofing histories of HP
granulite terranes.

Chapter 4 evaluates the history of vertical continental motions in the East Lake
Athabasca region following the apparent re-attainment of a stable lithospheric
configuration at ca. 1.7 Ga. Although the preservation of ancient continental crust
testifies to the extreme stability of some portions of the continents, evidence suggests that
even these regions undergo episodes of epeirogenic uplift and subsidence in response to
changing mantle dynamics. (U-Th)/He thermochronometry is widely utilized to

constrain uplift histories in areas of active or recent tectonism, but the application of this
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technique to assess vertical motions in regions of apparent tectonic stability has been
limited. This study presents the Earth’s oldest reported (U-Th)/He zircon and apatite
dates that document the residence of rocks in the East Lake Athabasca region at
temperatures < 30 °C at depths of < 2km for 1.0-1.7 b.y. These data are exploited to
generate a suite of viable models for the low temperature thermal history of these rocks
that may reflect low amplitude vertical motions within this continental interior. This
study highlights the promise of using low temperature thermochronometers to constrain
the history of cratonic subsidence and uplift and thereby gain insight into the stability of

continents and mantle dynamics.
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Chapter 1 — Complex U-Pb Zircon Systematics in High-P Granulites

ABSTRACT

U-Pb TIMS zircon and monazite data, combined with ion microprobe zircon
analysis and detailed imaging studies, are used to decipher the complex polymetamorphic
history preserved in high-pressure granulites in the East Lake Athabasca region of the
western Canadian Shield. Mafic and felsic granulites contain a dominant population of
2.55 Ga metamorphic zircon that show an unusual response to high temperature
metamorphism at 1.9 Ga. The complex U-Pb zircon systematics are attributed to Pb
redistribution and/or zircon recrystallization during this event. The primary population of
2.55 Ga zircon is linked with the first high-pressure granulite facies assemblage (~1.3
GPa, 850 °C) preserved in the mafic granulite gneisses. Limited new zircon growth at
1.9 Ga, and the perturbed zircon systematics, are correlated with a second episode of
high-pressure granulite facies metamorphism (1.0-1.2 GPa, ~800 °C) independently dated
at 1.9 Ga by zircon in migmatitic Chipman mafic granulite dikes. The similarity in
metamorphic conditions preserved in the Chipman dikes to a second granulite facies
assemblage (~1.0 GPa, 800 °C) in the mafic granulite gneisses, suggests their coeval
development at 1.9 Ga. These data provide compelling evidence for two episodes of
high-pressure granulite facies metamorphism in the Chipman domain. Limited melting
of the Chipman domain during subjection to 1.9 Ga high temperatures is consistent with
little retrogression following dehydration in the Archean. The recurrence of
metamorphism at high-pressure conditions implies that the granulites resided in the deep
crust between 2.55 and 1.9 Ga during a period of relative quiescence. Chemically diverse
monazite populations of variable ages are interpreted to represent fluid mediated growth
and/or recrystallization during this interval. These data suggest a ~650 m.y. period of
lithospheric stability initially heralded by 2.55 Ga metamorphism and dramatically
terminated by significant reactivation in the Proterozoic during assembly of the

Laurentian supercontinent.
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INTRODUCTION

The lower continental crust preserves a record of lithospheric perturbation by the
underlying asthenosphere, manifested as repeated episodes of high-grade metamorphism,
deformation, mafic magmatism, and melting. Lower crustal rocks thus have the potential
to yield unique insights into crust-mantle coupling during lithospheric evolution.
However, deciphering the cumulative product of a complex history preserved in multiply
deformed polymetamorphic rocks can be a challenging problem. Linking accessory
mineral geochronological data with metamorphic assemblages is critical for
deconvolving such histories.

U-Pb zircon geochronology is key to deciphering complex metamorphic records,
owing to the robust character of this mineral that allows it to retain chronological
information through most P-T conditions encountered in the crust. However, this same
property contributes to the structural, morphological, and isotopic complexity of zircon
crystals that have experienced dynamic histories. In addition to multicomponent
mixtures of inherited, magmatic, and/or metamorphic zircon that can exist within single
crystals, isotopic resetting of zircon grains via recrystallization and fluid-alteration
processes can occur at high grade conditions (e.g. Pidgeon et al., 1998; Hoskin and
Black, 2000; Carson et al., 2002), and subsequent low temperature Pb loss in radiation
damaged crystals can further complicate the U-Pb systematics (e.g. Silver and Deutsch,
1963; Cherniak et al., 1991). Understanding the behavior of zircon during multiple
periods of metamorphism is essential for exploiting the isotopic record preserved within
these crystals. This, in turn, is crucial for providing timing constraints on discrete
metamorphic, melting and deformation events preserved in deep crustal rocks that can
profoundly influence the interpretation of tectonic histories.

We provide an example of these complexities by using an integrated U-Pb TIMS,
ion microprobe, and imaging study of metamorphic zircon grains from mafic and felsic
granulites to determine the timing of two distinct high-pressure, high temperature (HP-
HT) metamorphic events preserved in rocks of the East Lake Athabasca region, along the
Snowbird tectonic zone, in the western Canadian Shield. Although previous U-Pb TIMS
metamorphic zircon analysis has been interpreted to date ca. 1.9 Ga HP granulite

assemblages in several areas (Flowers, Chapter 2; Baldwin et al., 2004), the earlier
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Chapter 1 — Complex U-Pb Zircon Systematics in High-P Granulites

history of these Archean rocks has been difficult to decipher. Mafic granulite gneisses
described in this study preserve two metamorphic assemblages that yield conditions of
~1.3 GPa, 850 °C, and ~ 1.0 GPa, 800 °C (Mahan et al., 2005). The latter are consistent
with 1.0-1.2 GPa, 750-850 °C conditions dated at 1896.2 + 0.3 Ma based on zircon in
migmatitic Chipman mafic granulite dikes in this domain (Williams et al., 1995; Flowers,
Chapter 2). In the current study, our analysis of zircon from mafic and felsic granulite
gneisses reveals a dominant population of 2.55 Ga metamorphic zircon that we link with
the first HP granulite assemblage in this rock. The 2.55 Ga zircon show a complex
response to the second HP granulite facies metamorphism at 1.9 Ga documented in the
Chipman mafic dikes. The data provide strong evidence for two HP granulite facies
episodes in the Chipman domain separated by 650 m.y. These results allow us to
consider 1) the significance of U-Pb systematics in metamorphic zircon subjected to
protracted high-temperature conditions, and 2) the tectonic implications for extended

deep crustal residence, continental stability, and lithospheric reactivation processes.

GEOLOGICAL SETTING

The western Canadian Shield is an amalgamation of Archean cratons that were
welded in the Paleoproterozoic. The western Churchill Province within this region is
bounded by the Thelon orogen (2.02-1.90 Ga) to the northwest and the Trans-Hudson
orogen (1.85-1.80 Ga) to the southeast (Figure 1). The Snowbird tectonic zone is a
dramatic, northeast-trending linear gravity anomaly that separates the Rae and Hearne
crustal provinces of the western Churchill Province, extending ~2800 km from the coast
of the Hudson Bay to the Canadian Cordillera (Goodacre et al., 1987; Hanmer et al.,
1995). This feature has been interpreted as a Paleoproterozoic intercontinental suture
(Hoffman, 1988; Ross et al., 1995, 2000), a Paleoproterozoic intracontinental transform
(Lewry and Sibbald, 1980) and an Archean intracontinental strike-slip shear zone
(Hanmer et al., 1995, 1997).

The East Lake Athabasca region spans the central segment of the Snowbird
tectonic zone, and includes an extensive tract of granulite facies rocks with peak
metamorphic conditions from 1.0 to > 1.5 GPa, >750 °C (Figure 2). This region contains

deep crustal rocks within the East Athabasca mylonite triangle along the trace of the
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Snowbird tectonic zone, deep crustal rocks in the Rae domain to the west, as well as
shallower level amphibolite facies rocks within the Hearne domain to the east. To the
south the rocks are overlain by sediments of the ca. 1.7 Ga Athabasca basin. The East
Athabasca mylonite triangle has been subdivided into three distinct tectonically bounded
domains. The Chipman domain is dominated by heterogeneous > 3.0 Ga Chipman
tonalitic gneisses, contains lenses of mafic and felsic granulites, and preserves the deep
levels of the Chipman mafic dike swarm that intruded across the entire domain and
records metamorphism at conditions of 1.0-1.2 GPa, 750-850 °C (Williams et al., 1995;
Flowers, Chapter 2) (Figure 3). The northwestern domain is composed of ca. 2.6 Ga
mafic to felsic plutonic rocks, interpreted to have been emplaced and metamorphosed at
~1.0 GPa, 900 °C (Williams et al., 2000). The southern domain contains felsic and mafic
granulites with minor eclogite, recording peak conditions = 1.5 GPa, 900-1000 °C
(Snoyenbos et al., 1995; Kopf, 1999; Baldwin et al., 2003, 2004).

The complex record of both Archean and Paleoproterozoic metamorphic events
along the Snowbird tectonic zone, including the East Athabasca mylonite triangle, is
largely responsible for the ongoing controversy over the tectonic significance of this
profound structure. In the Chipman domain, HP granulite facies metamorphism (1.0-1.2
GPa, 750-850 °C) has been dated at 1896.2 + 0.3 Ma using zircon from migmatitic mafic
granulite dikes. Peak conditions in the southern domain have been interpreted at 1904.0
+ 0.3 Ma based on metamorphic zircon in eclogite, although these same rocks also
contain a record of earlier metamorphic zircon growth at ca. 2.55 Ga (Baldwin et al.,
2004). The ca. 2.6 Ga Mary granite in the northwestern domain underwent
metamorphism at ~1.0 GPa, 900 °C with subsequent isobaric cooling inferred to have
occurred shortly after the emplacement of these rocks in the Archean (Williams et al.,
2000). Felsic granulites within both the Chipman and southern domains are characterized
by abundant garnets that exclusively contain an Archean population of =2.55 Ga
monazite, with multiple comparably aged and younger populations distributed in the
matrix, implying that the garnet in these rocks grew during an Archean metamorphic
event (Mahan et al., in review, Baldwin et al., in review). A record of ca. 2.55 Gaand 1.9
Ga metamorphism has also been documented along the northern trace of the Snowbird

tectonic zone, interpreted to date conditions of 0.5-0.6 GPa, 650-750 °C, and 0.9-1.1
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GPa, 650-750 °C, respectively (Stern and Berman, 2000; Berman et al., 2002). In the
East Athabasca mylonite triangle, mafic and felsic granulites occur in all three domains
and may hold the greatest promise for unraveling the polymetamorphic history in this
region. Although these lithologies are most abundant in the southern and northwestern
domains, garnetiferous mafic and felsic granulites also occur as minor components in the
western part of the Chipman domain. These units have not previously been targeted for

U-Pb zircon geochronological analysis.

CHIPMAN DOMAIN MAFIC AND FELSIC GRANULITE GNEISSES

Mafic granulites crop out as deformed lenses meters to tens of meters wide, and
up to hundreds of meters long, within > 3.0 Ga variably deformed heterogeneous
Chipman tonalitic gneisses in western portions of the Chipman domain (Figure 3). Less
common garnetiferous felsic granulites similarly occur and, when observed, were always
associated with the mafic granulites, implying a genetic link. The western Chipman
domain coincides with a dramatic anomaly visible in the total field magnetic map,
suggesting that the mafic lithologies may increase in abundance at depth. The restriction
of the mafic granulite lenses and associated magnetic anomaly to the western part of the
domain, and the less common occurrence of anorthositic, gabbroic and ultramafic
inclusions that are prevalent within Chipman tonalite further east, may reflect a
somewhat different protolith character in eastern and western parts of the domain.
Chipman mafic dikes that record 1.9 Ga granulite facies metamorphism intrude across the
entire domain.

Chipman domain mafic granulites include both Grt+Cpx layers, and medium to
very coarse-grained orthopyroxenite units. Study primarily focused on the former,
because of the greater potential for deciphering the metamorphic history using the garnet-
bearing assemblages. The dominant mineralogy of this lithology is Grt + Cpx + Pl + Opx
+ Qtz, with secondary hornblende, accessory ilmenite and apatite, and the presence of
zircon and rutile in some samples (Figure 4A). Metamorphic analysis and
thermobarometric study of Chipman domain mafic granulite samples by Mahan et al.
(2005) documented 1) an early assemblage of Grt + Cpx that preserves conditions of ~1.3

GPa, 850 °C and is interpreted to have developed from an igneous opx-bearing
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assemblage, 2) retrogression to a Hbl-bearing matrix assemblage during rehydration, and
3) a second less pervasive granulite facies assemblage of Opx + Cpx that records
conditions of ~ 1.0 GPa, 800 °C. Felsic granulite gneisses contain a
Grt+Sil+Ksp+P1+Qtz anhydrous peak assemblage, with abundant accessory zircon,
monazite and rutile.

The petrographic setting of zircon was documented within mafic granulite sample
02M133A, the same sample on which much petrologic and thermobarometric analysis
and U-Pb TIMS and ion microprobe studies also focused. Commonly 10-50 um zircon
crystals occur in the M1 garnet and clinopyroxene assemblage, as well as in matrix
garnet, clinopyroxene, hornblende and plagioclase phases (Figure 4B).
Cathodoluminescence images of in situ zircon revealed generally similar zonation
patterns. Zircon grains typically contained darker unzoned or weakly zoned cores with
bright overgrowths, with less common occurrence of darker overgrowths or

homogeneous zircon lacking obvious overgrowths.

WHOLE ROCK GEOCHEMISTRY

Major and trace element concentrations were determined for five samples of
Grt+Cpx bearing mafic granulites, five samples of orthopyroxenites, and three samples of
garnet-rich felsic granulites from the Chipman domain by XRF and ICPMS at the
University of Massachusetts, Amherst and at Activation Laboratories, respectively (Table
1). The Grt+Cpx bearing mafic granulites contain SiO, ranging from 47.9 to 52.9%,
MgO from 7.0 to 10.6%, and lower Al,O; from 11.0 to 16.8%. The orthopyroxene-rich
granulites contain overlapping SiO, from 48.9 to 53.8%, higher MgO from 13.7 to
26.0%, and lower ALO, from 3.7 to 7.8%. Bulk compositions of felsic granulites are
characterized by SiO, from 61.0 to 69.8%, MgO from 3.2 to 5.7%, and Al,O, from 13.4
to 17.1%, with variability ascribed to heterogeneity in proportions of garnet, feldspar and
quartz. Chipman domain felsic granulite major element data are within a similar range to
that for southern domain felsic granulites (Baldwin et al., in review).

Rare earth element (REE) patterns for the Grt+Cpx bearing mafic granulite
samples are variable (Figure 5A). They include negative and positive slopes, as well as

generally flat patterns. In contrast, REE patterns for the orthopyroxene-rich granulites
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consistently have a negative slope, suggesting the presence of garnet in the source (Figure
5A). Most samples do not contain pronounced Eu anomalies that would imply the role of
plagioclase fractionation during the generation or emplacement of the mafic protolith.
The felsic granulite samples are characterized by enriched and negatively sloping LREEs
and relatively flat HREE patterns, with two of three sample displaying positive Eu
anomalies (Figure 5B). These patterns are similar to those reported for southern domain
felsic granulites (Baldwin et al., in press), suggesting a similar genesis.

Whole rock Sm-Nd isotopic data were previously acquired for the same ten mafic
granulite samples for which major and trace element data are reported in this study
(Flowers, Chapter 2). Nine of the samples were characterized by time-integrated LREE
enrichment and present-day &y, values from —24.5 to —-0.9. Sm-Nd data for one Grt+CPx
granulite was characterized by time-integrated LREE depletion, consistent with its
positively sloping REE pattern, with a present day €y, value of 17.5. The &y, values at 2.6
Ga ranged from —7.29 to 2.720 with depleted mantle model dates from 3.91 to 2.91 Ga.

U-Pb GEOCHRONOLOGY
Analytical Methods

Zircon and monazite grains were isolated from the samples by standard crushing,
water table, heavy liquid, and magnetic separation techniques. To optimize the selection
of crystals for TIMS analysis, representative grains were mounted in epoxy, polished to
expose grain interiors, and imaged with cathodoluminescence (CL) and/or backscatter
(BE) techniques to characterize internal structures. Several zircon grains were analyzed
via TIMS following ion microprobe analysis, described further below. Electron
microprobe Th, Ca, Y and U chemical maps were also acquired for a subset of monazite
crystals.

Zircon and monazite grains were extracted from the grain-mount, photographed,
and measured. Sizeable (> 100 micron) zircon and monazite crystals were broken into
fragments for analysis, while smaller grains were analyzed in their entirety. Most zircon
grains and fragments were air-abraded with pyrite after the method of Krogh (1982), and
rinsed and ultrasonicated in 3 M HNO,. Monazite grains were rinsed and ultrasonicated

in high-purity water. A subset of zircon grains were subjected to a version of the
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chemical abrasion technique (Mattinson, 2005), in which zircon crystals were placed in
quartz crucibles in a muffle furnace at ~900 °C for ~60 hours, loaded into Teflon FEP
microcapsules and leached in 29 M HF at ~180 °C for 12 hours, then transferred to
savillex beakers and prepared for dissolution according to standard procedures. A less
aggressive leach step in 29 M HF at ~80 °C for 12-17 hours in savillex beakers on a
hotplate was used for high U zircon grains that completely dissolved during the higher
temperature chemical abrasion procedure. All fractions were loaded into savillex
beakers, washed and ultrasonicated again in 3 M HNO, (zircon) or high-purity water
(monazite), rinsed in distilled acetone and high-purity water, and loaded into Teflon FEP
microcapsules in high-purity water. Samples were spiked with a mixed **Pb-**U-**U
tracer. Zircon grains were dissolved in 29 M HF at 220 °C for 48-96 hours, and
converted to 6 M HCl at 180 °C for 12-24 hours. Monazite crystals were dissolved in 12
M HCI at 180 °C for 48 hours. Pb and U were chemically separated using HCl anion
exchange chemistry modified after Krogh (1973). Pb and U were loaded on single Re
filaments with a silica gel 0.1 M H;PO, emitter solution and analyzed on the
Massachusetts Institute of Technology VG Sector 54 mass spectrometer. Pb isotopic
ratios were measured either by peak jumping using an axial counting Daly detector, or
dynamically with Faraday cups and the Daly detector, peak-jumping **Pb into the axial
position to obtain a real-time Faraday-Daly gain calibration. U was measured as an oxide
in static mode on three Faraday cups. U-Pb data and details regarding isotopic ratios
corrections are provided in Table 2. Decay constant and U-Pb tracer calibration
uncertainties are systematic errors not included in the cited dates, as these are
unnecessary for comparison of data acquired within a single lab. Concordia diagrams for
all zircon and monazite analyzed by TIMS are shown in Figures 6 through 10.

Zircon grains for SHRIMP U-Pb analysis were prepared in a l-inch diameter, Au-
coated, polished grain-mount. Spots within the zircon were selected using optical and CL
imaging, and were analyzed on the SHRIMP II at the Australian National University
using a 25 um diameter, 3.5 nA, 10 kV, negative O, primary ion beam. Positive
secondary ions were extracted at 10 kV and analyzed at mass resolution 5000 using a
single ETP electron multiplier and magnetic field switching. Each analysis consisted of 5

scans through the isotopes of interest and took 8 minutes. The Pb isotopic compositions
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were measured directly. Pb/U and Pb/Th were determined relative to chips of zircon
standards SL13 (U = 238 ppm) and FC1 (radiogenic **Pb/?*U = 0.1859) using a power-
law relationship between Pb*/U* and UO*/U* (Claoué-Long et al., 1995) and an exponent
of 1.55. The standard also provided an estimate of Pb isotopic fractionation (2.5 + 2.0
%o/amu). Common Pb was corrected using ***Pb assuming the composition of 2.5 Ga
average crustal Pb (Cumming & Richards, 1975). Refer to Table 3 for analytical results

and to Figure 11 for the ion microprobe zircon concordia diagram.

U-Pb TIMS Analytical Results

U-Pb TIMS data were acquired for zircon grains from three representative
samples of Grt+Cpx+Opx mafic granulites and one sample of felsic granulite, and for
monazite from the felsic granulite. Mafic granulite sample 02M133A was targeted due to
its well-preserved reaction textures that also permitted detailed petrological and
kinematic study (Mahan et al. 2005). The two other mafic samples were selected to
obtain the widest spatial distribution of data over the observed extent of Chipman domain
mafic granulite exposures. The felsic granulite sample was collected from a lens
associated with mafic granulite sample 02M133A.

Sample 02M133A was collected from a mafic granulite body at Cora Lake
(Figure 3). Zircon grains range in size from tens to hundreds of microns. The dominant
population of zircon is characterized by cores and overgrowths (Figure 6) A secondary
zircon population is homogeneous and bright in CL. Within the dominant population,
three general groups can be distinguished based on differences in external morphology
and CL-imaged internal structures (Figure 6). The first group is spherical to ovate, is
dominated by zircon that dimly luminesces in CL, and has thin bright CL-imaged rims.
The second group contains rounded to tabular ovate grains, sector and oscillatory-zoned
cores that appear rounded and resorbed, and bright CL-imaged overgrowths with variable
thicknesses (up to 100 um). The third group is characterized by facetted spherical to
ovate grains with sector and oscillatory-zoned cores of variable resorption, and similar
sector zoned overgrowths that are not obviously resorbed (up to 200 um). This dominant
zircon population is characterized by Th/U ratios of 0.21-0.31, and U concentrations from

55-280 ppm. Ten abraded and one unabraded zircon fragments yielded a linear array
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with an upper intercept of 2554.5 + 4.3 Ma and a lower intercept of 1896.0 + 18 Ma
(MSWD = 3.2) (Figure 6). The three fragments analyzed from the first group of zircons,
characterized by the thinnest rims, yielded the most concordant analyses. One physically
abraded fragment subsequently subjected to chemical abrasion (z5¢) yielded a *’Pb/**Pb
date older than a fragment of the same grain (z5b) analyzed by standard methods, but still
plotted on the mixing array. Two zircon grains from the homogeneous, bright CL
secondary population were chemically abraded and yielded ca. 1.9 Ga dates. These two
grains had previously been analyzed by ion microprobe, with results discussed further
below.

Sample 03-88A is from the interior of a medium-grained, banded mafic granulite
body at Bompas Lake. Zircon grains are spherical to ovate, are typically < 150 um in
diameter, and compose two populations characterized by distinct internal structures
visible in CL (Figure 7). The first population is dominated by zircon that is
homogeneous and bright in CL, with 5-20 um darker CL rims. The second, more
abundant type of zircon is characterized by an oscillatory to irregularly zoned internal
domain, irregular embayments on several grains suggesting possible resorption, and
overgrowths of variable thickness. Zircon grains have Th/U ratios of 0.08 — 0.39 and U
concentrations from 30-235 ppm. No dramatic difference in U-Pb systematics was
detected between the two populations distinguished in CL. Five abraded single zircon
grains, two unabraded single zircon grains, one unabraded zircon fragment, and one
chemically abraded zircon fragment yielded a linear array with an upper intercept of ca.
2.56 Ga and a lower intercept of ca. 1.86 Ga (Figure 7). The chemically abraded zircon
fragment (z8c) plotted at an older age on the mixing array than its unabraded counterpart
analyzed by standard methods (z8a).

Sample 03-159A was collected from a ~50m wide layer of mafic granulite at
Lytle Lake. Zircon grains are spherical to ovate, range in size from tens to hundreds of
microns, and do not luminesce in CL (Figure 8). Zircon crystals have Th/U ratios of
0.20-0.32 and U concentrations of 340-690 ppm. The suppression of zircon CL is
attributed to radiation damage from high U concentrations. Some grains display faint
internal sector zoning in BE, and possible overgrowths. Three abraded fragments from

two larger-sized zircons, two abraded single zircons, four unabraded single zircons, and
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two chemically abraded zircon fragments were analyzed. The five abraded fractions and
one unabraded fraction yielded a poorly defined array with a ca. 2.55 Ga upper intercept
and a Proterozoic lower intercept (Figure 8). One significantly older analysis is
interpreted to contain a minor inherited component. Although the unabraded zircon
fractions were intended to better define the lower intercept of the array by retaining the
zircon overgrowths, these fractions show increased discordance likely caused by
secondary Pb loss in the high U, radiation damaged rims. The two chemically abraded
zircon fragments displayed significantly greater discordance than the other analyzed
fractions.

Sample 03-175A is a partially retrogressed felsic granulite from Cora Lake
characterized by cm-scale garnets. Zircon grains are abundant, spherical to ovate,
typically < 100 um (up to 150 um in length), and do not luminesce in CL (Figure 9).
Th/U ratios are 0.09-0.14. Radiation damage due to moderate U concentrations of 260-
340 ppm is inferred to cause the suppression of zircon CL. In BE zircons show faint
internal concentric zoning, with possible thin < 10 um rims on some crystals. Five
abraded, three unabraded, and three chemically abraded fractions of single zircon grains
and fragments were analyzed. Five fractions yield a poorly defined array with an upper
intercept at ca. 2.5 Ga and a Proterozoic lower intercept (Figure 9). The thin rims and
low temperature Pb loss due to radiation damage are interpreted to contribute to data
scatter and the poorly defined lower intercept date. Two of three chemically abraded
zircon fractions, including a fragment with a counterpart analyzed by standard methods,
displayed significantly greater discordance than the other analyses. In addition, eight
monazite fragments were analyzed from six different monazite crystals interpreted to
represent different populations. Imaged monazite grains were characterized by
concentric and patchy zonation, as well as homogeneous textures, with widely varying
Th, Ca, Y and U concentrations, and a broad range (0.5-75) of Th/U ratios. Analyses
ranged from concordant to several percent discordant, with *’Pb/***Pb dates from 2276.9

to 2558.6 Ma (Figure 10).
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U-Pb Ion Microprobe Analytical Results

Following U-Pb TIMS analysis, sample 02M133A was selected for ion
microprobe study to test whether the cores and rims revealed in cathodoluminescence
images correspond to the concordia intercept dates of the well-defined discordia line.
Internal structures of zircon grains imaged by cathodoluminescence are similar to those
described above. Thirty analyses carried out on twenty-six zircon crystals from the
dominant population yielded a range of apparent *’Pb/**Pb dates, including thirteen
analyses on zircon cores from 2674 + 15 Ma to 2065 + 53 Ma, twelve analyses on zircon
overgrowths from 2710 + 27 Ma to 1911 + 40 Ma, and five analyses on grains without
overgrowths from 2600 + 19 Ma to 2161 + 45 Ma (Figures 11 and 12). Zircon cores and
rims show a similar range of Th/U ratios from 0.15 to 0.42. Eight analyses on four
unzoned to weakly zoned zircon grains that are bright in CL yielded consistent dates from
1805 + 88 Ma to 1949 + 70 Ma. This subset of ca. 1.9 Ga homogeneous grains display
the lowest Th/U ratios (0.08-0.14) and lowest U and Th concentrations of the dataset.

DISCUSSION
Complex U-Pb Accessory Mineral Systematics in Polymetamorphosed Granulites
Evidence for Two Metamorphic Events: U-Pb TIMS Zircon Geochronological Data

U-Pb TIMS zircon data for three mafic granulites and one felsic granulite gneiss
define mixing lines with intercepts at ca. 2.55 Ga and ca. 1.8-1.9 Ga. The simplest
interpretation of the zircon data and internal zircon zoning characteristics is that the
intercept dates represent the timing of two metamorphic events. Zircon U concentrations
range from 40 to 720 ppm, with sample zircon systematics partially correlating with U
concentrations. Low U (< 300 ppm) zircon crystals from two samples luminesced in CL,
allowing detailed assessment of internal zoning patterns, and defined well-behaved
mixing arrays. For example, CL images of analyzed 02M133A zircon revealed sector
zoning with isometric overgrowths of variable thickness and CL brightness, typical of
zircon growth during amphibolite through granulite facies conditions (Figure 6) (e.g.
Vavra et al. 1996, 1999; Corfu et al., 2003). Zircon analyses yielded a well-defined
mixing line between 2.55 and 1.9 Ga (MSWD = 3.2). A distinct zircon subpopulation

characterized by homogeneous bright CL yielded 1.9 Ga dates interpreted to represent
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new growth at this time. Low U zircon crystals from 03-88A yielded a similar mixing
array, although no subpopulation of 1.9 Ga zircon grains was identified (Figure 7). Four
unabraded single zircon grains and fragments from these two samples were dissolved by
standard procedures in an effort to better define the lower part of the mixing array. Three
of these unabraded zircon analyses were among the youngest *’Pb/***Pb dates for these
samples, consistent with exterior portions of the grains containing generally younger
apparent ages than interior portions. In contrast to the lower U zircon grains, higher U
(typically >350 ppm) zircon crystals from two (03-175A, 03-159A) samples did not
luminesce in CL, yielded scattered arrays with analyses that plot near the upper end of the
mixing line, define ca. 2.54 to 2.56 Ga upper intercepts, and provide poorly defined
Proterozoic lower intercepts (Figures 8 & 9). The greater scatter in the zircon
systematics, despite care taken to select the least altered BE-imaged zircon grains for
analysis, is attributed to low temperature Pb loss owing to increased radiation damage in
high U zircons, as has been documented in previous studies. In zircon BE images,
fractures and darker zircon portions inferred to be metamict domains are consistent with
this hypothesis. Complete dissolution of these high U zircon crystals in short, low-
temperature leach steps during application of chemical abrasion TIMS techniques,
discussed further below, substantiates the highly metamict character of these grains.
Seven unabraded zircon grains from these two samples were analyzed by standard
procedures in order to better define the lower part of the mixing array by including
exterior portions of the crystals assumed to be younger in age than interior portions.
Although six analyses yielded younger *’Pb/**Pb dates than their abraded counterparts,
they scattered below a hypothetical mixing array between 2.55 and 1.9 Ga as defined by
the lower U zircon samples. The scatter suggests additional low temperature Pb loss in
external portions of grains most accessible to fluids and alteration, consistent with a

higher proportion of fractures in the rims of zircon grains imaged by BE.

Evidence for Recrystallization and/or Pb Redistribution in Metamorphic Zircon: U-Pb
Ion Microprobe Geochronological Data
TIon microprobe data was acquired to help decipher the significance of the mixing

lines defined by TIMS study. Low uranium zircon grains from mafic granulite sample
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02M133A were considered the ideal target for this analysis because these crystals yielded
the best-defined TIMS mixing array with little scatter, suggesting minimal secondary
effects from low temperature Pb loss. In addition, detailed thermobarometric study,
petrogenetic modeling and kinematic analysis of this same sample (Mahan et al., 2005),
provided a particularly well-documented context for interpretation of the
geochronological results.

[on microprobe analyses revealed more complex U-Pb systematics than could be
explained by two-component mixing of cores and overgrowths visible in CL images.
Both cores and overgrowths yielded a continuous range of apparent *”’Pb/***Pb dates from
2.71 to 1.91 Ga, showed no obvious correlation of dates with zonation, and yielded
consistent Th/U ratios that were independent of apparent age (Figure 13A). The data
included negatively discordant analyses that suggest the local distribution of unsupported
radiogenic Pb, a group of concordant ca. 2.55 Ga zircon analyses, as well as an array of
younger dates consistent with local loss of radiogenic Pb. In contrast, the homogeneous
bright CL zircon population is characterized by distinctly lower Th/U ratios and
consistent ca. 1.9 Ga dates, and is interpreted to represent new growth in the Proterozoic.

Potential mechanisms to explain the complex U-Pb systematics of the dominant
zircon population include episodic zircon growth from 2.55 to 1.9 Ga, 1.9 Ga diffusional
Pb loss, and 1.9 Ga zircon recrystallization. First, episodic zircon growth does not appear
to be a viable interpretation, because a similar range of apparent dates and Th/U ratios are
documented for both cores and overgrowths. For example, a zircon overgrowth with an
older date than preserved in the core (zircon #15) is inconsistent with an explanation that
only invokes episodic growth. In addition, the secondary ca. 1.9 Ga zircon population
considered to reflect Proterozoic growth is characterized by distinct CL characteristics
and Th/U ratios not observed in the dominant population. Second, simple diffusional Pb
loss at 1.9 Ga appears equally improbable, not only because of the extreme sluggishness
of Pb diffusion in zircon documented experimentally (Lee et al., 1997; Cherniak et al.
2000), but also because this mechanism cannot easily explain the heterogeneous spatial
distribution of variable dates or the local occurrence of unsupported radiogenic Pb. We
consider the simplest interpretation to be that all domains of the dominant population,

both cores and overgrowths, grew at ca. 2.55 Ga and were heterogeneously reset in the
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Proterozoic. Isotopic resetting of zircon during recrystallization, resulting in Pb loss and
local Pb gain, is an increasingly well-documented phenomenon typically interpreted to
high-temperature metamorphic processes, metasomatic alteration, and/or the instability of
impurity rich zircon domains (e.g. Williams et al., 1984; Pidgeon, 1992; Pidgeon et al.,
1998; Schaltegger et al., 1999; Hoskin and Black, 2000; Carson et al., 2002). However,
in previous studies this process has typically been identified by the textural development
of bleached zones and transgressive replacement fronts, changed Th/U ratios, and
modified trace-element compositions that affect the zircon CL characteristics. The lack
of visual evidence for replacement textures and the consistency of Th/U ratios for zircon
crystals in our investigation suggests that if recrystallization was responsible for the
perturbed U-Pb systematics, it was a somewhat different process than those proposed in
the literature.

Several observations may provide preliminary clues into this problem. Plots of
27ph/**Pb date versus U concentration reveal that the highest U zircon domains yielded
fairly consistent ca. 2.55 Ga dates, while zircon domains characterized by decreasing U
concentration display a progressively greater range of apparent zircon dates both older
and younger than 2.55 Ga, indicative of local excesses and deficits of radiogenic Pb
(Figure 13B). This pattern holds true for all zircon types, although overgrowths show a
slightly greater dispersion of dates than other zircon groups. A similar correlation is
revealed by inspection of the TIMS data for zircon grains and fragments from four
different samples that together are characterized by a greater range of uranium
concentrations than that contained within zircon from the single sample analyzed by ion
microprobe (Figure 14). The two high U and two low U zircon samples show a similar
range of Th/U ratios. The highest U (350-720 ppm) zircon grains from sample 03-159A,
excluding fraction z8 tainted by inheritance, record the least 1.9 Ga signature. Analyses
of moderate U (275-450 ppm) zircon grains from sample 03-175A display a spread to
younger *’Pb/**Pb dates. The lowest U zircon crystals (< 275 ppm) from samples
02M133A and 03-88A yield the youngest *’Pb/"Pb dates of the TIMS dataset,
suggesting the greatest 1.9 Ga perturbation of the U-Pb systematics. This trend is

opposite of that expected for effects of low temperature Pb loss associated with radiation
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damage, in which the highest U zircon grains should show the greatest discordance and
the youngest **’Pb/*”*Pb dates.

These data suggest that low U zircon domains were preferentially affected by Pb
remobilization and/or recrystallization processes. Vavra et al. (1999) reported a similar
observation for metamorphic zircon grains in the Ivrea zone, where the lowest U zircon
domains were most affected by alteration and resetting of the U-Pb systematics. In this
case visual evidence for zircon replacement was observed, and recrystallization was
attributed to a subsequent thermal pulse, consistent with petrological evidence for
regional metamorphism followed by contact metamorphism at temperatures > 650-750
°C (Barboza et al., 1999, 2000). Observations similar to those in our study were also
reported for sector zoned metamorphic zircon in northern Labrador that were affected by
contact metamorphism at temperatures >800 °C. Affected zircon displayed an array of
normally and reversely discordant analyses, low U domains typically revealed the
youngest apparent ages, consistent Th/U ratios were independent of dates, and there was
no obvious visual evidence for zircon replacement textures (McFarlane et al., 2004). The
study attributed the scattered dates to Pb remobilization during the high temperature
event.

Although observations in mafic granulite zircon grains from the East Lake
Athabasca region are not entirely identical to those in these two previous studies, the
central feature common to all three investigations is that a large range of apparent ages
were observed in the lower U domains of sector zoned metamorphic zircon that were
subjected to a second high temperature metamorphic event. The U concentrations may
correlate with trace element contents or other zircon impurities that exert control on the
susceptibility of zircon to this complex isotopic disturbance. Again, we emphasize that
metamorphic zircon grains in our study showed no CL evidence for perturbed U-Pb
systematics and did not show modified Th/U ratios, suggesting that their behavior during
high temperature metamorphic conditions is distinct from the heterochemical
transgressive replacement textures typically documented in magmatic zircon grains that
have been subjected to high temperatures. Therefore, we suggest that the zircon behavior
documented in our study may represent a different response of metamorphic zircon to

high temperatures. The lack of other examples may be due to the scarcity of exposed
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rocks containing the requisite history of two metamorphic events, necessary first to form
the primary sector zoned metamorphic zircon population and second to provide the high
temperatures necessary to perturb the U-Pb systematics in these crystals. It is possible
that this zircon behavior is not uncommon in polymetamorphic terranes, and future
investigations may reveal similar examples that will provide further insights into the
mechanisms responsible for the complex U-Pb zircon systematics documented in this

study.

Complex CA-TIMS Zircon Systematics

Chemical abrasion (CA)-TIMS geochronological techniques developed by
Mattinson (2005) are increasingly being utilized for high-resolution U-Pb zircon analysis.
This method involves laboratory annealing of radiation damage at high temperatures
followed by chemical leaching. Within typical magmatic zircon grains, leach steps are
observed to predictably remove the highest U portions of zircon grains that have
undergone Pb loss, leaving the lower U portions that have remained a closed system for
high-resolution analysis.

Following documentation of complex U-Pb systematics in granulite zircon grains
in this study via standard TIMS and ion microprobe methods, select grains were
subjected to chemical abrasion in an effort to isolate the lower U portions of zircon
crystals inferred to have been most affected by the ca. 1.9 Ga overprinting event, as
discussed above. Preliminary data acquired for both low U and high U zircon grains
revealed a complex response to the chemical abrasion process. Following a single leach
step, two fragments of low U zircon crystals from samples 02M133A and 03-88A yielded
CA-TIMS analyses that showed an unexpected enrichment in the older component
relative to fragments of the same crystals that previously had been analyzed by standard
TIMS methods. These preliminary results suggest that the lower U portions of the grains
with disturbed systematics were preferentially removed during the leach step. Additional
study is required to more thoroughly explore this problem. In contrast, four of five high
U zircon grains from samples 03-175A and 03-159A yielded CA-TIMS results that
displayed the anticipated shift toward younger *’Pb/**Pb dates, but plotted off a 2.55 to
1.9 Ga mixing array. A relatively gentle hotplate leach step was applied to these higher
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U zircon grains, because an initial suite of these crystals completely dissolved during the
standard leaching procedure, attesting to their metamict state. Previous studies on
radiation-damaged zircon crystals that were not annealed in the lab prior to leaching have
shown complex U-Pb, and possibly *’Pb-"*Pb fractionation effects during partial
dissolution, attributed to preferential leaching of Pb alpha-recoil damaged sites over
lattice-bound U, preferential removal of “*Pb in more strongly damaged sites over *’’Pb,
and/or selective removal of young radiogenic Pb over older radiogenic Pb in previously
annealed domains (e.g. Corfu, 2000; Davis and Krogh, 2000; Mattinson, 2005).
Laboratory annealing at 800-1000 °C for ~48 hours has been shown to greatly reduce U-
Pb and Pb/Pb fractionation effects in zircon characterized by low to moderate radiation
damage (Mattinson, 2005). However, more detailed analysis is required to evaluate the

effect on more highly radiation damaged crystals such as those in this study.

Evidence for Episodic Monazite Growth: TIMS Monazite Geochronological Data
Imaging techniques, chemical mapping, and IDTIMS monazite geochronological
data for the felsic granulite document multiple populations of monazite that preserve both
near concordant and discordant *’Pb/***Pb dates between 2.56 and 2.33 Ga. These data
do not define a simple mixing line. Images revealed concentrically zoned grains,
patchwork textures, and unzoned monazite crystals, with chemical maps indicating a
wide variation in Th and Y concentrations. We interpret these data to indicate multiple
episodes of growth and/or fluid mediated recrystallization processes. Electron
microprobe monazite dating has documented similar complexity of monazite populations
in Chipman domain felsic granulites. The observation that garnet exclusively contains
ca. 2.55 Ga monazite, with Archean through 1.9 Ga monazite in the matrix assemblage,
has been interpreted to indicate growth of garnet in this rock during Archean
metamorphism (Mahan et al., 2005). Complex monazite populations with similar
characteristics have also been documented in the southern domain (Baldwin et al., in
review). We ascribe the occurrence of multiple monazite populations, in contrast to the
two discrete episodes of zircon growth in this sample, to the greater propensity of

monazite to grow during metamorphic reactions and fluid mediated processes at
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conditions well below its closure temperature (e.g. Rubatto et al., 2001; Foster et al.,

2002).

Implications for Deep Crustal Residence, Continental Stability and Lithespheric
Reactivation
Timing of Multiple High-pressure Granulite Facies Metamorphic Events

Deciphering the P-T-t-d histories of multiply deformed polymetamorphic deep
crustal terranes is a difficult task, and has presented an ongoing challenge within
granulite domains of the East Lake Athabasca region. Our new U-Pb zircon data for
mafic and felsic granulite gneisses within the Chipman domain document growth of the
dominant population of metamorphic zircon at ca. 2.55 Ga, with subsequent ca. 1.9 Ga
perturbation of the isotopic systematics and limited new metamorphic zircon growth at
this time. The temporal gap between ca. 2.55 Ga growth of zircon cores and overgrowths
in the primary population is unknown, because the U-Pb isotopic systematics have been
complicated by the Proterozoic overprinting event. The mafic granulites preserve an M1
garnet-clinopyroxene assemblage (~1.3 GPa, 850 °C) interpreted to have developed from
an orthopyroxene-bearing igneous assemblage, a hornblende bearing matrix inferred to
represent subsequent retrogression, and a second prograde garnet-orthopyroxene
assemblage (~1.0 GPa, >800 °C) (Mahan et al., 2005). We link the dominant population
of ca. 2.55 Ga metamorphic zircon to growth during the first HP granulite facies
metamorphic event at conditions of ~1.3 GPa, 850 °C. Confident connection of
subsequent zircon growth with retrogression and the second episode of granulite facies
metamorphism (~1.0 GPa, 800 °C) is more difficult. The second granulite assemblage
may have developed 1) as part of the ca. 2.55 Ga metamorphic cycle, or 2) at 1.9 Ga
marked by secondary zircon growth and disturbance of the U-Pb systematics of the
primary zircon population.

Particularly important for the tectonic implications of this dataset is the
documentation of 1896.2 + 0.2 Ma HP granulite facies metamorphism at conditions of
1.0-1.2 GPa, 750 °C, based on high-precision U-Pb TIMS dates for zircon grains from
migmatized Chipman mafic granulite dikes (Williams et al., 1995; Flowers, Chapter 2).

The similarity of metamorphic conditions preserved within Chipman mafic granulite
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dikes intruded across the Chipman domain to those yielded by the second granulite facies
assemblage of the mafic gneisses is consistent with the near-synchronous development of
the assemblages at ca. 1.9 Ga. In addition, titanite grains from mafic granulite sample
02M133A yield dates of ca. 1885 Ma, consistent with ca. 1.88 - 1.90 Ga titanite dates for
five other samples across the Chipman domain, corroborating attainment of temperatures
> 650 °C at ca. 1.9 Ga (Flowers, Chapter 3). Thus, the geochronological and petrological
datasets provide strong evidence for a ca. 2.55 Ga (~1.3 GPa, 850 °C) HP metamorphic
assemblage in the mafic granulite gneisses, and a 1.9 Ga (1.0-1.2 GPa, 750 °C)
metamorphic assemblage in the Chipman mafic dikes that may also be preserved in the
mafic gneisses, indicating that at least two HP granulite facies metamorphic events

impacted the Chipman domain.

Deep Crustal Residence and Lithospheric Stability

We interpret the Chipman domain record of 2.55 Ga (~1.3 GPa, 850 °C) and 1.9
Ga (1.0-1.2 GPa, 750 °C) high-pressure granulite facies metamorphic events to indicate
an intervening 650 m.y. period during which the granulites resided in the deep crust.
Archean dehydration with minimal subsequent rehydration is consistent with evidence for
limited melting and deformation of these rocks when subjected to intense temperatures (>
750 °C) in the Proterozoic. It seems likely that if there had been significant unroofing
and subsequent burial during this interval, greater retrogression of Archean assemblages
would be observed. Variable monazite dates between 2.55 and 1.9 Ga in Chipman
domain felsic granulites, documented both by TIMS data in this study and by additional
electron microprobe monazite data (Mahan, 2005), are inferred to record episodic fluid
mediated growth during deep crustal residence, rather than discrete episodes of
metamorphism characterized by new mineral assemblages. The greater reactivity of
monazite at low temperatures explains the lack of coeval zircon growth at these times.
Additional information regarding the 2.55 to 1.9 Ga history is required to more fully
constrain the P-T path during this period.

We propose that this relatively quiescent interval of deep crustal residence is
linked with a prolonged period of lithospheric stability following assembly in the
Archean. Lithospheric stabilization was heralded by the 2.55 Ga HP-HT event, followed

33



Chapter 1 — Complex U-Pb Zircon Systematics in High-P Granulites

by isobaric cooling to a cratonic geotherm. Amalgamation of the Laurentian
supercontinent between ca. 2.02 and 1.81 Ga played a key role in perturbing the pre-
existing lithospheric configuration, and detailed studies of 1.9 Ga tectonometamorphism
have begun to yield insight into the nature of this event (Flowers, Chapter 2; Baldwin et
al., 2004). Although long-term residence of rocks in the deep crust is a common feature
of cratonic regions that have remained relatively unperturbed for billions of years,
subsequent exhumation of the lowermost crust in such regions is a rarity, owing to the
difficulty of disrupting cratons underlain by thick lithospheric mantle roots. Thus, the 1.9
Ga HP granulite facies metamorphism and subsequent exhumation of lowermost
continental crust in the East Lake Athabasca region requires an event of profound
significance. The complex record of multiple HP granulite facies metamorphic events in
the East Lake Athabasca region is the fingerprint of larger scale changes within the
underlying lithospheric mantle due to plate tectonic and asthenospheric mantle activity.
Deciphering the complex record preserved in these rocks provides a unique perspective
on the evolution of lower continental crust during the stabilization and reactivation of

continents.
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FIGURE CAPTIONS

Figure 1. Geological map of the western Canadian Shield showing major tectonic
features. AB-Athabasca basin, STZ-Snowbird tectonic zone, TB-Thelon Basin, THO-
Trans-Hudson Orogen, TO-Taltson Orogen, TMZ-Thelon Magmatic Zone, UX-Uvauk

Complex. The rectangle shows the East Lake Athabasca region enlarged in Figure 2.

Figure 2. Geological map of the East Lake Athabasca region, northern Saskatchewan.

The box outline shows the location of the study area enlarged in Figure 3.

Figure 3. Geological map of the Chipman domain with sample locations.

Figure 4. Mg map of thin section from mafic granulite sample 02M133A. Brighter
colors represent higher Mg concentrations. Red is primarily garnet and yellow is
clinopyroxene or hornblende. Blue dots represent locations of zircon crystals.
Thermobarometric estimates for the M1 assemblage in the coarse-grained Grt+Cpx
boudin, and in the Grt+Hbl+Cpx+Opx matrix are from Mahan et al. (2005). B) BE
images showing petrographic setting of zircon associated with the M1 and matrix

assemblages, with enlargements of CL images of zircon.

Figure 5. REE diagrams for Chipman domain A) mafic granulites, and B)felsic
granulites. Data for southern domain felsic granulites from Baldwin et al. (in review) are

shown in B) for reference. Chrondrite values from Sun and McDonough (1989).

Figure 6. Concordia diagram for zircon analyzed by TIMS from mafic granulite sample
02M133A with CL images of analyzed zircon crystals. Thin lines delineate where the
zircon grains were broken prior to analysis. Analyses z7.ip.ca and z17.ip.ca are grains
previously analyzed by ion microprobe from the secondary population of ca. 1.9 Ga

zircon, and CL images are shown in Figure 13.
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Figure 7. Concordia diagram for zircon analyzed by TIMS from mafic granulite sample
03-88A with CL images of all analyzed zircon crystals. Thin lines delineate where the

zircon grains were broken prior to analysis.

Figure 8. Concordia diagram for zircon analyzed by TIMS from mafic granulite sample
03-159A with BE images of all analyzed zircon crystals. Thin lines delineate where the

zircon grains were broken prior to analysis.

Figure 9. Concordia diagram of zircon analyzed by TIMS from felsic granulite sample
03-175A with BE images of analyzed zircon crystals. Thin lines delineate where the

zircon grains were broken prior to analysis.

Figure 10. Concordia diagram of monazite analyzed by TIMS from felsic granulite
sample 03-175A. Associated BE images and Th, Ca, Y and U compositional maps are

shown for the analyzed monazite.

Figure 11. Concordia diagram of zircon analyzed by ion microprobe from mafic granulite
sample 02M133A.

Figure 12. CL images for zircon from mafic granulite 02M133 with locations of ion

microprobe spots. *’Pb/**Pb and **Pb/***U dates for each spot are indicated.

Figure 13. *’Pb/**Pb ion microprobe zircon dates from mafic granulite sample 02M133A
plotted against A) Th/U ratio and B) U concentration. The two highest U points are

omitted from A) so that the figure could be plotted at the most effective scale.
Figure 14. *"Pb/*®Pb TIMS zircon dates from all four samples in this study plotted

against A) Th/U ratio and B) U concentration. Inherited zircon 03-159A, z8 is excluded
from this plot.
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Mafic granulites (Gt-cpx-hb-opy)

Orthopyrosemites

Felsic Granulites

Sample.  03-6B  03-88A  03-159A 03-168F 03-228A 03-92B  03-125A 03-158A 03-189A 03-217A 03-20C  03-182A 03-175A
Lake  Merret  Bompas  Laile Cora Wasend Bompas 1 vtle Lytle Cora Wasend Merret Cora Cora
Si02 479 49 Se 5294 S0.92 48.37 S0l 3381 s 50.07 4923 69.75 61.01 6188
T2 0.91 101 0.38 n62 (148 u67 0.37 039 068 079 0.81 092 0.73
AI203 14 87 1378 16 84 15 80 1o 169 37 764 783 391 1342 1713 17.05
FelO3 1516 1423 873 402 1181 1313 10.55 146 1324 1349 602 811 849
MnQ 028 026 01s 013 028 023 019 o019 023 022 008 009 0.13
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ABSTRACT

New geochronological, isotopic and geochemical data for a spectacular swarm of
deep crustal migmatitic mafic dikes along the Snowbird tectonic zone in northern
Saskatchewan provide important insight into processes operative during 1.9 Ga high
pressure, high temperature metamorphism. High-precision U-Pb ID-TIMS zircon dates
reveal mafic dike anatexis at 1896.2 + 0.3 Ma during syntectonic and synmetamorphic
dike intrusion at conditions of 1.0-1.2 GPa, >750 °C. U-Pb zircon dates of 1894-1891
Ma for cross-cutting pegmatites place a lower bound on major metamorphism and
deformation at exposed crustal depths. Sm-Nd whole rock isotopic data are consistent
with pegmatite derivation from a deeper mafic source, and imply the ongoing
maintenance of high temperatures following peak conditions at exposed crustal levels.
Limited ca. 1.9 Ga felsic magmatism despite high temperatures is consistent with
evidence for previous dehydration of rocks by granulite facies metamorphism in the
Archean. Inferred residence of rocks in the deep crust from ca. 2.55 to 1.9 Ga implies a
period of lithospheric stability, requiring a significant event at 1.9 Ga to disrupt a
stabilized craton. We correlate 1896 Ma Chipman mafic dike emplacement and
metamorphism with substantial, almost synchronous, 1.9 Ga mafic magmatism over a
minimum along-strike extent of 1200 km of the Snowbird tectonic zone, with additional
potential correlation to the south that would coherently link 1.9 Ga observations along the
entire 2800 km length of this dramatic geophysical lineament. These data indicate a
significant, continent-wide period of asthenospheric upwelling. This unusual deep crustal
record of lithospheric disruption, destabilization and exhumation contrasts with the long-
term stability of most cratons, and is important for understanding the lithospheric

characteristics and tectonic circumstances necessary for the survival of continents.
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INTRODUCTION

The rheological, metamorphic, and melting behavior of the lower continental
crust exerts important control on crustal differentiation and the growth and maturation of
continents. The complex interactions between deep crustal mafic magmatism, silicic
melt generation and segregation, metamorphic reactions, and deformation can profoundly
impact the behavior of the entire crustal column during vertical transfer of mass, heat and
stress through the system. In addition, the deep crust represents the most robust and
unfiltered crustal signature of activity in the underlying lithospheric and asthenospheric
mantle. Rare exhumed lower crustal terranes offer the best opportunity to directly
examine the record of processes preserved in rocks once resident in the deep crustal roots
of the continents. Data from these regions regarding changing thermal regimes in the
lower crust constrain the nature, intensity and timescales of high-pressure (HP) granulite
facies episodes. Such information can yield important insights into the crustal response
to these events and the plate tectonic and asthenospheric processes responsible for the
disruption..

Along the Snowbird tectonic zone in the western Canadian Shield, vast (>20,000
km®) well-preserved exposures of lower continental crust (1.0->1.5 GPa) in the East Lake
Athabasca region provide an exceptional opportunity to study a record of HP granulite
facies metamorphic events. In particular, the Chipman mafic dike swarm, exposed within
this tract of rocks, preserves a spectacular snapshot of the dynamic deep crustal
environment during a high temperature metamorphic event. During emplacement the
mafic dikes were metamorphosed, heterogeneously deformed, and partially melted at 1.0-
1.2 GPa, >750 °C to yield segregations of tonalitic and trondhjemitic melt (Williams et
al., 1995). We use new high-precision U-Pb ID-TIMS geochronological data, Sm-Nd
isotopic systematics, geochemistry data, and field observations to constrain the duration
of high pressure-high temperature (HP-HT) metamorphism, anatexis, and deformation in
this region, unravel the detailed evolution of the thermal regime during this event, and
assess the geodynamic significance of this intense episode of deep crustal magmatism
and metamorphism. Our results highlight the exceptional value of the East Lake
Athabasca area for understanding the nature, behavior, and response of the lower crust

during the evolution, stabilization, and reactivation of continents.
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GEOLOGICAL SETTING

The western Churchill Province of the Canadian Shield is an extensive region of
Archean crust bounded by the Thelon orogen (2.02-1.90 Ga) to the northwest and the
Trans-Hudson orogen (1.85-1.80 Ga) to the southeast (Figure 1). The Snowbird tectonic
zone, a 2800 km long NE trending gravity and magnetic anomaly, has been defined as the
boundary separating the Rae and Hearne cratons of the western Churchill Province
(Goodacre et al., 1987; Hoffman, 1988). This dramatic geophysical feature has
alternatively been interpreted as a Paleoproterozoic intercontinental suture (Hoffman,
1988; Ross et al., 1995, 2000), an Archean intracontinental strike-slip shear zone
(Hanmer et al., 1994, 1995a,b, 1997), and a Paleoproterozoic intracontinental transform
(Lewry and Sibbald, 1980). The central segment of the Snowbird tectonic zone is
characterized by an anastomosing internal geometry that recently has been attributed to
the interaction of Proterozoic intracontinental thrust and strike-slip shear zones (Mahan
and Williams, 2005). In this region, the East Lake Athabasca area in northern
Saskatchewan contains an enormous tract of high-grade rocks (1.0 to =1.5 GPa, > 750
°C), composed of several disparate domains, spanning the width of this fundamental
structure (Figure 2).

The East Lake Athabasca area includes granulite facies rocks of the East
Athabasca mylonite triangle along the trace of the Snowbird tectonic zone, deep crustal
rocks of the Rae domain to the west, and middle to upper crustal rocks of the Hearne
domain to the east. To the south the region is covered by sediments of the Athabasca
basin. The East Athabasca mylonite triangle is divided into three distinct lithotectonic
domains: 1) the Chipman domain dominated by the heterogeneous > 3.0 Ga Chipman
tonalite and the extensive Chipman mafic dike swarm recording metamorphism and
melting at 1.0-1.2 GPa and 750-850 °C (Williams et al., 1995), 2) the northwestern
domain composed of ca. 2.6 Ga mafic to felsic plutonic rocks, including the Mary granite
interpreted to be intruded and metamorphosed at 1.0 GPa (Williams et al., 2000), and 3)
the southern domain consisting of felsic and mafic granulites and minor eclogite with
peak metamorphic conditions as high as = 1.5 GPa and 900-1000 °C (Snoeyenbos et al.,
1995; Baldwin et al., 2003, 2004). A recent study in the southern domain has interpreted
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high temperature- high pressure metamorphism to have occurred at 1904.0 + 0.3 Ma
(Baldwin et al., 2004). Metamorphic study in the Rae domain at Neil Bay and Wholdaia
Lake documents granulite-facies conditions of ~ 0.8 GPa, 900 °C at ca. 1.9 Ga (Kopf,
1999; Krikorian and Williams, 2002). The Legs Lake shear zone along the eastern
margin of the Chipman domain juxtaposes granulite facies rocks of the East Athabasca
mylonite triangle with lower pressure (~ 0.5 GPa, 600-700 °C) rocks of the Hearne
domain, and is associated with regional exhumation of the deep crustal rocks ca. 1850-

1800 Ma (Mahan et al., 2003; Mahan and Williams, 2005).

CHIPMAN MAFIC DIKE METAMORPHIC ASSEMBLAGES AND FIELD
RELATIONSHIPS

The temporal record of mafic magmatism and granulite facies metamorphism
preserved by the Chipman mafic dike swarm is the primary focus of this contribution.
Originally named by Macdonald (1980), the dike swarm is exposed across the width of
the Chipman domain and is truncated laterally by domain-bounding shear zones (Figure
3). The > 3.0 Ga variably deformed Chipman tonalite gneisses, containing inclusions of
anorthosite, peridotite, and mafic and felsic granulites, compose the dominant host unit in
the domain. The more homogeneous ca. 2.6 Ga Fehr granite occurs on the eastern
margin of the domain. Chipman dikes vary in abundance across the span of the swarm,
range in width from less than one to tens of meters, and locally compose 60-100% of the
exposure. The northeast striking Chipman dikes are deformed by the more northerly
striking Legs Lake shear zone (LLSZ) on the east side of the Chipman domain (Figure 3).
Dikes decrease in abundance from the Chipman tonalite into rocks of the Fehr granite,
and are increasingly scarce eastward in rocks deformed by the LL.SZ. In the western part
of the Chipman domain dikes are locally abundant, but do not intrude the adjacent
northwestern domain. Near the western boundary of the domain the dikes are locally
deformed by mylonites of the Cora Lake shear zone, a structure interpreted to truncate
western exposures of the dike swarm (Figure 3). The center of the Chipman domain
coincides with an 8 x 20 km positive gravity anomaly that suggests additional dense

mafic material at depth (Hanmer et al., 1994).
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The Chipman dikes can be texturally and mineralogically subdivided into four
major groups: 1) migmatitic granulite dikes, 2) non-migmatitic granulite dikes, 3) non-
migmatitic amphibolite dikes, and 4) phenocrystic or phyric dikes. All dikes contain
hornblende and plagioclase, with variable titanite, ilmenite, and rutile. Migmatitic dikes
are typically characterized by cm-scale garnet and associated quartz and plagioclase
leucosomes in a hornblende and plagioclase matrix (Figure 4A). These dikes are zircon-
bearing and rarely contain clinopyroxene. Leucosomes occur as tails in strain shadows
adjacent to garnet crystals, and, with increasing melt volumes, as discrete leucosomal
segregations in pods and veins (Figure 4B). Some migmatitic dikes show an internal
textural layering parallel to dike margins. In partly migmatized dikes, the migmatitic
components typically occur along dike margins. In non-migmatitic granulite dikes,
textures range from fine-grained garnet and clinopyroxene spherical clumps in a
hornblende and plagioclase matrix, to a homogeneous fine- to coarse-grained garnet,
clinopyroxene, hornblende, and plagioclase matrix (Figure 4C). Non-migmatitic dikes
lack zircon. Amphibolite dikes are dominantly hornblende and plagioclase. Rare
phenocrystic or phyric plagioclase rich dikes contain variable hornblende, garnet and
clinopyroxene. Textures suggest that all dikes crystallized as hornblende-plagioclase
rocks and were metamorphosed to produce the granulite facies assemblages.
Amphibolite dikes either never reacted to form the high grade assemblage, or are
retrogressed varieties of granulite dikes. Additional detailed descriptions of mineralogical
assemblages and textures in the Chipman dikes, with particular focus on the migmatitic
dikes, were provided in Williams et al. (1995). Thermobarometric estimates for
migmatitic and non-migmatitic dikes using garnet hornblende thermometry and garnet-
hornblende-plagioclase barometry yielded conditions of 750-850 °C and 1.0-1.2 GPa
(Williams et al., 1995).

Migmatitic and non-migmatitic granulites dikes differ in both their distribution
and degree of strain. Migmatitic dikes occur in a 10-12 km wide corridor within the
broader Chipman dike exposures. They are abundant in the Chipman tonalite in the
southeastern part of the domain, are less common in the Fehr granite to the east, and were
not observed in the western part of the domain. In contrast, non-migmatitic granulite

dikes are distributed across the entire domain. Migmatitic dikes are always deformed by
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a moderately steep NE-striking fabric, and, in places, show evidence for having been
deformed by an earlier, shallower NW-striking fabric. These dikes are commonly
boudinaged with leucocratic melt filling boudin necks, or may be folded with leucocratic
melt tails either folded or defining the axial surface of the fold (Figure 4D). In contrast,
non-migmatitic dikes typically show less strain than migmatitic dikes, are commonly
discordant to fabric in the host rocks (Figure 4E), and may preserve original intrusive
features such as apophyses into the host tonalite. The differing strain may owe to the
inherently greater strength of dikes lacking leucosomes and/or later intrusion of non-
migmatitic dikes that missed an earlier phase of deformation.

Documentation of the detailed spatial relationships of dismembered, folded,
variably deformed, and cross-cutting dikes suggests their synmetamorphic and
syntectonic emplacement at granulite facies conditions (Williams et al., 1995). For
example, observations of dikes with straight leucocratic tails cutting dikes with folded
leucocratic tails (see Williams et al. 1995, figure 7) are most simply explained by
episodic or continuous migmatization of dikes during intrusion rather than a single
discrete anatectic event that postdated their emplacement. Importantly, this interpretation
implies that determination of the time of dike anatexis also constrains the date of dike
intrusion. Although intrusion of multiple dike swarms of widely varying ages with more
than one episode of dike migmatization cannot be currently be excluded as a means of
explaining the field relationships, this requires a significantly more complex geological
history that is not supported by the data in this study.

Pegmatitic dikes and segregations intrude dikes of varying textures and
metamorphic assemblages (Figure 4F). Undeformed varieties provide the potential to
impose a local lower temporal bound on major magmatism and deformation in the
domain. With the exception of the pegmatites and migmatitic dike leucosomes, limited
melting during mafic dike intrusion is indicated by field relationships. Centimeter scale
felsic bands, segregations, and leucosomal material in the hornblende-bearing Chipman
tonalite are inferred to be coeval with Chipman dike intrusion based on structural and
lithological relationships. In the biotite-bearing Fehr granite, more abundant felsic

segregations up to a half-meter in scale are either directly or indirectly associated with
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mafic dikes and provide the most convincing evidence for melting of host felsic rocks

during dike emplacement (Figure 4G).

WHOLE ROCK GEOCHEMISTRY

Sixteen samples of Chipman dikes, representing the full spectrum of observed
textural variation, were analyzed for major and trace elements by XRF and ICPMS,
respectively, at Activation Laboratories. Data are reported in Table 1. Data were
acquired to 1) evaluate the nature of the dike magma source, and 2) assess the importance
of compositional factors for dike anatexis by establishing whether dike geochemistry
patterns can be linked with textural and mineralogical observations. These results
supplement major element data previously obtained for nine Chipman dike samples
(Williams et al., 1995). Migmatitic dikes were characterized by the greatest textural
heterogeneity, and particular care was taken to process samples representative of the bulk
composition.

The dikes contain SiO, ranging from 46.1 to 52.2% and MgO from 3.3 to 7.1%.
Samples in this study are relatively high in iron (iron as Fe,O; = 13.5 to 19.5%) and low
in ALO, (11.5 to 15.5%), with the exception of two plagioclase rich phyric to
phenocrystic dikes (Figure SA). Normative calculations and projections into the ol-cpx-
gtz and ol-pl-qtz ternary systems result in a distribution of data that plot into the qtz and
plag fields, consistent with most dikes representing melt compositions rather than
residues of fractional crystallization. Spider diagrams reveal high field strength element
(HFSE) enrichments and large ion lithophile element (LILE) depletions (Figure 5B).
Rare earth element (REE) patterns are relatively flat, implying an absence of significant
garnet in the source. Generally, migmatitic dikes contain higher Si0O,, Fe,O;, Ta, Zr and
Nb, and lower MgO and Al,O,, than non-migmatitic dikes (Figure 5A). Four distinct
REE patterns generally correlate with the four major textural and mineralogical groups
(Figure 5C): 1) migmatitic granulite dikes contain the highest REE contents, 2) non-
migmatitic granulite dikes are characterized by an array of lower REE contents, 3)
amphibolite dikes are defined by distinctly flatter REE patterns than those in the granulite
facies dikes, and 4) phenocrystic and phyric dikes contain the lowest REE contents and

are characterized by Eu anomalies. The occurrence of Eu anomalies in the two

66



Chapter 2 — Timescales of High-P Metamorphism and Anatexis

plagioclase-rich dike samples is consistent with the involvement of plagioclase
fractionation near their source or during emplacement. A distinct coarse-grained sample
from the center of a non-migmatitic granulite dike (02-112) is characterized by a shallow
positive REE slope, contains the highest analyzed Mg content suggestive of a more
primitive composition, and is considered from field observations to be one of the latest

intruded dikes.

SM-ND ISOTOPIC SYSTEMATICS
Analytical Methods

Whole rock powders were produced using standard shatterbox procedures.
Sample powders (100-200 mg) were spiked with a mixed '*Sm-"""Nd tracer, completely
dissolved in HF-HNO; in Teflon pressure vessels at 220 °C for five days, converted to
6M HCI at 180 °C for 24 hours, then repeatedly fluxed in 6M HCI at 120 °C. The REE
were separated from solution using cation exchange chemistry, followed by usage of LN-
spec resin to isolate Sm and Nd. All analyses were carried out on the Massachusetts
Institute of Technology Isoprobe-T mass spectrometer. Sm was loaded onto single Ta
filaments with 1M H;PO, and analyzed as metal ions in multicollector static mode. Nd
was loaded on triple Re filaments with 0.1M H,PO, and analyzed as metal ions in
dynamic multicollector mode. Sm-Nd results and details regarding isotopic ratio

corrections are provided in Table 2.

Analytical Results

Whole rock Sm-Nd isotopic systematics were determined for the same sixteen
Chipman dike samples analyzed for major and trace elements. In addition, whole rock
Sm-Nd data were acquired for ten mafic granulite gneisses, four Chipman tonalite
gneisses, and three pegmatite samples to place constraints on source characteristics.
Fifteen of the Chipman dike samples have present day ¢, values from —16.8 to —3.2 and
reflect time-integrated LREE enrichment. One distinct dike (02-112) is characterized by
a present day &, value of +10.6 and time-integrated LREE depletion, consistent with its

HREE pattern. &y, values at the time of 1.9 Ga granulite facies metamorphism range
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from 9.1 to +2.2, with depleted mantle model dates (Tp,,) from 4.20 Ga to 2.42 Ga
(Figure 6A). A plot of &, values at 1.9 Ga vs. weight percent SiO, for the fifteen dikes
characterized by time-integrated LREE enrichment reveals that dikes containing higher
(> 50.9%) SiO, content display an inverse correlation between ¢y, and SiO,, while dikes
with lower (< 50.9%) SiO, content lack this correlation (Figure 6B). This observation
suggests the influence of crustal assimilation on the subset of dikes, including the
migmatitic dikes, containing higher SiO..

Five Grt+Cpx+Opx+Pl mafic granulites and five Opx+Pl mafic granulites,
collected from lenses in the Chipman tonalite in the western and northern parts of the
Chipman domain, were selected for Sm-Nd isotopic analyses. Previous data have
established these mafic granulite lenses as Archean in age (Flowers, Chapter 1). Nine of
ten mafic granulite samples are characterized by time-integrated LREE enrichment and
present day €, values from —24.5 to —0.9. One mafic granulite (03-228A) reflects time-
integrated HREE enrichment, and contains a present day ey, value of 17.5. The &y4
values at 2.6 Ga range from —7.29 to 2.72, with depleted mantle model dates (Ty,) from
3.91 Ga to 2.91 Ga (Figure 6C). Our data show a correlation between €4 values at 2.6
Ga and SiO, content, consistent with the assimilation of felsic crustal material with more
evolved Nd isotopic signatures during the generation and emplacement of the protolith
(Figure 6D). The mafic granulite sample with time-integrated HREE enrichment
contains one of the lowest SiO, contents, suggesting it was least affected by crustal
contamination.

The four Chipman tonalitic gneiss samples display evolved Nd isotopic
compositions, with time-integrated LREE enrichment, present day €y, values from —45.7
to —35.0, &y, values at 3.0 Ga from -4.8 to —2.2, and depleted mantle model dates from
3.59 to 3.31 Ga (Figure 6C). These data are consistent with Sm-Nd data acquired for
three previous samples of Chipman tonalite characterized by present day ey, values from
—-58.7 to -43.3 (Hanmer, 1994). The signature of crustal contamination preserved in the
Chipman mafic dikes and Archean mafic granulite gneisses can be explained by
assimilation of the host Chipman tonalite with its highly evolved Nd isotopic

composition.
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Sm-Nd data were acquired for three pegmatite samples that cross-cut Chipman
mafic dikes to evaluate whether they were derived from a mafic source or from the
Chipman tonalitic gneisses. The pegmatites reflect time-integrated LREE enrichment,
with depleted mantle model dates from 2.67 to 2.33 Ga. Nd signatures for two of three
pegmatite samples are characterized by present-day ey, values from —27.9 to —16.5 and
€nq Values at 1.9 Ga from —7.2 to —3.0. These data are consistent with derivation from the
Chipman mafic dikes or mafic gneisses, and are incompatible with generation by melting
of the Chipman tonalite (Figure 6C). Data for the third sample containing present-day
and 1.9 Ga g, values of —47.1 and —13.4, respectively, are compatible with genesis from
the same source as the other pegmatite samples, but the more negative signature suggests

a contribution from a more evolved component such as the Chipman tonalite.

U-PB GEOCHRONOLOGY
Analytical Methods

Mineral separation was accomplished using standard crushing, water table, heavy
liquid, and magnetic separation techniques. Representative zircon grains from selected
samples were mounted in epoxy, polished to expose grain interiors, and characterized
with cathodoluminescence (CL) and/or backscattered-electron (BE) imaging to document
internal zoning (Figures 7 and 8). Zircon grains for analysis were either selected from
this suite of imaged grains, or hand-picked from the general population using the images
as a guide. Single grain zircon fractions were photographed, air-abraded with pyrite after
the method of Krogh (1982), measured, and rinsed and ultrasonicated in 3 M HNO,.
After initial analyses established greater discordance in higher U zircon, a subset of
grains were subjected to a version of the chemical abrasion technique (Mattinson, 2005),
in which zircon grains were placed in quartz crucibles in a muffle furnace at ~900 °C for
~60 hours, loaded into Teflon FEP microcapsules and leached in 29 M HF at ~180 °C for
12 hours or into savillex beakers and leached in 29 M HF at ~80 °C for 21 hours, then
transferred to savillex beakers and prepared for dissolution according to standard
procedures. Zircon fractions dissolved early in the study were loaded with distilled
acetone into Teflson FEP microcapsules, ultrasonicated and fluxed at ~80 °C in 3 M

HNO;, and rinsed with several capsule volumes of 3 M HNO,. Zircon fractions dissolved

69



Chapter 2 — Timescales of High-P Metamorphism and Anatexis

later in the study were loaded into savillex beakers, ultrasonicated and fluxed at ~80 °C in
3 M HNO;, rinsed in distilled acetone and high-purity water, and loaded into Teflon FEP
microcapsules in high-purity water with no subsequent rinsing in the capsules. Samples
were spiked with a mixed **Pb-?*U-"*U tracer, dissolved in 29 M HF at 220 °C for 48-
96 hours, and converted to 6 M HCI at 180 °C for 12-24 hours. Pb and U were
chemically separated using HCI anion exchange chemistry modified after Krogh (1973).
Pb and U were loaded on single Re filaments with a silica gel 0.1 M H,;PO, emitter
solution and analyzed on the MIT VG Sector 54 mass spectrometer. Pb isotopic ratios
were measured either by peak jumping using an axial counting Daly detector, or
dynamically with Faraday cups and the Daly detector, peak-jumping **Pb into the axial
position to obtain a real-time Faraday-Daly gain calibration. U was measured as an
oxide, typically in static mode on three Faraday cups, and less commonly by peak-
jumping into the Daly detector for smaller amounts of uranium. U-Pb data and details
regarding isotopic ratio corrections are provided in Table 1. Concordia diagrams for all
samples are shown in Figures 9 and 10. Data are reported as *’Pb/*Pb weighted mean
dates, except for samples for somewhat higher discordance for which a york fit upper
intercept date is reported. Decay constant and U-Pb tracer calibration uncertainties are
systematic errors not included in the cited dates, as these are unnecessary for comparison
of data acquired within a single lab. Systematic effects of decay constant inaccuracies
are minimized as a function of increasing age, and most *’Pb/***Pb dates in this study are

within error of concordia when decay constant uncertainties are considered.

Sample Selection

Five representative samples of migmatitic dikes were selected for U-Pb zircon
analysis to place precise constraints on the timing of granulite facies metamorphism and
anatexis (Figure 3). Due to field observations suggesting episodic dike migmatization
during sequential dike intrusion and metamorphism, rather than a single discrete period
of anatexis postdating emplacement of the swarm, samples across the corridor of
migmatitic dikes were targeted to test for spatial variability in the timing of dike
migmatization. Morphological and internal zoning characteristics of zircon extracted

from these samples, described further below, are consistent with metamorphic growth or
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crystallization in leucosomal melts (e.g. Corfu et al., 2003; Vavra et al., 1999). Although
non-migmatitic granulite and amphibolite dikes were also processed for accessory
minerals, no zircon was recovered. This supports the interpretation of zircon growth
owing to reactions associated with mafic dike anatexis, rather than due to igneous
crystallization during dike intrusion.

Late, biotite-bearing, cross-cutting and variably deformed pegmatitic segregations
and dikes intrude Chipman mafic dikes and other rocks of the Chipman domain. Two
pegmatitic veins and two pegmatitic dikes were selected for U-Pb zircon work to place a
lower bound on felsic magmatism and local deformational fabrics in the Chipman
domain. Three of four samples contained zircon characterized by high U contents (up to
1900 ppm), that decreased the probability of concordant analyses due to long-term

accumulation of radiation damage and associated Pb loss at low temperatures.

Analytical Results
Migmatitic Dikes

Sample SZ00-196C, containing cm-scale garnets with cm-scale leucosome tails,
was collected from a zone of exceptionally abundant migmatitic dikes at Woolhether
Lake. The distribution and petrographic setting of zircon in this sample was
characterized by collection of major element and Zr thin section maps with the electron
microprobe (Figure 7A). Dozens of ovate to spherical zircon, typically < 15 um up to 40
mm in diameter, occur as inclusions in amphibole in one of several settings: in amphibole
grains in the matrix, in amphibole inclusions in garnet, or associated with other inclusion
phases in amphibole such as titanite (Figure 7B,C). CL images commonly show distinct
internal and external zircon domains of contrasting luminescence. Rare, irregular < 30
um zircon agglomerations were identified adjacent to garnet. Crushing procedures
extracted clear to light pink zircon that were large (up to 500 um) prismatic and tabular
or small (< 100 um) spherical to ovate (Figure 7D). Analyzed zircon grains were U-poor,
with the lowest mean U concentrations in this study (<35 ppm), and low Th/U ratios
(0.01-0.03). Six single grain and one multi-grain zircon fractions yielded a weighted

mean *"Pb/**Pb date of 1896.7 = 0.8 Ma (MSWD = 0.47).
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Sample 02-58 is a ~ 3m wide dike from Chipman Lake that is migmatitic
throughout its entire width and contains mm-cm scale leucosome stringers with small
mm-scale garnets. Zircon grains are clear, spherical to ovate, typically < 100 um in
diameter, with low Th/U ratios (0.05-0.10). Six single grain zircon fractions yielded a
weighted mean *"Pb/***Pb date of 1896.0 = 0.7 Ma (MSWD = 1.83), with a seventh older
analysis excluded.

Migmatitic dike sample 02-88, collected from Steinhauer Lake, contains coarse
cm-scale garnets and asymmetric leucosome tails. Leucosomes in this dike contain both
the earlier shallow northwest and the dominant northeast fabrics. Zircon grains are
typically 60-120 um in diameter, are clear and ovate to spherical in morphology, and are
characterized by low Th/U ratios (0.01-0.08). Seven single grain zircon fractions yielded
a weighted mean *’Pb/*®Pb date of of 1895.5 = 0.5 Ma (MSWD = 0.39), with an eighth
younger analysis excluded.

Migmatitic dike sample 02-97 intrudes the Fehr granite east of Steinhauer Lake.
This sample contained a discrete leucocratic segregation connected to veins emanating
from cm-scale garnets and associated leucosome tails in the bulk of the dike (similar
relationships shown in Figure 4B). Zircon grains ranged from larger-sized (>150 um)
pink, prismatic, tabular to ovate crystals to smaller-sized (< 150 um) clearer, facetted,
ovate to spherical crystals. Th/U ratios are low (0.01-0.02). Four single grain zircon
fractions yielded a weighted mean **’Pb/*Pb date of 1896.8 = 0.5 (MSWD = 0.81).

Sample 03-52 is a somewhat atypical migmatitic dike, with remnant garnet-
clinopyroxene textures like that in the non-migmatitic granulite dikes. The dike is
deformed, ranges in width from 30 to 150 c¢m, and intrudes Chipman tonalite on southern
Chipman Lake. Zircon grains range from tabular and prismatic to facetted and spherical.
Grain size ranges up to 400 um in length for the tabular population, and is generally <
150 um for the spherical grains. CL images reveal internal irregular, sector-type
zonation, outer shells of concentric zoning, and mineral inclusions such as apatite and
quartz (Figure 8A). Fourteen of sixteen zircon fractions were imaged prior to analysis.
Zircon grains have U concentrations of 25-85 ppm, with low Th/U ratios from 0.02 to
0.08. Six zircon fractions yielded a weighted mean *’Pb/**Pb date of 1896.3 + 0.5 Ma

(MSWD = 0.45), consistent with the data from the other migmatitic dikes. However, ten
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additional single zircon grains and zircon fragments yielded a range of *’Pb/**Pb dates
from 1898.9 = 1.8 Ma to 2015.5+ 1.1 Ma. We interpret the scatter of dates along
discordant arrays trending toward older ages to indicate the presence of an older inherited
zircon component. A general correlation between Th/U ratio and zircon date is consistent
with the inherited zircon containing higher Th/U. Analyses of fragments from the same
zircon grain yield 1896 Ma and older dates (e.g. z9a and z9b dates of 1920.7 + 2.5 Ma
and 1896.1+ 7.0 Ma, respectively, and z11la and z11b dates of 1922.0 + 1.1 Ma and
1896.4 = 2.4 Ma, respectively), similarly consistent with the tainting of select fragments

by inheritance.

Pegmatitic Dikes and Segregations

Sample 01-SZ26 is an irregular pegmatite vein from Woolhether Lake that
intrudes Chipman tonalite adjacent to a migmatitic dike. Zircon grains from this sample
are large (up to 300 um), pinkish brown, and high in U (up to 770 ppm), with Th/U ratios
from 0.06 to 0.1. The grains have good crystal faces, are tabular to round, and do not
luminesce in CL. BE images are relatively homogeneous, (Figure 8B) but reveal
extensive fracturing in most grains, common alteration along fractures, and the presence
of occasional xenocrystic cores. Six single grain zircon fractions have *’Pb/**Pb dates
from 1890.2 = 0.8 to 1891.7 + 0.8, with an additional analysis distinguishably younger at
1887.2 £ 1.0 Ma. Up to 0.7% discordance, as well as high common Pb in several
analyses, is attributed to the somewhat metamict, fractured nature of the grains due to
high U content. Excluding the two youngest analyses, five zircon fractions yielded a
York fit upper intercept date of 1890.8 = 1.4 Ma (MSWD = 0.55).

Sample SZ00-196A is a biotite-bearing pegmatite that cross-cuts an extensive
zone of migmatitic dikes at Woolhether Lake. The sample was collected from the same
outcrop as migmatitic dike sample SZ00-196C. Internally, the dike lacks a fabric, but is
broadly folded at the outcrop scale. Zircon grains are typically hundreds of microns in
diameter, pinkish-brown, prismatic, tabular to ovoid, and do not luminesce in CL. BE
images generally show little internal structure, except for occasional cores, and some
alteration along fractures (Figure 8C). Zircon grains contain the highest mean U contents

of the study (500 — 1900 ppm), and Th/U ratios of 0.07 to 0.11. High U concentrations,
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radiation damage, and associated low temperature Pb loss are likely responsible for the
0.7-2.0 % discordance of six fractions reported in Table 3, and the significantly greater
discordance in other fractions analyzed from this sample. *’Pb/***Pb dates range from
1891.8 £ 0.8 Ma to 1895.5 = 0.8 Ma.

Sample 02-77B is an irregular 10-25 cm wide biotite-bearing pegmatitic vein that
intrudes a migmatitic dike at Steinhauer Lake. Zircon grains are typically 150-250 um in
length (up to 400 wm), pinkish-brown, prismatic, and tabular, with common inclusions,
and characterized by Th/U ratios of 0.01 to 0.04. High U contents (350-1500 ppm),
radiation damage, and inferred low temperature Pb loss in this sample, as in the two
previous pegmatite samples, contributed to significant discordance in most analyzed
grains, such that only the four most concordant analyses of fifteen analyzed grains are
reported in Table 3. Targeting of smaller-sized grains for analysis improved zircon
concordance. The upper intercept date of a York fit through these four zircon analyses is
1893.4 + 0.9 Ma (MSWD =0.94).

Sample 02-76B is a 40-50 cm wide biotite-bearing pegmatite dike that cross-cuts
a deformed granulite facies non-migmatitic dike at Chipman Lake. Zircon grains are up
to 500 um in length, brown, prismatic, and either tabular or ovoid in morphology. U
concentrations and Th/U ratios in analyzed zircon grains range from 15 to 85 ppm, and
0.24 to 0.40, respectively. CL images show irregular zoning in both tabular and ovoid
zircon crystals (Figure 8D), with occasional xenocrystic cores. Four of six fractions of
single zircon fragments yielded a weighted mean *’Pb/*®Pb date of 1890.5 + 0.4 Ma
(MSWD = 0.04).

DISCUSSION
Implications for the Evolution of the 1.9 Ga Deep Crustal Thermal Regime
Intensity of HP Granulite Facies Metamorphism

Chipman dike thermobarometric data, metamorphic assemblages in existing mafic
lithologies, and the extent of melting in host felsic gneisses allow us to evaluate the
intensity of temperatures associated with Chipman dike HP metamorphism. Migmatitic
and non-migmatitic dikes record conditions of 750-850 °C, 1.0-1.2 GPa (Williams et al.,

1995), and are considered minimum temperature estimates because of evidence for
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diffusional reequilbration of phases. This is compatible with a variety of experimental
studies demonstrating that vapor-absent melting of mafic rocks at 1.0-1.2 GPa can occur
at temperatures of 850-1000 °C (e.g. Rapp et al., 1991; Rushmer, 1991; Patino Douce and
Beard, 1995; Rapp and Watson, 1995; Springer and Seck, 1997), and possibly as low as
750 °C (Wolf and Wyllie 1993, 1994, 1995). Coeval conditions of >750 °C, 1.0-1.2 GPa
preserved in Archean mafic granulite gneisses not immediately adjacent to dikes
(Flowers, Chapter 1; Mahan et al., 2005) are consistent with the attainment of high
temperatures across the Chipman domain, even outside the corridor where the most
abundant Chipman dikes are exposed.

Despite similar P-T constraints for dikes across the swarm, only a subset
underwent anatexis. Our field and geochemical data suggest that composition may be an
important factor for this process. Internal dike-parallel banding of migmatitic and non-
migmatitic textures within a single dike is consistent with successive intrusion of
compositionally varying magma batches that may have controlled dike reaction history.
Geochemical data suggest that typical migmatitic dikes are characterized by higher SiO,,
HFSEs and REEs, and lower MgO and Al,O; than typical non-migmatitic dikes. These
dike compositional variations cannot be simply explained by inappropriate integration of
melanosomal and leucosomal fractions during sampling of migmatitic dikes (for
example, SiO, and Al,O, are not positively correlated). The inverse correlation between
enq and S10, for migmatitic dikes suggests that assimilation of older crustal material may
have increased the SiO, content of some dike magma batches, and thus made these dikes
more susceptible to subsequent migmatization. Williams et al. (1995) previously
suggested that the generally higher SiO, contents of migmatitic relative to non-migmatitic
Chipman dikes may have played a role in controlling dike reaction history. Similarly, the
abundance of quartz has been interpreted as the primary control on reaction progress in
migmatitic mafic granulite gneisses of the Kapuskasing Structural Zone, with
compositional variation in Fe exerting a secondary influence (Hartel and Pattison, 1996).

Limited anatexis of host felsic gneisses during subjection to this intense
metamorphic event suggests that the rocks were vapor absent prior to dike
metamorphism. This represents an endmember response of the crust to granulite facies

conditions. At pressures of 1.0-1.5 GPa, water-saturated tonalite melting occurs at
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relatively low temperatures of 625-650 °C (e.g. Lambert and Wyllie, 1974; Schmidt,
1993), but the vapor absent tonalite solidus is defined by biotite and/or hornblende
dehydration melting at minimum temperatures of 855-900 °C (Skjerlie and Johnston,
1993, 1996; Patino-Douce, 2005). Compositional effects such as low Ca in the bulk
tonalite or high Ti and F in biotite can extend the stability of hornblende and biotite to
even higher temperatures (Skjerlie and Johnston, 1993, 1996). At 1.0-1.5 Gpa pressures,
biotite dehydration occurs at lower temperatures than amphibole dehydration, consistent
with the observation of more abundant melts in the biotite-bearing Fehr granite than in
the hornblende-bearing Chipman tonalite. We attribute the absence of free water in the
felsic host gneisses to an Archean metamorphic event that left the Chipman domain rocks
resistant to melting during subsequent Proterozoic metamorphism (Flowers, Chapter 1;
Mabhan et al., 2005).

We suggest that the entire Chipman domain was temporarily elevated to
temperatures =750 °C during Chipman dike intrusion and metamorphism. Spatial
heterogeneity in patterns of mafic dike and tonalitic gneiss anatexis can be attributed to
lateral peak temperature and geochemical variability. The attainment of the hottest
temperatures that exceeded the dry amphibolite and tonalite solidi may in part be locally
linked to successive intrusion and crystallization of dike magmas (e.g. Petford and
Gallager, 2001). The susceptibility of both mafic dikes and heterogeneous felsic gneisses
to anatexis, as discussed above, is also compositionally dependent. Thus, the complex
interaction of thermal and compositional factors likely controlled melting of rocks in the

Chipman domain during 1.9 Ga HP granulite facies metamorphism.

Constraints on the Timing and Duration of Metamorphism

Metamorphic zircon grains in Chipman migmatitic mafic dikes permit precise
dating of anatexis during 1.9 Ga HP granulite facies conditions. Field relationships,
discussed previously, are most simply explained by synmetamorphic and syntectonic
emplacement of the Chipman dikes, with episodic or continuous migmatization of dikes
during intrusion (Williams et al., 1995). This suggests that dates for dike anatexis also
constrain the timing of dike intrusion. The possibility that some dikes were emplaced at

an earlier time cannot be entirely excluded, although broadly similar dike geochemistry
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patterns are consistent with mafic magma derivation from a single source region. Four
migmatitic dikes distributed across the corridor of dike anatexis yield indistinguishable
weighted mean *’Pb/*®Pb dates from 1896.7 + 0.8 Ma to 1895.5 + 0.5 Ma. A fifth
migmatitic sample contains a population of 1896.3 + 0.5 Ma zircon crystals, with
additional grains characterized by minor inheritance. These data suggest that the time
span for dike migmatization at exposed crustal levels was < 2.5 m.y., established by the
errors on the range of sample zircon dates. It is unclear whether the onset of high-grade
conditions in the Chipman domain coincided with dike emplacement, or commenced at
an earlier time. Regardless, we consider the weighted mean *’Pb/**Pb date of 1896.2 +
0.3 Ma (MSWD = 2.0) for thirty zircon analyses from the five migmatitic Chipman dike
samples as the best temporal constraint on emplacement, HP granulite facies
metamorphism (>750 °C, 1.0-1.2 GPa), and anatexis of the Chipman dikes.

U-Pb titanite data support the continued elevation of temperatures = 600-650 °C
following anatexis of currently exposed Chipman mafic dikes. Titanite grains from six
samples distributed across the Chipman domain yielded dates from 1898 to 1882 Ma
(Flowers, Chapter 3). This implies either that temperatures = 600-650 °C were
heterogeneously maintained for 14 m.y. following of Chipman dike anatexis, or that parts
of the domain were reheated following immediate post-1896 Ma cooling. These data
suggest the ongoing persistence of a heat source following mafic dike intrusion and
anatexis.

U-Pb zircon and Sm-Nd whole rock data for pegmatites similarly imply
protracted maintenance of high temperatures at deeper crustal levels following anatexis
of currently exposed dikes. Four cross-cutting pegmatitic veins and segregations yielded
U-Pb dates from 1893.4 + 0.9 Ma to 1890.8 + 1.4 Ma, distinctly postdate the timing of
1896.2 + 0.3 Ma migmatization of exposed dikes, and impose a lower bound for major
magmatism and deformation in Chipman domain exposures. The Nd isotopic signatures
of two pegmatite samples are characterized by ey, values at 1.9 Ga from -7.2 to -3.0.
Comparison with the Nd isotopic signatures of the Chipman tonalite, the mafic granulite
gneisses, and the Chipman mafic dikes indicates that the pegmatite data are consistent
with derivation from either the mafic gneisses or mafic dikes by amphibolite anatexis.

Data for a third pegmatite sample suggest a similar genesis, but with a greater
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contribution from a more evolved component like the Chipman tonalite. Pegmatite
generation from mafic lithologies by amphibolite anatexis requires temperature >750 °C,
which we interpret to signify the ongoing occurrence of granulite facies conditions at
deeper crustal levels. Pegmatite emplacement in cross-cutting geometries from 1894 to
1891 Ma thus reflects intrusion into a cooler thermal regime at the shallower currently
exposed levels, postdating earlier 1896 Ma higher temperature anatexis of Chipman
mafic dikes at this depth. High temperature cooling from 1896 Ma to 1894-1891 Ma at
the current level of exposure may be due to a degree of unroofing associated with
extension during mafic dike emplacement, or initial decay of the thermal event.
However, as noted above, the titanite data constrain temperatures = 600-650 °C in
portions of the domain through 1882 Ma. Together, these constraints on the evolution of
the thermal regime suggest a somewhat protracted (~14 m.y.) metamorphic event

following attainment of peak conditions.

Implications for Lithospheric Reactivation and Mantle Dynamics
Correlation of Mafic Magmatism

Our finding of the 1896 Ma timing for intrusion and metamorphism of the
Chipman mafic dike swarm documents a major episode of Proterozoic mafic magmatism
along the central Snowbird tectonic zone. We suggest that the Chipman dikes can be
correlated with mafic dikes for a minimum strike-length of 800 km along the Snowbird
zone, establishing the Chipman dikes as a substantial mafic dike swarm of regional
significance. The Virgin River dikes are along-strike upper amphibolite facies mafic
dikes exposed 400 km southwest of the Chipman dikes, are truncated on their eastern side
by the Virgin River shear zone, and have previously been correlated with the Chipman
dikes and Legs Lake shear zone (Figure 1) (Card, 2002; Mahan et al., 2003). Further
northeast in the Selwyn lozenge, 1.1 GPa, 800 °C granulite facies mafic dikes intrude
rocks similar to the Chipman tonalite and are similarly truncated on their eastern side
with a thrust sense shear zone considered the continuation of the Legs Lake shear zone
(Mahan and Williams, 2005). In addition, the NE striking Kazan dikes 400 km northeast
of the East Athabasca region contain remnant garnet and clinopyroxene, have yielded

bulk K-Ar dates of 1900 Ma, and intrude a 25-30 km wide zone along the Tulemalu fault
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zone (Fahrig et al., 1984) that has been correlated with the Virgin River and Legs
Lake/Black Lake shear zones (Tella and Eade, 1986). The similar relationships,
kinematics, location and apparent timing of mafic dikes and shear zone for 800 km along
strike provide strong evidence for a genetic link among these exposures.

Intrusion of the extensive Chipman mafic dike swarm was almost precisely
coincident with major mafic magmatism along the northern Snowbird tectonic zone, 600-
800 km northeast of the East Lake Athabasca area. The 850 km® Kramanituar complex is
dominated by granulite facies metagabbro, norite and anorthosite that was intruded at
1902 +1.6 Ma, with subsequent cooling through the 400-450 °C closure temperature of
rutile at ca. 1901 Ma (Sanborn-Barrie et al., 2001). Mafic granulite dikes in the Uvauk
mafic complex are inferred to have a similar origin and age as mafic granulites in the
Kramanituar complex (Mills et al., 2000). The 2500 km® Daly Bay complex is an
extensive body of mafic to anorthositic rocks, tonalite and paragneiss with preliminary
1.9 Ga zircon dates (Hanmer and Williams, 2001; Williams personal communication or
W. Davis, unpublished data?). In addition, the southern subsurface extension of the
Snowbird tectonic zone has been inferred to record the opening and closure of a marginal
Proterozoic ocean basin (Ross et al., 1995, 2000). Ocean basin development is
tectonically compatible with coeval along-strike mafic magmatism. These data indicate
widespread distribution of 1.9 Ga mafic magmatism for > 1200 km of the Snowbird
tectonic zone, and potential links to the south that would extend the correlation along the
entire 2800 km length of the feature.

Geochemical patterns and isotopic signatures of the Chipman dikes are consistent
with derivation from a predominantly depleted mantle source with contribution from a
component enriched by subduction related processes. HFSE depletions and LILE
enrichments are characteristic of arc magmas, and could reflect crustal contamination by
extensive 2.6 Ga plutonic rocks across the region or derivation from lithospheric mantle
previously affected by the 2.6 Ga granite generation processes. Chipman dike ey, values
at 1.9 Ga range from -9.1 to +2.2, but exclusion of dikes with higher SiO, content that
may have been influenced by crustal assimilation yields more restricted values from -2.1
to +2.2. For comparison, ca. 1.83 Ga ultrapotassic rocks of the Christopher Island

Formation, intruded across a large area in the northern part of the western Churchill
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Province, are characterized by arc-like trace element patterns and e, values at 1830 Ma
from —10.5 to -6, and have been interpreted to represent derivation from an extensive
enriched reservoir isolated since an Archean metasomatic subduction-related event
(Cousens et al., 2001). The ca. 2.45 Ga Kaminak dikes, ca. 2.19 Ga Tulemalu dikes, and
ca. 2.2 Ga basaltic flows of the western Churchill Province have similarly been inferred
to contain a contribution from an enriched component (Cousens et al., 2001; Sandeman et
al., 2003). Chipman dike patterns are also compatible with a minor enriched component,
although the data do not require contribution from an enriched reservoir isolated since 2.6

Ga.

Asthenospheric Upwelling and Lithospheric Reactivation

In the East Lake Athabasca area, evidence for a prolonged period of lithospheric
stability preceding 1.9 Ga activity attests to the significance of the Proterozoic event.
Archean deep crustal granulite facies metamorphism at ca. 2.55 Ga has been interpreted
in the Chipman, northwestern, and southern domains (Flowers, Chapter 1; Mahan et al.,
2005; Baldwin et al., 2004; Williams et al., 2000), with subsequent deep crustal 1.9 Ga
metamorphism implying an intervening period of deep crustal residence and lithospheric
stability. An episode of Archean metamorphism is entirely consistent with the
dehydrated nature of Chipman domain lithologies, and their resistance to melting and
deformation, when subjected to high temperatures in the Proterozoic. The disruption of a
stable Archean craton at 1.9 Ga demands a fundamentally important lithospheric
reactivation event.

The widespread, synchronous 1.9 Ga mafic magmatism along a feature spanning
thousands of kilometers of the western Canadian Shield provides a robust basis for
interpreting a continental-scale 1.9 Ga episode of asthenospheric upwelling that reflects
significant mass and thermal input to the crust. The ca. 1.9 Ga activity along the
Snowbird tectonic zone is spatially and temporally bounded by the 1.91-2.02 Ga Taltson-
Thelon orogen to the northwest and the 1.81-1.91 Ga Trans-Hudson orogen to the
southeast during final amalgamation of the western Canadian Shield. These two major,
inward-dipping collision zones would have dramatically impacted the intervening

Churchill Province lithosphere. Models to accommodate the observed distribution of
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mafic magmatism include extension induced by a central zone of asthenospheric
upwelling and lithospheric thinning as a convective response to the lateral downgoing
slabs, or hinterland transtension due to a strike-slip dominated regime initially driven by
Slave collision in a manner analogous to Himalayan hinterland activity. Temporal
constraints are consistent with the onset of Proterozoic marginal basin opening along the
southern Snowbird zone (Ross et al. 1995, 2000) with subsequent northward propagation
of magmatism and tectonic activity at 1896-1900 Ma along the central and northern
segments. The initiation of major Tran-Hudson orogenic activity to the east is speculated
to have driven a transition to hinterland contraction, induced basin closure and associated
development of the 1856-1798 Ma Rimbey magmatic arc along the southern segment of
the Snowbird tectonic zone (Ross et al. 1995, 2000), and terminated mafic magmatism
and the onset of basin development along the central and northern segments. These
events ultimately culminated in the exhumation of deep crustal rocks across the East
Lake Athabasca region. It is clear that the assembly of Laurentia constituted a major
period of 1.9 Ga lithospheric disruption of the western Churchill Province. Our data
suggest that a continent-wide episode of asthenospheric upwelling is an integral
component of this history, and must be incorporated into comprehensive models for the

unusual history of lithospheric reactivation and exhumation preserved in this region.

CONCLUSIONS

The Chipman domain of the East Lake Athabasca area in northern Saskatchewan
preserves a spectacular record of 1.9 Ga deep crustal mafic magmatism, silicic melt
generation and segregation during mafic dike intrusion, deformation, and HP granulite
facies metamorphism. Data indicate dike anatexis at 1896.2 + 0.3 Ma during conditions
of 1.0-1.2 GPa, = 750 °C, with subsequent protracted maintenance of high temperatures
for several million years. Little melting of felsic host rocks during intense temperatures
at 1.9 Ga is consistent with dehydration of deep crustal rocks during Archean
metamorphism that left these rocks resistant to subsequent anatexis and deformation.
This explains the cryptic expression of the 1.9 Ga event, and reflects an endmember
response of the deep crust to mafic magmatism and high temperature metamorphism.

The Chipman dikes in the East Lake Athabasca region can be correlated with similar
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mafic magmatism spanning thousands of kilometers of the western Canadian Shield,
indicating regional asthenospheric upwelling along the Snowbird tectonic zone that must
be incorporated into models for the evolution of the western Churchill Province. This
intense episode of cratonic lithosphere destabilization differs from the stable nature of
most preserved cratons following their initial assembly, and provides a unique

perspective on crust-mantle coupling and the evolution of continents.
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FIGURE CAPTIONS

Figure 1. Geological map of the western Canadian Shield showing major tectonic
features. AB-Athabasca basin, BL-Baker Lake basin, DX- Daly Bay Complex, KX-
Kramanituar Complex, STZ-Snowbird tectonic zone, TB-Thelon Basin, TFZ-Tulemalu
Fault Zone, THO-Trans-Hudson Orogen, TO-Taltson Orogen, TMZ-Thelon Magmatic
Zone, UX-Uvauk Complex, VR-Virgin River shear zone. The rectangle shows the East

Lake Athabasca region enlarged in Figure 2.

Figure 2. Geological map of the East Lake Athabasca region, northern Saskatchewan.

The box outline shows the location of the study area enlarged in Figure 3.

Figure 3. Geological map of the Chipman domain with sample locations.

Figure 4. Example Chipman mafic dike relationships and textures. A) Large cm-scale
garnets with associated leucosome tails. B) Leucocratic segregation, 3-12 ¢cm wide. C)
Several cm wide Grt+Cpx clumps in a Hb+Pl matrix. D) Boudins of a migmatitic
granulite dike. E) Granulite dike, ~1 m wide, discordantly cutting heterogeneous
Chipman gneisses. F) Pegmatite intruding mafic dike. G) Inferred 1.9 Ga melt in Fehr

granite.

Figure 5. Major and trace element compositions of Chipman mafic dikes. A) Plots of
MgO (weight %) vs. ALO; (weight %), Si0, (weight %), and Ta (ppm). B) Spider
diagram for Chipman mafic dike samples. C) REE diagram for Chipman mafic dike
samples. Chrondrite values for both spider and REE diagrams from Sun and McDonough

(1989).

Figure 6. A) Nd isotope evolution diagram for Chipman mafic dike samples corrected to
1.9 Ga. B) Plot of g, at 1.9 Ga vs. SiO, for Chipman mafic dikes. The inverse
correlation between g, and SiO, for dikes with higher SiO, content suggests the influence
of crustal assimilation on this subset of dikes. C) Nd isotope evolution diagram for

Chipman mafic dikes corrected to 1.9 Ga, for pegmatite dikes corrected to 1.9 Ga, for
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mafic granulite gneisses corrected to 2.6 Ga, and for Chipman tonalitic gneisses corrected

to 3.0 Ga. D) Plot of g, at 2.6 Ga vs. SiO, for mafic granulite gneisses.

Figure 7. A) Mg map of thin section from SZ00-196C. Brighter colors represent higher
Mg concentrations. Yellow is primarily hornblende, red is garnet, and black is quartz and
feldspar. Blue circles represent locations of zircon grains. B) Backscatter image
showing petrographic setting of zircon associated with titanite and hornblende. Insets are
CL images of zircon grains with scale bars of 20 microns. C) Backscatter image showing
petrographic setting of zircon grains included in hornblende. Insets are CL images of
zircon grains with scale bars of 10 microns. D) CL images of larger zircon crystals that

were physically separated from this sample.

Figure 8. A) CL images of 03-52 zircon grains that were subsequently analyzed. Lines
delineate where the zircon were broken into fragments prior to analysis. B) and C) are BE
images of example 01-SZ76 and SZ00-196A zircon, respectively. D) CL images of 02-
76B zircon that were subsequently analyzed. Again, lines delineate where the grains
were broken into fragments.

Figure 9. Concordia diagrams for migmatitic dikes.

Figure 10. Concordia diagrams for pegmatitic dikes and segregations.

87



Chapter 2 - Timescales of High-P Metamorphism and Anatexis

Table | Major and trace clement data for Chtpman mafic dikes

Granulite dikes
with no leucosomes

Granulite dikes
with leucosomes

Sample  O02-125 02-58 99B-15 Q2112 SZ00-182A SZ00-182B SZ00-196D O2-171C  SZO0-201A
Lake  Steinhaucr  Chipman _ Steinhauer Steinhauer  Chipman _ Chipman  Woolhether  Pellerin Chipman
SiO2 5221 5113 St 50.96 5131 50.52 5055 53.06 5093
AIRO3 1197 11.49 1265 13.86 1323 1554 13 58 1314 1471
Fe203 17 d6 19.46 16 18 13.48 16 15 13.27 1571 15,54 14 48
MnO 21 0.26 027 022 023 0.19 023 023 020
MgO 436 3.26 489 7.10 534 6.04 6.03 22 5.59
Ca0) 904 7.77 R 92 11.45 957 10 46 10 33 927 931
Na20 133 221 1 88 1.90 212 2.07 22 225 300
K20 112 [} 102 0.09 (073 0.70 043 0354 6
TiO2 192 2,50 1 78 0.72 153 1.22 145 IR 117
P03 018 0.30 017 0.05 020 0.13 014 011 011
1.OI 024 0.22 0.62 -0 36 -0.17 014 -0.36 015 -0 15
Total 100 23 99.73 100 06 99,47 100 24 100.03 100 34 100.38 99 99
\ 397 89 278.39 32152 269.74 34413 278.84 20892 301 62 250 83
Cr 2338 -2000 46 28 119.29 90 02 157.72 11294 43 46 2623
Co 5136 49 16 18 51 NRA 40 73 46,01 5236 4711 3616
Ni 45 36 2935 5014 78.64 5591 88 05 6202 39.24 63.60
Cu 13599 74.83 0 39 157.60 94 72 105 39 138 06 53,67 190.97
7n 136.96 150,42 107 44 8363 7871 95.70 109 39 102.64 67 0t
Ga 20 66 19.96 1828 15.32 16 33 16.47 18 RO 16 87 2023
Ge | 83 172 172 169 102 147 1 66 [IRN 106
As 000 1.6l 000 0.00 000 0.00 a00 0.00 000
Rb 14 60 31.46 1591 302 16 42 19.53 R 49 14.02 18 00
Sr 86 34 13557 20262 70 45 150 35 16931 179 63 159,63 262.03
Y 3479 44.9] 2436 19.19 3029 2432 2215 2277 2070
Zx 164 88 21093 11533 37.83 12322 101 96 89 54 8329 7404
Nb [N 1304 1377 +4.89 6 86 598 631 S28 382
Cs 000 0.00 126 0.00 000 0.87 00 0.00 091
Ba 142 44 286 71 168 70 24 64 23119 224,81 136 46 176.21 21916
La 1594 2700 1777 220 17 38 13.25 996 o2 10 08
Ce 3746 39,35 37 10 s02 36 68 27 81 2242 23,43 2077
Pr S39 7.89 307 079 474 379 320 330 277
Nd 2410 3437 2177 .04 2121 16.72 14 604 13.95 1217
Sm 621 833 521 153 527 4.18 393 .04 32
Fu 1 89 236 1 66 0.66 162 1.32 132 119 122
Gd 612 824 488 2.31 5 87 429 408 375 333
T 113 [N (&4 050 102 07 073 070 064
Dy o 81 8.6 488 343 S 96 471 443 438 411
Ho 132 V71 097 0,73 12} 0.93 (87 0.2 84
Er 36d 4.79 263 ASARS 339 264 237 2.56 238
Tm (154 0.69 039 034 051 0.39 (435 039 036
Yb 360 139 266 226 343 206t 232 268 237
fu [§ M 068 040 034 S .39 033 N 40 036
HY 491 614 333 1.24 imn 295 267 27 233
Ta (r &1 1.07 108 0.00 042 032 (137 n2s 020
W 244 .0 000 000 1 68 0.00 000 000 (00
I 14 0.20 01s 0.00 00 011 000 0 000
Ph 000 822 (1O 000 M) 000 (X1 .00 0.0
Th 437 527 231 028 | 64 137 102 [ 121
Iyl 183 268 (33 012 38 I 40 63 .84 712
Recalculation of composition of protohith (Grove et al |, 1992}
Quz n 167 0144 0.142 (199 0113 0083 0.087 1139 0.053
Plag 1 390 (0416 0.430 0 490 0,465 ) 825 0.488 0 469 (.350
Olin 4,170 0173 04172 0175 0177 0169 0.178 172 0171
Cpx 171 0152 0162 0219 0174 (138 0.197 0168 01635
Or 0071 0073 0068 0006 0046 0044 N7 0034 0.040
Sp 0027 036 0.023 0010 0.0 0017 0020 Oo0te 0.0l6
Ap a0 0 006 0.004 0001 0,004 0003 0.003 Q002 0,002
Ternary Normahzation
Cpx 023 0.21 02 0.25 (124 0.19 023 0.21 019
Pl 133 0 56 (56 0.33 037 0.62 057 0 SR 062
(%1} (23 23 (23 0,20 0,22 020 021 021 019
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Table |

{continued)

Granuhite dikes
with possible lcucosomes

Hbl-pl dikes

Phyric or phenocrystic
plagioclase rich dikes

Sample: O2-171B  SZ00-186A 0IMI23C  0O2-120B  Q2-123B SZ00-200A  02-172
Iake Pellerin__ Chipman Ballict Bompas _ Steinhauer Chipman Petlerin
Sin2 5222 49.90 50 55 46.N9 48 27 49 60 4793
Al203 1307 13.32 1315 13.26 1312 17 30 2183
Fe2O3 1538 16.86 1548 18.87 16.58 9.93 568
MnO 023 0.25 023 027 023 016 01t
MgO 516 572 584 5356 538 710 369
Ca0O 904 990 971 948 9.61 11.76 14 45
Na2(y 225 234 230 228 246 211 163
K20 071 0.24 063 0.93 131 0.37 067
TiO2 112 140 1 36 2.36 1 82 0,58 029
P03 a1l 0.11 012 020 017 0.04 003
LOI 044 -0.33 062 0.51 082 VIR 1.67
Total 99 94 99 71 100 00 99 83 99 76 100,35 99 99
\% 30259 RIERN 323 54 430.61 346 60 186.94 11339
Cr 63 67 2408 64 93 94 82 107 04 213.77 23319
Co 3440 50.93 3597 49.00 4504 43.01 26 46
Ni 35 46 46 45 49 36 63 95 7204 89 39 7183
Cu 63 61 147.20 101 04 70 36 176 06 90 36 2374
n 69 69 96,17 101 83 127.67 1176 63 33 4477
Ga 13.60 1713 17 34 20105 18 40 13.98 1253
Ge 000 162 142 1.59 125 107 121
As 0 () 0.00 000 0.00 000 000 000
Rb 15 30 278 1564 1674 2977 15,87 16 70
Sr 153 44 84 54 184 11 134.71 11472 181.63 271 98
Y 2098 3134 A e 3340 1129 570
/1 74 82 84.03 88 52 139.73 14 98 34 99 20047
Nb 144 71 893 883 754 319 253
s 0 0o 0.00 000 0.00 068 AR Rina|
Ba 158 18 2710 118 89 181 40 159 59 86 32 8372
La R 36 6.49 1 10 5] 1259 I 213
Ce 19 80 1532 2189 26.85 2338 6 R 432
Pr 264 KX} 300 412 Je2 1.00 038
Nd 12 14 1l 1333 1922 16 823 4. 80 259
Sm 3 336 358 580 4 89 139 077
Fu 110 F21 117 1 94 139 0.58 036
Gd 3 86 424 389 6.36 5358 168 083
b (.67 0 86 071 122 103 033 017
Dy 408 582 401 741 6 57 208 107
Ho (85 124 080 1.50 1 34 042 022
Er 242 337 222 426 384 120 0463
Tm 0137 135 35 065 0S8 a1y ({1}
Yb 259 366 22 4.30 387 1.27 063
Lu 039 0ss 032 065 037 019 10
Hf 240 2359 2353 4.30 362 1 06 (1 66
Ta 023 1032 32 .51 42 060 [LAVE
Ay oo 0.00 000 0.00 000 000 000
1 o0 0.00 400 0.00 020 0.00 (14
Ph (Hu0 0.00 (00 0.60 S 28 (.00 347
Th 127 070 129 122 098 040 (t 38
U 032 017 030 367 032 [k 017
Recalculation of composition of protolith {Grove et al, 1992)
Oz 0128 (1 086 1.026 0021 0.026 0044 0011
Plag 1468 (1 498 n473 0487 0473 (580 0680
Olbin 0175 (189 0.173 0204 0.173 n1s7 (1 096
Cpy U 166 0189 0212 0188 0212 0174 0167
Or 0045 001s 0.083 0061 0083 0036 nod]
Sp 0016 (020 0026 0034 0.026 O U08 0004
Ap 0.002 0002 0004 0004 0.004 0001 0001
Ternary Normalization
Cpn 021 [$hak] 023 021 025 0.19 018
Pl (038 0357 036 053 NN 064 072
Q] 022 0.22 021 0.23 020 017 010
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Table 2. Sm-Nd isotopic data tfor Chipman matic dikes

Sample [Sm]' [Nd]' YSmd NG’ INGMNG g Exdunl) el o

Chipman mafic dikes, 1.9 Ga
Granulite dikes with leucosomes

02-125 5.65 21.02 0.1624 0.511840 = 3 -15.56 -7.23 3.56 373
02-58 8.19 3301 0.1495 0511843 =3 -15.51 -4.02 2.58 2.89
99B-15 4.98 20.65 0.1459 0.511812+3 -16.11 -3.75 249 2.80
Granulite dikes with no levcosones
02-112 1.45 3.79 0.2315 0.513183 =4 10.64 2.16 2.39 0.27
S700-182A 1.91 20.26 0. 14644 051915 =4  -14.11 -1.86 220 258
S700-182B 3.76 15.89 0.1430 05118634  -15.13 -2.04 221 2.56
S$700-1961) 3.77 14.59 0.1561 0.512051 =3 -11.43 -1.35 221 2.65
02-171C 341 13.07 0.1580 0511737+ 3 -17.57 -8.17 3.56 372
SZ00-201A 295 10.81 0.1648 0511776 =3  -16.82 -9.08 413 4.20
Granulite dikes with possible leucosomes
02-1718 3.02 11.19 0.1629 0511881 =3 -14.77 -60.55 342 3.63
SZ00-186A 338 10.83 0.1889 0.512477 £2 -3.15 -1.24 3 382
Amphibolite dikes
01MI123C 3.59 14.05 0.1544 0.512032 + 3 -11.81 -1.50 2.19 2.62
02-1208 3.75 19.51 0.1782 0.512368 = 3 -5.27 -0.76 2.23 298
02-123B 4.49 16.14 0.1681 0.512322+2 -6.16 0.83 1.69 2.42
Phenocrystic or phyric plagioclase rich dikes
S700-200A 1.38 4.72 0.1764 0.512349 = 7 -5.64 -0.70 2.18 291
02-172 0.68 2.50 0.1637 0.512116 = 5 -10.18 214 242 2.87
Pegmatites, 1.9 Ga
02-76B 211 21.8 0.03842 0.510226 = 3 -47.05 -13.39 2,67 2,78
02-77B 1.03 3.56 0.11185 0.510210+ 4 -27.85 -7.19 2.57 2.7
03-126 0.09 0.38 0.14129 0511795 £33 -16.45 2295 2.33 2.65
Chipman tonalite. 3.0 Ga
SZ00-186C 1.24 29.31 0.08739 0.510297 = 3 -45.66 -3 3.27 3.36
S7Z00-193A 3.95 20,18 0.11833 0510843 =4  -35.02 -4.77 3.50 31.59
SZ00-205A 9.02 54011 0.10082 0.510622 = 3 -39.33 -2.29 3.21 3.32
SZ00-208B 7.71 46.73 0.09973 0510607 =8  -39.62 -2.16 3.20 3.31
Matfic (€ ites, 2.6 Ga
Bro3-eB 2.95 11.89 0.14988 0511770 =3 -16.94 -1.28 2.84 310
BIFO3-88A 2.54 7.94 0.19324 0.512592 -3 -0.90 0.69 2.03 3.7s
BF0O3-159A 1.64 6.63 0.14912 0511431 =4 2306 -7.29 3.82 3.91
BIF03-1681- 253 11.67 0.13096 0511410 =3 -23.96 -1.98 2.86 3.05
BF03-228A 0.94 2.36 0.24094 0.513535= 4 17.5 2.72 310 2.70
Matic (Opx+t Pl granulites. 2.6 Ga
Brn3-92B 36 14.78 0.14724 0.511538=3 22145 -4.94 340 3.55
REF03-125A 0.91 3.68 0.15009 0511823 = 4 -15.9 -0.31 2.67 297
BFO3-1584A 1.54 6.57 0.14202 0511383+ 35 -21.48 -0.23 351 3.63
BIFO3-189A 2.04 7.97 0.1545 0511724 =3 -17.84 -3.74 RIK) 351
BF03-217A 3.04 14.06 0.13093 0.511480 = 4 -22.0 -0.6 2.69 291

" Concentrations in ppm. as determined by isotope dilution

* Sm and Nd were {ractionation corrected with an exponental law, normalizing 1o '“Sm/*’Sm - 1.783 and
NN = 0.7219. respectively. Internal errors in measured '"YSm/ M Ndare <0.1% (2s s.d.)

* Measured "Nd/"*Nd with internal error (20 s.¢.)

nitial ¢Nd caleulated at 1.9 Ga for Chipman dikes and pegmatites, at 3.0 Ga for Chipman tonalite. and at 2.6 Ga for

malic granulite gneisses

e (Gay caleulated with (7SmNd) e = 0.1967 and (NN = 00512638

“tone (Ga) + (L NN s - CENG N (CTSM N s = (7SN ) + 1

present dav (Nd! *Nd)gye = 0513151 (YSm/H Nd )y, = 0.2137
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Chapter 3

Temporal constraints on multistage exhumation and
Juxtaposition of high-pressure granulites in the western
Canadian Shield: Linking high-resolution thermochronometry
with P-T-D paths



Chapter 3 — Temporal Constraints on Multistage Exhumation

ABSTRACT

New U-Pb (titanite, apatite, rutile) and “’Ar/*’Ar (hornblende, muscovite, biotite)
data are linked with existing pressure-temperature-deformation paths to impose detailed
temporal constraints on the juxtaposition and exhumation of deep crustal domains in the
East Lake Athabasca region. In the ~ 200 m.y. between ca. 1.9 Ga high-pressure
granulite facies metamorphism of the rocks while in the deep crust, and ca. 1.7 Ga
unconformable deposition of Athabasca basin sediments on the exhumed rocks, our
analysis reveals at least three distinct phases of unroofing at diverse rates separated by
two intervals of crustal residence at different depths. Specifically, we distinguish 1) an
early phase of extensional unroofing in the Chipman domain at rates of 1.5-2.0 km/m.y.
from 1.0-1.2 GPa to 0.7-0.8 GPa associated with mafic magmatism and metamorphism,
2) an episode of regional contractional uplift along the Legs Lake shear zone at ca. 1850
Ma from 0.7-0.8 GPa to 0.4-0.5 GPa, and 3) a final period of extensional unroofing at
rates of 0.2-0.3 km/m.y. from 0.4-0.5 GPa that culminated in transport of current
exposures to near-surface conditions. The cooling patterns and retrograde assemblages
are consistent with pauses in unroofing during 1) residence of several deep crustal
domains at ~ 25 km crustal depth for 20-30 m.y., and 2) storage of domains across the
East Lake Athabasca region at ~ 15 km crustal depth for 70-100 m.y. The apparent
convergence of disparate higher temperature thermal histories in several deep crustal
domains at ca. 1.89-1.88 Ga implies their juxtaposition at 0.7-0.8 GPa conditions.
Regional east-directed thrusting of the deep crustal domains as a coherent unit at 1.85 Ga
juxtaposed the granulites with middle crustal Hearne domain rocks at 0.4-0.5 GPa
conditions. The detailed timing constraints on the exhumational history allow correlation
with changing regional tectonic regimes associated with the amalgamation of Laurentia.
The temporal and spatial heterogeneity of exhumation patterns in the East Lake
Athabasca region may be a common feature of the unroofing histories of lower crustal

rocks.
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INTRODUCTION

Rare exposures of lower continental crust offer the best opportunity to directly
examine the character and in situ relationships of this generally inaccessible level of
orogenic systems. As a consequence, these exposures exert a tremendous influence on
our understanding of lower crustal processes. Constraining the mechanisms that exhume
deep crust is crucial to assess the significance and representativeness of these terranes.
For example, a domainal architecture is a central feature of some exhumed portions of
lower crust, and it is important to distinguish how much of this segmentation was
acquired during exhumation via the juxtaposition of highly disparate crustal blocks,
versus the degree to which this heterogeneity represents a primary feature of the lower
crust since its earliest stages of evolution. Determining the extent of modification during
transport of these rocks from the base of the Earth’s crust to the surface necessitates a
more complete understanding of the processes responsible for deep crustal exhumation.

The reconstruction of detailed pressure-temperature-deformation (P-T-D) paths,
in conjunction with high-resolution timing constraints on unroofing histories, is required
to effectively evaluate viable deep crustal exhumation models. Integration of U-Pb,
“Ar/*Ar and (U-Th)/He thermochronometry allows comprehensive reconstruction of
deep crustal cooling histories from peak metamorphic conditions through exhumation to
the Earth’s surface. Linkage of these temperature-time (T-t) paths with P-T-D histories
can place robust constraints on the tempo, duration and rates of unroofing. The
convergence of disparate thermal histories in different domains also offers information
regarding the timing of juxtaposition of exhumed deep crustal blocks.

Vast (>20,000 km?) tracts of high-pressure (HP) granulites are exposed in the
vicinity of the East Lake Athabasca region, along the Snowbird tectonic zone in the
western Canadian Shield. This region is characterized by a segmented architecture, with
subdivision into distinct lithotectonic domains. Importantly, these HP granulites are
interpreted to have resided in the deep crust for a significant portion of their history
(Williams et al., 2000; Flowers, Chapter 1), rather than forming in a brief tectonic
thickening event as commonly inferred for high- and ultrahigh-pressure granulites
characterized by isothermal decompression histories (O’Brien and Rotzler, 2003).

Unraveling the exhumational overprint on these rocks is of central importance for
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deciphering the domainal relationships and the processes operative during their evolution
in the deep crust. Existing kinematic data for bounding structures, geochronological
information on the timing of shear zone activity, and domainal thermobarometric data
constrain a multistage history of unroofing involving regional contractional uplift,
temporary residence in the middle crust, and final extensional unroofing (Mahan et al.,
2003). This information provides an exceptional opportunity to use thermochronological
data to place existing P-T-D paths within a high-resolution temporal framework. Such
information can impose important constraints on two outstanding questions in this region
regarding 1) the tempo and rates of the punctuated unroofing history, and 2) the timing of
domain juxtaposition relative to regional exhumation. We exploit the full temperature
range permitted by the U-Pb (zircon, titanite, apatite, rutile) and “’Ar/*’Ar (hornblende,
muscovite, biotite) isotopic systems, combined with (U-Th)/He zircon and apatite data
(Flowers, Chapter 4), to constrain the temporal and spatial heterogeneity of exhumation
patterns across the East Lake Athabasca region. These results have broader implications
for multistage unroofing histories in exhumed deep crustal terranes and for the

architecture and heterogeneity of the lower continental crust.

GEOLOGICAL SETTING

The Snowbird tectonic zone coincides with a prominent, 2800 km long, northeast
striking magnetic and gravity anomaly in the western Canadian Shield (Figure 1). This
feature delineates the boundary between the Rae and Hearne cratons of the western
Churchill Province. The western Churchill Province was the upper plate between the
bounding Taltson-Thelon and Trans-Hudson orogenic belts, zones of major Proterozoic
orogenesis along the Slave-Rae and Superior-Hearne sutures, during the assembly of
Laurentia. The history of the Snowbird tectonic zone has long been controversial, owing
to a complex history including both Archean and Proterozoic tectonism. This structure
has alternatively been interpreted as a Paleoproterozoic intercontinental suture (Hoffman,
1988) and as an Archean intracontinental shear zone that was reactivated in the
Paleoproterozoic (Hanmer, 1997).

The East Lake Athabasca region contains extensive tracts (>20,000 km?) of HP

granulites (1.0 to > 1.5 GPa) exposed along the central Snowbird tectonic zone and in the
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adjacent Rae crustal province. A fundamental characteristic of this region is its
segmented architecture, with discrete structurally bounded lithotectonic domains that
preserve distinct P-T-D histories (Figure 2). Three HP granulite domains of the East
Lake Athabasca mylonite triangle are interpreted to represent part of an isobarically
cooled deep crustal terrane that resided in the deep crust for hundreds of millions of years
(Williams and Hanmer, 2005). The Chipman domain preserves a spectacular 1.9 Ga
mafic dike swarm that intruded heterogeneous Chipman tonalite gneisses at conditions of
1.0-1.2 GPa, 750-850 °C (Williams et al., 1995; Flowers, Chapter 2). The northwestern
domain is dominated by mafic and felsic plutonic rocks intruded and metamorphosed at
conditions of 1.0 GPa, ~800 °C (Williams et al., 2000). The southern domain contains
mafic and felsic granulites with minor eclogite, that record peak metamorphic conditions
> 1.5 GPa, 800-1000 °C (Snoeyenbos et al., 1995; Baldwin et al., 2003) interpreted to
have occurred at 1.9 Ga (Baldwin et al., 2004). To the west, rocks of the Rae domain
preserve granulite facies conditions of 0.8-1.0 GPa, ~900°C at 1.9 Ga (Kopf, 1999;
Krikorian, 2002). The Hearne domain to the east records lower pressure, amphibolite
facies conditions of 0.4-0.5 GPa, 600-700 °C (Mahan et al., 2003). Sediments of the
Athabasca basin unconformably overlie the region to the south.

Exhumation of the East Lake Athabasca region is temporally bracketed by 1.9 Ga
metamorphism of the deep crustal domains (Flowers, Chapter 2; Baldwin et al., 2004),
and ca. 1.7-1.65 Ga deposition of the overlying Athabasca basin (Rayner et al., 2003;
Cummings et al., 1987). This imposes ~200 m.y. interval for unroofing of the HP
granulites. Exhumation of deep crustal rocks in the East Lake Athabasca region was a
multistage process, in part driven by uplift along the Legs Lake shear zone. This
structure, constituting part of a ~500 km long contractional fault system, accommodated
> 20 km of vertical displacement and juxtaposed > 1.0 GPa rocks with the shallower
Hearne domain (Mahan et al., 2003). Synkinematic monazite growth in the Legs Lake
shear zone suggests deformation associated with regional exhumation beginning by ca.
1.85 Ga, and retrograde 0.4-0.5 GPa cordierite assemblages in the Chipman domain have
been dated at ca. 1.85 Ga by electron microprobe monazite data (Mahan, 2005).
Subsequent ca. 1.8 Ga dextral displacement along the N-NE trending Grease River shear

zone disrupted the region (Mahan and Williams, 2005). Greenschist facies extensional
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reactivation of the Legs Lake shear zone is interpreted to reflect a later part of the
exhumation history (Hanmer, 1997; Mahan et al., 2003). Metamorphic constraints on the
exhumation path are provided by isothermal decompression textures that record
conditions of 0.7-0.9 GPa in the Chipman, southern and Rae domains (Mahan, 2005;
Krikorian, 2002; Baldwin et al., 2003; Kopf, 1999).

MINERAL-ISOTOPIC SYSTEM CLOSURE TEMPERATURES

An isotopic closure temperature (Tc) represents the temperature of a mineral-
isotopic system at the time of its measured date, and is a function of diffusion parameters,
cooling rate, geometry, and effective diffusion dimensions (Dodson, 1973). Closure
temperatures can be constrained by experimental and field-based empirical studies.
Estimates below are nominal Tc for typical diffusion radii (25-500 wm) and cooling rates
(1-100 °C/m.y.). Very low diffusivities of Pb have been experimentally demonstrated in
zircon and monazite, indicative of Tc >900-1000°C °C (Cherniak and Watson, 2001;
Cherniak et al., 2004), such that these minerals typically crystallize below their Tc, and
are widely used to determine the timing of intrusive and metamorphic events. Titanite is
increasingly recognized as a useful geochronometer because it is reactive mineral that
readily grows during metamorphism (Frost et al., 2000; Aleinikoff et al., 2002). Field
and experimental studies suggest titanite closure to Pb diffusion at temperatures of 550-
660 °C (Hanson et al., 1971; Cherniak; 1993; Verts et al., 1996). In contrast with these
minerals that commonly grow below their Tc, the U-Pb systematics of apatite and rutile
are typically dominated by volume diffusion (e.g. Mezger 1989; Chamberlain and
Bowring, 2000). Experimental and field studies of apatite provide consistent Tc
constraints of 450-550 °C for Pb diffusion (Cherniak et al. 1991; Krogstad and Walker,
1994; Chamberlain and Bowring, 2000). Field estimates for Pb diffusion in rutile are
400-450 °C (Mezger, 1989), with higher estimates from experiments (Cherniak, 2000).
In regards to the K-Ar and “’Ar/*Ar isotopic systems, experimental estimates for closure
to Ar diffusion yield compositionally dependent ranges from 500-550 °C in hornblende
(Harrison, 1981), 350-415 °C for muscovite (Robbins, 1972; Hames and Bowring, 1994)
and 300-350 °C for biotite (Grove and Harrison, 1996). It is important to emphasize the

dependence of closure temperature on diffusion domain size dimension. Minerals in
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isobarically cooled terranes may exhibit a range of dates that reflect a continuum of
grain-size dependent closure temperatures induced by the effects of protracted cooling.
In an analogous manner, age gradients may develop in individual mineral grains during
slow cooling, due to closure temperature variations across single crystals (e.g. Hodges et

al., 1994).

ANALYTICAL METHODS
U-Pb Analytical Methods

Titanite, apatite and rutile grains were separated using standard crushing, water
table, heavy liquid, and magnetic separation techniques. Single and multi-grain fractions
of accessory minerals were picked, photographed, measured, ultrasonically washed in
high-purity water or ethanol and rinsed in acetone, followed by a second washing in high-
purity water and rinsing with double-distilled acetone. Fractions were loaded into Teflon
FEP capsules in high-purity water, spiked with a mixed **Pb-?’U-**U tracer, and
dissolved in 12 M HCl at 180 °C for 48 hours (apatite) or in 29 M HF at 220 °C for 48-96
hours followed by conversion to 6 M HCI at 180 °C for 12-24 hours (titanite and rutile).
Chemical separation of U and Pb was accomplished using HBr-HCI anion exchange
chemistry. Pb and U were loaded on separate, previously degassed, single Re filaments
with a silica gel 0.1 M H;PO, emitter solution and analyzed on the Massachusetts
Institute of Technology VG Sector 54 mass spectrometer. Pb isotopic ratios were
measured either by peak jumping all ion beams into an axial ion-counting Daly detector,
or dynamically with Faraday cups and the Daly by peak-jumping of **Pb into the axial
position to obtain a real-time Faraday-Daly gain calibration. Uranium was measured as
an oxide, typically in static mode on three Faraday cups, but for smaller amounts of
uranium by peak-jumping into the Daly detector. U-Pb data and details of fractionation
and blank corrections are provided in Table 1. Decay constant and U-Pb tracer
calibration uncertainties are systematic errors not included in the cited dates, as these
errors are secondary to the uncertainties associated with the common Pb correction,
discussed further below. In the text, the ages are reported as a range of *’Pb/*™Pb dates

for each sample.

111



Chapter 3 — Temporal Constraints on Multistage Exhumation

Titanite, apatite and rutile have the potential to incorporate common Pb of
unknown isotopic composition during crystallization, thus lowering the
radiogenic/common Pb ratio (Pb*/Pbc), and introducing uncertainty into the calculated
U-Pb date. Thus, analyses with in the lowest Pb*/Pbc are most affected by the choice of
initial common Pb isotopic composition. Consideration of this factor is critical for robust
interpretation of U-Pb titanite, apatite, and rutile ages. Feldspar replicates from six
samples were leached to estimate the initial isotopic composition of common Pb.
Feldspar Pb isotopic determination was carried out by handpicking 2-5 mg plagioclase
fractions, followed by leach steps at 125 °C with 7 M HNO, and 6 M HCl for 15 min
each, and with three aliquots of 1 M HF for 20 min, 40 min, and 40 min, respectively,
rinsing twice with high-purity water between leaching steps. Pb from the final leach
aliquot was separated using standard HBr-HCI anion exchange chemistry, and run on the
Massachusetts Institute of Technology Isoprobe-T mass spectrometer in static mode.
Isotopic ratios and details regarding corrections are reported in Table 2. All accessory
mineral fractions were corrected using the Pb isotopic composition of feldspars either
coexisting in the same rock or in a rock of similar composition and age. The isotopic
compositions of the feldspars in this study are variable, indicating heterogeneity in the
common Pb incorporated into accessory minerals in different rocks. The standard method
of correcting for initial common Pb is through application of the Stacey and Kramers
(1975) model for terrestrial Pb evolution. The least radiogenic feldspar Pb isotopic
compositions induced the greatest deviation of U-Pb dates from those computed using the
Stacey and Kramers model. This typically caused an increase in the apparent *’Pb/**°Pb,
209pp/2%U, and *"Pb/**U dates, and shifted negatively discordant U-Pb analyses toward or
onto concordia, increasing our confidence in the selection of the feldspar Pb isotopic as a

more appropriate isotopic composition than Stacey and Kramers (Figure 3).

“Ar/®Ar Analytical Methods

Fresh, relatively unbroken crystals of muscovite and biotite, as well as fragments
of hornblende grains lacking visible inclusions, were handpicked, ultrasonically cleaned
in high-purity water and ethanol, packaged in Al foil, and encapsulated in Al disks.

Samples were Cd shielded and irradiated at the McMaster University reactor along with
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flux monitor GA-1550 biotite (98.79 + 0.96 Ma; Renne et al., 1993) and synthetic salts to
permit corrections for interfering nuclear reactions.

Gas was liberated from crystals by three different laser heating procedures: 1)
total fusion of hornblende crystal fragments, 2) laser spot ablation mapping of micas, and
3) incremental heating of single mica crystals. Total laser fusion of single hornblende
fragments with a range of sizes from each sample was accomplished by loading crystals
into copper pan wells with complete degassing via heating for 15 seconds with a
Coherent Innova 210 Ar-ion laser beam that encompassed the well diameter and
converted the fragments to roughly spherical glass beads. Laser spot ablation mapping of
micas was carried out on two to six muscovite and/or biotite crystals from each sample,
selected because they contained the most pristine crystal faces of irradiated grains.
Crystals were mounted on a Cu surface with Na-silicate. A 90-100 mJ laser beam from a
Lambda Physik Compex 102 excimer laser at 20 Hz was focused to produce circular
spots 87, 106, 145 or 285 wm in diameter, or a square spot 182 wm in width. Individual
spots were ablated in two to five sets of 1000 bursts depending on crystal thickness, or
linear scans <1700 um in length were ablated along crystal margins for durations of < 6
minutes. Incremental heating experiments were performed on select single mica crystals
placed in Cu wells, with heating by the Coherent Innova 210 Ar-ion laser for 3-minute
intervals at successively higher power levels from 0.05 up to 0.95W and a final high
power step for fusion of the crystal.

After purification with a series of metal alloy getters, the evolved gas was
analyzed on the Massachusetts Institute of Technology MAP 215-50 mass spectrometer
with an electron multiplier. Total system blanks were measured at the beginning of each
analytical session, between sets of five or ten total fusion hornblende analyses, and
between sets of two to six laser spot or incremental heating analyses depending on blank
reproducibility. Mass fractionation was monitored by routine analysis of laboratory air
over the duration of the analytical campaign. Isotopic measurements were reduced using
the ArArCALC routines of Koppers (2002), and corrected for system blanks, mass
fractionation, and neutron-induced interferences. Apparent “Ar/’Ar ages were
calculated using decay constants recommended by Steiger and Jaeger (1977) and

assuming an initial “Ar/*Ar ratio of 295.5. Age uncertainties throughout this paper

113



Chapter 3 — Temporal Constraints on Multistage Exhumation

include errors associated with blank and sample isotopic measurements, fractionation,
interfering reactions, and J. Laser spot ablation results are cited as weighted mean dates
with uncertainties reported at twice the weighted standard error of the mean. Unless
noted otherwise, these are the mica dates cited in the text. For samples with weighted
mean dates characterized by a MSWD > 1, scatter is assumed to be greater than the
contribution from analytical errors, and errors were multiplied by the square root of the
MSWD (Koppers, 2002). Inverse isotope correlation diagrams after Roddick et al.
(1980) were constructed using a York (1969) regression analysis to compute isochron
dates and initial “’Ar/**Ar ratios. For incremental heating experiments, plateau dates are
calculated using three or more consecutive steps comprising at least 50% of the total
¥Ar, released and are considered statistically significant if the MSWD (mean square
weighted deviate) of the mean lies within the 2 sigma uncertainty of the expected value

of 1.0 (Wendt and Carl, 1991).

THERMOCHRONOLOGICAL RESULTS
Sample Selection

Samples were targeted in an effort to obtain a good spatial distribution of
accessory minerals across domains in the region, representing a range of lithologic units
and protolith ages. When possible, dates were obtained for coexisting phases in a single
sample to allow reconstruction of thermal histories that were independent of lateral
spatial variations in thermal regimes. Figures 4 and 5 show the locations and

thermochronological results for minerals from samples across the region.

U-Pb Thermochronometry

The U-Pb titanite, apatite, and rutile dates for individual samples commonly show
a range of dates, that may in part reflect the variety of factors that control the mineral
closure temperature, including grain-size, cooling rate, and potential mineral composition
effects. Uncertainty in the isotopic composition of the common Pb initially incorporated
in the mineral may also induce an apparent span of ages owing to variable
radiogenic/common Pb ratios between samples. The most radiogenic fractions of a given

mineral typically yield the tightest distribution of mineral dates in this study, and these
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fractions are considered the best estimate of cooling through the mineral’s closure
temperature. Figure 6 shows an example of U-Pb zircon, titanite, apatite and rutile data
acquired for a mafic granulite dike sample, demonstrating the potential for constraining
cooling histories from granulite facies conditions to temperatures <400 °C through U-Pb
analysis of minerals from a single sample. “ Ar/Ar hornblende and (U-Th)/He zircon
data were also obtained for this rock. U-Pb data isotopic are reported in Table 1. Figure
7 depicts concordia diagrams for all titanite, apatite and rutile data from each domain.
More detailed descriptions of both samples and the analyzed minerals are provided in
Appendix A.

U-Pb titanite dates for the granulite facies Chipman domain are interpreted to
record the timing of cooling through ~600 °C following attainment of peak temperatures
>750 °C. Sixteen single-grain titanite fractions from six samples yielded **’Pb/***Pb dates
from 1898 to 1882 Ma. Titanite from two samples that continue a transect eastward into
the amphibolite facies Hearne domain yielded distinctly younger dates than those in the
Chipman domain. **’Pb/**Pb dates ranged from 1784 to 1745 Ma for three fractions from
one sample, and from 1819 to 1814 Ma for three fractions from the furthest east sample
from which titanite data was acquired. These dates are interpreted to reflect resetting and
or new growth during the attainment of peak temperatures in this domain. Five titanite
analyses for the northern part of the southern domain previously yielded dates from 1900
to 1894 Ma (Baldwin et al. 2003), and although additional samples from the middle and
southern parts of this domain were processed to supplement this local data, no additional
titanite was identified.

U-Pb apatite analyses constrain the timing of cooling through temperatures of
~500 °C. Apatite is a relatively common mineral in most rocks of the East Lake
Athabasca region. However, apatite grains analyzed from some samples were
characterized by Pb*/Pbc ratios too low to permit the interpretation of meaningful dates,
and only the subset of samples with sufficiently radiogenic apatite data are discussed
here. In the Chipman domain, eight fractions from two samples from the central part of
the domain yielded a span of *’Pb/**Pb dates from 1853 to 1784 Ma, with three fractions
from a third sample from the northeastern margin of the domain that define a

systematically younger apatite population from 1752 to 1743 Ma. Three fractions from a
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northwestern domain sample yielded dates from 1850 to 1768 Ma, coinciding with the
span of apatite dates for the central part of the Chipman domain. Seven fractions from
two samples in the southern domain yielded *’Pb/***Pb dates from 1901 to 1865 Ma that
are distinctly older than dates from the other domains. One apatite fraction from the
Hearne domain yielded a *’Pb/**Pb date of 1746 Ma, consistent with apatite dates from
the northeastern margin of the Chipman domain.

U-Pb rutile dates provide information regarding the time of cooling through
temperatures of ~450 °C. Six rutile fractions analyzed from the central and west-central
part of the Chipman domain yielded dates from 1869 to 1851 Ma, with four distinctly
younger analyses from 1808 to 1771 Ma obtained from the northeastern margin of the
domain. Six single grain rutile fractions from the northwestern domain yielded dates
from 1875 to 1780 Ma. Five single grain fractions of rutile analyzed from the central part
of the southern domain were systematically older than rutile grains from the other
domains with dates from 1882 to 1874 Ma. Rutile from an eclogite sample in the northern
part of the domain previously yielded similar dates from 1851 to 1882 Ma (Baldwin et al.
2004).

“Ar/”Ar Thermochronometry

A variety of techniques were employed to permit the most effective evaluation of
diffusional age gradients, excess Ar, and alteration effects on the “’Ar/*Ar systematics of
hornblende, muscovite and biotite analyzed in this study. Our rationale for laser fusion of
hornblende fragments and laser ablation age mapping of mica grains was based on
previous studies of slowly cooled Precambrian shield samples that documented large
apparent age gradients in single crystals interpreted as diffusive Ar loss during slow
cooling (Hodges et al., 1994; Hodges and Bowring, 1995). Incremental heating results
from such crystals without knowledge of age gradients may lead to the misinterpretation
of thermal histories. Following laser mapping of mica crystals, biotite grains from four
samples were targeted for incremental heating experiments to assess the potential for low
temperature alteration and excess Ar effects that might not be as apparent in the laser
ablation results. Summaries of meaningful “Ar/¥Ar laser hornblende fusion data, mica

laser ablation data, sample lithologies, and numbers of spots and crystals analyzed are
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reported in Table 3. Examples of inverse isochron diagrams for “Ar/”Ar laser
hornblende fusion data are shown in Figure 8. Examples of laser ablation mapping and
incremental heating results are illustrated in Figure 9. Incremental heating results are
summarized in Table 4. Refer to Appendix B for single crystal hornblende data, to
Appendix C for laser ablation mica spot analysis data and grain spot and transect
locations, and to Appendix D for details of incremental heating results and incremental
heating spectra.

“Ar/”Ar hornblende dates for nine samples across the East Lake Athabasca
region were acquired in an effort to constrain the timing of cooling through temperatures
of ~500-550 °C. Total laser fusion was carried out on fifteen to thirty hornblende
fragments from each sample to detect potential age dispersion within hornblende
populations. One of the nine samples yielded reproducible dates for hornblende
fragments. Sample 01M123C, an amphibolite facies Chipman mafic dike within the Legs
Lake shear along the Hearne-Chipman domain boundary, provided a statistically
significant weighted mean date of 1729 + 11 Ma (MSWD = 0.7), based on fourteen of
eighteen fragments. We consider this date the best estimate of the hornblende age. Data
plot near the radiogenic component on an inverse isochron diagram (Figure 8A). Four
slightly younger fragment dates induce a scatter in the population greater than the
contribution assumed from analytical error. These younger dates are interpreted to be a
consequence of secondary alteration, and were excluded from the weighted mean
calculation.

In contrast to the relatively well-behaved data from the amphibolite facies sample,
the eight granulites contain significant dispersion in hornblende fragment dates that can
differ up to 1.5 b.y. in a single sample. These data plot as scatters on inverse isochron
diagrams and indicate a mixture of radiogenic, atmospheric and excess *’Ar components
(Figure 8B). The evidence for extensive contamination with excess *"Ar makes it
challenging to extract reliable ages from this dataset. The youngest date in each sample is
generally characterized by the lowest *’Ar excess component, thus providing the tightest
constraint on a maximum hornblende age assuming no significant secondary alteration
effects. The youngest analyses in seven samples range from 1841 + 31 Ma to 1901 + 7

Ma (stated errors do not include uncertainty on J), generally compatible with U-Pb
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thermochronologic constraints. An eighth sample characterized by the greatest
heterogeneity in hornblende dates has a youngest analysis of 2020 + 6 Ma that is
considered an overestimate of the hornblende cooling age based on comparison with U-
Pb thermochronologic data for coexisting minerals. The difference in Ar systematics
between the amphibolite and granulite facies samples is best illustrated by contrasting the
reproducible hornblende data from the amphibolite facies Chipman mafic dike (sample
01M123C), with hornblende data suggesting significant excess “’Ar in a granulite facies
Chipman mafic dike (SZ00-196C) (Figure 8). The correlation of an excess “’Ar
component with metamorphic grade suggests its incorporation during granulite facies
metamorphism. Previous studies in high grade metamorphic terranes have attributed
such data dispersion in low K minerals like hornblende to fluid inclusions with variable
“Ar/*°Ar ratios (e.g. Cumbest et al. 1994; Reddy et al., 1997; Kelley, 2002).

“Ar/*® Ar muscovite data were acquired for six samples by laser ablation mapping
to determine the timing of cooling through ~350-415 °C. Muscovite in the highest grade
rocks of the Chipman, northwestern, and southern domains is rare, and was analyzed
from the one sample in which high-quality grains were identified. In contrast, muscovite-
bearing pegmatites, granites, and gneisses are relatively common in the Hearne and Rae
domains. No clear age gradients were documented in any analyzed muscovite grains.
Weighted mean dates for one sample in the Chipman domain and two samples in the
Hearne domain range from 1758 + 12 Ma to 1739 + 12 Ma. *’Ar/*’Ar muscovite dates for
three Rae samples ranged from 1717 £ 11 Ma to 1747 + 12 Ma.

“Ar/Ar laser ablation mapping of biotite was conducted on eleven samples
distributed across the region to date cooling through 300-350 °C. No age gradients were
discerned in the crystals studied. Incremental heating experiments were carried out on
two samples that yielded reproducible laser spot data, and on two samples that yielded
more complex systematics. Four Chipman domain and two northwestern domain
samples yielded dates from 1744 + 12 Ma to 1780 + 12 Ma. Incremental heating of one
crystal from the oldest sample yielded a statistically significant weighted plateau age of
1776 + 12 Ma, indistinguishable from the weighted mean laser spot age (Figure 9).
Biotite crystals from two Hearne domain samples yielded dates of 1738 + 13 Ma and

1740 + 12 Ma, within error of dates for coexisting muscovite mentioned above. The
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westernmost sample analyzed in this study from the Rae domain yielded the oldest
consistent mica dates of 1864 + 12 Ma, with one incremental heating experiment
providing an indistinguishable plateau date of 1875 = 13 Ma. *Ar/”Ar biotite laser
ablation dates acquired for two southern domain pegmatites contain dramatically greater
inter- and intra-grain variability in apparent dates than any other samples in this study,
yielding individual fusion dates ranging from 1780 to 1874 Ma. No distinct pattern in the
spatial distribution of analyses within crystals was detected. For one sample, two single
crystal incremental heating experiments yielded statistically significant weighted plateau
ages of 1846 + 12 Ma and 1859 + 12 Ma, while a third crystal yielded statistically
insignificant results. Four single crystal incremental heating experiments for the other
sample yielded one statistically significant weighted plateau date of 1827 + 13 Ma. Data
from these two samples do not define a statistically significant linear array on inverse
isochron plots, suggesting a heterogeneously distributed excess “’Ar component may be

responsible for the complex isotopic systematics.

DISCUSSION
Timing Constraints on P-T-D Paths
Chipman Domain

The Chipman domain is characterized by the most complete thermochronological
dataset of this study, based on the range of analyzed phases from a broad spatial
distribution of samples. Linkage of the reconstructed T-t history with existing P-T-D
constraints in this domain places constraints on the tempo and rates of unroofing during
multistage exhumation (Figure 10). Subsequent sections compare and contrast the
cooling histories of the other domains with that of the Chipman domain to enable a more
succinct discussion of exhumation patterns (Figures 11, 12 and 13).

Quantitative timing constraints on the high-temperature evolution of the thermal
regime in the Chipman domain are provided by U-Pb zircon and titanite data. A variety
of evidence supports the ongoing maintenance of high temperatures following peak
conditions recorded at exposed crustal depths. U-Pb TIMS data for metamorphic zircon
grains from five migmatitic Chipman mafic dikes precisely date the timing of dike

anatexis at 1896.2 + 0.3 Ma during syntectonic and synmetamorphic dike emplacement at
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conditions of 1.0-1.2 GPa, ~800 °C (Flowers, Chapter 2; Williams et al., 1995). Nd
whole rock isotopic data for cross-cutting pegmatites dated at 1891-1894 Ma by U-Pb
zircon analysis are consistent with derivation from a deeper mafic protolith, requiring
temperatures of >750 °C for their generation at this time, while their cross-cutting
geometries suggest cooler temperatures at the level of emplacement (Flowers, Chapter 2).
Titanite grains from across the domain range down to 1882 Ma. These data imply some
lateral variability in subsequent thermal regimes despite synchronous timing of dike
migmatization, and suggest the heterogeneous maintenance of temperatures >600-650 °C
or episodic thermal perturbations for 14 m.y. following dike anatexis. A record of near
isothermal decompression to 0.7-0.8 GPa, 750 °C recorded in metamorphic assemblages
of Chipman mafic granulite gneisses (Mahan, 2005), is consistent with cooling of titanite
to < 650 °C during unroofing. Together, these data suggest that granulite facies
metamorphism and mafic magmatism may have continued at 1.0-1.2 GPa crustal depths,
while coeval cooling of exposed crustal levels was driven by exhumation to 0.7-0.8 GPa
associated with the extensional regime of mafic dike emplacement. We estimate an early
exhumation rate of 1.5-2 km/m.y., using the median pressure estimates of 1.1 GPa and
0.75 GPa for peak and retrograde conditions, the 1896 Ma date for HP conditions, and a
median titanite date of 1889 Ma for the timing of decompression. The median rather than
the minimum titanite date is considered the best estimate for the calculation, because the
near-isothermal decompression textures imply a time lag between unroofing and
subsequent cooling.

U-Pb rutile dates impose timing constraints on the next phase of exhumation due
to regional contractional uplift along the Legs Lake shear zone. U-Pb rutile dates from
1869-1851 Ma are considered the most robust estimate of cooling < 450-550 °C in the
central part of the Chipman domain, because these analyses are significantly more
radiogenic than the apatite data from this region. We interpret the record of re-
equilibration at 0.7-0.8 GPa to coincide with an apparent slowing of cooling rates implied
by the rutile data, and to indicate a 20-30 m.y. interval of residence at ~ 25 km crustal
depths following the cessation of mafic magmatism and metamorphism. Cooling below
the closure temperature of rutile by 1851 Ma is considered to primarily reflect the

subsequent onset of contractional uplift along the Legs Lake shear zone. These data are
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consistent with local retrograde Grt+Bt+Crd+Sil assemblages within the Legs Lake shear
zone that record conditions of 0.4-0.5 GPa, and have been dated at 1850 + 17 Ma by in
situ electron microprobe dates for synkinematic monazite linked with the retrograde
reactions (Mahan, 2005). This information suggests exhumation to 0.4-0.5 GPa at ca.
1850 Ma.

The onset of the final phase of extensional exhumation is best constrained by
“Ar/* Ar muscovite and biotite dates from 1780 to 1744 Ma that record cooling < 300 °C.
The mica dates imply a 70-100 m.y. period of residence at 0.4-0.5 GPa. These data
provide precise timing constraints on the previously proposed hiatus in unroofing
between Legs Lake shear zone movement at amphibolite facies conditions and
subsequent extensional reactivation at <450 °C (Mahan et al., 2003). (U-Th)/He zircon
dates for two samples in the Chipman domain range from ca. 1.65 £ 0.1 Ga to 1.78 + 0.08
Ga, consistent with cooling <180 °C during this exhumation phase (Flowers, Chapter 4).
The ca. 1.66 to 1.7 Ga constraints for Athabasca basin deposition (Rayner et al. 2003;
Cumming et al., 1987) impose a lower temporal bound on the unroofing history.
Considering the onset of exhumation from 0.45 GPa at 1780-1744 Ma, with unroofing to
near surface conditions by ca. 1.7 Ga, yields extensional exhumation rates of 0.2-0.3

km/m.y.

Northwestern Domain

The northwestern domain cooling history from 550 to 300 °C is similar to that in
the Chipman domain (Figure 11). Constraining the higher temperature exhumation
history has not yet been possible, owing to the absence of titanite in processed samples
and complex “’Ar/”Ar hornblende systematics characterized by significant excess “’Ar.
Apatite and rutile grains record a comparable range of U-Pb dates as the Chipman
domain, with “Ar/”Ar biotite data falling in the middle of the Chipman domain
distribution. These similarities in intermediate temperature histories suggest the two
domains were exhuming coherently as a juxtaposed unit during ca. 1850 Ma Legs Lake
shear zone contractional uplift and subsequent extension. The timing of juxtaposition is
further constrained by the abrupt termination of Chipman mafic dikes at or within the

bounding shear zones, indicating decoupled histories during mafic dike intrusion at 1896
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Ma. These data imply domain juxtaposition between 1896 and 1850 Ma. This may have
occurred at the 0.7-0.8 GPa conditions recorded in the Chipman domain during this time

period.

Southern Domain

Post-1.9 Ga cooling of the southern domain occurred distinctly earlier than in the
Chipman domain, as recorded by systematically older zircon, titanite, apatite and rutile
dates (Figure 12). Peak metamorphic conditions of >1.5 GPa, > 800 °C and 1.2-1.4 GPa,
>750 °C, are recorded in the northern and central parts of the southern domain,
respectively (Kopf, 1999; Baldwin et al., 2003). Metamorphism at 1904.0 + 0.3 Ma, with
subsequent rapid cooling through the ~650 °C Tc of titanite (Baldwin et al., 2003, 2004),
is 8 m.y. older than the metamorphic peak at 1896.2 + 0.3 Ma in the Chipman domain
(Flowers, Chapter 2). Decompression of the southern domain to 0.7-0.9 GPa, >650 °C
(Kopf, 1999; Baldwin et al., 2003) is consistent with cooling through the titanite closure
temperature during early unroofing.

Apatite and rutile dates from the central part of the southern domain are
consistently a minimum of 5-15 m.y. older than dates across the Chipman and
northwestern domains. Rutile dates from 1881 to 1851 Ma in the northern part of the
domain (Baldwin et al., 2004) overlap with those in the Chipman domain. These dates
could reflect isobaric cooling during residence at 0.7-0.9 GPa, or ongoing cooling during
decompression to higher levels in the crust. “*Ar/*’Ar laser ablation biotite dates for two
southern domain samples range from 1780 to 1874 Ma, and are characterized by
significantly greater inter- and intra-grain variability than samples from the other
domains. Incremental heating results from these samples also show complexity. The
oldest laser ablation analyses are consistently older than biotite dates from the Chipman
and northwestern domains, such that if the younger dispersion of dates is due to low
temperature alteration, the data would indicate earlier cooling to < 300 °C than in the
adjacent domains. Earlier cooling would be consistent with the higher temperature
segments of the history. Alternatively, if the older dispersion of dates is an artifact of
excess “’Ar, the youngest analyses would most closely approximate the cooling age, and

would be broadly consistent with the biotite dates in the other domains.
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We consider two possibilities for the timing of juxtaposition of the southern
domain with the adjacent domains based on the current dataset. Interpretation of the
older “’Ar/*Ar biotite dates to reflect earlier cooling to < 300 °C, in conjunction with the
systematic difference in U-Pb titanite, apatite and rutile dates, may indicate earlier
unroofing to shallower (< 0.8 GPa) crustal conditions. This implies juxtaposition during
subsequent extensional unroofing. Alternatively, the record of isothermal decompression
to ~0.8 GPa in both the southern and Chipman domains raises the possibility that these
domains were in proximity to one another at this condition. In this scenario, the disparity
in the rutile and apatite data would be due to earlier unroofing and isobaric cooling of the
southern domain at ~ 0.8 GPa. Interpretation of the youngest southern domain “Ar/*’Ar
biotite dates to reflect cooling to < 300 °C at a time consistent with that in the other
domains would imply coupled lower temperature histories.  Additional

thermochronologic and P-T data are required to distinguish these possibilities.

Rae Domain

“Ar/®Ar mica dates in the Rae domain provide insight into its intermediate
temperature cooling history. These rocks preserve peak conditions of 0.8-1.0 GPa, ~900
°C at 1.9 Ga (Kopf, 1999; Krikorian, 2002). Muscovite from two samples from the
eastern Rae yielded 1732 and 1747 Ma dates in the same range as the Chipman and
northwestern domain mica dates. A third samples yielded the youngest date in this study
of 1717 Ma, but within error of other samples in the dataset. The fourth and westernmost
sample yielded the oldest reproducible laser ablation mica dates of this study with a
weighted mean of 1862 Ma, indicative of earlier cooling than the Chipman and

northwestern domains.

Hearne Domain

The Hearne domain P-T-D path contrasts with those in the other domains (Figure
13). The metamorphic peak at 0.45-0.5 GPa, 600-700 °C dated at ca. 1.8 Ga by EMP
monazite dates in micaceous schists is markedly younger than the timing of peak
metamorphism in the granulite domains (Mahan, 2005). The pressure conditions are

consistent with regional residence of rocks in the granulite facies domains at 0.4-0.5 GPa
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following Legs Lake shear zone activity that exhumed the granulites and buried
shallower level Hearne domain crust. In this study, two samples yielded U-Pb titanite
dates of ca. 1815 and ca. 1750 Ma. The former date is consistent with the timing of peak
amphibolite facies conditions documented elsewhere in the Hearne. We suggest that
these local peak conditions are in part due to conductive incubation following ca. 1850
Ma burial to mid-crustal depths by the granulites.

The ca. 1750 Ma titanite dates coincide with a period of major intrusive activity in
the Hearne domain, and suggest titanite resetting or new titanite growth at or below the
closure temperature at this time. *“’Ar/*Ar hornblende, muscovite and biotite dates, as
well as U-Pb apatite dates, are 1730 to 1750 Ma, indicating rapid cooling in the 550 to
300 °C temperature interval following the reheating event. U-Pb apatite dates in the
Chipman domain, near the Chipman-Hearne domain boundary, range from 1752 to 1743
Ma. These dates are distinctly younger than apatite dates in the central and western
Chipman domain, and are interpreted to represent resetting due to their proximity to 1750
Ma Hearne domain magmatism. The ca. 1748 to 1738 mica dates are consistent with
those across the Chipman, northwestern, and eastern Rae domains. Together, the
thermochronological data in the Hearne domain are interpreted to indicate magmatism
and reheating immediately prior to, or contemporaneous with, the onset of extensional
exhumation at ca. 1750 Ma that unroofed rocks across the region to near-surface

conditions.

Tempo of Juxtaposition and Exhumation of High-Pressure Granulite Domains

The linkage of our new thermochronologically constrained T-t histories with
existing P-T-D paths constrains the spatial and temporal heterogeneity of exhumation
patterns of deep crust in the East Lake Athabasca region. In the ~200 m.y. between ca.
1.9 Ga HP granulite facies metamorphism of the rocks while in the deep crust, and ca. 1.7
Ga unconformable deposition of Athabasca basin sediments on the exhumed rocks, our
analysis reveals at least three distinct phases of unroofing at diverse rates separated by
two intervals of crustal residence, with domainal juxtaposition during this protracted

exhumation history (Figures 10 through 13).
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An early phase of extensional unroofing associated with mafic magmatism and
HP granulite facies metamorphism at rates of 1.5-2.0 km/m.y. is inferred in the Chipman
domain, by correlation of U-Pb zircon and titanite dates with isothermal decompression
from 1.0-1.2 GPa to 0.7-0.8 GPa. The apparent convergence of disparate higher
temperature thermal histories in several deep crustal domains at ca. 1.89-1.88 Ga implies
their juxtaposition at 0.7-0.8 GPa conditions. The second phase of unroofing was driven
by regional east-directed thrusting of the deep crustal domains as a coherent unit at ca.
1.85 Ga along the Legs Lake shear zone (Mahan and Williams, 2005). This induced
cooling to <500 °C in the Chipman and northwestern domains and juxtaposed the
granulites with middle crustal Hearne domain rocks at 0.4-0.5 GPa conditions. The onset
of a final period of extensional unroofing at rates of 0.2-0.3 km/yr is dated by “Ar/*Ar
mica dates across the region that generally range from 1.78 to 1.74 Ga, and record final
cooling to <300 °C. Extensional reactivation of the amphibolite facies Legs Lake shear
zone at greenschist facies conditions is compatible with the low temperatures indicated
by the thermochronometry during extensional unroofing. Most (U-Th)/He zircon dates
range from ca. 1.78 to 1.63 Ga (Flowers, Chapter 4), consistent with exhumation to near-
surface conditions and the onset of deposition of Athabasca basin sediments by ca. 1.70
to 1.65 Ga (Rayner et al., 2003; Cummings et al., 1987).

The cooling patterns and retrograde assemblages imply two pauses in unroofing
between exhumational pulses. We infer a 20-30 m.y. interval of residence at ~25 km
(0.7-0.8 GPa) crustal depths following early isothermal decompression, prior to the shift
to a contractional regime. We similarly interpret a 70-100 m.y. period of storage of
domains across the East Lake Athabasca region at crustal depths of ~15 km (0.4-0.5 GPa)
preceding final extensional exhumation. This latter interpretation is supported by the ca.
1.85 Ga dates for 0.4-0.5 GPa retrograde assemblages in the deep crustal Chipman
domain, and by ca. 1.80 Ga dates for 0.4-0.5 GPa peak assemblages in the Hearne
domain (Mahan, 2005). The later attainment of peak temperatures at 1.80 Ga in the
Hearne domain is interpreted to reflect the time lag for conductive heating in response to
burial to mid-crustal depths by the granulites. Subsequent thermal perturbation at ca.
1.75 Ga in the Hearne domain was associated with local resetting of thermochronometers

(titanite, apatite, hornblende) and felsic magmatism before and/or during extensional

125



Chapter 3 — Temporal Constraints on Multistage Exhumation

exhumation. If the Hearne domain temperatures are indicative of a more regional
elevation of temperatures that coincided with extensional exhumation at ca. 1.75 Ga, it is
possible that the ca. 1.78 to 1.74 Ga “*Ar/*Ar mica dates in the granulite domains reflect
combined reheating and unroofing processes. This would imply temperatures of <300 °C
in the granulite domains during residence at ~15 km crustal depth, with subsequent

resetting and final cooling during the extensional phase of exhumation.

Implications for Multistage Exhumation and the Architecture of Lower Continental
Crust
Multistage Exhumation of Lower Continental Crust

Multistage unroofing of the East Lake Athabasca region is linked with changing
regional tectonic regimes during a 200 m.y. period of lithospheric instability in the
western Churchill Province during and following the assembly of the Laurentian
supercontinent. Entrapment of the western Churchill Province as the upper plate between
the 2.02-1.91 Ga Taltson-Thelon orogen to the northwest and the 1.91-1.81 Ga Trans-
Hudson orogenic belt to the southeast is interpreted to be responsible for its severe
reactivation at ca. 1.9 Ga (Figure 1). Intrusion of mafic dikes in the Chipman domain of
the East Lake Athabasca region has been linked with a focused episode of ca. 1.9 Ga
mafic magmatism along >1200 km of the Snowbird tectonic zone, implying regional
asthenospheric upwelling (Flowers, Chapter 2) that induced early extensional unroofing
in the Chipman domain. Regional contractional uplift along the Legs Lake shear zone at
ca. 1.85 Ga is interpreted to correlate with the onset of arc accretion and major collision
of the Superior and Hearne Provinces to the southeast, and thus is considered a hinterland
response to Trans-Hudson orogenesis (Mahan et al., 2003). The development of E-NE
trending ductile structures across the western Churchill Province, including dextral strike-
slip faulting along the ca. 1.8 Ga Grease River shear zone that offsets the Legs Lake shear
zone, coincides with the period of 0.4-0.5 GPa residence of rocks in the East Lake
Athabasca region. Final extensional unroofing to near-surface conditions is regionally
consistent with ca. 1.75 Ga Nueltin suite magmatism, extension, and transtensional basin
development across the Rae and Hearne provinces (Peterson et al., 2002; Rainbird et al.,

2003). This final phase of extension may be due to lithospheric thinning, lithospheric
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densification due to mantle metasomatism, and/or some component of lithospheric
delamination. The preservation of Proterozoic (U-Th)/He zircon and apatite dates attests
to the long-term stability of this region following the 200 m.y. period of tectonism and
deep crustal exhumation that culminated in the reattainment of a stable lithospheric
configuration at ca. 1.7 Ga (Flowers, Chapter 4).

A number of factors were key in the ultimate exhumation and preservation of
deep crust in the East Lake Athabasca region. Unroofing was largely due to the
protracted duration of lithospheric instability following lithospheric disruption at 1.9 Ga,
as the changing patterns of contraction and exhumation across the Laurentian
supercontinent controlled the exhumational pulses. The final geographic position of the
exhumed terrane within a stabilized craton, near the middle of the Laurentian
supercontinent, protected these rocks from subsequent tectonism. The exceptional
preservation of high-pressure assemblages in the granulites we attribute to the repeated
episodes of HP granulite facies metamorphism that dehydrated the rocks and limited the
availability of fluids for retrogression during unroofing.

Multistage exhumation, characterized by discrete pulses of unroofing separated by
intervals of crustal residence, may typify the exhumation of isobarically cooled deep
crustal terranes. This highlights the potential for such terranes to permanently become
embedded at middle crustal levels following an episode of partial exhumation, if
subsequent tectonic events do not induce the resumption of unroofing. Such intervals of
middle-crustal residence also increase the probability of fluid introduction, retrogression,
and re-equilibration to intermediate crustal conditions, such that peak assemblages may
be destroyed prior to exhumation. Thus, the successful transport of well-preserved deep
crustal rocks from the base of the Earth’s crust to the surface, and their subsequent
preservation, may require a fortuitous set of crustal conditions and tectonic
circumstances. This explains the paucity of exposures of isobarically cooled deep crustal

terranes available for study in the geological record.
The Architecture and Heterogeneity of Lower Continental Crust

The new constraints on unroofing of the East Lake Athabasca region allow us to

consider the implications of the block architecture of this exhumed high-pressure
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granulite terrane for the heterogeneity and structure of the lower continental crust. The
apparently decoupled high-temperature thermal history for disparate domains in the East
Lake Athabasca region, associated with distinct P-T-D histories, provides compelling
evidence for their juxtaposition during unroofing. Thus, the current configuration of
these domains does not represent their structural relationship while in the deep crust.
However, the prevalent ca. 2.6 Ga protolith ages, the distribution of similar mafic and
felsic granulite gneisses in the Chipman, northwestern and southern domains, and the
ubiquitous ca. 1.9 Ga metamorphic overprint reflect a common history preserved in these
disparate domains during earlier deep crustal residence. The diverse plutonic rocks,
tonalitic gneisses, and mafic and felsic granulites that compose the domains reflect a
greater degree of lithological heterogeneity than that typically envisioned for the
lowermost crust. The extensive tracts of deep crustal rocks exposed in the East Lake
Athabasca region may permit easier detection of this heterogeneity than the more
common high-pressure granulite exposures of restricted size. This diverse character
warrants careful consideration when reconstructing the nature and histories of deep
crustal levels based on restricted samples of lower crustal xenoliths. Thus, although the
current segmented architecture in the East Lake Athabasca region was primarily acquired
during exhumation, this overprinted a primary heterogeneity that was a fundamental

characteristic of the rocks during their evolution in the deep crust.
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FIGURE CAPTIONS

Figure 1. Geological map of the western Canadian Shield showing major tectonic
features. AB-Athabasca basin, BL-Baker Lake basin, KX-Krumanituar Complex, STZ-
Snowbird tectonic zone, TB-Thelon Basin, THO-Trans-Hudson Orogen, TO-Taltson
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Orogen, TMZ-Thelon Magmatic Zone, UX-Uvauk Complex, VR-Virgin River dikes and

shear zone. The rectangle shows the East Lake Athabasca region enlarged in Figure 2.

Figure 2. Geological map of the East Lake Athabasca region, northern Saskatchewan.

Figure 3. Concordia diagram for apatite from sample 03-52 showing the effect of
selection of initial Pb isotopic composition on the computed dates. Gray ellipses are
dates calculated using the Stacey and Kramers (1975) model for terrestrial Pb evolution.
Green ellipses are dates calculated using the isotopic composition of leached coexisting

feldspars from this sample.

Figure 4. Simplified geological maps of the East Lake Athabasca region showing sample
locations and ranges of *’Pb/***Pb dates for A) titanite, B) apatite, and C) rutile. Data in
italics are from Baldwin et al. (2003, 2004). Chip-Chipman domain, NW-Northwestern

domain, Sou-Southern domain.

Figure 5. Simplified geological maps of the East Lake Athabasca region showing sample
locations and *Ar/*Ar dates for A) hornblende, B) muscovite, and C) biotite. The
weighted mean of the laser fusion hornblende fragment data is given for the one
hornblende sample not characterized by a variable mixtures of excess “Ar and
atmospheric components. Muscovite and biotite dates are weighted means of the laser
excimer ablation analyses. Chip-Chipman domain, NW-Northwestern domain, Sou-

Southern domain.

Figure 6. U-Pb concordia diagram for Chipman migmatitic dike sample 03-52 including
zircon, titanite, apatite and rutile data. Zircon data are discussed in Chapter 2. Photos are
examples of minerals analyzed from this sample. “’Ar/*’Ar hornblende and (U-Th)/He

zircon data were also acquired for this sample.

Figure 7. U-Pb concordia diagrams of titanite, apatite and rutile data for the A) Chipman,

B) northwestern, C) southern, and D) Hearne domains.
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Figure 8. Inverse isochron diagrams for A) amphibolite facies Chipman mafic dike
sample 01M123C and B) granulite facies Chipman mafic dike sample SZ00-196C. Both
a York fit through selected data points, and a reference line through an atmospheric
component, are depicted. Refer to the text for data interpretations. Green squares are

data points included in the data regression. Smaller blue squares are not included.

Figure 9. “Ar/*’Ar biotite data for Chipman domain pegmatite sample 02-76B. A)
Location of laser spot fusion analyses for one of three crystals analyzed from this sample.
Dates given for individual spots do not include the systematic uncertainty in the J-value
to facilitate comparison of intra-crystal dates. The error on the weighted mean date
includes the J-value uncertainty to permit appropriate comparison with “°Ar/*Ar data for
other samples and with U-Pb data. B) Incremental heating experiment that yields a
weighted mean plateau date indistinguishable from the weighted mean of laser fusion

dates for this sample.

Figure 10. Temperature-time diagram for the Chipman domain and associated

interpretation of the cooling path.

Figure 11. Temperature-time diagram for the Northwestern domain and associated
interpretation of the cooling path. Chipman domain thermal history depicted as the gray

dashed line for reference.

Figure 12. Temperature-time diagram for the southern domain and associated
interpretation of the cooling path. Chipman domain thermal history depicted as the gray

dashed line for reference.
Figure 13. Temperature-time diagram for the Hearne domain and associated

interpretation of the thermal history. Chipman domain thermal history depicted as the

gray dashed line for reference.
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Table 2. Pb isotopic composition of leached
feldspar separates

sample wt(mg) ~°Pb’ Tpp Tpp,
-"“Pb :me ;mpb

BF03-52: Chipman mafic dike, Chipman domain
Fsp 1. g 5.0 15510 15238 36.403
Fsp 2. med 34 15345 15211 36.296
BF03-88A: Mafic granulite, Chipman domain

Fsp2 2.5 16.099 15502 350912
BF03-196: Felsic granulite, NW domain

Fsp | 5.1 13.807 14.737 33.824
Fsp2 3.1 13945  14.768 34.048
01SZ40B: Eclogite, Southern domain

Fsp | 7.0 14.006  14.824  34.205
Fsp 2 5.9 14.003 14819 34.186
BF02-281: Axis mafic granulite. Southern domain
Fspl 2.8 14100  14.814  34.039
01MI44: Biotite granite, Hearne domain

Fsp 1 2.5 14447  15.035 35.246
Fsp2 29 14.432  15.036 35.215

* Standard error on analyses is less than 0.05.
Pb fractionation is 0.12 +0.04%/a.m.u. for Faraday
detector based on daily analysis ol NBS-981.

137



Chapter 3 — Temporal Constraints on Multistage Exhumation

"PAUILIDIAP 2 PIN0d 2lkp A[qet[as & eyl yons sjuauodwod suaydsount pure 1y, s520xa djgeLies {q pazuapeseys ou apdues
U0 a1 J0) parsodal st USIUAWISEL) JO UOISN) JASE| UO PISE] "IRP APUIJQUIOY V' BIEP UONRIAR 10US JASE] JWIIND IR SIIEP BN
“31RIASD P31 drenbs ueAw (SN dewmsa Quienaoun seudodde dow e wego

01 AMSIN 2y Jo 1001

amenbs atp {q parjdunur sea 1012 AYI YOIYM J0) URdw payIas i ddwmes JedIpul $OIe] eA-f

41 Ul IBLIAOUN PNJIUL PUE UBALWL Y] JO 10113 PIEPURIS A} SAUI) 0] 18 pauodal due siour] -ade pauajatd saedtpul plogj

70 <l 8eLl 3J08 08 tiot TIL0 MuTI3 W SLTINTO
60 Tl 6£L1 013001 0/01 gjo¢ tI-sL0 ayuerd ww HETWTO
11 <l 6ELY r RIS Pt | tiot 8T-80 anewdad W ULTINO
8T 11 8Ll 011001 Fiof 0T-01 anewdad sw o HLTINTO
:,.ﬂ——_:Q QLI . i

<l 4! 7981 [ R 174 riot 91-90 SIS M0 W 1ETM96
61 ! LFLL LEJOLT 911 gjo¢ ¢ anpwrdad asw TONED
Tl 1 LILL criogl 99 gJo¢ 1260 smewdad W ggel-c0
£ < IEi0 911091 Sl fog £€-07¢C ISIYAS pId-13-asu asw L8-€166
MUWOoC] MY

ror s 1€81 stjogl ti11 riot 0¢-01 amewdad W RL7S10
I P | 9181 SLjog] 081 $JOY 81 -SL0 amrurdad W deci7zsio
[UIHU T TER TN

01 zl 9sL1 €1Jool 0i€1 tiog 61-80 SIS Moy W V601-€0
ra <l 09L1 rd R | 0:T1 cjog TI-50 unid mspy ssardonar V961-€0
..:—.:.:CQ wa mv.ﬁsﬁcz

L0 1 6TLI g1Jot] 8140 fI ayip anjoyrydwe a4 LTI
10 T A 6Jog 0/6 tilof C1-80 ISIYIS SNOAdRIIW st (JE81-C0
LT U Ll slog 1t TI0T 0T-sLOo UI2A DIS[D) W €1801-C0
9T T SHLI crjogy /8 9109 81-L0 amewand 0 HLL-T0
t1 <l $9L1 0TI0 0T 11/6 tior TT-Cl amewdad W J691-€0
Tl zl 08L1 stjosi T tior ce-0l anewdad W £19L-C0
::«.G-CC e :._U

[CITE:Y papnput SuBdS papnpoul (Witi) pazijeue

GMSIN 1o

unapy pAYIa

sasi[eue g

/swurod g

SUIRIO) & SYIPLA UIRID

Adojoyu-y urpy Pldweg

218 OIS pue UONRIQY JASRT] 1Y, AV, € ojqR |,

138



Chapter 3 — Temporal Constraints on Multistage Exhumation

"2JBIAJP PAYTIdm dienbs uedw "([MSIN

"91BWIISY Ajuteuddun dteudosdde aow e urelqo 01 M SIA 241 JO 1001 d1enbs ayy Aq pajdijnu sem 1012 3y}
Yoiym Joy neajejd 10013 yYim djdwes ajedipur sd1ey| dN|eA-f Y} U AJUIBLISOUN PN[IUL PUB UBIW dY) JO JOLID
piepuels a3 sawil omi 1B pauodar ate siourg -a3e neatejd paySiom juedijiudis £]jeO1ISIIE)S B SajedIpul pjog,

816 L'c ¢l FL81 grjool 07l 0'1L81 80 AETM96
UIeuiog o8y

oL ¢¢l 81 0081 LIoFr 0TI 01941 90 y-8L7S10
1'66 ot ¢l cr8l €1Joe 0°¢l £eesl 80 £-8L7ZS10
8'66 t1 £l LT81 8309 o6'Cl 8'9¢8l 80 <-8L7S10
0is 3 4 Ll cc¥l 830 9 Tl £9081 | 1-8LZS10
999 €L T 8§81 8306 L'l 9ErLl 80 t-9cciZS10
¥SL €1 <l 6581 oL 811 6’118l [ ¢-qIcIZS10
1°66 o'l <l 9181 6joL %11 L1€81 <l C-HcCIZS10
Urewio(] wginog

9 91 <l 9LL] rlijool +Il 9°sSLl | q49L-C0
UTenoq mewdiy

nede(d uo (BN) o8y papnjoul (BN) 98y (ww) pazijeue

Yiy o, (MSW 013 nedje|d paydiom sdols # Joug uoisng [Bl0]  syipia uteiry  djdweg
LBIE(] SUNEAH [BJUSWAIOU[ J3SE'] ANI0Ig 1Y IV b 3[QR],

139



Chapter 3 — Temporal Constraints on Multistage Exhumation

1
NS 7
N ’:\«.\ ¢ ;
Bie ) AT |
J 3 ..w___r»/ ~a)\ j ’_}\
o \\\}
A a
’ 5 &
Y o’ T0
\ : N 66 -
% )
T kY ot E. Y
Province K & *
- : : & }QL«\ %
N\ \3 g 1/ )
A 7. i . 1 G,
o S '/@ i i 62
< ; Hudson
i Bay
Lake £ A e
Athabasca /., / Greenstone belts
' s o ¢ / (2.7 -256Ga)
Striding-Athabasca

mylonite zone
Other high pressure
granulites
] Plutons, volcanics, |
— sediments (2.02-1.76 Ga)
Intracratonic basins

Phanerozoic
ver
cove e
116
[ w (ca. 1.75-1.70 Ga) 1
[:I Phanerozoic cover i
|

Figure 1

140



Chapter 3 — Temporal Constraints on Multistage Exhumation

\%wﬁaow — aynuesb oyep m_
o wy oL wiems eyp oyew uewdiyo D 6'L Pue ayeuo) uewdiyd [ ]
ﬂ uiseg seyueIb oepelU| Jye KiBpy ‘SeyMEH
ST B eoseqeyly xa1dwoo aAIsNAUI JBW BIIYOg .

$3001 Jayio pue ayewbiw ‘elxaielp ‘ployuess [T
9|6uel) a)uojAw BOSEqRU)Y ISBT

> \m«umw

easeqeyly
ENE

Aeg 11oN

 (pog
_ e SUIneN)

(32019 ebpoq)

.SF_ e

Figure 2

141



Chapter 3 — Temporal Constraints on Multistage Exhumation

0.340

=

03361

&

o

0332} &

L o

(V]
0.328}

Initial Pb Isotopic

0.324 ¢ Composition
Leached

0.3204 coexisting feldspar
Stacey and

0.316 r Kramers (1975)

r 207Ph /235
0.312 — , : —_ "
4.6 48 5.0 52

Figure 3

54

142



Chapter 3 — Temporal Constraints on Multistage Exhumation

%tanite

02M45
1820-1814 Ma
01M144

. = 1414 7 s ip 3
1900-1894 Ma : 1784-1745 Ma
- 03-52
SZ00-196C | 1886-1882 Ma

1898-1891 May | 1889-1885 Ma . 1g5A
ca.1895 Ma

Athabasca Basin

}Apaﬁte

03-88A
1752-1742 Ma

21

S$Z00-196B
1853-1815 Ma
[/ s

Athabasca Basin /
}duﬂle ‘

‘

03-196

1830-1781,Ma| =" ‘
75,
7-1853 Ma

: : N |03-1
SR {185
2(02-281 p
1882-1874 Mal

Athabasca Basin

Figure 4

143



Chapter 3 — Temporal Constraints on Multistage Exhumation

}J‘fomblende

01M123C
1729 + 11 Ma

18200-196C

4
Athabasca Basin

}Al/luscovite

03-1938
1717+ 11 Ma | >

03M92
1747 + 11 M

99B-87
1732 12 Ma

01M127B
1748 + 11 Ma
02M23B
1739 + 12 Ma

Athabasca Basin

?éiotite

[03-109A
1756 12 Ma

7/

i

(03160 [5F705.768
96W23E Rae 1760+ 12Ma | 11765+ 12Ma ¥ |1780+ 12 Ma
1862 + 12 Ma R e ’

01M127B
1739 + 12 Ma
02M23B
1738 + 12 Ma

02-108B
1744 £ 12 Ma

1748+ 12 M

5

Athabasca Basin

Figure 5

144



0.35

0.34

0.33f

0.321

0.31 : . .

Zircon |

Chapter 3 — Temporal Constraints on Multistage Exhumation

03-52: Migmatitic Dike

zircon
1880

titanite
600-650 °C
apatite

450-500 °C

rutile

400-450 °C

207Pp/235()

46 438 5.0 5.2 54 5.6

¥

Figure 6

145



0.35

0.34

0.331

0.32

Chapter 3 — Temporal Constraints on Multistage Exhumation

206pp,238

Titanite: 5 samples
Apatite: 2 samples

Rutile: 2 samples
0.311
207Pp/235
0.30 1 1 T + : -
43 45 47 49 51 53t 155 57
0.35
Southern -
034/ DOmain
= 1860
3
0.331 Q&
¥
o 1820
[7e]
&
0.321 1780 Apatite: 2 samples
Rutile: 1 sample
0.31 1740,
207pp /235
0.30 + 1 - + . -
43 45 47 49 51 531 55 57

0.35
NW Domain o
0.341
) 1860
8
0.33 %
o 1820
8
0.324
178 Apatite: 1 sample
Rutile: 2 samples
0.314 1740
207pp/235J
0.30 t t + 1 t -
43 45 47 49 5.1 53 55 5.7
0.35
Hearne
034/ Domain
)
3
0.331+ O
Ko
o
8
0:321'™ Titanite: 2 samples
Apatite: 1 sample
0.31
207pp/235
0.30 + : - - — t
43 45 47 49 5:1 53 55 5.7
Figure 7

146



Chapter 3 — Temporal Constraints on Multistage Exhumation

0.000100
A. 01M123C

Amphibolite facies
Chipman mafic dike

36Ar/40Ar

0.0000501

39Ar/40Ar
0 . . . . , . \
0.0110 0.0145 0.0180

0.000100
B. SZ00-196C

Granulite facies
Chipman mafic dike

36Ar/40Ar

0.0000501

39Ar/40Ar

0 - - - & r . -
0.0110 0.0145 0.0180

Figure 8

147



Chapter 3 — Temporal Constraints on Multistage Exhumation

Crystal #1,BF02-76B
Weighted Mean Date: 1779.7 + 11.6 Ma
A.

1778.9 || 6 @m
+73 |E

s 17850 17705
17874 [o3 \ 114 +11.8
t102 *°

500 um

(L

1776.3t11.7 Ma
18757

63.4% 39Ar
12071

1040 r———y
0 10 20 30 40 50

60 70 80 90 100
Cumulative 39Ar Released (%)

Figure 9

148



Chapter 3 — Temporal Constraints on Multistage Exhumation

R e o e i R 11/D] Extensional
Chlpman ;igtgraol_:ghism g/i,cjgn e
800 g ' -| associated with
Domam 1.0-1.2 GPa & // mafic dike intrusion
i U/Pb _ and HP met
e titanite '
& 0.7-0.8 GPa Residence ~25 km
— 600} S % 1 crustal depth for
) 20-30 m.y.
: -
'§ faj/ZZte \\ Contractional
) P uplift along
g' 400} 40Ar/39Ar U/Pb 1 LegsLake
ﬁ‘) mUSCOV/te . . . \% shear zone
& biotite ' .
200k . 0.4-0.5 GPa ~ ?ri?g?r;(;(:);l1fi:( "
s (U=Th)/Hé" zircon =+ 1 70-100my.
i ca. 1.7 Ga deposition — Extensional
o[ 7 [ <€——— of Athabasca Basin . exhumation
168 172 176 180 1.84 1.88
Time (Ga)
Figure 10

149



800

600

Temperature ("C)

Chapter 3 — Temporal Constraints on Multistage Exhumation

Northwestern Domain

U/Pb
apatite

40Ar/39Ar
muscovite
& biotite

1

ca. 1.7 Ga deposition
of Athaba§ca 'Basi.n

Juxtaposition
-l  with Chipman
domain?

\ Contractional

"~ uplift along
U/Pb 1 Legs Lake

rutile shear zone

I crustal depth for

172 1.76 _1.80
Time (Ga)

1.68

1.84

70-100 m.y.
=1 _ Extensional
exhumation
1.88
Figure 11

150



Chapter 3 — Temporal Constraints on Multistage Exhumation

e —————— '1.9'Ga'HP' . S—T—
800 SOUthem metamorphism —>

" Domain U/Pb
Zircon

g U/Pb
titanite

600
0.7-0.9 GPa

U/Pb
apatite
400¢ 40Ar/39Ar

muscovite
& biotite

U/Pb 1
rutile

Temperature (°C)

Extensional =
exhumation

ca. 1.7 Ga deposition
of Athabasca Basin

172 1.76 1.80 1.84 1.88
Time (Ga)

200F..w-ThiHe™

0 L.

1.68

Figure 12

151



Chapter 3 — Temporal Constraints on Multistage Exhumation

800 Hearne Burial with
- . d uri
Domain 0.4-0.5 GPa granulites
L~ uplifted by
L.j/Pb. "~ Legs Lake
6‘ titanite shear zone
< 600 ? g
o
= U/Pb ? Residence ~15 km
© - : L crustal depth for
= apatite \ 70-100 m.y.
S400F  opmonr -
) muscovite ] Reheating
= & biotite 4 by intrusives
200 ~ Extensional
exhumation
ca. 1.7 Ga deposition i
O = of Athabasca Basin I
168 172 1.76 180 1.84 1.88
Time (Ga)
Figure 13

152



Chapter 4

Ancient (U-Th)/He dates in the western Canadian Shield:
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Chapter 4 — Ancient (U-Th)/He Dates and Continental Stability

ABSTRACT

Vertical displacement of the Earth’s surface is directly linked to plate tectonics
and mantle convection. At active plate margins, high (up to 1 cm/yr) unroofing rates and
rapid topographic evolution have been documented. In contrast, billions of years have
passed since major tectonic activity perturbed the cratonic cores of some continents.
However, new data indicate that even these stable continental interiors undergo episodes
of uplift and/or subsidence, linked to tectonic processes and changing patterns of mantle
flow. Thus, cratons can preserve a time-integrated record of the potentially subtle effects
of asthenospheric convection and dynamic topography that has been overprinted in
regions of active tectonism. (U-Th)/He thermochronometry is an underexploited means
of constraining low temperature thermal histories in regions of apparent tectonic stability.
We present the Earth’s oldest reported (U-Th)/He zircon and apatite dates that reveal
rocks of the western Canadian Shield have stably resided at temperatures < 30 °C and
crustal depths <2 km for ca 1.0 — 0.7 b.y. Such data allow evaluation of uplift episodes
complementary to the depositional records of subsidence commonly incorporated into
epeirogenic geodynamic models, and may permit detection of cratonic vertical motions

related to coupling between continental lithosphere and the convecting mantle.

154



Chapter 4 — Ancient (U-Th)/He Dates and Continental Stability

INTRODUCTION

The preservation of ancient continental crust through billions of years of Earth’s
dynamic history is qualitative testimony to the long-term stability of some parts of the
continents. These rocks owe their survival to a cratonic architecture characterized by
cold, thick (>250 km), chemically depleted lithospheric mantle roots that have shielded
the crust from subsequent plate margin processes and underlying asthenospheric mantle
activity (e.g. Jordan, 1978). Conventional studies of cratonic denudation based on
geomorphic observations and erosion rate calculations have advocated the longevity of
cratonic landscapes for hundreds of millions of years, consistent with concepts regarding
the tectonic and thermal stability of cratons (Fairbridge and Finkl, 1980; Bishop, 1985;
Stewart et al., 1986; Gale, 1992; Nott, 1995). However, the record of regional subsidence
and uplift within stable continental areas, such as that preserved by Phanerozoic
sedimentary sequences that extend deep into the cratonic interior of North America, has
lead to the recognition that these regions may have experienced a more dynamic isostatic
history than previously believed (Sloss and Speed, 1974; Bond 1978, 1979). Dynamic
topography, the vertical displacement of the Earth’s surface in response to mantle flow,
has been invoked to explain components of these large-scale epeirogenic continental
motions (e.g. Mitrovica et al., 1989; Gurnis, 1993; Lithgow-Bertelloni and Gurnis, 1997;
Pysklywec and Mitrovica, 2000).

Analytical techniques that provide quantitative constraints on low temperature
thermal histories and place bounds on the magnitude of vertical rock motion since the last
significant period of tectonism are required to rigorously evaluate this problem. Models
for cratonic vertical motions largely rely on the sedimentary record of submergence and
emergence (e.g. Lithgow-Bertelloni and Gurnis, 1997), although this record is
complicated by the inherently ephemeral nature of dynamic topography such that these
phases are likely to be marked by sequence boundaries (e.g. Burgess et al. 1997). Low
temperature thermochronometry can yield insight not only into phases of uplift
complementary to the preserved subsidence record, but also can provide a powerful
means of evaluating episodes of burial and denudation for which geological evidence has
been completely removed. Apatite fission-track (AFT) studies have attempted to

constrain low temperature (60-120 °C) thermal histories for this purpose (e.g. Crowley et
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al., 1986; Gleadow et al., 2004), but the geological significance and reproducibility of
these data in slowly cooled regions are a subject of debate (Hendriks and Redfield, in
press). In contrast, the application of (U-Th)/He thermochronometry to assess uplift in
regions of apparent tectonic stability has been limited. We use this technique to constrain
low temperature histories in a geologically well-characterized region of the western
Canadian Shield. This area was targeted due to its broad coherency since ca. 1.7 Ga
(Hoffman, 1989) and its exceptionally thick lithospheric mantle root (Godey et al. 2004)
that together suggest this continental interior may have been more effectively shielded
from subsequent perturbation than localities that have been the focus of previous low
temperature thermochronological investigation. Our results represent the oldest reported
terrestrial (U-Th)/He zircon and apatite dates, confirm the protracted (1.0 — 0.7 b.y.)
residence of rocks at shallow (=< 2 km) crustal depths, and offer insights into the long-

term history of vertical motions within this stabilized continent.

LOW TEMPERATURE THERMOCHRONOMETRY IN STABLE CONTINENTAL
INTERIORS

Almost all previous investigations aimed at constraining low temperature thermal
histories in cratonic regions have employed apatite fission-track thermochronology. This
method relies on analysis of preserved spontaneous fission ***U tracks in apatite, which
are fully annealed at temperatures =110 °C, largely preserved at temperatures < 60 °C,
with intervening temperatures known as the partial annealing zone. Early studies yielded
dates from 500 to 930 Ma in the mid-continent of the United States and in the southern
Canadian Shield (Crowley et al., 1986; Crowley and Kuhlman, 1988). However, recent
studies in the southern Canadian Shield, and in the Kaapvaal, Yilgarn, Pilbara, and
Brazilian cratons have yielded younger dates from 50 to 400 Ma (Amaral et al., 1997,
Gleadow et al., 2002; Kohn et al., 2002; Osadetz et al., 2002; Harman et al., 2003; Saenz
et al., 2003; Belton et al., 2004). These data challenge the antiquity of cratonic
landscapes and have been interpreted to indicate reheating and/or burial by sedimentary
cover with subsequent unroofing in the Phanerozoic. However, new study urges caution
in the interpretation of AFT data from slowly cooled terranes, owing to the possibility

that overlooked low temperature annealing processes may sometimes lead to an
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underestimation of AFT dates (Hendriks and Redfield, in press). In Finland, large
variations in apparent AFT ages occur over short horizontal distances, with AFT dates
anomalously younger than associated (U-Th)/He apatite dates attributed to unaccounted
cumulative radiation-enhanced lattice recovery (Hendriks and Redfield, in press).

Low temperature (U-Th)/He thermochronometry has permitted many questions
regarding the evolution of the Earth’s surfaces in a variety of tectonic settings to become
tractable problems. However, despite the potential for this technique to yield insights into
regions of apparent tectonic stability, this method has had limited application in slowly
cooled terranes. Zircon and apatite are characterized by (U-Th)/He closure temperatures
of ~180 °C and 60-70 °C (Farley, 2000; Reiners et al., 2004), corresponding to rock
passage through crustal depths of 8-12 km and 3-5 km, respectively, with consideration
of a typical ~15-20 °C/km cratonic geothermal gradient. In practice, a measured date
reflects the balance between He loss due to diffusion and He ingrowth due to radiogenic
decay of U and Th, with a partial helium retention zone for apatite between ~30 and 80
°C depending on grain size and cooling rate. Thus, this method is sensitive to
temperatures lower than those accessible by apatite fission track analysis and can
effectively monitor temperatures at the shallowest crustal depths that most closely reflect
denudational processes. A study in the southern Canadian Shield demonstrated the
feasibility of obtaining reproducible (U-Th)/He apatite dates from a cratonic region, and
inferred much less sensitivity of the (U-Th)/He system to apatite compositional variation
than the AFT system (Lorencak et al., 2004). (U-Th)/He thermochronometry clearly
provides an underexploited means of providing additional valuable constraints on low

temperature thermal histories within continental interiors.

REGIONAL GEOLOGIC SETTING

The Canadian Shield is an extensive, well-exposed collage of Archean cratons
separated by Paleoproterozoic collisional orogens. This region has largely remained
intact since that time, with its boundaries modified by the Grenville orogen (1.2-1.0 Ga)
along its southern boundary, Neoproterozoic rifting along most of its margin, and
Paleozoic arc terrane accretion (Hoffman, 1989). The western portion of the Canadian

Shield is currently characterized by a seismic velocity structure consistent with the
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presence of a cold, >250 km thick lithospheric mantle keel (Godey et al., 2004) (Figure
1).

The East Lake Athabasca region, at the boundary between the Rae and Hearne
crustal provinces in the western Canadian Shield, contains extensive (>20,000 km?2)
tracts of rocks metamorphosed in the deep crust (1.0 to >2.0 GPa), subdivided into
disparate lithotectonic domains. This area records a history of Archean lithospheric
assembly and stabilization, with dramatic Proterozoic exhumation that ultimately
produced the stable lithospheric configuration responsible for the long-term subsequent
preservation of these rocks (Hanmer, 1997; Mahan and Williams, 2005; Flowers,
Chapters 1 & 3). The unroofing history is temporally bracketed by ca. 1.9 Ga
metamorphism of these rocks while in the deep crust and subsequent ca. 1.7 Ga
deposition of clastic sedimentary rocks of the Athabasca basin across the exhumed
granulites. Detailed structural and metamorphic data used to reconstruct pressure-
temperature-deformation paths, in conjunction with high-resolution U-Pb ID-TIMS
(zircon, monazite, titanite, apatite, rutile) and *’Ar/*Ar (hornblende, muscovite, biotite)
geo- and thermochronological data that constrain high and intermediate temperature
cooling histories, reveal an exhumation record interpreted to indicate pulses of unroofing
separated by intervals of crustal residence during sequential contractional uplift, strike-
slip shearing, and extension (Mahan et al. 2003; Mahan and Williams, 2005; Flowers,
Chapter 3) (Figure 2). “’Ar/*Ar muscovite and biotite dates from 1.72 to 1.78 Ga provide
a lower bound on final cooling through 350-300 °C, interpreted to reflect the initiation of
extensional exhumation followed by transport of the rocks from depths of 0.4-0.5 GPa to
near-surface conditions. The tightest minimum timing constraint on subsequent
unconformable deposition of Athabasca basin fluvial, lacustrine and marine sediments
across the region (Raemakers, 1981) is imposed by the youngest dated detrital zircon
grains at 1661 + 34 Ma in the Wolverine Point formation in the upper part of the basin
sequence (Rayner et al., 2003), consistent with less precise ca. 1.65 to 1.70 Ga U-Pb
dates for authigenic phosphate sediments (Cumming et al. 1987).

Fluid flow histories, reconstructed due to the economic importance of high-grade
uranium deposits, provide some insight into subsequent Athabasca basin evolution. Fluid

inclusion and clay mineralogy studies within the basin sediments, U-Pb and Pb-Pb
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analysis of uranium rich minerals, and “’Ar/*’Ar and K/Ar investigation of Fe-rich clay
paragenesis constrain an early diagenetic event at 1.7-1.6 Ga at temperatures of ~150 °C,
burial diagenesis between 1.6 and 1.45 Ga at > 150 °C, fluid remobilization at ~0.9 Ga,
and Phanerozoic fluid incursion at < 50 °C (Fayek et al., 2002; Kotzer and Kyser, 1995;
Philippe et al., 1993; Percival et al., 1993; Kotzer et al., 1992). The current basin covers
an area of ~100,000 km? and attains a maximum thickness of ~2300 m near its center,
with speculation based on fluid inclusion data of Proterozoic thicknesses up to 5-7 km,
although this is poorly constrained (Pagel et al., 1980). The current extent of Paleozoic
sedimentary covers lies to the southwest of the Athabasca basin. Some continental
reconstructions have speculated that this veneer of sediments may once have covered
large portions of the rest of the Canadian Shield, including our area of study (e.g. Ziegler,
1989; Scotese and Golonka, 1992) (Figure 1).

(U-TH)/HE THERMOCHRONOLOGICAL RESULTS

(U-Th)/He zircon and apatite data were acquired to constrain the low temperature
history of rocks in the East Lake Athabasca region. Zircon crystals were selected from
well-characterized populations previously analyzed by U-Pb ID-TIMS methods, with
internal structures imaged by backscatter and cathodoluminescence techniques. Past
studies have demonstrated that a high level of accumulated radiation damage in zircon
can lead to He loss and anomalously young apparent ages (Reiners et al., in press), and,
for this reason, samples containing zircon with low U and Th concentrations (1-65 ppm)
were targeted for analysis. Selected zircon crystals included metamorphic grains from
three mafic granulite gneisses and igneous grains from one pegmatite sample (Figure 1,
inset). Apatite grains were similarly identified in populations previously dated by U-Pb
ID-TIMS, and pristine crystals were picked from one sample of Archean tonalitic gneiss.
Refer to the data repository for details regarding analytical methods. Table 1 lists
analytical results.

Eight of ten zircon grains yielded dates from 1.63 to 1.78 Ga. Two zircon grains
from one sample yielded distinctly younger dates of 1.37 and 1.43 Ga.
Cathodoluminescence images of zircon crystals in this sample revealed dark or

luminescent overgrowths not observed in the other analyzed grains, consistent with
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higher uranium rims and the potential for underestimation of the alpha-ejection
correction, and calculation of dates that are too young. Six apatite crystals yielded dates
from 0.70 to 0.98 Ga. The range of apatite Th/U ratios suggests the presence of multiple
apatite populations and/or zoning, consistent with the heterogeneous character of the
deformed and polymetamorphosed Archean gneiss from which these grains were
extracted. The reproducibility of dates from different apatite populations corroborates the

significance of the dataset.

IMPLICATIONS FOR THE STABILITY AND VERTICAL MOTIONS OF
CONTINENTS

Our (U-Th)/He zircon and apatite dates for the western Canadian Shield are the
oldest reported for terrestrial rocks, and confirm the long-term stability of this region
since the Proterozoic. (U-Th)/He zircon dates from 1.78 to 1.63 Ga are interpreted as
cooling to < 180 °C during exhumation. This is entirely consistent with the well-
constrained geological record of unroofing and subsequent basin deposition, bracketed by
1.78 to 1.72 Ga *’Ar/*Ar mica dates attributed to cooling during extensional unroofing,
and 1.70 to 1.65 Ga Athabasca basin sediments unconformably deposited across the
exhumed rocks (Figure 2). Assuming typical cratonic geothermal gradients of 15-20
°C/km, the preservation of these dates requires residence of the rocks at crustal depths of
< 8-12 km for ca. 1.7 b.y.

The detailed constraints on exhumation and basin evolution in the East Lake
Athabasca region further allow us to evaluate the implications of the 1.0 to 0.7 Ga (U-
Th)/He apatite dates for continental vertical motions during 1.7 b.y. of cratonic stability.
In the simplest analysis, these ancient dates are consistent with a history involving
cooling below 80 °C and unroofing at 1.0-0.7 Ga, followed by extended exposure at the
Earth’s surface. In reality, the sensitivity of apatite dates to subtle variations in
temperature during long-term residence in the partial retention zone means that a
measured date may represent the integrated product of a potentially complex thermal
history (Reiners, 2002). Although this behavior precludes direct translation into a
cooling age, it offers the potential to use appropriate geological constraints to evaluate

viable thermal models that can be linked with uplift and subsidence histories.
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Constraints on post-1.7 Ga continental motions that can be used in conjunction
with our thermochronometric information are primarily derived from Athabasca basin
fluid inclusion studies and basinal records of Canadian Shield unroofing. Fluid inclusion
studies have estimated a maximum Proterozoic basin thickness of 5-7 km, such that
removing the preserved 2.3 km of sediments in the deepest part of the basin, and making
the reasonable assumption of little differential exhumation during basin unroofing,
implies a post-1.7 Ga burial of exposed rocks in the East Lake Athabasca region by no
more than 2.7 - 4.7 km in the Proterozoic. Following burial diagenesis from ca. 1.6 to
1.45 Ga, fluid mobilization events at ca. 0.9 Ga and in the Phanerozoic have tentatively
been linked with uplift during Neoproterozoic rifting along the western margin ca. 750-
500 Ma (Kotzer and Kyser, 1995; Fayek et al., 2002). We note that although these same
studies interpret temperatures of 150-200 °C in zones of uranium mineralization within
the basin, temperatures >180 °C in the East Lake Athabasca region following basin
deposition are precluded by the ancient (U-Th)/He zircon data. This is reasonable, given
the selectivity of fluid inclusion studies within the most uranium rich and therefore
hottest portions of the basin, the potential for localization of brief peak temperatures
within the basinal hydrothermal convection system, and the absence of significant
basement retrogression that would be suggestive of hot brine circulation in the study area.
In addition to these constraints, some continental reconstructions have proposed that most
of the western Canadian Shield currently lacking Phanerozoic cover, including the East
Lake Athabasca region, was inundated by the Paleozoic seas responsible for sedimentary
sequences still preserved over much of the North American cratonic interior (Ziegler,
1989; Scotese and Golonka, 1992). Discovery of Devonian limestone xenoliths in
kimberlites of the Slave province provide solid evidence that =750 m of now eroded
Phanerozoic sediments once blanketed this craton (Cockenboo et al., 1998). Nd isotopic
and geochemical data for Arctic basinal sequences have been used to argue that up to 2
km of sedimentary rocks similarly extended over the remainder of the western Canadian
Shield from 450 to 80 Ma, followed by progressive removal in the Mesozoic (Patchett et
al., 2004).

In light of the above information, and to shed further insight into the speculated

phases of continental uplift and subsidence, we consider histories for the East Lake
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Athabasca region involving 1) long term (1.6-1.7 b.y.) residence at constant temperature
beneath Athabasca basin sediments prior to Phanerozoic unroofing, 2) episodic uplift and
removal of Athabasca basin sediments from a maximum thickness in the Proterozoic, and
3) subsequent burial by sediments of some thickness in the Phanerozoic (Figure 3). We
use the HeFTy program (Ketcham, in press) to constrain this suite of feasible models by
applying a standard He production-diffusion model (Wolf et al., 1998) to our
approximate analyzed apatite half-width of ~50 pm. Crustal depths are estimated
assuming typical cratonic thermal gradients of 15-20 °C/km. In the simple residence
scenario, the data are consistent with burial of the rocks to depths of 1.5-2km beneath
Athabasca basin sediments, subsequent residence at temperatures of 25-30 °C for 1.7 to
1.6 b.y., followed by unroofing in the Phanerozoic (Figure 3, T-t path 1). A more
complex history involving episodic unroofing synchronous with basinal fluid circulation
events can follow a restricted range of temperature-time paths depending on the
magnitude of exhumation associated with each uplift pulse, but ultimately requires
cooling to temperatures < 30 °C, corresponding to depths of < 2 km, by 0.7-1.0 Ga
(Figure 3, T-t path 2). Finally, the data are permissive of burial beneath up to 2 km of
Phanerozoic sediments at maximum temperatures of ~30 °C from 450 to 80 Ma (Figure
3, T-t path 3). However, the preservation of ancient (U-Th)/He apatite dates despite this
hypothetical period of younger sedimentary accumulation requires an earlier history
characterized by much lower temperatures than those modeled in the episode uplift model
of scenario two, with residence at crustal depths of < 500 m for prolonged periods in the
Proterozoic. This is an important point, because additional information regarding early or
recent uplift and subsidence episodes based on geological or other thermochronologic
data could dramatically narrow the range of possible temperature-time paths for parts of
the history for which no such further data is available. Regardless of the details of each
model, the ancient (U-Th)/He apatite dates reveal that rocks in the East Lake Athabasca
region resided at temperatures of < 30 °C, at crustal depths of <2 km, for 1.0 to 0.7 b.y.

IMPLICATIONS FOR MANTLE DYNAMICS

Much attention has focused on the large-scale vertical motions of continental

interiors as an avenue for understanding changing patterns of flow within the mantle (e.g.
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Gurnis, 1992; Pysklywec and Mitrovica, 1998; Burgess and Moresi, 1999). For example,
Late Cretaceous subsidence and Tertiary uplift in the western interior of North America
has been attributed to the dynamical effects of changing subduction (Mitrovica et al.,
1989). Subduction induced long-wavelength tilting has subsequently been used to
explain aspects of subsidence patterns in a number of stable continental regions at
different times in the Phanerozoic (Coakley and Gurnis, 1995; Mitrovica et al., 1996;
Burgess et al., 1997; Pysklywec and Mitrovica, 2000). Others have attempted to compute
the global time-varying dynamic topography for the Cenozoic, predicted differential
motions for stable continental regions, and assessed the viability of results based on
geological observations (Lithgow-Bertelloni and Gurnis, 1997; Lithgow-Bertelloni and
Richards, 1998). These studies have repeatedly called for improved stratigraphic
constraints to permit more effective evaluation of geodynamic models. However,
because dynamic topography is intrinsically a transient feature driven by changing mantle
flow regimes, the resulting sedimentary accumulation has a low preservation potential,
and the long-term expected signal in the depositional record is as an unconformity or
sequence boundary (e.g. Burgess et al., 1997). This places fundamental limits on a
detailed understanding of past episodes of dynamic topography solely based on the
stratigraphic record.

Our study demonstrates that low temperature (U-Th)/He thermochronometry
within stable cratonic regions provides a powerful tool for deciphering uplift phases
complementary to the sedimentary record of subsidence, and can help constrain vertical
continental motions for which geological evidence has been completely removed. For
example, computation of Cenozoic global dynamic topography predicted 2.5 to 3 km of
uplift within portions of the western Canadian Shield, including the area of our study
(Lithgow-Bertelloni and Gurnis, 1997). However, the antiquity of our (U-Th)/He apatite
dates require residence of exposed rocks at crustal depths < 2 km for the last 1.0-0.7 b.y.,
thus imposing a maximum 2 km of uplift in the Cenozoic. The low amplitude of vertical
motions since the Precambrian in the East Lake Athabasca region of the western
Canadian Shield indicates this area has exceptional value for deciphering earlier uplift
and subsidence phases for which thermal records have been eliminated in regions

characterized by greater recent uplift. Uplift since the Precambrian is interpreted for the
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southern African Plateau and cratonic regions of Australia based on geophysical and AFT
data (e.g. Nyblade and Sleep, 2003; Kohn et al., 2002), such that the record preserved
within these different continental interiors can provide diverse insight into the driving
plate tectonic and mantle flow mechanisms of epeirogenic motion. In the past, (U-
Th)/He analysis has received limited application to cratonic regions and therefore has not
been exploited in the development and assessment of geodynamic models for vertical
motions within continental interiors. In the future, the acquisition of such data, coupled
with the sedimentary record, holds the promise of exciting new insights into continental

stability and changing mantle dynamics.
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FIGURE CAPTIONS
Figure 1. Geological map of the western Canadian Shield showing major tectonic
features. Box marks location of upper right inset of simplified map of the East Lake

Athabasca region with sample locations.

Figure 2. Temperature-time path during exhumation of high-pressure granulites in the

Chipman domain, reconstructed from U-Pb, **Ar/*Ar and (U-Th)/He data.
Figure 3. Suite of viable thermal models for an apatite half-width of 50 um that satisfies

the apparent (U-Th)/He apatite dates. Refer to text for more detail regarding the depicted

temperature-time paths.
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Table 1. (U-Th)/He data for zircon and apatite

mass radius' U  Th 4He

raw age raw est2o

corr age est20

Zircon analyses

Apatite analyses

Fr (ug) (um) ppm ppm_ Th/U (nmol/g) (Ga) err (Ga) Ft’ (Ga) err (Ga)
02-76B, Chipman domain pegmatite

zl 6.7 463 660 21.2 032 6033 1.38 0.07 0785 1.76 0.09

z2 103.1 1313 505 147 030 509.7 1.51 0.09 0914 1.65 0.10

z3 2126 1955 421 139 034 4487 1.57 0.10 0934 1.68 0.10
03-52, Chipman mafic granulite dike

zl 142 655 333 29 009 2999 142 0.08 0.830 1.71 0.10

72 6.1 513 327 37 012 2677 1.30 0.08 0.790  1.65 0.10

23 73 463 45 60 014 4006 1.41 0.06 0788 1.78 0.08
SZ00-141Azl, southern domain mafic granulite

zl 40 453 370 40 011 3147 1.35 0.06 0.757 1.78 0.08

z2 73 615 150 36 025 1269 131 0.06 0.804 1.63 0.07
SZ00-196C, Chipman domain mafic granulite dike

z2 53 435 168 22 0.14 109.] 1.06 0.05 0770  1.37 0.07

23 74 495 95 03 004 654 1.14 0.06 0.796  1.43 0.07
SZ00-196B, Chipman domain tonalitic gneiss

al 14 36,0 122 40 032 481 0.64 0.06 0.651 098 0.09

a2 47 555 52 05 009 17.5 0.57 0.05 0.764 0.74 0.07

a3 42 5t0 7.3 27 038 327 0.71 0.05 0.748 095 0.07

a4 43 573 61 28 047 272 0.69 0.06 0.763 091 0.07

as 33 46.0 126 63 051 50.7 0.63 0.04 0.724 086 0.05

a6 2.6 435 82 77 097 278 0.49 0.04 0.705 _ 0.70 0.06

* Radius is defined as average of perpendicular half-widths
® Ft is alpha-ejection correction of Farley et al. (2002).
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Chapter 5 - Synthesis

INTRODUCTION

The surviving continents preserve a complex and fragmentary archive of Earth’s
long dynamic history. Deciphering this record is key to understanding the fundamental
processes associated with the growth and stabilization of continental lithosphere. A
central component of this problem is determining the magnitude of bias inherent in the
preserved record, owing to the selective destruction of less stable continents. Thus,
analysis of the lithospheric response to perturbations by asthenospheric and plate margin
tectonic processes is essential to constrain both 1) the mechanisms that can disrupt
continents, and 2) the lithospheric characteristics that are most conducive to lithospheric
survival. This information is essential to gain a more objective perspective on the
continental record available for study today.

The oldest continental remnants, the Archean cratons, have survived billions of
years of Earth’s history and thus are a particularly valuable resource for investigating the
potential controls on lithospheric preservation. Cratonic lithosphere is characterized by
thick (= 200 km) chemically depleted lithospheric mantle roots that have helped insulate
the crust from severe overprinting by subsequent tectonism (e.g. Jordan, 1978).
However, even these relatively stable portions of the continents have been perturbed
following assembly, by episodes ranging from minor lithospheric rejuvenation to major
lithospheric disruption. A better understanding of this continuum can yield insights into
the factors governing the survival or destruction of continents.

The lower continental crust, as the physical link between the upper crust and
mantle, retains a particularly sensitive record of asthenospheric disturbance that may not
be as clearly manifested at higher levels of the crustal column. Episodes of lower crustal
mafic magmatism, metamorphism and melting thus can have important implications for
the larger dynamics of crust-mantle interaction. Much attention has focused on
constraining the origins, tectonic settings of formation, P-T paths, and exhumation
histories of granulites, because of their importance for broader crustal histories (e.g.
Harley , 1989; Bohlen, 1991; O’Brien and Rotzler, 2003). Vast tracts of lower crustal
rocks preserved in the East Lake Athabasca region in the western Churchill Province
record two different types of high-pressure (HP) granulite facies metamorphic events

followed by exhumation. This history can be used to place fundamentally important
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constraints on the stabilization, reactivation, and preservation of continental lithosphere

in the western Canadian Shield.

HIGH-PRESSURE GRANULITE FORMATION IN THE EAST LAKE ATHABASCA
REGION

Although granulites have a wide diversity in origin, two endmember tectonic
settings have been identified for their formation (e.g. Ellis, 1987; Harley, 1989). These
are: 1) granulites that formed at the base of the crust with subsequent isobaric cooling, the
potential for long term residence in the deep crust, and exhumation by a mechanism
unrelated to their genesis, and 2) granulites that originated in a brief tectonic episode with
isothermal decompression and exhumation during the same orogenic cycle. HP granulite
xenoliths fall into the former category, as they commonly record isobaric cooling to a
steady-state geotherm following metamorphism. Granulite facies exposures of this type
include the Ivrea Zone, Kapuskasing uplift, and Napier Complex, with subsequent
unroofing in unrelated plate margin and intracratonic settings, respectively (Percival and
Card, 1983; Zingg, 1990; Harley and Black, 1997). In contrast, HP granulite exposures
generally represent formation by short-lived crustal thickening or subduction events that
are also responsible for their exposure (O’Brien and Rotzler, 2003). Examples include
the Hengshan Complex of China, the European Variscides, and the Grenville Province
(O’Brien and Carswell, 1993; Indares, 1995; Zhao et al., 2001).

Rocks in the East Lake Athabasca region preserve evidence for the subjection of
the same rocks to both types of HP granulite facies events. A variety of data provide
evidence for a widespread Archean granulite facies event, followed by isobaric cooling
and subsequent residence in the deep crust — consistent with the first type of HP granulite
formation. New U-Pb zircon results for the Chipman domain document significant
metamorphic zircon growth in mafic granulite gneisses at 2.55 Ga (Chapter 1), linked
with ~1.3 GPa, 850 °C granulite facies assemblages in these rocks (Mahan et al., 2005).
Isobaric cooling paths from peak conditions of ~0.8-1.0 GPa, 900 °C are interpreted to
have developed following the Archean emplacement of the Mary granite in the

northwestern domain, preceding long-term residence of this domain in the lower crust
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(Williams et al., 2000; Williams and Hanmer, 2005). Metamorphic zircon growth at ca.
2.55 Ga has also been reported in the southern domain (Baldwin et al., 2004).

There is compelling evidence for a second HP granulite facies metamorphic event
at 1.9 Ga, followed by isothermal decompression — consistent with the second type of HP
granulite formation. Mafic dike anatexis at conditions of 1.0-1.2 GPa, ~ 800 °C has been
dated at 1896.2 + 0.3 Ma in the Chipman domain (Williams et al., 1995; Flowers,
Chapter 2). This is consistent with 1.9 Ga metamorphic zircon growth at ca. 1.9 Ga in
mafic granulite gneisses, linked with a second granulite facies assemblage preserved in
this rock (Chapter 1). Metamorphic zircon growth at 1904.0 + 0.3 Ma has been linked
with peak conditions in the southern domain (Baldwin et al., 2004). U-Pb titanite dates
from across the region record resetting to temperatures > 600 °C in the Proterozoic
(Chapter 3). These and other new thermochronological data in this study, as well as
isothermal decompression textures in a number of the domains (Kopf, 1999; Krikorian,
2002; Baldwin et al., 2004; Mahan, 2005), indicate unroofing shortly following HP
granulite facies conditions. The thermochronological dataset, in conjunction with
constraints on unconformable deposition of Athabasca basin sediments over the exhumed
granulites at ca. 1.7 Ga, record the exhumation of the granulites to near-surface
conditions within 200 m.y. of deep crustal metamorphism (Chapters 3 and 4).

This is the first reported occurrence of the formation of the two primary types of
HP granulites within the same exposure of lower crustal rocks. Additional study is
required to verify this inferred history, owing to the inherent complexities associated with
deciphering the record preserved in rocks subjected to repeated HP granulite facies
events. However, this is considered the most straightforward interpretation of the current
dataset. The unique character of this lower crustal record preserved in the East Lake
Athabasca region may be directly linked to the unusual nature of the tectonic history

required for the genesis, exhumation and preservation of these granulites.
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EVOLUTION OF CONTINENTAL LITHOSPHERE IN THE WESTERN CANADIAN
SHIELD
Lithospheric Stability

The history inferred for lower crustal exposures in the East Lake Athabasca
region has important implications for the evolution of continental lithosphere in the
western Canadian Shield. The record of 2.55 Ga HP granulite facies metamorphism,
evidence for subsequent isobaric cooling, the still relatively anhydrous nature of
lithologies inferred during later metamorphism, and the recurrence of metamorphism at
HP conditions at 1.9 Ga implies that these rocks resided in the crust for the intervening
650 m.y. This period of relative quiescence is interpreted to reflect an extended period of
lithospheric stability following cooling to a cratonic geotherm. Long-term residence of
high-pressure granulites in the deep crust is the history inferred for most lower crustal
xenoliths erupted from stable continental interiors, and logically is the history of the
lower crust in most Archean cratons. Similarly, lower crustal xenoliths commonly record
subsequent thermal perturbations and magmatic episodes in response to plate margin
accretionary and asthenospheric upwelling events (e.g. Schmitz and Bowring, 2003;
Farmer et al., 2005). The dramatically distinct aspect of the record in the East Lake
Athabasca region is that the subsequent episode of lithospheric perturbation was
sufficiently severe to destabilize this cratonic region, culminating in the unroofing of the
lower continental crust.

An important secondary point is the critical context this exposure provides for the
interpretation of the record preserved in lower crustal xenolith samples. A commonly
observed disparity in the equilibrium pressure and composition of isobarically cooled
granulite xenoliths and terranes suggests that xenolith samples commonly represent
samples of the lowermost (1.0 to 1.5 GPa) continental crust, while granulite terranes are
exhumed from the upper and middle portions (0.6 to 0.8 GPa) of the lower crust (Bohlen
and Mezger, 1989). In contrast, the rocks across the East Lake Athabasca region record
conditions from 1.0 to >1.5 GPa during the high-pressure granulite facies episodes.
These data suggest that this region represents a true exposure of lowermost continental
crust that resided near the Moho for much of its history, comparable in crustal depth to

many lower crustal xenolith samples. Thus, this terrane affords an exceptional
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opportunity to directly examine the rock types and structural relationships in the deepest
portions of the crust, and provides a crucial in situ context to enable more robust analysis

of the xenolith record.

Lithospheric Reactivation

An event of profound significance is required to disrupt and exhume a stabilized
Archean craton. The ca. 1.9 Ga timing of the second episode of HP granulite facies
metamorphism broadly coincides with the assembly of the Laurentian supercontinent.
The position of the western Churchill Province as the intervening lithosphere spatially
and temporally bounded by two inward dipping subduction zones — the 2.02-1.91 Ga
Taltson-Thelon orogen to the northwest and the 1.91-1.81 Ga Trans-Hudson orogen to
the southeast — must have been a central factor in its destabilization at this time. The
Archean versus Proterozoic significance of the Snowbird tectonic zone, a ~2800 km long
geophysical anomaly in the western Churchill Province, has long been debated owing to a
complex record of both Archean and Proterozoic metamorphic events (Hoffman, 1988;
Hanmer, 1997). New data establishes the timing of syntectonic and synmetamorphic
intrusion of a major mafic dike swarm in the East Lake Athabasca region at 1.9 Ga
(Chapter 2). This mafic magmatism is linked with contemporaneous mafic intrusive
activity focused along > 1200 km strike length of the Snowbird tectonic zone. The
exploitation of the Snowbird tectonic zone for emplacement of 1.9 Ga mafic magmas is
consistent with major Paleoproterozoic reactivation of an earlier Archean structure.
These results provide compelling evidence for a continent wide episode of 1.9 Ga
asthenospheric upwelling spanning much of the western Canadian Shield, implying the

integral role of this upwelling event in the reactivation of the Archean craton.

Lithospheric Exhumation

Multistage exhumation of the extensive regions of lower crust in the East Lake
Athabasca region occurred during the ~200 m.y. period of instability following
lithospheric disruption.  Final unroofing by ca. 1.7 Ga is constrained by
thermochronological data (Chapter 3) and the deposition of sediments of the Athabasca

basin across the exhumed granulites at this time. The changing tempo of exhumation and
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associated juxtaposition of HP granulite domains during unroofing was driven by the
evolving regional contractional and extensional regimes across the Laurentian
supercontinent during and following its final assembly. This suggests the ultimate
exposure of deep crust in the western Churchill Province largely owes to the protracted
duration of lithospheric instability. Multistage exhumation histories characterized by
pulses of exhumation punctuated by intervals of crustal residence may typify the
exhumation of lower continental crust. The exceptional preservation of the high-grade
assemblages in the rock across the region may be due to their former life as dehydrated
granulites in the lowermost crust that limited the availability of fluids for retrogression
during unroofing. The exhumation of the unusually extensive and well-preserved
exposures of lower crust in the western Churchill Province is directly linked with the
record of lithospheric disruption in this region. The unusual nature of this lithospheric
history may in part explain the paucity of comparable exposures preserved elsewhere on

Earth.

Lithospheric Preservation

The preservation of exhumed lower crust in the East Lake Athabasca region from
ca. 1.7 Ga until the present attests to the re-attainment of a stable lithospheric
configuration in the western Churchill Province. The spatial location of the East Lake
Athabasca region in the middle of the Laurentian supercontinent that originally was a
central factor in its lithospheric disruption, is also inferred to have played an important
role in this region’s subsequent preservation due to lateral shielding within the middle of
the Laurentian supercontinent. Low temperature (U-Th)/He zircon and apatite data
corroborate the extended residence of these rocks at shallow crustal levels (< 2 km)
following unroofing (Chapter 4). These data also permit assessment of vertical motions
in the western Churchill Province that reflect the ongoing response of the continental
interior to plate tectonic and mantle processes during later craton margin accretionary and
rifting processes. These subtle episodes of uplift and subsidence represent a continuum
with the lithospheric perturbation processes responsible for earlier destabilization of this

craton.
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CONCLUSIONS

Lower continental crust exposed in the East Lake Athabasca region retains an
exceptional record of lithospheric stabilization, reactivation, and exhumation. Early
stability is analogous to the history inferred for the rocks resident at the crustal base of
most Archean cratons. Similarly, deep crustal perturbation owing to asthenospheric
upwelling and plate margin tectonic processes is commonly recorded as episodes of
magmatism and metamorphism in the deep crust. However, the history in the East Lake
Athabasca of an event severe enough to expose the base of the crust to high temperatures
followed by its exhumation dramatically differs from that preserved in most high-
pressure granulites. We attribute this unusual record to the location of these rocks at the
center of the Laurentian supercontinent during its assembly. The rarity of such records
recognized in crustal rocks may be compounded by the common destruction of
continental lithosphere that has been destabilized. Following 200 m.y. of lithospheric
instability that culminated in the exhumation of the deep crust, this region apparently re-
achieved a stable lithospheric configuration. Its subsequent survival was aided by its
position within Laurentia, and low temperature thermochronological data help to
constrain the uplift and subsidence history of this stabilized continental interior. The
changing patterns of mantle dynamics and plate tectonic interactions thus are manifested
as a continuum of lithospheric perturbations, from the subtle vertical motions of
continents to the destabilization and potential destruction of continental lithosphere.
Future studies that document the range of continental behavior in response to a variety of
plate tectonic and mantle processes in this and other regions is essential to gain a more

complete understanding of continental formation and survival.
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APPENDIX A: DESCRIPTION OF MINERALS ANALYZED BY U-Pb
Titanite

Sixteen single-grain titanite fractions from six samples across the Chipman
domain yielded ***Pb/*”’Pb dates that range from 1882.1 to 1897.5 Ma. Mafic granulite
sample 02M133A from Cora Lake on the western side of the domain contains scarce,
yellowish-brown titanite fragments that yielded two indistinguishable dates of 1885 and
1886 Ma. Chipman mafic granulite dike sample 03-52 and Chipman tonalite sample 03-
5C were both collected from the central part of the Chipman domain at Chipman Lake.
Three titanite fractions from 03-52 comprising light brown grains yielded dates from
1882 to 1886 Ma. Abundant titanite grains from 03-5C are honey-colored and anhedral,
with three fractions that yielded dates from 1883 to 1896 Ma. Sample SZ00-196C is a
Chipman mafic dike, and sample SZ00-196B is a heterogeneous Chipman tonalite, both
from Woolhether Lake in the southern central part of the domain. Titanite grains in both
samples are abundant, medium to dark brown, flattish grains with common core and rim
morphologies that yielded seven fraction dates ranging from 1885 to 1898 Ma. One
titanite fraction from Fehr granite sample 02-185, collected from the easternmost
Chipman domain and containing abundant tan, ovate to rounded titanite, yielded a date of
1895 Ma.

Titanite grains from two samples in the Hearne domain are distinctly younger
than those in the Chipman domain. Three titanite fractions from biotite granite sample
01M144 of Balliet Lake, comprising anhedral light brown titanite, yielded dates from
1745 to 1784 Ma. Calcsilicate sample 02M45, collected at Charlebois Lake, is the
furthest east sample for which titanite data was acquired, and contains abundant, brown

to dark brown irregular grain. Three fractions range from 1814 to 1819 Ma.

Apatite

Apatite fractions from three Chipman domain samples, one northwestern domain
sample, two southern domain samples, and one Hearne domain sample yielded
successful, radiogenic analyses. Eight apatite fractions from two samples in the Chipman
domain yielded a span of **Pb/*’Pb dates from 1784 to 1853, with three fractions from a

third sample that define a systematically younger apatite population. Chipman mafic dike
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sample 03-52 from the central Chipman domain contains clear, ovate flat apatite grains.
Three single and two multigrain fractions characterized by a range of grains sizes yielded
dates from 1784 to 1844 Ma. One single and two multigrain fractions of clear, ovate
apatite grains with a range of grain sizes from Chipman tonalite sample SZ00-196B
yielded dates from 1815 to 1853 Ma. Chipman mafic granulite sample 03-88A is from
the northeastern margin of the Chipman domain at Bompas Lake. Clear, irregularly
shaped blocky apatite grains in this sample were characterized by the highest Pb*/Pbc
ratios of analyzed apatite grains, and yielded distinctly younger dates single and
multigrain fraction dates from 1743 to 1752 Ma.

Northwestern domain felsic granulite sample 03-196 contains ovate to round,
clear apatite. Three multigrain fractions yielded dates from 1768 to 1850 Ma, coinciding
with the span of apatite dates for the central part of the Chipman domain.

Seven apatite fractions from two samples in the southern domain yielded dates
from 1865 to 1901 Ma, distinctly older than dates obtained from the other domains. Axis
mafic granulite sample 02-281 from the central part of the southern domain contains
round to ovate apatite grains that yielded four single grain fraction dates from 1885 to
1901 Ma. Three apatite single grain fractions from eclogite sample 01SZ40B from the
northern part of the southern domain, comprising irregular hazy grains, yielded dates
from 1865 to 1880 Ma.

One single grain fraction of ovate, somewhat irregular apatite from biotite granite
sample 01M144 from the Hearne domain yielded a **Pb/*”Pb date of 1746 Ma,
consistent with apatite dates from sample 03-88A on the eastern margin of the Chipman
domain. Five other apatite fractions from this sample contained Pb*/Pbc ratios two low

to yield meaningful dates.

Rutile

Rutile grains in three samples from the western, central and northern Chipman
domain were analyzed. Rutile fractions were analyzed from two samples in the
northwestern domain, and one sample from the central part of the southern domain. No
rutile was identified in lower grade, amphibolite facies rocks processed from the Hearne

domain.

184



Appendix A

Six single grain rutile fractions analyzed from the central and west-central part of
the Chipman domain yielded dates from 1851 to 1869 Ma, with four distinctly younger
analyses obtained from the northeastern margin of the domain. Rutile grains from
Chipman dike sample 03-52 are scarce, translucent, irregular red shards that are highly
radiogenic and yielded four precise single fragment dates from 1851 to 1869 Ma. Felsic
granulite sample 03-175A from the western part of the domain contains abundant, large
(hundreds of microns), opaque, dark red fragments with external Fe-Ti oxide staining that
yielded two dates of 1853 and 1857 Ma. A limited population of small, elongate,
translucent, light red tabular rutile fragments were extracted from mafic granulite sample
03-88A near the northeastern edge of the domain. Three single and one multigrain
fractions yielded dates from 1771 to 1808 Ma, systematically younger than rutile
analyses from the central and western parts of the domain.

Six single grain rutile fractions from the northwestern domain yielded dates from
1780 to 1875 Ma. Three fractions from felsic granulite sample 03-196A, comprising
mostly opaque, dark red fragments with Fe-Ti oxide staining, yielded dates from 1796 to
1830 Ma. Felsic granulite sample 03M13 from the eastern side of the domain contains
abundant, large, dark red, opaque rutile grains, and yielded three fractions from 1831 to
1875 Ma.

Five single grain fractions of rutile analyzed from the central part of the southern
domain were systematically older than rutile grains from the other domains. Axis mafic
granulite sample 02-281 contains abundant, irregular, translucent to opaque rutile grains

that yielded dates from 1874 to 1882 Ma.
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APPENDIX B. “AR/”AR LASER FUSION HORNBLENDE FRAGMENT DATA

Table B1. Chipman domain *'Ar/”Ar laser fusion hornblende fragment data®

H0AK(r) Age +2s
36Ar(a) 39Ar(K) 40Ar(r) (%) (Ma)
02M133A
4A025@29 0.00010 0.13702 9.22261 99.69 1875.95 +5.94
4A025@ 24 0.00004 0.12105 8.16848 99.85 1878.88 +6.20
4A025@?27 0.00008 0.12646 8.71564 99.73 1903.65 +6.18
4A025@ 36 0.00000 0.08745 6.08527 100.00 1915.00 +7.17
4A025@ 38 0.00003 0.10464 7.45452 99.87 1942.77 +6.62
4A025@26 0.00004 0.11899 8.68821 99.85 1972.27 +6.89
4A025@23 0.00002 0.09094 6.66424 99.92 1976.65 +7.06
4A025@ 2] 0.00003 0.10853 7.96838 99.90 1978.88 +6.65
JA025@22 0.00002 0.08811 6.66045 99.93 201412 +7.20
4A025@25 0.00003 0.12944 9.78811 99.83 201449 +6.29
JAM5@37 0.00000 0.10994 8.33088 100.00 2017.05 *7.33
JA025@28 0.00006 0.07985 6.14H62 99.73 2035.79 + 10.08
4A025@ 40 0.00002 0.06661 5.31785 99.91 2080.85 +8.93
4A025@ 34 0.00008 0.09500 8.07868 99.71 2159.67 +6.93
4A025@ 35 0.00004 0.05923 5.09197 99.78 217340 + 10.05
4A025@ 3] 0.00005 0.08887 7.67034 99.81 2178.33 +7.89
4A025@ 32 0.00005 0.07925 7.14264 99.80 223341 +7.62
4A025@ 33 0.00007 0.07134 6.87450 99.72 2320.04 +8.29
JA025@ 39 0.00004 0.07103 7.73459 99.84 2482.27 +8.77
4A025@ 30) 0.00009 0.08636 9.56393 99.72 2504.96 +8.H
SZ00-196C
4JA028@ 8Y 0.00005 0.12296 8.25724 99.82 1873.23 +6.32
4A028@ 100 0.00000 0.09336 6.36313 100.00 1890.56 +6.50
4A028@ 88 0.00005 0.12313 8.46193 99.83 1900.34 +6.21
JA028@ 84 0.00003 0.08078 5.61715 99.83 191412 +8.63
4A028@ 85 0.00003 0.10625 7.37993 99.89 1912.79 +6.37
JA028@9] 0.00006 0.09526 6.66187 99.72 1920.90 +7.15
4A028@ 87 0.00007 0.10655 7.51321 99.74 1930.68 +6.91
4A028@99 0.00005 0.08707 6.26103 99.75 1953.91 +7.42
JA028@ 82 0.00005 0.10946 7.86677 99.81 1953.32 +6.68
JA028@ 90 0.00008 ¢.10118 7.29013 99.66 1956.33 +6.80
JA028@ 92 0.00013 0.10206 7.39395 99.49 1962.90 +6.93
JAQ28@ &3 0.00010 0.10945 7.91268 99.63 1960.40 +6.28
4JA028@ 96 0.00015 0.12608 9.13124 99.50 1962.45 +6.27
JA028@ 97 0.00024 0.11335 8.25613 99.16 1969.35 +6.17
4A028@81 0.00009 0.10966 8.04709 99.66 1978.20 +6.60
JA028@ 9% 0.00019 0.10967 835140 99.33 2023.00 +6.39
+A028@ 86 0.00005 0.06606 5.11196 99.73 2042.63 + 8.86
4A028@ 95 0.00014 0.10823 8.52350 99.51 206412 £ 6.43
4A028@94 0.00014 0.10987 9.00964 99.53 211413 +6.90
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Appendix B

) . JOAr(r) Age +25
36Ar(a) 39Ar(k) J0Ar(r) (%) (Ma)

03-52

JA023@85 0.00016 0.16380 12.36031 99.61 2020.06 +6.46
1A023@92 0.00005 0.07469 5.64884 99.72 2022.74 +8.08
4A023@79 0.00015 0.15160 11.97808 99.64 2076.36 +5.90
1A023@99 0.00011 0.08503 6.78723 99.52 2088.94 +7.55
4A023@ 100 0.00008 0.06339 5.50936 99.56 219574 +9.89
JA023@80 0.00019 0.11457 9.99917 99.43 2200.99 +6.29
JA023@78 0.00007 0.07592 6.83827 99.69 2241.23 +8.46
1A023@93 0.0000-4 0.05214 4.86466 99.75 2286.61 +9.40
JA023@97 0.00013 0.07388 6.92192 99.H 2292.13 +8.01
JA023@73 0.00013 0.09150 8.668-41 99.55 2306.45 +9.19
1A023@96 0.00018 0.07148 6.87650 99.25 2326.50 +7.77
JA023@86 0.00021 0.12980 12.58105 99.52 2336.34 +6.50
JA023@83 0.00017 0.13587 13.38436 99.63 2377.11 +7.35
1A023@9| 0.00002 0.01384 1.49880 99.62 2483.64 +23.6]
4A023@89 0.00019 0.11731 12.75806 99.57 2189.56 +6.65
1A023@82 0.00008 0.05649 6.22666 99.60 2507.81 +9.18
JA023@87 0.00019 0.07410 8.80797 99.38 2610.96 +9.45
1A023@77 0.00010 0.05477 6.69494 99.56 2649.56 +9.44
4A023@71 0.00005 0.05391 6.90515 99.79 271476 +11.10
JA023@R] 0.00011 0.05624 7.16381 99,54 2706.97 +12.76
JA023@95 0.00011 0.03942 5.11971 99.36 2734.50 + 12,41
4A023@ 76 0.00009 0.03978 8.09056 99.66 2792.59 +10.72
JA023@ 84 0.00012 0.06498 8.79731 99.60 2793.07 +9.60
4A023@ 72 0.00007 0.05303 731417 99.71 2818.97 +10.38
JA023@94 0.00013 0.08930 13.77583 99.72 2981.01 +12.20
1A023@ 74 0.00007 0.04554 7.17753 99.70 3012.37 +11.02
JA023@75 0.00005 0.03957 6.46288 99.77 3064.74 + 15.04
4A023@98 0.00004 0.0303} 6.79371 99.81 3543.93 + 14.00
JA23@H) 0.00007 0.03038 6.89486 99.70 3563.24 + 18.43

aPercentage of radiogenic 40Ar is reported for cach analysis. Uncertainties are quoted at 2 sigma
and do not include the propagated crrors in irradiation parameler J.
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Appendix B

Table B2. Northwestern domain *'Ar/Ar laser fusion hornblende fragment data®

40Ar(r) Age +2s
36Ar(a) J9Ar(K) 40AK(r) (%) (Ma)
96W23(C
4A025@43 0.00009 0.11560 795172 99.67 190142 +7.02
4A025@ 46 0.00012 0.12597 8.82465 99.59 1922.95 +6.41
JA025@ 56 0.00002 0.09775 6.91439 99.90 1934.37 £6.79
4A025@42 0.00017 0.11087 7.84543 99.37 1934.88 +6.13
4A025@ 38 0.00015 0.07458 543675 99.18 1970.24 +£9.34
4A025@ 49 0.00009 0.08246 6.03222 99.56 197446 +6.80
4A025@ 45 0.00012 0.07464 5.46798 99.36 1976.15 +8.19
4A025@ 53 0.00006 0.09450 6.96169 99.74 1982.97 +7.14
4A025@ 44 0.00013 0.10305 7.62904 99.49 1988.84 649
JA025@48 0.00015 0.07993 6.04327 99.27 2014.36 +11.15
4A025@ 47 0.00018 0.09419 7.20082 99.29 2027.74 +6.98
JA025@5| 0.00006 0.08028 6.12753 99.71 2025.88 +7.50
JA025@ 55 0.00005 0.08135 6.25128 99.74 2034.05 +8.30
JA025@@ 41 0.00009 0.12324 9.42375 99.73 2028.08 +6.34
4A025@59 0.00026 0.10027 7.99-47 99.03 2079.27 +7.39
JA025@ 52 0.00008 0.09311 7.52804 99.70 2(096.55 +7.69
JA025@60 0.00010 0.10775 8.72379 99.66 2098.25 648
4A025@ 54 0.00007 0.10292 8.76975 99.76 2162.20 +6.99
4A025@ 50 0.00011 0.07998 7.24702 99.55 2240.30 +7.50
03-197B

4A023@ 50 0.00008 0.13020 8.67227 99.72 1868.25 6.4
4A0236 39 0.00005 0.11057 7.48617 99.79 1887.33 +6.40
JA023@ 37 0.00009 0.12305 8.34531 99.70 1889.38 *+0.85
4A023@ 49 0.00005 0.12099 8.20878 99.81 1889.79 +6.08
4A023@ 46 0.00003 0.11973 8.12492 99.87 1890.00 * 646
4A023@ 4} 0.00008 0.10980 7.56880 99.68 1908.49 +6.58
JA023¢@ 33 0.00008 0.08874 6.12821 99.60 1910.61 + 8.87
4A023@ 4] 0.00006 0.12157 8.39925 99.78 1911.17 £6.16
JA023@ 32 0.00005 0.08923 6.17342 99.74 1912.83 +8.97
4A023@ 38 0.00004 0.10143 7.14185 99.85 1933.58 +7.60
4A023@ 34 0.00009 0.09261 6.52963 99.60 1935.14 +8.81
4A0236@ 35 0.00008 0. 10425 7.38663 99.67 1940.98 +7.03
4A023 @42 0.00008 0.13456 9.64287 99.76 1954.50 +6.30
JA023@ 40 0.00007 0.12449 8.94889 99.76 1958.21 +6.25
4A0236@ 47 0.00003 0.12022 8.68623 99.91 1964.28 *7.01
4A023@ 43 0.00006 0.11558 8.40325 99.78 1971.81 + 0.46
4A023@ 36 0.00008 0.12170 9.00887 99.72 1993 46 *791
4A023@43 0.00008 0.12098 9.00429 99.74 1999.96 +7.13
JA023@ 48 0.00007 0.10512 7.88091 99.76 2008.82 +7.87
4A023@ 31| 0.00006 0.08427 6.93209 99.75 2122.96 +8.89

* See notes in Table Bi,
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Appendix B

Table B3. Southern domain *'Ar/"Ar laser fusion hornblende fragment data*

L JOATr(r) Age +25
36ATr(a) 39ATr(k) 40Ar(r) (%) (Ma)
SZ00-118D
+A028@63 0.00000 0.07665 5.22105 100.00 1889.95 +6.33
JA028@69 0.00001 0.10562 7.28722 99.96 190-4.97 +5.93
4A028@80 0.00000 0.09334 6.41366 100.00 1905.61 +5.92
4A028@70 0.00000 0.10057 7.03490 100.00 1921.15 +5.60
JA028@ 68 0.00005 0.11462 8.03303 99.81 1923.45 +594
JA028@ 64 0.00006 0.10081 7.18827 99.74 1943.86 +6.12
1A028@76 0.00001 0.11953 8.56951 99.96 1950.39 +5.74
JA028@71 0.00010 0.10794 7.80424 99.63 1960.51 +5.69
1A028@77 0.00003 0.12029 8.87153 99.89 1984.30 +5.71
4A028@61 0.00011 0.13488 9.96689 99.67 1986.59 +6.04
JA028@ 65 0.00004 0.09772 7.26210 99.84 1993.46 +6.22
4A028@78 0.00003 0.08517 6.41527 99.86 2009.81 +6.40
1A028@74 0.00005 0.09638 7.40432 99.78 2031.20 +6.44
JA028@ 66 0.00005 0.07985 6.23949 99.76 2054.47 +6.80
JA028@67 0.00002 0.10522 8.36370 99.92 2075.58 +6.51
1A028@62 0.00008 0.08561 6.81870 99.64 2078.10 +6.56
4A028@75 0.00002 0.09906 8.18063 99.92 212286 +740
4A028@79 0.00008 0.11215 9.53658 99.76 2159.61 +5.88
1A028@72 0.00010 0.10345 8.92769 99.67 2178.19 +6.53
JA028@73 0.00005 0.08961 8.70449 99.82 2330.39 +7.64
01SZ278
JA023@352 0.00008 0.11731 7.97917 99.72 1896.01 +7.54
4A023@ 39 0.00002 0.09171 6.27920 99.89 1903.77 +9.06
4A023@61 0.00008 0.13765 941634 99.75 1902.78 +5.91
4A023@ 56 0.00004 0.12266 8.48736 99.84 1916.18 +6.89
4A023@66 0.00009 0.12959 8.98837 99.69 1919.03 +7.99
JA023@ 55 0.00006 0.12033 8.40686 99.80 1927.61 +7.26
JA023@ 54 0.00011 0.12659 8.86604 99.64 1930.52 +6.07
4A023@70 0.00005 0.09773 6.85990 99.77 1933.15 +10.31
JA023@69 0.00014 0.13699 9.66109 99.57 1938.77 +6.47
JA023@63 0.00006 0.11460 8.11762 99.77 1944.00 +8.37
JA023@68 0.00008 0.10662 7.59218 99.70 1950.25 +6.97
4A023@62 0.00013 0.10010 7.05038 99.45 1937.24 +8.16
JA023@ 38 0.00004 0.11724 8.42876 99.86 1961.65 +6.28
4A023@ 33 0.00010 0.13228 9.63530 99.68 1977.36 +6,04
4A023@ 37 0.00002 0.09930 7.28860 99.94 1086.38 +8.92
1A023@ 5] 0.00004 0.10233 7.58602 99.85 1998.51 +7.46
JA023@ 64 0.00009 0.11286 8.36106 99.67 1997.69 +8.02
JA023@ 60 0.00006 0.12480 9.28673 99.82 2003.10 +6.99
JA023@63 0.00003 0.07750 6.08850 99.86 2069.24 + 10.54
JA023@67 0.00003 0.09815 8.02603 99.88 2118.99 +7.61

* See notes in Table B1.
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Table B4. Rae domain *'Ar/""Ar laser fusion hornblende fragment data’*

Appendix B

) . 40A1(r) Age +2s
36Ar(a) 39Ar(k) J0Ar(r) (%) (Ma)
99B-39
4A025@74 0.00000 0.00853 0.55692 100.00 1841.15 +31.38
JA025@75 0.00003 0.01532 1.05604 99.28 1903.54 +29.32
JA025@7] 0.00000 0.01147 0.83619 100.00 1970.04 +24.77
JA025@70 0.00005 0.01809 1.35228 98.96 2000.22 +23.43
1A025@ 66 0.00026 0.02122 1.63644 95.49 2038.12 +20.51
1A025@79 0.00000 0.00632 0.52196 100.00 212246 + 50.38
JA025@65 0.00001 0.01498 1.39071 99.69 2271.31 +27.30
JA025@76 0.00007 0.02793 2.86481 99.25 2402.02 +15.10
JA025@68 0.00016 0.01631 1.75216 97.38 2463.92 +24.63
JA025@ 69 0.00070 0.02423 291126 93.38 2616.26 +17.74
4A025@78 0.00013 0.01070 1.51534 97.62 2848.00 +35.80
JA025@ 67 0.00098 0.01603 2.82545 90.74 3167.45 +27.26
JA025@ 73 0.00082 0.01507 2983559 92.49 33405 +28.33
4A025@72 0.00119 0.01552 3.20736 90.11 3408.32 +27.28
JA025@ 80 0.00029 0.01179 257177 96.81 3491.50 +36.57
JA025@77 0.00043 0.00820 2.26852 94.71 3865.23 +45.01

* See notes in Table BI.
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Table B5. Hearne domain *'Ar/"Ar laser fusion hornblende fragment data®

Appendix B

g JOAT1(r) Age +2s
36Ar(a) 39ATr(K) J0AT(r) %) (Ma)
0IM123C
JAQ25@ 05 0.00018 0.14828 8.67564 99.40 1721.84 +599
JA025@ 13 0.00013 0.18262 10.69851 99.64 1723.24 +5.71
JA025@ 10 0.00009 0.10140 5.94054 99.57 1723.26 +7.79
JA025@ 18 0.00010 0.16529 9.69880 99.69 1724.98 +5.82
JA025@ 11 0.00009 0.18130 10.64914 99.76 1726.14 +5.87
JA025@ 17 0.00008 0.15691 9.22139 99.73 1726.73 +6.08
JA025@07 0.00012 0.09947 5.84959 99.41 1727 .45 +793
1A025@06 0.00013 0.18852 11.09501 99.65 1728.34 +5.64
JA025@ 19 0.00013 0.10750 6.32995 9941 1728.91 +7.03
JA025@03 0.00006 0.14108 8.30866 99.78 1729.12 +6.95
JAQ25@ 14 0.00012 0.12070 7.11495 99.52 1730.09 +6.84
JA025@ (04 0.00008 0.10860 6.40285 99.64 1730.33 +7.54
JA025@08 0.00012 0.08752 5.16681 99,34 1731.82 +8.11
4A025@ 16 0.00011 0.11540 6.81593 99.52 1732.33 +6.92
JA025@ 12 0.00008 0.12175 7.19179 99.66 1732.42 +6.58
JA025@ 15 0.00014 0.18942 11.19234 99.63 1732.78 +5.65
JA025@ 09 0.00007 0.09446 5.58297 99.65 1733.01 +7.78
4A025@20 0.00007 (.09426 5.60152 99.61 1739.09 +7.64

* See notes in Table B1.
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Appendix C

APPENDIX C. “AR/*AR LASER ABLATION MICA DATA

Table C1. Chipman domain *"Ar/”Ar Mica Laser Ablation Spot Data*

WA 9ARK)  40ARM) 4(:';)(” Age Moy 2

03-169E. biotite

4X022D1 0.01110 0.05125 3.12566 488 1749.58 +22.87
4X022D2 0.00132 0.03974 247095 86.3 1771.12 +14.13
4X022D3 0.00266 0.04263 264287 770 1767.91 +13.39
1X022D4 0.00031 0.03381 205490 957 1745.79 +17.88
4X022D5 0.00140 0.06437 100253 907 1771.18 +8.72
1X022D6 0.00501 0.07411 154283 754 1755.20 +10.78
1X022E1 0.00176 0.02510 154529 748 1760.17 +18.36
4X022E2 0.00116 0.02725 167499  83.1 1758.49 +17.50
1X022E3 0.00207 0.02798 173936 740 1770.92 + 18.24
4X022E4 0.00237 0.03225 1.97208  73.8 1752.55 +17.20
1X022F1 0.00154 0.06603 109754 900 1768.94 +8.40
4X022F2 0.00025 0.04182 260223 97.3 1771.94 +11.34
4X022F3 0.00078 0.02572 1.60141 87.4 1772.68 +17.18
X022F4 0.00028 0.01977 123788 938 1779.21 +21.17
1X022G1 0.00040 0.07734 177973 976 1764.31 +8.17
4X022G2 0.00102 0.06005 3.68786 925 1757.37 +9.33
1X022G3 0.00009 0.04346 269488 990 1768.21 + 1045
1X022G4 0.00030 0.08042 195097 983 1760.10 +8.11
1X022G5 0.0004-} 0.06673 411957 969 1763.12 +9.61
1X022G6 0.00039 0.06902 427745 974 1767.56 +7.57

02-183C, muscovite

1X024C1 0.00002 0.04387 269010 99.8 1759.45 +12.01
4X024C2 0.00035 0.04984 3.05483 967 1758.99 +10.83
1X0241C3 0.00005 0.01632 0.98729 985 1744.37 +15.9]
AX0243C4 0.00002 0.04668 285784 99.8 1757.72 +10.33
X024IC5 0.00001 0.04314 276917 999 1759.99 +11.49
1X024ID1 0.00035 0.06741 112093 975 1756.02 +10.49
1X024ID2 0.0001 1 0.06368 102430 992 1758.57 +7.72
1X0240D3 0.00002 0.06703 110747 999 1758.36 +8.28
IX024ID4 0.00004 0.06330 3.99771 99.7 1757.69 +11.38
02-108B, biotite

1X032CAl 0.00280 0.07489 151516 845 1740.50 +7.74
1X032CA2 0.00167 0.07472 149199 901 1737.30 +8.64
1X032CA3 0.00085 0.07185 133778 946 1742.15 +7.93
1X032CA4 0.00090 0.10498 6.35894  96.0 1745.81 +6.14
1X032CB1 0.00370 0.0698 1 126507 796 1755.33 +8.63
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Table C1. (Continued)

Appendix C

: o J0Ar(r) Age +2s
36Ar(a) 39Ar(k) 40Ar(r) (%) (Ma)
(2-77B, biotite

4X022H4 0.00135 0.05723 348105 89.7 1746.54 +12.08
4X02212 0.00302 0.05489 3.33405 78.9 1744.85 + 1414
4X022J2 0.00107 0.07098 431475 93.2 1745.80 + [4.81
4X032EAL 0.01237 0.05470 3.37533 48.0 1762.64 *26.32
4X032EA2 0.00318 0.06083 3.74197 79.9 1759.23 +18.47
+X032ECI 0.00243 0.06803 4.19824 854 1762.80 + [8.18
4X032EFI 0.00465 0.05972 3.68658 72.9 1763.07 +19.72
4X032EF2 0.00181 0.04539 2.79299 83.9 175941 +19.14
KX02213 0.00038 0.05840 3.59877 95.5 1761.03 + 1141
KX022K1 0.00137 0.05644 3.38782 89.3 1731.82 + 10.85
KX022K2 0.00105 0.07373 44951 93.5 1737.69 +9.65

KX022L1 0.00299 0.05556 3.36500 79.2 1741.72 +11.88
KX0221.2 0.00084 0.03548 217712 89.7 1756.43 + 1442

02-76B. biolite

4X032HAI 0.00491 0.09156 5.72176 79.8 1776.71 +8.34
4X032HA2 0.00160 0.04728 294221 86.1 1771.90 +9.64
4X032HA3 0.00267 0.05201 3.27459 80.6 1785.23 +11.35
4X032HA4 0.00121 0.06088 3.82658 914 1783.18 +8.01

4X032HAS 0.00121 0.07799 4.86821 93.2 1775.41 +7.08

4X032HA6 0.00173 0.08132 5.09198 90.9 1778.85 +7.26
4X032HA7 0.00184 0.04894 3.08736 85.1 1787.35 + 10.21
4X032HAS 0.00489 0.04815 2.99276 67.4 177047 + 1.82
4X032HB! 0.00205 0.04458 2.81271 82.3 1787.52 +15.27
4X032HRB2 0.00198 0.05976 3.74528 86.5 1780.01 +8.90
4X032HB3 0.00211 0.03351 2.11823 77.3 1789.77 * 13.05
4X032HB4 0.00106 0.05404 3.39735 91.6 1783.35 +10.37
4X032HC1 0.00142 0.05673 3.56304 89.5 1782.42 + [1.84
4X032HC2 0.00166 0.05486 343919 87.5 1780.17 +9.55

4X032HD2 0.00162 0.02570 1.59793 77.0 1770.97 + 18.53

aPercentage of radiogenic H0Ar is reported for cach analysis. Uncertaintics are quoted at 2 sigma
and do not include the propagated errors in irradiation parameter J.
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Table C2. Northwestern domain *'Ar/”’Ar Mica Laser Ablation Spot Data’

Appendix C

I6A)  39ArKk)  H0ARD) J'(zf‘%f)(') Aee s
03-196A
AX024IA 1 000050 007360 449599 9682 175528 %770
1X0241A2 000061 006432 396855 9563 176651  £80I
IX0241A3 000062 005438 332053 9479 175470 £9.92
1X0241A4 000014 005206 319701 9870 176109 9.3
1X0241AS 000069 005941 365474 9473 176307 962
1X0241B1 00048 00H23 272551 9507 176507 1156
1X0241B2 000047 004116 252434 9482 175975 x11.09
1X024183 000108 003662 226913 8770 177148 =127
1X032DD! 000004 01249  7.667H 9986 176022 x758
1X032DD2 000010 013255 809807 9964 175534  £7.08
1X032DF 000040 006364 388957 9706 175579 £8.96
1X032DF2 000007 006061 373024 9947 176370 £ 10.11
BFO2-109A
X024KC 000043 005996 366480 9662 175173 x10.09
IX024FC2 000047 005139 314126 9576 175182  +872
AX024FC3 000004 005695 351904 9966 176394  £8.14
1X024KC4 000042 004723 291477 9593 176256 9.8
IX024FCS 000058 004371 267H6 9399 175279 %901
IX024FC6 000019 004063 249305 9783 175607 1177
1X024FCT 000004 001140 069671 9813 175143 £33.89
IX024FD | 000128 008384 457374 9239 162699 x8.14
1X024FD2 00047 004181 22473 9420 160927 1114
1X024FD3 000045 004546 265703 9524 170199 +11.95
AXO024FE| 000575 006708 410731 7075 175367 +12.06
IX024FE2 000043 006559 400634 9691 175104 956
IX024FES 000186 006208 381311 8741 175721 +9.45

"See notes in Table C1.
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Appendix C

Table C3. Southern domain *’Ar”Ar Mica Laser Ablation Spot Data’

A 39ARK)  d0Arn  0ATD) Age & 25
(%) (Ma)
01SZ78. Biotite
4X024GA 000290 006015 391178 8203 182203 893
+X024GA2 002197 006411 414818 3899 181625  £31.19
4X024GA3 000148 003H3 223774 8361 1821390 x1257
1X024GAS 000088  0.04709 304332 9213 181491  £7.37
1XO024GAS 000190 003415 224723 8001 183575 21127
1X024GA6 000068 005255 347143 9451 184006  £9.67
1X024GB1 000225 004013 267700 8011 185135 1430
1X024GR2 000023 004127 268465 9756 182247 1169
1X024GB3 000663 004954 329775 6275 184879  =17.03
1X024GB 000132 003586 238558 8593 184821 1573
4XO024HE 000053 003627 2837 9403 186496  +1405
4X024HE2 000179 007937 532187 9095 185733 833
+X024HE3 000020 007281 475856 9821 182772 £10.73
X 024HE 000383 005145 328672 7439 180167  £1257
4X024HES 0.00271 0.04139 2.66898 76.95 1812.22 +13.63
01SZ122B. Bioite
1X024HAI 000068 007738 501957 9613 181920  8.19
4X02HA2 000049 006114 391567 9643 I804H  £7.97
4X024A3 0.00027 0.04694 3.06768 97.4H 1827.58 +16.00
AX02HAS 000026 00434 268261 9720 181961 22167
1X0241B] 000223 005514 368577  $481 185366 £9.20
4X02:HB2 000015 002899 195728 9776 186535 #1218
4X024B3 0.00004 0.02838 1.93059 99.38 1874.09 +23.53
AX024IC' 000266 005347 352259 8175 183693  £9.10
1X024(2 0.00347 004895 319014 7566 182440 £ 13.33
AXO024JE ] 000613 011023 7.11303 7971 181315 +8.40
4X02-HE2 0.00212 0.09665 6.16838 90.78 1800.54 +6.88
IX024E3 000499 006728 425164 7424 178931 £9.67
X024TEA 0.004H 006257 392143 7494 177993 21027
IXO024IES 000163 006147 402330 8929 182939  £1153
XO024IES 000152 005942 380762 8946 180521  +12.08

*See notes in Table C1.
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Table C4. Rae domain “Arf“Ar Mica Laser Ablation Spot Data”

, 36Aral  39Ark)  40Arn  H0ArD Age + s
Grain/Analvsis (%) {Ma)
99B-87. muscovite
4X022B1 0.00040 0.00637 0.38820 76.61 1762.00 1 50.92
4X022B2 0.00788 0.01937 1.12537 32.58 1709.16 + 4169
4X02283 0.00116 0.02196 1.30803 79.18 1736.70 + 16.61
4X022B4 0.00367 0.04007 2.35298 38.41 1720.97 + 20.16
4X02285 0.00032 0.02175 1.27464 93.00 1718.90 £ 21.37
4X022B6 0.00589 0.04423 2.66555 60.50 1749.97 +17.59
4X022B7 0.00105 0.03174 1.83883 83.75 1718.20 +11.58
4X022B8 0.00006 0.05215 311548 99.47 1740.29 +7.81
AX022M1 0.00386 0.08480 502146 81.50 1730.36 +8.53
4X022M2 0.00006 0.04298 2.58240 99.30 1746.59 +10.39
AX022M3 0.00006 0.05299 312098 99 47 172649 + 8.70
AX022M4 0.00248 0.05963 3.53973 8284 1733.06 + 118
AXO22NI 0.00339 0.06812 4.02965 79.18 1729.26 + 1092
AX022N2 0.00047 0.05967 334679 96.23 1734.67 +7.71
AX022N3 0.00334 0.06897 4.12987 80.71 1742.88 + 10.03
4X022N4 0.00112 0.06409 374181 91,78 1714.61 + 899
03. 1938, muscon ite
AX024FAL 0.00053 0.04834 2.85189 94.78 1716.50 + 10.35
AX024FA2 0.00011 0.05795 341883 99.02 1716.34 +7.37
AX024FAR 0.00025 0.04417 2.39064 97,27 1709.97 +8.25
AX024FA4 0.00006 0.04138 243845 9931} 171513 £9.19
4X024FBI 0.00088 0.03383 200154 88.56 1725.20 + 12,18
4X024FB2 0.00117 0.02820 1.67197 82.84 1722.04 + 12.65
AX024FB3 0.00147 0.03173 1.86664 81.08 1713.21 + 15.06
AX024FB4 0.00125 0.03367 211071 85.06 1719.76 1 1345
AX024GEL 0.00002 0.05361 317524 99.86 1720.73 +7.83
AX024GE2 0.00006 0.04883 2.86000 9YY 33 1708.42 + 8.63
AX024GE3 0.00027 0.05373 317233 97.58 1716.83 +7.67
AXN24GHS 0.00007 0.04077 242432 99.20 [725.15 £9.65
03IMO2, muscovite
4X024GC 0.0099Y 0.03492 2006334 4113 1727.68 +31.83
AX024GC2 0.00011 0.03181 1.84543 98.27 1707.25 + 17.00
AX024GCR 0.00221 0.03314 1.98405 75.24 1742.24 + 1840
AX024GCH 0.02155 0.04432 254864 28.58 169745 +47.65
AX024GCS 0.00070 0.03068 184838 89.91 1749.09 + 1943
1X0MGCo 0.00000 0.04080 242132 100.00 173233 +8.30
4X024GC7 0.00009 0.03904 235508 98.85 1750.63 £ 1497
X024GD1 0.02881 0.01072 0.57381 6.32 1619.88 +259.94
AX024GD2 0.00610 0.03188 104757 S92 1764.83 + 25.60
4X024GD2 0.00668 0.0405 2.65760 3740 1750.75 + 17.96
AX024GD4 0.00023 0.02492 148742 05.62 1738.89 1 10.45
3X024GD3S 0.00026 0.03812 2.31020 96.81 1755.92 + 17.17
AX024G D6 0.00765 0.04105 250498 52.56 1763.30 +22.01
4X032FC1 0.00298 0.07342 44314 8341 1751.29 +9.28
4X032HC? 0.00104 0.04740 283209 90).31 174757 + 8.39
AX032RC3 0.00001 0.07516 454728 99,96 1753.92 + 7.66
4X032HC4 0.00068 0.07962 4.78302 95.96 174597 + 845
96W23E. biolite
AXO032GA1 0.00418 011554 781503 86.37 J871.88 +7.00
IX032GA2 0.00178 0.09419 6.38529 92.40 1874.38 + 8.-H)
4X032GAR 0.00027 0.02993 203128 96,22 1873.86 + 1177
4X032GBI 0.00097 0.08271 3.33853 95.08 1860.02 +6.74
AX032GD1 0.00017 0.10578 708304 99,30 1860.03 +7.29
4X032GD2 0.00035 0.08724 5.85830 98.26 1863.36 +6.91
4X032GD3 0.00014 0.08112 547286 99 24 1868.75 +6.79
4X032GEI 0.00022 0.07129 4.76377 98.65 [853.96 +7.38
4X032GE2 0.00325 0.08023 5.36080 84.81 1857.54 + 742
4X032GE2 0.00007 0.068350 4.59750 99.53 1862.81 +7.09
AX032GHS 0.00070 0.03091 341039 94.28 1860.42 + 7.0
4X0320GES 0.00048 0.05113 343573 96.06 186410 + 7.68

*See notes in Table C1.
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Appendix C

Table C5. Hearne domain *'Ar/""Ar Mica Laser Ablation Spot Data’

. ) J0Ar(r) Age +25
36ATr(a) 39Ar(k) 40Ar(r) ) (Ma)
02M23B, muscovite
4X024HA 0.00020 0.02051 1.22340 95.50 1728.40 +17.70
AX024HA2 0.00000 0.01884 1.13887 100.00 1743.63 +11.27
4X024HA3 0.00004 0.03368 2.03676 99 14 1743.97 +11.22
4X024HA4 0.00001 0.03335 2.00225 99.86 1735.78 +9.35
4X024HAS 0.00034 0.03567 2.15189 93.11 1741.22 +11.07
4X024HA6 0.00036 0.03182 1.91780 94.70 1740.01 +12.02
4X024HA7 0.00001 0.02158 1.28868 99.79 1729.87 +20.83
4X024HB1 0.60000 0.01966 1.19332 100.00 1747.97 +11.93
4X024HB2 0.00000 0.02378 1.42599 100.00 1734.75 + 12.65
4X024HB3 0.00000 0.02310 1.38418 100.00 1733.39 + 10.87
02M23B, biotite
4X024HC ] 0.00104 0.02282 1.36867 81.61 1734.86 + 16,44
4X024HC2 0.00087 0.02334 1.40494 84.33 1738.70 +14.22
4X024HC3 0.00039 0.01884 1.12747 86.59 1732.10 +19.36
4X024HC4 0.00033 0.01915 1.15524 92.28 1741.48 + 18.25
4X024HDI1 0.00264 0.03345 2.02611 72.19 1745.77 +17.10
4X024HD2 0.00157 0.03050 1.83202 79.75 1736.27 +15.06
4X024HD3 0.00062 0.03200 1.92493 91.37 1738.17 +11.65
4X024HD4 0.00052 0.02305 1.38483 89.95 1736.72 + 18.33
0IM127B, muscovite
4X032AA1 0.00072 0.14553 8.86115 97.66 1751.63 +6.19
4X032AA2 0.00038 0.15330 9.21674 98.80 1737.45 +5.80
4X032AB3 0.00018 0.06195 3.78769 98.61 1756.22 +8.4]
4X032AB4 0.00027 0.06391 3.88608 98.01 1750.12 +8.30
1X032AC1 0.00012 0.13199 8.05809 99.58 1754.61 +729
4X032AC2 0.00029 0.06416 3.88596 97.83 1745.62 +6.92
4X032AC3 0.00001 0.13347 8.08666 99.98 1746.04 +5.97
4X032AC4 0.00146 0.07460 4.55013 91.34 1753.60 +7.97
4X032ADI 0.00003 0.10084 6.12525 99.87 1748.86 +7.15
4X032AD2 0.00009 0.11052 6.68678 99.61 174449 +8.78
01MI127B. biotite
4X032BA1 0.00622 0.05865 3.33455 65.78 1740.04 +15.20
4X032BA2 0.00095 0.09865 591369 95.45 1734.12 +6.21
4X032BA3 0.00229 0.10252 6.18261 90.13 1740.84 +6.86
4X032BB1 0.00111 0.02919 1.78268 8445 1754.82 +17.55
4X032BB2 0.00226 0.02480 1.48333 68.92 1731.54 +16.23
4X032BB3 0.00595 0.01300 0.78953 30.99 1748.66 +48.40
4X032BB4 0.00209 0.01248 0.74736 54.77 1733.05 +33.07
4X032BC1 0.00045 0.04461 2.70582 95.36 1747.21 +9.48
4X032B(C2 0.00073 0.03754 2.25910 91.27 1738.56 + 14.87
4X032BC3 0.00021 0.03421 2.06500 97.03 1741.79 +13.67
AX032BC4 0.00017 0.03348 2.02417 97.62 1743.71 + 1491
4X032BD1 0.00281 0.05190 3.14293 79.07 174549 +8.63
4X032BD2 0.00119 0.05139 3.09487 89.83 1739.39 +8.78
4X032BD3 0.00033 0.04985 2.98630 96.86 1733.46 +7.80

*See notes in Table C1.
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Appendix C

BF02-183C, Muscovite, Filename BF4X024H (75% of 1.5x scale)
Pellerin Lake msc rich schistose gneiss

All analyses excluding JC#3 (N=8): 1758.3 + 11.8 (x .67%), MSWD = 0.05

J94-a, BF02-183C msc (pos JC) J94-b, BF02-183C msc (pos JC)

1)1759.5+12.0
2)1759.0+ 10.8

17592+ 138
(£ .79%)
MSWD = 0.00

Analyses 1-2, 12/11/04 (M/F gain of 60);
Pt #1: 256 um, 20 Hz, 3000 bursts

clean with 5 bursts .
lyses 3-5, 12/11/04 (W/F gain of 60);
Pt #2: 256 pm, 20 Hz, 4000 bursts HORI0RE o, 4 (MIE gaytcr 60)

clean with 10 bursts

clean with 10 bursts

Pt #4: 256 um, 20 Hz, 4000 bursts
clean with 10 bursts

Pt #5: 256 um, 20 Hz, 4000 bursts
clean with 12 bursts

500 pm

3) 17444159
4)1757.7£10.3
5)1760.0+ 11.5

1756.0 + 13.2
(+.75%)
MSWD = 1.37

exclude #3:

1758.7 £+ 13.6
(£.77%)

MSWD = 0.09

Pt #3: 256 um, 20 Hz, 1000 bursts (wanted more)

J94-c, BF02-183C msc (pos JD) J94-d, BF02-183C msc (pos JD)
1) 1756.0 £ 10.5 3)1758.4+8.3
2)1758.6 7.7 4)1757.7+ 1.4
1757.7+12.8 1758.1 £+ 13.1
(£.73%) (£ .74%)
MSWD =0.15 MSWD = .01
Analyses1-2, 12/11/04 (M/F gain of 60);
Pt #1: 256 um, 20 Hz, 4000 bursts
clean with 5 bursts Analyses 3-4, 12/11/04 (M/F gain of 60);
Pt #2: 256 pm, 20 Hz, 4000 bursts Pt #3: 256 um, 20 Hz, 4000 bursts

clean with 10 bursts clean with 5 bursts
Pt #4: 256 um, 20 Hz, 4000 bursts
clean with 10 bursts

Final reduction 12/16/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C2
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Appendix C

BF02-108B, Biotite, Filename BF4X032C (75% of 1.5x scale) m
Steinhauer Lake, melt in Fehr granite

All analyses (N=5): 1744.2 + 11.7 (x .67%), MSWD = 2.65

J4-a, BF02-108BB bt, 4X032Ca (pos 5)

1) 17405+ 7.7
2)1737.3+86
3)17422+7.9
4) 17448 +6.1

mean:

17422+ 11.8
(¢ .68%)

MSWD = 0.95

Analyses 1-4, 12/17/04 (M/F gain of 60);

Pt #1: 182 um, 20 Hz, 3000 bursts (clean 5) (hole through)
Pt #2: 182 um, 20 Hz, 3000 bursts (clean 5) (hole through)
Pt #3: 182 um, 20 Hz, 3000 bursts (clean 5) (hole through)
Scan #4: 145 um, 20 Hz, 6 min manual

J4-a, BF02-108BB bt, 4X032Cb (pos 5)

1) 17553+ 8.7

Analysis 1, 12/17/04 (M/F gain of 60);
Pt #1: 285 um, 20 Hz, 2000 bursts (clean 5)

79.8% rad 40Ar, 0.070V 39Ar, 4.3V rad 40Ar
Pt#2: Jumped out of pan at start of 2nd shot.

Final reduction 12/21/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C3.
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BF02-77B, Biotite, File names 4X022J-1;BF4X032E

Steinhauer Lake pegmatitic segregation

K25-a, BF02-77B bt (4X022J; pos BF4X032Ea)

Appendix C

All analyses (N =13): 1747.6 = 11.8 (+ .68%), MSWD = 2.55
All analyses except K25-b, (N = 11):

1752.7 £ 12.1 (+ .69%), MSWD = 1.29

Analysis 1, 10/2/04; Analysis 2, 10/6/04
Pt #1: 182 pm, 90 sec, 20 Hz, 1800 bursts (hole through)

1)2010.2 £ 15.4
2) 17458 +14.8
3) 1762.6 +26.3
4)1759.2 + 185

mean:

1752.8 + 15.4
( .88%)

MSWD = 0.97

Pt #2: 182 um, 90 sec, 20 Hz, 1800 bursts
Analysis 3-4, 12/18/04; M/F gain of 60

Pt #3: 182 um, 20 Hz, 2500 bursts
Scan #4: 186 um, 20 Hz, ~ 6 min manual

K25-c, BF02-77B bt (4X022L; pos BF4X032Ec)

KX022K, K25-b, BF02-77B

Analyses 1-2, 10/6/04

500 um

1)1731.8 £ 10.9
2)1737.7£9.7

mean:

1735.1+13.3
(& .77%)

MSWD = 0.65

Scan #1: 1075 um, 2 passes, 10 pm/sec, 20 Hz,

87 um spot, 4:19 min

Point #2: 182 um, 90 sec, 20 Hz, 1800 bursts

Analyses 1-2, 10/6/04
Pt #1: 182 um, 90 sec, 20 Hz, 1800 bursts (

1)1741.7£11.9
2)1756.4 + 14.4
3)1762.8+ 18.2

mean:

1750.7 £ 13.9
(£.79%)

MSWD =2.34

hole through)

79.5% rad 40Ar, 0.055V 39Ar, 3.36V rad 40Ar
Scan#2: 400 um, 5 passes,10 um/sec, 20 Hz,

87 um spot, 4:45 min

90.2% rad 40Ar, 0.035V 39Ar, 2.16 V rad 40Ar

Analysis 3, 12/18/04; M/F gain of 60
Pt #3: 285 um, 20 Hz, 2000 bursts (clean 5)

(hole through)

86.7% rad 40Ar, 0.047V 39Ar, 3.0 V rad 40Ar

4X0221, K25-e, BF02-77B bt

4X022H, K25-d, BF02-77B bt

1) 2394.4 £ 25.2
2)2401.6+124
3) 24029+ 183
4) 17465121

Analyses 1-2, 10/2/04; Analysis 3-4, 10/7/04
Pt #1: 182 um, 90 sec, 20 Hz, 1800 bursts

Scan#2: 840 um (25%), 3 passes, 10 pm/sec, 20 Hz, 87 um spot, 5:03 min
Pt #3: 182 um, 90 sec, 20 Hz, 1800 bursts
Pt #4: 182 um, 90 sec, 20 Hz, 1800 bursts

K25-1, BF02-77B bt (pos BF4X032Ef)

1) 2365.0 + 11.4
2) 1744.9 + 14.1
3)1761.0 £ 1.4

mean:

17546+ 14.3
(£ .82%)

MSWD = 3.18

Analysis 1, 18/2/04; Analysis 2-3, 10/6/04

Pt #1: 182 um, 90 sec, 20 Hz, 1800 bursts

Scan #2: 1050 um (25%), 2 passes, 10 pm/sec, 20 Hz,
87 um spot, 4:13 min
very irregular scan, stage kept hanging up.

Pt #3: 182 um, 90 sec, 20 Hz, 1800 bursts

Grain loose when loaded in 4X032, unsuccessful

mean:

1) 1763.1 +19.7
2)1759.4 191

17612+ 17.8
(£1.01%)
MSWD = 0.07

Analyses 1-2, 12/18/04; M/F gain of 60
Pt #1: 285 um, 20 Hz, 3000 bursts
Scan #2: 106 um, 20 Hz, ~ 6 min manual

Final reduction 12/21/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C4
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BF02-76B, Biotite, Filename BF4X032H (75% of 1.0x scale) —_—
Chipman Lake pegmatite 500 pm

All analyses (N = 15): 1779.7 £ 11.6 (x .65%), MSWD = 1.15

K15-b, BF02-76B bt, 4X032Hb (pos 4)

K15-a, BF02-76B bt, 4X032Ha (pos 4)

1)1776.7+83
2)1771.929.6
3)17852+ 11.4
4)1783.21 8.0
5)1775.4+ 7.1
6)1778.927.3
7)1787.4+10.2
8) 1770.5+ 11.8

mean:
17785+ 11.7
(+ .66%)
MSWD = 1.49 1) 17875+ 153
2)1780.0+ 8.9
3)1789.8 + 13.1
4)1783.4+10.4
Analyses 1-8, 12/18/04, (M/F gain of 60); mean:
Pt #1: 145 pm, 20 Hz, 6000 bursts (clean 10) 1783.8 £ 12.6
Pt #2: 185 um, 20 Hz, 5000 bursts (clean 10) (£.71%)
Pt #3: 185 um, 20 Hz, 6000 bursts (clean 10) MSWD = 0.60
Pt #4: 185 um, 20 Hz, 5000 bursts (clean 10) Analyses 1-4, 12/19/04, (M/F gain of 60);
two spots b/c went thru Pt #1: 285 um, 20 Hz, 5000 bursts (clean 5)
Scan #5: 145 um, 20 Hz, 10 um/sec, 4 passes (clean 1 Hz) Scan #2: 145 um, 20 Hz, 10 um/sec, 6 min manual (clean 2 Hz)
Scan #6: 145 pm, 20 Hz, 10 um/sec, 6 min manual (clean 2 Hz) Pt #3: 285 um, 20 Hz, 6000 bursts (clean 5)
Pt #7: 185 um, 20 Hz, 6000 bursts (clean 8) Scan #4: 145 um, 20 Hz, 10 um/sec, 6 min manual (clean 2 Hz)

Pt #8: 185 um, 20 Hz, 6000 bursts (clean 5)

K15-d, BF02-76B bt, 4X032Hd (pos 4)

K15-c, BF02-76B bt, 4X032Hc (pos 4) 1) dincard

2)1780.0+8.9
1)17824+£11.8 )

Analyses 1-2, 12/19/04, (M/F gain of 60);

Pt #1: 285 um, 20 Hz, 6000 bursts (clean 5)
only 7 cycles taken b/c rebooted

Analyses 1-2, 12/19/04, (M/F gain of 60); Pt #2: 285 um, 20 Hz, 6000 bursts (clean 5)

Pt #1: 285 um, 20 Hz, 6000 bursts (clean 5)

Pt #2: 285 um, 20 Hz, 6000 bursts (clean 5)

Final reduction 12/21/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C5
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Appendix C

BF02-109A, Biotite, Filename BF4X0241 (75% of 1.5x scale) e
Bompas Lake bt rich crenulated schist
All analyses excluding grain K14-c (N =10): 1756.0 £ 11.7 (+ .66%), MSWD = 1.03
K14-b, BF03-183C bt (pos FC)
K14-a, BF03-183C bt (pos FC)
3)1763.9+ 8.1

Analyses 1-2, 12/11/04; Analysis 7, 12/12/04; (M/F gain of 60),

Pt #1: 256 um, 20 Hz, 3000 bursts
clean with 5 bursts

Pt #2: 256 um, 20 Hz, 3000 bursts
clean with 5 bursts

Pt #7: 256 um, 20 Hz, 2500 bursts
clean with 5 bursts

1)1751.7 £ 10.1
2)1751.8+8.7
7)1751.4 £ 33.9

1751.8+ 13.0
(£ .74%)
MSWD = 0.00

4) 17626+ 9.3
5)1752.8 £9.0
6) 1756.1 £ 11.8

1759.4 £ 12.2
(£ .69%)
MSWD = 1.39

Analyses 3-6, 12/11/04 (M/F gain of 60);

Pt #3: 256 um, 20 Hz, 3000 bursts
clean with 5 bursts

Pt #4: 256 um, 20 Hz, 3000 bursts
clean with 5 bursts

Pt #5: 256 um, 20 Hz, 3000 bursts
clean with 5 bursts

Pt #6: 256 um, 20 Hz, 3000 bursts
clean with 5 bursts

K14-c, BF03-183C bt (pos FD)
K14-d, BF03-183C bt (pos FE)

1) 1627.0 £ 8.1
2)1609.3 £ 11.1
3)1702.0 £ 12.0

1) 1753.7 £ 12.1
2)1751.0+ 9.6
3)1757.2+95

1638.7 £ 122
(£ .75%) 17540+ 127
MSWD = 72.5 (& .72%)
MSWD = 0.42

Analyses 1-3, 12/12/04; (M/F gain of 60);
Pt #1: 256 um, 20 Hz, 2000 bursts
clean with 5 bursts
Pt #2: 256 um, 20 Hz, 2000 bursts
clean with 5 bursts
Pt #3: 256 pm, 20 Hz, 2000 bursts
clean with 5 bursts

Analyses 1-3, 12/12/04; (M/F gain of 60);
Pt #1: 256 um, 20 Hz, 3000 bursts
clean with 5 bursts
Pt #2: 256 um, 20 Hz, 2000 bursts
clean with 5 bursts
Pt #3: 256 um, 20 Hz, 2500 bursts
clean with 5 bursts

Final reduction 12/16/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C7
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Appendix C

01SZ122B, Biotite, Filename BF4X024D (75% of 1.5x scale)

Currie Lake pegmatite

K17-a, 01SZ122B bt (pos JE)

Analyses 3-4, 12/10/04; Analysis 6, 12/12/04; (M/F gain of 60);

Pt #1: 256 um, 20 Hz, 1500 bursts
clean with 10 bursts

Pt #2: 256 pm, 20 Hz, 1500 bursts
clean with 10 bursts

Pt #6: 256 pm, 20 Hz, 2000 bursts
clean with 5 bursts

Note that 182 pm analysis was in October, only ~30% rad Ar

K17-c, 01SZ122B bt (pos IA)

Analyses 1-2, 12/10/04; Analyses 3-4, 12/12/04; (M/F gain of 60);

Pt #1: 256 um, 20 Hz, 2000 bursts
clean with 5 bursts

Pt #2: 256 um, 20 Hz, 2000 bursts
clean with 5 bursts

Pt #3: 256 um, 20 Hz, 3000 bursts
clean with 5 bursts

Pt #4: 256 um, 20 Hz, 3000 bursts
clean with 5 bursts

3)1789.3+9.7

mean:
1789.97 £ 12.9

MSWD = 5.09

4) 17799+ 103
6) 1805.2+12.1

(£ .72%)

1)1819.2+82
2) 1804.4 + 8.0
3) 1827.6 + 16.0
4)1819.6 £24.7

mean:

1813.6 + 12.6
(+.69%)

MSWD = 3.48

K17-b, 01SZ122B bt (pos JE)

500 um

1) 18132 +8.4
2) 1800.5 + 6.9
5)1829.4 + 11.5

mean:

1809.7 + 12.4
(x.69%)

MSWD =9.67

Analyses 1-2, 12/10/04; Analysis 5, 12/12/04; (M/F gain of 60);

Pt #1: 256 um, 20 Hz, 2000 bursts
clean with 10 bursts

Pt #2: 256 um, 20 Hz, 2000 bursts
clean with 10 bursts

Pt #5: 256 um, 20 Hz, 2000 bursts
clean with 5 bursts

K17-d, 01SZ122B bt (pos I1B)

1)1853.7+ 9.2
2) 1865.4 £ 12.2
3) 1874.1 £ 235

mean:
1859.3 + 13.6
(£.73%)

MSWD = 2.03

Analyses 1-3 12/10/04; Analysis 3, 12/12/04 (M/F gain of 60);

Pt #1: 256 pm, 20 Hz, 2000 bursts
clean with 10 bursts

Pt #2: 256 pm, 20 Hz, 1000 bursts
clean with 10 bursts

Pt #3: 256 um, 20 Hz, 2500 bursts

K17-e, 01SZ122B bt (pos IC)

1) 1836.9 9.1
2)1824.4+13.3

mean:

18329+ 13.8
(£.75%)

MSWD = 2.42

clean with 5 bursts

Analyses 1-2 12/10/04 (M/F gain of 60);
Pt #1: 256 um, 20 Hz, 2000 bursts

clean with 10 bursts

Pt #2: 256 um, 20 Hz, 2000 bursts

clean with 10 bursts

Final reduction 12/16/04: Final blanks, irradiation parameters, J-values, fractionation, error on J 0.5%

Figure C9
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Appendix C

03M92, Muscovite, Filename BF4X024C (75% of 1.0x scale) _—
Straight River msc pegmatite

Allanalyses (N=14):  1747.1 2 11.7 (£ .67%), MSWD = 1.94 |

4X024GC, H77-a, 03M92 msc (pos GC)

All analyses 12/3/04 (M/F gain of 57)
Pt #1: 182 um, 2x1000 bursts, 20 Hz, 2000 bursts ;) 17217 2318
? ; ) 1707.3+17.0
Scan #2: ~1000 um, 5 min manual, 10 pm/sec, 20 Hz, 87 pm spot 3)1742.2+ 18.4
Pt #3: 182 um, 2x1000 bursts, 20 Hz, 2000 bursts 4) 1697‘5 % 47'7
Pt #4: 182 um, 3x1000 bursts, 20 Hz, 3000 bursts 5) 1749'1 = 19‘4
Scan #5: ~900 um, 5 passes, 10 pm/sec, 20 Hz, 87 um spot 6) 1732'3 .8 3
Pt #6: 182 um, 3x1000 bursts, 20 Hz, 3000 bursts 7) 1750l6 o 1'5 0
100 bursts to clean surface ’ ’
#7:182 pm, 3x1 rsts, 20 Hz, 3 rs
e exchudo 284
1738.2+ 128
(£ .74%)
MSWD = 1.66

4X024GD, H77-b, 03M92 msc (pos GD)

All analyses 12/9/04 (M/F gain of 60)

(after Malcolm tried turning gain back up to 100)

Pt #1: 182 um, 2x1000 bursts, 20 Hz, 2000 bursts
clean surface with 80 bursts

Pt #2: 182 um, 2x1000 bursts, 20 Hz, 2000 bursts
clean surface with 100 bursts

Pt #3: 182 um, 3x1000 bursts, 20 Hz, 2000 bursts

1) discard

2) 1764.8 + 25.6
3) 1750.8 + 18.0
4)1738.9 + 16.5
5)1755.9+ 17.2
6) 1763.5+22.0

clean surface with 100 bursts 1752‘2(1 1;61/)
Scan #4: ~ um, 6 min manual, 10 um/sec, 20 Hz, 87 um spot ey
= = i MSWD = 1.22

clean scan with 145 micron at 1 Hz automatic
Scan #5: ~um, 6 min manual, 10 pm/sec, 20 Hz, 87 um spot
clean scan with 145 micron at 2 Hz manual
Pt #6: 182 um, 3x1000 bursts, 20 Hz, 3000 bursts
clean surface with 100 bursts

1)1751.3+9.3
2)1747.8 + 8.4
3)1753.9+7.7
4) 1746.0+85
4X032F, H77-c, 03M92 msc (pos 1)
All analyses 12/18/04 (M/F gain of 60) 174 12
Pt #1: 285 um, 20 Hz, 4000 bursts (clean 5) ¥ 9'9(1 652/0)
Scan #2: 106 um, 10 um/sec, 20 Hz, 6 min manual MSWD = 0 77
Pt #3: 285 um, 20 Hz, 4000 bursts (clean 5) ’
Scan#4: 145 um, 10 um/sec, 20 Hz, 6 min manual
Final reduction H77a-b, 12/18/04: Final blanks, i iation p s, fracti ion, J-values, error on J 0.5%

Final reduction H77c, 12/18/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C12
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Appendix C

96W23E, Biotite, Filename BF4X032G (75% of 1.5x scale) e
Neil Bay, C.Kopf P-T work 500 um

All analyses (N=12): 1863.8 + 11.8 (x .63%), MSWD = 2.60
All analyses except J5-a, (N = 19): 1861.6 = 11.9 (= .64%), MSWD = 1.16

J5-a, 96W23E bt, 4X032Ga (pos 3)
J5-b, 96W23E bt, 4X032Gb (pos 3)

1)1871.927.0

2)1874.4+8.4

3)1875.9+11.8

mean:

1873.41 126
(% .67%)

MSWD =0.21

Analyses 1-2, 12/18/04; Analysis 3, 12/19/04 (M/F gain of 60);
Pt #1: 285 um, 20 Hz, 3000 bursts (clean 5)
Pt #2: 285 um, 20 Hz, 3000 bursts (clean 5)

Pt #3: 285 um, 20 Hz, 3000 bursts (clean 5) Analyais 1 N2ABA (WE galat 60),

Pt #1: 285 pm, 20 Hz, 3000 bursts (clean 5)
Grain was loose after 1st analysis

J5-c, 96W23E bt, 4X032Gc (pos 3)
Grain loose on first burst

J5-d, 96W23E bt, 4X032Gd (pos 3) J5-e, 96W23E bt, 4X032Ge (pos 3)
1) 1856.0 + 7.4
2)1857.5+7.4
1) 1860.0+7.3 3)1862.8 + 7.1
2)1863.4+6.9 4)1860.4 + 7.1
3)1868.8+6.8 5) 1864.1£7.7
mean: S
1864.2 + 12.3 18602 + 12,
(+ .66%)  (+.65%)
MSWD = 1.58 MSWD = 0.85

Analyses 1-5, 12/18/04, (M/F gain of 60);

Pt #1: 285 um, 20 Hz, 3000 bursts (clean 5)
Pt #2: 285 pm, 20 Hz, 4000 bursts (clean 5)
Pt #3: 285 um, 20 Hz, 4000 bursts (clean 10)
Pt #4: 285 um, 20 Hz, 4000 bursts (clean 10)
Pt #5: 285 um, 20 Hz, 4000 bursts (clean 10)

Analyses 1-2, 12/18/04; Analysis 3, 12/19/04 (M/F gain of 60);
Pt #1: 285 um, 20 Hz, 3000 bursts (clean 5)

Pt #2: 285 um, 20 Hz, 3000 bursts (clean 3)

Scan #3: 145 um, 20 Hz, 10um,/sec, 6 min manual

Final reduction 12/21/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C13
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Appendix C

02M23B, Muscovite, Filename BF4X024F (75% of 1.5x scale) 500 pum
Charlebois Lake two-mica granite

All analyses (N =10): 1739.0 + 11.8 (+ .68%), MSWD = 0.89

J97-a, 02M23B msc (pos HA) J97-b, 02M23B msc (pos HA)

1)1728.4£17.7
2)17436+11.3
3)17440+ 112

4) 17358+ 9.4

5)1741.2+ 111
6) 1740.0 £ 12.0
7)1729.9£20.8

mean:
1741.2+133 s
(£ .76%) 2
1737.9+12.6
MSWD =1.27 (& .73%)
MSWD =0.43
Analyses 1-3, 12/10/04 (M/F gain of 60); Analyses 4-7, 12/10/04 (M/F gain of 60);
note that image might be flipped Pt #4: 285 um, 20 Hz, 3000 bursts
Pt #1: 285 um, 20 Hz, 1500 bursts clean with 10 bursts
clean with 10 bursts Pt #5: 285 um, 20 Hz, 4000 bursts
Pt #2: 285 um, 20 Hz, 1500 bursts clean with 10 bursts
clean with 10 bursts Pt #6: 285 um, 20 Hz, 4000 bursts
Pt #3: 285 um, 20 Hz, 300 bursts clean with 10 bursts
clean with 10 bursts Pt #7: 182 um, 20 Hz, 4000 bursts

clean with 10 bursts

J97-c, 02M23B msc (pos HB)

1)1748.0+11.9
2) 17348127
3)1733.6 £ 10.9

mean:

1738.5 + 13.1
(£ .75%)

MSWD = 1.84

Analyses 1-3, 12/11/04 (M/F gain of 60);

Pt #1: 285 um, 20 Hz, 4000 bursts
clean with 6 bursts

Pt #2: 285 um, 20 Hz, 5000 bursts
did not clean

Pt #3: 285 um, 20 Hz, 5000 bursts
clean with 6 bursts

Final reduction 12/16/04: Final blanks, irradiation parameters, fractionation, J-values, error on J0.5%

Figure C14
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02M23B, Biotite, Filename BF4X024G (75% of 1.5x scale)

Charlebois Lake two-mica granite

Appendix C

All analyses (N=8): 1738.1 £ 12.5 (x.72%), MSWD = 0.22

J97-a, 02M23B bt (pos HC)

1) 17349+ 16.4
2)1738.7 £ 14.2

mean:

17371 £15.5
(+ .89%)

MSWD =0.13

Analyses 1-2, 12/11/04 (M/F gain of 60);

Pt #1: 256 um, 20 Hz, 4000 bursts

clean with 5 bursts

Pt #2: 256 um, 20 Hz, 4000 bursts

clean with 5 bursts

J97-c, 02M23B bt (pos HD)

J97-b, 02M23B bt (pos HC)

500 um

3)1732.1£19.4
4) 17415+ 183

mean:
1737.1£17.3

(£ 1.00%)
MSWD = 0.50

Analyses 3-4, 12/11/04 (M/F gain of 60);

Pt #3: 256 um, 20 Hz, 4000 bursts
clean with 5 bursts

Pt #4: 256 um, 20 Hz, 4000 bursts
clean with 5 bursts

J97-d, 02M23B bt (pos HD)

1)1745.8 £17.1
2) 17363 +15.1
4) 1736.7 + 18.3

mean:

1739.4 £ 14.7
(+ .41%)

MSWD = 0.41

Analyses 1-2, 4, 12/11/04 (M/F gain of 60);

Pt #1: 256 um, 20 Hz, 4000 bursts

clean with 5 bursts

Pt #2: 256 um, 20 Hz, 4000 bursts

clean with 5 bursts

Pt #4: 256 um, 20 Hz, 4000 bursts

clean with 5 bursts

Final reduction 12/16/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C15

3)17382 £ 11.7

Analysis #3, 12/11/04 (M/F gain of 60);

Pt #3: 256 um, 20 Hz, 4000 bursts
clean with 5 bursts

After 1st point, the grain was loose and wouldn't stay put




Appendix C

01M127B, Muscovite, Filename BF4X032A (75% of 1.0x scale) 500 pm

Balliet Lake, msc-gt pegmatite

All analyses (N =10): 1748.0 + 11.84 (x .65%), MSWD = 2.84

J95-a, 01M127B msc, 4X032Aa (pos 2)

1)1751.6 £6.2
2)1737.5+58

mean:

17440+ 121
(£ .69%)

MSWD = 11.17

Analyses 1-2, 12/17/04 (M/F gain of 60);

Pt #1: 285 um, 20 Hz, 2500 bursts (hole through)
clean with 10 bursts

Pt #2: 285 um, 20 Hz, 2500 bursts (hole through)
clean with 10 bursts

J95-c, 01M127B msc, 4X032Ac (pos 2)

1)1754.6 +7.3
2)1745.6+ 6.9
3) 1746.0 6.0
4)1753.6+8.0

mean:

17493+ 11.7
(= .67%)

MSWD = 1.87

Analyses 1-4, 12/17/04 (M/F gain of 60);

Pt #1: 182 um, 20 Hz, 4000 bursts (hole through?)
clean with 5 bursts

Scan #2: 87 um, 20 Hz, 3 passes, ~ 5 min (no clean)

Pt #3: 182 um, 20 Hz, 4000 bursts (hole through?)
clean with 10 bursts

Scan #4: 106 um, 20 Hz, 3 passes, ~ 6 min (no clean)

J95-b, 01M127B msc, 4X032Ab (pos 2)

3)1756.2 £ 8.4
4)1750.1+8.3

mean:

1753.1 £12.7
(*.72%)

MSWD = 1.07

Analyses 1-2, 12/15/04 (M/F gain of 60);

MP ran before realized viewport did not transmit UV,
poor ablation

Pt #1: 285 um, 20 Hz, 2000 bursts (clean 5)

Pt #2: 285 um, 20 Hz, 5000 bursts (clean 5)

Analyses 3-4, 12/17/04 (M/F gain of 60); Different viewport

Pt #3: 256 um, 20 Hz, 2000 bursts (hole through)
Pt #4: 256 um, 20 Hz, 2000 bursts (hole through)

J95-d, 01M127B msc, 4X032Ad (pos 2)

1)17489+7.2
2)17445+ 8.8

mean:

17471 £12.5
(£.71%)

MSWD = 0.60

Analyses 1-2, 12/17/04 (M/F gain of 60),

Pt #1: 285 um, 20 Hz, 1500 bursts (hole through)
clean with 5 bursts

Pt #2: 285 um, 20 Hz, 2000 bursts (hole through)
clean with 5 bursts

Final reduction 12/21/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C16
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Appendix C

01M127B, Biotite, Filename BF4X032B (75% of 1.5x scale) 500 um
Balliet Lake, msc-gt pegmatite

All analyses (N = 14): 1739.5 = 11.5 (£ .66%), MSWD = 1.14

J95-b, 01M127B bt, 4X032Bb (pos 2)
J95-a, 01M127B bt, 4X032Ba (pos 2)

1) 1754.8 £ 17.6
2)1731.5+16.2
3)1748.7 + 48.4

4) 1733.1 £33.1
1) 17400+ 15.2
2)1734.1+£6.2 mean:
3)1740.8 + 6.9 17415+ 156
(+ .90%)
mean. MSWD = 1.38
1737.4+12.0
(+ .69%)
MSWD =1.12
Analyses 1-4, 12/15/04 (M/F gain of 60);
MP ran before realized viewport did not transmit UV,
poor ablation
Scan #1: 145 pm, 20 Hz, 6 min manual
Scan #2: 145 um, 20 Hz, 5 scans for 5:50 total
Analyses 1-3, 12/17/04 (M/F gain of 60); Pt #3: 256 pm, 20 Hz, 5000 bursts (clean 5)
Pt #1: 285 pm, 20 Hz, 2500 bursts (clean 10) (hole through) Pt #4: 256 um, 20 Hz, 5000 bursts (clean 5)

Pt #2: 285 um, 20 Hz, 2000 bursts (clean 10)
Pt #3: 285 um, 20 Hz, 2000 bursts (clean 5)

J95-c, 01M1278B bt, 4X032Bc (pos 2) J95-d, 01M127B bt, 4X032Bd (pos 2)

1) 17472195

2) 1738.6 £ 14.9
3) 17418 £13.7
4) 1743.7 £ 14.9

1)17455+ 8.6
2)1739.4+838
3)17335+7.8

mean:
17439+ 1238
(*.73%)

MSWD = 0.37
Analyses 1-4, 12/15/04 (M/F gain of 60); Analyses 1-3, 12/17/04 (M/F gain of 60);
MP ran before realized viewport did not transmit UV, Pt #1: 285 um, 20 Hz, 2000 bursts (clean 5) (hole through)

poor ablation Pt #2: 285 um, 20 Hz, 2000 bursts (clean 5) (hole through)

Pt #1: 285 um, 20 Hz, 3000 bursts (clean 5) Pt #3: 285 um, 20 Hz, 2000 bursts (clean 5) (hole through)

Pt #2: 285 um, 20 Hz, 3000 bursts (clean 5)
Pt #3: 256 pm, 20 Hz, 4000 bursts (clean 5)
Pt #4: 256 um, 20 Hz, 4000 bursts (clean 5)

Final reduction 12/21/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C17
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Appendix D

APPENDIX D. ®AR/*AR LASER INCREMENTAL HEATING BIOTITE DATA

Table D1. Chipman Domain *Ar/"Ar Biotite Laser Incremental Heating Data®

J0Ar(r) 39Ar(k) Age £2s
36ATr(a) 39Ar(k) 40Ar(r) (%) (%) (Ma)
02-76B

SA005K01 0.00131 0.04043 1.76361 82.01 379 1398.31 +12.00
SA005K02 0.00152 0.09383 5.70228 92.68 8.79 1745.24 +7.65
SA005K03 0.00051 0.11499 7.04639 97.93 10.78 1754.56 +6.17
SA005K04 0.00040 0.14076 8.64349 98.65 13.19 1756.92 +5.96
SA005K05 0.00014 0.08704 543202 99.25 8.16 1775.19 +6.61
SA005K06 0.00010 0.08593 5.34729 99.44 8.05 1771.88 + 6.65
5A005K07 0.00007 0.07045 440121 99.52 6.60 1776.24 +7.12
SAG05SK08 0.00008 0.06391 3.99960 99.41 5.99 1778.24 +7.51
SAM0SK09 0.00012 0.10083 6.31938 99.46 9.45 1779.97 +6.50
SA005K 10 0.00008 0.07919 4.96006 99.54 742 1779.23 +7.07
SA005K 1 0.00003 0.07001 440016 99.79 6.56 1783.06 +6.96
SA005K12 0.00006 0.07499 465003 99.61 7.03 1767.91 +7.24
SAQ005K 14 0.00000 0.01367 0.84841 100.00 1.28 1768.93 +20.49
SA005K 15 0.00003 0.03088 1.92229 99.60 2.89 1772.41 + {3.58
a Percentages of radiogenic 40Ar and K-derived 39Ar are reported for each analysis. Uncertainties are quoted at

2 sigma and do not include the propagated errors in irradiation parameter J.
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Table 2. Southern Domain *'Ar/Ar Biotite Laser Incremental Heating Data for sample 015278

36Ara)  3WArK)  d0Arn  JOArtn - 39ArKk) Age £2s
(%) %) (Ma)
01SZ785
SAQ0SAG | 0.00027 003650 134849 9449 6.71 124282 £5376
SAQ0SAG?2 0.00005 002278 135816  98.88 419 172393 £22.10
SADOSAG 3 0.00008 005272 323582 99.32 969 17564 21057
SA005A04 0.00004  0.06307 396273 99.67 1159 178284  +893
SAD0SA05 000002 007870 501073 99.90 1447 179787  +894
5A005A06 000002  0.1610 1061270 9993 3047 181564 +598
SAQ0SAQ7 000003 0.12605  7.99226 9987 2317 1793102 +6.64
01SZ78-9
SA005C01 0.00005 000673 017138 9272 0.85 93052 +89.45
SA005C02 000015 002479 154066 9723 303 177047 2235
5A005C03 000012 004624 310428  98.84 581 185881 £12.67
SA005C04 000007 004126 274998 9930 5.21 185045 1331
SA005C05 000010 0.09181 613040 99.50 .59 185243 912
SA005C06 000004 006886 1460520 9976 869 185432 =z 1147
SA00SC07 000022 006543 1090023 9942 2089 1837.09 +8.92
SA005COR 000000 005549 3.66906  100.00 7.0l 1841.06 % 10.69
SA005C09 000003 009238 611078 9986 11,66 184157  +895
SA00SC 10 000002 011538 756712 99.93 1457 183178 £901
SA00SCT 1 0.00000 007679 503253 100.00 969 183088  +£847
SA005C 12 0.00003  0.00509 031838 9747 064 17719 £81.02
SA00SCI3 000000 000185 011795 100.00 023 180199 £ 143.9]
01SZ78 Pan 8
SA005KO] 000002  0.00006 000296 3049 003 157283 £7169.57
SA005H02 000000  0.00045 003263 100,00 022 19608  +502.44
SA005HO3 000003 000601 039609 9747 205 183667  +65.09
5A005H0L 000000 0.0294] 192381 99.93 443 182865 1436
SAO0SKFOS 000002 003377 221543 9980 1657 183221 +13.08
SA005HO6 0.00000 003407 222960 100.00 1672 182919  +8%6
SAO0SH)T 0.00003  0.02768  LT7898 9946 1358 180871 #1541
SAO0SFOR 000000 007233 L7290 100,00 3549 182792 859
01SZ78 Pan 7
SA005G0] 000003 000327 000928 9207 119 115603 £122.05
SA005G02 000012 01309 837357 9957 4782 180319 £574
SA005GO3 000005 002543 161853 9916 929 179733 %1547
SA00SGOL 000000 003086 203705 100.00 1127 183907 +1187
SA005G0S 000000 002518 165341 9996 920 183298 1534
SA005G06 000000  0.02H7 158652 99.92 801 ISI8.60 %1588
5A005G07 0.00000 001213 078809 10000 443182040 %1950
SA005G08 0.00000 002152 139349 10000 786 181708 +11.95

“See notes in Table DY,
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Table D3. Southern Domain *'Ar

3

Appendix D

Ar Biolite Laser Incremental Heating Data for sample 01SZ122B°

. : \ 40Ar(r) 39Ar(k) Age +2s
J6Ar(a) 39Ar(k) 40Ar(r) (%) (%) (Ma)
01871228
SA005DO1 0.00082 0.05643 1.17016 82.93 9.11 798.22 +8.70
5A005D0O2 0.00035 0.01352 0.70527 87.21 2.18 1579.22 +54.50
SA005D03 0.00159 0.13677 8.66899 94.85 22.08 1792.76 £8.01
SA005SDO4 0.00020 0.11088 7.10229 99.16 17.90 1804.74 =743
SA005DO0S 0.00006 0.07606 +.92558 99.63 12.28 1817.21 +9.46
SA005D06 0.00008 0.08748 5.79551 99.57 1412 1843.37 +£9.90
SA005DO7 0.00008 0.09404 6.33094 99.63 15.18 1861.90 +9.10
SA005D08 0.00000 0.04422 2.88773 99.99 7.14 1826.92 +7.95
01SZ122B -3
SAOQ0SEOI 0.00075 0.04989 2.10196 90.41 6.17 1364.84 + 18.14
SA005E02 0.00029 0.04561 3.01218 97.22 5.64 1839.75 +15.22
SA005E03 0.00022 0.08161 5.H624 98.84 10.09 1851.79 +9.20
SAO005E04 0.00005 0.06093 <4.07039 99.62 7.54 1852.93 * 13.05
SA005E05 0.00008 0.06069 4.06538 99.41 7.51 1856.22 +8.09
SA005F06 0.00007 0.08007 5.36320 99.59 9.90 1856.07 +7.17
SA005E07 0.00002 0.08976 6.05379 99.88 11.10 1864.03 +6.H
SAOQ05E08 0.00005 0.12180 8.19638 99.80 15.07 1861.49 +6.14
SA005E09 0.00003 0.11485 7.72254 99.89 14.21 1860.59 +6.54
SAO05E10 0.00001 0.04450 2.88217 99.89 5.50 1817.37 +11.30
SAQO5EI 0.00002 0.05873 3.19832 99.83 7.26 1625.24 +9.25
01SZ122B Pan 2
5A005H01 0.000-4+ 0.02707 1.28834 90.75 411 148479 + 14.37
SA005H02 0.00051 0.06177 4.08170 96.41 9.39 1840.36 +8.04
SA005HO3 0.00024 0.14836 9.80876 99.27 22,54 1840.99 % 5.69
SAQ05HO4 0.00005 0.05960 3.93845 99.60 9.05 1840.46 +8.27
SAO005HO5 0.00000 0.06179 +.12368 99.98 9.39 1851.80 +7.74
SAQ05HO6 0.00004 0.10751 714543 99.85 16.33 1847.05 +6.26
SA005HO7 0.00002 0.07811 3.19630 99.87 11.87 1848.11 +7.20
SAO00SHO8 0.00004 0.10876 7.24914 99.85 16.52 1850.42 +6.47
SAGOSH09 0.00005 0.00521 0.33536 93.51 0.79 1809.49 +69.37

“See notes in Table D1
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Table D4. Rae Domain *'Ar/”Ar Biotite Laser Incremental Heating Data®

Appendix D

6Ara)  39ArK)  J0AKD) “2’}:; 03 9(’; ;” Ai‘wj)z”

S6WI3E Tan 18

SA005101 0.00003 000268  0.10240  91.00 049 127522 +167.20
SA005102 000001 001553 L0285 99.68 282 184713 239
SA005103 000002 001768 118882 9910 321 186487 +21.60
SA005J04 000003 004333 296573 99.69 786 188563 <+ 1046
SA005105 000000 00461 30289  99.90 810 187532  +1128
SAD0AI06 0.00000 0.05294 3.56807 99,97 9.60 1867.72 +9.30
SA005107 000000 0.06105 416799  99.99 107 188270 +8.53
SA005108 000003 006146 415760  99.82 115 187190 +835
5A005109 000001 00417 302741 99.89 801 1887.09  +11.07
SA00SJ10 000002 007900 533806  99.89 1433 187064 6586
SA00511 000000 0.09350 630432 99.95 1696 186809  +674
SA005112 000004 002488 L6851 9938 451 186190 +1533
SA005)13 000000 001049 072148 99.80 190 189086  +3486

*See notes in Table DI1.
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Age (Ma)

Appendix D

015278-1

. To— ——

3

1822.42 +16.70 Ma, 51%

Age (Ma)

20

30 40 50 60 70 80 90 100
Cumulative 39Ar Released (%)

23441

2100

1857

1612

3699

11258

881

015278-3

1842.09 +13.29 Ma, 95.1%

Age (Ma)

10

20

30 40 0 80 70 0 %0
Cumulative 39Ar Released (%)

2500

1750 ¢~

‘ e is s s -

1500

1250

1827.07 +£12.83 Ma, 99.8%

10 20 30 40 50 60 70 80 90
Cumulative 39Ar Released (%)

2231

2040

0157278-4

1800.40 £+ 18.29 Ma, 79.4%

10 20 30 40 50 60 70 80 20

Cumulative 39Ar Released (%)

Figure D1
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Age (Ma)

Age (Ma)

Age (Ma)

Appendix D

01521228B-2

2324
21509
19759
1801
1626 1845.62 £ 12.10 Ma, 95.1
1452 ﬂ
1277
1103 v g g v
0 10 30 40 50 60 70 80 90 100
Cumulative 39As Released (%)
0152122B-4
251
2014
1777 e
a0 1827.77 £ 23.17 Ma, 66.6%
13031
1066
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° 10 2 4 50 60 70 80 9% 100
Cumulative 39Ar Released (%)
4 02-76B
2045
18781
s (=

1776.25+11.69 Ma, 63.4%

° w© 50 60 70 80 %0 100
Cumulative 39Ar Released (%)

Age (Ma)

Age (Ma)

015Z122B-3
2303
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1749 2
1859.02 + 12.04 Ma, 75.4% L
15641
1379
1195
v 10 20 30 4 50 60 70 %0 100
Cumulative 39Ar Released (%)
2561
21 96W23E
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19124 d
1696 e %
1873.67 £ 12.61 Ma, 94.8%
14809
12649
10479
831 < ¥ 7 - v v
0 10 20 30 40 50 60 70 90 100

Cumulative 39Ar Released (%)

Figure D2
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