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ABSTRACT

New geochronological, thermochronological, geological and isotopic data from an
extensive (> 20,000 km2) exposure of high-pressure granulites (0.8 to > 1.5 GPa, >750
°C) in the East Lake Athabasca region of the Snowbird tectonic zone provide important
constraints on the stabilization, reactivation and exhumation of continental lithosphere in
the western Canadian Shield. The exhumed lower crust of this craton comprises several
disparate domains that preserve a complex record of tectonic, magmatic and metamorphic
processes from formation to exhumation.

U-Pb zircon geochronology documents two episodes of metamorphic zircon growth at
2.55 Ga and 1.9 Ga, linked with two high-pressure granulite facies assemblages
preserved in Chipman domain mafic granulites. The intervening 650 m.y. of relative
quiescence implies a period of lithospheric stability during which the granulites
continued to reside in the deep crust. Disruption of the stable Archean craton at 1.9 Ga
broadly coincides with the assembly of the Laurentian supercontinent. The correlation of
1.9 Ga mafic magmatism and metamorphism in the Chipman domain with
contemporaneous mafic magmatism along > 1200 km strike-length of the Snowbird
tectonic zone indicates that regional asthenospheric upwelling was an important aspect of
this reactivation event.

UL-Pb (titanite, apatite, rutile), 40Ar/39Ar (hornblende, muscovite, apatite) and (U-Th)/He
(zircon, apatite) thermochronometry documents the cooling history of domains in the
East Lake Athabasca region during the 200 m.y. multistage history of unroofing
following 1.9 Ga metamorphism. Linkage of reconstructed temperature-time histories
with existing pressure-temperature-deformation paths reveals spatial and temporal
heterogeneity in exhumation patterns, with domain juxtaposition during episodes of
unroofing separated by intervals of crustal residence. Low temperature (U-Th)/He zircon
and apatite dates are the oldest reported for terrestrial rocks, and confirm the protracted
residence of rocks at shallow ( 2 km) crustal depths following the re-attainment of a
stable lithospheric configuration in the western Canadian shield at ca. 1.7 Ga.

Thesis Supervisor: Samuel A. Bowring
Title: Professor of Geology
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INTRODUCTION

Rare exposures of lower continental crust exert a tremendous influence on our

understanding of deep crustal processes, because these terranes offer the best opportunity

to directly examine this generally inaccessible level of continents. These regions allow

scrutiny of the rock types and structural relationships commonly imaged by seismic

techniques in the deep crust, provide a critical in situ context for more robust

interpretation of the record contained in lower crustal xenolith samples, and allow more

thorough evaluation of models for the rheological, metamorphic and chemical evolution

of the deep portions of continents. The character and behavior of the deep crust has an

important impact on how this signal is manifested as magmatism, deformation and/or

metamorphism at higher levels of the crustal column. Because the lower crust retains the

most direct crustal signature of activity within the underlying mantle, this region can also

yield essential insights into mantle dynamics. Thus, constraining the tectonic and thermal

evolution of the lower crust is necessary for a more comprehensive understanding of the

evolution of the continents.

The East Lake Athabasca region in the western Canadian Shield contains vast

tracts (>20,000 km2) of high-pressure (HP) (1.0 to >1.5 GPa) granulites that represent one

of the largest and best-preserved exposures of lower continental crust on the planet. This

area spans the Snowbird tectonic zone, a -2800 km long gravity and magnetic anomaly

that separates the Rae and Hearne crustal provinces of the western Churchill Province.

This dramatic geophysical feature has alternatively been interpreted as a Paleoproterozoic

suture (Hoffman, 1989) and as an Archean intracratonic shear zone that was reactivated

in the Paleoproterozoic (Hanmer, 1997). Deciphering the complex record of repeated HP

granulite facies metamorphic events, overprinted by the unroofing history, has posed the

central problem in the ongoing controversy over the formation and maturation of this

cratonic region. This thesis focuses on constraining the tectonic and thermal evolution of

continental lithosphere in the western Canadian Shield by deconvolving this complex

record using a variety of geochronological, thermochronological, and isotopic techniques.

The following chapters sequentially translate the deep crustal record into an interpreted

history of ) lithospheric stabilization in the Archean, 2) dramatic lithospheric
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reactivation in the Proterozoic, 3) subsequent multistage exhumation and juxtaposition of

HP granulite domains, and 4) re-attainment of a stable lithospheric configuration

responsible for the long-term preservation of this portion of the continental lithosphere.

Chapter highlights the exceptional value of zircon for deciphering complex

metamorphic records in deep crustal rocks. This study uses an integrated U-Pb TIMS,

ion microprobe, and imaging effort to determine the timing of two distinct HP granulite

facies events preserved in rocks of the East Lake Athabasca region. Thermobarometric

analysis of mafic granulites in the Chipman domain has revealed two granulite facies

metamorphic assemblages that record conditions of -1.3 GPa, 850 °C and -1.0 GPa, 800

°C (Mahan et al., 2005). Our analysis of metamorphic zircon grains from mafic and

felsic granulite gneisses documents a dominant population of ca. 2.55 Ga zircon that is

linked with the first HP assemblage. The U-Pb systematics of these metamorphic zircon

grains show a complex response to a perturbation at 1.9 Ga, with limited new zircon

growth at this time. Independent documentation of HP granulite facies metamorphism in

the Chipman domain at 1.9 Ga (Chapter 2) is consistent with the conditions preserved in

the second granulite assemblage of the mafic gneisses. Together, these results provide

strong evidence for subjection of the Chipman domain to two HP granulite facies events

separated by 650 m.y. This dataset is used to argue for extended residence of the

granulites in the deep crust between 2.55 Ga and 1.9 Ga HP granulite facies metamorphic

events, during a 650 m.y. period of relative quiescence and lithospheric stability. This

implies an event of fundamental importance was required to disrupt this stable Archean

craton in the Proterozoic.

Chapter 2 examines the nature and significance of lithospheric destabilization at

1.9 Ga. This record contrasts dramatically with the stability of most preserved Archean

cratons following assembly. High precision U-Pb TIMS zircon geochronology, in

conjunction with whole rock Sm-Nd isotopic data, whole rock geochemistry data, and

field observations, are used to constrain the timescales and intensity of HP granulite

facies metamorphism and anatexis during 1.9 Ga lithospheric reactivation. Mafic dike

anatexis during syntectonic and synmetamorphic intrusion of Chipman mafic dikes at

1.0-1.2 GPa, - 800 C conditions (Williams et al., 1995) occurred at 1896.2 + 0.3 Ma,

and was followed by the protracted maintenance of elevated temperatures for 5-15 m.y.
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Limited melting of the host rocks during high temperatures at this time is attributed to

their dehydrated character owing to previous metamorphism in the Archean. Chipman

domain mafic magmatism is correlated with contemporaneous focused mafic intrusive

activity along > 1200 km strike-length of the Snowbird tectonic zone. These data provide

compelling evidence for a regional episode of asthenospheric upwelling associated with

the destabilization of this Archean craton that coincided with the assembly of the

Laurentian supercontinent.

Chapter 3 explores the tempo, duration and rates of exhumation of disparate

domains in the East Lake Athabasca region following 1.9 Ga lithospheric reactivation.

The nature and rates of processes that juxtapose and exhume crustal domains are of

central importance for understanding the significance and representativeness of lower

crustal exposures, and for evaluating the degree of lower crustal terrane modification

during transport to the Earth's surface. A -200 m.y. interval for exhumation of lower

crustal rocks in the East Lake Athabasca region is constrained by the timing of 1.9 Ga HP

granulite facies metamorphism, and the subsequent ca. 1.7 Ga deposition of Athabasca

basin sediments over the exhumed granulites. High-resolution U-Pb (titanite, apatite,

rutile) and 4'Ar/39Ar (hornblende, muscovite, biotite) thermochronometry, linked with

existing thermobarometric and structural data, reveals an exhumation history

characterized by multiple pulses of unroofing at different rates separated by intervals of

crustal residence for variable durations. The convergence of domainal thermal histories

places constraints on the timing of domain juxtaposition relative to regional unroofing.

The temporally and spatially heterogeneous patterns of lower crustal exhumation in the

East Lake Athabasca region may be a common feature of the unroofing histories of HP

granulite terranes.

Chapter 4 evaluates the history of vertical continental motions in the East Lake

Athabasca region following the apparent re-attainment of a stable lithospheric

configuration at ca. 1.7 Ga. Although the preservation of ancient continental crust

testifies to the extreme stability of some portions of the continents, evidence suggests that

even these regions undergo episodes of epeirogenic uplift and subsidence in response to

changing mantle dynamics. (U-Th)/He thermochronometry is widely utilized to

constrain uplift histories in areas of active or recent tectonism, but the application of this

11
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technique to assess vertical motions in regions of apparent tectonic stability has been

limited. This study presents the Earth's oldest reported (U-Th)/He zircon and apatite

dates that document the residence of rocks in the East Lake Athabasca region at

temperatures < 30 C at depths of < 2km for 1.0-1.7 b.y. These data are exploited to

generate a suite of viable models for the low temperature thermal history of these rocks

that may reflect low amplitude vertical motions within this continental interior. This

study highlights the promise of using low temperature thermochronometers to constrain

the history of cratonic subsidence and uplift and thereby gain insight into the stability of

continents and mantle dynamics.
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Chapter 1 - Complex U-Pb Zircon Systematics in High-P Granulites

ABSTRACT

U-Pb TIMS zircon and monazite data, combined with ion microprobe zircon

analysis and detailed imaging studies, are used to decipher the complex polymetamorphic

history preserved in high-pressure granulites in the East Lake Athabasca region of the

western Canadian Shield. Mafic and felsic granulites contain a dominant population of

2.55 Ga metamorphic zircon that show an unusual response to high temperature

metamorphism at 1.9 Ga. The complex U-Pb zircon systematics are attributed to Pb

redistribution and/or zircon recrystallization during this event. The primary population of

2.55 Ga zircon is linked with the first high-pressure granulite facies assemblage (1.3

GPa, 850 °C) preserved in the mafic granulite gneisses. Limited new zircon growth at

1.9 Ga, and the perturbed zircon systematics, are correlated with a second episode of

high-pressure granulite facies metamorphism (1.0-1.2 GPa, -800 °C) independently dated

at 1.9 Ga by zircon in migmatitic Chipman mafic granulite dikes. The similarity in

metamorphic conditions preserved in the Chipman dikes to a second granulite facies

assemblage (-1.0 GPa, 800 °C) in the mafic granulite gneisses, suggests their coeval

development at 1.9 Ga. These data provide compelling evidence for two episodes of

high-pressure granulite facies metamorphism in the Chipman domain. Limited melting

of the Chipman domain during subjection to 1.9 Ga high temperatures is consistent with

little retrogression following dehydration in the Archean. The recurrence of

metamorphism at high-pressure conditions implies that the granulites resided in the deep

crust between 2.55 and 1.9 Ga during a period of relative quiescence. Chemically diverse

monazite populations of variable ages are interpreted to represent fluid mediated growth

and/or recrystallization during this interval. These data suggest a -650 m.y. period of

lithospheric stability initially heralded by 2.55 Ga metamorphism and dramatically

terminated by significant reactivation in the Proterozoic during assembly of the

Laurentian supercontinent.
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INTRODUCTION

The lower continental crust preserves a record of lithospheric perturbation by the

underlying asthenosphere, manifested as repeated episodes of high-grade metamorphism,

deformation, mafic magmatism, and melting. Lower crustal rocks thus have the potential

to yield unique insights into crust-mantle coupling during lithospheric evolution.

However, deciphering the cumulative product of a complex history preserved in multiply

deformed polymetamorphic rocks can be a challenging problem. Linking accessory

mineral geochronological data with metamorphic assemblages is critical for

deconvolving such histories.

U-Pb zircon geochronology is key to deciphering complex metamorphic records,

owing to the robust character of this mineral that allows it to retain chronological

information through most P-T conditions encountered in the crust. However, this same

property contributes to the structural, morphological, and isotopic complexity of zircon

crystals that have experienced dynamic histories. In addition to multicomponent

mixtures of inherited, magmatic, and/or metamorphic zircon that can exist within single

crystals, isotopic resetting of zircon grains via recrystallization and fluid-alteration

processes can occur at high grade conditions (e.g. Pidgeon et al., 1998; Hoskin and

Black, 2000; Carson et al., 2002), and subsequent low temperature Pb loss in radiation

damaged crystals can further complicate the U-Pb systematics (e.g. Silver and Deutsch,

1963; Cherniak et al., 1991). Understanding the behavior of zircon during multiple

periods of metamorphism is essential for exploiting the isotopic record preserved within

these crystals. This, in turn, is crucial for providing timing constraints on discrete

metamorphic, melting and deformation events preserved in deep crustal rocks that can

profoundly influence the interpretation of tectonic histories.

We provide an example of these complexities by using an integrated U-Pb TIMS,

ion microprobe, and imaging study of metamorphic zircon grains from mafic and felsic

granulites to determine the timing of two distinct high-pressure, high temperature (HP-

HT) metamorphic events preserved in rocks of the East Lake Athabasca region, along the

Snowbird tectonic zone, in the western Canadian Shield. Although previous U-Pb TIMS

metamorphic zircon analysis has been interpreted to date ca. 1.9 Ga HP granulite

assemblages in several areas (Flowers, Chapter 2; Baldwin et al., 2004), the earlier
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history of these Archean rocks has been difficult to decipher. Mafic granulite gneisses

described in this study preserve two metamorphic assemblages that yield conditions of

-1.3 GPa, 850 °C, and - 1.0 GPa, 800 °C (Mahan et al., 2005). The latter are consistent

with 1.0-1.2 GPa, 750-850 °C conditions dated at 1896.2 ± 0.3 Ma based on zircon in

migmatitic Chipman mafic granulite dikes in this domain (Williams et al., 1995; Flowers,

Chapter 2). In the current study, our analysis of zircon from mafic and felsic granulite

gneisses reveals a dominant population of 2.55 Ga metamorphic zircon that we link with

the first HP granulite assemblage in this rock. The 2.55 Ga zircon show a complex

response to the second HP granulite facies metamorphism at 1.9 Ga documented in the

Chipman mafic dikes. The data provide strong evidence for two HP granulite facies

episodes in the Chipman domain separated by 650 m.y. These results allow us to

consider 1) the significance of U-Pb systematics in metamorphic zircon subjected to

protracted high-temperature conditions, and 2) the tectonic implications for extended

deep crustal residence, continental stability, and lithospheric reactivation processes.

GEOLOGICAL SETTING

The western Canadian Shield is an amalgamation of Archean cratons that were

welded in the Paleoproterozoic. The western Churchill Province within this region is

bounded by the Thelon orogen (2.02-1.90 Ga) to the northwest and the Trans-Hudson

orogen (1.85-1.80 Ga) to the southeast (Figure 1). The Snowbird tectonic zone is a

dramatic, northeast-trending linear gravity anomaly that separates the Rae and Hearne

crustal provinces of the western Churchill Province, extending ~2800 km from the coast

of the Hudson Bay to the Canadian Cordillera (Goodacre et al., 1987; Hanmer et al.,

1995). This feature has been interpreted as a Paleoproterozoic intercontinental suture

(Hoffman, 1988; Ross et al., 1995, 2000), a Paleoproterozoic intracontinental transform

(Lewry and Sibbald, 1980) and an Archean intracontinental strike-slip shear zone

(Hanmer et al., 1995, 1997).

The East Lake Athabasca region spans the central segment of the Snowbird

tectonic zone, and includes an extensive tract of granulite facies rocks with peak

metamorphic conditions from 1.0 to > 1.5 GPa, >750 °C (Figure 2). This region contains

deep crustal rocks within the East Athabasca mylonite triangle along the trace of the

16



Chapter 1 - Complex U-Pb Zircon Systematics in High-P Granulites

Snowbird tectonic zone, deep crustal rocks in the Rae domain to the west, as well as

shallower level amphibolite facies rocks within the Hearne domain to the east. To the

south the rocks are overlain by sediments of the ca. 1.7 Ga Athabasca basin. The East

Athabasca mylonite triangle has been subdivided into three distinct tectonically bounded

domains. The Chipman domain is dominated by heterogeneous > 3.0 Ga Chipman

tonalitic gneisses, contains lenses of mafic and felsic granulites, and preserves the deep

levels of the Chipman mafic dike swarm that intruded across the entire domain and

records metamorphism at conditions of 1.0-1.2 GPa, 750-850 C (Williams et al., 1995;

Flowers, Chapter 2) (Figure 3). The northwestern domain is composed of ca. 2.6 Ga

mafic to felsic plutonic rocks, interpreted to have been emplaced and metamorphosed at

-'1.0 GPa, 900 C (Williams et al., 2000). The southern domain contains felsic and mafic

granulites with minor eclogite, recording peak conditions 1.5 GPa, 900-1000 °C

(Snoyenbos et al., 1995; Kopf, 1999; Baldwin et al., 2003, 2004).

The complex record of both Archean and Paleoproterozoic metamorphic events

along the Snowbird tectonic zone, including the East Athabasca mylonite triangle, is

largely responsible for the ongoing controversy over the tectonic significance of this

profound structure. In the Chipman domain, HP granulite facies metamorphism (1.0-1.2

GPa, 750-850 C) has been dated at 1896.2 + 0.3 Ma using zircon from migmatitic mafic

granulite dikes. Peak conditions in the southern domain have been interpreted at 1904.0

+ 0.3 Ma based on metamorphic zircon in eclogite, although these same rocks also

contain a record of earlier metamorphic zircon growth at ca. 2.55 Ga (Baldwin et al.,

2004). The ca. 2.6 Ga Mary granite in the northwestern domain underwent

metamorphism at -1.0 GPa, 900 C with subsequent isobaric cooling inferred to have

occurred shortly after the emplacement of these rocks in the Archean (Williams et al.,

2000). Felsic granulites within both the Chipman and southern domains are characterized

by abundant garnets that exclusively contain an Archean population of 2.55 Ga

monazite, with multiple comparably aged and younger populations distributed in the

matrix, implying that the garnet in these rocks grew during an Archean metamorphic

event (Mahan et al., in review, Baldwin et al., in review). A record of ca. 2.55 Ga and 1.9

Ga metamorphism has also been documented along the northern trace of the Snowbird

tectonic zone, interpreted to date conditions of 0.5-0.6 GPa, 650-750 C, and 0.9-1.1
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GPa, 650-750 C, respectively (Stern and Berman, 2000; Berman et al., 2002). In the

East Athabasca mylonite triangle, mafic and felsic granulites occur in all three domains

and may hold the greatest promise for unraveling the polymetamorphic history in this

region. Although these lithologies are most abundant in the southern and northwestern

domains, garnetiferous mafic and felsic granulites also occur as minor components in the

western part of the Chipman domain. These units have not previously been targeted for

U-Pb zircon geochronological analysis.

CHIPMAN DOMAIN MAFIC AND FELSIC GRANULITE GNEISSES

Mafic granulites crop out as deformed lenses meters to tens of meters wide, and

up to hundreds of meters long, within > 3.0 Ga variably deformed heterogeneous

Chipman tonalitic gneisses in western portions of the Chipman domain (Figure 3). Less

common garnetiferous felsic granulites similarly occur and, when observed, were always

associated with the mafic granulites, implying a genetic link. The western Chipman

domain coincides with a dramatic anomaly visible in the total field magnetic map,

suggesting that the mafic lithologies may increase in abundance at depth. The restriction

of the mafic granulite lenses and associated magnetic anomaly to the western part of the

domain, and the less common occurrence of anorthositic, gabbroic and ultramafic

inclusions that are prevalent within Chipman tonalite further east, may reflect a

somewhat different protolith character in eastern and western parts of the domain.

Chipman mafic dikes that record 1.9 Ga granulite facies metamorphism intrude across the

entire domain.

Chipman domain mafic granulites include both Grt+Cpx layers, and medium to

very coarse-grained orthopyroxenite units. Study primarily focused on the former,

because of the greater potential for deciphering the metamorphic history using the garnet-

bearing assemblages. The dominant mineralogy of this lithology is Grt + Cpx + P1 + Opx

+ Qtz, with secondary hornblende, accessory ilmenite and apatite, and the presence of

zircon and rutile in some samples (Figure 4A). Metamorphic analysis and

thermobarometric study of Chipman domain mafic granulite samples by Mahan et al.

(2005) documented 1) an early assemblage of Grt + Cpx that preserves conditions of -1.3

GPa, 850 C and is interpreted to have developed from an igneous opx-bearing
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assemblage, 2) retrogression to a Hbl-bearing matrix assemblage during rehydration, and

3) a second less pervasive granulite facies assemblage of Opx + Cpx that records

conditions of - 1.0 GPa, 800 C. Felsic granulite gneisses contain a

Grt+Sil+Ksp+Pl+Qtz anhydrous peak assemblage, with abundant accessory zircon,

monazite and rutile.

The petrographic setting of zircon was documented within mafic granulite sample

02M133A, the same sample on which much petrologic and thermobarometric analysis

and U-Pb TIMS and ion microprobe studies also focused. Commonly 10-50 [tm zircon

crystals occur in the M1 garnet and clinopyroxene assemblage, as well as in matrix

garnet, clinopyroxene, hornblende and plagioclase phases (Figure 4B).

Cathodoluminescence images of in situ zircon revealed generally similar zonation

patterns. Zircon grains typically contained darker unzoned or weakly zoned cores with

bright overgrowths, with less common occurrence of darker overgrowths or

homogeneous zircon lacking obvious overgrowths.

WHOLE ROCK GEOCHEMISTRY

Major and trace element concentrations were determined for five samples of

Grt+Cpx bearing mafic granulites, five samples of orthopyroxenites, and three samples of

garnet-rich felsic granulites from the Chipman domain by XRF and ICPMS at the

University of Massachusetts, Amherst and at Activation Laboratories, respectively (Table

1). The Grt+Cpx bearing mafic granulites contain SiO, ranging from 47.9 to 52.9%,

MgO from 7.0 to 10.6%, and lower A1,03 from 11.0 to 16.8%. The orthopyroxene-rich

granulites contain overlapping SiO2 from 48.9 to 53.8%, higher MgO from 13.7 to

26.0%, and lower A1,03 from 3.7 to 7.8%. Bulk compositions of felsic granulites are

characterized by SiO2 from 61.0 to 69.8%, MgO from 3.2 to 5.7%, and Al,0 3 from 13.4

to 17.1 %, with variability ascribed to heterogeneity in proportions of garnet, feldspar and

quartz. Chipman domain felsic granulite major element data are within a similar range to

that for southern domain felsic granulites (Baldwin et al., in review).

Rare earth element (REE) patterns for the Grt+Cpx bearing mafic granulite

samples are variable (Figure 5A). They include negative and positive slopes, as well as

generally flat patterns. In contrast, REE patterns for the orthopyroxene-rich granulites
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consistently have a negative slope, suggesting the presence of garnet in the source (Figure

5A). Most samples do not contain pronounced Eu anomalies that would imply the role of

plagioclase fractionation during the generation or emplacement of the mafic protolith.

The felsic granulite samples are characterized by enriched and negatively sloping LREEs

and relatively flat HREE patterns, with two of three sample displaying positive Eu

anomalies (Figure 5B). These patterns are similar to those reported for southern domain

felsic granulites (Baldwin et al., in press), suggesting a similar genesis.

Whole rock Sm-Nd isotopic data were previously acquired for the same ten mafic

granulite samples for which major and trace element data are reported in this study

(Flowers, Chapter 2). Nine of the samples were characterized by time-integrated LREE

enrichment and present-day ENd values from -24.5 to -0.9. Sm-Nd data for one Grt+CPx

granulite was characterized by time-integrated LREE depletion, consistent with its

positively sloping REE pattern, with a present day ENd value of 17.5. The ENd values at 2.6

Ga ranged from -7.29 to 2.720 with depleted mantle model dates from 3.91 to 2.91 Ga.

U-Pb GEOCHRONOLOGY

Analytical Methods

Zircon and monazite grains were isolated from the samples by standard crushing,

water table, heavy liquid, and magnetic separation techniques. To optimize the selection

of crystals for TIMS analysis, representative grains were mounted in epoxy, polished to

expose grain interiors, and imaged with cathodoluminescence (CL) and/or backscatter

(BE) techniques to characterize internal structures. Several zircon grains were analyzed

via TIMS following ion microprobe analysis, described further below. Electron

microprobe Th, Ca, Y and U chemical maps were also acquired for a subset of monazite

crystals.

Zircon and monazite grains were extracted from the grain-mount, photographed,

and measured. Sizeable (> 100 micron) zircon and monazite crystals were broken into

fragments for analysis, while smaller grains were analyzed in their entirety. Most zircon

grains and fragments were air-abraded with pyrite after the method of Krogh (1982), and

rinsed and ultrasonicated in 3 M HNO3. Monazite grains were rinsed and ultrasonicated

in high-purity water. A subset of zircon grains were subjected to a version of the
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chemical abrasion technique (Mattinson, 2005), in which zircon crystals were placed in

quartz crucibles in a muffle furnace at -900 °C for -60 hours, loaded into Teflon FEP

microcapsules and leached in 29 M HF at -180 C for 12 hours, then transferred to

savillex beakers and prepared for dissolution according to standard procedures. A less

aggressive leach step in 29 M HF at -80 C for 12-17 hours in savillex beakers on a

hotplate was used for high U zircon grains that completely dissolved during the higher

temperature chemical abrasion procedure. All fractions were loaded into savillex

beakers, washed and ultrasonicated again in 3 M HNO3 (zircon) or high-purity water

(monazite), rinsed in distilled acetone and high-purity water, and loaded into Teflon FEP

microcapsules in high-purity water. Samples were spiked with a mixed 205 Pb-233U-235U

tracer. Zircon grains were dissolved in 29 M HF at 220 °C for 48-96 hours, and

converted to 6 M HCl at 180 °C for 12-24 hours. Monazite crystals were dissolved in 12

M HCl at 180 °C for 48 hours. Pb and U were chemically separated using HC1 anion

exchange chemistry modified after Krogh (1973). Pb and U were loaded on single Re

filaments with a silica gel 0.1 M H3PO 4 emitter solution and analyzed on the

Massachusetts Institute of Technology VG Sector 54 mass spectrometer. Pb isotopic

ratios were measured either by peak jumping using an axial counting Daly detector, or

dynamically with Faraday cups and the Daly detector, peak-jumping 205Pb into the axial

position to obtain a real-time Faraday-Daly gain calibration. U was measured as an oxide

in static mode on three Faraday cups. U-Pb data and details regarding isotopic ratios

corrections are provided in Table 2. Decay constant and U-Pb tracer calibration

uncertainties are systematic errors not included in the cited dates, as these are

unnecessary for comparison of data acquired within a single lab. Concordia diagrams for

all zircon and monazite analyzed by TIMS are shown in Figures 6 through 10.

Zircon grains for SHRIMP U-Pb analysis were prepared in a -inch diameter, Au-

coated, polished grain-mount. Spots within the zircon were selected using optical and CL

imaging, and were analyzed on the SHRIMP II at the Australian National University

using a 25 Itm diameter, 3.5 nA, 10 kV, negative 02 primary ion beam. Positive

secondary ions were extracted at 10 kV and analyzed at mass resolution 5000 using a

single ETP electron multiplier and magnetic field switching. Each analysis consisted of 5

scans through the isotopes of interest and took 8 minutes. The Pb isotopic compositions
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were measured directly. Pb/U and Pb/Th were determined relative to chips of zircon

standards SL13 (U = 238 ppm) and FC1 (radiogenic 206Pb/238U = 0.1859) using a power-

law relationship between Pb+/U+ and UO+/U+ (Claou6-Long et al., 1995) and an exponent

of 1.55. The standard also provided an estimate of Pb isotopic fractionation (2.5 ± 2.0

%o/amu). Common Pb was corrected using 204 Pb assuming the composition of 2.5 Ga

average crustal Pb (Cumming & Richards, 1975). Refer to Table 3 for analytical results

and to Figure 11 for the ion microprobe zircon concordia diagram.

U-Pb TIMS Analytical Results

U-Pb TIMS data were acquired for zircon grains from three representative

samples of Grt+Cpx+Opx mafic granulites and one sample of felsic granulite, and for

monazite from the felsic granulite. Mafic granulite sample 02M133A was targeted due to

its well-preserved reaction textures that also permitted detailed petrological and

kinematic study (Mahan et al. 2005). The two other mafic samples were selected to

obtain the widest spatial distribution of data over the observed extent of Chipman domain

mafic granulite exposures. The felsic granulite sample was collected from a lens

associated with mafic granulite sample 02M133A.

Sample 02M133A was collected from a mafic granulite body at Cora Lake

(Figure 3). Zircon grains range in size from tens to hundreds of microns. The dominant

population of zircon is characterized by cores and overgrowths (Figure 6) A secondary

zircon population is homogeneous and bright in CL. Within the dominant population,

three general groups can be distinguished based on differences in external morphology

and CL-imaged internal structures (Figure 6). The first group is spherical to ovate, is

dominated by zircon that dimly luminesces in CL, and has thin bright CL-imaged rims.

The second group contains rounded to tabular ovate grains, sector and oscillatory-zoned

cores that appear rounded and resorbed, and bright CL-imaged overgrowths with variable

thicknesses (up to 100 [tm). The third group is characterized by facetted spherical to

ovate grains with sector and oscillatory-zoned cores of variable resorption, and similar

sector zoned overgrowths that are not obviously resorbed (up to 200 ~tm). This dominant

zircon population is characterized by Th/U ratios of 0.21-0.31, and U concentrations from

55-280 ppm. Ten abraded and one unabraded zircon fragments yielded a linear array
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with an upper intercept of 2554.5 4.3 Ma and a lower intercept of 1896.0 + 18 Ma

(MSWD = 3.2) (Figure 6). The three fragments analyzed from the first group of zircons,

characterized by the thinnest rims, yielded the most concordant analyses. One physically

abraded fragment subsequently subjected to chemical abrasion (z5c) yielded a 207Pb/206Pb

date older than a fragment of the same grain (z5b) analyzed by standard methods, but still

plotted on the mixing array. Two zircon grains from the homogeneous, bright CL

secondary population were chemically abraded and yielded ca. 1.9 Ga dates. These two

grains had previously been analyzed by ion microprobe, with results discussed further

below.

Sample 03-88A is from the interior of a medium-grained, banded mafic granulite

body at Bompas Lake. Zircon grains are spherical to ovate, are typically < 150 tm in

diameter, and compose two populations characterized by distinct internal structures

visible in CL (Figure 7). The first population is dominated by zircon that is

homogeneous and bright in CL, with 5-20 [tm darker CL rims. The second, more

abundant type of zircon is characterized by an oscillatory to irregularly zoned internal

domain, irregular embayments on several grains suggesting possible resorption, and

overgrowths of variable thickness. Zircon grains have Th/U ratios of 0.08 - 0.39 and U

concentrations from 30-235 ppm. No dramatic difference in U-Pb systematics was

detected between the two populations distinguished in CL. Five abraded single zircon

grains, two unabraded single zircon grains, one unabraded zircon fragment, and one

chemically abraded zircon fragment yielded a linear array with an upper intercept of ca.

2.56 Ga and a lower intercept of ca. 1.86 Ga (Figure 7). The chemically abraded zircon

fragment (z8c) plotted at an older age on the mixing array than its unabraded counterpart

analyzed by standard methods (z8a).

Sample 03-159A was collected from a -50m wide layer of mafic granulite at

Lytle Lake. Zircon grains are spherical to ovate, range in size from tens to hundreds of

microns, and do not luminesce in CL (Figure 8). Zircon crystals have Th/U ratios of

0.20-0.32 and U concentrations of 340-690 ppm. The suppression of zircon CL is

attributed to radiation damage from high U concentrations. Some grains display faint

internal sector zoning in BE, and possible overgrowths. Three abraded fragments from

two larger-sized zircons, two abraded single zircons, four unabraded single zircons, and
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two chemically abraded zircon fragments were analyzed. The five abraded fractions and

one unabraded fraction yielded a poorly defined array with a ca. 2.55 Ga upper intercept

and a Proterozoic lower intercept (Figure 8). One significantly older analysis is

interpreted to contain a minor inherited component. Although the unabraded zircon

fractions were intended to better define the lower intercept of the array by retaining the

zircon overgrowths, these fractions show increased discordance likely caused by

secondary Pb loss in the high U, radiation damaged rims. The two chemically abraded

zircon fragments displayed significantly greater discordance than the other analyzed

fractions.

Sample 03-175A is a partially retrogressed felsic granulite from Cora Lake

characterized by cm-scale garnets. Zircon grains are abundant, spherical to ovate,

typically < 100 [tm (up to 150 [tm in length), and do not luminesce in CL (Figure 9).

Th/U ratios are 0.09-0.14. Radiation damage due to moderate U concentrations of 260-

340 ppm is inferred to cause the suppression of zircon CL. In BE zircons show faint

internal concentric zoning, with possible thin < 10 tm rims on some crystals. Five

abraded, three unabraded, and three chemically abraded fractions of single zircon grains

and fragments were analyzed. Five fractions yield a poorly defined array with an upper

intercept at ca. 2.5 Ga and a Proterozoic lower intercept (Figure 9). The thin rims and

low temperature Pb loss due to radiation damage are interpreted to contribute to data

scatter and the poorly defined lower intercept date. Two of three chemically abraded

zircon fractions, including a fragment with a counterpart analyzed by standard methods,

displayed significantly greater discordance than the other analyses. In addition, eight

monazite fragments were analyzed from six different monazite crystals interpreted to

represent different populations. Imaged monazite grains were characterized by

concentric and patchy zonation, as well as homogeneous textures, with widely varying

Th, Ca, Y and U concentrations, and a broad range (0.5-75) of Th/U ratios. Analyses

ranged from concordant to several percent discordant, with 207 Pb/20 6Pb dates from 2276.9

to 2558.6 Ma (Figure 10).
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U-Pb Ion Microprobe Analytical Results

Following U-Pb TIMS analysis, sample 02M133A was selected for ion

microprobe study to test whether the cores and rims revealed in cathodoluminescence

images correspond to the concordia intercept dates of the well-defined discordia line.

Internal structures of zircon grains imaged by cathodoluminescence are similar to those

described above. Thirty analyses carried out on twenty-six zircon crystals from the

dominant population yielded a range of apparent 207Pb/206Pb dates, including thirteen

analyses on zircon cores from 2674 ± 15 Ma to 2065 ± 53 Ma, twelve analyses on zircon

overgrowths from 2710 + 27 Ma to 1911 + 40 Ma, and five analyses on grains without

overgrowths from 2600 + 19 Ma to 2161 ± 45 Ma (Figures 11 and 12). Zircon cores and

rims show a similar range of Th/U ratios from 0.15 to 0.42. Eight analyses on four

unzoned to weakly zoned zircon grains that are bright in CL yielded consistent dates from

1805 + 88 Ma to 1949 ± 70 Ma. This subset of ca. 1.9 Ga homogeneous grains display

the lowest Th/U ratios (0.08-0.14) and lowest U and Th concentrations of the dataset.

D)ISCUSSION

Complex U-Pb Accessory Mineral Systematics in Polymetamorphosed Granulites

Evidence for Two Metamorphic Events: U-Pb TIMS Zircon Geochronological Data

U-Pb TIMS zircon data for three mafic granulites and one felsic granulite gneiss

define mixing lines with intercepts at ca. 2.55 Ga and ca. 1.8-1.9 Ga. The simplest

interpretation of the zircon data and internal zircon zoning characteristics is that the

intercept dates represent the timing of two metamorphic events. Zircon U concentrations

range from 40 to 720 ppm, with sample zircon systematics partially correlating with U

concentrations. Low U (< 300 ppm) zircon crystals from two samples luminesced in CL,

allowing detailed assessment of internal zoning patterns, and defined well-behaved

mixing arrays. For example, CL images of analyzed 02M133A zircon revealed sector

zoning with isometric overgrowths of variable thickness and CL brightness, typical of

zircon growth during amphibolite through granulite facies conditions (Figure 6) (e.g.

Vavra et al. 1996, 1999; Corfu et al., 2003). Zircon analyses yielded a well-defined

mixing line between 2.55 and 1.9 Ga (MSWD = 3.2). A distinct zircon subpopulation

characterized by homogeneous bright CL yielded 1.9 Ga dates interpreted to represent
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new growth at this time. Low U zircon crystals from 03-88A yielded a similar mixing

array, although no subpopulation of 1.9 Ga zircon grains was identified (Figure 7). Four

unabraded single zircon grains and fragments from these two samples were dissolved by

standard procedures in an effort to better define the lower part of the mixing array. Three

of these unabraded zircon analyses were among the youngest 207 Pb/206Pb dates for these

samples, consistent with exterior portions of the grains containing generally younger

apparent ages than interior portions. In contrast to the lower U zircon grains, higher U

(typically >350 ppm) zircon crystals from two (03-175A, 03-159A) samples did not

luminesce in CL, yielded scattered arrays with analyses that plot near the upper end of the

mixing line, define ca. 2.54 to 2.56 Ga upper intercepts, and provide poorly defined

Proterozoic lower intercepts (Figures 8 & 9). The greater scatter in the zircon

systematics, despite care taken to select the least altered BE-imaged zircon grains for

analysis, is attributed to low temperature Pb loss owing to increased radiation damage in

high U zircons, as has been documented in previous studies. In zircon BE images,

fractures and darker zircon portions inferred to be metamict domains are consistent with

this hypothesis. Complete dissolution of these high U zircon crystals in short, low-

temperature leach steps during application of chemical abrasion TIMS techniques,

discussed further below, substantiates the highly metamict character of these grains.

Seven unabraded zircon grains from these two samples were analyzed by standard

procedures in order to better define the lower part of the mixing array by including

exterior portions of the crystals assumed to be younger in age than interior portions.

Although six analyses yielded younger 2 07Pb/206Pb dates than their abraded counterparts,

they scattered below a hypothetical mixing array between 2.55 and 1.9 Ga as defined by

the lower U zircon samples. The scatter suggests additional low temperature Pb loss in

external portions of grains most accessible to fluids and alteration, consistent with a

higher proportion of fractures in the rims of zircon grains imaged by BE.

Evidence for Recrystallization and/or Pb Redistribution in Metamorphic Zircon: U-Pb

Ion Microprobe Geochronological Data

Ion microprobe data was acquired to help decipher the significance of the mixing

lines defined by TIMS study. Low uranium zircon grains from mafic granulite sample
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02M133A were considered the ideal target for this analysis because these crystals yielded

the best-defined TIMS mixing array with little scatter, suggesting minimal secondary

effects from low temperature Pb loss. In addition, detailed thermobarometric study,

petrogenetic modeling and kinematic analysis of this same sample (Mahan et al., 2005),

provided a particularly well-documented context for interpretation of the

geochronological results.

Ion microprobe analyses revealed more complex U-Pb systematics than could be

explained by two-component mixing of cores and overgrowths visible in CL images.

Both cores and overgrowths yielded a continuous range of apparent 2 7pb/206Pb dates from

2.71 to 1.91 Ga, showed no obvious correlation of dates with zonation, and yielded

consistent Th/U ratios that were independent of apparent age (Figure 13A). The data

included negatively discordant analyses that suggest the local distribution of unsupported

radiogenic Pb, a group of concordant ca. 2.55 Ga zircon analyses, as well as an array of

younger dates consistent with local loss of radiogenic Pb. In contrast, the homogeneous

bright CL zircon population is characterized by distinctly lower Th/U ratios and

consistent ca. 1.9 Ga dates, and is interpreted to represent new growth in the Proterozoic.

Potential mechanisms to explain the complex U-Pb systematics of the dominant

zircon population include episodic zircon growth from 2.55 to 1.9 Ga, 1.9 Ga diffusional

Pb loss, and 1.9 Ga zircon recrystallization. First, episodic zircon growth does not appear

to be a viable interpretation, because a similar range of apparent dates and Th/U ratios are

documented for both cores and overgrowths. For example, a zircon overgrowth with an

older date than preserved in the core (zircon #15) is inconsistent with an explanation that

only invokes episodic growth. In addition, the secondary ca. 1.9 Ga zircon population

considered to reflect Proterozoic growth is characterized by distinct CL characteristics

and Th/U ratios not observed in the dominant population. Second, simple diffusional Pb

loss at 1.9 Ga appears equally improbable, not only because of the extreme sluggishness

of Pb diffusion in zircon documented experimentally (Lee et al., 1997; Cherniak et al.

2000), but also because this mechanism cannot easily explain the heterogeneous spatial

distribution of variable dates or the local occurrence of unsupported radiogenic Pb. We

consider the simplest interpretation to be that all domains of the dominant population,

both cores and overgrowths, grew at ca. 2.55 Ga and were heterogeneously reset in the
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Proterozoic. Isotopic resetting of zircon during recrystallization, resulting in Pb loss and

local Pb gain, is an increasingly well-documented phenomenon typically interpreted to

high-temperature metamorphic processes, metasomatic alteration, and/or the instability of

impurity rich zircon domains (e.g. Williams et al., 1984; Pidgeon, 1992; Pidgeon et al.,

1998; Schaltegger et al., 1999; Hoskin and Black, 2000; Carson et al., 2002). However,

in previous studies this process has typically been identified by the textural development

of bleached zones and transgressive replacement fronts, changed Th/U ratios, and

modified trace-element compositions that affect the zircon CL characteristics. The lack

of visual evidence for replacement textures and the consistency of Th/U ratios for zircon

crystals in our investigation suggests that if recrystallization was responsible for the

perturbed U-Pb systematics, it was a somewhat different process than those proposed in

the literature.

Several observations may provide preliminary clues into this problem. Plots of

207 Pb/206Pb date versus U concentration reveal that the highest U zircon domains yielded

fairly consistent ca. 2.55 Ga dates, while zircon domains characterized by decreasing U

concentration display a progressively greater range of apparent zircon dates both older

and younger than 2.55 Ga, indicative of local excesses and deficits of radiogenic Pb

(Figure 13B). This pattern holds true for all zircon types, although overgrowths show a

slightly greater dispersion of dates than other zircon groups. A similar correlation is

revealed by inspection of the TIMS data for zircon grains and fragments from four

different samples that together are characterized by a greater range of uranium

concentrations than that contained within zircon from the single sample analyzed by ion

microprobe (Figure 14). The two high U and two low U zircon samples show a similar

range of Th/U ratios. The highest U (350-720 ppm) zircon grains from sample 03-159A,

excluding fraction z8 tainted by inheritance, record the least 1.9 Ga signature. Analyses

of moderate U (275-450 ppm) zircon grains from sample 03-175A display a spread to

younger 207pb/206Pb dates. The lowest U zircon crystals (< 275 ppm) from samples

02M133A and 03-88A yield the youngest 2 07pb/206Pb dates of the TIMS dataset,

suggesting the greatest 1.9 Ga perturbation of the U-Pb systematics. This trend is

opposite of that expected for effects of low temperature Pb loss associated with radiation
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damage, in which the highest U zircon grains should show the greatest discordance and

the youngest 207pb/206pb dates.

These data suggest that low U zircon domains were preferentially affected by Pb

remobilization and/or recrystallization processes. Vavra et al. (1999) reported a similar

observation for metamorphic zircon grains in the Ivrea zone, where the lowest U zircon

domains were most affected by alteration and resetting of the U-Pb systematics. In this

case visual evidence for zircon replacement was observed, and recrystallization was

attributed to a subsequent thermal pulse, consistent with petrological evidence for

regional metamorphism followed by contact metamorphism at temperatures > 650-750

°C (Barboza et al., 1999, 2000). Observations similar to those in our study were also

reported for sector zoned metamorphic zircon in northern Labrador that were affected by

contact metamorphism at temperatures >800 C. Affected zircon displayed an array of

normally and reversely discordant analyses, low U domains typically revealed the

youngest apparent ages, consistent Th/U ratios were independent of dates, and there was

no obvious visual evidence for zircon replacement textures (McFarlane et al., 2004). The

study attributed the scattered dates to Pb remobilization during the high temperature

event.

Although observations in mafic granulite zircon grains from the East Lake

Athabasca region are not entirely identical to those in these two previous studies, the

central feature common to all three investigations is that a large range of apparent ages

were observed in the lower U domains of sector zoned metamorphic zircon that were

subjected to a second high temperature metamorphic event. The U concentrations may

correlate with trace element contents or other zircon impurities that exert control on the

susceptibility of zircon to this complex isotopic disturbance. Again, we emphasize that

metamorphic zircon grains in our study showed no CL evidence for perturbed U-Pb

systematics and did not show modified Th/U ratios, suggesting that their behavior during

high temperature metamorphic conditions is distinct from the heterochemical

transgressive replacement textures typically documented in magmatic zircon grains that

have been subjected to high temperatures. Therefore, we suggest that the zircon behavior

documented in our study may represent a different response of metamorphic zircon to

high temperatures. The lack of other examples may be due to the scarcity of exposed
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rocks containing the requisite history of two metamorphic events, necessary first to form

the primary sector zoned metamorphic zircon population and second to provide the high

temperatures necessary to perturb the U-Pb systematics in these crystals. It is possible

that this zircon behavior is not uncommon in polymetamorphic terranes, and future

investigations may reveal similar examples that will provide further insights into the

mechanisms responsible for the complex U-Pb zircon systematics documented in this

study.

Complex CA-TIMS Zircon Systematics

Chemical abrasion (CA)-TIMS geochronological techniques developed by

Mattinson (2005) are increasingly being utilized for high-resolution U-Pb zircon analysis.

This method involves laboratory annealing of radiation damage at high temperatures

followed by chemical leaching. Within typical magmatic zircon grains, leach steps are

observed to predictably remove the highest U portions of zircon grains that have

undergone Pb loss, leaving the lower U portions that have remained a closed system for

high-resolution analysis.

Following documentation of complex U-Pb systematics in granulite zircon grains

in this study via standard TIMS and ion microprobe methods, select grains were

subjected to chemical abrasion in an effort to isolate the lower U portions of zircon

crystals inferred to have been most affected by the ca. 1.9 Ga overprinting event, as

discussed above. Preliminary data acquired for both low U and high U zircon grains

revealed a complex response to the chemical abrasion process. Following a single leach

step, two fragments of low U zircon crystals from samples 02M133A and 03-88A yielded

CA-TIMS analyses that showed an unexpected enrichment in the older component

relative to fragments of the same crystals that previously had been analyzed by standard

TIMS methods. These preliminary results suggest that the lower U portions of the grains

with disturbed systematics were preferentially removed during the leach step. Additional

study is required to more thoroughly explore this problem. In contrast, four of five high

U zircon grains from samples 03-175A and 03-159A yielded CA-TIMS results that

displayed the anticipated shift toward younger 207pb/ 206Pb dates, but plotted off a 2.55 to

1.9 Ga mixing array. A relatively gentle hotplate leach step was applied to these higher
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U zircon grains. because an initial suite of these crystals completely dissolved during the

standard leaching procedure, attesting to their metamict state. Previous studies on

radiation-damaged zircon crystals that were not annealed in the lab prior to leaching have

shown complex U-Pb, and possibly 207 Pb-206 Pb fractionation effects during partial

dissolution, attributed to preferential leaching of Pb alpha-recoil damaged sites over

lattice-bound U, preferential removal of 206 Pb in more strongly damaged sites over 207pb,

and/or selective removal of young radiogenic Pb over older radiogenic Pb in previously

annealed domains (e.g. Corfu, 2000; Davis and Krogh, 2000; Mattinson, 2005).

Laboratory annealing at 800-1000 °C for -48 hours has been shown to greatly reduce U-

Pb and Pb/Pb fractionation effects in zircon characterized by low to moderate radiation

damage (Mattinson, 2005). However, more detailed analysis is required to evaluate the

effect on more highly radiation damaged crystals such as those in this study.

Evidence for Episodic Monazite Growth: TIMS Monazite Geochronological Data

Imaging techniques, chemical mapping, and IDTIMS monazite geochronological

data for the felsic granulite document multiple populations of monazite that preserve both

near concordant and discordant 2 "7Pb/206 Pb dates between 2.56 and 2.33 Ga. These data

do not define a simple mixing line. Images revealed concentrically zoned grains,

patchwork textures, and unzoned monazite crystals, with chemical maps indicating a

wide variation in Th and Y concentrations. We interpret these data to indicate multiple

episodes of growth and/or fluid mediated recrystallization processes. Electron

microprobe monazite dating has documented similar complexity of monazite populations

in Chipman domain felsic granulites. The observation that garnet exclusively contains

ca. 2.55 Ga monazite, with Archean through 1.9 Ga monazite in the matrix assemblage,

has been interpreted to indicate growth of garnet in this rock during Archean

metamorphism (Mahan et al., 2005). Complex monazite populations with similar

characteristics have also been documented in the southern domain (Baldwin et al., in

review). We ascribe the occurrence of multiple monazite populations, in contrast to the

two discrete episodes of zircon growth in this sample, to the greater propensity of

monazite to grow during metamorphic reactions and fluid mediated processes at
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conditions well below its closure temperature (e.g. Rubatto et al., 2001; Foster et al.,

2002).

Implications for Deep Crustal Residence, Continental Stability and Lithospheric

Reactivation

Timing of Multiple High-pressure Granulite Facies Metamorphic Events

Deciphering the P-T-t-d histories of multiply deformed polymetamorphic deep

crustal terranes is a difficult task, and has presented an ongoing challenge within

granulite domains of the East Lake Athabasca region. Our new U-Pb zircon data for

mafic and felsic granulite gneisses within the Chipman domain document growth of the

dominant population of metamorphic zircon at ca. 2.55 Ga, with subsequent ca. 1.9 Ga

perturbation of the isotopic systematics and limited new metamorphic zircon growth at

this time. The temporal gap between ca. 2.55 Ga growth of zircon cores and overgrowths

in the primary population is unknown, because the U-Pb isotopic systematics have been

complicated by the Proterozoic overprinting event. The mafic granulites preserve an M1

garnet-clinopyroxene assemblage (-1.3 GPa, 850 °C) interpreted to have developed from

an orthopyroxene-bearing igneous assemblage, a hornblende bearing matrix inferred to

represent subsequent retrogression, and a second prograde garnet-orthopyroxene

assemblage (-1.0 GPa, >800 °C) (Mahan et al., 2005). We link the dominant population

of ca. 2.55 Ga metamorphic zircon to growth during the first HP granulite facies

metamorphic event at conditions of 1.3 GPa, 850 C. Confident connection of

subsequent zircon growth with retrogression and the second episode of granulite facies

metamorphism (-1.0 GPa, 800 °C) is more difficult. The second granulite assemblage

may have developed 1) as part of the ca. 2.55 Ga metamorphic cycle, or 2) at 1.9 Ga

marked by secondary zircon growth and disturbance of the U-Pb systematics of the

primary zircon population.

Particularly important for the tectonic implications of this dataset is the

documentation of 1896.2 + 0.2 Ma HP granulite facies metamorphism at conditions of

1.0-1.2 GPa, 750 °C, based on high-precision U-Pb TIMS dates for zircon grains from

migmatized Chipman mafic granulite dikes (Williams et al., 1995; Flowers, Chapter 2).

The similarity of metamorphic conditions preserved within Chipman mafic granulite
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dikes intruded across the Chipman domain to those yielded by the second granulite facies

assemblage of the mafic gneisses is consistent with the near-synchronous development of

the assemblages at ca. 1.9 Ga. In addition, titanite grains from mafic granulite sample

02M133A yield dates of ca. 1885 Ma, consistent with ca. 1.88 - 1.90 Ga titanite dates for

five other samples across the Chipman domain, corroborating attainment of temperatures

> 650 C at ca. 1.9 Ga (Flowers, Chapter 3). Thus, the geochronological and petrological

datasets provide strong evidence for a ca. 2.55 Ga (-1.3 GPa, 850 C) HP metamorphic

assemblage in the mafic granulite gneisses, and a 1.9 Ga (1.0-1.2 GPa, 750 C)

metamorphic assemblage in the Chipman mafic dikes that may also be preserved in the

mafic gneisses, indicating that at least two HP granulite facies metamorphic events

impacted the Chipman domain.

Deep Crustal Residence and Lithospheric Stability

We interpret the Chipman domain record of 2.55 Ga (-1.3 GPa, 850 "C) and 1.9

Ga (1.0-1.2 GPa, 750 C) high-pressure granulite facies metamorphic events to indicate

an intervening 650 m.y. period during which the granulites resided in the deep crust.

Archean dehydration with minimal subsequent rehydration is consistent with evidence for

limited melting and deformation of these rocks when subjected to intense temperatures (>

750 C) in the Proterozoic. It seems likely that if there had been significant unroofing

and subsequent burial during this interval, greater retrogression of Archean assemblages

would be observed. Variable monazite dates between 2.55 and 1.9 Ga in Chipman

domain felsic granulites, documented both by TIMS data in this study and by additional

electron microprobe monazite data (Mahan, 2005), are inferred to record episodic fluid

mediated growth during deep crustal residence, rather than discrete episodes of

metamorphism characterized by new mineral assemblages. The greater reactivity of

monazite at low temperatures explains the lack of coeval zircon growth at these times.

Additional information regarding the 2.55 to 1.9 Ga history is required to more fully

constrain the P-T path during this period.

We propose that this relatively quiescent interval of deep crustal residence is

linked with a prolonged period of lithospheric stability following assembly in the

Archean. Lithospheric stabilization was heralded by the 2.55 Ga HP-HT event, followed
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by isobaric cooling to a cratonic geotherm. Amalgamation of the Laurentian

supercontinent between ca. 2.02 and 1.81 Ga played a key role in perturbing the pre-

existing lithospheric configuration, and detailed studies of 1.9 Ga tectonometamorphism

have begun to yield insight into the nature of this event (Flowers, Chapter 2; Baldwin et

al., 2004). Although long-term residence of rocks in the deep crust is a common feature

of cratonic regions that have remained relatively unperturbed for billions of years,

subsequent exhumation of the lowermost crust in such regions is a rarity, owing to the

difficulty of disrupting cratons underlain by thick lithospheric mantle roots. Thus, the 1.9

Ga HP granulite facies metamorphism and subsequent exhumation of lowermost

continental crust in the East Lake Athabasca region requires an event of profound

significance. The complex record of multiple HP granulite facies metamorphic events in

the East Lake Athabasca region is the fingerprint of larger scale changes within the

underlying lithospheric mantle due to plate tectonic and asthenospheric mantle activity.

Deciphering the complex record preserved in these rocks provides a unique perspective

on the evolution of lower continental crust during the stabilization and reactivation of

continents.
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FIGURE CAPTIONS

Figure 1. Geological map of the western Canadian Shield showing major tectonic

features. AB-Athabasca basin, STZ-Snowbird tectonic zone, TB-Thelon Basin, THO-

Trans-Hudson Orogen, TO-Taltson Orogen, TMZ-Thelon Magmatic Zone, UX-Uvauk

Complex. The rectangle shows the East Lake Athabasca region enlarged in Figure 2.

Figure 2. Geological map of the East Lake Athabasca region, northern Saskatchewan.

The box outline shows the location of the study area enlarged in Figure 3.

Figure 3. Geological map of the Chipman domain with sample locations.

Figure 4. Mg map of thin section from mafic granulite sample 02M133A. Brighter

colors represent higher Mg concentrations. Red is primarily garnet and yellow is

clinopyroxene or hornblende. Blue dots represent locations of zircon crystals.

Thermobarometric estimates for the M1 assemblage in the coarse-grained Grt+Cpx

boudin, and in the Grt+Hbl+Cpx+Opx matrix are from Mahan et al. (2005). B) BE

images showing petrographic setting of zircon associated with the M1 and matrix

assemblages, with enlargements of CL images of zircon.

Figure 5. REE diagrams for Chipman domain A) mafic granulites, and B)felsic

granulites. Data for southern domain felsic granulites from Baldwin et al. (in review) are

shown in B) for reference. Chrondrite values from Sun and McDonough (1989).

Figure 6. Concordia diagram for zircon analyzed by TIMS from mafic granulite sample

02M133A with CL images of analyzed zircon crystals. Thin lines delineate where the

zircon grains were broken prior to analysis. Analyses z7.ip.ca and zl7.ip.ca are grains

previously analyzed by ion microprobe from the secondary population of ca. 1.9 Ga

zircon, and CL images are shown in Figure 13.
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Figure 7. Concordia diagram for zircon analyzed by TIMS from mafic granulite sample

03-88A with CL images of all analyzed zircon crystals. Thin lines delineate where the

zircon grains were broken prior to analysis.

Figure 8. Concordia diagram for zircon analyzed by TIMS from mafic granulite sample

03-159A with BE images of all analyzed zircon crystals. Thin lines delineate where the

zircon grains were broken prior to analysis.

Figure 9. Concordia diagram of zircon analyzed by TIMS from felsic granulite sample

03-175A with BE images of analyzed zircon crystals. Thin lines delineate where the

zircon grains were broken prior to analysis.

Figure 10. Concordia diagram of monazite analyzed by TIMS from felsic granulite

sample 03-175A. Associated BE images and Th, Ca, Y and U compositional maps are

shown for the analyzed monazite.

Figure 11. Concordia diagram of zircon analyzed by ion microprobe from mafic granulite

sample 02M 133A.

Figure 12. CL images for zircon from mafic granulite 02M133 with locations of ion

microprobe spots. 207pb/206Pb and 2 06Pb/238U dates for each spot are indicated.

Figure 13.207Pb/2 o6Pb ion microprobe zircon dates from mafic granulite sample 02M 133A

plotted against A) Th/U ratio and B) U concentration. The two highest U points are

omitted from A) so that the figure could be plotted at the most effective scale.

Figure 14. 2 7 Pb/206Pb TIMS zircon dates from all four samples in this study plotted

against A) Th/U ratio and B) U concentration. Inherited zircon 03-159A, z8 is excluded

from this plot.
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Chapter 2

Timescales of high-pressure, high-temperature metamorphism
and mafic dike anatexis, Snowbird tectonic zone, Canada
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ABSTRACT

New geochronological, isotopic and geochemical data for a spectacular swarm of

deep crustal migmatitic mafic dikes along the Snowbird tectonic zone in northern

Saskatchewan provide important insight into processes operative during 1.9 Ga high

pressure, high temperature metamorphism. High-precision U-Pb ID-TIMS zircon dates

reveal mafic dike anatexis at 1896.2 +± 0.3 Ma during syntectonic and synmetamorphic

dike intrusion at conditions of 1.0-1.2 GPa, >750 C. U-Pb zircon dates of 1894-1891

Ma for cross-cutting pegmatites place a lower bound on major metamorphism and

deformation at exposed crustal depths. Sm-Nd whole rock isotopic data are consistent

with pegmatite derivation from a deeper mafic source, and imply the ongoing

maintenance of high temperatures following peak conditions at exposed crustal levels.

Limited ca. 1.9 Ga felsic magmatism despite high temperatures is consistent with

evidence for previous dehydration of rocks by granulite facies metamorphism in the

Archean. Inferred residence of rocks in the deep crust from ca. 2.55 to 1.9 Ga implies a

period of lithospheric stability, requiring a significant event at 1.9 Ga to disrupt a

stabilized craton. We correlate 1896 Ma Chipman mafic dike emplacement and

metamorphism with substantial, almost synchronous, 1.9 Ga mafic magmatism over a

minimum along-strike extent of 1200 km of the Snowbird tectonic zone, with additional

potential correlation to the south that would coherently link 1.9 Ga observations along the

entire 2800 km length of this dramatic geophysical lineament. These data indicate a

significant, continent-wide period of asthenospheric upwelling. This unusual deep crustal

record of lithospheric disruption, destabilization and exhumation contrasts with the long-

term stability of most cratons, and is important for understanding the lithospheric

characteristics and tectonic circumstances necessary for the survival of continents.
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INTRODUCTION

The rheological, metamorphic, and melting behavior of the lower continental

crust exerts important control on crustal differentiation and the growth and maturation of

continents. The complex interactions between deep crustal mafic magmatism, silicic

melt generation and segregation, metamorphic reactions, and deformation can profoundly

impact the behavior of the entire crustal column during vertical transfer of mass, heat and

stress through the system. In addition, the deep crust represents the most robust and

unfiltered crustal signature of activity in the underlying lithospheric and asthenospheric

mantle. Rare exhumed lower crustal terranes offer the best opportunity to directly

examine the record of processes preserved in rocks once resident in the deep crustal roots

of the continents. Data from these regions regarding changing thermal regimes in the

lower crust constrain the nature, intensity and timescales of high-pressure (HP) granulite

facies episodes. Such information can yield important insights into the crustal response

to these events and the plate tectonic and asthenospheric processes responsible for the

disruption..

Along the Snowbird tectonic zone in the western Canadian Shield, vast (>20,000

km2) well-preserved exposures of lower continental crust (1.0->1.5 GPa) in the East Lake

Athabasca region provide an exceptional opportunity to study a record of HP granulite

facies metamorphic events. In particular, the Chipman mafic dike swarm, exposed within

this tract of rocks, preserves a spectacular snapshot of the dynamic deep crustal

environment during a high temperature metamorphic event. During emplacement the

mafic dikes were metamorphosed, heterogeneously deformed, and partially melted at 1.0-

1.2 GPa, >750 C to yield segregations of tonalitic and trondhjemitic melt (Williams et

al., 1995). We use new high-precision U-Pb ID-TIMS geochronological data, Sm-Nd

isotopic systematics, geochemistry data, and field observations to constrain the duration

of high pressure-high temperature (HP-HT) metamorphism, anatexis, and deformation in

this region, unravel the detailed evolution of the thermal regime during this event, and

assess the geodynamic significance of this intense episode of deep crustal magmatism

and metamorphism. Our results highlight the exceptional value of the East Lake

Athabasca area for understanding the nature, behavior, and response of the lower crust

during the evolution, stabilization, and reactivation of continents.
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GEOLOGICAL SETTING

The western Churchill Province of the Canadian Shield is an extensive region of

Archean crust bounded by the Thelon orogen (2.02-1.90 Ga) to the northwest and the

Trans-Hudson orogen (1.85-1.80 Ga) to the southeast (Figure 1). The Snowbird tectonic

zone, a 2800 km long NE trending gravity and magnetic anomaly, has been defined as the

boundary separating the Rae and Hearne cratons of the western Churchill Province

(Goodacre et al., 1987; Hoffman, 1988). This dramatic geophysical feature has

alternatively been interpreted as a Paleoproterozoic intercontinental suture (Hoffman,

1988; Ross et al., 1995, 2000), an Archean intracontinental strike-slip shear zone

(Hanmer et al., 1994, 1995a,b, 1997), and a Paleoproterozoic intracontinental transform

(Lewry and Sibbald, 1980). The central segment of the Snowbird tectonic zone is

characterized by an anastomosing internal geometry that recently has been attributed to

the interaction of Proterozoic intracontinental thrust and strike-slip shear zones (Mahan

and Williams, 2005). In this region, the East Lake Athabasca area in northern

Saskatchewan contains an enormous tract of high-grade rocks (1.0 to >1.5 GPa, > 750

°C), composed of several disparate domains, spanning the width of this fundamental

structure (Figure 2).

The East Lake Athabasca area includes granulite facies rocks of the East

Athabasca mylonite triangle along the trace of the Snowbird tectonic zone, deep crustal

rocks of the Rae domain to the west, and middle to upper crustal rocks of the Hearne

domain to the east. To the south the region is covered by sediments of the Athabasca

basin. The East Athabasca mylonite triangle is divided into three distinct lithotectonic

domains: 1) the Chipman domain dominated by the heterogeneous > 3.0 Ga Chipman

tonalite and the extensive Chipman mafic dike swarm recording metamorphism and

melting at 1.0-1.2 GPa and 750-850 C (Williams et al., 1995), 2) the northwestern

domain composed of ca. 2.6 Ga mafic to felsic plutonic rocks, including the Mary granite

interpreted to be intruded and metamorphosed at 1.0 GPa (Williams et al., 2000), and 3)

the southern domain consisting of felsic and mafic granulites and minor eclogite with

peak metamorphic conditions as high as > 1.5 GPa and 900-1000 °C (Snoeyenbos et al.,

1995; Baldwin et al., 2003, 2004). A recent study in the southern domain has interpreted
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high temperature- high pressure metamorphism to have occurred at 1904.0 + 0.3 Ma

(Baldwin et al., 2004). Metamorphic study in the Rae domain at Neil Bay and Wholdaia

Lake documents granulite-facies conditions of ~ 0.8 GPa, 900 C at ca. 1.9 Ga (Kopf,

1999; Krikorian and Williams, 2002). The Legs Lake shear zone along the eastern

margin of the Chipman domain juxtaposes granulite facies rocks of the East Athabasca

mylonite triangle with lower pressure ( 0.5 GPa, 600-700 C) rocks of the Hearne

domain, and is associated with regional exhumation of the deep crustal rocks ca. 1850-

1800 Ma (Mahan et al., 2003; Mahan and Williams, 2005).

CHIPMAN MAFIC DIKE METAMORPHIC ASSEMBLAGES AND FIELD

RELATIONSHIPS

The temporal record of mafic magmatism and granulite facies metamorphism

preserved by the Chipman mafic dike swarm is the primary focus of this contribution.

Originally named by Macdonald (1980), the dike swarm is exposed across the width of

the Chipman domain and is truncated laterally by domain-bounding shear zones (Figure

3). The > 3.0 Ga variably deformed Chipman tonalite gneisses, containing inclusions of

anorthosite, peridotite, and mafic and felsic granulites, compose the dominant host unit in

the domain. The more homogeneous ca. 2.6 Ga Fehr granite occurs on the eastern

margin of the domain. Chipman dikes vary in abundance across the span of the swarm,

range in width from less than one to tens of meters, and locally compose 60-100% of the

exposure. The northeast striking Chipman dikes are deformed by the more northerly

striking Legs Lake shear zone (LLSZ) on the east side of the Chipman domain (Figure 3).

Dikes decrease in abundance from the Chipman tonalite into rocks of the Fehr granite,

and are increasingly scarce eastward in rocks deformed by the LLSZ. In the western part

of the Chipman domain dikes are locally abundant, but do not intrude the adjacent

northwestern domain. Near the western boundary of the domain the dikes are locally

deformed by mylonites of the Cora Lake shear zone, a structure interpreted to truncate

western exposures of the dike swarm (Figure 3). The center of the Chipman domain

coincides with an 8 x 20 km positive gravity anomaly that suggests additional dense

mafic material at depth (Hanmer et al., 1994).
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The Chipman dikes can be texturally and mineralogically subdivided into four

major groups: 1) migmatitic granulite dikes, 2) non-migmatitic granulite dikes, 3) non-

migmatitic amphibolite dikes, and 4) phenocrystic or phyric dikes. All dikes contain

hornblende and plagioclase, with variable titanite, ilmenite, and rutile. Migmatitic dikes

are typically characterized by cm-scale garnet and associated quartz and plagioclase

leucosomes in a hornblende and plagioclase matrix (Figure 4A). These dikes are zircon-

bearing and rarely contain clinopyroxene. Leucosomes occur as tails in strain shadows

adjacent to garnet crystals, and, with increasing melt volumes, as discrete leucosomal

segregations in pods and veins (Figure 4B). Some migmatitic dikes show an internal

textural layering parallel to dike margins. In partly migmatized dikes, the migmatitic

components typically occur along dike margins. In non-migmatitic granulite dikes,

textures range from fine-grained garnet and clinopyroxene spherical clumps in a

hornblende and plagioclase matrix, to a homogeneous fine- to coarse-grained garnet,

clinopyroxene, hornblende, and plagioclase matrix (Figure 4C). Non-migmatitic dikes

lack zircon. Amphibolite dikes are dominantly hornblende and plagioclase. Rare

phenocrystic or phyric plagioclase rich dikes contain variable hornblende, garnet and

clinopyroxene. Textures suggest that all dikes crystallized as hornblende-plagioclase

rocks and were metamorphosed to produce the granulite facies assemblages.

Amphibolite dikes either never reacted to form the high grade assemblage, or are

retrogressed varieties of granulite dikes. Additional detailed descriptions of mineralogical

assemblages and textures in the Chipman dikes, with particular focus on the migmatitic

dikes, were provided in Williams et al. (1995). Thermobarometric estimates for

migmatitic and non-migmatitic dikes using garnet hornblende thermometry and garnet-

hornblende-plagioclase barometry yielded conditions of 750-850 C and 1.0-1.2 GPa

(Williams et al., 1995).

Migmatitic and non-migmatitic granulites dikes differ in both their distribution

and degree of strain. Migmatitic dikes occur in a 10-12 km wide corridor within the

broader Chipman dike exposures. They are abundant in the Chipman tonalite in the

southeastern part of the domain, are less common in the Fehr granite to the east, and were

not observed in the western part of the domain. In contrast, non-migmatitic granulite

dikes are distributed across the entire domain. Migmatitic dikes are always deformed by
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a moderately steep NE-striking fabric, and, in places, show evidence for having been

deformed by an earlier, shallower NW-striking fabric. These dikes are commonly

boudinaged with leucocratic melt filling boudin necks, or may be folded with leucocratic

melt tails either folded or defining the axial surface of the fold (Figure 4D). In contrast,

non-migmatitic dikes typically show less strain than migmatitic dikes, are commonly

discordant to fabric in the host rocks (Figure 4E), and may preserve original intrusive

features such as apophyses into the host tonalite. The differing strain may owe to the

inherently greater strength of dikes lacking leucosomes and/or later intrusion of non-

migmatitic dikes that missed an earlier phase of deformation.

Documentation of the detailed spatial relationships of dismembered, folded,

variably deformed, and cross-cutting dikes suggests their synmetamorphic and

syntectonic emplacement at granulite facies conditions (Williams et al., 1995). For

example, observations of dikes with straight leucocratic tails cutting dikes with folded

leucocratic tails (see Williams et al. 1995, figure 7) are most simply explained by

episodic or continuous migmatization of dikes during intrusion rather than a single

discrete anatectic event that postdated their emplacement. Importantly, this interpretation

implies that determination of the time of dike anatexis also constrains the date of dike

intrusion. Although intrusion of multiple dike swarms of widely varying ages with more

than one episode of dike migmatization cannot be currently be excluded as a means of

explaining the field relationships, this requires a significantly more complex geological

history that is not supported by the data in this study.

Pegmatitic dikes and segregations intrude dikes of varying textures and

metamorphic assemblages (Figure 4F). Undeformed varieties provide the potential to

impose a local lower temporal bound on major magmatism and deformation in the

domain. With the exception of the pegmatites and migmatitic dike leucosomes, limited

melting during mafic dike intrusion is indicated by field relationships. Centimeter scale

felsic bands, segregations, and leucosomal material in the hornblende-bearing Chipman

tonalite are inferred to be coeval with Chipman dike intrusion based on structural and

lithological relationships. In the biotite-bearing Fehr granite, more abundant felsic

segregations up to a half-meter in scale are either directly or indirectly associated with
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mafic dikes and provide the most convincing evidence for melting of host felsic rocks

during dike emplacement (Figure 4G).

WHOLE ROCK GEOCHEMISTRY

Sixteen samples of Chipman dikes, representing the full spectrum of observed

textural variation, were analyzed for major and trace elements by XRF and ICPMS,

respectively, at Activation Laboratories. Data are reported in Table 1. Data were

acquired to 1) evaluate the nature of the dike magma source, and 2) assess the importance

of compositional factors for dike anatexis by establishing whether dike geochemistry

patterns can be linked with textural and mineralogical observations. These results

supplement major element data previously obtained for nine Chipman dike samples

(Williams et al., 1995). Migmatitic dikes were characterized by the greatest textural

heterogeneity, and particular care was taken to process samples representative of the bulk

composition.

The dikes contain SiO 2 ranging from 46.1 to 52.2% and MgO from 3.3 to 7.1%.

Samples in this study are relatively high in iron (iron as Fe203 = 13.5 to 19.5%) and low

in A1203 (11.5 to 15.5%), with the exception of two plagioclase rich phyric to

phenocrystic dikes (Figure 5A). Normative calculations and projections into the ol-cpx-

qtz and ol-pl-qtz ternary systems result in a distribution of data that plot into the qtz and

plag fields, consistent with most dikes representing melt compositions rather than

residues of fractional crystallization. Spider diagrams reveal high field strength element

(HFSE) enrichments and large ion lithophile element (LILE) depletions (Figure 5B).

Rare earth element (REE) patterns are relatively flat, implying an absence of significant

garnet in the source. Generally, migmatitic dikes contain higher SiO2, Fe203, Ta, Zr and

Nb, and lower MgO and A1203, than non-migmatitic dikes (Figure 5A). Four distinct

REE patterns generally correlate with the four major textural and mineralogical groups

(Figure 5C): 1) migmatitic granulite dikes contain the highest REE contents, 2) non-

migmatitic granulite dikes are characterized by an array of lower REE contents, 3)

amphibolite dikes are defined by distinctly flatter REE patterns than those in the granulite

facies dikes, and 4) phenocrystic and phyric dikes contain the lowest REE contents and

are characterized by Eu anomalies. The occurrence of Eu anomalies in the two
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plagioclase-rich dike samples is consistent with the involvement of plagioclase

fractionation near their source or during emplacement. A distinct coarse-grained sample

from the center of a non-migmatitic granulite dike (02-112) is characterized by a shallow

positive REE slope, contains the highest analyzed Mg content suggestive of a more

primitive composition, and is considered from field observations to be one of the latest

intruded dikes.

SM-ND ISOTOPIC SYSTEMATICS

Analytical Methods

Whole rock powders were produced using standard shatterbox procedures.

Sample powders (100-200 mg) were spiked with a mixed '49Sm- 150Nd tracer, completely

dissolved in HF-HNO3 in Teflon pressure vessels at 220 °C for five days, converted to

6M HCl at 180 °C for 24 hours, then repeatedly fluxed in 6M HCl at 120 °C. The REE

were separated from solution using cation exchange chemistry, followed by usage of LN-

spec resin to isolate Sm and Nd. All analyses were carried out on the Massachusetts

Institute of Technology Isoprobe-T mass spectrometer. Sm was loaded onto single Ta

filaments with M H 3PO4 and analyzed as metal ions in multicollector static mode. Nd

was loaded on triple Re filaments with 0.1M H3 PO4 and analyzed as metal ions in

dynamic multicollector mode. Sm-Nd results and details regarding isotopic ratio

corrections are provided in Table 2.

Analytical Results

Whole rock Sm-Nd isotopic systematics were determined for the same sixteen

Chipman dike samples analyzed for major and trace elements. In addition, whole rock

Sm-Nd data were acquired for ten mafic granulite gneisses, four Chipman tonalite

gneisses, and three pegmatite samples to place constraints on source characteristics.

Fifteen of the Chipman dike samples have present day Nd values from -16.8 to -3.2 and

reflect time-integrated LREE enrichment. One distinct dike (02-112) is characterized by

a present day ENd value of +10.6 and time-integrated LREE depletion, consistent with its

HREE pattern. Nd values at the time of 1.9 Ga granulite facies metamorphism range
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from -9.1 to +2.2, with depleted mantle model dates (TDM) from 4.20 Ga to 2.42 Ga

(Figure 6A). A plot of ENd values at 1.9 Ga vs. weight percent SiO2 for the fifteen dikes

characterized by time-integrated LREE enrichment reveals that dikes containing higher

(> 50.9%) SiO2 content display an inverse correlation between ENd and SiO2, while dikes

with lower (< 50.9%) SiO2 content lack this correlation (Figure 6B). This observation

suggests the influence of crustal assimilation on the subset of dikes, including the

migmatitic dikes, containing higher SiO2.

Five Grt+Cpx+Opx+PI mafic granulites and five Opx+Pl mafic granulites,

collected from lenses in the Chipman tonalite in the western and northern parts of the

Chipman domain, were selected for Sm-Nd isotopic analyses. Previous data have

established these mafic granulite lenses as Archean in age (Flowers, Chapter 1). Nine of

ten mafic granulite samples are characterized by time-integrated LREE enrichment and

present day ENd values from -24.5 to -0.9. One mafic granulite (03-228A) reflects time-

integrated HREE enrichment, and contains a present day eNd value of 17.5. The ENd

values at 2.6 Ga range from -7.29 to 2.72, with depleted mantle model dates (TDM) from

3.91 Ga to 2.91 Ga (Figure 6C). Our data show a correlation between ENd values at 2.6

Ga and SiO2 content, consistent with the assimilation of felsic crustal material with more

evolved Nd isotopic signatures during the generation and emplacement of the protolith

(Figure 6D). The mafic granulite sample with time-integrated HREE enrichment

contains one of the lowest SiO2 contents, suggesting it was least affected by crustal

contamination.

The four Chipman tonalitic gneiss samples display evolved Nd isotopic

compositions, with time-integrated LREE enrichment, present day ENd values from -45.7

to -35.0, ENd values at 3.0 Ga from -4.8 to -2.2, and depleted mantle model dates from

3.59 to 3.31 Ga (Figure 6C). These data are consistent with Sm-Nd data acquired for

three previous samples of Chipman tonalite characterized by present day ENd values from

-58.7 to -43.3 (Hanmer, 1994). The signature of crustal contamination preserved in the

Chipman mafic dikes and Archean mafic granulite gneisses can be explained by

assimilation of the host Chipman tonalite with its highly evolved Nd isotopic

composition.
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Sm-Nd data were acquired for three pegmatite samples that cross-cut Chipman

mafic dikes to evaluate whether they were derived from a mafic source or from the

Chipman tonalitic gneisses. The pegmatites reflect time-integrated LREE enrichment,

with depleted mantle model dates from 2.67 to 2.33 Ga. Nd signatures for two of three

pegmatite samples are characterized by present-day eNd values from -27.9 to -16.5 and

eNd values at 1.9 Ga from -7.2 to -3.0. These data are consistent with derivation from the

Chipman mafic dikes or mafic gneisses, and are incompatible with generation by melting

of the Chipman tonalite (Figure 6C). Data for the third sample containing present-day

and 1.9 Ga ENd values of -47.1 and -13.4, respectively, are compatible with genesis from

the same source as the other pegmatite samples, but the more negative signature suggests

a contribution from a more evolved component such as the Chipman tonalite.

U-PB GEOCHRONOLOGY

Analytical Methods

Mineral separation was accomplished using standard crushing, water table, heavy

liquid, and magnetic separation techniques. Representative zircon grains from selected

samples were mounted in epoxy, polished to expose grain interiors, and characterized

with cathodoluminescence (CL) and/or backscattered-electron (BE) imaging to document

internal zoning (Figures 7 and 8). Zircon grains for analysis were either selected from

this suite of imaged grains, or hand-picked from the general population using the images

as a guide. Single grain zircon fractions were photographed, air-abraded with pyrite after

the method of Krogh (1982), measured, and rinsed and ultrasonicated in 3 M HNO3.

After initial analyses established greater discordance in higher U zircon, a subset of

grains were subjected to a version of the chemical abrasion technique (Mattinson, 2005),

in which zircon grains were placed in quartz crucibles in a muffle furnace at -900 C for

-60 hours, loaded into Teflon FEP microcapsules and leached in 29 M HF at -180 C for

12 hours or into savillex beakers and leached in 29 M HF at ~80 C for 21 hours, then

transferred to savillex beakers and prepared for dissolution according to standard

procedures. Zircon fractions dissolved early in the study were loaded with distilled

acetone into Teflson FEP microcapsules, ultrasonicated and fluxed at 80 C in 3 M

HNO3, and rinsed with several capsule volumes of 3 M HNO3. Zircon fractions dissolved
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later in the study were loaded into savillex beakers, ultrasonicated and fluxed at -80 °C in

3 M HNO3, rinsed in distilled acetone and high-purity water, and loaded into Teflon FEP

microcapsules in high-purity water with no subsequent rinsing in the capsules. Samples

were spiked with a mixed 205Pb-233 U-2 35U tracer, dissolved in 29 M HF at 220 C for 48-

96 hours, and converted to 6 M HCI at 180 C for 12-24 hours. Pb and U were

chemically separated using HCl anion exchange chemistry modified after Krogh (1973).

Pb and U were loaded on single Re filaments with a silica gel 0.1 M H3 PO4 emitter

solution and analyzed on the MIT VG Sector 54 mass spectrometer. Pb isotopic ratios

were measured either by peak jumping using an axial counting Daly detector, or

dynamically with Faraday cups and the Daly detector, peak-jumping 205Pb into the axial

position to obtain a real-time Faraday-Daly gain calibration. U was measured as an

oxide, typically in static mode on three Faraday cups, and less commonly by peak-

jumping into the Daly detector for smaller amounts of uranium. U-Pb data and details

regarding isotopic ratio corrections are provided in Table 1. Concordia diagrams for all

samples are shown in Figures 9 and 10. Data are reported as 2 07Pb/206Pb weighted mean

dates, except for samples for somewhat higher discordance for which a york fit upper

intercept date is reported. Decay constant and U-Pb tracer calibration uncertainties are

systematic errors not included in the cited dates, as these are unnecessary for comparison

of data acquired within a single lab. Systematic effects of decay constant inaccuracies

are minimized as a function of increasing age, and most 207Pb/206Pb dates in this study are

within error of concordia when decay constant uncertainties are considered.

Sample Selection

Five representative samples of migmatitic dikes were selected for U-Pb zircon

analysis to place precise constraints on the timing of granulite facies metamorphism and

anatexis (Figure 3). Due to field observations suggesting episodic dike migmatization

during sequential dike intrusion and metamorphism, rather than a single discrete period

of anatexis postdating emplacement of the swarm, samples across the corridor of

migmatitic dikes were targeted to test for spatial variability in the timing of dike

migmatization. Morphological and internal zoning characteristics of zircon extracted

from these samples, described further below, are consistent with metamorphic growth or
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crystallization in leucosomal melts (e.g. Corfu et al., 2003; Vavra et al., 1999). Although

non-migmatitic granulite and amphibolite dikes were also processed for accessory

minerals, no zircon was recovered. This supports the interpretation of zircon growth

owing to reactions associated with mafic dike anatexis, rather than due to igneous

crystallization during dike intrusion.

Late, biotite-bearing, cross-cutting and variably deformed pegmatitic segregations

and dikes intrude Chipman mafic dikes and other rocks of the Chipman domain. Two

pegmatitic veins and two pegmatitic dikes were selected for U-Pb zircon work to place a

lower bound on felsic magmatism and local deformational fabrics in the Chipman

domain. Three of four samples contained zircon characterized by high U contents (up to

1900 ppm), that decreased the probability of concordant analyses due to long-term

accumulation of radiation damage and associated Pb loss at low temperatures.

Analytical Results

Migmatitic Dikes

Sample SZ00-196C, containing cm-scale garnets with cm-scale leucosome tails,

was collected from a zone of exceptionally abundant migmatitic dikes at Woolhether

Lake. The distribution and petrographic setting of zircon in this sample was

characterized by collection of major element and Zr thin section maps with the electron

microprobe (Figure 7A). Dozens of ovate to spherical zircon, typically < 15 [tm up to 40

mm in diameter, occur as inclusions in amphibole in one of several settings: in amphibole

grains in the matrix, in amphibole inclusions in garnet, or associated with other inclusion

phases in amphibole such as titanite (Figure 7B,C). CL images commonly show distinct

internal and external zircon domains of contrasting luminescence. Rare, irregular < 30

tm zircon agglomerations were identified adjacent to garnet. Crushing procedures

extracted clear to light pink zircon that were large (up to 500 [tm) prismatic and tabular

or small (< 100 tm) spherical to ovate (Figure 7D). Analyzed zircon grains were U-poor,

with the lowest mean U concentrations in this study (<35 ppm), and low Th/U ratios

(0.01-0.03). Six single grain and one multi-grain zircon fractions yielded a weighted

mean 2° 7Pb/2 6Pb date of 1896.7 + 0.8 Ma (MSWD = 0.47).
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Sample 02-58 is a 3m wide dike from Chipman Lake that is migmatitic

throughout its entire width and contains mm-cm scale leucosome stringers with small

mm-scale garnets. Zircon grains are clear, spherical to ovate, typically < 100 [tm in

diameter, with low Th/U ratios (0.05-0.10). Six single grain zircon fractions yielded a

weighted mean 2 07Pb/206Pb date of 1896.0 _ 0.7 Ma (MSWD = 1.83), with a seventh older

analysis excluded.

Migmatitic dike sample 02-88, collected from Steinhauer Lake, contains coarse

cm-scale garnets and asymmetric leucosome tails. Leucosomes in this dike contain both

the earlier shallow northwest and the dominant northeast fabrics. Zircon grains are

typically 60-120 tm in diameter, are clear and ovate to spherical in morphology, and are

characterized by low Th/U ratios (0.01-0.08). Seven single grain zircon fractions yielded

a weighted mean 2 07Pb/ 2 06Pb date of of 1895.5 _ 0.5 Ma (MSWD = 0.39), with an eighth

younger analysis excluded.

Migmatitic dike sample 02-97 intrudes the Fehr granite east of Steinhauer Lake.

This sample contained a discrete leucocratic segregation connected to veins emanating

from cm-scale garnets and associated leucosome tails in the bulk of the dike (similar

relationships shown in Figure 4B). Zircon grains ranged from larger-sized (>150 rtm)

pink, prismatic, tabular to ovate crystals to smaller-sized (< 150 tm) clearer, facetted,

ovate to spherical crystals. Th/U ratios are low (0.01-0.02). Four single grain zircon

fractions yielded a weighted mean 2 07Pb/ 206Pb date of 1896.8 ± 0.5 (MSWD = 0.81).

Sample 03-52 is a somewhat atypical migmatitic dike, with remnant garnet-

clinopyroxene textures like that in the non-migmatitic granulite dikes. The dike is

deformed, ranges in width from 30 to 150 cm, and intrudes Chipman tonalite on southern

Chipman Lake. Zircon grains range from tabular and prismatic to facetted and spherical.

Grain size ranges up to 400 [tm in length for the tabular population, and is generally <

150 [tm for the spherical grains. CL images reveal internal irregular, sector-type

zonation, outer shells of concentric zoning, and mineral inclusions such as apatite and

quartz (Figure 8A). Fourteen of sixteen zircon fractions were imaged prior to analysis.

Zircon grains have U concentrations of 25-85 ppm, with low Th/U ratios from 0.02 to

0.08. Six zircon fractions yielded a weighted mean 2 07 Pb/206Pb date of 1896.3 _ 0.5 Ma

(MSWD = 0.45), consistent with the data from the other migmatitic dikes. However, ten
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additional single zircon grains and zircon fragments yielded a range of 207Pb/206Pb dates

from 1898.9 1.8 Ma to 2015.5+ 1.1 Ma. We interpret the scatter of dates along

discordant arrays trending toward older ages to indicate the presence of an older inherited

zircon component. A general correlation between Th/U ratio and zircon date is consistent

with the inherited zircon containing higher Th/U. Analyses of fragments from the same

zircon grain yield 1896 Ma and older dates (e.g. z9a and z9b dates of 1920.7 2.5 Ma

and 1896.1± 7.0 Ma, respectively, and zlla and zllb dates of 1922.0 1.1 Ma and

1896.4 ± 2.4 Ma, respectively), similarly consistent with the tainting of select fragments

by inheritance.

Pegmatitic Dikes and Segregations

Sample 01-SZ26 is an irregular pegmatite vein from Woolhether Lake that

intrudes Chipman tonalite adjacent to a migmatitic dike. Zircon grains from this sample

are large (up to 300 tm), pinkish brown, and high in U (up to 770 ppm), with Th/U ratios

from 0.06 to 0.1. The grains have good crystal faces, are tabular to round, and do not

luminesce in CL. BE images are relatively homogeneous, (Figure 8B) but reveal

extensive fracturing in most grains, common alteration along fractures, and the presence

of occasional xenocrystic cores. Six single grain zircon fractions have 2 07Pb/206Pb dates

from 1890.2 ± 0.8 to 1891.7 ± 0.8, with an additional analysis distinguishably younger at

1887.2 1.0 Ma. Up to 0.7% discordance, as well as high common Pb in several

analyses, is attributed to the somewhat metamict, fractured nature of the grains due to

high U content. Excluding the two youngest analyses, five zircon fractions yielded a

York fit upper intercept date of 1890.8 ± 1.4 Ma (MSWD = 0.55).

Sample SZ00-196A is a biotite-bearing pegmatite that cross-cuts an extensive

zone of migmatitic dikes at Woolhether Lake. The sample was collected from the same

outcrop as migmatitic dike sample SZ00-196C. Internally, the dike lacks a fabric, but is

broadly folded at the outcrop scale. Zircon grains are typically hundreds of microns in

diameter, pinkish-brown, prismatic, tabular to ovoid, and do not luminesce in CL. BE

images generally show little internal structure, except for occasional cores, and some

alteration along fractures (Figure 8C). Zircon grains contain the highest mean U contents

of the study (500 - 1900 ppm), and Th/U ratios of 0.07 to 0.11. High U concentrations,
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radiation damage, and associated low temperature Pb loss are likely responsible for the

0.7-2.0 % discordance of six fractions reported in Table 3, and the significantly greater

discordance in other fractions analyzed from this sample. 207 Pb/206Pb dates range from

1891.8 + 0.8 Ma to 1895.5 _ 0.8 Ma.

Sample 02-77B is an irregular 10-25 cm wide biotite-bearing pegmatitic vein that

intrudes a migmatitic dike at Steinhauer Lake. Zircon grains are typically 150-250 [tm in

length (up to 400 tm), pinkish-brown, prismatic, and tabular, with common inclusions,

and characterized by Th/U ratios of 0.01 to 0.04. High U contents (350-1500 ppm),

radiation damage, and inferred low temperature Pb loss in this sample, as in the two

previous pegmatite samples, contributed to significant discordance in most analyzed

grains, such that only the four most concordant analyses of fifteen analyzed grains are

reported in Table 3. Targeting of smaller-sized grains for analysis improved zircon

concordance. The upper intercept date of a York fit through these four zircon analyses is

1893.4 ± 0.9 Ma (MSWD = 0.94).

Sample 02-76B is a 40-50 cm wide biotite-bearing pegmatite dike that cross-cuts

a deformed granulite facies non-migmatitic dike at Chipman Lake. Zircon grains are up

to 500 [tm in length, brown, prismatic, and either tabular or ovoid in morphology. U

concentrations and Th/U ratios in analyzed zircon grains range from 15 to 85 ppm, and

0.24 to 0.40, respectively. CL images show irregular zoning in both tabular and ovoid

zircon crystals (Figure 8D), with occasional xenocrystic cores. Four of six fractions of

single zircon fragments yielded a weighted mean 207 Pb/206Pb date of 1890.5 _ 0.4 Ma

(MSWD = 0.04).

DISCUSSION

Implications for the Evolution of the 1.9 Ga Deep Crustal Thermal Regime

Intensity of HP Granulite Facies Metamorphism

Chipman dike thermobarometric data, metamorphic assemblages in existing mafic

lithologies, and the extent of melting in host felsic gneisses allow us to evaluate the

intensity of temperatures associated with Chipman dike HP metamorphism. Migmatitic

and non-migmatitic dikes record conditions of 750-850 °C, 1.0-1.2 GPa (Williams et al.,

1995), and are considered minimum temperature estimates because of evidence for
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diffusional reequilbration of phases. This is compatible with a variety of experimental

studies demonstrating that vapor-absent melting of mafic rocks at 1.0-1.2 GPa can occur

at temperatures of 850-1000 °C (e.g. Rapp et al., 1991; Rushmer, 1991; Patino Douce and

Beard, 1995; Rapp and Watson, 1995; Springer and Seck, 1997), and possibly as low as

750 C (Wolf and Wyllie 1993, 1994, 1995). Coeval conditions of >750 °C, 1.0-1.2 GPa

preserved in Archean mafic granulite gneisses not immediately adjacent to dikes

(Flowers, Chapter 1; Mahan et al., 2005) are consistent with the attainment of high

temperatures across the Chipman domain, even outside the corridor where the most

abundant Chipman dikes are exposed.

Despite similar P-T constraints for dikes across the swarm, only a subset

underwent anatexis. Our field and geochemical data suggest that composition may be an

important factor for this process. Internal dike-parallel banding of migmatitic and non-

migmatitic textures within a single dike is consistent with successive intrusion of

compositionally varying magma batches that may have controlled dike reaction history.

Geochemical data suggest that typical migmatitic dikes are characterized by higher SiO2,

HFSEs and REEs, and lower MgO and A1203 than typical non-migmatitic dikes. These

dike compositional variations cannot be simply explained by inappropriate integration of

melanosomal and leucosomal fractions during sampling of migmatitic dikes (for

example, SiO2 and A1203 are not positively correlated). The inverse correlation between

eNd and SiO2 for migmatitic dikes suggests that assimilation of older crustal material may

have increased the SiO2 content of some dike magma batches, and thus made these dikes

more susceptible to subsequent migmatization. Williams et al. (1995) previously

suggested that the generally higher SiO2 contents of migmatitic relative to non-migmatitic

Chipman dikes may have played a role in controlling dike reaction history. Similarly, the

abundance of quartz has been interpreted as the primary control on reaction progress in

migmatitic mafic granulite gneisses of the Kapuskasing Structural Zone, with

compositional variation in Fe exerting a secondary influence (Hartel and Pattison, 1996).

Limited anatexis of host felsic gneisses during subjection to this intense

metamorphic event suggests that the rocks were vapor absent prior to dike

metamorphism. This represents an endmember response of the crust to granulite facies

conditions. At pressures of 1.0-1.5 GPa, water-saturated tonalite melting occurs at
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relatively low temperatures of 625-650 C (e.g. Lambert and Wyllie, 1974; Schmidt,

1993), but the vapor absent tonalite solidus is defined by biotite and/or hornblende

dehydration melting at minimum temperatures of 855-900 C (Skjerlie and Johnston,

1993, 1996; Patino-Douce, 2005). Compositional effects such as low Ca in the bulk

tonalite or high Ti and F in biotite can extend the stability of hornblende and biotite to

even higher temperatures (Skjerlie and Johnston, 1993, 1996). At 1.0-1.5 Gpa pressures,

biotite dehydration occurs at lower temperatures than amphibole dehydration, consistent

with the observation of more abundant melts in the biotite-bearing Fehr granite than in

the hornblende-bearing Chipman tonalite. We attribute the absence of free water in the

felsic host gneisses to an Archean metamorphic event that left the Chipman domain rocks

resistant to melting during subsequent Proterozoic metamorphism (Flowers, Chapter 1;

Mahan et al., 2005).

We suggest that the entire Chipman domain was temporarily elevated to

temperatures 750 C during Chipman dike intrusion and metamorphism. Spatial

heterogeneity in patterns of mafic dike and tonalitic gneiss anatexis can be attributed to

lateral peak temperature and geochemical variability. The attainment of the hottest

temperatures that exceeded the dry amphibolite and tonalite solidi may in part be locally

linked to successive intrusion and crystallization of dike magmas (e.g. Petford and

Gallager, 2001). The susceptibility of both mafic dikes and heterogeneous felsic gneisses

to anatexis, as discussed above, is also compositionally dependent. Thus, the complex

interaction of thermal and compositional factors likely controlled melting of rocks in the

Chipman domain during 1.9 Ga HP granulite facies metamorphism.

Constraints on the Timing and Duration of Metamorphism

Metamorphic zircon grains in Chipman migmatitic mafic dikes permit precise

dating of anatexis during 1.9 Ga HP granulite facies conditions. Field relationships,

discussed previously, are most simply explained by synmetamorphic and syntectonic

emplacement of the Chipman dikes, with episodic or continuous migmatization of dikes

during intrusion (Williams et al., 1995). This suggests that dates for dike anatexis also

constrain the timing of dike intrusion. The possibility that some dikes were emplaced at

an earlier time cannot be entirely excluded, although broadly similar dike geochemistry
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patterns are consistent with mafic magma derivation from a single source region. Four

migmatitic dikes distributed across the corridor of dike anatexis yield indistinguishable

weighted mean 2 07Pb/206Pb dates from 1896.7 + 0.8 Ma to 1895.5 + 0.5 Ma. A fifth

migmatitic sample contains a population of 1896.3 0.5 Ma zircon crystals, with

additional grains characterized by minor inheritance. These data suggest that the time

span for dike migmatization at exposed crustal levels was < 2.5 m.y., established by the

errors on the range of sample zircon dates. It is unclear whether the onset of high-grade

conditions in the Chipman domain coincided with dike emplacement, or commenced at

an earlier time. Regardless, we consider the weighted mean 207Pb/ 206Pb date of 1896.2 +

0.3 Ma (MSWD = 2.0) for thirty zircon analyses from the five migmatitic Chipman dike

samples as the best temporal constraint on emplacement, HP granulite facies

metamorphism (>750 C, 1.0-1.2 GPa), and anatexis of the Chipman dikes.

U-Pb titanite data support the continued elevation of temperatures > 600-650 °C

following anatexis of currently exposed Chipman mafic dikes. Titanite grains from six

samples distributed across the Chipman domain yielded dates from 1898 to 1882 Ma

(Flowers, Chapter 3). This implies either that temperatures 600-650 C were

heterogeneously maintained for 14 m.y. following of Chipman dike anatexis, or that parts

of the domain were reheated following immediate post-1896 Ma cooling. These data

suggest the ongoing persistence of a heat source following mafic dike intrusion and

anatexis.

U-Pb zircon and Sm-Nd whole rock data for pegmatites similarly imply

protracted maintenance of high temperatures at deeper crustal levels following anatexis

of currently exposed dikes. Four cross-cutting pegmatitic veins and segregations yielded

U-Pb dates from 1893.4 + 0.9 Ma to 1890.8 ±+ 1.4 Ma, distinctly postdate the timing of

1896.2 + 0.3 Ma migmatization of exposed dikes, and impose a lower bound for major

magmatism and deformation in Chipman domain exposures. The Nd isotopic signatures

of two pegmatite samples are characterized by eNd values at 1.9 Ga from -7.2 to -3.0.

Comparison with the Nd isotopic signatures of the Chipman tonalite, the mafic granulite

gneisses, and the Chipman mafic dikes indicates that the pegmatite data are consistent

with derivation from either the mafic gneisses or mafic dikes by amphibolite anatexis.

Data for a third pegmatite sample suggest a similar genesis, but with a greater
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contribution from a more evolved component like the Chipman tonalite. Pegmatite

generation from mafic lithologies by amphibolite anatexis requires temperature >750 °C,

which we interpret to signify the ongoing occurrence of granulite facies conditions at

deeper crustal levels. Pegmatite emplacement in cross-cutting geometries from 1894 to

1891 Ma thus reflects intrusion into a cooler thermal regime at the shallower currently

exposed levels, postdating earlier 1896 Ma higher temperature anatexis of Chipman

mafic dikes at this depth. High temperature cooling from 1896 Ma to 1894-1891 Ma at

the current level of exposure may be due to a degree of unroofing associated with

extension during mafic dike emplacement, or initial decay of the thermal event.

However, as noted above, the titanite data constrain temperatures > 600-650 °C in

portions of the domain through 1882 Ma. Together, these constraints on the evolution of

the thermal regime suggest a somewhat protracted (14 m.y.) metamorphic event

following attainment of peak conditions.

Implications for Lithospheric Reactivation and Mantle Dynamics

Correlation of Mafic Magmatism

Our finding of the 1896 Ma timing for intrusion and metamorphism of the

Chipman mafic dike swarm documents a major episode of Proterozoic mafic magmatism

along the central Snowbird tectonic zone. We suggest that the Chipman dikes can be

correlated with mafic dikes for a minimum strike-length of 800 km along the Snowbird

zone, establishing the Chipman dikes as a substantial mafic dike swarm of regional

significance. The Virgin River dikes are along-strike upper amphibolite facies mafic

dikes exposed 400 km southwest of the Chipman dikes, are truncated on their eastern side

by the Virgin River shear zone, and have previously been correlated with the Chipman

dikes and Legs Lake shear zone (Figure 1) (Card, 2002; Mahan et al., 2003). Further

northeast in the Selwyn lozenge, 1.1 GPa, 800 °C granulite facies mafic dikes intrude

rocks similar to the Chipman tonalite and are similarly truncated on their eastern side

with a thrust sense shear zone considered the continuation of the Legs Lake shear zone

(Mahan and Williams, 2005). In addition, the NE striking Kazan dikes 400 km northeast

of the East Athabasca region contain remnant garnet and clinopyroxene, have yielded

bulk K-Ar dates of 1900 Ma, and intrude a 25-30 km wide zone along the Tulemalu fault
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zone (Fahrig et al., 1984) that has been correlated with the Virgin River and Legs

Lake/Black Lake shear zones (Tella and Eade, 1986). The similar relationships,

kinematics, location and apparent timing of mafic dikes and shear zone for 800 km along

strike provide strong evidence for a genetic link among these exposures.

Intrusion of the extensive Chipman mafic dike swarm was almost precisely

coincident with major mafic magmatism along the northern Snowbird tectonic zone, 600-

800 km northeast of the East Lake Athabasca area. The 850 km 2 Kramanituar complex is

dominated by granulite facies metagabbro, norite and anorthosite that was intruded at

1902 +1.6 Ma, with subsequent cooling through the 400-450 C closure temperature of

rutile at ca. 1901 Ma (Sanborn-Barrie et al., 2001). Mafic granulite dikes in the Uvauk

mafic complex are inferred to have a similar origin and age as mafic granulites in the

Kramanituar complex (Mills et al., 2000). The 2500 km2 Daly Bay complex is an

extensive body of mafic to anorthositic rocks, tonalite and paragneiss with preliminary

1.9 Ga zircon dates (Hanmer and Williams, 2001; Williams personal communication or

W. Davis, unpublished data?). In addition, the southern subsurface extension of the

Snowbird tectonic zone has been inferred to record the opening and closure of a marginal

Proterozoic ocean basin (Ross et al., 1995, 2000). Ocean basin development is

tectonically compatible with coeval along-strike mafic magmatism. These data indicate

widespread distribution of 1.9 Ga mafic magmatism for > 1200 km of the Snowbird

tectonic zone, and potential links to the south that would extend the correlation along the

entire 2800 km length of the feature.

Geochemical patterns and isotopic signatures of the Chipman dikes are consistent

with derivation from a predominantly depleted mantle source with contribution from a

component enriched by subduction related processes. HFSE depletions and LILE

enrichments are characteristic of arc magmas, and could reflect crustal contamination by

extensive 2.6 Ga plutonic rocks across the region or derivation from lithospheric mantle

previously affected by the 2.6 Ga granite generation processes. Chipman dike eNd values

at 1.9 Ga range from -9.1 to +2.2, but exclusion of dikes with higher SiO, content that

may have been influenced by crustal assimilation yields more restricted values from -2.1

to +2.2. For comparison, ca. 1.83 Ga ultrapotassic rocks of the Christopher Island

Formation, intruded across a large area in the northern part of the western Churchill
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Province, are characterized by arc-like trace element patterns and eNd values at 1830 Ma

from -10.5 to -6, and have been interpreted to represent derivation from an extensive

enriched reservoir isolated since an Archean metasomatic subduction-related event

(Cousens et al., 2001). The ca. 2.45 Ga Kaminak dikes, ca. 2.19 Ga Tulemalu dikes, and

ca. 2.2 Ga basaltic flows of the western Churchill Province have similarly been inferred

to contain a contribution from an enriched component (Cousens et al., 2001; Sandeman et

al., 2003). Chipman dike patterns are also compatible with a minor enriched component,

although the data do not require contribution from an enriched reservoir isolated since 2.6

Ga.

Asthenospheric Upwelling and Lithospheric Reactivation

In the East Lake Athabasca area, evidence for a prolonged period of lithospheric

stability preceding 1.9 Ga activity attests to the significance of the Proterozoic event.

Archean deep crustal granulite facies metamorphism at ca. 2.55 Ga has been interpreted

in the Chipman, northwestern, and southern domains (Flowers, Chapter 1; Mahan et al.,

2005; Baldwin et al., 2004; Williams et al., 2000), with subsequent deep crustal 1.9 Ga

metamorphism implying an intervening period of deep crustal residence and lithospheric

stability. An episode of Archean metamorphism is entirely consistent with the

dehydrated nature of Chipman domain lithologies, and their resistance to melting and

deformation, when subjected to high temperatures in the Proterozoic. The disruption of a

stable Archean craton at 1.9 Ga demands a fundamentally important lithospheric

reactivation event.

The widespread, synchronous 1.9 Ga mafic magmatism along a feature spanning

thousands of kilometers of the western Canadian Shield provides a robust basis for

interpreting a continental-scale 1.9 Ga episode of asthenospheric upwelling that reflects

significant mass and thermal input to the crust. The ca. 1.9 Ga activity along the

Snowbird tectonic zone is spatially and temporally bounded by the 1.91-2.02 Ga Taltson-

Thelon orogen to the northwest and the 1.81-1.91 Ga Trans-Hudson orogen to the

southeast during final amalgamation of the western Canadian Shield. These two major,

inward-dipping collision zones would have dramatically impacted the intervening

Churchill Province lithosphere. Models to accommodate the observed distribution of
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mafic magmatism include extension induced by a central zone of asthenospheric

upwelling and lithospheric thinning as a convective response to the lateral downgoing

slabs, or hinterland transtension due to a strike-slip dominated regime initially driven by

Slave collision in a manner analogous to Himalayan hinterland activity. Temporal

constraints are consistent with the onset of Proterozoic marginal basin opening along the

southern Snowbird zone (Ross et al. 1995, 2000) with subsequent northward propagation

of magmatism and tectonic activity at 1896-1900 Ma along the central and northern

segments. The initiation of major Tran-Hudson orogenic activity to the east is speculated

to have driven a transition to hinterland contraction, induced basin closure and associated

development of the 1856-1798 Ma Rimbey magmatic arc along the southern segment of

the Snowbird tectonic zone (Ross et al. 1995, 2000), and terminated mafic magmatism

and the onset of basin development along the central and northern segments. These

events ultimately culminated in the exhumation of deep crustal rocks across the East

Lake Athabasca region. It is clear that the assembly of Laurentia constituted a major

period of 1.9 Ga lithospheric disruption of the western Churchill Province. Our data

suggest that a continent-wide episode of asthenospheric upwelling is an integral

component of this history, and must be incorporated into comprehensive models for the

unusual history of lithospheric reactivation and exhumation preserved in this region.

CONCLUSIONS

The Chipman domain of the East Lake Athabasca area in northern Saskatchewan

preserves a spectacular record of 1.9 Ga deep crustal mafic magmatism, silicic melt

generation and segregation during mafic dike intrusion, deformation, and HP granulite

facies metamorphism. Data indicate dike anatexis at 1896.2 + 0.3 Ma during conditions

of 1.0-1.2 GPa, > 750 C, with subsequent protracted maintenance of high temperatures

for several million years. Little melting of felsic host rocks during intense temperatures

at 1.9 Ga is consistent with dehydration of deep crustal rocks during Archean

metamorphism that left these rocks resistant to subsequent anatexis and deformation.

This explains the cryptic expression of the 1.9 Ga event, and reflects an endmember

response of the deep crust to mafic magmatism and high temperature metamorphism.

The Chipman dikes in the East Lake Athabasca region can be correlated with similar
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mafic magmatism spanning thousands of kilometers of the western Canadian Shield,

indicating regional asthenospheric upwelling along the Snowbird tectonic zone that must

be incorporated into models for the evolution of the western Churchill Province. This

intense episode of cratonic lithosphere destabilization differs from the stable nature of

most preserved cratons following their initial assembly, and provides a unique

perspective on crust-mantle coupling and the evolution of continents.
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FIGURE CAPTIONS

Figure 1. Geological map of the western Canadian Shield showing major tectonic

features. AB-Athabasca basin, BL-Baker Lake basin, DX- Daly Bay Complex, KX-

Kramanituar Complex, STZ-Snowbird tectonic zone, TB-Thelon Basin, TFZ-Tulemalu

Fault Zone, THO-Trans-Hudson Orogen, TO-Taltson Orogen, TMZ-Thelon Magmatic

Zone, UX-Uvauk Complex, VR-Virgin River shear zone. The rectangle shows the East

Lake Athabasca region enlarged in Figure 2.

Figure 2. Geological map of the East Lake Athabasca region, northern Saskatchewan.

The box outline shows the location of the study area enlarged in Figure 3.

Figure 3. Geological map of the Chipman domain with sample locations.

Figure 4. Example Chipman mafic dike relationships and textures. A) Large cm-scale

garnets with associated leucosome tails. B) Leucocratic segregation, 3-12 cm wide. C)

Several cm wide Grt+Cpx clumps in a Hb+Pl matrix. D) Boudins of a migmatitic

granulite dike. E) Granulite dike, -1 m wide, discordantly cutting heterogeneous

Chipman gneisses. F) Pegmatite intruding mafic dike. G) Inferred 1.9 Ga melt in Fehr

granite.

Figure 5. Major and trace element compositions of Chipman mafic dikes. A) Plots of

MgO (weight %) vs. A12 03 (weight %), SiO2 (weight %), and Ta (ppm). B) Spider

diagram for Chipman mafic dike samples. C) REE diagram for Chipman mafic dike

samples. Chrondrite values for both spider and REE diagrams from Sun and McDonough

(1989).

Figure 6. A) Nd isotope evolution diagram for Chipman mafic dike samples corrected to

1.9 Ga. B) Plot of ENd at 1.9 Ga vs. SiO2 for Chipman mafic dikes. The inverse

correlation between ENd and SiO2 for dikes with higher SiO2 content suggests the influence

of crustal assimilation on this subset of dikes. C) Nd isotope evolution diagram for

Chipman mafic dikes corrected to 1.9 Ga, for pegmatite dikes corrected to 1.9 Ga, for
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mafic granulite gneisses corrected to 2.6 Ga, and for Chipman tonalitic gneisses corrected

to 3.0 Ga. D) Plot of ENd at 2.6 Ga vs. SiO2 for mafic granulite gneisses.

Figure 7. A) Mg map of thin section from SZ00-196C. Brighter colors represent higher

Mg concentrations. Yellow is primarily hornblende, red is garnet, and black is quartz and

feldspar. Blue circles represent locations of zircon grains. B) Backscatter image

showing petrographic setting of zircon associated with titanite and hornblende. Insets are

CL images of zircon grains with scale bars of 20 microns. C) Backscatter image showing

petrographic setting of zircon grains included in hornblende. Insets are CL images of

zircon grains with scale bars of 10 microns. D) CL images of larger zircon crystals that

were physically separated from this sample.

Figure 8. A) CL images of 03-52 zircon grains that were subsequently analyzed. Lines

delineate where the zircon were broken into fragments prior to analysis. B) and C) are BE

images of example 01-SZ76 and SZ00-196A zircon, respectively. D) CL images of 02-

76B zircon that were subsequently analyzed. Again, lines delineate where the grains

were broken into fragments.

Figure 9. Concordia diagrams for migmatitic dikes.

Figure 10. Concordia diagrams for pegmatitic dikes and segregations.
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Table I Malor and trace element data bor Chipman mafic dikes
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Table I continued)
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0 19 ( 1o
I 6 ( 66
1 O 0 0 I 0I

0 (O0 0 ()(

01.0(i ( 14
(.0) 5 47
1,) 40 38

1.13 ( 17

(0 (44
(O 580
0 157
(0.174
(}036

0 1(1)8

( 1 I

0) (1 I
0 68(
0 (96
1) 167

0 01)4 

0 004
((01

l.21 ( 25 (19 ( 18
).5 0 55 0 64 0 (172
0.23 ( 2 0 17 0 10
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Chapter 2 - Timescales of High-P Metamorphism and Anatexis

Iable 2. Sm-Nd isotopic data tbr Chipman matic dikes
Sample [Sm' INd'lt 14

7Sm/144Nd

Chinnian malic dikes, 1.9 (a
(Granulite dikes with leucosomes

02-125 5.65 21.02

02-58 8.19 33.11
99B- 15 4.98 20(.65

Gr-amlite dikes with no l'uecosomnes
02-112 1.45 3.79

SZO/0-182A 4.91 20.26
SZ00-182B 3.76 15.89
SZ/00-1961) 3.77 14.59
02-171C 3.41 13.07

S/Z00-20 A 2.95 10.81
(iranulite dikes with possible leucosomes
02-17111 3.)02 11.19
SZOO-1I86A 3.38 10.83

AImphiholile dikes
01 M 123C
(02-1 201
02-12313

3.59 14.05

5.75 19.51
1.49 16.14

.1624
(0. 1 495
0.1459

0.2315
(0.14644
O. 143(

0.1561
O.15801

(0.1648

0.1629
0. 1889

0.1544
0.1782
0.1681

0.511 840 3
0.51 1843 3
0.511812 3

0.513183 4

0.511915 4
0.511863 4
0.512051 3
0.511737 3
(.511776 3

-15.56

-1 5.51
-16.11

10.64

-14.11
-15.13

-11.45
-17.57

-16.82

t Nd ' NdI:,) k1R 61

-7.23

-4.02
-3.75

2.16
-1.86
-2.04
-1I,55
-8.17

-9.08

0(.511881 - 3 -14.77 -6.55
(.512477 2 -3.15 - 1.24

0.512032 3
0.512368 3
0.512322 = 2

-11.81
-5.27
-6.16

-1.50

-0.76
0.83

I'/lenocri stic or 1l'ric lagiochJtse rich dikes
SZ0-20()A 1.38 4.72
(2-172 0.68 2.50

Pe1atites. 1.9 Ga
(02-7611

(02-7713
03-126

0.1764

0.1637

2.11 21.8 0.05842
1.03 5.56 (.11185
(0.0(9 0.38 (0.14129

0.51 349 7 -5.64 -0.7)
0.512116 5 -10.18 -2.14

0.5 10226 - 3

0.5 1021 (± + 4
(0.5 11795 33

-47.05
-27.85

-16.45

-13.39

-7.19
-_? ()

3.56 3.73

2.58 2.89
2.49 2.80

2.39

2.20
2.21

2.21
3.56

4.13

0.27

2.58
2.56

2.65
3.72

4.20(

3.42 3.63
3.14 3.82

2.19 2.62
2.23 2.98

1.69 2.42

2.18 2.91
2.42 2.87

2.67 2.78
2.57 2.77

2.33 2.65
Ch'ipan tondite. 3.0 (Ga

S/(00-186C 4.24 29.31 0
SZ0)0-193A 3.95 2().18 I 
S/0()0-205A 9.01)2 54.11 (I
SZO-20813 7.71 46.73 0

Matic (il+- ('x-px+Opx P11) ranulites. 2.6 (Ga
BF03-63 2.95 11 .89 0
1:(03-88A 2. 54 7.94 (

13BF03-159A 1.64 6.63 0.
13103-1681[ 2.53 11.67 ()
B!03-228A 0.94 2.36 0

Mwafic ()px+ P1) granli1ies. 2.6 Ga
13103-92B 3.6 14.78 (1
IF3103-125A 0.91 3.68 )

B I:03-I58\ 1.54 6.57 ()
1103-189A 2.0(4 7.97 (

.08739
.1 1833
.1(082
.09973

.14988

.19324

.14912

.13(096

.24094

.14724

.15(009
.14202

).5 I 45

0.5 10297 3
(0.5 10843 = 4
(0.510622 = 3
(0.51607 - 8

0.511770 3
)0.512592 3
(0.511451 4

0.511410± 3
0.513535 4

(0.511538 3
().511823 4

(0.511383 5
0.511724 . 3

-45.66
-35.02
-39.33
-39.62

-16.94
-(,90

-23.16

-23.96
17.5

-21.45

-15.9
-24.48

-17.84

-3.44
-4.77
-2.29

-2.16

-1.28

(1.69
-7.29

-1I .98
2.72

-4.94
-().31 I

-6.23
-3.74

3.27
3.50

3.21
3.20(

2.84

2 (3
3.82
2.86
3.10(

3.401
2.67
3.51

3.31

3.36
3.59
3.32
3.31

3.1(1
3.75
3.91

3.115
2.70

3.55
2.97
3.63
3.51

B3F03-217A 3.04 14.06 (0.13093 0.511480 4 -22.6 -0.6 2.69 2.91
'Concentrations in ppm. as determined by isotope dilution

Sn and Nd xere firactionation corrected xith an exponental la. nornmalizing to 'Sm' 4 7Sm - 1.783 and
'"Ndil''Nd = (.7219. respectively. Internal errors in measured 1I7Sm/lI "Ndlare -cO. .1% (2s s.d.)
: Measured 4-Nd' 44Nd \, ith internal en-or (2o s.c.)
Initial Nd calculated at 1.9 (ia tor C'hipman dikes and pcgmatitcs, at 3.0 (a tIr Chipman tonalite. and at 2.6 G(a for

malic granulite gneisses
t i: (ia) calculated "with ( ''Sm/' 'Nd) ,t, = 0. 1967 and ( 'Nd 'Nd) = 0(). 512638
tin: ((Ja) -( li,,.)*l(( 14* LNdiUNd),,,, - (1'-1Nd,44Nd)[)/(1 (' 47Snl''44Nd}. (t4 7SI1/ 44Nd)) ))- I 1:

present day (lI 'Nd N),) = ).51315 . ( 7Smf'"Nd),n l = 0.2137
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Temporal constraints on multistage exhumation and
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Chapter 3 - Temporal Constraints on Multistage Exhumation

ABSTRACT

New U-Pb (titanite, apatite, rutile) and 40Ar/39Ar (hornblende, muscovite, biotite)

data are linked with existing pressure-temperature-deformation paths to impose detailed

temporal constraints on the juxtaposition and exhumation of deep crustal domains in the

East Lake Athabasca region. In the - 200 m.y. between ca. 1.9 Ga high-pressure

granulite facies metamorphism of the rocks while in the deep crust, and ca. 1.7 Ga

unconformable deposition of Athabasca basin sediments on the exhumed rocks, our

analysis reveals at least three distinct phases of unroofing at diverse rates separated by

two intervals of crustal residence at different depths. Specifically, we distinguish 1) an

early phase of extensional unroofing in the Chipman domain at rates of 1.5-2.0 km/m.y.

from 1.0-1.2 GPa to 0.7-0.8 GPa associated with mafic magmatism and metamorphism,

2) an episode of regional contractional uplift along the Legs Lake shear zone at ca. 1850

Ma from 0.7-0.8 GPa to 0.4-0.5 GPa, and 3) a final period of extensional unroofing at

rates of 0.2-0.3 km/m.y. from 0.4-0.5 GPa that culminated in transport of current

exposures to near-surface conditions. The cooling patterns and retrograde assemblages

are consistent with pauses in unroofing during 1) residence of several deep crustal

domains at 25 km crustal depth for 20-30 m.y., and 2) storage of domains across the

East Lake Athabasca region at 15 km crustal depth for 70-100 m.y. The apparent

convergence of disparate higher temperature thermal histories in several deep crustal

domains at ca. 1.89-1.88 Ga implies their juxtaposition at 0.7-0.8 GPa conditions.

Regional east-directed thrusting of the deep crustal domains as a coherent unit at 1.85 Ga

juxtaposed the granulites with middle crustal Hearne domain rocks at 0.4-0.5 GPa

conditions. The detailed timing constraints on the exhumational history allow correlation

with changing regional tectonic regimes associated with the amalgamation of Laurentia.

The temporal and spatial heterogeneity of exhumation patterns in the East Lake

Athabasca region may be a common feature of the unroofing histories of lower crustal

rocks.
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INTRODUCTION

Rare exposures of lower continental crust offer the best opportunity to directly

examine the character and in situ relationships of this generally inaccessible level of

orogenic systems. As a consequence, these exposures exert a tremendous influence on

our understanding of lower crustal processes. Constraining the mechanisms that exhume

deep crust is crucial to assess the significance and representativeness of these terranes.

For example, a domainal architecture is a central feature of some exhumed portions of

lower crust, and it is important to distinguish how much of this segmentation was

acquired during exhumation via the juxtaposition of highly disparate crustal blocks,

versus the degree to which this heterogeneity represents a primary feature of the lower

crust since its earliest stages of evolution. Determining the extent of modification during

transport of these rocks from the base of the Earth's crust to the surface necessitates a

more complete understanding of the processes responsible for deep crustal exhumation.

The reconstruction of detailed pressure-temperature-deformation (P-T-D) paths,

in conjunction with high-resolution timing constraints on unroofing histories, is required

to effectively evaluate viable deep crustal exhumation models. Integration of U-Pb,
4°Ar/ 39Ar and (U-Th)/He thermochronometry allows comprehensive reconstruction of

deep crustal cooling histories from peak metamorphic conditions through exhumation to

the Earth's surface. Linkage of these temperature-time (T-t) paths with P-T-D histories

can place robust constraints on the tempo, duration and rates of unroofing. The

convergence of disparate thermal histories in different domains also offers information

regarding the timing of juxtaposition of exhumed deep crustal blocks.

Vast (>20,000 k 2) tracts of high-pressure (HP) granulites are exposed in the

vicinity of the East Lake Athabasca region, along the Snowbird tectonic zone in the

western Canadian Shield. This region is characterized by a segmented architecture, with

subdivision into distinct lithotectonic domains. Importantly, these HP granulites are

interpreted to have resided in the deep crust for a significant portion of their history

(Williams et al., 2000; Flowers, Chapter 1), rather than forming in a brief tectonic

thickening event as commonly inferred for high- and ultrahigh-pressure granulites

characterized by isothermal decompression histories (O'Brien and Rotzler, 2003).

Unraveling the exhumational overprint on these rocks is of central importance for
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deciphering the domainal relationships and the processes operative during their evolution

in the deep crust. Existing kinematic data for bounding structures, geochronological

information on the timing of shear zone activity, and domainal thermobarometric data

constrain a multistage history of unroofing involving regional contractional uplift,

temporary residence in the middle crust, and final extensional unroofing (Mahan et al.,

2003). This information provides an exceptional opportunity to use thermochronological

data to place existing P-T-D paths within a high-resolution temporal framework. Such

information can impose important constraints on two outstanding questions in this region

regarding 1) the tempo and rates of the punctuated unroofing history, and 2) the timing of

domain juxtaposition relative to regional exhumation. We exploit the full temperature

range permitted by the U-Pb (zircon, titanite, apatite, rutile) and 40Ar/39Ar (hornblende,

muscovite, biotite) isotopic systems, combined with (U-Th)/He zircon and apatite data

(Flowers, Chapter 4), to constrain the temporal and spatial heterogeneity of exhumation

patterns across the East Lake Athabasca region. These results have broader implications

for multistage unroofing histories in exhumed deep crustal terranes and for the

architecture and heterogeneity of the lower continental crust.

GEOLOGICAL SETTING

The Snowbird tectonic zone coincides with a prominent, 2800 km long, northeast

striking magnetic and gravity anomaly in the western Canadian Shield (Figure 1). This

feature delineates the boundary between the Rae and Hearne cratons of the western

Churchill Province. The western Churchill Province was the upper plate between the

bounding Taltson-Thelon and Trans-Hudson orogenic belts, zones of major Proterozoic

orogenesis along the Slave-Rae and Superior-Hearne sutures, during the assembly of

Laurentia. The history of the Snowbird tectonic zone has long been controversial, owing

to a complex history including both Archean and Proterozoic tectonism. This structure

has alternatively been interpreted as a Paleoproterozoic intercontinental suture (Hoffman,

1988) and as an Archean intracontinental shear zone that was reactivated in the

Paleoproterozoic (Hanmer, 1997).

The East Lake Athabasca region contains extensive tracts (>20,000 km2) of HP

granulites (1.0 to > 1.5 GPa) exposed along the central Snowbird tectonic zone and in the
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adjacent Rae crustal province. A fundamental characteristic of this region is its

segmented architecture, with discrete structurally bounded lithotectonic domains that

preserve distinct P-T-D histories (Figure 2). Three HP granulite domains of the East

Lake Athabasca mylonite triangle are interpreted to represent part of an isobarically

cooled deep crustal terrane that resided in the deep crust for hundreds of millions of years

(Williams and Hanmer, 2005). The Chipman domain preserves a spectacular 1.9 Ga

mafic dike swarm that intruded heterogeneous Chipman tonalite gneisses at conditions of

1.0-1.2 GPa, 750-850 C (Williams et al., 1995; Flowers, Chapter 2). The northwestern

domain is dominated by mafic and felsic plutonic rocks intruded and metamorphosed at

conditions of 10 GPa, -800 C (Williams et al., 2000). The southern domain contains

mafic and felsic granulites with minor eclogite, that record peak metamorphic conditions

_. 1.5 GPa, 800-1000 C (Snoeyenbos et al., 1995; Baldwin et al., 2003) interpreted to

have occurred at 1.9 Ga (Baldwin et al., 2004). To the west, rocks of the Rae domain

preserve granulite facies conditions of 0.8-1.0 GPa, 900°C at 1.9 Ga (Kopf, 1999;

Krikorian, 2002). The Hearne domain to the east records lower pressure, amphibolite

facies conditions of 0.4-0.5 GPa, 600-700 C (Mahan et al., 2003). Sediments of the

Athabasca basin unconformably overlie the region to the south.

Exhumation of the East Lake Athabasca region is temporally bracketed by 1.9 Ga

metamorphism of the deep crustal domains (Flowers, Chapter 2; Baldwin et al., 2004),

and ca. 1.7-1.65 Ga deposition of the overlying Athabasca basin (Rayner et al., 2003;

Cummings et al., 1987). This imposes -200 m.y. interval for unroofing of the HP

granulites. Exhumation of deep crustal rocks in the East Lake Athabasca region was a

multistage process, in part driven by uplift along the Legs Lake shear zone. This

structure, constituting part of a -500 km long contractional fault system, accommodated

> 20 km of vertical displacement and juxtaposed > 1.0 GPa rocks with the shallower

Hearne domain (Mahan et al., 2003). Synkinematic monazite growth in the Legs Lake

shear zone suggests deformation associated with regional exhumation beginning by ca.

1.85 Ga, and retrograde 0.4-0.5 GPa cordierite assemblages in the Chipman domain have

been dated at ca. 1.85 Ga by electron microprobe monazite data (Mahan, 2005).

Subsequent ca. 1.8 Ga dextral displacement along the N-NE trending Grease River shear

zone disrupted the region (Mahan and Williams, 2005). Greenschist facies extensional
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reactivation of the Legs Lake shear zone is interpreted to reflect a later part of the

exhumation history (Hanmer, 1997; Mahan et al., 2003). Metamorphic constraints on the

exhumation path are provided by isothermal decompression textures that record

conditions of 0.7-0.9 GPa in the Chipman, southern and Rae domains (Mahan, 2005;

Krikorian, 2002; Baldwin et al., 2003; Kopf, 1999).

MINERAL-ISOTOPIC SYSTEM CLOSURE TEMPERATURES

An isotopic closure temperature (Tc) represents the temperature of a mineral-

isotopic system at the time of its measured date, and is a function of diffusion parameters,

cooling rate, geometry, and effective diffusion dimensions (Dodson, 1973). Closure

temperatures can be constrained by experimental and field-based empirical studies.

Estimates below are nominal Tc for typical diffusion radii (25-500 [tm) and cooling rates

(1-100 °C/m.y.). Very low diffusivities of Pb have been experimentally demonstrated in

zircon and monazite, indicative of Tc >900-1000°C °C (Cherniak and Watson, 2001;

Cherniak et al., 2004), such that these minerals typically crystallize below their Tc, and

are widely used to determine the timing of intrusive and metamorphic events. Titanite is

increasingly recognized as a useful geochronometer because it is reactive mineral that

readily grows during metamorphism (Frost et al., 2000; Aleinikoff et al., 2002). Field

and experimental studies suggest titanite closure to Pb diffusion at temperatures of 550-

660 °C (Hanson et al., 1971; Cherniak; 1993; Verts et al., 1996). In contrast with these

minerals that commonly grow below their Tc, the U-Pb systematics of apatite and rutile

are typically dominated by volume diffusion (e.g. Mezger 1989; Chamberlain and

Bowring, 2000). Experimental and field studies of apatite provide consistent Tc

constraints of 450-550 °C for Pb diffusion (Cherniak et al. 1991; Krogstad and Walker,

1994; Chamberlain and Bowring, 2000). Field estimates for Pb diffusion in rutile are

400-450 °C (Mezger, 1989), with higher estimates from experiments (Cherniak, 2000).

In regards to the K-Ar and 4 0Ar/39 Ar isotopic systems, experimental estimates for closure

to Ar diffusion yield compositionally dependent ranges from 500-550 °C in hornblende

(Harrison, 1981), 350-415 °C for muscovite (Robbins, 1972; Hames and Bowring, 1994)

and 300-350 °C for biotite (Grove and Harrison, 1996). It is important to emphasize the

dependence of closure temperature on diffusion domain size dimension. Minerals in
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isobarically cooled terranes may exhibit a range of dates that reflect a continuum of

grain-size dependent closure temperatures induced by the effects of protracted cooling.

In an analogous manner, age gradients may develop in individual mineral grains during

slow cooling, due to closure temperature variations across single crystals (e.g. Hodges et

al., 1994).

ANALYTICAL, METHODS

U-Pb Analytical Methods

Titanite. apatite and rutile grains were separated using standard crushing, water

table, heavy liquid, and magnetic separation techniques. Single and multi-grain fractions

of accessory minerals were picked, photographed, measured, ultrasonically washed in

high-purity water or ethanol and rinsed in acetone, followed by a second washing in high-

purity water and rinsing with double-distilled acetone. Fractions were loaded into Teflon

FEP capsules in high-purity water, spiked with a mixed 205Pb-233 U-235U tracer, and

dissolved in 12 M HC1 at 180 C for 48 hours (apatite) or in 29 M HF at 220 C for 48-96

hours followed by conversion to 6 M HC1 at 180 C for 12-24 hours (titanite and rutile).

Chemical separation of U and Pb was accomplished using HBr-HCI anion exchange

chemistry. Pb and U were loaded on separate, previously degassed, single Re filaments

with a silica gel 0.1 M H3PO4 emitter solution and analyzed on the Massachusetts

Institute of Technology VG Sector 54 mass spectrometer. Pb isotopic ratios were

measured either by peak jumping all ion beams into an axial ion-counting Daly detector,

or dynamically with Faraday cups and the Daly by peak-jumping of 205Pb into the axial

position to obtain a real-time Faraday-Daly gain calibration. Uranium was measured as

an oxide, typically in static mode on three Faraday cups, but for smaller amounts of

uranium by peak-jumping into the Daly detector. U-Pb data and details of fractionation

and blank corrections are provided in Table 1. Decay constant and U-Pb tracer

calibration uncertainties are systematic errors not included in the cited dates, as these

errors are secondary to the uncertainties associated with the common Pb correction,

discussed further below. In the text, the ages are reported as a range of 207Pb/206Pb dates

for each sample.
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Titanite, apatite and rutile have the potential to incorporate common Pb of

unknown isotopic composition during crystallization, thus lowering the

radiogenic/common Pb ratio (Pb*/Pbc), and introducing uncertainty into the calculated

U-Pb date. Thus, analyses with in the lowest Pb*/Pbc are most affected by the choice of

initial common Pb isotopic composition. Consideration of this factor is critical for robust

interpretation of U-Pb titanite, apatite, and rutile ages. Feldspar replicates from six

samples were leached to estimate the initial isotopic composition of common Pb.

Feldspar Pb isotopic determination was carried out by handpicking 2-5 mg plagioclase

fractions, followed by leach steps at 125 C with 7 M HNO3 and 6 M HCl for 15 min

each, and with three aliquots of I M HF for 20 min, 40 min, and 40 min, respectively,

rinsing twice with high-purity water between leaching steps. Pb from the final leach

aliquot was separated using standard HBr-HCl anion exchange chemistry, and run on the

Massachusetts Institute of Technology Isoprobe-T mass spectrometer in static mode.

Isotopic ratios and details regarding corrections are reported in Table 2. All accessory

mineral fractions were corrected using the Pb isotopic composition of feldspars either

coexisting in the same rock or in a rock of similar composition and age. The isotopic

compositions of the feldspars in this study are variable, indicating heterogeneity in the

common Pb incorporated into accessory minerals in different rocks. The standard method

of correcting for initial common Pb is through application of the Stacey and Kramers

(1975) model for terrestrial Pb evolution. The least radiogenic feldspar Pb isotopic

compositions induced the greatest deviation of U-Pb dates from those computed using the

Stacey and Kramers model. This typically caused an increase in the apparent 207 Pb/ 20 6Pb,

2 06 Pb/ 23 8U, and 207 Pb/235 U dates, and shifted negatively discordant U-Pb analyses toward or

onto concordia, increasing our confidence in the selection of the feldspar Pb isotopic as a

more appropriate isotopic composition than Stacey and Kramers (Figure 3).

40Ar/39 Ar Analytical Methods

Fresh, relatively unbroken crystals of muscovite and biotite, as well as fragments

of hornblende grains lacking visible inclusions, were handpicked, ultrasonically cleaned

in high-purity water and ethanol, packaged in Al foil, and encapsulated in Al disks.

Samples were Cd shielded and irradiated at the McMaster University reactor along with
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flux monitor GA-1550 biotite (98.79 ±+ 0.96 Ma; Renne et al., 1993) and synthetic salts to

permit corrections for interfering nuclear reactions.

Gas was liberated from crystals by three different laser heating procedures: 1)

total fusion of hornblende crystal fragments, 2) laser spot ablation mapping of micas, and

3) incremental heating of single mica crystals. Total laser fusion of single hornblende

fragments with a range of sizes from each sample was accomplished by loading crystals

into copper pan wells with complete degassing via heating for 15 seconds with a

Coherent Innova 210 Ar-ion laser beam that encompassed the well diameter and

converted the fragments to roughly spherical glass beads. Laser spot ablation mapping of

micas was carried out on two to six muscovite and/or biotite crystals from each sample,

selected because they contained the most pristine crystal faces of irradiated grains.

Crystals were mounted on a Cu surface with Na-silicate. A 90-100 mJ laser beam from a

Lambda Physik Compex 102 excimer laser at 20 Hz was focused to produce circular

spots 87, 106, 145 or 285 [tm in diameter, or a square spot 182 tm in width. Individual

spots were ablated in two to five sets of 1000 bursts depending on crystal thickness, or

linear scans <1700 tm in length were ablated along crystal margins for durations of < 6

minutes. Incremental heating experiments were performed on select single mica crystals

placed in Cu wells, with heating by the Coherent Innova 210 Ar-ion laser for 3-minute

intervals at successively higher power levels from 0.05 up to 0.95W and a final high

power step for fusion of the crystal.

After purification with a series of metal alloy getters, the evolved gas was

analyzed on the Massachusetts Institute of Technology MAP 215-50 mass spectrometer

with an electron multiplier. Total system blanks were measured at the beginning of each

analytical session, between sets of five or ten total fusion hornblende analyses, and

between sets of two to six laser spot or incremental heating analyses depending on blank

reproducibility. Mass fractionation was monitored by routine analysis of laboratory air

over the duration of the analytical campaign. Isotopic measurements were reduced using

the ArArCALC routines of Koppers (2002), and corrected for system blanks, mass

fractionation, and neutron-induced interferences. Apparent 4 Ar/39Ar ages were

calculated using decay constants recommended by Steiger and Jaeger (1977) and

assuming an initial 40Ar/36Ar ratio of 295.5. Age uncertainties throughout this paper
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include errors associated with blank and sample isotopic measurements, fractionation,

interfering reactions, and J. Laser spot ablation results are cited as weighted mean dates

with uncertainties reported at twice the weighted standard error of the mean. Unless

noted otherwise, these are the mica dates cited in the text. For samples with weighted

mean dates characterized by a MSWD > 1, scatter is assumed to be greater than the

contribution from analytical errors, and errors were multiplied by the square root of the

MSWD (Koppers, 2002). Inverse isotope correlation diagrams after Roddick et al.

(1980) were constructed using a York (1969) regression analysis to compute isochron

dates and initial 4 Ar/36Ar ratios. For incremental heating experiments, plateau dates are

calculated using three or more consecutive steps comprising at least 50% of the total

39ArK released and are considered statistically significant if the MSWD (mean square

weighted deviate) of the mean lies within the 2 sigma uncertainty of the expected value

of 1.0 (Wendt and Carl, 1991).

THERMOCHRONOLOGICAL RESULTS

Sample Selection

Samples were targeted in an effort to obtain a good spatial distribution of

accessory minerals across domains in the region, representing a range of lithologic units

and protolith ages. When possible, dates were obtained for coexisting phases in a single

sample to allow reconstruction of thermal histories that were independent of lateral

spatial variations in thermal regimes. Figures 4 and 5 show the locations and

thermochronological results for minerals from samples across the region.

U-Pb Thermochronometry

The U-Pb titanite, apatite, and rutile dates for individual samples commonly show

a range of dates, that may in part reflect the variety of factors that control the mineral

closure temperature, including grain-size, cooling rate, and potential mineral composition

effects. Uncertainty in the isotopic composition of the common Pb initially incorporated

in the mineral may also induce an apparent span of ages owing to variable

radiogenic/common Pb ratios between samples. The most radiogenic fractions of a given

mineral typically yield the tightest distribution of mineral dates in this study, and these
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fractions are considered the best estimate of cooling through the mineral's closure

temperature. Figure 6 shows an example of U-Pb zircon, titanite, apatite and rutile data

acquired for a nafic granulite dike sample, demonstrating the potential for constraining

cooling histories from granulite facies conditions to temperatures <400 C through U-Pb

analysis of minerals from a single sample. 40Ar/39Ar hornblende and (U-Th)/He zircon

data were also obtained for this rock. U-Pb data isotopic are reported in Table 1. Figure

7 depicts concordia diagrams for all titanite, apatite and rutile data from each domain.

More detailed descriptions of both samples and the analyzed minerals are provided in

Appendix A.

U-Pb titanite dates for the granulite facies Chipman domain are interpreted to

record the timing of cooling through -600 C following attainment of peak temperatures

>750 C. Sixteen single-grain titanite fractions from six samples yielded 207 Pb/206Pb dates

from 1898 to 1882 Ma. Titanite from two samples that continue a transect eastward into

the amphibolite facies Hearne domain yielded distinctly younger dates than those in the

Chipman domain. 207Pb/206Pb dates ranged from 1784 to 1745 Ma for three fractions from

one sample, and from 1819 to 1814 Ma for three fractions from the furthest east sample

from which titanite data was acquired. These dates are interpreted to reflect resetting and

or new growth during the attainment of peak temperatures in this domain. Five titanite

analyses for the northern part of the southern domain previously yielded dates from 1900

to 1894 Ma (Baldwin et al. 2003), and although additional samples from the middle and

southern parts of this domain were processed to supplement this local data, no additional

titanite was identified.

U-Pb apatite analyses constrain the timing of cooling through temperatures of

500 C. Apatite is a relatively common mineral in most rocks of the East Lake

Athabasca region. However, apatite grains analyzed from some samples were

characterized by Pb*/Pbc ratios too low to permit the interpretation of meaningful dates,

and only the subset of samples with sufficiently radiogenic apatite data are discussed

here. In the Chipman domain, eight fractions from two samples from the central part of

the domain yielded a span of 207Pb/ 206Pb dates from 1853 to 1784 Ma, with three fractions

from a third sample from the northeastern margin of the domain that define a

systematically younger apatite population from 1752 to 1743 Ma. Three fractions from a
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northwestern domain sample yielded dates from 1850 to 1768 Ma, coinciding with the

span of apatite dates for the central part of the Chipman domain. Seven fractions from

two samples in the southern domain yielded 2 07 Pb/206Pb dates from 1901 to 1865 Ma that

are distinctly older than dates from the other domains. One apatite fraction from the

Hearne domain yielded a 207 Pb/206Pb date of 1746 Ma, consistent with apatite dates from

the northeastern margin of the Chipman domain.

U-Pb rutile dates provide information regarding the time of cooling through

temperatures of ~450 C. Six rutile fractions analyzed from the central and west-central

part of the Chipman domain yielded dates from 1869 to 1851 Ma, with four distinctly

younger analyses from 1808 to 1771 Ma obtained from the northeastern margin of the

domain. Six single grain rutile fractions from the northwestern domain yielded dates

from 1875 to 1780 Ma. Five single grain fractions of rutile analyzed from the central part

of the southern domain were systematically older than rutile grains from the other

domains with dates from 1882 to 1874 Ma. Rutile from an eclogite sample in the northern

part of the domain previously yielded similar dates from 1851 to 1882 Ma (Baldwin et al.

2004).

4 0Ar/ 39 Ar Thermochronometry

A variety of techniques were employed to permit the most effective evaluation of

diffusional age gradients, excess Ar, and alteration effects on the 40Ar/39Ar systematics of

hornblende, muscovite and biotite analyzed in this study. Our rationale for laser fusion of

hornblende fragments and laser ablation age mapping of mica grains was based on

previous studies of slowly cooled Precambrian shield samples that documented large

apparent age gradients in single crystals interpreted as diffusive Ar loss during slow

cooling (Hodges et al., 1994; Hodges and Bowring, 1995). Incremental heating results

from such crystals without knowledge of age gradients may lead to the misinterpretation

of thermal histories. Following laser mapping of mica crystals, biotite grains from four

samples were targeted for incremental heating experiments to assess the potential for low

temperature alteration and excess Ar effects that might not be as apparent in the laser

ablation results. Summaries of meaningful 4 Ar/39Ar laser hornblende fusion data, mica

laser ablation data, sample lithologies, and numbers of spots and crystals analyzed are
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reported in Table 3. Examples of inverse isochron diagrams for 40Ar/39Ar laser

hornblende fusion data are shown in Figure 8. Examples of laser ablation mapping and

incremental heating results are illustrated in Figure 9. Incremental heating results are

summarized in Table 4. Refer to Appendix B for single crystal hornblende data, to

Appendix C for laser ablation mica spot analysis data and grain spot and transect

locations, and to Appendix D for details of incremental heating results and incremental

heating spectra.

40Ar/39Ar hornblende dates for nine samples across the East Lake Athabasca

region were acquired in an effort to constrain the timing of cooling through temperatures

of -500-550 °('C. Total laser fusion was carried out on fifteen to thirty hornblende

fragments from each sample to detect potential age dispersion within hornblende

populations. One of the nine samples yielded reproducible dates for hornblende

fragments. Sample 01M123C, an amphibolite facies Chipman mafic dike within the Legs

Lake shear along the Hearne-Chipman domain boundary, provided a statistically

significant weighted mean date of 1729 ±+ 11 Ma (MSWD = 0.7), based on fourteen of

eighteen fragments. We consider this date the best estimate of the hornblende age. Data

plot near the radiogenic component on an inverse isochron diagram (Figure 8A). Four

slightly younger fragment dates induce a scatter in the population greater than the

contribution assumed from analytical error. These younger dates are interpreted to be a

consequence of secondary alteration, and were excluded from the weighted mean

calculation.

In contrast to the relatively well-behaved data from the amphibolite facies sample,

the eight granulites contain significant dispersion in hornblende fragment dates that can

differ up to 1.5 b.y. in a single sample. These data plot as scatters on inverse isochron

diagrams and indicate a mixture of radiogenic, atmospheric and excess 4 Ar components

(Figure 8B). The evidence for extensive contamination with excess 4 Ar makes it

challenging to extract reliable ages from this dataset. The youngest date in each sample is

generally characterized by the lowest 4 Ar excess component, thus providing the tightest

constraint on a maximum hornblende age assuming no significant secondary alteration

effects. The youngest analyses in seven samples range from 1841 ±+ 31 Ma to 1901 ±+ 7

Ma (stated errors do not include uncertainty on J), generally compatible with U-Pb
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thermochronologic constraints. An eighth sample characterized by the greatest

heterogeneity in hornblende dates has a youngest analysis of 2020 6 Ma that is

considered an overestimate of the hornblende cooling age based on comparison with U-

Pb thermochronologic data for coexisting minerals. The difference in Ar systematics

between the amphibolite and granulite facies samples is best illustrated by contrasting the

reproducible hornblende data from the amphibolite facies Chipman mafic dike (sample

01M123C), with hornblende data suggesting significant excess 40Ar in a granulite facies

Chipman mafic dike (SZ00-196C) (Figure 8). The correlation of an excess 4 Ar

component with metamorphic grade suggests its incorporation during granulite facies

metamorphism. Previous studies in high grade metamorphic terranes have attributed

such data dispersion in low K minerals like hornblende to fluid inclusions with variable
40Ar/3 6 Ar ratios (e.g. Cumbest et al. 1994; Reddy et al., 1997; Kelley, 2002).

40Ar/39Ar muscovite data were acquired for six samples by laser ablation mapping

to determine the timing of cooling through -350-415 C. Muscovite in the highest grade

rocks of the Chipman, northwestern, and southern domains is rare, and was analyzed

from the one sample in which high-quality grains were identified. In contrast, muscovite-

bearing pegmatites, granites, and gneisses are relatively common in the Hearne and Rae

domains. No clear age gradients were documented in any analyzed muscovite grains.

Weighted mean dates for one sample in the Chipman domain and two samples in the

Heamrne domain range from 1758 + 12 Ma to 1739 +± 12 Ma. 4 Ar/39Ar muscovite dates for

three Rae samples ranged from 1717 ±+ 11 Ma to 1747 ±+ 12 Ma.

40Ar/39Ar laser ablation mapping of biotite was conducted on eleven samples

distributed across the region to date cooling through 300-350 °C. No age gradients were

discerned in the crystals studied. Incremental heating experiments were carried out on

two samples that yielded reproducible laser spot data, and on two samples that yielded

more complex systematics. Four Chipman domain and two northwestern domain

samples yielded dates from 1744 ±+ 12 Ma to 1780 +± 12 Ma. Incremental heating of one

crystal from the oldest sample yielded a statistically significant weighted plateau age of

1776 12 Ma, indistinguishable from the weighted mean laser spot age (Figure 9).

Biotite crystals from two Hearne domain samples yielded dates of 1738 ± 13 Ma and

1740 + 12 Ma, within error of dates for coexisting muscovite mentioned above. The
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westernmost sample analyzed in this study from the Rae domain yielded the oldest

consistent mica dates of 1864 12 Ma, with one incremental heating experiment

providing an indistinguishable plateau date of 1875 ±+ 13 Ma. 40Ar/39Ar biotite laser

ablation dates acquired for two southern domain pegmatites contain dramatically greater

inter- and intra-grain variability in apparent dates than any other samples in this study,

yielding individual fusion dates ranging from 1780 to 1874 Ma. No distinct pattern in the

spatial distribution of analyses within crystals was detected. For one sample, two single

crystal incremental heating experiments yielded statistically significant weighted plateau

ages of 1846 ±+ 12 Ma and 1859 +± 12 Ma, while a third crystal yielded statistically

insignificant results. Four single crystal incremental heating experiments for the other

sample yielded one statistically significant weighted plateau date of 1827 ±+ 13 Ma. Data

from these two samples do not define a statistically significant linear array on inverse

isochron plots, suggesting a heterogeneously distributed excess 4 Ar component may be

responsible for the complex isotopic systematics.

DISCUSSION

Timing Constraints on P-T-D Paths

Chipman Domain

The Chipman domain is characterized by the most complete thermochronological

dataset of this study, based on the range of analyzed phases from a broad spatial

distribution of samples. Linkage of the reconstructed T-t history with existing P-T-D

constraints in this domain places constraints on the tempo and rates of unroofing during

multistage exhumation (Figure 10). Subsequent sections compare and contrast the

cooling histories of the other domains with that of the Chipman domain to enable a more

succinct discussion of exhumation patterns (Figures 11, 12 and 13).

Quantitative timing constraints on the high-temperature evolution of the thermal

regime in the Chipman domain are provided by U-Pb zircon and titanite data. A variety

of evidence supports the ongoing maintenance of high temperatures following peak

conditions recorded at exposed crustal depths. U-Pb TIMS data for metamorphic zircon

grains from five migmatitic Chipman mafic dikes precisely date the timing of dike

anatexis at 1896.2 + 0.3 Ma during syntectonic and synmetamorphic dike emplacement at
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conditions of 1.0-1.2 GPa, -800 C (Flowers, Chapter 2; Williams et al., 1995). Nd

whole rock isotopic data for cross-cutting pegmatites dated at 1891-1894 Ma by U-Pb

zircon analysis are consistent with derivation from a deeper mafic protolith, requiring

temperatures of >750 C for their generation at this time, while their cross-cutting

geometries suggest cooler temperatures at the level of emplacement (Flowers, Chapter 2).

Titanite grains from across the domain range down to 1882 Ma. These data imply some

lateral variability in subsequent thermal regimes despite synchronous timing of dike

migmatization, and suggest the heterogeneous maintenance of temperatures >600-650 °C

or episodic thermal perturbations for 14 m.y. following dike anatexis. A record of near

isothermal decompression to 0.7-0.8 GPa, 750 C recorded in metamorphic assemblages

of Chipman mafic granulite gneisses (Mahan, 2005), is consistent with cooling of titanite

to < 650 C during unroofing. Together, these data suggest that granulite facies

metamorphism and mafic magmatism may have continued at 1.0-1.2 GPa crustal depths,

while coeval cooling of exposed crustal levels was driven by exhumation to 0.7-0.8 GPa

associated with the extensional regime of mafic dike emplacement. We estimate an early

exhumation rate of 1.5-2 km/m.y., using the median pressure estimates of 1.1 GPa and

0.75 GPa for peak and retrograde conditions, the 1896 Ma date for HP conditions, and a

median titanite date of 1889 Ma for the timing of decompression. The median rather than

the minimum titanite date is considered the best estimate for the calculation, because the

near-isothermal decompression textures imply a time lag between unroofing and

subsequent cooling.

U-Pb rutile dates impose timing constraints on the next phase of exhumation due

to regional contractional uplift along the Legs Lake shear zone. U-Pb rutile dates from

1869-1851 Ma are considered the most robust estimate of cooling < 450-550 C in the

central part of the Chipman domain, because these analyses are significantly more

radiogenic than the apatite data from this region. We interpret the record of re-

equilibration at 0.7-0.8 GPa to coincide with an apparent slowing of cooling rates implied

by the rutile data, and to indicate a 20-30 m.y. interval of residence at 25 km crustal

depths following the cessation of mafic magmatism and metamorphism. Cooling below

the closure temperature of rutile by 1851 Ma is considered to primarily reflect the

subsequent onset of contractional uplift along the Legs Lake shear zone. These data are
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consistent with local retrograde Grt+Bt+Crd+Sil assemblages within the Legs Lake shear

zone that record conditions of 0.4-0.5 GPa, and have been dated at 1850 + 17 Ma by in

situ electron microprobe dates for synkinematic monazite linked with the retrograde

reactions (Mahan, 2005). This information suggests exhumation to 0.4-0.5 GPa at ca.

1850 Ma.

The onset of the final phase of extensional exhumation is best constrained by
4"Ar/ 39Ar muscovite and biotite dates from 1780 to 1744 Ma that record cooling < 300 °C.

The mica dates imply a 70-100 m.y. period of residence at 0.4-0.5 GPa. These data

provide precise timing constraints on the previously proposed hiatus in unroofing

between Legs Lake shear zone movement at amphibolite facies conditions and

subsequent extensional reactivation at <450 C (Mahan et al., 2003). (U-Th)/He zircon

dates for two samples in the Chipman domain range from ca. 1.65 ±+ 0.1 Ga to 1.78 + 0.08

Ga, consistent with cooling <180 C during this exhumation phase (Flowers, Chapter 4).

The ca. 1.66 to 1.7 Ga constraints for Athabasca basin deposition (Rayner et al. 2003;

Cumming et al., 1987) impose a lower temporal bound on the unroofing history.

Considering the onset of exhumation from 0.45 GPa at 1780-1744 Ma, with unroofing to

near surface conditions by ca. 1.7 Ga, yields extensional exhumation rates of 0.2-0.3

km/m.y.

Northwestern Domain

The northwestern domain cooling history from 550 to 300 C is similar to that in

the Chipman domain (Figure 11). Constraining the higher temperature exhumation

history has not yet been possible, owing to the absence of titanite in processed samples

and complex 4 Ar/39Ar hornblende systematics characterized by significant excess 4 Ar.

Apatite and rutile grains record a comparable range of U-Pb dates as the Chipman

domain, with 4 0Ar/39Ar biotite data falling in the middle of the Chipman domain

distribution. These similarities in intermediate temperature histories suggest the two

domains were exhuming coherently as a juxtaposed unit during ca. 1850 Ma Legs Lake

shear zone contractional uplift and subsequent extension. The timing of juxtaposition is

further constrained by the abrupt termination of Chipman mafic dikes at or within the

bounding shear zones, indicating decoupled histories during mafic dike intrusion at 1896
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Ma. These data imply domain juxtaposition between 1896 and 1850 Ma. This may have

occurred at the 0.7-0.8 GPa conditions recorded in the Chipman domain during this time

period.

Southern Domain

Post-1.9 Ga cooling of the southern domain occurred distinctly earlier than in the

Chipman domain, as recorded by systematically older zircon, titanite, apatite and rutile

dates (Figure 12). Peak metamorphic conditions of >1.5 GPa, > 800 °C and 1.2-1.4 GPa,

>750 C, are recorded in the northern and central parts of the southern domain,

respectively (Kopf, 1999; Baldwin et al., 2003). Metamorphism at 1904.0 ±+ 0.3 Ma, with

subsequent rapid cooling through the -650 °C Tc of titanite (Baldwin et al., 2003, 2004),

is 8 m.y. older than the metamorphic peak at 1896.2 ±+ 0.3 Ma in the Chipman domain

(Flowers, Chapter 2). Decompression of the southern domain to 0.7-0.9 GPa, >650 °C

(Kopf, 1999; Baldwin et al., 2003) is consistent with cooling through the titanite closure

temperature during early unroofing.

Apatite and rutile dates from the central part of the southern domain are

consistently a minimum of 5-15 m.y. older than dates across the Chipman and

northwestern domains. Rutile dates from 1881 to 1851 Ma in the northern part of the

domain (Baldwin et al., 2004) overlap with those in the Chipman domain. These dates

could reflect isobaric cooling during residence at 0.7-0.9 GPa, or ongoing cooling during

decompression to higher levels in the crust. 4 Ar/39Ar laser ablation biotite dates for two

southern domain samples range from 1780 to 1874 Ma, and are characterized by

significantly greater inter- and intra-grain variability than samples from the other

domains. Incremental heating results from these samples also show complexity. The

oldest laser ablation analyses are consistently older than biotite dates from the Chipman

and northwestern domains, such that if the younger dispersion of dates is due to low

temperature alteration, the data would indicate earlier cooling to < 300 °C than in the

adjacent domains. Earlier cooling would be consistent with the higher temperature

segments of the history. Alternatively, if the older dispersion of dates is an artifact of

excess 40Ar, the youngest analyses would most closely approximate the cooling age, and

would be broadly consistent with the biotite dates in the other domains.
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We consider two possibilities for the timing of juxtaposition of the southern

domain with the adjacent domains based on the current dataset. Interpretation of the

older 40Ar/39Ar biotite dates to reflect earlier cooling to < 300 C, in conjunction with the

systematic difference in U-Pb titanite, apatite and rutile dates, may indicate earlier

unroofing to shallower (< 0.8 GPa) crustal conditions. This implies juxtaposition during

subsequent extensional unroofing. Alternatively, the record of isothermal decompression

to -0.8 GPa in both the southern and Chipman domains raises the possibility that these

domains were in proximity to one another at this condition. In this scenario, the disparity

in the rutile and apatite data would be due to earlier unroofing and isobaric cooling of the

southern domain at 0.8 GPa. Interpretation of the youngest southern domain 40Ar/39Ar

biotite dates to reflect cooling to < 300 C at a time consistent with that in the other

domains would imply coupled lower temperature histories. Additional

thermochronologic and P-T data are required to distinguish these possibilities.

Rae Domain
40Ar/39Ar mica dates in the Rae domain provide insight into its intermediate

temperature cooling history. These rocks preserve peak conditions of 0.8-1.0 GPa, -900

°C at 1.9 Ga (Kopf, 1999; Krikorian, 2002). Muscovite from two samples from the

eastern Rae yielded 1732 and 1747 Ma dates in the same range as the Chipman and

northwestern domain mica dates. A third samples yielded the youngest date in this study

of 1717 Ma, but within error of other samples in the dataset. The fourth and westernmost

sample yielded the oldest reproducible laser ablation mica dates of this study with a

weighted mean of 1862 Ma, indicative of earlier cooling than the Chipman and

northwestern domains.

Hearne Domain

The Hearne domain P-T-D path contrasts with those in the other domains (Figure

13). The metamorphic peak at 0.45-0.5 GPa, 600-700 C dated at ca. 1.8 Ga by EMP

monazite dates in micaceous schists is markedly younger than the timing of peak

metamorphism in the granulite domains (Mahan, 2005). The pressure conditions are

consistent with regional residence of rocks in the granulite facies domains at 0.4-0.5 GPa
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following Legs Lake shear zone activity that exhumed the granulites and buried

shallower level Hearne domain crust. In this study, two samples yielded U-Pb titanite

dates of ca. 1815 and ca. 1750 Ma. The former date is consistent with the timing of peak

amphibolite facies conditions documented elsewhere in the Hearne. We suggest that

these local peak conditions are in part due to conductive incubation following ca. 1850

Ma burial to mid-crustal depths by the granulites.

The ca. 1750 Ma titanite dates coincide with a period of major intrusive activity in

the Hearne domain, and suggest titanite resetting or new titanite growth at or below the

closure temperature at this time. 40Ar/39Ar hornblende, muscovite and biotite dates, as

well as U-Pb apatite dates, are 1730 to 1750 Ma, indicating rapid cooling in the 550 to

300 C temperature interval following the reheating event. U-Pb apatite dates in the

Chipman domain, near the Chipman-Hearne domain boundary, range from 1752 to 1743

Ma. These dates are distinctly younger than apatite dates in the central and western

Chipman domain, and are interpreted to represent resetting due to their proximity to 1750

Ma Hearne domain magmatism. The ca. 1748 to 1738 mica dates are consistent with

those across the Chipman, northwestern, and eastern Rae domains. Together, the

thermochronological data in the Hearne domain are interpreted to indicate magmatism

and reheating immediately prior to, or contemporaneous with, the onset of extensional

exhumation at ca. 1750 Ma that unroofed rocks across the region to near-surface

conditions.

Tempo of Juxtaposition and Exhumation of High-Pressure Granulite Domains

The linkage of our new thermochronologically constrained T-t histories with

existing P-T-D paths constrains the spatial and temporal heterogeneity of exhumation

patterns of deep crust in the East Lake Athabasca region. In the -200 m.y. between ca.

1.9 Ga HP granulite facies metamorphism of the rocks while in the deep crust, and ca. 1.7

Ga unconformable deposition of Athabasca basin sediments on the exhumed rocks, our

analysis reveals at least three distinct phases of unroofing at diverse rates separated by

two intervals of crustal residence, with domainal juxtaposition during this protracted

exhumation history (Figures 10 through 13).
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An early phase of extensional unroofing associated with mafic magmatism and

HP granulite facies metamorphism at rates of 1.5-2.0 km/m.y. is inferred in the Chipman

domain, by conrrelation of U-Pb zircon and titanite dates with isothermal decompression

from 1.0-1.2 GPa to 0.7-0.8 GPa. The apparent convergence of disparate higher

temperature thermal histories in several deep crustal domains at ca. 1.89-1.88 Ga implies

their juxtaposition at 0.7-0.8 GPa conditions. The second phase of unroofing was driven

by regional east-directed thrusting of the deep crustal domains as a coherent unit at ca.

1.85 Ga along the Legs Lake shear zone (Mahan and Williams, 2005). This induced

cooling to <500 C in the Chipman and northwestern domains and juxtaposed the

granulites with middle crustal Hearne domain rocks at 0.4-0.5 GPa conditions. The onset

of a final period of extensional unroofing at rates of 0.2-0.3 km/yr is dated by 4 Ar/39Ar

mica dates across the region that generally range from 1.78 to 1.74 Ga, and record final

cooling to <300 °C. Extensional reactivation of the amphibolite facies Legs Lake shear

zone at greenschist facies conditions is compatible with the low temperatures indicated

by the thermochronometry during extensional unroofing. Most (U-Th)/He zircon dates

range from ca. 1.78 to 1.63 Ga (Flowers, Chapter 4), consistent with exhumation to near-

surface conditions and the onset of deposition of Athabasca basin sediments by ca. 1.70

to 1.65 Ga (Rayner et al., 2003; Cummings et al., 1987).

The cooling patterns and retrograde assemblages imply two pauses in unroofing

between exhumational pulses. We infer a 20-30 m.y. interval of residence at -25 km

(0).7-0.8 GPa) crustal depths following early isothermal decompression, prior to the shift

to a contractional regime. We similarly interpret a 70-100 m.y. period of storage of

domains across the East Lake Athabasca region at crustal depths of -15 km (0.4-0.5 GPa)

preceding final extensional exhumation. This latter interpretation is supported by the ca.

1.85 Ga dates for 0.4-0.5 GPa retrograde assemblages in the deep crustal Chipman

domain, and by ca. 1.80 Ga dates for 0.4-0.5 GPa peak assemblages in the Hearne

domain (Mahan, 2005). The later attainment of peak temperatures at 1.80 Ga in the

Hearne domain is interpreted to reflect the time lag for conductive heating in response to

burial to mid-crustal depths by the granulites. Subsequent thermal perturbation at ca.

1.75 Ga in the Hearne domain was associated with local resetting of thermochronometers

(titanite, apatite, hornblende) and felsic magmatism before and/or during extensional
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exhumation. If the Hearne domain temperatures are indicative of a more regional

elevation of temperatures that coincided with extensional exhumation at ca. 1.75 Ga, it is

possible that the ca. 1.78 to 1.74 Ga 40Ar/39Ar mica dates in the granulite domains reflect

combined reheating and unroofing processes. This would imply temperatures of <300 °C

in the granulite domains during residence at 15 km crustal depth, with subsequent

resetting and final cooling during the extensional phase of exhumation.

Implications for Multistage Exhumation and the Architecture of Lower Continental

Crust

Multistage Exhumation of Lower Continental Crust

Multistage unroofing of the East Lake Athabasca region is linked with changing

regional tectonic regimes during a 200 m.y. period of lithospheric instability in the

western Churchill Province during and following the assembly of the Laurentian

supercontinent. Entrapment of the western Churchill Province as the upper plate between

the 2.02-1.91 Ga Taltson-Thelon orogen to the northwest and the 1.91-1.81 Ga Trans-

Hudson orogenic belt to the southeast is interpreted to be responsible for its severe

reactivation at ca. 1.9 Ga (Figure 1). Intrusion of mafic dikes in the Chipman domain of

the East Lake Athabasca region has been linked with a focused episode of ca. 1.9 Ga

mafic magmatism along >1200 km of the Snowbird tectonic zone, implying regional

asthenospheric upwelling (Flowers, Chapter 2) that induced early extensional unroofing

in the Chipman domain. Regional contractional uplift along the Legs Lake shear zone at

ca. 1.85 Ga is interpreted to correlate with the onset of arc accretion and major collision

of the Superior and Hearne Provinces to the southeast, and thus is considered a hinterland

response to Trans-Hudson orogenesis (Mahan et al., 2003). The development of E-NE

trending ductile structures across the western Churchill Province, including dextral strike-

slip faulting along the ca. 1.8 Ga Grease River shear zone that offsets the Legs Lake shear

zone, coincides with the period of 0.4-0.5 GPa residence of rocks in the East Lake

Athabasca region. Final extensional unroofing to near-surface conditions is regionally

consistent with ca. 1.75 Ga Nueltin suite magmatism, extension, and transtensional basin

development across the Rae and Hearne provinces (Peterson et al., 2002; Rainbird et al.,

2003). This final phase of extension may be due to lithospheric thinning, lithospheric
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densification due to mantle metasomatism, and/or some component of lithospheric

delamination. The preservation of Proterozoic (U-Th)/He zircon and apatite dates attests

to the long-term stability of this region following the 200 m.y. period of tectonism and

deep crustal exhumation that culminated in the reattainment of a stable lithospheric

configuration at ca. 1.7 Ga (Flowers, Chapter 4).

A number of factors were key in the ultimate exhumation and preservation of

deep crust in the East Lake Athabasca region. Unroofing was largely due to the

protracted duration of lithospheric instability following lithospheric disruption at 1.9 Ga,

as the changing patterns of contraction and exhumation across the Laurentian

supercontinent controlled the exhumational pulses. The final geographic position of the

exhumed terrane within a stabilized craton, near the middle of the Laurentian

supercontinent, protected these rocks from subsequent tectonism. The exceptional

preservation of high-pressure assemblages in the granulites we attribute to the repeated

episodes of HP granulite facies metamorphism that dehydrated the rocks and limited the

availability of fluids for retrogression during unroofing.

Multistage exhumation, characterized by discrete pulses of unroofing separated by

intervals of crustal residence, may typify the exhumation of isobarically cooled deep

crustal terranes. This highlights the potential for such terranes to permanently become

embedded at middle crustal levels following an episode of partial exhumation, if

subsequent tectonic events do not induce the resumption of unroofing. Such intervals of

middle-crustal residence also increase the probability of fluid introduction, retrogression,

and re-equilibration to intermediate crustal conditions, such that peak assemblages may

be destroyed prior to exhumation. Thus, the successful transport of well-preserved deep

crustal rocks fom the base of the Earth's crust to the surface, and their subsequent

preservation, may require a fortuitous set of crustal conditions and tectonic

circumstances. This explains the paucity of exposures of isobarically cooled deep crustal

terranes available for study in the geological record.

7he Architecture and Heterogeneity of Lower Continental Crust

The new constraints on unroofing of the East Lake Athabasca region allow us to

consider the implications of the block architecture of this exhumed high-pressure
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granulite terrane for the heterogeneity and structure of the lower continental crust. The

apparently decoupled high-temperature thermal history for disparate domains in the East

Lake Athabasca region, associated with distinct P-T-D histories, provides compelling

evidence for their juxtaposition during unroofing. Thus, the current configuration of

these domains does not represent their structural relationship while in the deep crust.

However, the prevalent ca. 2.6 Ga protolith ages, the distribution of similar mafic and

felsic granulite gneisses in the Chipman, northwestern and southern domains, and the

ubiquitous ca. 1.9 Ga metamorphic overprint reflect a common history preserved in these

disparate domains during earlier deep crustal residence. The diverse plutonic rocks,

tonalitic gneisses, and mafic and felsic granulites that compose the domains reflect a

greater degree of lithological heterogeneity than that typically envisioned for the

lowermost crust. The extensive tracts of deep crustal rocks exposed in the East Lake

Athabasca region may permit easier detection of this heterogeneity than the more

common high-pressure granulite exposures of restricted size. This diverse character

warrants careful consideration when reconstructing the nature and histories of deep

crustal levels based on restricted samples of lower crustal xenoliths. Thus, although the

current segmented architecture in the East Lake Athabasca region was primarily acquired

during exhumation, this overprinted a primary heterogeneity that was a fundamental

characteristic of the rocks during their evolution in the deep crust.
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FIGURE CAPTIONS

Figure 1. Geological map of the western Canadian Shield showing major tectonic

features. AB-Athabasca basin, BL-Baker Lake basin, KX-Krumanituar Complex, STZ-

Snowbird tectonic zone, TB-Thelon Basin, THO-Trans-Hudson Orogen, TO-Taltson
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Orogen, TMZ-Thelon Magmatic Zone, UX-Uvauk Complex, VR-Virgin River dikes and

shear zone. The rectangle shows the East Lake Athabasca region enlarged in Figure 2.

Figure 2. Geological map of the East Lake Athabasca region, northern Saskatchewan.

Figure 3. Concordia diagram for apatite from sample 03-52 showing the effect of

selection of initial Pb isotopic composition on the computed dates. Gray ellipses are

dates calculated using the Stacey and Kramers (1975) model for terrestrial Pb evolution.

Green ellipses are dates calculated using the isotopic composition of leached coexisting

feldspars from this sample.

Figure 4. Simplified geological maps of the East Lake Athabasca region showing sample

locations and ranges of 2 07 Pb/206Pb dates for A) titanite, B) apatite, and C) rutile. Data in

italics are from Baldwin et al. (2003, 2004). Chip-Chipman domain, NW-Northwestern

domain, Sou-Southern domain.

Figure 5. Simplified geological maps of the East Lake Athabasca region showing sample

locations and 40Ar/39Ar dates for A) hornblende, B) muscovite, and C) biotite. The

weighted mean of the laser fusion hornblende fragment data is given for the one

hornblende sample not characterized by a variable mixtures of excess 4 Ar and

atmospheric components. Muscovite and biotite dates are weighted means of the laser

excimer ablation analyses. Chip-Chipman domain, NW-Northwestern domain, Sou-

Southern domain.

Figure 6. U-Pb concordia diagram for Chipman migmatitic dike sample 03-52 including

zircon, titanite, apatite and rutile data. Zircon data are discussed in Chapter 2. Photos are

examples of minerals analyzed from this sample. 4 Ar/39Ar hornblende and (U-Th)/He

zircon data were also acquired for this sample.

Figure 7. U-Pb concordia diagrams of titanite, apatite and rutile data for the A) Chipman,

B) northwestern, C) southern, and D) Hearne domains.
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Figure 8. Inverse isochron diagrams for A) amphibolite facies Chipman mafic dike

sample 0IM123C and B) granulite facies Chipman mafic dike sample SZ00-196C. Both

a York fit through selected data points, and a reference line through an atmospheric

component, are depicted. Refer to the text for data interpretations. Green squares are

data points included in the data regression. Smaller blue squares are not included.

Figure 9. 4 Ar/39Ar biotite data for Chipman domain pegmatite sample 02-76B. A)

Location of laser spot fusion analyses for one of three crystals analyzed from this sample.

Dates given for individual spots do not include the systematic uncertainty in the J-value

to facilitate comparison of intra-crystal dates. The error on the weighted mean date

includes the J-value uncertainty to permit appropriate comparison with 40Ar/39Ar data for

other samples and with U-Pb data. B) Incremental heating experiment that yields a

weighted mean plateau date indistinguishable from the weighted mean of laser fusion

dates for this sample.

Figure 10. Temperature-time diagram for the Chipman domain and associated

interpretation of the cooling path.

Figure 11. Temperature-time diagram for the Northwestern domain and associated

interpretation of the cooling path. Chipman domain thermal history depicted as the gray

dashed line for reference.

Figure 12. Temperature-time diagram for the southern domain and associated

interpretation of the cooling path. Chipman domain thermal history depicted as the gray

dashed line for reference.

Figure 13. Temperature-time diagram for the Hearne domain and associated

interpretation of the thermal history. Chipman domain thermal history depicted as the

gray dashed line for reference.
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Table 2. Pb isotopic composition of leached
feldspar separates

sample wt (mg) 2"Pb Pb PPb
_("Pb : Pb :Pb

BF03-52: Chipman malfic dike, Chipman domain
Fsp 1, Ig 5.0 15.510 15.238 36.403

Fsp 2, med 3.4 15.345 15.211 36.296

BFO3-88A: Mafic granulite. Chipman domain
Fsp2 2.5 16.099 15.502 35.912

BF03-196: Felsic granulite, NW domain
Fsp 5.1 13.807 14.737 33.824

Fsp 2 3.1 13.945 14.768 34.048

OISZ4OB: Eclogite, Southern domain
Fsp 1 7.0 14.006 14.824 34.205

Fsp 2 5.9 14.003 14.819 34.186

BF02-281: Axis mafic granulite. Southern domain

Fspl 2.8 14.100 14.814 34.039

01M 144: Biotite granite, Hlearne domain

Fsp I 2.5 14.447 15.035 35.246

Fsp2 2.9 14.432 15.036 35.215

3 Standard error on analyses is less than 0.05.

Pb fractionation is 0.12 ±0.04%'a.m.u. for Farada

detector based on daily analysis ofNBS-981.
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Figure 1
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Figure 2
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Figure 4
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Figure 5
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Ancient (U-Th)/He dates in the western Canadian Shield:
Implications for continental stability and mantle dynamics



Chapter 4 - Ancient (U-Th)/He Dates and Continental Stability

ABSTRACT

Vertical displacement of the Earth's surface is directly linked to plate tectonics

and mantle convection. At active plate margins, high (up to I cm/yr) unroofing rates and

rapid topographic evolution have been documented. In contrast, billions of years have

passed since major tectonic activity perturbed the cratonic cores of some continents.

However, new data indicate that even these stable continental interiors undergo episodes

of uplift and/or subsidence, linked to tectonic processes and changing patterns of mantle

flow. Thus, cratons can preserve a time-integrated record of the potentially subtle effects

of asthenospheric convection and dynamic topography that has been overprinted in

regions of active tectonism. (U-Th)/He thermochronometry is an underexploited means

of constraining low temperature thermal histories in regions of apparent tectonic stability.

We present the Earth's oldest reported (U-Th)/He zircon and apatite dates that reveal

rocks of the western Canadian Shield have stably resided at temperatures < 30 °C and

crustal depths < 2 km for ca 1.0 - 0.7 b.y. Such data allow evaluation of uplift episodes

complementary to the depositional records of subsidence commonly incorporated into

epeirogenic geodynamic models, and may permit detection of cratonic vertical motions

related to coupling between continental lithosphere and the convecting mantle.

154



Chapter 4 - Ancient (U-Th)/He Dates and Continental Stability

INTRODUCTION

The preservation of ancient continental crust through billions of years of Earth's

dynamic history is qualitative testimony to the long-term stability of some parts of the

continents. These rocks owe their survival to a cratonic architecture characterized by

cold, thick (>250 km), chemically depleted lithospheric mantle roots that have shielded

the crust from subsequent plate margin processes and underlying asthenospheric mantle

activity (e.g. Jordan, 1978). Conventional studies of cratonic denudation based on

geomorphic observations and erosion rate calculations have advocated the longevity of

cratonic landscapes for hundreds of millions of years, consistent with concepts regarding

the tectonic and thermal stability of cratons (Fairbridge and Finkl, 1980; Bishop, 1985;

Stewart et al., 1986; Gale, 1992; Nott, 1995). However, the record of regional subsidence

and uplift within stable continental areas, such as that preserved by Phanerozoic

sedimentary sequences that extend deep into the cratonic interior of North America, has

lead to the recognition that these regions may have experienced a more dynamic isostatic

history than previously believed (Sloss and Speed, 1974; Bond 1978, 1979). Dynamic

topography, the vertical displacement of the Earth's surface in response to mantle flow,

has been invoked to explain components of these large-scale epeirogenic continental

motions (e.g. Mitrovica et al., 1989; Gurnis, 1993; Lithgow-Bertelloni and Gurnis, 1997;

Pysklywec and Mitrovica, 2000).

Analytical techniques that provide quantitative constraints on low temperature

thermal histories and place bounds on the magnitude of vertical rock motion since the last

significant period of tectonism are required to rigorously evaluate this problem. Models

for cratonic vertical motions largely rely on the sedimentary record of submergence and

emergence (e.g. Lithgow-Bertelloni and Gurnis, 1997), although this record is

complicated by the inherently ephemeral nature of dynamic topography such that these

phases are likely to be marked by sequence boundaries (e.g. Burgess et al. 1997). Low

temperature thermochronometry can yield insight not only into phases of uplift

complementary to the preserved subsidence record, but also can provide a powerful

means of evaluating episodes of burial and denudation for which geological evidence has

been completely removed. Apatite fission-track (AFT) studies have attempted to

constrain low temperature (60-120 C) thermal histories for this purpose (e.g. Crowley et
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al., 1986; Gleadow et al., 2004), but the geological significance and reproducibility of

these data in slowly cooled regions are a subject of debate (Hendriks and Redfield, in

press). In contrast, the application of (U-Th)/He thermochronometry to assess uplift in

regions of apparent tectonic stability has been limited. We use this technique to constrain

low temperature histories in a geologically well-characterized region of the western

Canadian Shield. This area was targeted due to its broad coherency since ca. 1.7 Ga

(Hoffman, 1989) and its exceptionally thick lithospheric mantle root (Godey et al. 2004)

that together suggest this continental interior may have been more effectively shielded

from subsequent perturbation than localities that have been the focus of previous low

temperature thermochronological investigation. Our results represent the oldest reported

terrestrial (U-Th)/He zircon and apatite dates, confirm the protracted (1.0 - 0.7 b.y.)

residence of rocks at shallow (< 2 km) crustal depths, and offer insights into the long-

term history of vertical motions within this stabilized continent.

LOW TEMPERATURE THERMOCHRONOMETRY IN STABLE CONTINENTAL

INTERIORS

Almost all previous investigations aimed at constraining low temperature thermal

histories in cratonic regions have employed apatite fission-track thermochronology. This

method relies on analysis of preserved spontaneous fission 238U tracks in apatite, which

are fully annealed at temperatures >110 °C, largely preserved at temperatures < 60 °C,

with intervening temperatures known as the partial annealing zone. Early studies yielded

dates from 500 to 930 Ma in the mid-continent of the United States and in the southern

Canadian Shield (Crowley et al., 1986; Crowley and Kuhlman, 1988). However, recent

studies in the southern Canadian Shield, and in the Kaapvaal, Yilgarn, Pilbara, and

Brazilian cratons have yielded younger dates from 50 to 400 Ma (Amaral et al., 1997;

Gleadow et al., 2002; Kohn et al., 2002; Osadetz et al., 2002; Harman et al., 2003; Saenz

et al., 2003; Belton et al., 2004). These data challenge the antiquity of cratonic

landscapes and have been interpreted to indicate reheating and/or burial by sedimentary

cover with subsequent unroofing in the Phanerozoic. However, new study urges caution

in the interpretation of AFT data from slowly cooled terranes, owing to the possibility

that overlooked low temperature annealing processes may sometimes lead to an
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underestimation of AFT dates (Hendriks and Redfield, in press). In Finland, large

variations in apparent AFT ages occur over short horizontal distances, with AFT dates

anomalously younger than associated (U-Th)/He apatite dates attributed to unaccounted

cumulative radiation-enhanced lattice recovery (Hendriks and Redfield, in press).

Low temperature (U-Th)/He thermochronometry has permitted many questions

regarding the evolution of the Earth's surfaces in a variety of tectonic settings to become

tractable problems. However, despite the potential for this technique to yield insights into

regions of apparent tectonic stability, this method has had limited application in slowly

cooled terranes. Zircon and apatite are characterized by (U-Th)/He closure temperatures

of ~180 °C and 60-70 °C (Farley, 2000; Reiners et al., 2004), corresponding to rock

passage through crustal depths of 8-12 km and 3-5 km, respectively, with consideration

of a typical ~15-20 °C/km cratonic geothermal gradient. In practice, a measured date

reflects the balance between He loss due to diffusion and He ingrowth due to radiogenic

decay of U and Th, with a partial helium retention zone for apatite between 30 and 80

°C depending on grain size and cooling rate. Thus, this method is sensitive to

temperatures lower than those accessible by apatite fission track analysis and can

effectively monitor temperatures at the shallowest crustal depths that most closely reflect

denudational processes. A study in the southern Canadian Shield demonstrated the

feasibility of obtaining reproducible (U-Th)/He apatite dates from a cratonic region, and

inferred much less sensitivity of the (U-Th)/He system to apatite compositional variation

than the AFT system (Lorencak et al., 2004). (U-Th)/He thermochronometry clearly

provides an underexploited means of providing additional valuable constraints on low

temperature thermal histories within continental interiors.

REGIONAL GEOLOGIC SETTING

The Canadian Shield is an extensive, well-exposed collage of Archean cratons

separated by Paleoproterozoic collisional orogens. This region has largely remained

intact since that time, with its boundaries modified by the Grenville orogen (1.2-1.0 Ga)

along its southern boundary, Neoproterozoic rifting along most of its margin, and

Paleozoic arc terrane accretion (Hoffman, 1989). The western portion of the Canadian

Shield is currently characterized by a seismic velocity structure consistent with the
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presence of a cold, >250 km thick lithospheric mantle keel (Godey et al., 2004) (Figure

1).

The East Lake Athabasca region, at the boundary between the Rae and Hearne

crustal provinces in the western Canadian Shield, contains extensive (>20,000 km2)

tracts of rocks metamorphosed in the deep crust (1.0 to >2.0 GPa), subdivided into

disparate lithotectonic domains. This area records a history of Archean lithospheric

assembly and stabilization, with dramatic Proterozoic exhumation that ultimately

produced the stable lithospheric configuration responsible for the long-term subsequent

preservation of these rocks (Hanmer, 1997; Mahan and Williams, 2005; Flowers,

Chapters & 3). The unroofing history is temporally bracketed by ca. 1.9 Ga

metamorphism of these rocks while in the deep crust and subsequent ca. 1.7 Ga

deposition of clastic sedimentary rocks of the Athabasca basin across the exhumed

granulites. Detailed structural and metamorphic data used to reconstruct pressure-

temperature-deformation paths, in conjunction with high-resolution U-Pb ID-TIMS

(zircon, monazite, titanite, apatite, rutile) and 40Ar/39Ar (hornblende, muscovite, biotite)

geo- and thermochronological data that constrain high and intermediate temperature

cooling histories, reveal an exhumation record interpreted to indicate pulses of unroofing

separated by intervals of crustal residence during sequential contractional uplift, strike-

slip shearing, and extension (Mahan et al. 2003; Mahan and Williams, 2005; Flowers,

Chapter 3) (Figure 2). 40Ar/39Ar muscovite and biotite dates from 1.72 to 1.78 Ga provide

a lower bound on final cooling through 350-300 °C, interpreted to reflect the initiation of

extensional exhumation followed by transport of the rocks from depths of 0.4-0.5 GPa to

near-surface conditions. The tightest minimum timing constraint on subsequent

unconformable deposition of Athabasca basin fluvial, lacustrine and marine sediments

across the region (Raemakers, 1981) is imposed by the youngest dated detrital zircon

grains at 1661 + 34 Ma in the Wolverine Point formation in the upper part of the basin

sequence (Rayner et al., 2003), consistent with less precise ca. 1.65 to 1.70 Ga U-Pb

dates for authigenic phosphate sediments (Cumming et al. 1987).

Fluid flow histories, reconstructed due to the economic importance of high-grade

uranium deposits, provide some insight into subsequent Athabasca basin evolution. Fluid

inclusion and clay mineralogy studies within the basin sediments, U-Pb and Pb-Pb
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analysis of uranium rich minerals, and 40Ar/39Ar and K/Ar investigation of Fe-rich clay

paragenesis constrain an early diagenetic event at 1.7-1.6 Ga at temperatures of 150 °C,

burial diagenesis between 1.6 and 1.45 Ga at > 150 C, fluid remobilization at -0.9 Ga,

and Phanerozoic fluid incursion at < 50 C (Fayek et al., 2002; Kotzer and Kyser, 1995;

Philippe et al., 1993; Percival et al., 1993; Kotzer et al., 1992). The current basin covers

an area of -100,000 km2 and attains a maximum thickness of -2300 m near its center,

with speculation based on fluid inclusion data of Proterozoic thicknesses up to 5-7 km,

although this is poorly constrained (Pagel et al., 1980). The current extent of Paleozoic

sedimentary covers lies to the southwest of the Athabasca basin. Some continental

reconstructions have speculated that this veneer of sediments may once have covered

large portions of the rest of the Canadian Shield, including our area of study (e.g. Ziegler,

1989; Scotese and Golonka, 1992) (Figure 1).

(U-TH)/HE THERMOCHRONOLOGICAL RESULTS

(U-Th)/He zircon and apatite data were acquired to constrain the low temperature

history of rocks in the East Lake Athabasca region. Zircon crystals were selected from

well-characterized populations previously analyzed by U-Pb ID-TIMS methods, with

internal structures imaged by backscatter and cathodoluminescence techniques. Past

studies have demonstrated that a high level of accumulated radiation damage in zircon

can lead to He loss and anomalously young apparent ages (Reiners et al., in press), and,

for this reason, samples containing zircon with low U and Th concentrations (1-65 ppm)

were targeted for analysis. Selected zircon crystals included metamorphic grains from

three mafic granulite gneisses and igneous grains from one pegmatite sample (Figure 1,

inset). Apatite grains were similarly identified in populations previously dated by U-Pb

ID-TIMS, and pristine crystals were picked from one sample of Archean tonalitic gneiss.

Refer to the data repository for details regarding analytical methods. Table lists

analytical results.

Eight of ten zircon grains yielded dates from 1.63 to 1.78 Ga. Two zircon grains

from one sample yielded distinctly younger dates of 1.37 and 1.43 Ga.

Cathodoluminescence images of zircon crystals in this sample revealed dark or

luminescent overgrowths not observed in the other analyzed grains, consistent with
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higher uranium rims and the potential for underestimation of the alpha-ejection

correction, and calculation of dates that are too young. Six apatite crystals yielded dates

from 0.70 to 0.98 Ga. The range of apatite Th/U ratios suggests the presence of multiple

apatite populations and/or zoning, consistent with the heterogeneous character of the

deformed and polymetamorphosed Archean gneiss from which these grains were

extracted. The reproducibility of dates from different apatite populations corroborates the

significance of the dataset.

IMPLICATIONS FOR THE STABILITY AND VERTICAL MOTIONS OF

CONTINENTS

Our (U-Th)/He zircon and apatite dates for the western Canadian Shield are the

oldest reported for terrestrial rocks, and confirm the long-term stability of this region

since the Proterozoic. (U-Th)/He zircon dates from 1.78 to 1.63 Ga are interpreted as

cooling to < 180 C during exhumation. This is entirely consistent with the well-

constrained geological record of unroofing and subsequent basin deposition, bracketed by

1.78 to 1.72 Ga 40Ar/39Ar mica dates attributed to cooling during extensional unroofing,

and 1.70 to 1.65 Ga Athabasca basin sediments unconformably deposited across the

exhumed rocks (Figure 2). Assuming typical cratonic geothermal gradients of 15-20

°C/km, the preservation of these dates requires residence of the rocks at crustal depths of

<8-12km for ca. 1.7 b.y.

The detailed constraints on exhumation and basin evolution in the East Lake

Athabasca region further allow us to evaluate the implications of the 1.0 to 0.7 Ga (U-

Th)/He apatite dates for continental vertical motions during 1.7 b.y. of cratonic stability.

In the simplest analysis, these ancient dates are consistent with a history involving

cooling below 80 °C and unroofing at 1.0-0.7 Ga, followed by extended exposure at the

Earth's surface. In reality, the sensitivity of apatite dates to subtle variations in

temperature during long-term residence in the partial retention zone means that a

measured date may represent the integrated product of a potentially complex thermal

history (Reiners, 2002). Although this behavior precludes direct translation into a

cooling age, it offers the potential to use appropriate geological constraints to evaluate

viable thermal models that can be linked with uplift and subsidence histories.

160



Chapter 4 - Ancient (U-Th)/He Dates and Continental Stability

Constraints on post-1.7 Ga continental motions that can be used in conjunction

with our thermochronometric information are primarily derived from Athabasca basin

fluid inclusion studies and basinal records of Canadian Shield unroofing. Fluid inclusion

studies have estimated a maximum Proterozoic basin thickness of 5-7 km, such that

removing the preserved 2.3 km of sediments in the deepest part of the basin, and making

the reasonable assumption of little differential exhumation during basin unroofing,

implies a post-1.7 Ga burial of exposed rocks in the East Lake Athabasca region by no

more than 2.7 - 4.7 km in the Proterozoic. Following burial diagenesis from ca. 1.6 to

1.45 Ga, fluid mobilization events at ca. 0.9 Ga and in the Phanerozoic have tentatively

been linked with uplift during Neoproterozoic rifting along the western margin ca. 750-

500 Ma (Kotzer and Kyser, 1995; Fayek et al., 2002). We note that although these same

studies interpret temperatures of 150-200 C in zones of uranium mineralization within

the basin, temperatures >180 C in the East Lake Athabasca region following basin

deposition are precluded by the ancient (U-Th)/He zircon data. This is reasonable, given

the selectivity of fluid inclusion studies within the most uranium rich and therefore

hottest portions of the basin, the potential for localization of brief peak temperatures

within the basinal hydrothermal convection system, and the absence of significant

basement retrogression that would be suggestive of hot brine circulation in the study area.

In addition to these constraints, some continental reconstructions have proposed that most

of the western Canadian Shield currently lacking Phanerozoic cover, including the East

Lake Athabasca region, was inundated by the Paleozoic seas responsible for sedimentary

sequences still preserved over much of the North American cratonic interior (Ziegler,

1989; Scotese and Golonka, 1992). Discovery of Devonian limestone xenoliths in

kimberlites of the Slave province provide solid evidence that >750 m of now eroded

Phanerozoic sediments once blanketed this craton (Cockenboo et al., 1998). Nd isotopic

and geochemical data for Arctic basinal sequences have been used to argue that up to 2

km of sedimentary rocks similarly extended over the remainder of the western Canadian

Shield from 450 to 80 Ma, followed by progressive removal in the Mesozoic (Patchett et

al., 2004).

In light of the above information, and to shed further insight into the speculated

phases of continental uplift and subsidence, we consider histories for the East Lake
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Athabasca region involving 1) long term (1.6-1.7 b.y.) residence at constant temperature

beneath Athabasca basin sediments prior to Phanerozoic unroofing, 2) episodic uplift and

removal of Athabasca basin sediments from a maximum thickness in the Proterozoic, and

3) subsequent burial by sediments of some thickness in the Phanerozoic (Figure 3). We

use the HeFTy program (Ketcham, in press) to constrain this suite of feasible models by

applying a standard He production-diffusion model (Wolf et al., 1998) to our

approximate analyzed apatite half-width of ~50 tm. Crustal depths are estimated

assuming typical cratonic thermal gradients of 15-20 °C/km. In the simple residence

scenario, the data are consistent with burial of the rocks to depths of 1.5-2km beneath

Athabasca basin sediments, subsequent residence at temperatures of 25-30 °C for 1.7 to

1.6 b.y., followed by unroofing in the Phanerozoic (Figure 3, T-t path 1). A more

complex history involving episodic unroofing synchronous with basinal fluid circulation

events can follow a restricted range of temperature-time paths depending on the

magnitude of exhumation associated with each uplift pulse, but ultimately requires

cooling to temperatures < 30 °C, corresponding to depths of < 2 km, by 0.7-1.0 Ga

(Figure 3, T-t path 2). Finally, the data are permissive of burial beneath up to 2 km of

Phanerozoic sediments at maximum temperatures of ~30 °C from 450 to 80 Ma (Figure

3, T-t path 3). However, the preservation of ancient (U-Th)/He apatite dates despite this

hypothetical period of younger sedimentary accumulation requires an earlier history

characterized by much lower temperatures than those modeled in the episode uplift model

of scenario two, with residence at crustal depths of < 500 m for prolonged periods in the

Proterozoic. This is an important point, because additional information regarding early or

recent uplift and subsidence episodes based on geological or other thermochronologic

data could dramatically narrow the range of possible temperature-time paths for parts of

the history for which no such further data is available. Regardless of the details of each

model, the ancient (U-Th)/He apatite dates reveal that rocks in the East Lake Athabasca

region resided at temperatures of < 30 °C, at crustal depths of < 2 km, for 1.0 to 0.7 b.y.

IMPLICATIONS FOR MANTLE DYNAMICS

Much attention has focused on the large-scale vertical motions of continental

interiors as an avenue for understanding changing patterns of flow within the mantle (e.g.

162



Chapter 4 - Ancient (U-Th)/He Dates and Continental Stability

Gurnis, 1992; Pysklywec and Mitrovica, 1998; Burgess and Moresi, 1999). For example,

Late Cretaceous subsidence and Tertiary uplift in the western interior of North America

has been attributed to the dynamical effects of changing subduction (Mitrovica et al.,

1989). Subduction induced long-wavelength tilting has subsequently been used to

explain aspects of subsidence patterns in a number of stable continental regions at

different times in the Phanerozoic (Coakley and Gurnis, 1995; Mitrovica et al., 1996;

Burgess et al., 1997; Pysklywec and Mitrovica, 2000). Others have attempted to compute

the global time-varying dynamic topography for the Cenozoic, predicted differential

motions for stable continental regions, and assessed the viability of results based on

geological observations (Lithgow-Bertelloni and Gurnis, 1997; Lithgow-Bertelloni and

Richards, 1998). These studies have repeatedly called for improved stratigraphic

constraints to permit more effective evaluation of geodynamic models. However,

because dynamic topography is intrinsically a transient feature driven by changing mantle

flow regimes, the resulting sedimentary accumulation has a low preservation potential,

and the long-term expected signal in the depositional record is as an unconformity or

sequence boundary (e.g. Burgess et al., 1997). This places fundamental limits on a

detailed understanding of past episodes of dynamic topography solely based on the

stratigraphic record.

Our study demonstrates that low temperature (U-Th)/He thermochronometry

within stable cratonic regions provides a powerful tool for deciphering uplift phases

complementary to the sedimentary record of subsidence, and can help constrain vertical

continental motions for which geological evidence has been completely removed. For

example, computation of Cenozoic global dynamic topography predicted 2.5 to 3 km of

uplift within portions of the western Canadian Shield, including the area of our study

(Lithgow-Bertelloni and Gurnis, 1997). However, the antiquity of our (U-Th)/He apatite

dates require residence of exposed rocks at crustal depths < 2 km for the last 1.0-0.7 b.y.,

thus imposing a maximum 2 km of uplift in the Cenozoic. The low amplitude of vertical

motions since the Precambrian in the East Lake Athabasca region of the western

Canadian Shield indicates this area has exceptional value for deciphering earlier uplift

and subsidence phases for which thermal records have been eliminated in regions

characterized by greater recent uplift. Uplift since the Precambrian is interpreted for the
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southern African Plateau and cratonic regions of Australia based on geophysical and AFT

data (e.g. Nyblade and Sleep, 2003; Kohn et al., 2002), such that the record preserved

within these different continental interiors can provide diverse insight into the driving

plate tectonic and mantle flow mechanisms of epeirogenic motion. In the past, (U-

Th)/He analysis has received limited application to cratonic regions and therefore has not

been exploited in the development and assessment of geodynamic models for vertical

motions within continental interiors. In the future, the acquisition of such data, coupled

with the sedimentary record, holds the promise of exciting new insights into continental

stability and changing mantle dynamics.
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FIGURE CAPTIONS

Figure 1. Geological map of the western Canadian Shield showing major tectonic

features. Box marks location of upper right inset of simplified map of the East Lake

Athabasca region with sample locations.

Figure 2. Temperature-time path during exhumation of high-pressure granulites in the

Chipman domain, reconstructed from U-Pb, 4 Ar/ 3 9Ar and (U-Th)/He data.

Figure 3. Suite of viable thermal models for an apatite half-width of 50 tm that satisfies

the apparent (U-Th)/He apatite dates. Refer to text for more detail regarding the depicted

temperature-time paths.
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T'able 1. (U-Th)/He data for zircon and apatite
mass radius' U Th 4He raw age raw est 2a corr age est 2o

Fr (ug) (um) ppm ppm Th/U (nmol/g) (Ga) err (Ga) Ft (Ga) err (Ga)

Zircon analyses
02-76B, Chipman domain pegmatite

z I 6.7 46,,3 66.0 21.2 0.32 603.3 1.38 0.07 0.785 1.76 0.09

z2 103.1 131.3 50.5 14.7 0.30 509.7 1.51 0.09 0.914 1.65 0.10

z3 212.6 195.5 42.1 13.9 0.34 448.7 1.57 0.10 0.934 1.68 0.10

03-52, Chipman mafic granulite dike
zI 14.2 65,5 33.3 2.9 0.09 299.9 1.42 0.08 0.830 1.71 0.10

z2 6.1 51,3 32.7 3.7 0.12 267.7 1.30 0.08 0.790 1.65 0.10

z3 7.3 46.3 44.5 6.0 0.14 400.6 1.41 0.06 0.788 1.78 0.08

SZ00-141Azl, southern domain mafic granulite
zl 4.0 45.3 37.0 4.0 0.11 314.7 1.35 0.06 0.757 1.78 0.08

z2 7.3 61.5 15.0 3.6 0.25 126.9 1.31 0.06 0.804 1.63 0.07

SZOO- 96C, Chiprman domain mafic granulite dike

z2 5.3 43.5 16.8 2.2 0.14 109.1 1.06 0.05 0.770 1.37 0.07

z3 7.4 49.5 9.5 0.3 0.04 65.4 1.14 0.06 0.796 1.43 0.07

Apatite analyses
SZOO- I 96B, Chipmnan domain tonalitic gneiss

al 1.4 36.0 12.2 4.0 0.32 48.1 0.64 0.06 0.651 0.98 0.09

a2 4.7 55.5 5.2 0.5 0.09 17.5 0.57 0.05 0.764 0.74 0.07

a3 4.2 51.0 7.3 2.7 0.38 32.7 0.71 0.05 0.748 0.95 0.07

a4 4.3 57.3 6.1 2.8 0.47 27.2 0.69 0.06 0.763 0.91 0.07

aS 3.3 46.0 12.6 6.3 0.51 50.7 0.63 0.04 0.724 0.86 0.05
a6 2.6 43.5 8.2 7.7 0.97 27.8 0.49 0.04 0.705 0.70 0.06

Radius is defined as average of perpendicular half-widths
h Ft is alpha-ejection correction of Farley et al. (2002).
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Figure 1
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Chapter 5

A lower crustal record of craton reactivation and survival



Chapter 5 - Synthesis

INTRODUCTION

The surviving continents preserve a complex and fragmentary archive of Earth's

long dynamic history. Deciphering this record is key to understanding the fundamental

processes associated with the growth and stabilization of continental lithosphere. A

central component of this problem is determining the magnitude of bias inherent in the

preserved record, owing to the selective destruction of less stable continents. Thus,

analysis of the lithospheric response to perturbations by asthenospheric and plate margin

tectonic processes is essential to constrain both 1) the mechanisms that can disrupt

continents, and 2) the lithospheric characteristics that are most conducive to lithospheric

survival. This information is essential to gain a more objective perspective on the

continental record available for study today.

The oldest continental remnants, the Archean cratons, have survived billions of

years of Earth's history and thus are a particularly valuable resource for investigating the

potential controls on lithospheric preservation. Cratonic lithosphere is characterized by

thick ( 200 km) chemically depleted lithospheric mantle roots that have helped insulate

the crust from severe overprinting by subsequent tectonism (e.g. Jordan, 1978).

However, even these relatively stable portions of the continents have been perturbed

following assembly, by episodes ranging from minor lithospheric rejuvenation to major

lithospheric disruption. A better understanding of this continuum can yield insights into

the factors governing the survival or destruction of continents.

The lower continental crust, as the physical link between the upper crust and

mantle, retains a particularly sensitive record of asthenospheric disturbance that may not

be as clearly manifested at higher levels of the crustal column. Episodes of lower crustal

mafic magmatism, metamorphism and melting thus can have important implications for

the larger dynamics of crust-mantle interaction. Much attention has focused on

constraining the origins, tectonic settings of formation, P-T paths, and exhumation

histories of granulites, because of their importance for broader crustal histories (e.g.

Harley, 1989; Bohlen, 1991; O'Brien and Rotzler, 2003). Vast tracts of lower crustal

rocks preserved in the East Lake Athabasca region in the western Churchill Province

record two different types of high-pressure (HP) granulite facies metamorphic events

followed by exhumation. This history can be used to place fundamentally important
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constraints on the stabilization, reactivation, and preservation of continental lithosphere

in the western Canadian Shield.

HIGH-PRESSURE GRANULITE FORMATION IN THE EAST LAKE ATHABASCA

REGION

Although granulites have a wide diversity in origin, two endmember tectonic

settings have been identified for their formation (e.g. Ellis, 1987; Harley, 1989). These

are: 1) granulites that formed at the base of the crust with subsequent isobaric cooling, the

potential for long term residence in the deep crust, and exhumation by a mechanism

unrelated to their genesis, and 2) granulites that originated in a brief tectonic episode with

isothermal decompression and exhumation during the same orogenic cycle. HP granulite

xenoliths fall into the former category, as they commonly record isobaric cooling to a

steady-state geotherm following metamorphism. Granulite facies exposures of this type

include the Ivrea Zone, Kapuskasing uplift, and Napier Complex, with subsequent

unroofing in unrelated plate margin and intracratonic settings, respectively (Percival and

Card, 1983; Zingg, 1990; Harley and Black, 1997). In contrast, HP granulite exposures

generally represent formation by short-lived crustal thickening or subduction events that

are also responsible for their exposure (O'Brien and Rotzler, 2003). Examples include

the Hengshan Complex of China, the European Variscides, and the Grenville Province

(O'Brien and Carswell, 1993; Indares, 1995; Zhao et al., 2001).

Rocks in the East Lake Athabasca region preserve evidence for the subjection of

the same rocks to both types of HP granulite facies events. A variety of data provide

evidence for a widespread Archean granulite facies event, followed by isobaric cooling

and subsequent residence in the deep crust - consistent with the first type of HP granulite

formation. New U-Pb zircon results for the Chipman domain document significant

metamorphic zircon growth in mafic granulite gneisses at 2.55 Ga (Chapter 1), linked

with -1.3 GPa, 850 °C granulite facies assemblages in these rocks (Mahan et al., 2005).

Isobaric cooling paths from peak conditions of -0.8-1.0 GPa, 900 °C are interpreted to

have developed following the Archean emplacement of the Mary granite in the

northwestern domain, preceding long-term residence of this domain in the lower crust
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(Williams et al., 2000; Williams and Hanmer, 2005). Metamorphic zircon growth at ca.

2.55 Ga has also been reported in the southern domain (Baldwin et al., 2004).

There is compelling evidence for a second HP granulite facies metamorphic event

at 1.9 Ga, followed by isothermal decompression - consistent with the second type of HP

granulite formation. Mafic dike anatexis at conditions of 1.0-1.2 GPa, 800 °C has been

dated at 1896.2 + 0.3 Ma in the Chipman domain (Williams et al., 1995; Flowers,

Chapter 2). This is consistent with 1.9 Ga metamorphic zircon growth at ca. 1.9 Ga in

mafic granulite gneisses, linked with a second granulite facies assemblage preserved in

this rock (Chapter 1). Metamorphic zircon growth at 1904.0 + 0.3 Ma has been linked

with peak conditions in the southern domain (Baldwin et al., 2004). U-Pb titanite dates

from across the region record resetting to temperatures > 600 C in the Proterozoic

(Chapter 3). These and other new thermochronological data in this study, as well as

isothermal decompression textures in a number of the domains (Kopf, 1999; Krikorian,

2002; Baldwin et al., 2004; Mahan, 2005), indicate unroofing shortly following HP

granulite facies conditions. The thermochronological dataset, in conjunction with

constraints on unconformable deposition of Athabasca basin sediments over the exhumed

granulites at ca. 1.7 Ga, record the exhumation of the granulites to near-surface

conditions within 200 m.y. of deep crustal metamorphism (Chapters 3 and 4).

This is the first reported occurrence of the formation of the two primary types of

HP granulites within the same exposure of lower crustal rocks. Additional study is

required to verify this inferred history, owing to the inherent complexities associated with

deciphering the record preserved in rocks subjected to repeated HP granulite facies

events. However, this is considered the most straightforward interpretation of the current

dataset. The unique character of this lower crustal record preserved in the East Lake

Athabasca region may be directly linked to the unusual nature of the tectonic history

required for the genesis, exhumation and preservation of these granulites.
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EVOLUTION OF CONTINENTAL LITHOSPHERE IN THE WESTERN CANADIAN

SHIELD

Lithospheric Stability

The history inferred for lower crustal exposures in the East Lake Athabasca

region has important implications for the evolution of continental lithosphere in the

western Canadian Shield. The record of 2.55 Ga HP granulite facies metamorphism,

evidence for subsequent isobaric cooling, the still relatively anhydrous nature of

lithologies inferred during later metamorphism, and the recurrence of metamorphism at

HP conditions at 1.9 Ga implies that these rocks resided in the crust for the intervening

650 m.y. This period of relative quiescence is interpreted to reflect an extended period of

lithospheric stability following cooling to a cratonic geotherm. Long-term residence of

high-pressure granulites in the deep crust is the history inferred for most lower crustal

xenoliths erupted from stable continental interiors, and logically is the history of the

lower crust in most Archean cratons. Similarly, lower crustal xenoliths commonly record

subsequent thermal perturbations and magmatic episodes in response to plate margin

accretionary and asthenospheric upwelling events (e.g. Schmitz and Bowring, 2003;

Farmer et al., 2005). The dramatically distinct aspect of the record in the East Lake

Athabasca region is that the subsequent episode of lithospheric perturbation was

sufficiently severe to destabilize this cratonic region, culminating in the unroofing of the

lower continental crust.

An important secondary point is the critical context this exposure provides for the

interpretation of the record preserved in lower crustal xenolith samples. A commonly

observed disparity in the equilibrium pressure and composition of isobarically cooled

granulite xenoliths and terranes suggests that xenolith samples commonly represent

samples of the lowermost (1.0 to 1.5 GPa) continental crust, while granulite terranes are

exhumed from the upper and middle portions (0.6 to 0.8 GPa) of the lower crust (Bohlen

and Mezger, 1989). In contrast, the rocks across the East Lake Athabasca region record

conditions from 1.0 to >1.5 GPa during the high-pressure granulite facies episodes.

These data suggest that this region represents a true exposure of lowermost continental

crust that resided near the Moho for much of its history, comparable in crustal depth to

many lower crustal xenolith samples. Thus, this terrane affords an exceptional
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opportunity to directly examine the rock types and structural relationships in the deepest

portions of the crust, and provides a crucial in situ context to enable more robust analysis

of the xenolith record.

Lithospheric Reactivation

An event of profound significance is required to disrupt and exhume a stabilized

Archean craton. The ca. 1.9 Ga timing of the second episode of HP granulite facies

metamorphism broadly coincides with the assembly of the Laurentian supercontinent.

The position of the western Churchill Province as the intervening lithosphere spatially

and temporally bounded by two inward dipping subduction zones - the 2.02-1.91 Ga

Taltson-Thelon orogen to the northwest and the 1.91-1.81 Ga Trans-Hudson orogen to

the southeast - must have been a central factor in its destabilization at this time. The

Archean versus Proterozoic significance of the Snowbird tectonic zone, a -2800 km long

geophysical anomaly in the western Churchill Province, has long been debated owing to a

complex record of both Archean and Proterozoic metamorphic events (Hoffman, 1988;

Hanmer, 1997). New data establishes the timing of syntectonic and synmetamorphic

intrusion of a major mafic dike swarm in the East Lake Athabasca region at 1.9 Ga

(Chapter 2). This mafic magmatism is linked with contemporaneous mafic intrusive

activity focused along > 1200 km strike length of the Snowbird tectonic zone. The

exploitation of the Snowbird tectonic zone for emplacement of 1.9 Ga mafic magmas is

consistent with major Paleoproterozoic reactivation of an earlier Archean structure.

These results provide compelling evidence for a continent wide episode of 1.9 Ga

asthenospheric upwelling spanning much of the western Canadian Shield, implying the

integral role of this upwelling event in the reactivation of the Archean craton.

Lithospheric Exhumation

Multistage exhumation of the extensive regions of lower crust in the East Lake

Athabasca region occurred during the 200 m.y. period of instability following

lithospheric disruption. Final unroofing by ca. 1.7 Ga is constrained by

thermochronological data (Chapter 3) and the deposition of sediments of the Athabasca

basin across the exhumed granulites at this time. The changing tempo of exhumation and
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associated juxtaposition of HP granulite domains during unroofing was driven by the

evolving regional contractional and extensional regimes across the Laurentian

supercontinent during and following its final assembly. This suggests the ultimate

exposure of deep crust in the western Churchill Province largely owes to the protracted

duration of lithospheric instability. Multistage exhumation histories characterized by

pulses of exhumation punctuated by intervals of crustal residence may typify the

exhumation of lower continental crust. The exceptional preservation of the high-grade

assemblages in the rock across the region may be due to their former life as dehydrated

granulites in the lowermost crust that limited the availability of fluids for retrogression

during unroofing. The exhumation of the unusually extensive and well-preserved

exposures of lower crust in the western Churchill Province is directly linked with the

record of lithospheric disruption in this region. The unusual nature of this lithospheric

history may in part explain the paucity of comparable exposures preserved elsewhere on

Earth.

Lithospheric Preservation

The preservation of exhumed lower crust in the East Lake Athabasca region from

ca. 1.7 Ga until the present attests to the re-attainment of a stable lithospheric

configuration in the western Churchill Province. The spatial location of the East Lake

Athabasca region in the middle of the Laurentian supercontinent that originally was a

central factor i its lithospheric disruption, is also inferred to have played an important

role in this region's subsequent preservation due to lateral shielding within the middle of

the Laurentian supercontinent. Low temperature (U-Th)/He zircon and apatite data

corroborate the extended residence of these rocks at shallow crustal levels (< 2 km)

following unroofing (Chapter 4). These data also permit assessment of vertical motions

in the western Churchill Province that reflect the ongoing response of the continental

interior to plate tectonic and mantle processes during later craton margin accretionary and

rifting processes. These subtle episodes of uplift and subsidence represent a continuum

with the lithospheric perturbation processes responsible for earlier destabilization of this

craton.
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CONCLUSIONS

Lower continental crust exposed in the East Lake Athabasca region retains an

exceptional record of lithospheric stabilization, reactivation, and exhumation. Early

stability is analogous to the history inferred for the rocks resident at the crustal base of

most Archean cratons. Similarly, deep crustal perturbation owing to asthenospheric

upwelling and plate margin tectonic processes is commonly recorded as episodes of

magmatism and metamorphism in the deep crust. However, the history in the East Lake

Athabasca of an event severe enough to expose the base of the crust to high temperatures

followed by its exhumation dramatically differs from that preserved in most high-

pressure granulites. We attribute this unusual record to the location of these rocks at the

center of the Laurentian supercontinent during its assembly. The rarity of such records

recognized in crustal rocks may be compounded by the common destruction of

continental lithosphere that has been destabilized. Following 200 m.y. of lithospheric

instability that culminated in the exhumation of the deep crust, this region apparently re-

achieved a stable lithospheric configuration. Its subsequent survival was aided by its

position within Laurentia, and low temperature thermochronological data help to

constrain the uplift and subsidence history of this stabilized continental interior. The

changing patterns of mantle dynamics and plate tectonic interactions thus are manifested

as a continuum of lithospheric perturbations, from the subtle vertical motions of

continents to the destabilization and potential destruction of continental lithosphere.

Future studies that document the range of continental behavior in response to a variety of

plate tectonic and mantle processes in this and other regions is essential to gain a more

complete understanding of continental formation and survival.

REFERENCES

Baldwin, J.A., Bowring, S.A., Williams, M.L., and Williams, I.S., 2004, Eclogites of the
Snowbird tectonic zone: petrological and U-Pb geochronological evidence for
Paleoproterozoic high-pressure metamorphism in the western Canadian shield:
Contributions to Mineralogy and Petrology, v. 147, p. 528-548.

Bohlen, S.R., and Mezger, K., 1989, Origin of granulite terranes and the formation of the
lowermost continental crust: Science, v. 244, 326-329.

Bohlen, S.R., 1991, On the formation of granulites: Journal of Metamorphic Geology, v.
9, p. 223-229.

180



Chapter 5 - Synthesis

Chopin, C., 2003, Ultrahigh-pressure metamorphism: tracing continental crust into the
mantle: Earth and Planetary Science Letters, v. 212, p. 1-14.

Ellis, D.J., 1987, Origin and evolution of granulites in normal thickness crust: Geology,
v. 15, p. 167-170.

Farmer, G.L., Bowring, S.A., Williams, M.L., Christensen, N.I., Matzel, J.P. and Stevens,
L.P., 2005, Contrasting lower crustal evolution across an Archean-Proterozoic
suture: Physical, chemical and geochronologic studies of lower crustal xenoliths
in southern Wyoming and northern Colorado, in, The Rocky Mountain region: an
evolving lithosphere, eds. K.E. Karlstrom, G.R. Keller, eds.: Geophysical
Monograph Series, v. 154, p. 139-162.

Hanmer, S., 1997, Geology of the Striding-Athabasca mylonite zone, northern
Saskatchewan and southeastern District of Mackenzie, Northwest Territories:
Geological Survey of Canada Bulletin, v. 501, pp. 1-92.

Harley, S.L., 1989, The origins of granulites: a metamorphic perspective: Geological
Magazine, v. 126, p. 215-247.

Harley, S.L. and Black, L.P., 1997, A revised Archean chronology for the Napier
Complex, Enderby Land, from SHRIMP ion-microprobe studies: Antarctic
Science., v. 9, p. 74-91.

Hoffman, P.F., 1988, United Plates of America, the birth of a craton: Early Proterozoic
assembly and growth of Laurentia: Annual Reviews of Earth and Planetary
Science Letters, v. 16, p.545-603.

Indares, A., 1995, Metamorphic interpretation of high-pressure-temperature pelites with
preserved growth zoning in garnet, Eastern Grenville Province, Canadian Shield:
Journal of Metamorphic Geology, v. 13, p. 475-486.

Jordan, T.H., 1978, Composition and development of the continental tectosphere: Nature,
v. 274, i. 544-548.

Kopf, C. 1999. Deformation, metamorphism, and magmatism in the East Athabasca
mylonite triangle, northern Saskatchewan: Implications for the Archean and Early
Proterozoic crustal structure of the Canadian Shield. Ph. D. dissertation thesis,
University of Massachusetts-Amherst, p. 139.

Krikorian, L. and Williams, M.L. 2002. Paleoproterozoic high grade metamorphism in
the Wholdaia Lake segment of the Snowbird Tectonic Zone, Northwest
Territories. Geological Association of Canada-Mineralogical Association of
Canada, Saskatoon, Saskatchewan, Program with abstracts, 27: 64.

Mahan, K.H., 2005, Exhumation of exposed deep continental crust, western Canadian
Shield: Integrating structural analysis, petrology, and in situ geochronology: PhD
thesis, University of Massachusetts, Amherst, Massachusetts.

Mahan, K.H., Flowers, R.M., Williams, M.L., Goncalves, P., Bowring, S.A., and
Jercinovic, M.J., 2005, A P-T-time-deformation path for exposed deep continental
crust in the Snowbird tectonic zone, western Canadian shield: GSA Cordilleran
Session Meeting abstract, San Jose, CA.

O'Brien, P. J. & Carswell, D. A., 1993. Tectonometamorphic evolution of the Bohemian
Massif: evidence from high-pressure metamorphic rocks. Geologische
Rundschau, v. 82, p. 531-555.

181



Chapter 5 - Synthesis

O'Brien, P.J. and Rotzler, J., 2003, High-pressure granulites: formation, recovery of peak
conditions and implications for tectonics: Journal of Metamorphic Geology, v. 21,
p. 3-20.

Percival, J. A. & Card, K. D., 1983. Archean crust as revealed in the Kapuskasing Uplift,
Superior Province, Canada. Geology, v. 11, p. 323-326.

Schmitz, M.D. and Bowring, S.A., 2003, Ultrahigh-temperature metamorphism in the
lower crust during Neoarchean Ventersdorp rifting and magmatism, Kaapvaal
Craton, southern Africa: GSA Bulletin, v. 115, p. 533-548.

Williams, M.L., Hanmer, S., Kopf, C. and Darrach,M., 1995, Syntectonic generation and
segregation of tonalitic melts from amphibolite dikes in the lower crust, Striding-
Athabasca mylonite zone, northern Saskatchewan: Journal of Geophysical
Research, v. 00(B8), p.15,717-15,734.

Williams, M.L., Mellis, E.A., Kopf,C. and Hanmer,S., 2000, Microstructural
Tectonometamorphic processes and the development of gneissic layering: a
mechanism for metamorphic segregation: Journal of Metamorphic Geology, v. 18,
p.41-57.

Williams, M.L. and Hanmer, S., 2005, Structural and metamorphic processes in the lower
crust: Evidence from an isobarically cooled terrane, the East Athabasca mylonite
triangle, In: Evolution and Differentiation of the Continental Crust, ed. M. Brown
and R. Rushmer: Cambridge University Press, ---.

Zhao, G., Cawood, P.A., Wilde, S.A. and Lu, L., 2001, High-pressure granulites
(retrograded eclogites) from the Hengshan complex, North China craton:
Petrology and tectonic implications: Journal of Petrology, v. 42, p. 1141-1170.

Zingg, A., 1990. The Ivrea crustal cross-section (northern Italy and southern
Switzerland). Exposed cross-sections of the continental crust; proceedings. NATO
Advanced Study Institute on Exposed Cross-Sections of the Continental Crust,
317, 1-19.

182



Appendix A

APPENDIX A: DESCRIPTION OF MINERALS ANALYZED BY U-Pb

Titanite

Sixteen single-grain titanite fractions from six samples across the Chipman

domain yielded 206 Pb/207Pb dates that range from 1882.1 to 1897.5 Ma. Mafic granulite

sample 02M133A from Cora Lake on the western side of the domain contains scarce,

yellowish-brown titanite fragments that yielded two indistinguishable dates of 1885 and

1886 Ma. Chipman mafic granulite dike sample 03-52 and Chipman tonalite sample 03-

5C were both collected from the central part of the Chipman domain at Chipman Lake.

Three titanite fractions from 03-52 comprising light brown grains yielded dates from

1882 to 1886 Ma. Abundant titanite grains from 03-SC are honey-colored and anhedral,

with three fractions that yielded dates from 1883 to 1896 Ma. Sample SZ00-196C is a

Chipman mafic dike, and sample SZ00-196B is a heterogeneous Chipman tonalite, both

from Woolhether Lake in the southern central part of the domain. Titanite grains in both

samples are abundant, medium to dark brown, flattish grains with common core and rim

morphologies that yielded seven fraction dates ranging from 1885 to 1898 Ma. One

titanite fraction from Fehr granite sample 02-185, collected from the easternmost

Chipman domain and containing abundant tan, ovate to rounded titanite, yielded a date of

1895 Ma.

Titanite grains from two samples in the Hearne domain are distinctly younger

than those in the Chipman domain. Three titanite fractions from biotite granite sample

01M144 of Balliet Lake, comprising anhedral light brown titanite, yielded dates from

1745 to 1784 Ma. Calcsilicate sample 02M45, collected at Charlebois Lake, is the

furthest east sample for which titanite data was acquired, and contains abundant, brown

to dark brown irregular grain. Three fractions range from 1814 to 1819 Ma.

Apatite

Apatite fractions from three Chipman domain samples, one northwestern domain

sample, two southern domain samples, and one Hearne domain sample yielded

successful, radiogenic analyses. Eight apatite fractions from two samples in the Chipman

domain yielded a span of 206 Pb/207Pb dates from 1784 to 1853, with three fractions from a

third sample that define a systematically younger apatite population. Chipman mafic dike
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sample 03-52 from the central Chipman domain contains clear, ovate flat apatite grains.

Three single and two multigrain fractions characterized by a range of grains sizes yielded

dates from 1784 to 1844 Ma. One single and two multigrain fractions of clear, ovate

apatite grains with a range of grain sizes from Chipman tonalite sample SZ00-196B

yielded dates from 1815 to 1853 Ma. Chipman mafic granulite sample 03-88A is from

the northeastern margin of the Chipman domain at Bompas Lake. Clear, irregularly

shaped blocky apatite grains in this sample were characterized by the highest Pb*/Pbc

ratios of analyzed apatite grains, and yielded distinctly younger dates single and

multigrain fraction dates from 1743 to 1752 Ma.

Northwestern domain felsic granulite sample 03-196 contains ovate to round,

clear apatite. Three multigrain fractions yielded dates from 1768 to 1850 Ma, coinciding

with the span of apatite dates for the central part of the Chipman domain.

Seven apatite fractions from two samples in the southern domain yielded dates

from 1865 to 1901 Ma, distinctly older than dates obtained from the other domains. Axis

mafic granulite sample 02-281 from the central part of the southern domain contains

round to ovate apatite grains that yielded four single grain fraction dates from 1885 to

1901 Ma. Three apatite single grain fractions from eclogite sample 01SZ40B from the

northern part of the southern domain, comprising irregular hazy grains, yielded dates

from 1865 to 1880 Ma.

One single grain fraction of ovate, somewhat irregular apatite from biotite granite

sample 01M144 from the Hearne domain yielded a 206Pb/207Pb date of 1746 Ma,

consistent with apatite dates from sample 03-88A on the eastern margin of the Chipman

domain. Five other apatite fractions from this sample contained Pb*/Pbc ratios two low

to yield meaningful dates.

Rutile

Rutile grains in three samples from the western, central and northern Chipman

domain were analyzed. Rutile fractions were analyzed from two samples in the

northwestern domain, and one sample from the central part of the southern domain. No

rutile was identified in lower grade, amphibolite facies rocks processed from the Hearne

domain.
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Six single grain rutile fractions analyzed from the central and west-central part of

the Chipman domain yielded dates from 1851 to 1869 Ma, with four distinctly younger

analyses obtained from the northeastern margin of the domain. Rutile grains from

Chipman dike sample 03-52 are scarce, translucent, irregular red shards that are highly

radiogenic and yielded four precise single fragment dates from 1851 to 1869 Ma. Felsic

granulite sample 03-175A from the western part of the domain contains abundant, large

(hundreds of microns), opaque, dark red fragments with external Fe-Ti oxide staining that

yielded two dates of 1853 and 1857 Ma. A limited population of small, elongate,

translucent, light red tabular rutile fragments were extracted from mafic granulite sample

03-88A near the northeastern edge of the domain. Three single and one multigrain

fractions yielded dates from 1771 to 1808 Ma, systematically younger than rutile

analyses from the central and western parts of the domain.

Six single grain rutile fractions from the northwestern domain yielded dates from

1780 to 1875 Ma Three fractions from felsic granulite sample 03-196A, comprising

mostly opaque, dark red fragments with Fe-Ti oxide staining, yielded dates from 1796 to

1830 Ma. Felsic granulite sample 03M13 from the eastern side of the domain contains

abundant, large, dark red, opaque rutile grains, and yielded three fractions from 1831 to

1875 Ma.

Five single grain fractions of rutile analyzed from the central part of the southern

domain were systematically older than rutile grains from the other domains. Axis mafic

granulite sample 02-281 contains abundant, irregular, translucent to opaque rutile grains

that yielded dates from 1874 to 1882 Ma.
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APPENDIX B. 40AR/39AR LASER FUSION HORNBLENDE FRAGMENT DATA

Table 131. Chipman domain 'Ar/3lAr laser fusion hornblende fragment data
40Ar(r) Aoe ± 2s

36Ar(a) 39Ar(k) 4OAr(r) A(r) A
(%?c) (Ma)

02M 133A
4A025 ( 29 0.00010 0.13702 9.22261 99.69 1875.95 ± 5.94
4A025 0- 24 0.000X)4 0.12105 8.16848 99.85 1878.88 ± 6.20
4A025( 27 0.00008 0.12646 8.71564 99.73 1903.65 ±+ 6.18
4A025 ( 36 0.(XXXX) 0.08745 6.08527 1 ).0()0 1915.00 ±+ 7.17
4A0250( 38 0.00003 0.10464 7.45452 99.87 1942.77 + 6.62
4A0256 i26 0.0000(()4 0.11899 8.68821 99.85 1972.27 ±+ 6.89
4A025(q 23 0.00002 0.09094 6.66424 99.92 1976.65 ±+ 7.06
4A0250 21 0.0(X)03 0.10853 7.96838 99.90 1978.88 ± 6.65
4A025(422 0.00002 0.08811 6.66045 99.93 2014.12 ± 7.20
4A0250(i25 0.0(X)05 0.12944 9.78811 99.83 2014.49 ± 6.29
4A025@( 37 0.000() 0.10994 8.33088 100.00 2017.05 ± 7.33
4A025(a28 0.0(X)06 0.07985 6.14462 99.73 2035.79 + 10.08
4A025( 4() 0.(K0002 0.06661 5.31785 99.91 2080.85 + 8.93
4A02501 34 0.(XX)08 0.095(X) 8.07868 99.71 2159.67 + 6.93
4A025 @ 35 0.00004 0.05923 5.09197 99.78 2173.4) + 10.05
4A025 (t 31 0.(X)(X)5 0.08887 7.67034 99.81 2178.33 ± 7.89
4A025¢ 32 0.00005 0.07925 7.14264 99.80 2233.41 + 7.62
4A025(i 33 0.0(X)07 0.07134 6.87450 99.72 2320.04 + 8.29
4A025( 39 0.00004 0.07103 7.73459 99.84 2482.27 + 8.77
4A0250@ 30 0.00009 0.08636 9.56393 99.72 2504.96 + 8.44

SZOO- 196C
4A0()28 (89 0.0(XX)5 0.12296 8.25724 99.82 1873.23 6.32
4A028 ' 10() 0.(H)00 0.09336 6.36313 100.00 1890.56 ± 6.50
4A028 88 0.0(X)5 0.12313 8.46193 99.83 1X)0.34 ± 6.21
4A028084 0.00003 0.08078 5.61715 99.83 1914.12 _8.63
4A0()28(085 0.(XX)03 0.10625 7.37993 99.89 1912.79 + 6.37
4A028¢ 91 0.00006 0.09526 6.66187 99.72 1920.90 ± 7.15
4A0(28( 87 0.(X)007 0.10655 7.51321 99.74 1930.68 ± 6.91
4A028( 99 0.00005 0.08707 6.26103 99.75 1953.91 + 7.42
4A028(0 82 0.0((X)(05 0.10946 7.86677 99.81 1953.32 ±+ 6.68
4A028 (i90 0.00008 0.10118 7.29013 99).66 1956.33 ±+6.80
4A028 ( 92 0.0(X) 13 0.10206 7.39395 99.49 1962.90 + 6.93
4A0286i83 0.(}(X) 0.10945 7.91268 99.63 1960.4() + 6.28
4A028(-' 96 0.0((X) 15 0.12608 9.13124 99.50 1962.45 ±+ 6.27
4A028 9 0.00024 0.11335 8.25613 99.16 1969.35 + 6.17
4A028( 81 0.0000(((9 0.10966 8.04709 99.66 1978.20 ± 6.60
4A028(0 98 0.00019 0.10967 8.35140 99.33 2023.00 + 6.39
4A0288t 6 0.0000)5 0.06606 5.11196 99.73 2042.63 + 8.86
4A028 ( 95 0.00014 0.10823 8.52350 99.51 2064.12 ±_6.43
4A0280 94 0.0(X) 14 0.10987 9.00964 99.53 2114.13 ± 6.90
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Table B I. (Continued)

40Ar(r) Age _ 2s36Ar(a) 39Ar(k) 4OAr(r) 
(CT) (Ma)

03-52
4A023(85
4A023 92
4A0230 79
4A0230:99
4A023 1( 00
4A023(080
4A023 0.78
4A023C(93
4A023(497
4A023C 73
4A()23(' 96
4A023@ 86
4A0230 83
4A023 9 1
4A023(0.89
4A023 82
4A023 87
4A023 77
4A023(4 71

4A023 81 
4A023! 95
4A023 76
4A023 84
4A023 72
4A0230t94
4A023@_ 74
4A023@ 75

4A023@ 98
4A023a 90)

0.()0 16

0.00005
(.)0 15

0.0001 1

0.(008
0.00019
0.(XX)07

0.00004
O.(X)0 3

0.0001 3

(.(X)0 18

0.00021
0.000 17
0.00002
0.(X()019

0.00008
0.000((19

f.000(i 
0.0(X)05

0.00011
(.()0( 1

0.00)09
0.00012
0.00007
0.000) 13
0.00007
0.(X)(X)5

0.00004
0.00007

al'ercentage of rmdiogenic 40Ar

0.16380
0.07469
0.15160
0.08503
0.06339
0.11457
0.07592
0.05214
0.07388
0.09150
0.07148
0.12980
0.135 87
0.01384
0.11731
0.05649
0.07410
0.05477
0.05391
0.05624
0.03942
0.05978
0.06498
0.05305
0).08930
0.04554
0.03957
0.0303 1

0.03038
is reported

12.36031
5.64884

11.97808
6.78723
5.50936
9.99917
6.83827
4.86466
6.92192
8.66841
6.87650

12.58105
13.58436

1.49880
12.75806
6.22666
8.80797
6.69494
6.90515
7.16381
5.11971
8.09056
8.79731
7.31417

13.77583
7.17753
6.46288
6.79371
6.89486

bfor each anal

99.61
99.72
99.64
99.52
99.56
99.43
99.69
99.75
99.44
99.55
99.25
99.52
99.63
99.62
99.57
99.60
99.38
99.56
99.79
99.54
99.36
99.66
99.60
99.71
99.72
(9.7()
99.77
99.81
99.70

2020.06
2022.74
2076.36
2088.94
2195.74
2200.99
2241.23
2286.61
2292.13
2306.45
2326.50()

2336.34
2377.11
2483.64
2489.56
2507.81
2610.96
2649.56
2714.76
2706.97
2734.50
2792.59
2793.07
2818.97
2981.01
3012.37
3064.74
3543.93
3563.24

± 6.46
+8.08
± 5.X)
+ 7.55
± 9.89
± 6.29
± 8.46
± 9.40
± 8.01
± 9.19
± 7.77
± 6.50
± 7.35

23.61
± 6.65
± 9.48
+ 9.45
± 9.44
± 11.10
± 12.76
± 12.41

± 10.72
±9.60
± 10.38
± 12.20
± 11.02
± 15.04
± 14.00
± 18.43

sis. Incertainties are quoted at 2 sigma
and do not include the propagated errors in irradiation parameter J.
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Table B2. Northwestern domain *'Ar/3 Ar laser fusion hornblende fragment data'
4()Ar(r) Age ± 2s

36Ar(a) 39Ar(k) 4OAr(r) 4 ) (Ma)
(1 (Ma)

96W23C
4A025@(43 0.(0009 0.1 1560 7.95172 99.67 1901.42 ± 7.02
4A02501,46 0.00012 0.12597 8.82465 99.59 1922.95 ± 6.41
4A025 ( 56 0.00002 0.09775 6.91439 99.90 1934.37 ± 6.79
4A025(~:42 0.00017 0.11087 7.84543 99.37 1934.88 ± 6.13
4A025(4 58 0.000 15 0.07458 5.43675 99.18 1970.24 ± 9.34
4A025(6 49 0.00009 0.08246 6.03222 99.56 1974.46 + 6.80
4A025 (45 0.00012 0.07464 5.46798 99.36 1976.15 ±+ 8.19
4A025 (53 0.(XX)06 0.09450() 6.96169 99.74 1982.97 ± 7.14
4A025 14 - 0.00013 0. 1 0305 7.62904 99.49 1988.84 ± 6.49
4A025(a48 0.0(X)0015 0.07993 6.(04327 99.27 2014.36 ± 11.15
4A0251 47 0.00018 0.09419 7.20082 99.29 2027.74 + 6.98
4A025 51 0.0(X)06 0.08028 6.12753 99.71 2025.88 _ 7.50
4A025( 55 0.00005 0.081 35 6.25128 99.74 2034.05 ± 8.30
4A025 (- 41 0.0((XX)9 0.12324 9.42375 99.73 2028.08 ± 6.34
4A025059 0.00026 0.10027 7.99447 99.03 2079.27 + 7.39
4A025 52 0.0(X)8 0.093 11 7.52804 99.70 2096.55 + 7.69
4A025 ( 60 0.(00010 0.10775 8.72379 99.(6 2098.25 + 6.48
4A025 N 5- 0.0()00X)7 0.10292 8.76975 99.76 2162.20 +6.99
4A025(5() 0.(00011 0.07998 7.24702 99.55 2240.30 ± 7.50

03-197B
4A0230) 50 0.00008 0.13020 8.67227 99.72 1868.25 6.44
4A()23( a39 0.(X)(X)5 0.11057 7.48617 99.79 1887.33 _ 6.40
4A023@i 3'7 0.00009 0.12305 8.34531 99.70 1889.38 ± 6.85
4A0231, 49 0.00(X)5 0.12099 8.20878 99.81 1889.79 + 6.08
4A023. 46 0.00003 0.11973 8.12492 99.87 1890.0(0 +6.46
4A023 ( 4 0 .(X)008 0.10980 7.56880 99.68 1908.49 + 6.58
4A023 33 0.(00008 0.08874 6.12821 99.60 1910.61 ±8.87
4A0()23(41 0.)00006 0.12157 8.39925 99.78 1911.17 ±+6.16
4A023(@t 32 0.00005 0.08923 6.17342 99.74 1912.83 ± 8.97
4A023(a 38 0.00004 0.10143 7.14185 99.85 1933.58 ± 7.60)
4A023.1 34 0.()(009 0.09261 6.52963 99.60 1935.14 ± 8.81
4A0230 .35 0.0(X)08 0.10425 7.38663 99.67 1940.98 ± 7.03
4A023@ 42 0.00008 0.13456 9.64287 99.76 1954.50 ± 6.30
4A023( 40 0.(X0)007 0.12449 8.94889 99.76 1958.21 ± 6.25
4A023@ 47 0.00003 0.12022 8.68623 99.91 1 964.28 ± 7.01
4A023(qt 45 0.00006 0.11558 8.40325 99.78 1971.81 ±+ 6.46
4A023 t@36 0.00008 0.12170 9.00887 99.72 1993.46 ±7.91
4A023(4.3 0.(X)(X)8 0.12098 9.00(429 99.74 1999.96 + 7.13
4A023 48 0.00007 0.10512 7.88091 99.76 2(0)8.82 ± 7.87
4A023( 31[ 0.(XX)06 0.08427 6.93209 99.75 2122.96 ± 8.89
' See notes in Table 1 1.
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Table B3. Southern domain *'Art/'Ar laser fusion hornblende fragment dala '

40A r(r) Age _ ±2s
36Ar(a) 39Ar(k) 4OAr(r) Ar(r) (Ma)(c~) ~(Ma)

SZOO- 18 D

4A028@i63 0.00000 0.07665 5.22105 100.00 1889.95 + 6.33
4A028( 69 0.000)1 0.10562 7.28722 99.96 1904.97 + 5.93
4A028@_80 0.000(00 0.09334 6.44366 100.00 1905.61 ±+ 5.92
4A028C7() (.(H0HO 0.0I()57 7.03490) 100).0( 1921.15 +± 5.60
4A028@(68 0.000)05 0.11462 8.03303 99.81 1923.45 +± 5.94
4A028 ( 64 0.000()6 0.100)81 7.18827 99.74 1943.86 + 6.12
4A028X76 0.00001 0.11953 8.56951 99.96 1950.39 +± 5.74
4A028@'71 0.0(X)) 0.10)794 7.80424 99.63 1960.51 ± 5.69
4A028(0 77 0.00003 0.12029 8.87153 99.89 1984.30 _± 5.71
4A0280'61 0.0(0) 11 0.1 3488 9.96689 99.67 1986.59 ± 6.04
4A028 65 0.000)4 0.09772 7.26210 99.84 1993.46 ± 6.22
4A028 78 0.({)(1)3 0.08517 6.41527 99.86 2(X)9.81 ± 6.40
4A028 74 0.00005 0.09658 7.40432 99.78 2031.20 ± 6.44
4A028 66 0.()005 0.07985 6.23949 99.76 2054.47 ± 6.80
4A028@( 67 0.00002 0.10522 8.36370 99.92 2075.58 ± 6.51
4A028 @62 0.000)8 0.08561 6.81870 99.64 2078.10 ± 6.56
4A028(1 75 0.0000)2 0.09906 8.18063 99.92 2122.86 ± 7.40
4A028(0:79 0.000)8 0.11215 9.53658 99.76 2159.61 ± 5.88
4A028 72 0.00010 0.10345 8.92769 99.67 2178.19 + 6.53
4A0()280 73 0.(0(H)5 0.08961 8.7()449 99.82 2330.39 ± 7.64

0 SZ7X
4A023( Q52 0.00008 0.11731 7.97917 99.72 1896.01 ± 7.54
4A0230 59 0.00002 0.09171 6.27920 99.89 1 903.77 ± 9.06
4A023(p 61 0.0()(0)8 0.13765 9.41634 99.75 190)2.78 ± 5.91
4A023 56 0.00004 0.12266 8.48736 99.84 1916.18 ± 6.89
4A023066 0.0(0X)9 0.12959 8.98837 99.69 1919.03 + 7.99
4A0235. 5 0.0000)6 0.12033 8.40686 99.80 1927.61 + 7.26
4A023( 54 0(.000(11 0.12659 8.86604 99.64 1930.52 ± 6.07
4A0230 70 0.00005 0.09773 6.85990 99.77 1933.15 ± 10.31
4A023(a69 0.(X)014 0.13699 9.6610)9 99.57 1938.77 ± 6.47
4A023( 63 0.000(6 0.11460 8.11762 99.77 1944.00 ±8.37
4A023( 68 0.(X)008 0.10(662 7.59218 99.70 1950.25 +6.97
4A023( 62 0.00013 0.10010 7.05038 99.45 1937.24 + 8.16
4A0230C 58 0.()(X)004 0.11724 8.42876 99.86 1961.65 + 6.28
4A0230 53 0.0(010 0.13228 9.63530 99.68 1977.36 ± 6.04
4A023- 57 0.()00002 0.09930 7.28860 99.94 1986.58 + 8.92
4A023@ 51 0.0(X)04 0.10233 7.58602 99.85 1998.51 + 7.46
4A023(¢64 0.(X)00(9 0.11286 8.3610(6 99.67 1997.69 ± 8.02
4A023@ 60 0.00006 0.12480 9.28673 99.82 2003.10 + 6.99
4A023(O 65 0.()003 0.07750 6.08850 99.86 2069.24 ± 10(.54
4A023@(Q67 0.00003 0.09815 8.02603 99.88 2118.99 7.61
See notes in 'FTahble B 1.
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Table B4. Rae domain *4 Ar/3 Ar laser fusion hornblende fragment data"
4Ar(r) Age + 2s

36Ar(a) 39Ar(k) 4OAr(r) 4 ) (Ma)
(7c) (Ma)

99B-59
4A025 74 0.00000( 0.00853 0.55692 100.00 1841.15 +± 31.38
4A025C ;75 0.0(X)03 0.01532 1.05604 99.28 190()3.54 ± 29.32
4A025 71 0.00000 0.01147 0.83619 100.00 1970.04 ± 24.77
4A025 (4 70 0.()005 0.0 I 809 1.35228 98.96 2(X)000.22 ± 23.43
4A025 66 0.00026 0.02122 1.63644 95.49 2038.12 + 20.5 1
4A025(79 0.000(X) 0.00632 0.52196 10(N).00 2122.46 + 50.38
4A025 65 0.0(KX)0001 0.01498 1.39071 99.69 2271.31 ± 27.30
4A025 C 76 0.00007 0.02793 2.86481 9).25 2402.02 + 15. 10
4A025 68 0.000(K 6 0.01631 1.75216 97.38 2463.92 ± 24.63
4AO25(a 69 0.00070 0.02423 2.91126 93.38 2616.26 ± 17.74
4A025 C 78 0.O() 13 0.01070 1.5 1534 97.62 2848.00 ± .35.80
4A025(! 67 0.000(98 0.01603 2.82545 91).74 3167.45 ± 27.26
4A025 a73 0.00082 0.01507 2.98559 92.49 3344.05 + 28.33
4A025(a 72 0.00119 0.01552 3.20736 9(.11 3408.32 ± 27.28
4A0250(80 ) 0.000)29 0.01179 2.57177 96.81 3491.50 + 36.57
4A025( 77 0.00043 0.00820 2.26852 94.71 3865.23 + 45.01

'See notes in Table I1.
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T'able B5. Hearne domain 'ArP9Ar laser fusion hornblende frament data"

4OAr(r) Age ± 2s
36Ar(a) 39Ar(k) 4OAr(r) Arr) (Ma)

{"J) (Ma)
01M123C

4A025 05 0.0001 8 0.14828 8.67564 99.4)0 1721.84 ± 5.99
4A025 13 0.00013 0.18262 10.69851 99.64 1723.24 ± 5.71
4A025 10 0.(00009 0,10140 5.94054 99.57 1723.26 + 7.79
4A025(4 18 0.00010 0.16529 9.69880 99.69 1724.98 + 5.82
4A0251 1 0.0000)9 0.18130 10.64914 99.76 1726.14 + 5.87
4A025 C 17 0.(0XX)8 0. I 5691 9.22139 99.73 1726.73 ± 6.08
4A025 07 0.0) 0012 0.09947 5.84959 99.41 1727.45 ± 7.93
4A025 c(06 0.0) 013 0.18852 11.09501 9).65 1728.34 ± 5.64
4A025( 19 0.00013 0.10750 6.32995 99.41 1728.91 ± 7.03
4A025( 03 0.00(X)6 0.14108 8.30866 99.78 1729.12 ± 6.95
4A025(@ 14 0.00012 0.12070 7.11495 99.52 1730.09 ± 6.84
4A025 (04 0.00(H )8 0. 10860 6.40)285 99.64 1730.33 7.54
4A025 08 0.00012 0.08752 5.16681 99.34 1731.82 ±8.11
4A025(C 16 0.(X)011 0.1 1540 6.81593 99.52 1732.33 ±6.92

4A025@ 12 0.00008 0.12175 7.19179 99.66 1732.42 ± 6.58
4A025(C 15 0.00014 0.18942 11.19234 99.63 1732.78 + 5.65
4A025@ 09 0.00007 0.09446 5.58297 99.65 1733.01 ± 7.78
4A025 ( (20 0.(X)007 0.09426 5.60152 99.61 1739.09 ± 7.64

;See notes in Table B 1.
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APPENDIX C. 40AR/39AR LASER ABLATION MICA DATA

Table ('1. (hipman domain 4 'ArP'Ar Mica Laser Ablation Spot Data"
40Ar(r) Age 2s

36Ar(a) 39Ar(k) 4OArlr)
(7c) (Ma)

03-169E. biotite
4X022DI ().()1110) 0.05125 3.12566 48.8 1749.58 ± 22.87

4X()22D2 0.00)1.32 0.03974 2.47095 86.3 1771.12 + 14.13

4X022)3 0.00266 0.04263 2.64287 77.0 1767.91 ± 13.39
4X022D4 0.0003 1 0.03381 2.05490 95.7 1745.79 ± 17.88

4X022D5 0.0(K)140 0.06437 4.00253 90.7 1771.18 + 8.72
4X022D6 0.00501 0.07411 4.54283 75.4 1755.20 + 10.78

4XO22E I 0.00176 0.02510 1.54529 74.8 1760.17 + 18.36

4X022E2 0.00)116 0.02725 1.67499 83.1 1758.49 17.50

4X022E3 0.(X)207 0.02798 1.73936 74.0 1770.92 + 18.24

4X022E4 0.0(0237 0.03225 1.97208 73.8 1752.55 + 17.20

4X022F I 0.0() 154 0.06603 4.09754 90.( 1768.94 + 8.40

4XO22F2 0.(00)25 0.04182 2.6()223 97.3 1771.94 11 .34

4XO22F3 0.00078 0.02572 1.60141 87.4 1772.68 ± 17.18

4X022F4 0.00028 0.0 1977 1.23788 93.8 1779.21 + 21.17

4X022(i I 0.()(04) 0.07734 4.77973 97.6 1764.31 ± 8.17

4X022G2 0.(X)102 0.06005 3.68786 92.5 1757.37 ± 9.33

4X022i3 0.0)()009 0.04346 2.69488 99.( 1768.21 + 10.45

4X022(i4 0.(0003() 0.08042 4.95097 98.3 1760.10 8. 1

4X022(iS 0.00044 0.06673 4.11957 96.9 1763.12 ± 9.61
4X0226 0.0()(K)39 0.06902 4.27745 97.4 1767.56 _ 7.57

02-183(, muscovite
4X024J('I 0.00002 0.04387 2.69010 99.8 1759.45 _ 12.01
4XO24J('2 0.00035 0.04984 3.05483 96.7 1758.99 ± 10.83

4XO24J('3 0.()0005 0.01632 0.98729 98.5 1744.37 ± 15.91

4XO24J('4 0.00(X)2 0.04668 2.85784 99.8 1757.72 ± 10.33

4X024J('5 (.00()( 0.04514 2.76917 99.9 1759.99 ± 11.49
4X024JI) 0.00035 0.06741 4.12093 97.5 1756.02 ± 10.49

4X()24.11)2 0.(00011 0.06568 4.02430 99.2 1758.57 + 7.72

4X024.11)3 0.00002 0.06705 4.10747 99.9 1758.36 ± 8.28

4X024JI)4 0.000)04 0.06530 3.99771 99.7 1757.69 + 1.38

02-108B, biotite
4X032('A 1 0.00280 0.07489 4.51516 84.5 1740.50 + 7.74
4X()32('A2 0.00167 0.07472 4.49199 90. 1 1737.30 8 8.64

4X032('A3 0.00085 0.07185 4.33778 94.6 1742.15 _ 7.93
4XO32('A4 (.()0()9() 0.10498 6.35894 96.0 1745.81 + 6.14
4X032('B1 0.00370 0.06981 4.26507 79.6 1755.33 8.65
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Table CI'1. (Continued)

44Ar(r) Age - 2s
36Ar(a) 39Ar(k) 4OAr(r) () (Ma)

(Ma)
02-77B. biotite
4X022H4 0.00135 0.05723 3.48105 89.7 1746.54 ± 12.08
4X02212 0.00302 0.05489 3.334)5 78.9 1744.85 + 14.14

4X02212 0.(0)107 0.07098 4.31475 93.2 1745.80 + 14.81

4X032EA 1 ).01237 0.05470 3.37533 48.0 1762.64 ± 26.32
4X032EA2 0.0()318 0.06083 3.74197 79.9 1759.23 ± 18.47
4X032ECI 0.00243 0.06803 4.19824 85.4 1762.80 + 18.18
4X032EF1 0.00465 0.05972 3.68658 72.9 1763.07 ± 19.72

4X032EF2 ).00181 0.04539 2.79299 83.9 1759.41 ± 19.14
KX02213 0.00058 0.05840 3.59877 95.5 1761.03 + 11.41

KX022K 1 0.00137 0.05644 3.38782 89.3 1731.82 + 10.85

KX022K2 0.00105 0.07373 4.44951 93.5 1737.69 + 9.65
KX0221 I 0.00299 0.05556 3.36500 79.2 1741.72 + 11.88
KX0221L2 0.00084 0.03548 2.17712 89.7 1756.43 + 14.42

02-76B, biotite
4XO32HA 1 0.00491 0.09156 5.72176 79.8 1776.71 + 8.34

4XO32HA2 0.00160 0.04728 2.94221 86. I 1771.90 + 9.64

4X032HA3 0.00267 0.05201 3.27459 80.6 1785.23 + 11.35
4X032HA4 0.() 121 0.06088 3.82658 91.4 1783.18 + 8.01 

4X032HA5 0.(00) 121 0.07799 4.86821 93.2 1775.41 + 7.08

4X032HA6 0.()00173 0.08132 5.09198 9().9 1778.85 + 7.26

4XO32HA7 0.00184 (0.04894 3.08736 85.1 1787.35 + 10.21

4XO32HA8 0.00489 0.04815 2.99276 67.4 1770.47 + 11.82
4X032HB 1 0.00205 ().04458 2.81271 82.3 1787.52 + 15.27

4X032HB2 0.00198 0.05976 3.74528 86.5 1780.01 + 8.90
4X032HB3 0.00)211 0.03351 2.11825 77.3 1789.77 _ 13.05

4X032HB4 0.00106 0.0()5404 3.39735 91.6 1783.35 _ 10.37

4X032H I 0.00142 0.05673 3.5630(4 89.5 1782.42 + 11.84

4X032H('2 0.00166 .(05486 3.43919 87.5 1780.17 9+ ).55

4X032HD)2 0.(00162 0.02570 1.59793 77.0 1770.97 + 18.53

aPercentage of. radiogenic 4OAr is repolted for each analI sis. Incertainties are quoted at 2 sigma

and do not include the propagated errors in irradiation parameter J.
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Table C2. Northwestern domain 4"Ar/3 9Ar Mica Laser Ablation Spot Data'

4)Ar(r) Age + 2s
36Ar(a) 39Ar(k) 4OAr(r) (Ma)

(c~·) (M a)

03- 196A
4X024JA I 0.0005() 0.07360 4.49599 96.82 1755.28 + 7.70
4X024.JA2 0.00061 0.06432 3.96855 95.63 1766.51 + 8.01

4X024JA3 0.(0)062 0.05438 3.32053 94.79 1754.70 ± 9.92
4X024JA4 0.0()(00) 14 0.05206 3.19701 98.70 1761.09 ±+ 9.83
4X024JA5 0.(0)069 0.05941 3.65474 94.73 1763.07 ± 9.62
4X24JB 1 .((00048 0.04423 2.72551 95.07 1765.07 ± 11.56

4X024JB2 0.00047 0.04116 2.52434 94.82 1759.75 ± 11.09

4X024JB3 0.00108 0.03662 2.26943 87.70 1771.48 ± 12.77
4X032DD 1 0.00()4 0.12496 7.66744 99.86 1760.22 ± 7.58
4X321)DD2 (.(X)10() 0.13255 8.09807 99.64 1755.34 ± 7.08

4X032DF1 ).()(004() 0.06364 3.88957 97.06 1755.79 ± 8.96
4X032DF2 0.0)()07 0.060(61 3.73024 99.47 1763.70 + 10.11

BF02- 109A
4X024F( I 0.()0()(0043 0.05996 3.6648() 96.62 175 1.73 ± 10.09

4X024F('C2 0.00)(047 0.05139 3.14126 95.76 1751.82 ±+ 8.72
4X024F('.3 0.00004 0.05695 3.51904 99.66 1763.94 ± 8.14
4X024F('.4 0.00042 0.04723 2.91477 95.93 1762.56 ± 9.28
4X024CF(' 0.00058 0.04371 2.67446 93.99 1752.79 ± 9.01

4X024F('6 (.0()(19 0.04063 2.49305 97.83 1756.07 + 11.77

4X024F('7 0.00004 0.01140 0.69671 98.13 1751.43 ±+ 33.89
4X()24FI)I .(X) 128 0.08384 4.57374 92.39 1626.99 ± 8.14
4X024FD2 0.)()47 0.04184 2.24473 94.20 1609.27 + 11.14
4X024F)3 0.00(45 0.04546 2.65703 95.24 1701.99 ± 11.95
4X024FEI 0.00575 0.06708 4.10731 70.75 1753.67 ± 12.06

4X024FE2 0.00043 0.06559 4.00634 96.91 1751.04 + 9.56
4X024FE3 0.00186 0.(06208 3.81311 87.41 1757.21 + 9.45

;'Sce notes in 'l'able C(I.
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Appendix C

lahble C3. Southern domain *'Ar!3 Ar Mica Laser Ablation Spot l)ata'

36Ar(a) 39Ar(k) 4OAr(r) 4OAr(r) Ae + 2s
(%7) (Ma)

01 SZ78. Biotite
4X024(iA I 0.()29() 0.06015 3.91178 82.03 1822.03 ± 8.93
4X024GA2 0.02197 0.06411 4.14818 38.99 1816.25 +31.19
4X024(iA3 0.()I148 0.03443 2.23774 83.64 1821.39 + 12.57
4X024GA4 0.00088 0.04709 3.04332 92.13 1814.91 + 7.37
4X024GA5 .(0)19() 0.03415 2.24723 80.01 1835.75 + 11.27
4X024GA6 0.00068 0.05255 3.47143 94.51 1840.06 + 9.67
4X024iB 1 0.00225 0.04013 2.67700 80.11 1851.35 ± 14.30
4X024GB2 0.00023 0.04127 2.68465 97.56 1822.47 - 14.69
4X024GiB3 0.00663 0.04954 3.29775 62.75 1848.79 ± 17.03
4X024GB4 0.00132 0.03586 2.38558 85.93 1848.21 ± 15.73
4X024H E 1 0.00053 0.03627 2.44837 94.03 1864.96 ± 14.05
4X024HE2 0.0()0179 0.07937 5.32187 90.95 1857.33 + 8.33
4X024HE3 0.(000)29 0.07281 4.75856 98.21 1827.72 + 10.73
4X024H4 0.00383 0.05145 3.28672 74.39 1801.67 + 12.57
4X024HE5 0.00271 0.04139 2.66898 76.95 1812.22 + 13.63

01SZ1221. Biotite
4X0241A1 0.()00068 0.07738 5.01957 96.13 1819.20 - 8.19
4X0241A2 0.00(49 0.06114 3.91567 96.43 1804.44 + 7.97
4X0241A3 0.00027 0.04694 3.06768 97.44 1827.58 + 16.00
4X0241A4 0.00026 0.04134 2.68261 97.20 1819.61 + 24.67
4X0241B 1 0.00223 0.05514 3.68577 84.81 1853.66 ± 9.20
4X0241B2 0.00015 0.02899 1.95728 97.76 1865.35 + 12.18
4X241B3 0.0(0004 0.02838 1.93059 99.38 1874.09 + 23.53
4X0241C 1 0.002(6 0.05347 3.52259 81.75 1836.93 + 9.10
4X0241('2 0.)00347 0.04895 3.19014 75.66 1824.40 + 13.33
4X024JEI 0.00613 0.11023 7.11303 79.71 1813.15 +8.40
4XO24JE2 0.00212 0.09665 6.16838 90.78 1800.54 ± 6.88
4X024IE3 0.0(0499 0.06728 4.25164 74.24 1789.31 + 9.67
4X024.11E4 0.00()(- 0.06257 3.92143 74.94 1779.93 ± 10.27
4X024JE5 0.00()163 0.0147 4.02330 89.29 1829.39 + 11.53
4X024.1E6 0.00152 0.05942 3.80762 89.46 1805.21 ± 12.08

;'See notes in Tlable ('I.
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:lable C4. Rae doma

Girain:'Analvsis
99B-87, musco it
4X022B I

4X022B2
4X022B3
4IXO22B4
-X()22135

,4XO22B6
4XO22B7
4X022B8
·4X022M I
-4X022M2
.1X22M3
4X022N1M4

4X0)22N I
4X022N2
,4X022N3
-4XO22N4

03.- 193B. musco% itc
,4XO24FA I
·4X024FA2
-4X024FA3
4X024F;A4
-4XO24FB I
4X()24Ft2
4XO24FB3
4X(O24FB4
4X024GF I
4X024G E2
4X024G -3
4X024Gi kA4
AX8)' ltil.4

in "Ar'"Ar Mica l.aser Ablation Spo t Data"

3Ar AOAr(r) Age ± 2s36Ar~~~~a) 31Ar k) 4O ro1.q) )M

0.1)00))

0.00788
0.001)16
0.00567
0.00032
0.00589
0.00105
0.00006
0.00386
0.00006
0.00006
0.00248
0.00359
0.00047
0.00334
0.00113

0.1)0053
().Ol)()1 1

0.00025
0.00()()6
0.00088
0.00117
0.00147

.)0.00125
0.00002
0.10006
0.00027
0.000(07

03M92. lillsc\ it i
4X()24i(' 1 (0.0999
4X0)24GC2 0.00011
4XO124G(3 0.1))22 I
4X24G(iC4 0.02155
4X()24G( '5 0).()117

4X()24GC6 0.00000
4X024(iC( 7 0.1)00()9

4X024I) 1 0.02881

4X1O24(iD2 1).1()(l(

4X024GDI)3 0.00668
4X(124(i 1)4 0,01)123

4XO24(G 5 0.00026
4XO24G1)6 ().(1)7,5
4X032FC 1 0.00298
4X.32 F( ('2 .}( 11(4
4X032('3 (.00001
4X0)32F( 4 11.01)0(68

96W23. biotite
4X132(. AI 1 (.(1418
4XO32GA2 0.00178
4X1).32 A3 0.()(11027

4XO32G B 1 0.00097
4X032G1)1 1 .(11 17

4X032(ilD 0.00035
4X(L32G113 .10()14
4XO32G; k 0.00022
4X032(;[i2 0.0.0325
4X032GE3 0.00007
4X032(4 4 ()1(0.00070
4X032(E5 0).00048

See notes in Tlable C I.

0.00)637
0.01937
0.02196
0.04007
0.02175
0.04423
)0.03174
0.05215
0.1)8481)
0.04298
0.05299
0.05963
0.06812
0.05967
0.1)6897
0.06409

0.04834
().1)5795
0.04417
0.04138
0.03383
0.02821)
0.03173
0.03567
0.0536 1
0.04883
0.05375
0,)40)77

().03492
0.03 181
().031114

0.04432
0.030)68
0.04080
0.()39()4
0.01072
0.03188
0.04405
0.1)2492
0.03812
0.1141015

0.07342
0(.()474()

0.07516
0.(17962

(.1 1554
0.09419
0.02993
().08271
(. 1(578
0.08724
).()08112

0.07139
()0.0802()

0.06850
(1.()5()91

0.05113

0.38820
I. 12537

1.30803
2.35298
1.27464
2.66555
1.85883
3,11548
5.)2146
2.58240)
3. 12698
3.53975
4.1)2965
3. 54679
4.12987
3.74181

2.85189
3 .4 1885
2.59064
2.43845
2,0 1154
1,671')7
1.86664
2,111071
3.17524
2.861)00
3.17233
2.42432

2.06334
1,84543
I .98405
2.54864
1.84838

'..K-t)X2.5381
0.57381
1 )4757
2.65760
1.487,42
2.3 1020
2.5()1498

4.43 144

2.85201 9
4.54728
4,.78302

7.81563
6.38529
2 1)3128
5.53853
7.1)83.(14
5.85836
5.47286
4.76377
5.36(1(80
4.59750(
3.411139
3.43573

76.01
32.58
79.18
58.41

93.00
60.50
85.75
99.47
81.51)
99.30
99.47
82.84
79.18
96.23
8()11.71

91 78

94.78
99.112
97.27
99.31
88.56
82.84
81.08
85.0)6
99.86
935

97.58
99,.21

41.13
98.27

75.24
28.58
89.91

100.0
98.85
6.32

51.92
57.40
95.62
96.81
52.56
83.41
91(.31

99.96
95.96

86.37
92.40
96.22
95.08
99.3)
98.26
99.24
98.65
84.81
99.53
94.28
96.06

1762 .)00)
1709.16
1736.7()
1720.97
1718.90
'749.97
1718.20
1740.29
1730.36
1746.59
1726.49
1733.06
1729.26
1734.67
1742.88
1714.61

1716.50
1716.34
1709.97
1715.13
1725.210
1722.()4
1713.21
1719.76
1720.73
1708.42
1716.83

17 25.15

1727.68
1707.25
1742.24
1697.45
1749.()9
1732.33
17511.63
1619.88
1764.83
1750.75
1738.89
1755,92
17 63.51
1751.29
1747.77
1753.92
1 74597

1871.88
1874.38
1875.86
1860.02
18(,).(03
1863.36
1868.75
1855.96
1857.54
1862.81
180(.42
1864.10

50.92
±44.69

. 16.61
+ 20. 16

.e21.37
17.59
t 11.58

±i 7.81

t 8.53
± 10.39

8 X.7()
± 11.18
±10.92

± 7.71
t 111.(15
± 8.99

± 10.35
t 7.37
- 8.25
F 9.19

i 12.18
t 12.65
+ 15.06

t 13.45
+ 7.83
t 8.63

_ 7,67
i 9.65t ).(5

t .1.83
+ 17.00
± 18.40
+ 47.65
t 19.43
± 8.30
t 14.97

± 259.94
:t 25.60

+ 17.96
t 16.45
+ 17.17

22.01

± 9.28
t 8.39)
+ 7.66

t 8.45

7.0()
+ 8.40(
+ I1.77
± 6.74

-7.29
+ 6.91
+ 6.79
± 7.38
±7.42
+ 7.09
+7.11
± 7.68
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Appendix C

Table (C5. Hearne domain 4"'Ar"Ar Mica Laser Ablation Spot Data'

4OAr(r) Age 2s
36Ar(a) 39Ar(k) 40Ar(r)

('k,) (Ma)

02M23B, muscovite
4X024HA 1 0.000)20 0.02051 1.22340 95.50 1728.40 ± 17.70

4X024HA2 (.(XH)00 0.01884 1.13887 1(H).00 1743.63 + 11.27

4X024HA3 0.0000)4 0.03368 2.03676 99.44 1743.97 ± 11.22
4X024HA4 0.00001) 0.03335 2.(X)225 99.86 1735.78 + 9.35

4X024HA5 0.00)054 0.03567 2.15189 93.11 1741.22 + 11.07

4X024HA6 0.0)036 0.03182 1.91780 94.70 1740).01 + 12.02
4XO24HA7 (.O()01 0.02158 1.28868 99.79 1729.87 + 20.83

4X024HB I (.(00)O 0.01966 1.19332 I(H 0).00 1747.97 _ 11.93

4XO24HB2 0.(HNN)O 0.02378 1.42599 10().0() 1734.75 + 12.65

4X024HB3 .(02) 0.02310 1.38418 100.00 1733.59 + 10.87

02M23B, hiotite
4X024H(C1 0.00104 0.02282 1.36867 81.61 1734.86 + 16.44
4X024HC2 0.00087 0.02334 1.40494 84.53 1738.70 + 14.22
4X024HC3 0.00059 0.01884 1.12747 86.59 1732.10 + 19.36
4X024HC4 0.00033 0.01915 1.15524 92.28 1741.48 + 18.25
4XO24HDI 0.01)264 0.03345 2.02611 72.19 1745.77 + 17.10
4X024HI)2 0.00157 0.03050 1.83202 79.75 1736.27 + 15.06
4X024H1)3 0.00062 0.032(0) 1.92493 91.37 1738.17 + 11.65
4X024H)4 0.00052 0.02305 1.38483 89.95 1736.72 + 18.33

01 M 127B, muscox ite

4X032AA 1 0.00072 0.14553 8.86115 97.66 1751.63 + 6.19
4X032AA2 0.00038 0.15330 9.21674 98.80 1737.45 + 5.80
4X032AB3 0.00018 0.06195 3.78769 98.61 1756.22 + 8.41
4X032AB4 0.00027 0.06391 3.88608 98.01 1750.12 + 8.30
4X032AC( I 0.00012 0.13199 8.05809 99.58 1754.61 ± 7.29
4X032AC'2 (.()(029 0.06416 3.88596 97.83 1745.62 ± ::6.92
4XO32AC3 0.00001 0.1.3347 8.08666 99.98 1746.04 ± 5.97
4X032A('4 0.00146 0.07460 4.55013 91.34 1753.60 ± 7.97
4X032AD I 0.00003 0.1 0084 6. 12525 99.87 1748.86 ± 7. 15
4X032A D2 .()()009 0.1 1052 6.68678 99.61 1744.49 ± 8.78

01M 127B, biotitc
4X032BA 1 0.00622 0.05865 3.53455 65.78 1740.04 + 15.20
4X032B3A2 0.00095 0.09865 5.91369 95.45 1734.12 _ 6.21
4X032BA3 0.(1)229 0.10252 6.18261 90.13 1740).84 + 6.86
4X032B 13I (.00111 0.02919 1.78268 84.45 1754.82 + 17.55
4X032BB2 0.00226 0.02480 1.48333 68.92 1731.54 _ 16.23
4X032133 0.(K00)595 0.01300 0.78953 30.99 1748.66 ± 48.40
4XO32BB4 0.00209 0.01248 0.74736 54.77 1733.05 ± 33.07
4X032BC 1 0.00045 0.04461 2.70582 95.36 1747.21 + 9.48
4X032B('2 0.00073 0.03754 2.25910 91.27 1738.56 + I4.87
4X032BC 3 0.0(K)021 0.03421 2.06500 97.03 1741.79 + 13.67
4X032B('4 0.00017 0.03348 2.02417 97.62 1743.71 14.91
4X032B11) 0.00281 0.05190 3.14293 79.07 1745.49 _ 8.63
4X032BD2 (.(00119 0.05139 3.09487 89.83 1739.39 + 8.78
4X032BI)3 0.000()33 0.04985 2.98650 96.86 1733.46 + 7.80

"See notes in l'able C I.
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Appendix C

BF02-183C, Muscovite, Filename BF4X024H (75% of 1.5x scale)
Pellerin Lake msc rich schistose gneiss

All analyses excluding JC#3 (N = 8): 1758.3 ± 11.8 ( .67%/), MSWD = 0.05

J94-a, BFO2-183C msac (pos JC) J94-b, BF02-183C msc (pos JC)

1) 1759.5 ± 12.0
2) 1759.0 ± 10.8

1759.2 ± 13.8
(± .79%)

MSWD = 0.00

Analyses 1-2, 12/11/04 (M/F gain of 60);
Pt #1: 256 pm, 20 Hz, 3000 bursts

clean with 5 bursts
Pt #2: 256 pm, 20 Hz, 4000 bursts

clean with 10 bursts

3) 1744.4 * 15.9
4) 1757.7 t 10.3
5) 1760.0 ± 11.5

1756.0 ± 13.2
(± .75%)

MSWD = 1.37

exclude #3:
1758.7 ± 13.6

(± .77%)
MSWD = 0.09

Analyses 3-5, 12/11/04 (M/I- gain or 6U);
Pt #3: 256 lpm, 20 Hz, 1000 bursts (wanted more)

clean with 10 bursts
Pt #4: 256 pm, 20 Hz, 4000 bursts

clean with 10 bursts
Pt #5: 256 pm, 20 Hz, 4000 bursts

clean with 12 bursts

J94-c, BF02-183C msc (pos JD)

1) 1756.0 ± 10.5
2) 1758.6 ± 7.7

1757.7 ± 12.8
(± .73%)

MSWD = 0.15

Analysesl-2, 12/11/04 (M/F gain of 60);
Pt #1: 256 pm, 20 Hz, 4000 bursts

clean with 5 bursts
Pt #2: 256 pm, 20 Hz, 4000 bursts

clean with 10 bursts

J94-d, BF02-183C msc (pos JD)

3) 1758.4 ± 8.3
4) 1757.7 ± 11.4

1758.1 ± 13.1
(± .74%)

MSWD = .01

Analyses 3-4, 12/11/04 (M/F gain of 60);
Pt #3: 256 pm, 20 Hz, 4000 bursts

clean with 5 bursts
Pt #4: 256 pm, 20 Hz, 4000 bursts

clean with 10 bursts

Final reduction 12/16/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C2
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Appendix C

BF02-108B, Biotite, Filename BF4X032C (75% of 1.5x scale)
Steinhauer Lake, melt in Fehr granite

AI l analyses (N = 5): 1744.2 + 11.7 (+ .67%), MSWD = 2.65

J4-a, BF02-108BB bt, 4XO32Ca (pos 5)

1) 1740.5 ± 7.7
2) 1737.3 ± 8.6
3) 1742.2 ± 7.9
4) 1744.8 ± 6.1

mean:
1742.2 ± 11.8

(± .68%)
MSWD = 0.95

500 gm

Analyses 1-4, 12/17/04 (M/F gain of 60);
Pt #1: 182 pm, 20 Hz, 3000 bursts (clean 5) (hole through)
Pt #2: 182 pim, 20 Hz, 3000 bursts (clean 5) (hole through)
Pt #3: 182 gim, 20 Hz, 3000 bursts (clean 5) (hole through)
Scan #4:145 jIm, 20 Hz, 6 min manual

J4-a, BF02-108BB bt, 4XO32Cb (pos 5)

Analysis 1, 12/17/04 (M/F gain of 60);
Pt #1: 285 pm, 20 Hz, 2000 bursts (clean 5)

79.8% rad 40Ar, 0.070V 39Ar, 4.3V rad 40Ar
Pt#2: Jumped out of pan at start of 2nd shot.

Final reduction 12/21/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C3.
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Appendix C

BF02-77B, Biotite, File names 4X022J-I;BF4X032E All analyses (N = 13): 1747.6 a 11.8 (a .68%), MSWD = 2.55

Steinhauer Lake pegmatitic segregation All analyses except K25-b, (N= 11):
1752.7 a 12.1 (a .69%), MSWD = 1.29

K25-a, BF02-77B bt (4X022J; pos BF4X032Ea)

1) 2010.2 ± 15.4
4 2) 1745.8 ± 14.8

3) 1762.6 ± 26.3

4) 1759.2 ± 18.5

mean:
1752.8 ± 15.4

Analysis 1, 10/2/04; Analysis 2, 10/6/04 (±.88%)
Pt #1: 182 pm, 90 sec, 20 Hz, 1800 bursts (hole through) MSWD = 0.97
Pt #2: 182 pm, 90 sec, 20 Hz, 1800 bursts

Analysis 3-4, 12/18/04; M/F gain of 60
Pt #3: 182 pm, 20 Hz, 2500 bursts
Scan #4: 186 pm, 20 Hz, -~ 6 min manual

500 gIm

KX022K, K25-b, BF02-77B
1) 1731.8 ± 10.9
2) 1737.7 ± 9.7

mean:
1735.1 ± 13.3

(± .77%)
MSWD = 0.65

Analyses 1-2, 10/6/04
Scan #1: 1075 pm, 2 passes, 10 p-m/sec, 20 Hz,

87 pm spot, 4:19 min
Point #2:182 pm, 90 sec, 20 Hz, 1800 bursts

K25-c, BF02-77B bt (4X022L; poe BF4X032Ec)
1) 1741.7 ± 11.9
2) 1756.4 ± 14.4
3) 1762.8 ± 18.2

mean:
1750.7± 13.9

S( 79%)

4X022H, K25-d, BFO2-77B bt
1) 2394.4 ± 25.2
2) 2401.6 ± 12.4
3) 2402.9 ± 18.3
4) 1746.5 ± 12.1

Analyses 1-2, 10/6/04 MSWD= 2.34

Pt #1: 182 pm, 90 sec, 20 Hz, 1800 bursts (hole through)
79.5% rad 40Ar, 0.055V 39Ar, 3.36V rad 40Ar

Scan#2: 400 pm, 5 passes,10 pm/sec, 20 Hz,
87 pm spot, 4:45 min

90.2% rad 4OAr, 0.035V 39Ar, 2.16 V rad 40Ar

Analysis 3, 12/18/04; M/F gain of 60
Pt #3: 285 pm, 20 Hz, 2000 bursts (clean 5) (hole through)

86.7% rad 40Ar, 0.047V 39Ar, 3.0 V rad 40Ar

Analyses 1-2, 10/2/04; Analysis 3-4, 10/7/04
Pt #1: 182 pm, 90 sec, 20 Hz, 1800 bursts
Scan#2: 840 pm (25%), 3 passes, 10 pm/sec, 20 Hz, 87 pm spot, 5:03 min
Pt #3: 182 pm, 90 sec, 20 Hz, 1800 bursts
Pt #4: 182 pm, 90 sec, 20 Hz, 1800 bursts

4X0221, K25-e, BFO2-77B bt

1) 2365.0 ± 11.4
2) 1744.9 ± 14.1
3) 1761.0 ± 11.4

mean:
1754.6 ± 14.3

(± .82%)
MSWD = 3.18

Analysis 1, 1B/10t4; Analysis 2-3, 1016/04
Pt #1: 182 pm, 90 sec, 20 Hz, 1800 bursts
Scan #2:1050 pm (25%), 2 passes, 10 pm/sec, 20 Hz,

87 pm spot, 4:13 min
very irregular scan, stage kept hanging up.

Pt #3: 182 pm, 90 sec, 20 Hz, 1800 bursts

Grain loose when loaded in 4X032, unsuccessful

K25-f, BF02-77B bt (pos BF4X032Ef)

1) 1763.1 ± 19.7
2) 1759.4 ± 19.1

mean:
1761.2 ± 17.8

(± 1.01%)
MSWD = 0.07

Analyses 1-2, 12/18/04; M/F gain of 60
Pt #1: 285 pm, 20 Hz, 3000 bursts
Scan #2:106 pm, 20 Hz, - 6 min manual

Final reduction 12/21/D4: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C4
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Appendix C

BF02-76B, Biotite, Filename BF4X032H (75% of 1.Ox scale)
Chipman Lake pegmatite

I All analyses (N = 15): 1779.7 ± 11.6 (± .65%), MSWD = 1.15

K15-a, BF02-76B bt, 4X032Ha (pos 4)

1) 1776.7 ± 8.3
2) 1771.9 ± 9.6
3) 1785.2 ± 11.4
4) 1783.2 ± 8.0
5) 1775.4 ± 7.1
6) 1778.9 ± 7.3
7) 1787.4 ± 10.2
8) 1770.5 ± 11.8

mean:
1778.5 ± 11.7

(± .66%)
MSWD = 1.49

Analyses 1-8, 12/18/04, (M/F gain of 60);
Pt #1: 145 pm, 20 Hz, 6000 bursts (clean 10)
Pt #2: 185 pim, 20 Hz, 5000 bursts (clean 10)
Pt #3: 185 pm, 20 Hz, 6000 bursts (clean 10)
Pt #4: 185 pm, 20 Hz, 5000 bursts (clean 10)

two spots b/c went thru
Scan #5: 145 plm, 20 Hz, 10 jim/sec, 4 passes (clean 1 Hz)
Scan #6:145 pm, 20 Hz, 10 im/sec, 6 min manual (clean 2 Hz)
Pt #7: 185 pm, 20 Hz, 6000 bursts (clean 8)
Pt #8: 185 pim, 20 Hz, 6000 bursts (clean 5)

K15-b, BF02-76B bt, 4X032Hb (pos 4)

A I
nlaysoes I--r' 1 I .JIt, II IIvr gaIII vI WU I

Pt #1: 285 pm, 20 Hz, 5000 bursts (clean 5)
Scan #2: 145 pim, 20 Hz, 10 Ipm/sec, 6 min manual (clean 2 Hz)
Pt #3: 285 pm, 20 Hz, 6000 bursts (clean 5)
Scan #4: 145 pim, 20 Hz, 10 pm/sec, 6 min manual (clean 2 Hz)

K15-d, BF02-76B bt, 4X032Hd (pos 4)

K15-c, BF02-76B bt, 4X032Hc (pos 4)

1) 1782.4 ± 11.8
2) 1780.2 ± 9.6

mean:
1781.1 ± 13.5

(± .76%)
MSWD = 0.09

Analyses 1-2, 12/19/04, (M/F gain of 60);
Pt #1: 285 pm, 20 Hz, 6000 bursts (dean 5)
Pt #2: 285 gm, 20 Hz, 6000 bursts (clean 5)

1) discard
2) 1780.0 ± 8.9

Analyses 1-2, 12/19/04, (M/F gain of 60);
Pt #1: 285 pm, 20 Hz, 6000 bursts (clean 5)

only 7 cycles taken b/c rebooted
Pt #2: 285 pm, 20 Hz, 6000 bursts (clean 5)

Final reduction 12/21/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C5
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Appendix C

BF02-109A, Biotite, Filename BF4X0241 (75% of 1.5x scale)
Bompas Lake bt rich crenulated schist

All analyses excluding grain K14-c (N = 10): 1756.0 * 11.7 (= .66%), MSWD = 1.031

K14-b, BF03-183C bt (pos FC)
K14-a, BF03-183C bt (pos FC)

1) 1751.7 10.1
2) 1751.8 ± 8.7
7) 1751.4 ± 33.9

1751.8 ± 13.0
(± .74%)

MSWD = 0.00

Analyses 1-2, 12/11/04; Analysis 7, 12/12/04; (M/F gain of 60);
Pt #1: 256 gim, 20 Hz, 3000 bursts

clean with 5 bursts
Pt #2: 256 glm, 20 Hz, 3000 bursts

clean with 5 bursts
Pt #7: 256 im, 20 Hz, 2500 bursts

clean with 5 bursts

K14-c, BF03-183C bt (pos FD)

1) 1627.0 ± 8.1
2) 1609.3 ± 11.1
3) 1702.0 ± 12.0

1638.7 ± 12.2
(± .75%)

MSWD = 72.5

Analyses 1-3, 12/12/04; (M/F gain of 60);
Pt #1: 256 jim, 20 Hz, 3000 bursts

clean with 5 bursts
Pt #2: 256 gm, 20 Hz, 2000 bursts

clean with 5 bursts
Pt #3: 256 rim, 20 Hz, 2500 bursts

clean with 5 bursts

Analyses 3-6, 12/11/04 (M/F gain of 60);
Pt #3: 256 im, 20 Hz, 3000 bursts

clean with 5 bursts
Pt #4: 256 im, 20 Hz, 3000 bursts

clean with 5 bursts
Pt #5: 256 im, 20 Hz, 3000 bursts

clean with 5 bursts
Pt #6: 256 im, 20 Hz, 3000 bursts

clean with 5 bursts

K14-d, BF03-183C bt (pos FE)

)
1) 1753.7± 12.1
2) 1751.0 ± 9.6
3) 1757.2 ± 9.5

1754.0 ± 12.7
(± .72%)

MSWD = 0.42

Analyses 1-3, 12/12/04; (M/F gain of 60);
Pt #1: 256 jim, 20 Hz, 2000 bursts

clean with 5 bursts
Pt #2: 256 pm, 20 Hz, 2000 bursts

clean with 5 bursts
Pt #3: 256 jim, 20 Hz, 2000 bursts

clean with 5 bursts

Final reduction 12/16104: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C7

205

500 pm

3) 1763.9 t 8.1
4) 1762.6 ± 9.3
5) 1752.8 ± 9.0
6) 1756.1 ± 11.8

1759.4 ± 12.2
(t .69%)

MSWD = 1.39
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Appendix C

01SZ122B, Biotite, Filename BF4X024D (75% of 1.5x scale)
Currie Lake pegmatite

K17-a, 01SZ122B bt (pos JE)
9871) 

3 3 & 9 7

K17-b, 01SZ122B bt (poe JE)
4) 1779.9 + 10.3
6) 1805.2 ± 12.1

mean:
1789.97 ± 12.9

(± .72%)
MSWD = 5.09

Analyses 3-4, 12/10/04; Analysis 6, 12/12/04; (M/F gain of 60);
Pt #1: 256 pm, 20 Hz, 1500 bursts

clean with 10 bursts
Pt #2: 256 pm, 20 Hz, 1500 bursts

clean with 10 bursts
Pt #6: 256 pm, 20 Hz, 2000 bursts

clean with 5 bursts
Note that 182 pm analysis was in October, only -30% rad Ar

Ana
Pt A

1) 1813.2 ± 8.4
2) 1800.5 ± 6.9
5) 1829.4 ± 11.5

mean:
1809.7 ± 12.4

(± .69%)
MSWD = 9.67

12/12/04; (M/F gain of 60);

clean with 10 bursts
Pt #2: 256 pm, 20 Hz, 2000 bursts

clean with 10 bursts
Pt #5: 256 pm, 20 Hz, 2000 bursts

clean with 5 bursts

K17-d, 01SZ122B bt (pos IB)

1) 1819.2 ± 8.2
2) 1804.4 ± 8.0
3) 1827.6 ± 16.0
4) 1819.6 ±24.7

mean:
1813.6 ± 12.6

(±.69%/)
MSWD = 3.48

1) 1853.7 ± 9.2
2) 1865.4 ± 12.2
3) 1874.1 ± 23.5

mean:
1859.3 ± 13.6

(± .73%)
MSWD = 2.03

Analyses 1-2, 12/10/04; Analyses 3-4, 12/12/04; (M/F gain of 60);
Pt #1: 256 pm, 20 Hz, 2000 bursts

clean with 5 bursts
Pt #2: 256 pm, 20 Hz, 2000 bursts

clean with 5 bursts
Pt #3: 256 pm, 20 Hz, 3000 bursts

clean with 5 bursts
Pt #4: 256 pm, 20 Hz, 3000 bursts

clean with 5 bursts

Analyses 1-3 12/10/04; Analysis 3, 12/12/04 (M/F gain of 60);
Pt #1: 256 pm, 20 Hz, 2000 bursts

clean with 10 bursts
Pt #2: 256 pm, 20 Hz, 1000 bursts

clean with 10 bursts
Pt #3: 256 pm, 20 Hz, 2500 bursts

clean with 5 bursts

K17-e, 01SZ122B bt ( os IC)A011111%1) 1836.9 9.1
2) 1824.4 ± 13.3

mean:
1832.9 ± 13.8

(+ .75%)
MSWD = 2.42

Analyses 1-2 12/10/04 (M/F gain of 60);
Pt #1: 256 pm, 20 Hz, 2000 bursts

clean with 10 bursts
Pt #2: 256 pm, 20 Hz, 2000 bursts

clean with 10 bursts

Final reduction 12/16/04: Final blanks, irradiation parameters, J-values, fractionation, error on J 0.5%

Figure C9

207

500 pm



Appendix C

CirW C oI ++or-.V.6
44444444~ 444411

0E
0 00

0 -N

Cc04
0 <0a.

le Clp
0x

C

SE

0" N

E EE

Oa aOD

I I

cuco o
N6 0

E E0 0)

ak

cD (L,,

N

6C6 06 _

+1+1 m m
c5 2 0 c6c
M vcm r)b

.cc.
EE
t LAcum

EE=Laa

II co
00 0
Nm N

0 a4) CE EQ~~=L =s- p

oo 0. CL,- 0

. 0) 0
Lo~ LALo-

0 04 N 0.0

c a 0 
0 0 a

co t. N0O< 0- cn a)-,c.Zcc qj= C. C.) ~
<n-CI)Cfl

EE

SC0

EE

co

II
mpi oo
EEEE3
0000 d

EEEEE

E) w ) E E=L

LA LA ~;
~~acv

Figure C10

208

. . . . . no

COOCEN, fl.0 (q , 0 m.)W MN C 0rVCO

CM Ct) It LI) r 5

00

cs

QoEE008

EE
(6 I= =L

cmi

E

0)

0)

CM

CM

0Xb
v



Appendix C

E

LO
0

E
mIICq
a
SC

0a~o co w W)In (0 -r
Ill~~~4 CMa CDL 1

coO (Dm I
NO-N7 2

EE
B=L(VFQ

NE (S

Bsa R00E E!
L =L2N =LCMJ 4)

E=Ls~cm :3 NS4ý lm-- l

cme

N t*.- -: In

Cý LO LO~ I
Or- 0r

- r- R-
r-C -o

dCf3Nj

'-N CL)-I~H A +1M C
cn

Figure C11

209

CMo
x
R.

U
E

0al

-CC4>

II II II

ODD

rZ IIz_
I.0

ISO

c E
* 5.

EE=L =r-. .-

NN'0OO

o

CY r

dOd

E E
E =L

, t
c a

E
=L

I4
o

EmIn

0 =La? =0"~(n CJ C
5, Go OD

$arra8



Appendix C

03M92, Muscovite, Filename BF4XO24C (75% of 1.0x scale)
Straight River msc pegmatite

I A analyses (N = 14): 1747.1 ± 11.7 (± .67%), MSWD = 1.94

4X024GC, H77-a, 03M92 mac (pos GC)

All analyses 12/3/04 (M/F gain of 57)
Pt #1: 182 pm, 2x1000 bursts, 20 Hz, 2000 bursts
Scan #2: -1000 pm, 5 min manual, 10 pm/sec, 20 Hz, 87 pm spot
Pt #3: 182 pm, 2x1000 bursts, 20 Hz, 2000 bursts
Pt #4:182 pm, 3x1000 bursts, 20 Hz, 3000 bursts
Scan #5: -900 pm, 5 passes, 10 pm/sec, 20 Hz, 87 pm spot
Pt #6: 182 upm, 3x1000 bursts, 20 Hz, 3000 bursts

100 bursts to clean surface
Pt #7:182 pm, 3x1000 bursts, 20 Hz, 3000 bursts

100 bursts to clean surface

AY4024G D rh 77-U03M mac I(na oGnD

All analyses 12/9/04 (M/F gain of 60)
(after Malcolm tried turning gain back up to 100)
Pt #1: 182 pim, 2x1000 bursts, 20 Hz, 2000 bursts

clean surface with 80 bursts
Pt #2: 182 pm, 2x1000 bursts, 20 Hz, 2000 bursts

clean surface with 100 bursts
Pt #3: 182 pm, 3x1000 bursts, 20 Hz, 2000 bursts

clean surface with 100 bursts
Scan #4: - pm, 6 min manual, 10 pm/sec, 20 Hz, 87 pm spot

clean scan with 145 micron at 1 Hz automatic
Scan #5: ,-pm, 6 min manual, 10 pm/sec, 20 Hz, 87 pm spot

clean scan with 145 micron at 2 Hz manual
Pt #6:182 pm, 3x1000 bursts, 20 Hz, 3000 bursts

clean surface with 100 bursts

4X032F, H77-c, 03M92 mac (pos 1 )
All analyses 12/18/04 (M/F gain of 60)
Pt #1: 285 pm, 20 Hz, 4000 bursts (clean 5)
Scan #2:106 pm, 10 pm/sec, 20 Hz, 6 min manual
Pt #3: 285 pm, 20 Hz, 4000 bursts (clean 5)
Scan#4: 145 um, 10 um/sec, 20 Hz, 6 min manual

1)1
2)1
3)1
4)1

174

MSV

1) 1727.7 t 31.8
2) 1707.3 ±17.0
3) 1742.2 ± 18.4
4) 1697.5 ± 47.7
5) 1749.1 ± 19.4
6) 1732.3 ± 8.3
7) 1750.6 ± 15.0

exclude 2&4:
1738.2 ± 12.8

(± .74%)
MSWD = 1.66

1) discard
2) 1764.8 ± 25.6
3) 1750.8 ± 18.0
4) 1738.9 ± 16.5
5) 1755.9 ± 17.2
6) 1763.5 ± 22.0

1752.2 ± 14.1
(± .80%)

MSWD = 1.22

751.3 ± 9.3
747.8 ± 8.4
753.9 ± 7.7
746.0 ± 8.5

9.9 ± 12.0
(± .68%)

WD = 0.77

Final reduction H77a-b, 12/18/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Final reduction H77c, 12/18/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C12
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Appendix C

96W23E, Biotite, Filename BF4X032G (75% of 1.5x scale)
Neil Bay, C.Kopf P-T work

All analyses (N = 12): 1863.8 * 11.8 (+ .63%), MSWD = 2.60
All analyses except J5-a, (N = 19): 1861.6 ± 11.9 (* .64%), MSWD = 1.16

J5-a, 96W23E bt, 4XO32Ga (pos 3)
J5-b, 96W23E bt, 4X032Gb (pos 3)

1) 1871.9 7.0
2) 1874.4 + 8.4
3) 1875.9 t 11.8

mean:
1873.4 ± 12.6

(± .67%)
MSWD = 0.21

Analyses 1-2, 12/18/04; Analysis 3, 12/19/04 (M/F gain of 60);
Pt #1: 285 im, 20 Hz, 3000 bursts (clean 5)
Pt #2: 285 gIm, 20 Hz, 3000 bursts (clean 5)
Pt #3: 285 gim, 20 Hz, 3000 bursts (clean 5)

1) 1860.0 6.7

Analysis 1, 12/18/04 (M/F gain of 60);
Pt #1: 285 gtm, 20 Hz, 3000 bursts (clean 5)
Grain was loose after 1st analysis

J5-c, 96W23E bt, 4X032Gc (pos 3)
Grain loose on first burst

J5-d, 96W23E bt, 4X032Gd (pos 3) J5-e, 96W23E bt, 4X032Ge (pos 3)

1) 1860.0 7.3
2) 1863.4 ± 6.9
3) 1868.8 ± 6.8

mean:
1864.2 ± 12.3

(± .66%)
MSWD = 1.58

Analyses 1-2, 12/18/04; Analysis 3, 12/19/04 (M/F gain of 60);
Pt #1: 285 gim, 20 Hz, 3000 bursts (clean 5)
Pt #2: 285 glm, 20 Hz, 3000 bursts (clean 3)
Scan #3: 145 gim, 20 Hz, 10 m,/sec, 6 min manual

Analyses 1-5, 12/18/04, (M/F gain of 60);
Pt #1: 285 gim, 20 Hz, 3000 bursts (clean 5)
Pt #2: 285 plm, 20 Hz, 4000 bursts (clean 5)
Pt #3: 285 pm, 20 Hz, 4000 bursts (clean 10)
Pt #4: 285 jpm, 20 Hz, 4000 bursts (clean 10)
Pt #5: 285 pim, 20 Hz, 4000 bursts (clean 10)

Final reduction 12/21W4: Final blanks, Irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C13
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1) 1856.0 ± 7.4
2) 1857.5 ± 7.4
3) 1862.8 ± 7.1
4) 1860.4 ± 7.1
5) 1864.1 ± 7.7

mean:
1860.2 ± 12.1

(± .65%)
MSWD = 0.85



Appendix C

02M23B, Muscovite, Filename BF4XO24F (75% of 1.5x scale)
Charlebois Lake two-mica granite

All analyses (N = 10): 1739.0 ± 11.8 (± .68%), MSWD = 0.89
1 I

J97-a, 02M23B msc (pos HA) J97-b, 02M23B msc (pos HA)

1) 1728.4 ± 17.7
2) 1743.6 ± 11.3
3) 1744.0 ± 11.2

mean:
1741.2 ± 13.3

(± .76%)

SMSWL = .ZI j

Analyses 1-3, 12/10/04 (M/F gain of 60);
note that image might be flipped
Pt #1: 285 pm, 20 Hz, 1500 bursts

clean with 10 bursts
Pt #2: 285 pm, 20 Hz, 1500 bursts

clean with 10 bursts
Pt #3: 285 pm, 20 Hz, 300 bursts

clean with 10 bursts

4) 1735.8 ± 9.4
5) 1741.2 ± 11.1
6) 1740.0 ± 12.0
7) 1729.9 ± 20.8

mean:
1737.9 ± 12.6

(± .73%)
MSWD = 0.43

Analyses 4-7, 12/10/04 (M/F gain of 60);
Pt #4: 285 pm, 20 Hz, 3000 bursts

clean with 10 bursts
Pt #5: 285 pm, 20 Hz, 4000 bursts

clean with 10 bursts
Pt #6: 285 pm, 20 Hz, 4000 bursts

clean with 10 bursts
Pt #7: 182 pm, 20 Hz, 4000 bursts

clean with 10 bursts

J97-c, 02M23B msc (pos HB)

1) 1748.0 ± 11.9
2) 1734.8 ± 12.7
3) 1733.6 ± 10.9

mean:
1738.5 ± 13.1

(± .75%)
MSWD = 1.84

Analyses 1-3, 12/11/04 (M/F gain of 60);
Pt #1: 285 pm, 20 Hz, 4000 bursts

clean with 6 bursts
Pt #2: 285 pm, 20 Hz, 5000 bursts

did not clean
Pt #3: 285 pm, 20 Hz, 5000 bursts

clean with 6 bursts

Final reduction 12/16/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C14
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Appendix C

02M23B, Biotite, Filename BF4XO24G (75% of 1.5x scale) 500 pm

Charlebois Lake two-mica granite

1738.1 * 12.5 (* .72%), MSWD = 0.22

J97-a, 02M23B bt (pos HC)
1) 1734.9 + 16.4
2) 1738.7 ± 14.2

I J- mean:
1737.1 ±15.5

(± .89%)
dIiAfl - fA 10

Analyses 1-2, 12/11/04 (M/F gain of 60);
Pt #1: 256 gim, 20 Hz, 4000 bursts

clean with 5 bursts
Pt #2: 256 gim, 20 Hz, 4000 bursts

clean with 5 bursts

J97-c, 02M23B bt (pos HD)

1)1745.8 ± 17.1
2) 1736.3 ± 15.1
4) 1736.7 ± 18.3

mean:
1739.4 ± 14.7

(± .41%)
MSWD = 0.41

Analyses 1-2, 4, 12/11/04 (M/F gain of 60);
Pt #1: 256 pm, 20 Hz, 4000 bursts

clean with 5 bursts
Pt #2: 256 pm, 20 Hz, 4000 bursts

clean with 5 bursts
Pt #4: 256 pm, 20 Hz, 4000 bursts

clean with 5 bursts

J97-b, 02M23B bt (pos HC)

3) 1732.1 ± 19.4
4) 1741.5 ± 18.3

mean:
1737.1 ± 17.3

(± 1.00%)
MSWD = 0.50

Analyses 3-4, 12/11/04 (M/F gain of 60);
Pt #3: 256 gim, 20 Hz, 4000 bursts

clean with 5 bursts
Pt #4: 256 pm, 20 Hz, 4000 bursts

clean with 5 bursts

J97-d, 02M23B bt (pos HD)

Analysis #3, 12/11/04 (M/F gain of 60);
Pt #3: 256 pm, 20 Hz, 4000 bursts

clean with 5 bursts
After 1st point, the grain was loose and wouldn't stay put

Final reduction 12/16/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C15
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Appendix C

01M127B, Muscovite, Filename BF4X032A (75% of 1.0Ox scale)
Balliet Lake, msc-gt pegmatite

All analyses (N = 10): 1748.0 * 11.84 ( .65%), MSWD = 2.84

J95-a, 01M127B msc, 4X032Aa (pos 2)

1) 1751.6 ± 6.2
2) 1737.5 ± 5.8

mean:
1744.0 ± 12.1

(± .69%)
MSWD = 11.17

Analyses 1-2, 12/17/04 (M/F gain of 60);
Pt #1: 285 pm, 20 Hz, 2500 bursts (hole through)

clean with 10 bursts
Pt #2: 285 pm, 20 Hz, 2500 bursts (hole through)

clean with 10 bursts

J95-b, 01 M127B msc, 4X032Ab (pos 2)

3) 1756.2 ± 8.4
4) 1750.1 ± 8.3

mean:
1753.1 ± 12.7

(± .72%)
MSWD = 1.07

Analyses 1-2, 12/15/04 (M/F gain of 60);
MP ran before realized viewport did not transmit UV,

poor ablation
Pt #1: 285 pm, 20 Hz, 2000 bursts (clean 5)
Pt #2: 285 jLm, 20 Hz, 5000 bursts (clean 5)

Analyses 3-4, 12/17/04 (M/F gain of 60); Different viewport
Pt #3: 256 pjm, 20 Hz, 2000 bursts (hole through)
Pt #4: 256 pm, 20 Hz, 2000 bursts (hole through)

J95-c, 01 M127B msc, 4X032Ac (pos 2)

1) 1754.6 + 7.3
2) 1745.6 ± 6.9
3) 1746.0 ± 6.0
4) 1753.6 8.0

mean:
1749.3 t 11.7

(± .67%)
MSWD = 1.87

Analyses 1-4, 12/17/04 (M/F gain of 60);
Pt #1: 182 plm, 20 Hz, 4000 bursts (hole through?)

clean with 5 bursts
Scan #2: 87 jm, 20 Hz, 3 passes, - 5 min (no clean)
Pt #3: 182 pm, 20 Hz, 4000 bursts (hole through?)

clean with 10 bursts
Scan #4: 106 pm, 20 Hz, 3 passes, ~ 6 min (no clean)

J95-d, 01 M127B mac, 4X032Ad (pos 2)

1) 1748.9 7.2
2) 1744.5 ± 8.8

mean:
1747.1 ± 12.5

(* .71%)
MSWD = 0.60

Analyses 1-2, 12/17/04 (M/F gain of 60);
Pt #1: 285 pm, 20 Hz, 1500 bursts (hole through)

clean with 5 bursts
Pt #2: 285 pm, 20 Hz, 2000 bursts (hole through)

clean with 5 bursts

Final reduction 12/21/04: Final blanks, irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C16
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Appendix C

01M127B, Biotite, Filename BF4X032B (75% of 1.5x scale)
Balliet Lake, msc-gt pegmatite

All analyses (N = 14): 1739.5 ± 11.5 (a .66%), MSWD = 1.14

J95-a, 01M127B bt, 4X032Ba (pos 2)

1) 1740.0 15.2
2) 1734.1 6.2
3) 1740.8 + 6.9

mean:
1737.4 ± 12.0

(± .69%)
MSWD = 1.12

1) 1754.8± 17.6
2) 1731.5 ± 16.2
3) 1748.7 ± 48.4
4) 1733.1 * 33.1

mean:
1741.5 t 15.6

(± .90%)
MSWD = 1.38

Analyses 1-3, 12/17/04 (M/F gain of 60);
Pt #1: 285 pm, 20 Hz, 2500 bursts (clean 10) (hole through)
Pt #2: 285 pm, 20 Hz, 2000 bursts (clean 10)
Pt #3: 285 pm, 20 Hz, 2000 bursts (clean 5)

J95-c, 01 M127B bt, 4XO32Bc (pos 2)

1) 1747.2 ± 9.5
2) 1738.6 ± 14.9
3) 1741.8 ± 13.7
4) 1743.7 ± 14.9

mean:
1743.9 ± 12.8

(± .73%)
MSWD = 0.37

Analyses 1-4, 12/15/04 (M/F gain of 60);
MP ran before realized viewport did not transmit UV,

poor ablation
Pt #1: 285 pm, 20 Hz, 3000 bursts (clean 5)
Pt #2: 285 pm, 20 Hz, 3000 bursts (clean 5)
Pt #3: 256 pm, 20 Hz, 4000 bursts (clean 5)
Pt #4: 256 pm, 20 Hz, 4000 bursts (clean 5)

Analyses 1-4, 12/15/04 (M/F gain of 60);
MP ran before realized viewport did not transmit UV,

poor ablation
Scan #1: 145 pm, 20 Hz, 6 min manual
Scan #2: 145 pm, 20 Hz, 5 scans for 5:50 total
Pt #3: 256 pm, 20 Hz, 5000 bursts (clean 5)
Pt #4: 256 pm, 20 Hz, 5000 bursts (clean 5)

J95-d, 01 M127B bt, 4X032Bd (pos 2)

1) 1745.5 * 8.6
2) 1739.4 ± 8.8
3) 1733.5 ± 7.8

Analyses 1-3, 12/17/04 (M/F gain of 60);
Pt #1: 285 pm, 20 Hz, 2000 bursts (clean 5) (hole through)
Pt #2: 285 pm, 20 Hz, 2000 bursts (clean 5) (hole through)
Pt #3: 285 pm, 20 Hz, 2000 bursts (clean 5) (hole through)

Final reduction 12/21/04: Final blanks, Irradiation parameters, fractionation, J-values, error on J 0.5%

Figure C17
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Appendix D

APPENDIX D. 40AR/39AR LASER INCREMENTAL HEATING BIOTITE DATA

Table 1) 1. Chipman Domain *'Ar/"Ar Biotite Laser Incremental Heating I)ata"
40Ar()r) 39Ar(k) Age 2s

36Ar(a) 39Ar(k) 4oAr(r)
(q4) () (Ma)

02-76B
5AO05KOI 0.00131 0.040(43 1.76361 82.01 3.79 1398.31 + 12.00

5A(X)SK02 0.(00152 0.09383 5.70228 92.68 8.79 1745.24 + 7.65
5A005K03 0.00051 0.11499 7.04639 97.93 10.78 1754.56 + 6.17
5A005 K04 0.00040 0.14076 8.64349 98.65 13.19 1756.92 ± 5.96
5A005K05 0.0(0014 0.08704 5.43202 99.25 8.16 1775.19 6.61
5A(XN)K06 ().(HH) 0().08593 5.34729 99.44 8.05 1771.88 ± 6.65

5A005K07 0.0000()7 0.07045 4.40121 99.52 6.60 1776.24 ± 7.12
5A()5 K08 (.(X)(008 0.06391 3.99960 99.41 5.99 1778.24 ± 7.51
-5A)005K09 0.00012 0. 10 (083 6.3 1938 99.46 9.45 1779.97 ± 6.50
5A(K) K() 0 ().0K(X)8 0.07919 4.96006 99.54 7.42 1779.23 ± 7.07
5A00A5K I ( 0.00003 0.07001 4.40016 99.79 6.56 1783.06 ± 6.96
5A()5 K2 0.00(X)6 0.07499 4.65(X)3 9).61 7.03 1767.91 ± 7.24
5A05K 14 (.O000H) 0.()1367 0.84841 1(00.(00 1.28 1768.93 ± 20.49
5A().5K 15 0.()(X)3 0.03088 1.92229 99.60 2.89 1772.41 ± 13.58
a Plercentaes of radiogenic 4OAr and K-derived 39Ar al reporte tfor each anal-sis. 'ncelrtainties are quoted at
2 sioma and do nol include the propagated errors in irradiation parameter J.

217



Appendix D

TIable L)2. Southern )omain 'Ari-'Ar Biotite lvaser Incremental Heating D)ata for sample 01 SZ78'

36Ar(a) 39Ar(k) 4OAr(r) 4OAr(r) 9Ar(k) A 2s

01 SZ78-5
5A005A I 0.(X)027 0.03650 1.34849 94.49 6.71 1242.82 + 53.76
5AOOSA@.2 0.000(5 0.02278 1.35816 98.88 4.19 1723.93 ± 22.10
5A()A(i 3 0.(X)008 0.05272 3.23582 99.32 9.69 1756.44 ± 10.57
5A005AO4 0.00004 0.106307 3.96273 99.67 11.59 1782.84 + 8.93
.AOO5A05 0.00002 0.07870 5.01073 99.9( 14.47 1797.87 ± 8.94
5AOO5A06 0.00002 0.16410 10.61270 99.93 30.17 1815.64 + 5.98
5A005A07 0.(XX)03 0.12605 7.99226 99.87 23.17 1793.12 + 6.64

01 SZ78-9
5A0(5C 1 0.(X)005 0.(X1673 0.17138 92.72 0.85 939.52 ± 89.45
5A005C02 0.00015 0.02479 1,54066 97.25 3.13 1770.47 + 22.35
5A005('03 0.0()012 0.04624 3.10428 98.84 5.84 1858.81 + 12.67
5AO05C'04 0.00007 0.04126 2.74998 99.30 5.21 1850.45 + 13.31
5A(0)05 0. (.(01( 0.09181 6.13040 99.50 11.59 1852.43 + 9.12
5A005C06 0.000(14 0.06886 4.60526 99.76 8.69 1854.32 + 11.47
5A(X)5('07 0.(X)022 0.16543 10.9(00)23 99.42 20.89 1837.09 + 8.92
5A005C(8 O.()000 0.05549 3.66906 100.00 7.01 1841.06 + 10.69
5A(H)05'(W09 0.(00)3 0.0()238 6. 1 1078 99.86 11.66 1841.57 ± 8.95
5A005C 1( 0.00002 0.11538 7.56712 99.93 14.57 1831.78 + 9.01
5A005('11 I .(N)00( 0.(7679 5.03253 1 ().0) 9.69 1830.88 + 8.47
5A()05C 2 0.0()003 0.()00509 0.31838 97.47 (0.64 1777.19 +81.02
5A005C(3 (.()()() 0.0185 0).11795 I(X).00( 0.23 1801.99 ± 143.91
01 SZ78 Pan 8
5A005F 0.()002 ().(X)006 0.00296 30.49 0.03 1572.83 ± 7169.57
5A005 F02 0.000)0 (.(0045 0.03263 1( ).0( 0.22 1946.08 502.44
5A(5H)3 0.0)003 (.()(601 0.39609 97.47 2.95 1836.67 ± 65.09
5A0050 1)4 .(K0000() 0.2941 1.92381 99.93 14.43 1828.65 + 14.36
5A005F05 0.(XX)02 0.03377 2.21543 99.80 16.57 1832.21 ± 13.08
5A()10(16 .()O()000 0.03407 2.22960 1 ).00 16.72 1829.19 ± 8.86
5A005 F07 0.(X)(X)3 0.(02768 1.77898 99.46 13.58 1808.71 + 15.41
5A005F()8 0().(0)0 (0.07233 4.72790 100I().(X) 35.49 1827.92 + 8.59
0()1SZ78 Pan 7
5A)()5( ;01 0().)(X)3 0.(X)327 (). 10928 92.07 1. 19 1 156.03 + 122.)05
5A0051(i02 0.0(H)12 (1. 1309() 8.37357 ).57 47.82 1803.19 ± 5.74
AO05G(3 0.(X)(005 (.(02543 1.61853 99.16 9.29 1797.33 + 15.47

5A005((104 (.(X)0(}( ().03086 2.03705 1(N).0(0 11.27 1839.17 1 1.87
5AO()(05 ( 0)()(10 0.02518 1.6.5341 99.96 9.20 1832.98 +15.34
5A005G6 (.(H)1000() 0.(2447 1.58652 99.92 8.9 4 1818.60) ± 15.88
5AO()( 0()7 .(00)()0) 0.01213 0.7880)9 I (H).()( 4.43 1821.40 19.50
5AO05() 8 0.0000()() (.02152 1.39349 100.00 7.86 1817.18 ± 11.95

"'See notes in F'able 1)1.
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lTable 1)3. Soulthern Domain 4'Ar/"Ar Biotite aser Incremental Heating Data or sample 01SZI22B'
40Ar(r) 39Ar(k) Age + ±2s

36Ar(a) 39Ar(k) 4OAr(r) Arr) 39Ar(k) (Ma)
('-7) ('%c) (Ma)

OISZ122 -4

5A0.DI01 0.00082 0.05643 1.17016 82.93 9.11 798.22 ±8.70
5A(X)5D)02 0.00035 0.01352 0.70527 87.21 2.18 1579.22 54.50
5A(X)5D03 0.00159 0.13677 8.66899 94.85 22.08 1792.76 + 8.01
5A(X)5 DO4 0.000)20 0.1 1088 7.10229 99.16 17.9( 1804.74 7.43

5A()51)05 0.00006 0.07606 4.92558 99.63 12.28 1817.21 + 9.46
SA(X)51X)6 0.()()8 0.08748 5.79551 99.57 14.12 1843.37 + 9.9)
5A(X)51)07 0.(00()8 0.(0940)4 6.330(94 99.63 15. 18 1861.9( + 9.10

5A(X)5D08 0.00()(X) (0.04422 2.88773 99.99 7.14 1826.92 +7.95

OISZ122B -3

5A(X)5EOI 0.00075 0.04989 2.10196 90).41 6.17 1364.84 + 18.14
5A(X)5EO2 0.00029 0.04561 3.01218 97.22 5.64 1839.75 ± 15.22
5A(X)5EO3 0.00022 (0.08161 5.44624 98.84 10.09 1851.79 ±9.20
5A0()5EH)4 0.00(X005 0.06093 4.07039 99.62 7.54 1852.93 ± 13.05
SA05EO5 0.00()(X)8 (0.(06069 4.06538 99.41 7.51 1856.22 ± 8.09

5A(X)5E06 0.0()(17 0.08(X)7 5.36320 99.59 9.9() 1856.07 +7.17

5A(00)5E07 0.00002 0.08976 6.05379 99.88 11. 10 1864.03 6.44
5A()5 EO8 0.()()5 0.12180 8.19638 99.80 15.07 1861.49 6.14
5A(X)5E09 0.(X)(1)3 0. 1485 7.72254 99.89 14.21 1860.59 + 6.54

5A(X)5EI() 0.00((X) I 0.044501 2.88217 99.89 5.50( 1817.37 ± 11.3(0

5A05E I I 0.00(X)2 (.05873 3.19832 99.83 7.26 1625.24 +9.25
0I SZ 122B Pan 2

5A(X)5HOI 0.00(044 0.02707 1.28834 90).75 4.11 1484.79 ± 14.37

SA(X)5H02 0.00051 0.(16177 4.08170 96.41 9.39 1840(.36 + 8.(04

5A(0(15H03 0.00024 0.14836 9.80876 99.27 22.54 1840(.99 + 5.69
5A(X5H04 0.()005 ().05960( 3.93845 99.60(1 9.(5 1840.46 ±+ 8.27
SAO05HO5 (.00((X) ( 0.(16179 4. 12368 99.98 9.39 1851.8(I ±. 7.74

5A(X005H06 0.00(X)4 (0.1(0751 7.14543 99.85 16.33 1847.05 ± 6.26

5A(X)SH07 0.00(X)(2 0.07811 5.19630 99.87 11 .87 1848.11 ± 7.2(0

5AO05HO8 0.00()4 0.1(0876 7.24914 99.85 16.52 1850.42 ± 6.47
5A(X).5H09 0.00(()5 (0.(X)1521 0.33536 95.51 (.79 180(9.49 69.37

'See notes in Table D 1.
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ITable D4. Rae Domain 'Arl'/Ar Biotite Laser Incremental Heating Datal

40Ar(r) 39Ar(k) Age ± 2s36Ar(a) 39Ar(k) 4OAr(r) ) A
(%) (%) (MINa)

96W23E Pan 18
A005JO I 0.00(00)3 0.00268 0.10240) 91.00 0.49 1275.22 ± 167.20

5AX)05J02 0.(X)00(1 0.01553 1.02854 99.68 2.82 1847.13 ± 23.91
5AOO5J03 0.00002 0.01768 1.18882 99.40 3.21 1864.87 + 21.60
5A()5J04 0.(00)3 0.04333 2.96573 99.69 7.86 1885.63 ± 10.46
5A005J05 0.00001 0.04464 3.02896 99.90 8.10 1875.32 + 11.28
5A(05J(K6 0.0)() ().05294 3.56807 99.97 9.60 1867.72 ± 9.30
5A005J07 0.00()0 0.06105 4.16799 99.99 11.07 1882.70 ± 8.53
5A005J)8 0.00(X)3 0.06146 4.15760 99.82 11.15 1871.90 ± 8.35
5A00()5J09 0.OOCOI 0.04417 3.02741 99.89 8.01 1887.09 + 11.07
AO5JI()1 0 0.00002 0.07900() 5.33806 99.89 14.33 1870.64 ± 6.86

5A005J I I 0.00001 0.09350 6.30432 99.95 16.96 1868.09 ± 6.74
5A()5J 12 0.X)004 0.02488 1.66851 99.38 4.51 1861.90 15.33
5A00)5J 13 0.00()(} 0.01049 0.72148 99.80 1.90 1890.86 + 34.86

'See notes in Table 1)1.
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