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Abstract

The typical biological system is nonlinear, high-dimensional and highly redundant,
all of which are burdens on controller design. Yet despite these complications, the
central nervous system is able to control motor systems with an impressive level of
complexity and effectivity. One such example is the frog. Evidence suggests that in
frogs, the central nervous system, and the spinal cord in particular, may adopt simpli-
fying strategies to ease the motor control problem. For instance, despite the known
nonlinear nature of muscle, it has been demonstrated experimentally that spinally
induced force production in the frog limb is linear in stimulation. Spinally encoded
force fields have also been implicated as building blocks for generating hind limb
movements. Furthermore, muscle EMG measurements for both intact and spinalized
animals, have been shown to be low-dimensional; these measurements can be recon-
structed as linear combinations of fixed muscle activations, or synergies. The evidence
above suggests that the central nervous system may adopt simplifying strategies for
the motor control problem.

First, the thesis addresses the issue of linearity in isometric force fields. It proposes
that this behavior can be explained as a result of biomechanical properties. To this
end, a physiologically realistic model of the frog hind limb is analyzed. The results
suggest that, due to features of the musculo-skeletal structure, forces produced by
the hind limb muscles are linear in activation, in large part and within the limb’s
workspace. The results, therefore, support our hypothesis that muscle forces which
scale linearly in activation are a natural biomechanical result.

The second portion of the thesis centers on the evidence of low-dimensional motor
commands and the hypothesized motor primitives (in the form both of force fields and
of muscle synergies). Many investigations have examined muscle synergies, probed
motor behaviors for modular features in the form of force fields, and looked for con-
nections between synergies and force fields. However, this work has largely been
descriptive in nature, trying to explain the data without reference to the underlying
control structure. We offer a principled explanation for motor primitives, for how
force fields and synergies arise, and for how they are implicated in the organization
of motor control. A controller that utilizes a reduced order model is proposed. Using
apparatuses drawn from model order reduction theory, a method for finding a low-
dimensional model that estimates a nonlinear model of the frog hind limb is examined.
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A formalism for defining motor primitives is proposed and the resulting primitives are
compared with experimentally derived synergies. The motor primitives are found to
correspond well with several synergies, and to offer practical interpretations in terms
of limb biomechanics. The reduced model is shown to be capable of generating natural
motor behaviors as well as optimal control solutions. The evidence suggests that frog
hind limb motor behaviors, and the spinal circuitry that coordinates these behaviors,
are consistent with a control architecture that utilizes a reduced order model of the
musculo-skeletal system in an effort to simplify motor control.

Thesis Supervisor: Emilio Bizzi
Title: Institute Professor
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Chapter 1

Introduction

The goals of this thesis are relatively simple and tangible. The difficulties of motor
control are extensive and formidable. The field of motor control strives to under-
stand how animals, including humans, control their bodies; how they locomote, swim,
jump, fly, reach, grasp and generally interact with their environment. This is, in a
nutshell, the motor control problem. From a control engineer’s perspective the motor
control problem is exceedingly hard: a typical biological system is nonlinear, high-
dimensional and highly redundant, and while separately each of these characteristics
is a burden for controller design, when combined the motor control problem is nearly
overwhelming. This leaves one wondering - how does the central nervous system do
it? Techniques from many varied fields can be brought into play when examining
this problem: machine learning, neuroscience, nonlinear dynamical systems theory,
control engineering, and even mechanical design are fields that can contribute to the
investigation of motor control. The theoretical and computational demands for such
an investigation are significant. Indeed, an argument could be made that solving the
motor control problem, and understanding how the central nervous system commands
the body, is Al complete!.

We will parse the complexities of motor control in three categories: nonlinear-
ity, high-dimensionality and redundancy. While discussing these categories we will
highlight the specific difficulties of biological motor control that the thesis addresses.
We will then introduce methods for alleviating these difficulties, present evidence to
suggest that the central nervous system of some animals may be adopting similar
strategies. In doing so, we introduce the thesis objectives: to explore simplifying
strategies that the central nervous system may adopt to alleviate the difficulties of
biological motor control.

1.1 The Difficulties of Motor Control

Complete descriptions of nonlinear systems (that is, for arbitrary initial conditions,
for all times and arbitary inputs) are difficult to find. Descriptions for linear systems,
on the other hand, are relatively simple to find. As long as the system inputs are well

! An indication that the solution presupposes a solution to the strong Al problem.
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behaved (i.e., continuous and bounded), descriptions of the system, or the solutions,
are easy to obtain. And even when the inputs are not well behaved, solutions may
be obtained. The solutions for linear systems can be analyzed to better understand
the system and its dynamics; this ability to analyze and understand linear systems
dynamics is a great asset when designing a controller.

For nonlinear systems, solutions and system analysis are much more difficult. An
example of such a nonlinear system is a multi-link limb, like the models commonly
used to describe an arm or leg. This system has been widely analyzed and examined,
and is well understood (e.g. [22], [63], [62]). However, no solutions to the differential
equations that define them are known. As a result, the path a multi-link limb takes
when arbitrary torques are applied to its joints is not known; this path can easily
be simulated, but it is not known in advance. Because an analytic solution for this
nonlinear system is lacking, the resulting motion of the limb is difficult to assess
without the aid of a computer. Similarly, what the joint torques ought to be to
produce a specific motion is difficult to predict. Yet this is exactly what we aim to
do when our goal is to control the system.

The muscles that drive the limb are nonlinear as well. Muscle properties have
nonlinear dependencies both on their mechanical state (e.g., position and velocity)
and, as the models used to describe this behavior suggest, on the motor commands
that excite them (e.g., [9], [71]). Therefore, the force a muscle produces changes in a
nonlinear manner as it lengthens, possibly complicating attempts to apply a constant
torque about a joint while the limb is moving. The neurons of the central nervous
system, including those of the motor neuron pools that command muscles, are also
nonlinear in their dynamics.

When all these aspects of the motor apparatus-the limb mechanics, the dynamics
of muscles and the neurons that command them-are taken into conisderation, the
nonlinearities render the system considerably difficult to analyze and control.

Another source of complexity in biological motor control is the high system di-
mensionality. By dimensionality, we are referring to the number of variables or states
required to completely describe a system. Systems with many dimensions or states can
burden the issues of solution determination, analysis, and control mentioned above;
analyzing a system with one state is, generally speaking, far easier than analyzing a
system with twenty states. By definition, more dimensions allow a system to vary in
more independent ways, complicating descriptions that characterize the system, and
in turn complicating attempts to control that system in a predictable manner.

Returning to the example of the limb, the number of states, or dimensions, for this
system may be managable depending on the degrees of freedom specified. Adding
another link, perhaps to model a hand or foot, adds more states. When muscles
are included in the model more states may be needed to describe their dynamics as
well. If more states were added, for example to include the effects of motor neurons,
then the system dimension further increases. At this point the number of states
may be high. This need to take into account a large number of states, that can
independently influence system dynamics, is a significant complication. Not only does
this complicate predictions of system responses, it makes analysis of said responses
arduous. It is precisely these complications that make control design difficult.
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Finally, system redundancy can also be a complicating factor in motor control
too. When two or more variables are redundant, they have similar effects on some
characteristic of the system, therefore there may be no clear indication how one
should be treated respective of the other. That is, if they both do the same thing,
how do you treat them differently to achieve the same goal? With the limb, there are
often redundancies. Redundant kinematics can imply multiple choices for positioning
the limb while achieving the same task. For instance, while pointing at a fixed target
location, the elbow and wrist can be in many positions. How does one choose amongst
these positions?

Many muscles have similar effects on the limb as well. There are many ways
to excite the muscles to achieve the same mechanical output. When performing
a reaching movement, the trajectory the limb follows can be achieved with many
commands to the same muscles. For example, consider two movements, one made
with little effort, and another made while co-contracting the limb’s muscles. These
two movements may be indistinguishable in terms of their kinematics, yet their motor
commands differ.

The neurons that drive the muscles have even more redundancy. In humans, for
example, a large muscle can have a hundred or more motor nuerons commanding
it [34]. A typical human muscle may have 100-500 spindle fibers [46],[52], and 10-
20 Golgi tendon organs [21] relaying information back to the spinal cord. All these
redundancies amount to states or variables that, although, ought to be prescribed to
achieve a motor goal, may not be uniquely constrained by the motor goals; they are
free variables in designing the task; choices that must be made but that do not directly
influence the desired outcome. These free variables may be a benefit (for instance,
if co-contraction was desired) or a deficit (they represent an increased computational
complexity), but they are a complication.

Now that we have identified sources of difficulty, what can be done to alleviate
them? There are strategies that specifically strive to alleviate nonlinearities. We shall
briefly mention a few below. There are also techniques that alleviate the difficulties as-
sociated with high-dimensionality and redundancies. The techniques we shall present
do not necesarily distinguish between the difficulties due to high-dimensionality and
redundancy, but they alleviate both problems.

1.2 Simplifying Strategies for Motor Control

As we have tried to explain, nonlinearity clearly can be an unwanted complication.
What can be done to simplify its influences on the control problem? One possibility
is to incorporate a feedback mechanism. If system variables are “fed back” to a
controller, commands can be computed to effectively cancel unwanted dynamics, or
nonlinearities. Feedback controllers can bias the system dynamics in favor of the
feedback path over those of the forward path. If unwanted dynamics need to be
completely eliminated then there is a formalism for this as well: feedback linearization
[63]. When the appropriate conditions are met, a feedback controller can be designed
to linearize system dynamics. If this is done, the system behavior can more easily be
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understood and analyzed.

A popular methodology for overcoming the complications of controller design for
high-dimensional and redundant systems is to use an optimal strategy. By includ-
ing a cost function in the motor goal, especially one that is influenced by redundant
variables, unique choices for motor commands and states can be obtained by min-
imizing (or maximing) the cost function. For instance, in the example mentioned
earlier a reaching movement can be made with or without co-contraction. By min-
imzing the total metabolic work in the movement, motor commands with unnecesary
co-contraction, and, therefore unnecesary metablic cost, are unacceptable. Thus by
finding the optimal solution, we have isolated a unique choice for motor commands
amongst the many possibilites.

Optimal solutions, when found, can yield a command signal or a controller. How-
ever, for nonlinear systems optimal solutions are difficult to obtain. For high dimen-
sional nonlinear systems, optimal solutions are even more difficult to obtain. This
is the so-called curse of dimensionality [4]. Yet, when applicable, they are a great
advantage in simplifying motor control.

To alleviate the problems of high-dimensionality, perhaps the easiest option is to
simply neglect some of the dimensions. This is done by neglecting or ignoring the
dependence on particular states. For instance, if some states do not vary much, or
their variation has little impact on the system, then perhaps they can be ignored
altogether. Similarly, one could neglect states that have fast dynamics. Assuming
these states aren’t of interest, they can be neglected and the remaining, relatively
slow dynamics of the system can be studied.

Another possibility for reducing redundancy and dimensions is to group together
variables that have similar effects on the motor system, and treat them as a single
unit. This is the idea behind motor primitives, which are compact representations
for a group of covarying motor variables. By grouping redundancies together as
primitives, the number of independent variables needed for the motor control problem
is reduced, and the difficulties of redundancies are simplified [58]. A similar idea is
to seek a reduced set of variables that compactly represents the system of interest. If
these variables can be used to make predictions of the system dynamics, then they
may be useful for designing control as well. And, given the reduced dimension of
these variables, they may simplify the controller design. Proposals for how to learn
such a reduced order variable, in a biological system, have been suggested [65], [42].
However, these proposed methods for finding reduced order variables are based on
learning algorithms, and as such, a clear interpretation of the these variables may be
lacking.

There is a branch of control theory that deals formally with attempts reduce
system complexity (high dimensionality and redundancy). Model order reduction is
a methodology which studies properties of dynamical systems in the attempt to reduce
their complexity, while preserving their input-output behavior. For linear systems,
the field is well developed (e.g. [2], [3]). System complexity can be decreased by
reducing the system order or number of states. If a dynamical system with a large
number of states can be modeled with significantly fewer states, effectively reducing
the system order, this can be a great simplification. Furthermore, if motor commands
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that have similar, or redundant effects on the system dynamics can be coupled, this
can be a great simplification. Model order reduction achieves both of these goals,
relieving the problems of system analysis and control design.

For nonlinear systems the tools for model order reduction are not as well devel-
oped. Some theoretical underpinnings exist [60], but a general methodology is still
absent. Despite this deficiency, algorithms for reducing nonlinear system dimension-
ality have been proposed and investigated for a select few examples [12], [39)].

We have briefly mentioned some theoretical and hypothetical methods for allevi-
ating nonlinearity, high-dimensionality and redundancy. We now examine evidence
that suggests biological systems may be adopting similar strategies for the purposes
of motor control.

1.3 Evidence for Biological Simplifying Strategies

There are many examples of nonlinearity, high-dimensionality and redundancy be-
ing dealt with in the controls literature, but this thesis is concerned with biological
systems that may have devised strategies to do the same. We shall examine ex-
perimental evidence that suggests the central nervous system may linearize system
properties, reduce dimensions, and collapse redundancies all in the application of
simplifying motor control. We shall first discuss evidence that, interesting in its own
right, sets the context for the motor control strategies argued to be relevant for bio-
logical systems. Then we present the evidence that has motivated this thesis, linear
force production in stimulation, force fields that appear to represent motor primitives,
and low-dimensional motor commands, also known as muscle synergies.

As mentioned, there are motor behaviors in biological systems that are consis-
tent with dimension reducing strategies. For instance, the equilibrium-point (EP)
hypothesis can be described as a method for neglecting dimensions for biological sys-
tems. The EP theory, first proposed by Feldman (reference), posited that posture and
movement are subserved by the same process, modulation of the limb’s equilibrium-
point. In this theory the inherent spring-like properites of muscles, combined with
spinal feedback circuits, act to drive the limb towards a stable posture. By shifting
this stable posture, perhaps continuously, the central nervous system can drive the
limb to a new posture, and command its motion. For example, a study that presented
compelling evidence for this idea examined reaching movements made by deafferented
monkeys [6]. Monkeys were trained to make targeted reaching movments, holding a
manipulandum that could deliver movement disturbances. It was shown that if the
monkey’s hand was suddenly pushed toward the target, the limb would rebound to
an intermediate position in a direction away from the target, before continuing on to
the target location. This suggested that the limb could be following a slowly shifting
equilibrium that drove the limb to the final target destination.

If the limb’s motion could be controlled through a series of static postures, then
the only computations required are based on a static map from limb posture to
neural motor commands. Therefore, not only have many of the states needed to
define the musculo-skeletal system been neglected, but the very dynamical nature of
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the system has also been neglected. With this in mind, the EP theory can also be
explained in terms of neglecting fast dynamics, those that drive the limb toward the
equilibrium trajectory, in favor of slower dynamics, namely those of the modulated
equilibrium. If the central nervous system were to employ some variation of this
theory in the coordination of motor behaviors, it would constitute a reduction of
dimensions, greatly reducing the difficulty of generating motor controls.

As mentioned, optimization strategies are a technique for constraining redundan-
cies. There are examples in biological systems of what appear to be motor behaviors
that reflect an optimal strategy. For instance, many features of motor behavior are
stereotyped. In humans, reaching movements are generally made along straight paths
[31]. These straight paths have a typical “bell-shaped” velocity profile as well [31].
There are also typical features when the reaching movements include intermediate
targets [20]. However, it is not the geometric qualities of these movements that are
interesting. What is interesting, is these geometric qualities persist over a large va-
riety of conditions. Because these movements contain invariant patterns, despite the
opportunity to do otherwise, this behavior can be framed in the context of an opti-
mization. Given this information, it has been argued that these movements are the
result of a cost optimizing strategy. Human reaching movements in particular, have
been argued to be consistent with a motor plan that penalizes, end-point jerk [20],
[31], joint torque rate [38], motor commands [50] or end-point variance [28]. If a cost
function is being optimized, it could be a strategy the biological system has devised
to help choose amongst the multitude of possible motor plans.

Regarding the system nonlinearities, there is also some intriguing evidence for
simplifying strategies in biology. Descriptions of muscle behavior have a nonlinear
dependence on their controlling signals [71]. Specifically, these models suggest the
force that muscles produce varies nonlinearly with muscle activation. However, ex-
perimental evidence suggests that this dependence is approximately linear. Has the
central nervous system adopted a linearizing strategy?

Bizzi et.al. [5] were first to report on what would begin a series of investigations on
the linear production of forces in the frog hind limb. Experiments were conducted on
the common bull frog, Rana catesbeiana. The results of microstimulating the spinal
cord were examined. Typically, the spinal cord of the animal was transected, this is
the so called spinalized state. Neural connections with the cortex and any other super
spinal structures were therefore eliminated. Motor behaviors of an animal prepared in
this manner are the exclusive result of local spinal circuits. Interestingly, in this state,
frogs, as well as other animals [68], still retain basic motor skills. For example, spinal-
ized frogs are capable of coordinated motion for reflexive removal of, or withdrawal
from noxious stimuli. Kicks and leg movements that mime swimming motions can
also be induced through spinal stimulation (fictive swimming and kicking? reference).

Bizzi et.al. found that stimulating the spinal cord with small amounts of electric
current would induce coordinated muscle activity within the hind limb. With a trans-
ducer attached to the ankle, forces could be measured across the limb’s workspace
while the stimulus was active. By repeatedly stimulating the same site within the
spinal cord, force measurements were found to be repeatable, invoking the notion of
a spinally encoded force field. Often this activity drove the limb towards a stable
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orientation, or equilbrium, within the workspace of the hind limb.

This first study also found that these spinally induced force fields, surprisingly,
exhibited the quality of superposition. The force field associated with costimulating
two spinal sites was approximately equal to the vectorial sum of the force fields asso-
ciated with the individual sites. This finding was unexpected given the nonlinearities
in muscle force generation, neuron properties and neuron interactions.

Since these initial findings were reported, further experiments have examined these
spinally induced isometric force fields and their linear properties. A study conducted
on approximately 100 frogs found that though the sudden onset of stimulus induced
transients in the magnitude of the field’s strength, the orientation remained approx-
imately constant [25], suggesting that spinal circuitry was encoding force fields with
an invariant spatial structure. This evidence further implicated isometric force fields
as motor primitives.

In another study [49], the superposition properties of isometric force fields were
specifically investigated. Force fields resulting from individual stimulation and si-
multaneously costimulated sites were measured. The costimulated force fields were
compared with the vector summation of the individually stimulated force fields. The
costimulated and vectorially summed force vectors were compared on a point-by-point
basis, it was found that the cosine of the angle between them was >0.9 for over 87%
of the cases, implying that the orientation of the costimulated force fields was similar
to that of the vectorially superposed field (if they were exactly proportional the cosine
would be 1.0). Further analysis of the force fields compared the relative magnitudes
between the costimulated and vectorially superposed fields. This too was found to be
in good agreement.

Further quantifying the linear properties of isometric force fields [41], three prop-
erties of the elicited force fields were examined: the dependence of force magnitude on
stimulation parameters, the invariance of force field structure with varying stimula-
tion strength, and the costimulated force field’s similarity to a vectorial superposition
of individual force fields. The study found that for a great majority of cases, the cor-
relation coefficient between force field magnitude and stimulus strength (measured
in charge delivered) was highly correlated (>0.9). The field structure, measured in
terms of average angular shift with stimulus strength, was small, approximately 1
degree. And the costimulated fields closely matched those predicted by a superposi-
tion of the individual fields. The results indicated a strong tendency for force fields
that increased linearly in stimulation and could be linearly superposed through linear
combinations of stimuli.

These studies, and others like them, e.g. [29], indicate what could be examples
of a biological system that has found strategies for alleviating nonlinearities. These
isometric force fields could allow for further advantages too. Force fields could be a
redundancy or dimensionality reducing strategy as well. The isometric force fields
encoded within the frog’s spinal interneurons were quickly recognized as a possible
organizing principle for motor control. The force fields, and their associated equilibria
could be a way to group muscle activities into functional units. It was speculated that
these force fields could represent a mechanism whereby the central nervous system
mapped motor plans to motor commands (7).
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Several investigators, trying to understand how the frog’s motor control was or-
ganized, proposed that these force fields could be used to construct the complex and
coordinated motor behaviors produced by awake and naturally behaving animals. It
was suggested that these force fields were the component pieces used by the mo-
tor circuitry of the animal to generate motor behaviors, i.e. force fields were motor
primitives.

In one of the early force field studies [25], movements were compared with their
inferred equilibrium trajectories. Evoking reflexive movements through cutaneous
stimulation, free limb trajectories were recorded. With the limb held in fixed locations
across the workspace, subsequent stimulations were used to compute a force field.
The time varying equilibria of these force fields corresponded closely with the limb’s
trajectory for many movements. It was speculated that force fields might be used as
motor primitives to generate movements, possibly with an equilibrium trjaectory.

In a study that claimed to present the first direct evidence that force field primi-
tives combined to create motor behaviors, reflexive limb movements with and without
cutaneous afferents were investigated [35]. Results indicated that both kinematics
and EMG signals, before and after cutaneous deafferentation, were similar. However,
when the limb encountered an obstacle there were clear differences in the measure-
ments. The frogs made corrective movements in response to the obstacle, that were
absent after deafferentation. Corrective movements consisted of sequences of stereo-
typical forces that varied with time of contact and force of impact with the obstacle.
The authors argued that these corrective forces, were the result of a corrective force
field superposed on the nominal movement generating forces. A follow up investiga-
tion [23], found further support for modular independent units, in the form of force
fields, which appeared to be combined in the generation of movements.

And in another noteworthy study [24], free limb kinematics of spinalized frogs with
and without afferents were compared. Movements were elicited through microstim-
ulation of spinal gray matter. The isometric force fields for these same stimulations
were computed. The isometric force fields were then used to simulate limb kinemat-
ics using a dynamic model of the limb. Limb kinematics of the actual and simulated
system were found to agree well during the initial acceleration of the movement. This
was offered as support for the hypothesis that the spinal cord executes movements
through the use of force field primitives.

Just as force fields might represent motor primitives, the commands that induce
muscle forces could also represent a motor primitive strategy. Hence, another bio-
logical example of dimension reduction may come in the form of motor command
reduction. In many studies investigators collect electromyographic (EMG) data from
awake and behaving frogs. Theoretically, the activity of each individual muscle can
vary independent of all others. Therefore, for example, the EMG recordings of 13
muscles can constitute 13 independent signals. However, in many behaviors, such
complete independencies have not been observed. Instead, the activity of muscles has
been observed to covary.

It should be noted that the behaviors examined are rich enough to allow for more
independent variability in the muscle activations than observed. Furthermore, the
EMG signals are measured with high enough precision to detect the indepence of all
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muscles. These observations argue against dismissing the low-dimensionality as an
epiphenomenon.

If muscle activations covary, that is to say they are not independent, then their
measurements will be contained on a hypersurface within the ambient space of their
full dimension; if the activations have a linear dependence, then their measurements
are contained on a linear hyperplane (a plane with dimension greater than 2). For
example, if the activations of three muscles had a linear dependence, such that two ac-
tivations covaried, and the third was independent of the two, then the three measure-
ments would be contained on a two-dimensional plane within their three-dimensional
ambient space. With the plane (or hyperplane) identified, the activations of all three
muscles can be represented as two time varying signals, that scale two bases that
represent fixed ratios of muscle activity.

Looking for regularities in muscle activity, many studies, (including some of those
mentioned earlier) have found that EMG signals from as many as 13 muscles often
can be reconstructed to a high degree of precision with as few as 4 or 5 ratios of
activity. These fixed ratios of muscle activity have been defined as muscle synergies.

This low dimensionality of muscle activation during behavior was investigated
under many different conditions. One study [67], collected EMG data of movements
evoked through cutaneous stimulation with spinalized frogs. EMG recordings from 9
muscles were made. By fitting the data to fixed ratios of muscle activations, it was
found that the data could be described with as few as four synergies.

In another sudy on spinalized frogs, motor behaviors were evoked through a chem-
ical means (NMDA microstimulation) in spinalized frogs. This experimental method
had the distinction of evoking motor behaviors that were not peripherally mediated
relflexes, and as such it was argued that the EMG data was richer than in previous
studies. The EMG data collected from 12 muscles was used to find a low-dimensional
representation using a principal component analysis method. It was found that 96%
of the data was accounted for with 7 synergies (a reduction in dimension of almost
half, from 12 to 7). Due to the task independence of the motor behaviors evoked,
and the similar synergies found amongst different frogs, the possibility that these
synergies were a basis for all motor behaviors was put forth.

Extending the idea of synergies further, it has been suggested that the fundamental
units being manipulated for the generation of motor behavior are not fixed ratios of
muscle synergies, but rather patterns of muscle activation that vary in time. In a
study using defensive kicks from awake and behaving animals, EMG data was fit to
time varying synergies [15], [14]. As few as three time varying synergies could be used
to fit the data from 13 muscles.

If synergies are the bases for muscle activations, both for reflexive and awake
behaving motor behaviors, this would represent a large reduction in the number of
controlled variables. What’s more, commands produced with linear combinations of
synergies could be an effort to group together redundant motor signals into functional
units [11]. It has also been suggested that synergies are the bases for force fields [43],
further implicating them in the use of motor primitives. All of these possiblities are
an opportunity for the central nervous system to simplify the problems associated
with high-dimensionality and redundancies in motor control.
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1.4 Thesis Objectives

The spinal motor circuitry of the frog has revealed some auspicious artifacts. These
spinalized animals exhibit forces that are linear in stimulation; they appear to scale
linearly, obey vector superposition, and have a structure that is invariant with increas-
ing stimulation. These same isometric force fields reflect characteristics consistent
with motor primitives; modular force fields appear to be the basis for some spinally
mediated behaviors. The motor commands of frogs are low-dimensional and may be
composed of fixed ratios of muscle activity; motor commands could be restricted to
combinations of muscle synergies. In part, it is these phenomena that have led inves-
tigators to conclude that spinal circuits contain a great deal of function and motor
“intelligence”. Whereas previously the spinal cord was considered a passive device
relaying information from the cortex to the animals extremities, now it is clear there
is more to the story [7]. Could these spinal circuits by working to linearize, reduce
dimensions and redundancies in the interest of simplifying motor control? We shall
explore these issues in the thesis.

The “linear” nature of isometric force fields is an intriguing characteristic. Al-
though linearity is not necessary for a control structure based on force fields, linearity
has distinct advantages. When speculating on spinal motor primitives in the form
of force fields, linearity is often a prominent feature. Arguments typically point out
that motor behaviors produced through combinations of force fields can be easily
interpolated or extrapolated to new behaviors by exploiting linearity. For example,
when motor goals can be framed in terms of forces, behaviors can be easily generated
by stringing together appropriate force fields in linear combination. This may greatly
reduce the computational load in generating motor commands.

The linear isometric force fields, and the force fields inferred from motor primitive
studies, have intriguing implications for motor control. There is compelling evidence
that spinal circuitry generates motor behaviors through a combination of discrete force
fields. These force fields may represent the elemental units of the motor generating
structure.

The ability of complex behaviors to be explained as combinations of synergies
indicate that motor commands are low-dimensional and restricted to time varying
combinations of specific commands. This could be an effort to reduce the high-
dimension of motor commands. They could also be the basis for motor primitives. In
either event, they are a simplification over control that must manage all the motor
commands available independently.

Much has been made concerning the connection between the linearity in isometric
force fields, motor primitives and synergies. However, there is little direct evidence
to link them, either functionally or physiologically. What’s more, aside from ad hoc
attempts to explain possible links between these phenomena, there has been little in
the way of a principled explanation for a motor control framework that would give rise
to these phenomena. The main goal of this thesis is to provide such an explanation.

The thesis is divided into two parts. First the issue of linearity in isometric force
fields is addressed. It has been observed that the strength of isometric force fields
increases linearly with stimulation parameters. This apparently linear phenomena
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in a nonlinear system is commonly observed and reported yet relatively little effort
has been made to analyze and explain this seemingly counterintuitive behavior. The
linearity is investigated in the context of motor control. The thesis asks if linearity is
somehow a result of specific motor commands and feedback strategies, or whether it is
in fact a natural result of the biomechanical properites of the musculo-skeletal system.
The results found indicate that while a detailed model of the limb is fully capable of
exhibiting nonlinear behavior, when restricted to parameters that accurately describe
the animal in question, the model predicts nearly linear behavior. Based on these
results we propose that force fields that scale linearly in activation are a natural result
of the specific biomechanic properties of the limb and are not the outcome of specific
linearizing motor control strategies. We also propose a corollary hypotheses, that the
animal has evolved to allow for these linear behaviors is.

The second investigation centers on the connection between low-dimensional mo-
tor commands and hypothesized motor primitives. Many experimental investigations
have examined muscle synergies, fixed patterns of muscle activation. It has been found
that a small number of synergies may account for motor commands across different
behaviors. Other experiments have probed motor behaviors for modular features in
the form of force fields, that might indicate the presence of motor primitives, uniquely
controlled variables that can be flexibly combined to accomplish motor tasks. And
further studies have looked for connections between synergies and motor primitives,
specifically questioning if the former is the basis for the latter. However, this work
has largely been descriptive in nature, trying to explain the low-dimensional data
without reference to the underlying control structure. For instance, it has not been
addressed how synergies are specified, or how control might be enhanced or limited
by their use. There is still want for, if not a causal connection between, a principled
explanation for how motor primitives, low-dimensional motor commands and syner-
gies arise, how they are connected, and how they are implicated in the organization of
motor control. This thesis investigates one such explanation, using apparatus drawn
from model order reduction theory.

A reduced order model is a simplified representation for estimating the input-
output dynamics of a dynamical system. Many low-dimensional features result from
employing a reduced order model in motor control. We propose that a reduced order
model of the input-output behavior of the frog hind limb’s musculo-skeletal dynamics
is capable of estimating system properties relevant for controlling behavior. These
estimates allow the central nervous system to generate motor commands to produce
behaviorally relevant actions and predicts the existence of low-dimensional motor
commands, and motor primitives in the form of synergies.

We examine a method for finding a low-dimensional model that estimates the
full system. The method attempts to find a compact representation for states that
most significantly impact the energy of the input-output dynamics. The reduced
model is examined for its abilities to estimate system properties and for its use as
a controller, generating motor commands for the full system. The reduced system
is further examined to illuminate the role of motor primitives in motor control and
their relationship to limb biomechanics. A formalism for defining motor primitives
is defined and the resulting primitives are compared with experimentally derived
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synergies.

In chapter 2 we introduce the many models used in this thesis for analysis and
simulation of the musculo-skeletal system. In chapter 3 we investigate the biomechan-
ical sources of linearity in force production. Our results indicate that the linearity
experimentally observed may be explained as the natural result of the biomechanical
properties of the frog’s musculo-skeletal structure. In chapter 4 model order reduction
theory is reviewed in the context of our eventual application, computing a reduced
order model for a nonlinear system. In chapter 5 we investigate a reduced order model
for use with controlling a physiologically accurate frog hind limb model. The model
presented is interpreted as an existence proof for a means to simplify motor control.
We use the model to demonstrate system estimation and control, as well as to explain
motor primitives. Chapter 6 is a discussion of the contributions of this thesis and
some connected ideas concerning biological motor control. We conclude the thesis in
chapter 7 and provide some ideas for future work.
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Chapter 2

System Models

In this chapter we describe the component models used to simulate the hind limb
of Rana pipiens. Some of the models used are quite intricate and merit a detailed
description. To best procede we break up the description into three parts. First
we review some of the pertinent muscle physiology and mechanics to motivate and
introduce the muscle models used. Building on these muscle models, a model of the
frog hind limb’s musculo-skeletal system is presented. This model is created using
the software package, Software for Interactive Musculoskeletal Modeling, or SIMM.
The SIMM model incorporates details of the inertial and geometric properties of the
hind limb bones, as well as the particulars of how the muscles couple to it. The
SIMM model is used to address the first portion of this dissertation, that of linear
force production in stimulation.

The third section of this chapter will present a second dynamic model of the
frog hind limb. This second dynamical description is based on the SIMM model but
incorporates a few simplifications to allow for fast simulations in Matlab. It is this
model that we use for the second half of the thesis study, to analyze the feasibility of
a reduced order model to control the limb.

2.1 Muscle Modeling

In this section we briefly review the salient features of muscle, or more precisely
musculo-tendon, anatomy and physiology. Our goal is not to present an exhaustive
analysis of muscle, but rather enough information to motivate the model used to
describe it. There are many published examples in the literature that do a thorough
and compelling job of motivating these same models (e.g. [9], [70], [72] and [73]).
What follows is true for mamallian, and in large part, vertebrate skeletal muscle. For
further details refer to [34], [71], [46], [8].

2.1.1 Muscle Anatomy

Muscle is composed of muscle fibers and tendon. The muscle fibers constitute what is
referred to as the muscle “belly”, the active force generating portion of muscle. The
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tendon, an elastic connective tissue, joins disparate groups of muscle fibers to each
other and the skeleton.

Muscle fibers are composed of smaller functional units called myofibrils. The my-
ofibrils are in turn composed of even smaller units called sarcomeres. The sarcomere
is the smallest functional unit of muscle contraction and force generation.

The sarcomere is responsible for both active and passive force generation. Com-
posed of long overlapping protein fibers, the sarcomere contracts as its constituent
proteins slide past each other in a calcium-mediated electro-chemical process. This
process of mechanical deformation produces tension across the sarcomeres and in turn
the muscle fibers. The mechanical deformation and resulting force generation requires
a metabolic cost. Furthermore, the process is influenced by the level of stimulation
the muscle fiber receives from it’s innervating neruons. The level of stimulation a
fiber receives determines the strength of these protein contracting dynamics and is
termed the active state. Therefore, the forces derived from the sarcomere in this way
are referred to as active force generation.

In addition to producing force actively, the sarcomeres (due to further protein
chains and structural tissue) generate resistance to stretch that is independent of
stimulation, or active state, and does not require a metabolic cost. This is the so-
called passive force.

Tendon, too, resists stretch passively, though generally with much greater force
than muscle. That is, tendon is generally much less compliant than muscle fiber. The
tendon acts to transmit the force muscle generates to the skeletal links muscle effects.

Each muscle fiber is innervated by a motor neuron. Each motor neuron, along
with all the muscle fibers it innervates is referred to as a motor unit. The motor units
are the smallest individual element the central nervous system controls.

2.1.2 Muscle Physiology and Mechanics

Force-length relation

When stimulated, muscle fiber contracts. The subsequent force generated is a function
of both the length and velocity (shortening or lengthening) of the muscle fiber. From
experimental studies (e.g. [46]) it is known that the force generated as a function
of length has a typical profile. The force is maximal about a unique length, I7*, the
optimal muscle fiber length, and decreases as the fiber length increases or decreases.
The details of this force-length profile are beyond the scope of this thesis, suffice
it to say, it can in large part be explained in terms of the sarcomere’s mechanical
deformation. The strength of this response increases with increasing muscle activation
state. This is therefore referred to as the active force-length curve.

In addition to this, muscle fiber also generates force as a function of length that is
independent of activation level. This passive tension is generated as the muscle fiber
is stretched to lengths larger than [J'. The force increases in a nearly exponential
relation to stretch [73].

Force-velocity relation
In 1938 Hill performed the quick release epxeriments for which he is famous. Af-
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ter a load attatched to muscle was released, the initial velocity of the load (and the
lengthening muscle) was measured. The load’s mass was varied and the subsequent
initial velocities were measured. After what appeared to be an instantaneous deflec-
tion of the load/muscle the velocity was approximately constant. The relationship
between load’s mass and initial velocity appeared linear. Based on heat and work
measurements Hill derived the famous force-velocity curve that bares his name.

(Tob — av)
(v+b)

In this curve, T is the muscle tension, v is the muscle velocity and a and b are constant
coefficients. T, is the tension at rest.

(T+a)(v+b)=(T,+a)b = T = (2.1)

Tendon Complicance

Tendon has no active characteristics. It is merely connective tissue. In force-length
measurements tendon appears elastic (or slightly viscoelastic). Initially the tendon
is relatively compliant, this defines the so-called “toe” region. The stress a tendon
experiences as the length further increases, approaches a near constant level. If, as is
often assumed, the stress-strain relation of tendon is constant, then the compliance
of tendon can be computed based on its rest, or slack length, IT. As a consequence of
the constant stress-strain assumption, the longer a tendon’s slack length, the larger
its compliance.

Twitch and tetanus

When muscle is stimulated with a brief electrical impulse force begins to develop. The
force slowly increases to a peak level, and then decays back to zero. This transient
force profile is referred to as a twitch. Once a twitch has expired, a second electri-
cal impulse will elicit the same response. If another impulse is delivered before the
twitch has decayed to zero, the response appears as the superposition of two twitch
responses. As the rate at which the electrical impulses is delivered, the force profile
appears as a ripple, or sinusoidal signal, with a nonzero mean value. Stimulating the
muscle at higher frequencies, the strength of the force eventually saturates. This is
the tetanic fusion state; muscle in this state is tetanized.

Activation Dynamics

As mentioned above, the electrical excitation of muscle elicits what is referred to as
an activation state (the strength of which can be inferred from the muscle force). Ex-
perimentally, activation is approximately proportional to time integral of excitation.
The activation dynamics can be approximated as a low-pass filtered version of the
excitation. However, it has been widely observed ([73]) that this relation is nonlinear,
as the rate for increasing activation is faster than that for deactivation.

2.1.3 2-element Nonlinear Hill model

The first muscle model we present is an effort to incorporate muscle fiber contraction
dynamics (Hill’s force velocity relation, and the empirical force-length relation) in a
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simple fashion. This is done with a two element nonlinear model. The two elements
are an active contractile element in parallel with a passive elastic element (see figure
2-1). The contractile element models the active force generating character of muscle
fiber. The passive elastic element represents the muscle fiber’s resistance to deflection.
This may or may not represent tendon elasticity depending on modeling assumptions.
If the tendon is assumed to act in the same direction or nearly parallel to, the muscle’s
tension (which may be a valid assumption for some muscles) then the parallel elastic
element could incorporate tendon properties. However, in this thesis we shall assume
that all the muscles modeled have tendons in series with the forces they generate.
Under this assumption, the parallel elastic element models muscle fiber’s passive
elasticity only. This is a reasonable model if it is assumed the tendon’s elasticity is
significantly less than that of the muscle fiber’s.
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Figure 2-1: 2-element Hill model diagram. The two elements are the contractile
element (CE) and the parallel passive elastic element (PE).

The contractile element models the muscle fiber’s dependence on fiber length, fiber
velocity, and activation state, denoted as I™, v™ and a respectively. The length and
velocity dependence have already been described. The activation state of the muscle
fiber is a description of the amount of muscle fibers actively generating force; zero
when the muscle is wholly passive, and one when completely excited. The functional
form of this length-velocity-activation dependence is commonly represented as being
multiplicative. That is, if the force-length and force-velocity functions are f,(I™) and
fo(v™), then the active contractile element’s force is,

Fce = afm(lm)fv(vm) (22)

The passive elastic element represents the muscle’s resistance to displacements
without regard to activation state. If, as we are modeling it here, this is the muscle
fiber’s elasticity and not that of the tendon, it is typically represented as a force that
increases exponentially with displacement. We shall denote the passive elastic force
as Fi.

Before proceeding to the kinetics of the model, a brief statement on impedance and
admittance modeling is necessary. As the model stands, it can either produce forces
in repsonse to imposed motions, or it can produce motions in response to imposed
forces. In the first scenario, the muscle is modeled as an impedance, in the latter
scenario the muscle is an admittance. The two scenarios require distinct conditions
from the model.
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When the muscle model is an impedance, the muscle’s velocity (and in turn posi-
tion) is specified and the model produces the corresponding forces. The total muscle
length and velocity shall be denoted as [, and v. Due to the parallel configuration,
[™ =1 and v™ = v, and the muscle force is,

F = Fo(l,v,0) + Fpe(l) (2.3)

When the muscle model is an admittance, the muscle’s force is specified and
the model predicts the appropriate motions. To do this the contractile and passive
element’s force relations must be inverted to compute an instantaneous velocity for
the muscle. However, in this thesis the two-element model is never used in this
capacity.

2.1.4 3-element Nonlinear Hill model

The three-element model is an attempt to incorporate tendon mechanics into our
muscle model. Now the model is more accurately referred to as a musculo-tendon
model (throughout the thesis the term musculo-tendon shall be used to describe
models that represent muscle). A passive elastic element is added in series with
the previous two-element model. In general, the series elastic element, of which the
tendon is likely the dominant contributer, will produce a force, maybe nonlinear,
that’s a function of displacement. A schematic of the three-element model is shown
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Figure 2-2: Three element Hill model diagram. The three elements are the contractile
element (CE), the parallel passive elastic element (PE) and series elastic element (SE).

Just as before, this model may be an admittance or an impedance and the defining
relations will be used in different ways accordingly. If motions are imposed on the
muscle, the musculo-tendon must be modeled as an impedance. However, under
these conditions some computational difficulties arise. The model is not well-posed;
the series elastic element will be in derivative causality and to solve for the musculo-
tendon force will require taking the time derivative of the contractile element’s force.
This is an unwanted and unnecesary complication.

To avoid this computational difficulty we shall add a small mass element between
the series elastic element and the contractile element. The mass element also has
the added benefit of possibly representing the mass of the muscle belly. To better
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illustrate how this influences the system the bond graph notation shall be utilized.
In figure 2-3 bond graphs are shown with the addition of a mass element. The left
schematic is the bond diagram for the case when the model is coupled to an effort
source (forces are prescribed) and the musculo-tendon is an admittance. The right
schematic is the bond graph when the model is coupled to a flow source (motions are
prescribed) and the musculo-tendon is an impedance.

L A A

se ce<—1}= 0 <

| |

PE PE

CE

Figure 2-3: Bond graph for 3 element Hill model with added inertia element. On the
left, the system is coupled to an effort source. On the right the system is coupled to
a flow source.

Now, returning to the case when motions are imposed on the model, the mass
element is now in integral causality and the relations for prescribing the musculo-
tendon force are well-posed. The system relations are third order. Alluding to the
tendon, the series elastic length shall be denoted I and the force as, Fi.. The inertia
of the mass element is 4.

d T m

Zizl = vV—9P

d m m

U

Lom = LB, — Boam) - Fom, o™, a) (2.4)
dt - 6 se pe ce ) 3 .

The musculo-tendon force is the tension across the tendon, F,(IT).
When forces are imposed on the model, the musculo-tendon is an admittance.
The relations are now second order.

d m m

al = v

dom - 1[1; (t) = Fpe(I™) = Fee(I™, 0™, )] (2.5)
dtv 5 pe ce ) , & .

The total musculo-tendon length is [ = I™ + F_1(F(t)).

2.2 Hind Limb Model 1

To investigate the biomechanical sources of linearity in force production, we need a
model of the frog hind limb. First and foremost, the model will be required to repro-
duce musculo-skeletal behavior at a level of detail commensurate with our hypothesis.
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Therefore, the transient dynamics of the system are not of great importance. For in-
stance, while the exact temporal dynamics of twitch and tetanus are not of primary
concern, the force-length curves for both muscle fiber and tendon ought to be repro-
duced fairly accurately. Similarly, model details like variable muscle moment arms
and peak isometric tension are not key features of the hypothesis. However, whatever
details these or other model features bring to our model, that make it a more accurate
description of the actual frog hind limb, are a welcome advantage.

With all this in mind, the model we use was built to be simulated using a com-
mercially available software package called Software for Interactive Musculoskeletal
Modeling, or SIMM. In this section we introduce the SIMM model for the Rana pip-
iens hind limb, made available to us from the Larry Rome laboratory. The structure
of the SIMM model and the capabilites of the simulations are discussed. But first we
briefly introduce the capabilities of the SIMM application.

2.2.1 SIMM

The SIMM application is a graphics based software package built for the express
purpose of developing and analyzing musculo-skeletal models. The software is built
specifically to represent bones, muscles and their interactions. Some of the SIMM
features taken advantage of are dynamic muscle models, detailed skeletal geometry
and musculo-tendon geometry.

The SIMM package comes complete with several classes of muscle models. It can
also be edited to include user defined models. To this end our own software was added
to SIMM to model the 3-element nonlinear Hill musculo-skeletal model for the hind
limb.

The bones in a model are defined with axis of rotation (possibly translating) and
inertial parameters. For instance, a femur can (and does) have three axis of rotation
at the hip and an inertial tensor to describe the mass distribution about each axis.
With two or more bones in a skeleton, the location and degrees of freedom of each
bone are defined relative to the neighboring bones. For instance, the femur’s location
and axis of rotation, are defined relative to the hip bone. Similarly, the tibiofibula is
defined in terms relative to the femur bone. Realistic visual representations of bones
can also be included in the application. Bone files, provided by the user, can be
incorporated into the program for realistic images of the model.

Within SIMM the user must define attachment, or insertion points, for all muscles.
These are locations on bones that the muscle is rigidly connected to. For arbitrary
skeletal configurations SIMM automatically computes the length and “line of action”,
or direction in space each muscle applies forces to the bones. This allows for variable
muscle moment arms.

If the user wishes, via points can be specified. A via point defines a location in
space that the muscle will always pass through. For example, a via point can be used
to enforce that a muscle never passes through a bone.

For more realistic descriptions of contact between bones and muscles, SIMM in-
cludes wrap objects. Wrap objects, defined with spheres, ellipsoids and cylinders,
designate surfaces muscles “wrap” around and over. SIMM calculates the muscle
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paths over these wrap objects and applies forces to bones in accordance with this
muscle geometry.

When a model in SIMM is fully defined, the application creates a dynamical
description of the system which can then be used in simulation. Once complied,
SD/Fast, another commerically available software package, is used to compute for-
ward or inverse dynamics for the model. The kinematics for the model can be supplied,
in which case SD/Fast will compute the joint torques necessary to achieve the motion
(inverse dynamics), or muscle excitations can be supplied and SD/Fast will compute
the resulting motions (forward dynamics). In addition, as long as the system is not
overly specified, some of the kinematics may be specified, as well as the muscle exci-
tations, and SD/Fast will compute the resulting motions. When the simulations are
run, output variables are written to a file for later use. Joint torques and kinemtics, as
well as most of the intermediate variables, e.g. muscle forces, and joint accelerations,
can also be written to a file when a simulation is run.

2.2.2 Model Structure

The SIMM model used in this thesis was, in large part, created in the lab of Lawrence
Rome. The model, created through detailed measurements of muscle and skeletal
properties of many frogs, was detailed in a series of published papers ([36], [37]). The
full model includes bones for the hip, femur, tibiofibula, an astragalus-calcaneus bone,
and a single unit for the metatarsophalangeals. The bones all have experimentally
derived degrees of freedom and geometry. Most of the limb’s muscles are in the model,
including all the parameters necessary to describe them. In addition, wrap objects
and insertion points for muscles have been created using experimental data.
Though the model has potential for a great deal more, for the purposes of this
study, the hind limb was restrained to movements within a plane. The movements
were also restricted to two degrees of freedom for the femur and tibio-fibula (hip and
knee joints). For this reason we will limit our review of the model description to the
hip, femur and tibio-fibula and their attendant properties. For similar reasons the
muscles used in this study are limited to thirteen of the hind limb. These thirteen
muscles constitute the bulk of the hindlimb’s mass (approximately 90%) and also
have been studied extensively by other researchers in frog motor behavior studies.

2.2.3 Parameter Determination

Multiple frogs of approximately the same size (28g) were sacrificed and the muscles,
organs and connective tissue were dissected from the skeleton. All connective tissue
surrounding limb joints were left intact to ensure proper location and motion of the
bones. Three-dimensional images of the skeletons were then constructed. The intact
skeletons, placed in a reference position on a rotating stage, were imaged with a
three-dimensional laser scanner. The stage was rotated through 10° and another scan
was made. 36 such scans of the skeleton, each rotated 10° apart were collected to
construct a three dimensional image of the skeleton. The individual bones were then
dissected from the skeleton and individually scanned. Three dimensional images of the
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individual bone segments were then overlayed on the intact skeletal image, to locate
the relative positions of individual bones within the skeleton once the connective
tissue was no longer present. This data was used create both a visual representation
for the animal within the SIMM enviroment and also to locate the local coordinate
frames for each bone segment.

In a seperate series of experiments, excess tissue was again dissected from the
skeleton and the relative motion of bone segments was measured to determine the
ranges of motion for each joint. Custom made jigs were used to measure rotation and
translation of one bone segment relative to another.

The hip bone is used as a grounding element; it is fixed to an inertial reference
frame. The femur is connected to the hip via a ball and socket joint allowing for three
rotational degrees of freedom. For this study, only one rotational degree of freedom is
unconstrained, allowing for hip flexion and extension in the animals horizontal plane.
The tibiofibula is connected to the distal end of the femur via a single degree of
freedom pin joint. This allows for rotation in the same plane as the hip joint.

Each bone’s mass, center of mass and rotational inertia were carefully measured
on multiple frogs and averaged (see Appendix A for parameter values). Animals were
frozen and cut into segments (e.g. upper leg and lower leg). The mass and volume of
each segment was measured. The moments of inertia were then calculated based on
assumptions of simplified geometric solids.

The attachment, or insertion points for thirteen muscle were found as follows.
After animals were sacrificed, the muscles were partially removed, leaving small por-
tions affixed to the bone. After drying, the skeletons were scanned using a three-
dimensional laser scanner as described above. The remaining muscles were then
removed from the bones and the skeleton was once more scanned. The two images of
the skeleton were then overlayed to determine the location of the insertion points.

As mentioned abobe, the SIMM model allows for the inclusion of wrap objects, to
simulate physical boundaries between the muscles and the bones. The model includes
four wrap objects. At the hip joint there are two wrap objects, both serve to keep the
musculo-tendons that cross the hip joint from passing through the femur head and
the hip. The remaining two wrap objects are affixed to the distal end of the femur.
One allows msuculo-tendons to slide over the rostral surface of the knee joint, and the
other provides the same function for the caudal surface of the knee joint. Additional
via points were added to the model to approximate the effects of connective tissue.

For each muscle, optimal muscle fiber length, ™, tendon slack length, {7, pen-
nation angle, 6 and peak isometric tension, F* were computed. The procedure is
briefly explained here, but the details can be found in [37]. Under controlled condi-
tions, muscle sarcomere lengths were visually measured. Then, based on an assumed
muscle tension and tendon strain, I™ and I were computed®. Pennation angle, § was
found with caliper measurements. F.* was computed as the product of physiological
cross-sectional area and muscle stress, assumed to be 260kN/m?2.

1We found through an independent analysis that the results are not sensitive to the assumed
muscle tension.
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2.2.4 Model Overview

Unfortunately, it seems many of the muscles of the frog’s hind limb are referred to with
multiple names. For consistency, we will use the terminology used in [37]. Shown in
tabular form, are the muscles contained in the model. In the first and second columns
are the abbreviated and full muscle names. For convenience the third column lists
alternate names for the muscles.

Abbrev. Muscle Name Alternate Name

ILe Iliacus Externus Gluteus

ILi Iliacus Internus Ilio-Psoas

ILf Ileo-Fibularis lio-Fibularis (biceps)
TFL Tensor Fasciae Latae Rectus Femoris Anticus
GL Gluteus Magnus Vastus Externus

CR Cruralis Vastus Internus

SM Semimembranosus -

SA Sartorius -

GR Gracilus Major Rectus Internus Major
STd Semitendinosus dorsal -

STv Semitendinosus Ventral -

ADd Adductor Magnus Dorsal -
ADv Adductor Magnus Ventral -

Table 2.1: Muscle Names and abbreviations

An image of the SIMM model is shown in figure 2-4. The red cords are the paths
of the musculo-tendons. In blue are the wrap objects, displayed as hatched cylinders
and hemispheres. At the hip joint there are two wrap objects, two more are affixed
to the knee joint.

The SIMM model has two kinematic degrees of freedom, the hip and knee angle.
The range of both joints is £90°. When the hip angle is zero degrees, it is perpendic-
ular to the long axis of the pelvis. When the knee angle, which is defined relative to
the hip joint, is zero degrees, it is perpendicular to the long axis of the femur. For the
remainder of the thesis, the orientation corresponding to both joints at zero degrees
shall be referred to as the zero orientation. This is depicted in figure 2-4.

Positive angluar displacements, for both joints, are defined as clock-wise rotations.
To better visulaize how the hip and knee angles sweep out the ankle position refer
to figure 2-5. In figure 2-5 isoclines for the hip (left plot) and knee (right plot) are
plotted across the ankle’s workspace. Also depicted in the plot are the hip, knee and
ankle location within the workspace when the leg is in the zero orientation.
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Figure 2-4: Image of SIMM model of Rana pipiens hind limb (provided by the lab of
Larry Rome) showing the hip, femur and tibiofibula. In red are the 13 muscles. In
blue are the 4 wrap objects.

2.3 Hind Limb Model II

The SIMM model, with it’s precise wrap objects and muscle insertion points allows
for very detailed simulations. This detail is exploited for the purposes of simulating
realistic isometric force fields. However, for running dynamic simulations where the
limb is free to move on its own accord, the model is computationally intense; the
simulations take a significant amount of time to run. For this reason we concluded
that the SIMM model would not be appropriate to run the many simulations that
would be needed to investigate the use of a reduced order representation for control.
Therefore a second, more computationally tractable model was sought.

To reduce the model complexity, two structural changes were made. The model’s
configuration dependent muscle moment arms were replaced with constant moment
arms, and the 3-element Hill muscle models were replaced with 2-element models.
There is no clear rationale for including constant moment arms, as many of the
musculo-tendon’s moment arms varied considerably, some even changing sign within
the workspace. However, this simplification greatly reduces the simulation run-time.
What’s more, with constant moment arms the model still retains similar joint torques
and muscle excursions.

The switch to the 2-element Hill model though, was justified. As will be shown in
the following chapter, the musuclo-tendons in this hind limb model are relatively short
and stiff. Therefore the series elastic element of the muscle model simply transmits
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Figure 2-5: Hip and knee agnle isoclines for the ankle position. Also depicted are the
locations of the hip, knee and ankle when the hip and knee joints are 0 degrees.

the contractile and parallel elastic element’s forces and contributes little to the overal
musculo-tendon dynamics.

2.3.1 Moment Arms

In order to define constant moment arms for each muscle, averages were computed
across the workspace, £90° for both hip and knee joints. For many of the biarticular
muscles that passed over wrap objects, there was little variation in the moment arms.
The averaged muscle moment arms can be grouped into a matrix, R for symbolic
notation. The joint torque due to all the muscles can then be expressed as,

T =RF (2.6)

where F is a diagonal matrix, with the force due to the i*" muscle at the (i, i) element.
R, in centimeters, is,

03 0.19 017 -0.11 -0.03 -0.33 -0.02 -0.25 0.28 0.28 0.11 —-0.07 —0.23

= 0.08 0.18 0.18 —-0.21 —-0.21 -0.21 0.1 0.13 0 0 0 0 0

2.3.2 Muscle Models

With constant moment arms, the length of any muscle is a linear function of the joint
angles. In matrix form, all muscle lengths are,

L=Lo+R"0 (2.7)
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where Ly is chosen such that each muscle has the same length as their SIMM coun-
terpart when the limb is in the zero orientation, (0°,0°).

To model the muscle’s active contractile force element, a quadratic curve, rather
than the cubic spline in the SIMM model, was used. This greatly speeds up simulation
time. The quadractic force profile is modeled as,

£o(1) = a[—3 + 81/I™ — 412 /1m2] (2.8)

where [ is the muscle length. Note that we impose zero force at I7*/2 and 3I7*/2. The
contractile element’s force profile is now discontinuous at the extremities, however, for
most muscles these muscle lengths are never experienced within the defined (£90°)
workspace.

To model the velocity dependence, a Hill curve was used. The parameter values
were adjusted to closely approximate the SIMM cubic spline. Defining v, = v™/Umaqq
as the normalized muscle velocity, we have,

fo= %%:")L) (2.9)

for muscle shortening, and,
(bz — AUy — 2’Um)
fo=
(b2 — vm)

for muscle lengthening. The overal normalized contractile element’s force is, as before,

Fee = af :rf v-
The passive parallel elastic element was also modeled with a quadratic curve rather
than SIMM’s cubic spline.

(2.10)

Fpo = p(1 - I’ (211)

p was chosen to fit the SIMM passive force length curve. Note that this curve is also
normalized with respect to the muscle’s maximum isometric tension, F".

The remaining variable to model is the activation state. The excitation-activation
dynamics are typically modeled as a low-pass filter. Though the evidence suggests
these low-pass dynamics may be nonlinear, with a faster rate for activation than
deactivation, we model the dynamics as linear.

da,-
dt

= (ui — a;)/7i (2.12)

where u; is the command to the ** muscle.
As described in a previous section, for this 2-element model, the total muscle force
is,

F = F7(Foe + Fye) (2.13)

where F is the maximum isometric tension for the i** muscle, taken directly from
the SIMM model.
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2.3.3 Miscellaneous

The remainder of version II of the hind limb model is equivalent to the SIMM model.
The inertial parameters as well as the link lengths and mass centers were taken directly
from the SIMM model. However, the dynamics were simulated using Matlab rather
than the SIMM application. This was done to simplify the continual need to modify
and update the software written to examine and analyze the system.

One further modeling issue shall be addressed, that of joint damping. Though the
contractile element does have velocity dependence, it is modulated by activation state
and the musculo-tendon models do not passively produce forces to resist velocity. The
mass of the limb links is very small relative to the forces the muscle’s produce, so much
so that the forces the muscles generate can accelerate the limb across the workspace
in tens of milliseconds. To add numerical stability to the system, as well as increase
the accuracy of the model, velocity dependent damping terms were added to the joint
torques. The joint damping effects competing factors. Large damping forces slow
down the system’s natural dynamics, increasing the time required to attain steady-
state conditions. This also increases the simulation run-times (it slows down Matlab).
On the other hand, light damping forces make the natural response fast and speed
up the time to attiain steady-state and decrease simulation run-times. However, this
can also result in unnaturally fast limb movements. Through trial and error, and
comparison with published results of frog limb movements [1], the damping at the
hip and knee joints was set to B = 2.5 x 10~4*Nms/rad.

42



Chapter 3

Weakly Nonlinear Muscle Behavior

3.1 Linearity Hypothesis

As discussed in the introduction, in experiments investigating force production in
spinalized frogs the isometric force fields appear to be linear in stimulation. This is,
ofcourse, only approximately true. Isometric force fields and the muscle behavior that
generate them are decidedly not linear. However, there is a long-standing convention
in the literature of describing the isometric force fields as “linear” in stimulation.
More accurately, experimental studies have found these force fields to approximately
conform to the rules of scaling and superposition, suggesting they are only weakly
nonlinear. That being the case, we seek to examine the sources of this linearity, and
the degree to which it holds. To do so, we will examine the biomechanical properties
of a hind limb model that may allow for such behavior.

We propose the following hypothesis:

The linear force production in stimulation can be explained in terms of the natural
biomechanical properties of the limb’s musculo-skeletal system.

Below we present evidence to support this hypothesis. We demonstrate that
although the hind limb model can exhibit force production that is nonlinear in stim-
ulation (either at the level of individual muscles or force fields), the limb does in fact
appear largely linear in stimulation for an appropriate range of parameter values and
regions of operation. What’s more, the parameter values that best describe the frog,
and a large portion of the limb’s workspace, coincide with this linear region. This
seeming “coincidence” argues that the frog may have evolved to exploit this linear
characteristic.

To examine this hypothesis, a realistic musculo-tendon and musculo-skeletal model
of the frog hind limb is analyzed. Therefore, a musculo-tendon model will be exam-
ined. Furthermore, to limit our study to biomechanical sources, muscle behavior in
the absence of feedback is examined. We seek to determine the degree to which the
relationship between muscle force and activation is essentially linear.
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3.2 Empirical Evidence Review

In one of the earliest studies specifically examining the linearity of spinal force fields,
Mussa Ivaldi et.al. [49] reported the results of isometric force fields at the ankle and
their ability to be superposed. In the study, force fields were recorded for individual
stimulation sites. Then the sites were costimulated and the resulting force fields were
recorded. These costimulated force fields were compared with the linear superposition
of the individually stimulated sites.

For a quantitative analysis, two measures were computed. The first was a test
of the superposition of the active component of the force fields (the force field that
resulted from subtracting the passive contribution). Two fields were measured when
individual spinal sites were stimulated. Then, the field elicited by costimulating the
individual sites was measured. This costimulated field was compared with the field
that would result if the individual fields were vectorially summed. The two fields were
found to be in close agreement, supporting the hypothesis of linearity in superposition.

To compute the second measure, a “cosine” between two force fields was defined.
This cosine measure was used to compare the costimulated field with the vectorially
summed fields as described above. This measure quantified the proportionality of the
two fields, that is, if the two fields were linearly scaled versions of eachother, then
the cosine measurement would be one. This measure was found to be > 0.9, further
supporting the linearity in superposition hypothesis.

In a follow up study by Lemay et.al. [41] a thorough examination of the the
linearity in force production was conducted. The researchers examined not only
the superposition property of force fields, but the scaling of force magnitude with
stimulation as well. In contrast to the study by Mussa-Ivaldi et.al., the total force
field and not simply the active component were examined.

The effects of varying stimulus parameters on force strength were examined. Mul-
tiple parameters effecting stimulus strength were systematically varied during electri-
cal stimulus delivery to spinal sites. In most (16 of 17 spinal sites) cases, the average
correlation coefficient between charge delivered and magnitude of resulting forces was
> 0.9, implying that the relation between force strength and stimulus was linear.

To compare changes in force field strength, the ratio of force magnitudes for differ-
ent stimulation levels were compared at each location. Before ratios were computed,
the forces were normalized by the maximum force component. Under these condi-
tions, if the force fields scaled linearly with stimulation the ratio would always be 1.0.
The mean ratio was 1.1 £ 0.5. This result indicated the force fields scaled linearly.

The final comparison of interest was that of summation under costimulation. Just
as in the study by Mussa-Ivaldi et.al., the hypothesis was that the field obtained
by costimulating two sites was the vector sum of the field obtained by stimulating
the individual sites. However, in this study more parameters were varied to better
examine the hypothesis. The results again implied that the spinal force fields were
linear in superposition.
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3.3 Problem Formulation

The “linear” findings of experimental studies have been investigated through varied
means. For instance, linearty has been examined through force fields whose strength
increases linearly with stimulation, force fields whose orientation remains invariant
with varying stimulation, and costimulation force fields that are approximately the
vectorial sum of the individually stimulated force fields. Now we shall frame all this
evidence under the mathmatical formalism of linearity in scaling and superposition.
With this done, it becomes apparent that all the linearity results can be explained in
terms of muscles that individually exhibit linear force production in activation.

For an isometric force field F', with activation vector «, (perhaps induced through
a spinal stimulation) the property of linearity in scaling, is expressed as

F(ca) = cF(a) (3.1)

where ¢ is a scalar. Since we are considering isometric force fields, the end-point
forces, at a specific location, are a function of muscle forces and joint angles only
(as opposed to inertial forces of the skeletal links). Furthermore, since there are only
two links in our hind limb model (experimentally, the hind limb is restrained to the
same two degrees of freedom), the mapping from joint torques to end-point forces is
unique, and we can equivalently examine joint torques to investigate end-point force
linearity in stimulation.

Consider the torque about an individual joint due to a single muscle, F7"(l;, a;)
r;(). For the j** muscle, r; is the muscle moment arm corresponding to the joint
angles 6, and [; is the muscle length. To simplify the expression, the muscle length
can be rewritten in terms of joint angles as well so that the expression for muscle
force becomes, Fi*(0,a;)r;(f). The total joint torque is the sum of the individual
contributions from each muscle,

T = Z F(8, ;)r;(0) (3.2)

Assume that the activations a; are due to stimulation at a spinal site. Further assume
that increasing the stimulation to the spinal site by ¢ produces activations &;. Then
the question of linearity in scaling is wheter the following relation holds,

D_F(0:85)rs(6) = 3 F (6, 05)r5(6) (3:3)

There are two possibilities under which this can fail: either increasing the stimula-
tion does not linearly increase the activation, &; # coy, or the muscle force generated
is not linear in activation.

This thesis assumes that the former has not occured, that is we assume &; is
always equivalent to ca;. This is the assumption made in previous studies, and an
examination of the robustness of this linearity between stimulation and activation is
beyond the scope of this thesis.
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Regarding the second possibility, that the muscle force is not linear in activation,
would violate the following,

D F7(0,c05)r5(0) = ¢ 3 F(6, 05)r5(0) (34)

J

However, assuming the preceding relation does hold, for arbitrary c, a;, 6, implies,
FJ(6,co5) = cFJ"(6,a5) (35)

or, the force produced by each individual muscle is linear in activation. Thus, linearity
in scaling can be assesed by examining the behavior of single muscles.

To examine the property of linearity in superposition, we can follow a similar
line of reasoning. Again, we consider joint torques to examine end-point force field
linearity in superposition. Assuming stimulation at a spinal location, site A, produces
activations a4, and stimulation at site B produces activations ap;, the individual
stimulations produce joint torques,

T4 = 3 FP(6,045)r;(0) (3.6)
B = ZF;n(a,aB,.)r,-(e) (3.7)

Now, if costimulating at both sites A and B simultaneously produces activations
aapj, then the resulting joint torque is,

TaB = Y _ Fy*(6,048;)r;(6) (3.8)

J

Therefore, if superposition holds under these circumstances, 74+ 7 = Tag. There
are two possibilities for this to fail. Either costimulating at both sites, A and B doesn’t
produce activations that are the linear sum of the individual activations due to those
site stimulations, or the msucle force generated is nonlinear in activation.

We assume the former has not occured, and that a4p is always equivalent to
a4 + ag. The second possibility, that the muscle force is not linear in stimulation,
would violate the following,

D FP(0, a5+ ap)ri(6) = > _[F(0, ay) + Fi(0, p;)]r;(0) (3.9)
J J
However, assuming the above relation holds, for arbitrary o4j, ap;, implies,
ij(e, ap;+ aBj) = F;"(&, OzAj) + F}”((), aBj)
= Fi™(0, cay) = cFj™(0, a ) (3.10)

which is the same condition for scalability described above.

Based on the implications for force fields at the limb end-point, that are linear
in stimulation, under scaling and superposition, the question of linearity collapses to
the level of individual muscle force production. With this in mind, the thesis will now

posit a hypothesis for the observed linearity, and outline how this hypothesis will be
examined.

46



3.4 Biomechanical Analysis

The musculo-tendon model used for this study is a nonlinear 3-element Hill model, as
described in chapter 2. In this model an active force generating contractile element
(representing muscle fiber force as a function of fiber position, velocity and activation
level) in parallel with a passive elastic element represent the muscle fiber. Both
elements are in series with another elastic element modeling the tendon. The details
of the model’s force length curves have been experimentally found (see chapter 2).
Below a description of the model structure and behavior is presented.

3.4.1 Musculo-Tendon Model

The present analysis of force generation with varying activation levels is indepen-
dent of muscle fiber or tendon dynamics. The properties we are investigating are
static in nature. Therefore, just as velocity effects are irrelevant in isometric studes,
the contractile element’s fiber velocity dependence will not come into play for this
analysis.

The active force generating, or contractile element, produces force as a function of
activation state q, fiber length /™ and fiber velocity, v™. The dependence on I™ and
v™ are modeled independently by force-length and force-velocity relations. The total
force is assumed to be a multiplicative relationship, af;(I™)f,(v™). The force-length
curve for the contractile element is based on single muscle fiber experiments. As the
fiber length increases from zero, the force-length curve first ascends, reaches a peak,
and then descends back to zero. The maximum tension muscle fiber can produce,
maximally activated and with v™ = 0, is referred to as the maximum isometric tension,
F*. The length at which F)* occurs is referred to as the optimal muscle fiber length,
.

As previously mentioned, we shall make the assumption throughout, that stimu-
lation and activation are linearly related at steady-state. The stimulus is assumed to
elicit excitation-contraction dynamics that in turn elicit an activation state. These
dynamics are known to have a nonlinear relation [73], however, because these non-
linearities are most accutely observed at the extrememes of muscle recruitment (for
instance where saturation effects are observed), this nonlinearity is often neglected
[70]. Furthermore, in the studies that have examined isometric force production, care
has been taken to avoid the levels of stimulus that might induce these nonlinearities
in muscle recruitment [25], [41].

In figure 3-1 the active force curve is plotted. Two active curves are depicted,
one with maximal activation, and another with 50% activation (dashed lines). The
active force profile begins to ascend from zero at small (= 40%!7*) displacements, and
descends back to zero for large (=~ 160%!7*) displacements. As modeled, the active
force component is nonlinear in length, but linear in activation state.

Both axis of figure 3-1 are normalized. The force is normalized with respect to the
maximum isometric tension, F*, while the length is normalized with respect to the
optimal fiber length, {7*. Using this normalization, the force is maximal (1.0) when
the normalized length is 1.0.

47



Also depicted in figure 3-1 is the parallel passive elastic element (dotted line). The
passive force is also zero initially, but exponentially increases as the displacements
increase from ['. The passive and active components are in parallel, so their force
contributions add. The sum of active and passive forces can be seen in the solid lines
of figure 3-1 for the two activation levels. Note how the activation level does not
influence the passive componenet; it is not linear in activation.

total muscle fiber force vs length

force

" ' ' L f 1
0.2 04 06 08 1) 12 14 16 18
muscle fiber length

Figure 3-1: Muscle fiber force-length curves for activation levels 50% and 100% (solid
lines). The dashed and dotted lines are the active and passive contributions, respec-
tively.

In figure 3-2 is a plot of the normalized tendon force as a function of tendon
strain. The tendon force is normalized with peak isometric tension, F.". Tendon
strain is computed as the ratio of tendon length to tendon slack length, €7 = [7/IT.
IT is the length of the tendon when the tension across it is zero. We note here that
tendon strain, when its force equals peak isometric fiber force, is assumed musculo-
tendon independent. This strain value, denoted €I is often reported to be 0.033
(e.g. [73]). However, the tendon force-strain curve in our model is significantly more
compliant. This tendon model predicts €7 ~ 0.05. As will be shown later, this
relatively compliant tendon has the effect of making our musculo-tendon model err
on the side of nonlinear force production in activation, further supporting our eventual
conclusions.

As explained in chapter 2, these three elements, the parallel passive elastic ele-
ment, the contractile force generating element and the series elastic element, compose
the 3-element Hill model we shall use in this analysis. When all three elements of
the Hill model are coupled (the passive and contractile elements in parallel, and the
series elastic element in series) the output force is no longer a simple algebraic func-
tion of the components. For a given muscle length and activation level, the tendon
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Figure 3-2: Normalized force-strain curve for tendon. Tendon force is normalized
with maximal isometric tension, F*, and muscle strain is normalized with optimal
muscle fiber length, 7.

strain and contractile and passive lengths are unknown. The muscle force for a given
displacement must be found through simulation of the dynamic system (in which
case an inertial element is added to the model, see chapter 2) or a numerical search
algorithm. Regardless of the method, the muscle force, due to the interplay between
all three elements, is not linear in activation.

The 3-element Hill model is characterized by three parameters (for now we are
only concerned with static conditions so no dependence on fiber velocity is needed):
the peak isometric tension, F*; the optimal muscle fiber length, I7*; and the tendon
slack length, I7. By defining these three parameters we completely characterize the
static properties of our musculo-tendon models.

Each musculo-tendon in the Rana pipiens hind limb model has distinct values for
these parameters. Rather than examining each individual musculo-tendon, it would
be convenient to find a stereotypical example for explanatory analysis. To do this
we shall normalize the force-length curve for musculo-tendon with the three defining
parameters, F,I™ and IT. As we have done previously, force will be normalized
with F". Temporarily, for illustrative purposes, displacements will be normalized
with {”* (another more permanent choice will be made in the following section). The
remaining free parameter, the tendon slack length, {7, will also be normalized with {™.
This ratio of tendon slack length to optimal muscle fiber length will be a referred to as
the “slack length ratio”, denoted €,. By normalizing the force-length curves we have a
framework with which to compare individual musculo-tendon models, without regard
to the values of the independent parameters. The parameters for each musculo-tendon
can now be collapsed down to one unique variable, ¢,.

49



3.4.2 Quantification of Linearity

We now procede to analyze the musculo-tendon model’s force production as a function
of activation. A few example force-length curves with different activation levels have
been computed and plotted below (figures 3-3 and 3-4). Figure 3-3 displays a few
normalized force-length curves for a musculo-tendon with a slack length ratio, &g,
of .5 (the tendon slack length is half of the optimal muscle fiber length). Curves
for three activation levels (100%, 50% and 10%) are shown in the solid blue lines.
Overlaid on these curves in dashed red lines are linear extrapolations; these are the
force profiles that would result if the musculo-tendon were linear in activation. The
linear curve is created by scaling the maximally activated force length curve by the
relevant activation level. For example, for the 50% activation curve, the linear profile
is the maximally active curve scaled by 0.5.

Observe that for this particular model, (¢; = .5), the force-length curve is very
nearly linear over much of the displacement shown. It is only when the model be-
gins to experience large displacements and the active force component can no longer
contribute to the force output, that the musculo-tendon force begins to appreciably
differ from the linear extrapolation. Once the muscle fiber has been strained past the
point where the active force generation can no longer contribute, the musculo-tendon
behaves as a purely passive element. Therefore, the force is no longer influenced by
the activation state, and is not linear in activation.

In figure 3-4 we plot another set of force-length curves for a model with £, = 5.
The three blue lines are the curves with activation levels 100%, 50% and 10%. In
red dashed lines are the linear extrapolations. We note that relative to the previous
model, with €, = .5, these curves deviate much more from linearity in activation.
The tendon in this model is much more compliant (due to its length relative to the
muscle fiber) and masks the linear increase in force of the active contractile element,
making the overall force production more distinctly nonlinear.

A final remark should be made concerning the displacements shown in figure 3-
4. Due to the normalization, {™/I7* this musuclo-tendon experiences a smaller total
displacement, relative to its total musculo-tendon length, than in the previous case
where €, = .5. This was done for illustrative purposes, as it allows for force-length
curves that are similar in appearance. However, we will choose a more appropriate
normalization shortly.

The above plots demonstrate, qualitatively, how the force output can deviate
from linearity. To quantify this behavior, we need to define a metric. The goal of
this investigation is to analyze how musculo-tendon force scales in activation. In
particular we are interested in knowing how close to linear this scaling is. Therefore,
we shall define an error in linearity, Ey, to be:

Er(l) = F,%T)\[ 3 (Fm(as, ) — aFm(1, )2 /n (3.11)

where F™(a;,1) is the musculotendon force with activation ¢; and total musculo-
tendon length I, and n is the number of distinct activations. E is the root mean
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Figure 3-3: Normalized force-length curves for musculo-tendon, €, = 0.5. Overlaid,
in dashed red, are the linearly extrapolated curves.

Normalized Musculo-Tendon Force Length Curve
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Figure 3-4: Normalized force-length curves for musculo-tendon, €, = 5.0. Overlaid,
in dashed red, are the linearly extrapolated curves.
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square error from a linearly scaled force, normalized by the force at maximal acti-
vation. Note that for a given &, this error is a function of musculo-tendon length
only.

This error in linearity, or Ey, score, is computed for the musculo-tendons of figures
3-3 and 3-4 and plotted in figure 3-5. This is done using activation levels of 100%,
75%, 50%, 25%, and 10%. In the top plot we see E(l) for the case when €, = .5.
The bottom plot is for ¢, = 5. We note three trends in these curves, which are also
consistent with the earlier plots. First, the curve computed for the musculo-tendon
with a longer slack length has a greater error score; it is relatively less linear. Second,
the error scores are greater for both models as the musculo-tendon experiences large
displacements. Third, the error score is generally low when the deflection is in the
vicinity of the opimal fiber length; i.e. the muscle force behaves most linear about
the optimal muscle fiber length.

We have computed the error in linearity score for two specific tendon slack length
ratios, €, = .5, 5. However, we would like to use this Fj score to predict behavior
for arbitary musculo-tendon models, so we sweep through varying values of ¢, and
compute the score for various displacements. Again, this is done using activation
levels of 100%, 75%, 50%, 25% and 10%. The result is a surface, plotted in figure 3-6.
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Figure 3-5: Error in Linearity score, E(l), for musculo-tendon models depicted in
figures 3-3 and 3-4.

The surface of figure 3-6 is the F; score a musculo-tendon model will exhibit for
a given set of parameters, F 1™ T and a particular displacement /. The horizontal
axis are the total musculo-tendon displacement normalized with respect to the sum
I™ 41T and the tendon slack ratio, ,. Normalizing the musculo-tendon displacement
with respect to the sum [* + [T, rather than /™, has the effect of normalizing the

displacement across musculo-tendons relative to their total length.
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Note the following observations of this E score surface. For small slack length
ratios, say €, < 0.5, the E} score is small (the musculo-tendon is approximately
linear in stimulation) for all but very large displacements. As the slack length ratio
and displacement increase, the E; score generally gets larger. As the normalized
displacement increases past 1.0, there is an abrupt change and the E score surface
quickly increases. This happens as the E}, score approaches values around 0.5. This
happens relatively qucikly for large ratios, £,. This indicates the location where
the musculo-tendon model’s passive characteristics, defined by the parallel and series
elastic elements, begin to dominate in force production. For all musculo-tendons, the
E} score eventually saturates at the same level, &~ .65; this is the F;, score value when
the musculo-tendon is, within numerical accuracy, purely passive and no longer varies
with activation.

There is also a region of moderately large E, scores for large €, and small normal-
ized muscle displacments. This can be seen in the left corner of figure 3-6. We note,
however, that in this region the musculo-tendon’s force is very close to zero and the
nonlinear effects are therefore insignificant.

With this surface, we can now predict when the force a musculo-tendon model
produces will, or will not behave linearly in activation. In addition, due to the Ep
score’s particular normalization, we can also use this surface to predict the error in
linearity of the joint torques or limb end-point forces a musuclo-tendon generates.
This invariance can be seen by considering the joint torque due to a musculo-tendon
at a given fixed orientation, and for a single joint,

7= ] ar(8) (3.12)

Error in Linearity Surface

Fosd..

Tpm
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Figure 3-6: Er(l) surface plot. The horizontal axis are the normalized tendon slack
length, and normalized displacement. The discontinuities observed in the left corner
are due to round-off errors associated with muscle forces that are nearly zero.
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where r(6) is the muscle’s joint moment arm and 7 is the joint torque. The E), score
in terms of joint torque is then,

Bu) = g5/ 2(rlond) o (LD /n

- m\ﬂzw) > (flewl) = asf (1,1)2/n
= sV - e (L DP/m (313)

The same line of reasoning demonstrates that the error in linearity for end-point
forces, for example measured at the ankle, is also equivalent to this score. That is,
although we have devised this linearity measure in terms of muscle force, it applies
to the end-point force field as well.

Now, in order to illustrate the linearity analysis we shall perform on the Rana
pipiens model, as well as validate the utility of the £ surface for linearity predictions,
we shall examine a “toy” model system.

3.5 Example Linearity Analysis

A toy musculo-skeletal system, simpler than, but analgous to the Rana pipiens model,
shall be examined. The model will be created to exhibit desired linearity properties
based on the previously found FEj surface. This is done for two reasons. First, it
will serve as an illustrative example of how we shall analyze the linearity of musculo-
skeletal system. Second, this effort will demonstrate the utility of the E;, surface in
quantifying the nearly linear, or lack thereof, behavior of the 3-element Hill model
without the need for computationally intensive simulations.

We shall design our system to have four muscles. Two muscles will be biarticular,
with large and small ¢;, .5 and 2. The remaining two musculo-tendons will be uniar-
ticular, also with large and small €, .5 and 2. To distinguish between them, we shall
refer to the musculo-tendons as Uni flexor, Uni extensor, Bi flexor and Bi extensor.

For each musculo-tendon a point on the error surface will be chosen in order to
fix its linear behavior. This will define the slack length ratio’s (&,) value, and the
average musculo-tendon length in terms of /™ and IT. Figure 3-7 is a top view of
figure 3-6 with the location of the four designed muscles’s linearity score superposed.
Three isoclines (lines of constant value) are also depicted on figure 3-7. In blue, green
and red are lines indicating a linearity score of 0.5, 1.0 and 1.5 respectively. These
values were chosen for descriptive purposes as they indicate the approximate region
where the error surface quickly ascends to large values, corresponding to a nonlinear
operating region. As can be seen from this figure, this set of design parameters
will allow for a relatively linear biarticular and uniarticular musculo-tendon, and
a relatively nonlinear biarticular and uniarticular musculo-tendon. The biarticular
extensor and uniarticular flexor will on average operate in relatively linear regions,
while the uniarticular extensor and biarticular flexor, on the other hand, will on
average operate in nonlinear regions.
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As described, the musculo-tendon parameters, [™ and IT have now been defined in
terms of the average musculo-tendon length. To determine this average length, inser-
tion points for each musculo-tendon must be chosen. The insertion points will define
the mechanical actions of the musculo-tendon on the limb, knee flexor, hip extensor,
etc. The model, constructed using the SIMM application, can then be used to find
the musuclo-tendon length as a function of joint angles across the limb’s workspace.
Once this is determined, the average musculo-tendon lengths are computed and ]}
and [T are solved for. F™ is chosen to be unity for each muscle in this example
system.

Average Lengths On Error In Linearity Surface

osf SUni Flexor O8Bi Flexor - U

0.9 1 1.1 1.2 13 14 15 16
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Figure 3-7: Location of average musuclo-tendon length on the E score surface, for
the four toy muscles.

The skeletal links used for the model are those of the Rana pipiens model (see
chapter 2). The wrap objects at the hip and knee are included in the model. The
muscle insertion points are chosen by hand to be consistent with the musculo-tendon
actions, i.e. extensor, flexor, uniarticular and biarticular. Figure 3-8 is an image of
the SIMM model.

The SIMM application is used to compute the musculo-tendon excursions as a
function of joint location. Workspace plots of the musculo-tendon lengths are shown
in figure 3-9. The average excursion for each musculo-tendon is computed and used
with the previously defined location on the E, score surface plot to find [™ and .

With the musculo-skeletal model completely defined, the force fields can be simu-
lated and the linearity scores computed. To find the fields for each musculo-tendon,
the isometric force experiments are performed virtually. In simulation, the limb is
held in a fixed position and various activation levels are commanded to individual
muscles. The limb is then moved (in simulation) to another fixed location in the
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Figure 3-8: Figure of the toy musculo-skeletal system as modeled in SIMM.

workspace and the same activation levels are commanded again.

The simulations are performed using a grid over hip and knee joint angles. Each
joint was discretized with 9 evenly spaced points ranging from —80° to 80°. In total,
81 locations are used to find isometric forces. At each location, activation levels,
0%, 10%, 25%, 50%, 75% and 100% are commanded for approximately 2 seconds.
The resulting forces at the limb endpoint (the ankle) are recorded. The steady-state
force is found and assigned to its respective activation level and joint location. When
the force fields for each muscle and for each activation level are found, the error in
linearity, Fp, is computed using equation 3.11.

The E; score is computed and displayed in figure 3-10, in cartesian workspace
coordinates. Uni Flexor, the muscle with a short tendon (¢, = .5), designed to be
linear in activation, has the lowest E} scores across the worksapce of all the muscles.
This can be explained by examining the musculo-tendon length across the workspace
(figure 3-9) in conjunction with the Ej, surface (figure 3-7). Although the E} scores
for the model were obtained by simulating the model’s force fields, at any point in
the workspace, the same score can be found by using figure 3-9 to find the muscle
length and then finding the corresponding score on the Ej, surface. Therefore, from
figure 3-7 we see that Uni Flexor’s average musculo-tendon length is, amongst the
four muscles, the furthest distance from the contour lines indicating large E, scores (a
nonlinear operating region) for a muscle with its tendon length. Similarly, from figure
3-9 we observe that the largest (normalized) displacements Uni Flexor experiences,
at the left-most region of the workspace, are not large enough to exhibit a nonlinear
effect. Uni Flexor’s maximum normalized displacement, approximately 1.15, is too
short to enter into the nonlinear region of the E}, surface.

Bi Flexor, even though it also has a short tendon (¢, = .5) does achieve large E,
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Figure 3-9: Musculo-tendon lengths of toy muscles across workspace.

scores. Just as with Uni Flexor, this can be explained in terms of the musculo-tendon
lengths achieved across the workspace. First we note the average musculo-tendon
length is to the right of the contours in figure 3-7. Thus, for large portions of the
workspace, its length will enter nonlinear regions. Second, observe from figure 3-9 that
Bi Flexor’s displacments are, relative to Uni Flexor, large. In figure 3-7 we see that
for e, = .5, muscles begin to enter a nonlinear working region around a normalized
length of 1.2. From figure 3-9 we observe that Bi Flexors displacements reach this
value in the left side of the workspace, starting with the yellow region. Comparing
the musculo-tendon length and linearity score (figures 3-9 and 3-10) one can easily
observe the correspondence between musculo-tendon length and error in linearity.

Uni Extensor, and Bi Extensor, are nonlinear and linear, respectively, over the
majority of their workspace. Just as with Uni Flexor and Bi Flexor, this behavior
of the muscles can be also be explained by observing where in the workspace each
musculo-tendon achieves lengths that place it in nonlinear regions.

These results demonstrate several points. First we’ve outlined our method for
quantifying the linear force production in simulated isometric force fields. This anal-
ysis and quantification will be done for the Rana pipiens model next. Furthermore,
we’ve shown how the error in linearity is a function of musculo-tendon length across
the workspace, as was suggested by our analysis in section 3.4.

The analysis has also established how the E score surface can be utilized to
asses the linear behavior of muscles with respect to activation. The surface of figure
3-6 was found by examining muscle force generating properites. However, becuase
of its invariance with respect to coordinate transformations, it can also be used to
examine end-point forces. What’s more, as long as the 3-element Hill model is a
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Figure 3-10: Plot of error in linearity scores across workspace, for toy model.

good characterization of the system in question, this surface can be used to predict
linearity in force production in a computationally efficient manner, without resorting
to simulations for investigating force fields.

We also emphasize that the linearity in force production (at the muscular level or
in end-point forces) in activation, varies with location. That is, a muscle may behave
linearly in one region of its workspace, and nonlinearly in another. This however, is
not a statement about the variation of muscle force with length. As this chapter and
the previous one have clearly presented, muscle forces are nonlinear in muscle length
and velocity. With that said, a similar analysis to the one just performed may find
that muscle forces are approximately linear across the workspace for muscles that
experience small displacements. This analysis, however, is beyond the scope of the
thesis.

3.6 Linearity predictions for Rana pipiens

We have demonstrated our approach to analyzing the linearity in force production on
a toy musculo-skeletal system. Now we use the same method to examine the model of
Rana pipiens. As discussed previously, the frog hind limb exhibits a significant degree
of linearity in stimulation when examined experimentally. We want to know if this
can be explained solely in terms of biomechanical properties rather than involving
properties of efferent feedback or neural control. Therefore, just as in the previous
the section, the simulated isometric force fields for each muscle shall be determined
across a range of activations. These force fields will then be used to compute our
defined error in linearity score, E. Note that the endpoint force field is always the
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sum of the force fields of the individual muscles it is comprised of. Therefore the
linearity, or lack thereof, for the individual musculo-tendons will help explain the
overall behavior.

Without some understanding of their origin, the force field simulations are little
more than another empirical phenomena. Hence, just as was done in the previous
section, the E scores shall be examined and explained in terms of the musculo-tendon
displacements. By examining each musculo-tendon’s excursion across the workspace,
the error score can be used to explain how the linearity, or lack thereof, arises, and
where in the workspace it is expected.

We use SIMM to simulate the isometric force fields. The model we use, discussed in
chapter 2, contains detailed descriptions of the musculo-skeletal geometry including
insertion points for the musculo-tendons, and wrap objects to simulate the joint
surfaces that the muscles come into contact with. To find the fields, the isometric
force experiments are performed virtually. The analysis of linearity performed here,
explained in the previous section, is meant to replicate the performed experiments.
In addition to simulating the force field for each musculo-tendon, its length across
the workspace is also obtained. This is used to analyze the sources of linearity.

In figure 3-11 the result of one such force field simulation for Semimembranosus
is plotted. The left half of the figure is a plot of the force vectors found at each of the
simulated locations when the activation level was 50%. The force vectors display the
direction the ankle “pushes” when held at a particular location. Semimembranosus
is a hip extensor. The right half of the figure is a plot of the magnitude of these same
forces. Note that the magnitude of the force vectors does not change much except
near the boundaries of the workspace. Close to the edges, where the joint angles are
approaching kinematic singularities (they occur at £90°) the end-point forces quickly
increase in magnitude.

For a given muscle, once the force field for all the activation levels is found, the
linearity score can be computed. This was done just as defined in equation 3.11, using
the 6 activation levels, 0%, 10%, 25%, 50%, 75% and 100%.

The E}, score for all 13 muscles in the pipiens model is presented in Appendix
B. Most of the muscles have low error scores across most of the workspace. The
exceptions are Semitendinosus Dorsal and Ventral, Tensor Facia Latae and Iliacus
Internus. Both heads of Semitendinosus attain large error scores in the rostral-lateral
region of the workspace, where the hip is flexed and the knee is extended. Tensor
Facia Latae and Iliacus Internus attain large values in the medial most region of the
workspace where the hip and knee are extended.

All 13 musculo-tendon’s lengths across the workspace were also computed (see
Appendix B). These are plotted by sweeping through hip and knee ankles from -80°
to 80°. Each plot is normalized by the sum [ + [T.

To summarize the simulated isometric force field findings two plots are presented.
One is a plot of the F, score averaged across the workspace, for each musculo-tendon.
This average is shown in figure 3-12. This plot illustrates the points made above.
Both heads of Semitendinosus, Tensor Facia Latae and Iliacus Internus are the most
nonlinear of the 13 muscles evaluated. The rest behave very nearly linear over most
of the workspace.
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Figure 3-11: Results of isometric force field simulation for Semimembranosus with an
activation level of 50%.

To further summarize the results of the linearity analysis, the location of each
musculo-tendon on the E}, score surface is plotted. Using the musculo-tendon lengths
found previously, an average length over the workspace is computed for each muscle.
This average, along with the ratio ¢, is used to locate each musculo-tendon on the E,
score surface. The result is shown in figure 3-13. Observe that the averaged location
of each musculo-tendon, with the notable exception of Semitendinosus Dorsal and
Ventral, are within the low-scoring region of the surface (to the left of the contours
that delineate 0.5, 1.0 and 1.5).

To explain these results and the relationship between linearity and musculo-tendon
length, we shall examine two representative muscles, Gluteus and Semitendinosus
Dorsal. In figure 3-14 the linearity scores of these two muscles are displayed. Gluteus
and Semitendinosus Dorsal are examples of the best and worst E}, scoring muscles
respectively. Note how Gluteus has a low linearity error score throughout all of the
computed workspace. Semitendinosus Dorsal has a low score over the medial half
of the workspace, where the hip is extended, but quickly makes a transition to high
linearity error scores in areas where the hip is flexed.

In figure 3-15 are plots of the musculo-tendon lengths of Gluteus and Semitendi-
nosus Dorsal across the workspace. Gluteus, a hip and knee flexor, has a relatively
short normalized musculo-tendon length (= 0.8) at the lateral edge of the workspace,
where the hip and knee are extended. In the medial region of the workspace, around
the location of the hip ((z,y) coordinates (0,0)) the knee is fully flexed and the nor-
malized lengths are larger (= 1.0). Now, we examine the E, surface in figure 3-13 and
the correspondance between these scores and Gluteus’ musculo-tendon lengths across
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Figure 3-12: E|, scores averaged across workspace for each muscle.

the workspace. For musculo-tendon lengths between 0.8 and 1.0, and an appropriate
s (as indicated by the vertical location of Gluteus on the plot) the Ej scores are
far to the right of the nonlinear contours. Therefore, according to this hind limb
model, Gluteus never attains lengths that would allow for nonlinear force generation
in activation.

Now, for Semitendinosus, a hip and knee extensor, the same analysis can be
applied. In the right region of the workspace, the normalized musculo-tendon length
is long, =~ 1.2, while in the left region it is short, ~ 0.8. When figure 3-13 is examined
for these musculo-tendon displacements, we see that Semitendinosus Dorsal clearly
moves to the right of the delineating contours. Therefore, according to this hind limb
model, Semitendinosus Dorsal attains lengths in the medial side of the workspace,
that dictate it generates forces that are nonlinear in activation.

The same analysis based on musculo-tendon length can be used to explain the
nonlinearity results for all the other muscles examined.

61



L

s o

25

0.5

Semitendinosus

Semitendinosus Vg
Tensor gacia Latal

Cruralis
o

lliofibularis
O [lliacus Extergus
OGluteus L

Gracilus
o

Adductor
o

Semimembranosus  Sartorius
o

Ventral

Op Adductor D
. iy x o,lliacus ¥ i
0.9 1 8] 12 13 14 15 16
L™(L™+LT)
o s

Figure 3-13: Average musculo-tendon excursions plotted on error in linearity surface.
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3.7 Summary

In this chapter we have analyzed the reported ability of isometric force fields to scale
linearly with stimulation. We have shown how this linear behavior can be explained
in terms of the linearity of force production at the level of individual muscles and
we offered the following hypothesis: linear force production in stimulation can be
explained in terms of the natural biomechanical properties of the limb’s musculo-
skeletal system.

To quantify this linearity, which we have couched in terms of activation, we defined
a measure, or score, of linear force production with respect to activation. We have
termed this score an error in linearity, or Ey. Through analysis of a normalized
musculo-tendon model, we found a relation between muscle length and the error in
linearity. This was used to compute an error in linearity surface, which could then
be used to predict the F, score for any musculo-tendon model.

Through examination of a toy musculo-skeletal system, we analyzed the musculo-
tendon’s ability to generate forces that scaled linearly in activation, and demonstrated
by counterexample, the ability to deviate from this linearity. We thus concluded that
the model’s predictions for linear force production depend on the structure of the
musculo-skeletal system. The linear behavior is a biomechanical result of the length
of tendon and the operating region of the muscle.

We then examined the model for the frog hind limb of Rana pipiens. The isometric
force fields for the individual muscles of this model were simulated and the results were
interpreted and analyzed using the E; score. Many of the musculo-tendons were found
to predict a low error in linearity score (meaning they were nearly linear in activation)
throughout much of the workspace. Some muscles, though attaining large E;, scores,
usually did so in areas of the worksapce that were not examined experimentally,
suggesting their results are still consistent with experimental evidence.

Our results imply that isometric force fields are, to a large extent, linear in acti-
vation over much of the limb’s workspace, and most of the the area examined experi-
mentally. From this we conclude that the linearity observed experimentally does not
require feedback linearizing signals or other forms of motor controllers. Indeed, the
results support our hypothesis, that the limb’s linear force production is a natural
result of biomechanics.

64



Chapter 4

Model Order Reduction

The dynamical system being studied in this thesis, the frog hind limb, is high-
dimensional and highly-redundant. The limb has 13 muscles, many of which have very
similar influences on the dynamics. As has been previously motivated, we would like
to investigate a controller for this system that utilizes a simplified, low-dimensional
representation, or reduced order model.

The process of obtaining a low-dimensional approximation to a high-dimensional
dynamical system is known as model reduction, or model order reduction. Ideally, the
reduced representation will be helpful for both estimating and controlling of the full-
dimesional system. There are many methods for linear (time invariant) model order
reduction. Under the heading, Krylov-based, there are many widely used algorithms
(references). These are so called moment matching methods, designed to solve the
coefficients of an expansion of the system’s impulse response. Some algorithms, for
instance the Arnoldi and Lanzcos procedures, are numerically stable and efficient.
However, these approaches have no gurantees for estimation properties or stability of
the resulting reduced model (references).

Another class of techniques known as projection methods, attempt to find sub-
spaces of the original phase space upon which to project the system dynamics. The
Karhunen-Loeve decomposition and balanced truncation are two popular methods
within this class. The former is a popular method, in part because it is numerically
feasible for large dimensional systems (e.g. 10,000 states or more, references). The
later has the distinct advantage of carrying guarantees for both estimation and sta-
bility properties of linear systems (references). We will focus on these two methods,
both of which have been applied for use with nonliear system model reduction.

Two more methods closely related to balanced truncation are Hankel norm and
singular perturbation approximations. However, these methods are not as ammenable
to applications with nonlinear systems.

With few exceptions, there is little theory for nonlinear model order reduction
([60]), and few examples of nonlinear solutions ([51]). Despite this short-coming,
there have been many succesful examples of linear techniques in the application to
problems of nonlinear model order reduction (e.g. [12], [39], [53]). We will briefly
review some of the applicable nonlinear theory and techniques from the literature.
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4.1 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD), or more formally, Karhunen-Loeve decom-
position, (but also known as principal component analysis, factor analysis, and total-
least-squares-estimation) is a method for finding the “best” approximating subspace,
in terms of data variance. POD (in contrast to balanced truncation) is data-driven,
e.g. the results are inherently a function of a specific data set. The POD method min-
imizes the distance between a data set and it’s projection onto a k-dimensional sub-
space, Sy C R™. A linear basis for this subspace defines k& low-dimensional variables.
There are at least two ways to motivate this, through a singular value decomposition,
or an eigen decomposition.

4.1.1 The Singular Value Decomposition Approach

Assume we have a set of data, or “snapshots” of our dynamical system,
X = [z), T3, ...xn) € RV (4.1)

where N > n and we assume X has full row rank. Let
1
T; = .’Itl(ti) -, = -N Zx’(tj), .’L'I eR” (42)
where z'(t;) are state values of our dynamical system of interest at discrete times
t;, i =1,...,N. If we want to find a “best” approximation to this data, of a lower
rank, k, then we can look for the approximation that minimizes the 2-norm,

& ~ X2 (4.3)

where Xj is our rank k approximation to X. The optimal approximation, in the
2-norm sense, has the following cost,

min || X — Xllz = oky1(X) (4.4)
where 041 is found from the singular value decomposition,
X =UXV*, where UU*=1, VV*=1I, 01> ..20r,>..>0, (4.5)

and a non-unique optimal approximation is found as,

k
X =USkVy =Y owuv] where Uy € RV, T, e R*, Vi e ROV (4.6)

the orthogonal vectors u; are referred to as the POD modes. Uy is a basis for the
k-dimensional subspace we are projecting the data onto, S.
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4.1.2 The Eigen Decomposition Approach

Assume we have the same data set, X', but now we wish to minimize the Euclidean
distance between each data point and its projection onto some k-dimensional sub-
space,

min Z lz: — Pezil|?, Py:R"+— R" (4.7)

where the projection matrix is constructed, as the method’s name suggests, with an
orthogonal basis (or modes) set, {1, p2, ... 0k},

Pe=> i, and olp; =4; (4.8)
k

the optimal modes can be found once we construct the (approximate) correlation
matrix

N
R=2XX"=) za; (4.9)

now the optimal modes (in the sense above) are the eigenvectors of the correlation
matrix,

Ry; = oA (4.10)

Py constructed this way uses the eigenvectors of the correlation matrix for a basis
of the k-dimensional subspace. Pix; is the inner product of z; with each of the
eigenvectors, projected onto these k bases.

k k
P =Y pi(0im) =D 0z (4.11)
i i

4.1.3 The Connections

First we note that /'\Af'k and P, X are equivalent. Since both ./'f'k and P X have the same
singular values, they both optimize the cost given in equation 4.3, which as mentioned,
is not unique. Because they are equivalent, they both minimize the second cost given
in equation 4.7. Also note that the eigenvectors of the correlation matrix, or the
modes, are the same modes that were found with the SVD approach,

X =UXV*, R=XX*"=UXE'U" (4.12)

Both approaches yield a reduced basis (or modes) for representing the data. In this
reduced basis space, the approximation error is minimized, and the “energy” in the
approximation, as measured by the correlation matrix, (the singular values retained)
is maximized. We can map from the ambient R” to the k-dimensional subspace, Sy
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with P, (note that UpUy # I,, but UgUy = Ii). The data elements have effectively
been reduced to k variables where previously there were n,

&; = Up(Ugz:) = Ugzi where 2z; € R* (4.13)

We will refer to z as our low dimensional variable.

We can summarize the state reduction as follows: we map our state variable to a
low-dimensional variable, z with the relation, z = U}z. This low-dimensional variable
can then be used to map “up” to an (low-dimensional) estimate of the state variable,
as follows: & = Upz. We can identify an exact relationship between these variables
a's’

r=T+x, =Upz+z, (4.14)

where z, is the residual, an error in the estimate of = that is in the null space of Uy.

With the low-dimensional subspace identified, the next step is to model the dy-
namics of the low-dimensional variables. For linear systems this is straight forward,
but for arbitrary systems this is not the case. The method most commonly used is
Galerkin projection.

4.2 Galerkin projection

All of the above was to justify our low dimensional representation of data, but now
we would like to find a low dimensional representation for a dynamical system,

z = f(z,u), y=g(z) (4.15)
or in the LTI case,
t=Axr+ Bu, y=Cz (4.16)

The Galerkin projection replaces the dynamics of the system with the approxi-
mate dynanics of the low-dimensional variable by projecting the vector field onto the
subspace S. Consider the relation,

z—x, = Uz (4.17)

where z,. is the residual error associated with our projection. Taking the derivative
we find,

& — & = f(z,u) — &, = Ui (4.18)
or, rearranging,
Uiz = f(UkZ + z,, u) — Ty (4‘19)
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At this point, the relation above is exact. The approximation results from assum-
ing that the residual’s effects upon the dynamics are negligible, and neglecting any
dependence on it,

z =~ U f(Ugz,u) (4.20)

In the linear case, to find our reduced POD model we start with the following
relation,

T—T—x, =Ugz
r— T~ Ugz (4.21)

where T is the stationary mean of the data set, which we assume may not be negligible.
Continuing,

t=Uxz = Azr+ Bu
: = UiAz+U;Bu
z =~ UfAUrz + U;AZ + U;Bu, y=CU2+CZ (4.22)

With this relation we can either define a quadruplet for the reduced system,

{Ax, Bk, Cx, Dy} = {Ug AU, [U;B,U;A], CU, [0,C|} (4.23)
with motor command u, = [u”, ZT]T, or we can carry an extra state, Z, whose deriva-
tive is zero. In this case our system is unstable (has a free integrator), but the
command is equivalent to the original, u, = u.

4.3 Balanced Truncation

For this method we begin by finding a balanced realization for our LTI system. A
balanced state-space representation has equivalent and diagonal controllability and
observability gramians. The controlability gramian for an LTI system may be defined
as follows,

P = / eA*BBTeA tdt (4.24)

The controllabilty gramian is a measure of the amount each state is excited by the
command. For instance, for two states, w, v, if ||w|| = ||v|| and wTPw > vTPv then w
is more “controllable” than v; it requires a smaller input to drive the system from rest
to w. The controllability gramian can also be used to find the minimum command
required to drive the system from some initial state, z,, to zero,

1
: 2 = = Tp-1 4.
i [ Iu@Pde = 3aTP 4, (4.25)
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In addition to the controllability gramian, for LTI systems we can define the
observability gramian,

Q= / At CT Cettdt (4.26)
0

The observability gramian is a measure of how much each state excites the output.
For instance, if £(0) = z, and u(t) = 0, ||y||? = ¥ Qx,; states which excite larger
output are more observable.

The gramians are also the symmetric positive definite solutions to the Lyapunov
equations,

AP +PAT + BBT =0
ATQ+ QA+ CTC =0 (4.27)

Now suppose the system coordinates are such that the both grammians are diag-
onal and equivalent,

P = Q=X = diag(01, 02, ...0n) (4.28)

Systems with this property are said to be balanced. The entries on the diagonal of ¥
are defined as the Hankel singular values, they are a property of the system dynamics
and independent of coordinates. The Hankel singular values are the square roots of
the eignevalues of the product PQ,

0; = VAPQ) = A(P) = X(Q) (4.29)

When the Hankel singular values are ordered, o; > g5 > ... > 0, then the ** state
is more easily influenced by the command, and its influence on the output is more
easily observed, than the (i + 1)** state. The balanced realization is, in effect, an
ordering of the states in terms of energy in the output, as measured by the Hakel
singular values.

Any system that is both observable and controllable can be balanced. We proceed
by finding an invertible coordinate transform # = Tz, yielding a new description of
the dynamics,

{A,B,C} = {TAT™!,TB,CT '} (4.30)
The new gramians are then,

P=TPT* Q= (T QT (4.31)
we can use the above to find a relation for T,

TPOT ' =32 (4.32)

which is the eigenvalue problem. We observe that the matrices P and P are not
similar. A(P) # A(P). The coordinate transformation has altered the eignevalues.
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The same holds for Q and Q. In addition, recall that eigenvectors are not unique.
Therefore the above relation is not sufficient to find the coordinate transform 7" (many
matrices T will satisfy the above relation, but not all of them will diagonalize the
individual matrices, P and Q).

The gramians, being symmetric positive definite, can be factored as P = UU*
and Q = LL*, where U and L are upper and lower traingular matrices respectively.
Denoting the singular value decomposition of U*L as ZXY*, then T = X1/22*U~! =
»-1/2y*L*. With T sovled for, the system can be balanced. We now express the
balanced system as,

i |An A | p_|Bi| A_
A*[Am An], B—[B2], C=[C C] (4.33)

where the state is ranked from largest to smallest Hankel singular values. To find a
reduced order model, we use the Galerkin method with the projection matrix [/ 0],
that is, we simply truncate after the k" state, where the o4, is an appropriately
small Hankel singular value. The modes of our projection are the states with the
appropriately large Hankel singular values. The low-dimensional variable is the fist &
states, z = [%1, Za, ..., k). The new system triplet is,

{AkaBkack} = {All’BlaCI} (434)

4.3.1 Balancing Coordinates

A brief description of the coordinates of balanced systems wil help to clarify how they
are related to the controllability and observability gramians. Consider a point mass
with two degrees of freedom, acted upon by two force sources. We will choose the
velocity in the z and y direction as our state, assume unity damping to ground and
unity mass, and define the dynamics as,

a'c=l_01 _01:|w+Bu, y=Cz (4.35)

For this system the gramians are easily calculable. Expressing B and C as follows,

B:[bl bg]’ C=[cl 02] (436)

b3 b4 C3 C4

the controllabity gramians is,

it 1 1 b2+ b2 bybs + byby |
— —2t / - ' 1 2 1V3 2V4 .
P —/0 e “BB'dt 2BB 2 | babs + babs B+ b2 (4.37)
and the observability gramian is,
®© 1 1] A+ ciep+cseq |
_ ~200dt = -CO'C = = 1 3 162 3t4 4.38
Q /0 e red 2 2 | ac2+c3cq +c; (4.38)
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Now, if B and C are the identity matrices, then the Gramians are equivalent and
diagonal (;—,I ); the system is balanced and the balanced coordinates cooincide with
our original ones. If b; = 2,b; = b3 = 0,b4 = 1 and C is the identity matrix, then the
gramians are,

2 0 5 0

P=10 5] 2=]7 5] (49
they are still diagonal, but not equal, so the system is not balanced, and a change of
coordinates is needed. In figure 4-1 are pictorial representations for both gramians
and the transformed coordinates. The dotted ellipse is the “shape” of the controlla-
bility grammain; those are the points we get when we map the unit circle through
the Gramian. The ellipse denoted by x’s is the shape of the observability gramian.
The arrows indicate how the standard basis vectors (unit vectors along the horizontal
and vertical axis) are mapped to the balanced coordinates. We make the following
observations. The balanced coordinates are orthogonal and colinear with the origi-
nal coordinates (the original gramians are diagonal so no rotation is needed). The
coordinate along the vertical axis has not changed; both gramians have the same
eigenvalue/singular value along that coordinate so no change is needed. The bal-
anced coordinate along the horizontal axis is scaled down, to compensate for the
magnification in that direction the controllabilty gramian is causing; the controlla-
bility gramian’s eigenvalue/singular value along that coordinate is larger than the
observability’s.

Grammians and Blanced Coordinates

Figure 4-1: Controllability and observability gramians graphically depicted along with
balanced coordinates.

Now consider the case where b; = a,b; = b3 = 0,0, = 1 and we let « attain large
values,

[ 8] o[ 4]

the horizontal axis of the balanced coordinate will continue to shrink as o increases,
while the vertical axis remains constant.
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Now let B;; = C;; = d;; + «, both gramians have their axis rotated through 45°
and are equivalent (figure 4-2). The balancing transformation is simply a rotation
that brings the coordinates in line with the major and minor axis of the gramians.
The columns of the balancing transformation, 7" are orthonormal.

Grammians and Blanced Coordinates

0.8

04t

0.2

Figure 4-2: Equivalent gramians rotated through 45 degrees and their balaned coor-
dinates.

However, if C is the identity matrix, but B is as above, a rotation of the original
axis won’t balance the system. A scaling of the coordiantes is again needed. But,
the balanced coordinates, pictorially, do not appear to be scaled along the major and
minor axis of P, figure 4-3.

Grammians and Blanced Coordinates

05|

Figure 4-3: Gramians, graphically depicted, and their balanced coordinates.

The balanced coordinates are rotated, and then scaled along their respective di-
mensions. The balancing transform can be viewed as follows,

r=[5 0] il ] aan
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When both gramians are non-diagonal and unequal, the new coordinate frame is
rotated and scaled appropriately.

4.4 Singular Perturbation Approximation

We now briefly review singular perturbation approximation!. The method assumes
the existence of a balanced realization (the system must be observable and control-
lable) but instead of truncating those states with low Hankel singular values, they are
fixed at their steady-state values. This makes intuitive sense considering these states
have relatively little energy in the output. The dynamics can be found as follows,

s & | | An An Tk By
= 0]l Azl (A ]
y =[G G )E (4.42)

solving for the dynamics of x; we find the quadruplet,

{Ag, By, Cr, D} = {A11— A1 Az} Agy, Bi—ApAy By, Ci—CoAy Ay, —ChA31B,)
(4.43)

We note that in contrast to the balanced truncation method, the above equations will
predict the correct steady-state values.

4.5 Reduced Model Properties

Assuming a low-dimensional representation for the full-dimensional dynamical system
has been found, we would like to know what kind of behavior we can expect; how good
are the estimates our reduced system creates? is the reduced system even stable? For
example, POD is optimal at approximating our data set, but the POD model is not
necessarily the best approximation of the dynamics responsible for that data. Infact,
we don’t know if the POD model will even be stable. It could be that low “energy”
dynamics that were left out of the reconstruction are crucial to the system behavior.
Here we shall review the guarantees that exist for the methods described above in
application for the reduction of linear time invariant systems.

Denoting the system transfer function as G(s) = C(sI — A)"!B, we have the
following guarantee ([2}),

Op+1 < “G - Gk“io (4.44)

where oy, is the k + 1** Hankel singular value. This lower bound, holds for any
reduced order model of dimension k.

1This method is distinct from attempts to design controllers that drive nonlinear dynamics onto
stable manifolds, see [22]. Though the names are similar, the singularly perturbed manifold theory
is not a model order reduction process.
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For the model obtained by the POD method the above lower bound holds. How-
ever, we have no further guarantees. Even if the original system is stable, the reduced
model could be unstable. What’s more, there is no guarantee that increasing the di-
mension of the reduced model will lead to better system properties. An increase
in dimension will lead to better approximations of the data set, however increasing
the dimension may drive the reduced dynamic model unstable. The estimation and
stability properties of the reduced model obtained through the POD method are a
function of the particular data set used to create the model and have to be scrutinized
on a case by case basis.

System properties for the reduced model obtained through the balanced truncation
model are not as bleak. In addition to the lower bound, we also have the following
guarantee ([2]),

IG - Gill2, < 2 (Oks1 + ... + 00) (4.45)

And as can be inferred from above, with some minor restrictions, stability is pre-
served?. This can be proved by showing that the reduced system equations also
satisfy the Lyapunov equations. The reduced system may produce errors at steady
state. This short-coming can be avoided by enforcing that steady-state solutions are
in the range of the balancing transformation, A='B € R(T).

One last note, a balanced truncation is not optimal (in the sense give above). The
reduced model has the upper error bound given above, but other better approxima-
tions may exist. However, when the Hankel values drop off quickly in magnitude, then
o may be much greater than o4, and the guarantees ensure the reduced model will
have small infinity norm bounds.

The reduced model obtained through singular perturbation approximation has
the same guarantees as the balanced and trucated model. In addition, the reduced
model will predict the correct steady state solutions. However, because the system
matrices have been manipulated to retain the correct steady-state (low frequency)
behavior, the reduced model tends not to approximate the full order dynamics at
high frequencies as well as the balanced and truncated model.

4.6 Nonlinear MOR

Up to this point the information presented has focused on model order reduction for
linear systems. There is precious little theory for nonlinear model order reduction.
Some of the ideas presented above have natural extensions to nonlinear systems, but
lack the mathmatical formalism to merit a generally applicable technique (ref’s, [60]).
This is not to suggest nonlinear model order reduction is not feasible. The literature
contains examples of reduced nonlinear models, but the approaches are tailored to
the particular models.

It should be noted that there are examples in the literature of nonlinear balancing
by way of linearization: nonlinear systems are linearized about operating points and

2%if o) # ox41 then stability is assured.
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used to create linear time varying systems with balanced realizations (references).
However, this method is not strictly a nonlinear method and the information presented
above suffices.

As discussed earlier, the POD reduction method is inherently a data-driven method.
This being the case, a transformation to a low-dimensional variable (and subspace)
can be found regardless of the linear, or nonlinear character of the system dynam-
ics. A Galerkin projection can be computed as well. Aside from the uncertainty of
the resulting system dynamics (estimation and stability properties) this procedure
may actually increase the computations required to simulate the system dynamics.
Consider again the resulting dynamical relation,

= f(x,u) — 2=V f(Wz,u) (4.46)

where V and W are the appropriate maps to and from spaces. Though the state
has been reduced, we have incurred extra computations, namely, Wz and V f(-), to
compute the rate of this reduced state. If these equations cannot be collapsed (as in
the case of working with a large simulation where the rates are computed via software)
then the advantage of a state reduction is called into question. Consequently, it would
be advantageous to further reduce the dynamics as well. An appropriate function
approximation technique could be employed (e.g. an artificial neural network).

Given the advantages a balanced truncation has over a POD model, any line
of reasoning that will balance a nonlinear system is tempting. There are formal
extensions of balancing to nonlinear systems. Unfortunately, the theory does not
readily give rise to solutions. We will briefly review some of the theory here.

For nonlinear systems there are no gramians to be computed, however, we can
define controllability and observability functions,

0
Le(z,) = min / Ju)? dt, with z(—00) =0, =(0) = , (4.47)
1 o0
Lo(z,) = 5 / ly||* dt, with z(0) = z,, u(t) =0 (4.48)
0

L.(z,) is the minimum amount of control “energy” required to reach state z,, and
L,(z,) is the amount of output “energy” generated by z,. These functions do not
necessarily exist. If z, cannot be reached, L, is infinite, and if the system is unstable,
then L, too is infinite.

For nonlinear systems of the form,

i = f(z) + b(z)u, y=g(a) (4.49)

if the controllability and observability functions exist, and are smooth functions of z,
then in a neighborhood of an asymptotic equilibria, say z = 0, these functions are
solutions to the partial differential equations,

OL. 10L.,, ..z, \OTL, _ _
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Uo (a) + 207 (@)g(z), Lu(0) =0 (1.51)
and in this neighborhood, a coordinate transformation exists, such that in the new
coordinates the controllability and observability functions are diagonal in their argu-
ments. With this coordinate transform one can define singular value functions.

The above equations, are deceptively compact. Equation 4.50 is a Hamilton-
Jacobi-Bellman equation. Solving it is equivalent to solving a family of optimal
control solutions for the system. With rare exceptions this solution is intractable.

Despite the difficulties associated with the formal approach to nonlinear balancing,
a method for approximate balancing of nonlinear systems has been proposed. This
method, known as empirical balancing, attempts to find approximate gramians about
some operating point of the nonlinear system, and find a transformation that locally
balances the nonlinear system. Empirical gramians will be presented below.

4.6.1 Empirical Gramians

In this section we will first review methods for obtaining empirical gramians for linear
systems. We will then present a method that is applicable to both linear and nonlinear
systems.

As mentioned earlier, for the LTI case, the controllability gramian is defined as,

P= / eMBBTeA™ dt = / (e*B) (e*B)” dt (4.52)
o 0

where et B is simply the impulse response of the system. We can express the integral
in an alternate but equivalent form as,

/ ) (z1(t)x] (8) + ... + z(t)zT () dt (4.53)

where z;(t) is the impulse response from input i** input,
zi(t) = e (4.54)

Now the integral is recognizable as the correlation matrix of the impulse responses.
If instead, we have “snapshots” of the system, at N points in time, we can organize
the data as such,

X = [xl(tl), :Ill(tz), ey xl(tN), iL‘2(t1), ...,.’L‘T(tN)] € Rner (455)

Then the approximate (modulo a constant) correlation matrix or equivalently, the
controllability Gramian is,

XX* =P (4.56)

Returning to the observability gramian,
o0 o o] T
Q= / AT OTCet dt = / (eATtCT) (eA"’tcT) dt (4.57)
0 0
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which we observe is the correlation of the impulse responses of the adjoint system,

z=AT2+CTv (4.58)
Therefore, following the strategy above, we construct a data set,

Y = [a(t), 21(ta), .., 21(tn), 22(th), ..., 2m(tn)] € R™*™N (4.59)
where z; is the impulse response from the i** input,

zi(t) = et (4.60)
The approximate correlation matrix/observability gramian is,

YV* =~ Q (4.61)

If we have followed the procedures outlined above, we can use the matrices, X’ and
Y to find a balancing transform. Instead of computing the transformation from the
observability and controllability gramians (which may not be full rank) as presented
in the balanced truncation section, we find a SVD of the product of these matrices,

. 0 174
yix=[0 U] [ 0 0 } [ v ] i (4.62)
where ¥, has rank r (no relation to the dimension of our control signal). The balancing
transformation and its inverse are,
T, = XWE Y2 T, e R™" (4.63)

r

S, = L72uTyt S, e R™*™ (4.64)

The approaches above assume we can manipulate the state dynamics. Specifically,
they assume we can find solutions to the adjoint system’s impulse responses. However,
if we cannot do this (if the system is not available to us) or if the system is nonlinear,
then there is another method. This method has been suggested for use in balancing
nonlinear systems, but it does reduce to the correct gramians when applied to linear
systems (references).

Let 7™ be a set of g orthogonal n x n matrics {7, 75, ..., T,}, and let M be a set
of positive constants, {c;, ca, ..., ¢s}, and let £™ be the set of standard unit vectors in
R", {e1,e2,...,€5}.

With the previous definitions, and the sets 77, £", we can define an approximate,
or empirical controllability gramian by,

R R TN N Al
Py /0 A (1)t (4.65)
I hod h
where
®ilh = (zih(p) — Filh) (gih(t) — )T (4.66)
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and z is the state corresponding to the impulse command u(t) = c,Zje;d(t).

To find the empirical observability gramian, using sets 7", £™, we have

q 8
. 1 [
0= Y — [ mhena (467)
T n 95Ch Jo
where
() = ") - 7™ @) - 7 (4.68)
and y"* is the output corresponding to the inital condition response with zo = ¢, Tje;.

Keep in mind, if this is applied to a nonlinear system about equilibrium, then the
mean values are simply the values at equilibrium. Similarly, when applied to linear
systems, the mean values are simply zero.

With this method, we require that we can indpendently define initial conditions
on the system, and that we can input impulsive commands.

4.6.2 Reduced Order Dynamics Modeling

To find a reduced order model, for a nonlinear dynamical system, there are several
approaches. We shall break the process into two steps; finding a transformation to
a balanced and reduced state, and modeling the dynamics of the resulting reduced
state.

For a nonlinear system, there are multiple ways to compute a reduced order state
through a balanced trunctation. The nonlinear system could be linearized about one,
or many, operating points. The linearized system/s could then be exactly balanced
and then truncated.

If only a single operating point were utilized, the balancing transformation would
only be valid over the region the linearization was valid. This could limit the effec-
tiveness of the balancing process if the system dynamics were not amenable to a local
linearization. However, this approach greatly simplifies the necessary computations
and results in a single, linear transformation between the full and reduced state.

If multiple operating points were used to obtain the balancing, the resulting trans-
formations to a reduced state would be linear but time varying. A means of switching
between the different reduced states according to the current region of state space
would be required. Extra memory is required to retain all the multiple transforma-
tions as well. The resulting reduced order state would certainly be superior to the
previous example. Since the time varying transformation can be utilized to discretize
state space at arbitary levels of precision, the balancing, in theory, could approach an
exact solution. However, the added computational complexity of a means to switch
between transformations and accompanying reduced states, as well as the extra mem-
ory required, may overshadow the advantages.

An alternative is to bypass any linearizations and utilize the empirical gramians.
The procedure for obtaining empirical gramians is essentially a locally linear approx-
imation to a nonlinear phenomena, so there is every reason to believe it will work as
well as obtaining exact gramians for a linearized version of the system. In addition,
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just as with the approach outlined above, empirical gramians may be obtained for
multiple operating points.

The same benefits and drawbacks to finding balanced truncations about single or
multiple operating points apply. In this thesis, we shall advocate finding empirical
gramians about a single operating point. We recognize the short-comings of this
approach, but view it as a worthy starting point for examining reduced order models
for nonlinear systems.

Just as there are multiple approaches to finding a balanced transformation for a
nonlinear system, there are multiple ways to model the reduced state dynamics once
a transformation has been found. If the system is linearized, then exact balancing
transformations for the linear system can be obtained. A linear representation for the
reduced order dynamics can be found as well. The system can be linearized about
many operating points, and multiple linear reduced order models can be found as
well. Just as with the transformations, this does allow for arbitrary accuracy in the
reduced order models, but at the expense of memory and computational power.

The approach we shall employ is to learn a representation for the reduced or-
der state, linear or nonlinear, once the empirical gramians and their corresponding
balancing transformations have been found. This method has manageable memory
requirements and does not require a method of switching between representations (it
is not time varying).

Consider dynamics of the form (the form of dynamics for our hind limb model,
sections 2.3),

& = f(z)+ Bu (4.69)

after finding empirical observability and controlability grammains a transformation
that allows for the following relations, z = V& and £ = Wz can be found. From the
system dynamics a data set of the follwing can be found.

{z(t,), z(t1), ..., z(tn)}
{u(to), u(ty), ..., u(tz)} = {z(to), 2(t1), -, 2(tn)} (4.70)

We desire a dynamical relation for the evolution of the low-dimensional state, z(t).
Note however, there is no true function f,(z) that will account for the data. The
data only has a underlying function in z, namely f(x). Since the data has been
compressed, in general, there is no functional relationship between z and z. The best
that can be hoped for is an accurate estimate.

To learn f,(z) we could use the relation, Vf(WVz) = Vf(Wz). This is an
appropriate function in that it maps z to temporal derivative of z. However, this
mapping may have unintended consequences, like going unstable, or entering regions
of state-space never normally seen. For instance, Wz can, (and in practice does)
allow for negative muscle activations.

An alternative is to learn a best estimate of the dynamics that would best generate
the data. That is, find f,(-), such that integrating

z=f(2)+v (4.71)
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accurately generates the empirically obtained data, z(t,), 2(t1),.... This is the ap-
proach we shall take in this thesis.
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Chapter 5
Reduced Order Control

In this chapter we present a proposal for control of a biological system based on a
reduced order model. The reduced order model presented here is meant to be an
existence proof for a simplifying motor control strategy. We argue that control based
on a reduced order representation of the hind limb elucidates the existence and role of
low-dimensional motor commands, commonly observed as synergies, while allowing
for simplifications in both estimating the influence of motor commands on the system,
and generating said motor commands.

Model order reduction (see chapter 4) is a technique for reducing a dynamical
system’s complexity (often considered equivalent to system order) while preserving
the input-output behavior as accurately as possible. Balanced truncation is a method
for model order reduction that has desirable guarantees for stability and estimation
errors when applied to linear systems. We employ a method of approximate balancing
for nonlinear systems by computing approximate controllability and observability
gramians and finding a transformation to a reduced order state variable.

The original system dynamics of the frog limb model are of the form,

= f(z)+ Bu
= Czr (5.1)

We shall find a transformation between the reduced state and the complete state, z =
Vz, £ =Wz (§ = CWz). Following constructing this transformation, we find the
dynamics for the low-dimensional variable. As discussed in chapter 4, the dynamical
relations for the reduced variable are not known and must be approximated. We
investigate two representations,

z Arz + Bru (5.2)
z = fi(z)+ Bru (5.3)
The first is linear in the state variable, the latter is not. Based on the known non-
linearities of the original system, a naive conjecture might be that the latter will

perform better. However, we will demonstrate that the trade-offs between the two
are not clear.
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Furthermore, though we do consider nonlinearities in the reduced state, we restrict
ourselves to models that are linear in the motor command, u. This assumption allows
for straightforward interpretations of motor primitives.

5.1 Motor Primitives

In this section we focus on motor primitives; what they are, how we define them, and
how we will use them. First, a few notes on notation, we assume the following,

zeR" state variable for full-dimensional system
u€R" motor command for full-dimensional system
z€R* reduced order state variable

v,y € R™ output of full and reduced dimension models

The low-dimensional system is a compact approximation of how the dynamics in
z influence the output, y. We would like to use the low-dimensional system to both
estimate the output of the full-dimensional dynamics and to generate control signals
for the full-dimensional system. These two efforts place restrictions on the command
signals. For the purposes of estimation, we ought to restrict our motor commands
such that their influence on the full-dimensional dynamics can be best interpreted by
the low-dimensional system. For the purposes of using the low-dimensional system
to derive control signals for the full-dimesnional system, the commands need to be
non-negative values; the motor commands correspond to muscle activations and can
therefore not be negative.

The reduced order models we investigate are linear in the command signals, as
witnessed by the input matrix, By. This being the case, much of the following mo-
tivation for motor primitives relies on the existence of a linear vector space, and the
operations defined on such a space. If instead By were nonlinear, then the following
analysis would not, in general, hold. We will examine the implications of a nonlinear
input matrix in a later chapter.

The low-dimensional input matrtix, By, describes how the r-dimensional motor
command, u, influences the dynamics in the k-dimensional state, z. For the reduced
model, k¥ < r, and By has rank k. Because B, maps motor commands to a lower
dimension, we lose information contained in arbitrary motor commands, i.e. By has
a null space.

Knowing that Bj has rank k, we discuss some implications of using a reduced
order model for control. First we consider the implications for estimation. When
obtaining an estimate of the full-dimensional system, motor commands are supplied
to the reduced order model and the resulting approximation, 3 is observed. Yet
if a motor command partially or wholly overlapped with the null space of By, the
corresponding portion of the motor command would not influence the low-dimensional
dynamics and a poor estimate of the full-dimesnional output may result. If, however,
the motor commands do not coincide with the null space of By, all the information
contained in the motor command will be transmitted to the low-dimensional dynamics
and accurate estimates of the full-dimensional system will be possible.
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Now, consider the implications when the reduced order model is used to generate
commands. Since k < r, the commands computed with a reduced order model will
always lie within k-dimensional subspace of R". Therefore, we can represent any
possible command generated by the reduced order model as a linear combination of
k 13-dimensional vectors. Furthermore, for the purposes of controlling the hind limb,
these commands will have to be restricted to producing positive values. To do this
we can enforce that the low-dimensional system only produce commands that are a
linear combination of £ non-negative vectors.

Based on the above observations, motor commands, either for use with estimations
or control, should be restricted as,

k
u= Z U c (5.4)

where the sum, u, never allows negative muscle activations, and u; is not in the
null space of By. We shall refer to u} as a motor primitive and denote the set of k
primitives as {u*}.

There are several qualitites we desire from the primitives. First we reiterate,
motor commands ought to be non-negative. We define our motor commands as those
contained in the positive orthant of the r-dimensional space, R™. That is, u is
admissable if u > 0 (element-wise greater than or equal to zero). We impose this
constraint by restricting motor primitives to the positive orthant as well, u} € R™.

As explained above, we also want to restrict our motor commands such that they
avoid the null space of B, denoted N'(Bx). Any motor commands contained within
the null space are lost on the low-dimensional dynamics. The low-dimensional model
will not be able to predict the outcome of these commands and will produce poor
estimates. On the other hand, commands that are orthogonal to the null space
uniquely map to the low-dimensional dynamics. The influence of these commands on
the system dynamics can be estimated. Also mentioned above, we know there should
be k primitives. If we have more than this, we are retaining redundant information,
or information that is lost in the null space.

Identifying the null space of By is relatively trivial. We find a singular value
decomposition of By as ULVT. The last r — k columns of V are an orthonormal
basis for the null space, N(Bx). The first k& columns of V, which we shall denote
as Vi, are an orthonormal basis for the orthogonal complement of the null space,
N (Bi)*. It would seem we should choose our motor primitives to coincide with the
spanning set for N'(B)t, e.g. {u*} = V1. Indeed, this would be our best choice for
primitives (based on the arguments presented), however, using these vectors to define
primitives does not necessarily meet our first constraint for maintaining admissible,
non-negative commands.

Taking the positive constraint into consideration, it is tempting to define prim-
itives in terms of the set of all possible commands that are both in the orthogonal
complement, and in the positive orthant. This union is a cone, where C is a cone if
Vr € C,a € R, ax € C. The primitives could be defined by a p-dimensional cone,
C) = R™ NN(Bi)*. However, this definition of primitives is too restrictive, as the
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dimension, p is often much less than k.

The implicit requirement in choosing our primitives as a spanning set for A'(By)*
is that our primitives should be capable of controlling the low-dimensional model. If
any primitive is orthogonal to A'(By)* the low-dimensional model will have an uncon-
trollable mode. We could require that each have a nonzero projection onto N'(By)*,
yet this constraint is lax. Even if this requirement was met, the low-dimensional
model could be weakly controllable if two or more primitives were nearly parallel.
Therefore we can strengthen our demands on the primitives by requiring that they
are nearly, mutually orthogonal. To this end, we present the following two objectives
which will be used in defining a set of primitives.

O-L Vuill = 1,i=1,2,...,k
0-2. lwTuj|l = &, i =1,2,....k

Objective 1 is assures us that each primitive projects onto the orthogonal com-
plement, as much as possible. Objective 2 assures us that the primitives are nearly
orthogonal, and therefore independent from the other primitives. Meeting these ob-
jectives ensures that the primitives are a “good” basis, guarding against a weakly
controllable low-dimensional model. In essence, these objectives, combined with the
admissible constraint, are an attempt to identify a non-negative basis for N'(By)*.

We can also add another objective if needed. There may be cases where certain
commands are desired, for instance based on the behavioral results they produce. For
instance, if we would like to estimate and control withdrawl reflexes, then commands
that excite the flexor muscles are desirable. We shall define these commands as be-
haviorally relevant, {u},. Based on this we present one last possible objective,

0-3. span{u}, C span{u*}

This objective encourages primitives which will account for the desired behav-
iorally relevant commands.

In summary, the spanning set, V, ; is an ideal candidate for motor primitives, but
in general cannot generate admissible commands. We propose that motor primitives
should be chosen as to maximize objectives O-1 and O-2 while meeting the positivity
constraint. When necessary, O-3 can be included amongst the objectives to search
for primitives that are behaviorally relevant.

Motor commands will be composed of linear combinations of primitives, as in
equation 5.4. Commands defined this way will ensure the low-dimensional system
is controllable (and not weakly so). In addition, when the low-dimensional model is
employed to generate control signals the problem is reduced from that of determing
the r independent variables of the command signal, u, to determining the k variables,
c1,Cg, ..., Ck. Furthermore, while ¢; > 0, these commands will be admissible.

86



5.2 Example Analysis

In order to illustrate the use of a reduced model and the identification of motor
primitives as described in the previous section, we shall examine a “toy” problem.
Our toy problem is of a similar dimension to the nonlinear system we will eventually
investigate (section 5.3), but linear, to make the computations simpler and the in-
terpretations straight forward. The details of how the balanced realization and this
low-dimensional model are found are skipped (for linear systems the process is rela-
tively trivial, see section 4.3). We want to focus on the determination of primitives
once a reduced model is in hand and on the subsequent utility of system estimation
and control with the reduced model.

5.2.1 Model Order Reduction

The system we examine will consist of a point mass with two degrees of freedom,
which we’ll describe with a horizontal component, z;, and an orthogonal vertical
component zo. The mass is lightly damped and sprung to ground (in analogy with
our frog model which has very small passive forces). The mass is acted upon by
forces, the magnitude of which are a low-pass filtered version of command signals.
Each force acts in a fixed direction with a maximum magnitude, described by the
vector f;.

The dynamical relations for the system are as follows. For the two degrees of
freedom of the mass, the acceleration is defined by,

I, = th’ - bz, — ki1
Iy = Z foi — baZa — koxp (5.5)

where fy; is the i" force acting along the z; (horizontal) direction, and b; and k; are
the damping and stiffness acting along this direction as well. Each force is computed
as,

(f1, fa)i = ficvi (5.6)
where q; is the activation state of the i** muscle, whose dynamics are of the form,

& = (u; — ;) /7 (5.7)
Combining all the dynamical relations into state-space form, we have,

T = Az + Bu (5.8)

With r inputs, the system has r + 4 states (n = r + 4), two positions, two velocities,
and r forces. For the output, we'll choose the positions and velocities of the mass,
y= [xla T3, ila i‘2]T'
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13 forces will be modeled, analagous to the thirteen muscles in the frog hind limb
model. The maximum value of each force is equivalent to the averaged muscle force
of the nonlinear SIMM model, at the limb end-point. The force vectors are,

£ 0 -.12 -10 1.06 26 16 0 O 0 0 0 07 .14 T
1 =100 O 0 -1.06 -026 0 .09 .19 -.75 -22 —-12 .07 .14
(5.9)

With the system defined, we proceed to find a balanced realization. Recall that the
balancing procedure finds the states that most significantly impact the energy within
the input-output dynamics. To do this, the observability and controllability gramians
are computed. These gramians are then used to find an invertible transformation to
a new state variable. With this new balanced state representation, the observability
and controllability gramians are equivalent and diagonal. Each new state is aligned
with an entry on the diagonal of the gramians. These diagonal entries are the system
Hankel singular values. By truncating those states associated with small Hankel
singular values we have, with a linear system, guaranteed stability and error limits.

In figure 5-1 is a plot of the Hankel singular values for the system. We see that
that singular values drop off quickly in magnitude. The first four Hankel singular
values represent approximately 99.9% perent of the total sum. Therefore we reduce
our system to 4" order (k = 4). The low-dimensional dynamics are now of the form,

z = Akz+Bku
g = Cgz (5.10)

We make no numerical comparisons of the full and reduced system (the numbers
are too cumbersome to present here) but we note that the system eigenvalues of both
systems are distinct; the reduced order model is not simply the slow dynamics of the
full system. We also observe that based on the system’s Hankel singular values, the
reduced model has the following error bounds,

0.3319 < ||G = Gilleo < 1.1213 (5.11)

The balanced and truncated system is a simplified representation for the input-
output dynamics. Now we proceed to define the resulting primitives.

5.2.2 Defining Primitives

For illustrative purposes we present the positive cone, C’,}L for the case where k = 4.
We numerically search for the intersection of the positive orthant and the orthogonal
complement, R™ N A(By)t. We find that the cone is a two dimensional subspace,
approximately,

Ci = span{[0.13.060.15.1900000 .38 .88],
[0.050 .46 .24 2200000 .33.75)'} (5.12)
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Figure 5-1: In the left plot are the Hankel Singular Values. The right plot displays the
ratio of Hankel values retained for reduced models of increasing order. The horizontal
line indicates 98%.

Therefore, if we limited ourselves to the positive cone, we would have at most 2 prim-
itives, rendering our low-dimensional system uncontrollable. The low-dimensional
model would be capable of generating estimates of the full system, but inadequately
limited for generating control.

To further motivate our reasoning for primitives that maximize the stated ob-
jective costs, we shall explore two cases: 1) motor primitives chosen naively and 2)
motor primitives chosen to maximize costs O-1 and O-2.

Case 1:
We shall first choose primitives based on some intuition of their influence on the
system output. For instance, we could define them as below,

{u*} = {(0110000000000]
0001110000011],
[0000001100000],
[1000000011100]} (5.13)

By examining the force directions (equation 5.9) we see that with these commands
the mass can be driven in all directions (up, down, left and right) while obeying the
positivity constraint. These commands, therefore, would seem to be good candidates
for motor primitives.

We note that these primitives are mutually orthogonal and none is an element
of the null space of Bx. But, we would like to know how strongly each primitive
projects onto the orthogonal complement, and in turn, how strongly it influences
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the low-dimensional dynamics. To do this, we look at the sum of inner products of
each command and the spanning set for the null space of By (found from a singular
value decomposition). This value must be between one and zero, or 0% and 100%
(since the primitives have unitary norm and are orthogonal). If it is 0%, then the
primitive is in the null space, and if it is 100%, the primitive is an element of the
orthogonal complement. Figure 5-2 is a plot of the percentage projected of each of the
above proposed primitives. We observe that the second and fourth primitives have
strong projections within the orthogonal complement. The first and third primitives,
however, only weakly project to the complement; they are closely aligned with the
null space of By.

Projection of Primitives on Orthogonal Compliment
T T

percentage projected

primitive

Figure 5-2: Percentage of each naively proposed primitive projected onto orthongonal
complement.

We can further quantify how strongly these primitives project onto the low-
dimensional space by examining the singular values of V; {u*}, where Vj; is the
matrix formed from the first k columns of V' (found from a singular value decompo-
sition of By). For example, if {u*} = Vi, the singular values of V; x{u*} would all
be one. If a primitive projected poorly (was nearly in the null space) or was nearly
parallel to another primitive, it would result in a small singular value. This would in
turn imply that the low-dimensional model was weakly controllable. For the proposed
primitives, the singular values of this matrix are 0.9079, 0.8656, 0.2102, 0.0738. The
two small values are due to the first and third primitive, which weakly project onto
the orthogonal complement.

From figure 5-2 and the singular values of V; x{u*} we gather that every primitive
projects onto the complement; two do so strongly and the other two weakly. The
primitives are mutually orthogonal, so they project in all directions of the orthogonal
complement. Based on these observations, we can control the low-dimensional sys-
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tem, though perhaps weakly so.

Case 2:

Now we use the proposed objectives to define primitives. We will find primitives by
formulating the search problem as that of optimizing a cost function that maximizes
objectives O-1 and O-2, subject to the positivity constraint.

k
1 * * *
L o= 53 (Vi I + {u Y ufl?)
k
1
= 33 (@TVawVEaT + T {u Hu ) (5.14)

We can find an analytical gradient for this expression and try to maximize the cost.
Starting from random initial {u*} the solutions always converge on the same primi-
tives. The result is shown below,

{v*} = {[0,0.12,0.05,0,0.13,0.19,0.0,0.0, 0,0, 0, 0.39, 0.88]' (5.15)
[0.01,0,0,0.97,0.21,0.10,0,0,0,0,0,0,0] (5.16)
[0.99,0.08,0.06,0,0,0,0,0,0,0,0,0,0.0], (5.17)
[0,0.10,0.06,0,0.09,0,0,0,0.92,0.31,0.19, 0, 0] } (5.18)

Figure 5-3 is a plot of the projection of each of these primitives onto the orthog-
onal complement of By. The bottom half of the figure displays the inner products
between the primitives. As can be seen, these primitives have large projections in the
complement, and are nearly mutually orthogonal. The singular values of Vj , {u*} us-
ing these new primitives are 1.0251,0.9901,0.9723,0.9689. In essence, what we have
found with these new primitives is a best approximation to a non-negative spanning
set for the orthogonal complement, N'(Bx)*. The low-dimensional model will be con-
trolable, and minimal information from the motor commands will be lost in the null
space of By.

Case 1 vs 2:

Now we shall address how the objective maximizing primitives of case 2 are in fact
better than the naively chosen primitives of case 1, by using the primitives to com-
mand the system. Both sets of primitives were used to command step inputs (for
one second) to both the full and low-dimensional systems. Figure 5-4 is a plot of the
output (positions and velocities) and the low-dimensional estimate, for each of the
case 1 primitives. By design, these primitives allow for the mass to be driven in any
direction. To see this clearly figure 5-5 is a plot of the workspace (x-y coordinates)
and the location of the mass after 15 seconds. We see that although the commands
that drive the mass in the leftward and upward directions are weak (primitives 1
and 3, which have weak projections in the complement) it is still possibile to gener-
ate movement in these directions. We also note that the low-dimensional model has
generated qualitatively good estimates.
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Figure 5-3: percentage of each new and impoved primitive projected onto the orthog-
onal complement (top), inner product betweem primitives (bottom).

Moving on to the case 2 primitives, we get figure 5-6 and figure 5-7. We call the
reader’s attention to three aspects of these figures. First, as in the previous results,
the estimates generated with the low-dimensional model are relatively accurate (we
can’t compare the two results directly because they are movements with different
trajectories). The second thing to note is the distance this set of primitives has
moved the mass. On average, the case 2, cost maximizing primitives have moved the
mass much further than the naive case 1 primitives. And lastly, we note that for all
practical purposes, restricted to control with these primitives we have lost the ability
to move the mass in the leftward direction.

Conisdering these observations, we note that the two sets of primitives cannot be
distinguished on the basis of the ability to generate good estimates of our desired
output. The Hankel singular values for this system dropped off quickly, so we were
assured good estimates given the order of our reduced system, despite the fact that
some of the primitives examined were closely aligned with the null space of Bj.
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response for primitive 1

Figure 5-4: Estimated and actual output of system (positions and velocities) for
the four naive primitives. Solid lines are the full system, dashed lines are the low-
dimensional estimate.

workspace (behavioral primitives)
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Figure 5-5: Actual (solid line) and estimated (dashed line)location of the mass in the
workspace after 15 seconds, for the four naive primitives.
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response for primitive 1 response for primitive 2

5 10 15

response for primitive 3

Figure 5-6: Estimated and actual output of system (positions and velocities) for the
four newest (cost minimizing) primitives. Solid linear are the full system, dashed lines
are the low-dimensional estimate.

workspace (newest primitives)
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Figure 5-7: Actual (solid line) and estimated (dashed line) location of the mass in
the workspace after 15 seconds, for the new (cost minimizing) primitives.
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Recall that the balancing procedure aligns states with Hankel singular values,
and the truncation has retained only those states with large Hankel values. Therefore
commands that are in the null space, or very nearly so, do not influence these states,
and are not capable of generating as much relative energy in the output (of the full
or reduced system). The output energy is computed as,

B~ [ vl (5.19)

assuming the command is zero from ¢ = 0 to infinity. The toy system, modeled after
the frog model, takes a substantial amount of time to return to equilibrium (the frog
model has very small passive forces to drive the limb back to equilibrium as well),
and the velocities are so small, the output energy is essentially a function of the
displacement the command induces. Therefore, we can estimate the relative amount
of output energy each primitive induces by considering the displacment of the system
after it comes to quasi-steady-state (as the velocities change sign).

Comparing the primitives by their ability to control the system, we note that a
significant difference between the primitives of case 1 and 2 is the energy they impart
into the system output. We quantify this difference by comparing the energy in
the outputs from each of the primitive responses. The norm of the output at quasi
steady-state for the case 1 primitives is 0.1513, 0.8888, 0.1983, 1.0466. The norm of
the output at quasi steady-state for the case 2 primitives is 0.2235, 0.9977, 1.5331,
0.8047, considerably greater.

The above comparison illustrates that by choosing primitives to maximize objec-
tives O-1 and O-2, motor commands are maximally effective at influencing the system
output. Though perhaps not obvious, this implies that the commands derived from
the low-dimensional model will require minimal control effort for a given output.

A final note on objective 3:

We noted how with the case 2 objective cost maximizing primitives, limited to non-
negative commands, we have lost the ability to move in the left-ward direction. This
loss is due to the small output energy associated with the commands that move the
mass in that direction, as seen directly in the numbers presented above, and indirectly
by these commands’ poor projection in the orthogonal complement. However, if this
result was unacceptable and movement in this or another direction was desired, we
can accomodate this within the framework of the balanced and reduced modeling.

We can include the third objective, O-3 in the cost function. Adding this objective
to the cost would constitute a compromise between the desire to have certain specified
commands as primitives, and primitives that are a mututally orthogonal spanning set
of the complement.

A second approach to accomodate objective O-3 is to append the system output
to reflect these desired behaviorally relevant commands. For instance, by adding an
extra output to our full system that is the sum of the activations for the second, third,
seventh and eighth forces (all the forces that drive the mass left-wards and upwards)
we can find a new (4** order) balanced and reduced system. Maximizing objectives
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O-1 and O-2, we find a new set of primitives. The response for each of these new
primitives is in figure 5-8. Now we have the ability to move in any direction in the
workspace while restricting our commands to positive values.

Although both of these approaches can be used in case a particular direction of
movement is not represented in a particular synergy set, we note that in our analysis
of the realistic frog hind limb model (section 5.3) this is not a problem, and every
direction of movement is represented.

workspace (newest primitives)

08}
06}
04

0.2F

Figure 5-8: Actual (solid line) and estimated (dashed line) location of the mass in
the workspace after 15 seconds, for the new behaviorally relevant primitives.

5.2.3 Low-dimensional controller

Once we have the low-dimensional representation and primitives, the next step is to
investigate how the reduced model can be used for designing control. We will examine
optimal solutions for the terminal state problem. The cost to be minimized is,

L= % / £TQ¢ + u” Ru dt (5.20)

where the state, £, starts from a specified initial state, zero in these examples, and
ends at a specified terminal state at a fixed terminal time. To find the solutions we
solve the Euler-Lagrange equations using a neighboring extremal method. Because
the system in quesiton here is linear, the solutions are relatively easy to compute
when the control is not restricted to positive values. When the positive restriction
is enforced the solutions are harder to obtain. The solutions shown below do not
enforce this positivity constraint. In all examples @ is zero, R is the identity matrix
and the terminal state is one unit to the right.
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The first comparison we make is between system responses using optimal com-
mands, the commands that minimze the cost, equation 5.20, without restricting the
command to a combination of primitives. The first system response is found by mini-
mizing 5.20 subject to the full system dynamics (§ = ). The second system response
is found by using the cost minimizing command, subject to the reduced order dy-
namics (£ = z). The two output trajectories are shown in the top plot of figure 5-9.
In red is the optimal solution found from the full system dynamics allowing all 13
control variables to vary. The blue trajectory results from using the low-dimensional
model to compute an optimal control signal allowing all 13 control variables to vary.
We see that there is good qualitative agreement between the two output trajectories,
though the response found with the low-dimensional command does not achieve the
desired terminal state exactly.

Next we examine the system responses when we restrict the commands with the
primitives found by maximizing the objectives, as described earlier. These responses
are shown in the bottom plot of figure 5-9. In red is the optimal solution for the full-
dimensional system when the command is a linear combination of the primitives, as in
equation 5.4. This solution is quite distinct from the previous results. Restricting the
command for the full-dimensional optimization has resulted in a larger cost movement
with a different output trajectory. In blue is the system’s response using the low-
dimensional system’s optimal control solution. This response is very similar to the
previous result.

Output Trajectories
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Figure 5-9: Red trajectory is full-dimensional system’s optimal soluion. In blue is
the full dimensional response when driven with the low-dimensional optimal solution.
Top plot: solutions obtained without restricting motor commands. Bottom plot:
solutions obtained when motor commands are restrained to linear combinations of
motor primtives.
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From these results we can infer the following: Based on the first comparison,
without restricting the command to primitives, we observed that the reduced order
dynamics are similar enough to the full system to compute very similar command
solutions. Furthermore, though we don’t explicitly restrict the command, the low
dimensional system is restricted by the rank of By and only independently varies k
= 4, dimensions of N'(B)t. This would suggest that the low-dimensional system,
by approximating the full-dimensional dynamics well, has implictly found the appro-
priate subspace of u to best influence the dynamics, and therefore minimize the cost
funciton.

We observe from the second comparison that commands restricted to primitives,
do impact the optimal commands for the full system dynamics, but not the reduced
order dynamics. The full-dimensional optimal solution with primitive-restricted com-
mands, has lost control signals that would otherwise allow for a lower cost solution (as
witnessed by this response’s higher cost). The commands derived with the reduced
order dynamics however, have not lost any perceptible information, and the primitive-
restricted commands are nearly identical to the unrestricted commands (not shown).
This is due to the choice of primitives that are a best non-negative approximation to
the spanning set for N'(By)*.

These results suggest that a reduced order model can generate controllers in a
reduced space, that are comparable to solutions found using the full system dynam-
ics when not restricted to primitives. Though not fully explored in this document,
the implication is that a low-dimensional controller does not significantly limit the
motor commands obtainable by the full-dimensional system, when similar optimal
solutions are sought; optimal solutions found using the low-dimensional controller are
comparable to optimal solutions found using the full-dimensional dynamics.
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5.3 Frog Model Results

We now examine a low-dimensional representation for the nonlinear model of the
frog’s hind limb (described in chapter 2). First, we describe the process of empirical
balancing. This balancing yields a change of state coordinates that is used to find a
reduced order state, z. Then two representations for the low-dimensional dynamics
in z, one linear, one nonlinear, are examined for their respective abilities to estimate
the full system responses. We then present the motor primitives found by maximizing
the objective costs O-1 and O-2. The low-dimensional system’s ability to generate
control for the full dimensional nonlinear system is then examined.

5.3.1 Empirical Balancing

As explained in chapter 4, the empirical gramians are found by integrating a series
of system responses from inputs and initial conditions. In the linear case the result is
equivalent to computing the system gramians. The method for nonlinear systems is
simply a linear approximation to the gramians about some operating point. For this
analysis the empirical observability and controllability gramians are computed about
the zero orientation (zero degrees for the hip and knee angles) for the frog hind limb
model. This orientation is displayed in figure 2-4.
The empirical controllability gramian is found as,

. q 8 T 1 [e9] ;
=33 }: o /0 ®ih(t)dt (5.21)
l h 1
where
(I)ilh — (a:“"(t) _ i.ilh) (.’L‘ilh(t) _ jith)T (5_22)

where ¢, s and ¢, are scalar constants described in section 4.6 and z** is the state
corresponding to the impulse command u(t) = ¢, Tje;6(t). However, we let ¢, = 1 and
7, = 1, therefore u(t) = e;4(t) is simply the impulse response for the i** muscle.

The empirical observability gramian is found as,

q 8

. 1 00
Q= ———/ T ()T dt 5.23
Z ; qSCi 0 OT, ( )
where
V) = W) - 7T @M (t) - ™) (5.24)
and y** is the output corresponding to the inital condition response with zo = ¢, 7e;.

Again, we simply chose ¢, = 1 and 7; = I. With the hind limb model, the zero
orientation is approximately at rest when the command is zero, therefore this gramian
is found about a stable equilibrium.

In theory the integrals above need to be integrated indefinitely, yet numerically
the integration can end once the integrand is zero or sufficiently close to it. For the
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hind limb system, this is achieved when the state has returned to its stable, passive
equilibrium, the zero orientation. The passive stability of this equilibrium is weak,
and the limb takes a considerable amount of time to achieve this steady-state; 200
seconds of simulated time were needed.

Once the gramians were computed, a balancing transformation was found. This
was done as outlined in chapter 3 (We remark that though the computations outlined
here are straightforward, the time required to simulate these system responses and
obtain the subsequent results was substantial).

5.3.2 Reduced Order Variable

With the balanced and truncated transformations we have a map to and from the
low-dimensional variable, z = Vz, & = Wz (g = CWz). We also have Hankel
singular values obtained from the empirical gramians. Figure 5-10 is a plot of these
values, along with a plot of the sum retained as the order increases. The Hankel
values drop off quickly in magnitude. For a linear system, this plot would indicate an
upper bound on the error limits for the reduced order model. And, as done with the
previous sections toy example, a small order would suffice to retain good estimation
properties. From the left plot of figure 5-10 observe that a third order reduced model
would retain approximately 98% of the Hankel energy. However, the system of interest
is not linear, and these gramians and Hankel values are only approximations about
an operating point. Therefore more care must be given to choosing an order for the
reduced model.

Approximate Hankel Singular Values Percentage of Total Hankel Captured
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Figure 5-10: Hankel values and percent retained vs order based on empirical balanc-
ing. The horizontal line indicates 98% (left plot).

Since the Hankel singular values don’t necessarily correspond to the correct error
limits, we can consider the influence of system order on the error inherent in the
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transformations. Consider again the transformations to the low-dimensional variable,
z and back to the full-dimensional state.

z = Vz (5.25)
P o= Wz (5.26)

For a linear system, the above tranformations would be used to project the full
system dynamics to a reduced space (see chapter 4). However, because the full-
dimensional system is nonlinear, we will estimate the low-dimensional dynamics with
a choice of function approximators. In order to make this estimation we will use the
transformation V' to compute training data in 2. Consider then, that under these
circumstances, in the absence of any error in the low-dimensional dynamics, there is
still an error associated with the transformations, that is £ = WVx # z. Therefore,
we examine how this inherent error in the mapping between low and full dimensional
variables is influenced by system order. This error will better answer how well a given
order captures the properties of the full system state.

In order to examine the error of this transformation (and later to learn the low-
dimensional dynamics) some data is required. Step responses are individually com-
manded to each of the thirteen muscles. The amplitude of each muscle’s command is
adjusted by hand so that the resulting motions have approximately the same magni-
tude of angular displacements. Each command is held for 0.1 seconds. A workspace
plot of the resulting data is shown in figure 5-11.

This data set is used to compute the error between the system output, y = Cz
and the estimate based on the balancing transformation’s map to the low-dimensional
variable, j = CWVz. The R? value for ) as the order of the transformation increases
is displayed in figure 5-12. Note that despite the fact that the computed Hankel
singular values drop off quickly after the third order, the R? value for third order is
poor (less than 0.8). Based on this inherent error in the mapping, and the trade-off
between desiring a low-order representation and good estimates of the system, the
R? values suggests we choose an order of at least 4, since we need to ascend to a 9
order model to get a significant further increase.

Another consideration when choosing the system order are primitives. The order
of the reduced system will determine how many primitives there are. This being
the case, too few primitives, even if the Hankel singular values and inherent error in
the mapping between dimensions indicated it was viable, would be undesirable; this
might limit the motor behaviors achievable when restricted to primitives, as well as
limit the reduced system’s ability to estimate the consequences of motor actions (by
increasing the space of motor commands that reside in the null space of By).

Based on these considerations, and because the reduced order model is simply
meant to represent an existence proof, we shall choose kK = 5. This appears to be large
enough to allow for good estimates of the state (based on the correlation coefficient)
and the possibility for a variety of motor primitives, while still small enough to create
a manageable reduced order model. Also worth noting, most studies of synergies have
found between 5 and 7 are needed to account for the experimentally derived motor
behaviors. Therefore we argue that a 5t order system, with its 5 motor primitives is
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Figure 5-11: Step-commanded movements used to get training data.

a simple attempt to determine if model order reduction is feasible for motor control
with the frog’s hind limb. No further attempts to examine the trade-offs between

models of various dimensions is examined here.
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Figure 5-12: R? value for § vs. order/rank of transformation to the low-dimensional

varibale, z.
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5.3.3 Linear Reduced Order Model and System Estimation

In the last section we found a low order representation for the state, z. Now we shall
model the dynamics in this reduced order state, z. We shall first approximate the
low-dimensional dynamics with a linear representation. That is, we’ll approximate
the dynamics in z as,

i = Apz + Byu (5.27)

To fit this model, we shall use the data obtained above, from step inputs to each of
the thirteen muscles.

With this data, we map to the low-dim variable and calculate an approximate
derivative, z, using an euler back-difference approximation. In the absence of any
round-off noise, the smaller the time step, the better; about ten times faster than the
fastest dynamics we hope to capture is more than adequate. For this model, that
is very fast. This model has extremely light links and large passive forces. Some
natural dynamics are on the order of a hundred hertz. The time step used, At was
10~* seconds.

The system matrices are computed as the least-squares solution of

B éN]z[Ak,Bk][;l @ z”] (5.28)

1 U2 ... UpnN

This is done for £ = 5. With the matrices solved for, we then validate them over
these same commands. The results are shown in figure 5-13. The dotted lines are the
low-dimensional estimate, the solid ones are the full-dimensional output. We note
that the low-dimenional model found minimizes the error in the forward dynamics
(from state to state derivative), so the data shown is a validation and not simply the
models’ performance over the training set.

In order to evaluate this model’s performance, we shall compute an error measure
for the low-dimensional state. An RMS error between the low-dimensional variable,
z, statically computed from the training data (2 = Vz) and the low-dimensional
variable found from the low-dimensional dynamics is computed for each movement.
We shall refer to this as the low-dimensional state error. Figure 5-14 is a plot of this
low-dimensional error for each movement. For now we simply note that the linear
model has computed qualitatively good estimates of the full system responses.
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Training Data with Validation
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Figure 5-13: Workspace plot of training data and validation. the solid lines are the
system response, and the dotted lines are the low-dimensional estimate, given the

same command.
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Figure 5-14: The low-dimensional output RMS error for each movement (linear sys-
tem).
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5.3.4 Nonlinear Reduced Order Model and System Estima-
tion

We now compare the preceding results with a nonlinear model of the low-dimensional
dynamics in z. We want to know how much better the low-dimensional model can
estimate the system responses when the dynamics are modeled as,

%= fi(2) + Byu (5.29)

where f}, is computed using a neural network but we assume the dynamics are still
linear in the command signal. We use the same data set as above. Because the
dynamics are linear in the command, we use the least squares solution found earlier
for Bk.

The neural network used is a multi-layer feedforward network with a single hidden
layer. The hidden layer has 20 neurons, and the ouput layer has 4. Each neuron has
a sigmoid activation function, (), bound between -1 and 1. The defining equations
are as follows,

h = Wiz+bh (5.30)
m = o(h) (5.31)
fla = Wam +b, (5.32)
fu(z) = o(f) (5.33)

where W, and b, are the weights associated with the hidden layer, and W, and b, are
the weights for the output layer.

To train the network a standard gradient descent approach is used. An error
metric is defined,

E= Z 12 — fu(z)ll (5.34)

the gradient with respect to the network weights is computed and updated in batch.

After training the network over this data, we validate the model just as described
for the linear model (in the previous section). Figure 5-15 is a workspace plot of re-
sulting estimates of the system output for the 13 step responses. The low-dimensional
state error is computed and shown in figure 5-16. Again, there is good qualitative
agreement between the estimates and the actual system output.
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Training Data with Nonlinear Validation
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Figure 5-15: Workspace plot of training data and nonlinear validation. the solid lines
are the system response, and the dotted lines are the low-dimensional estimate, given
the same command.
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Figure 5-16: The low-dimensional output RMS error for each movement (nonlinear
system).
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5.3.5 Reduced Model Comparison

Qualitatively, both the linear and nonlinear reduced order models produce good es-
timates of the full system response. Comparing figures 5-14 and 5-16 we see that
as expected, the nonlinear model does produce a superior low-dimensional estimate,
albeit only slightly so. However, as discussed eariler even if the estimate of the low-
dimesnional dynamics were exact, there is still an error associated with the transfor-
mation between spaces.

In figure 5-17 we plot the error inherent in the mapping between dimensions for
k = 5. This is computed as the root mean squared error of y — CWVz for each step
response. This is the estimation error the low-dimensional system would produce if its
dynamics exactly matched z(t) from the training set, regardless of the representation
for the low-dimensional dynamics.

From this figure we observe that the estimated system output error due to the
mapping between dimensions is significantly greater than the error either reduced
order model produces. What’s more, the reduced order model will eventually be used
for control, therefore a linear representation of the low-dimensional dynamics will
offer a simplification over a nonlinear model. Given this information, it is not clear
that the nonlinear reduced order model offers an advantage over the linear model.
Therefore we assume that the linear representation for the reduced order dynamics
will suffice in our efforts to estimate system dynamics and generate control. We
believe the bottleneck for system estimation (when k = 5) is the error inherent in
transformation from z to £, rather than the in the estimated dynamics of z = fi(z,u).

Transformation Error

07 —T— —T T T

movement

Figure 5-17: Inherent RMS error, due to transformation, for each movement.
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5.3.6 Primitives

With the system matrix, By identified (equivalently in both the linear and nonlinear
case), we proceed to find primitives. Taking our stated approach, primitives are found
that maximize the objective cost function, equation 5.14, maximizing their projection
onto the orthogonal complement, N'(Bi)+, and maximizing their orthogonality, while
remaining non-negative. Figure 5-18 is a plot of the percentage of each primitive pro-
jected, and the inner products for these cost maximizing primitives. Each primitive
has a large projection onto the orthogonal complement, at least 90%, and they are
close to mutually orthogonal. In figure 5-19 the primitives are displayed.

Before making comparisons with experimentally derived synergies and the mo-
tor primitives obtained from the reduced order model, we note their biomechanical
significance. The first primitive is essentially a command to Gracilus and Semimem-
branosus. Both muscles are strong hip flexors. The second primitive is mostly a
command to Cruralis, a hip flexor and knee extensor. The third primitive is mostly
Gluteus and Tensor Faciae Latae, both hip and knee flexors. The fourth primitive
is mostly commands to the dorsal and ventral head of Semitendinosus, hip and knee
extensors, and the dorsal and ventral heads of Adductor, also hip extensors. The
fifth primitive is combination of Tensor Facia Latae, Iliofibularis, Sartorius, and Ilia-
cus internus and externus, all hip flexors. Thus, these primitives appear to identify
common components acting upon the joints.

100
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Figure 5-18: Percentage projected onto the orthogonal complement for each motor
primitive. Inner products for the primitives are shown in the bottom plot.

Muscle synergies are found by extracting low-dimensional basis from experimen-
tally determined EMG signals. Numerically, this has been done by finding linear
combinations of basis, or synergies, that best reconstruct the data. The basis can
be found through varying means, for instance using a gradient descent technique
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Figure 5-19: Objective maximizing primitives.

([67], [57]) or non-negative matrix factorization ([11]) or through principal compo-
nent analysis. The number of synergies required to explain a given data set is a
flexible quantity, typically given in terms of variance explained.

The resulting synergies are ratios of relative muscle activity. Due to experimental
limitations, the magnitude of EMG activity for any muscle is normalized relative to
the measurements taken, and not the maximal activaiton for that muscle. Therefore,
the scalings of muscles within a synergy are relative muscle activations and not values
of absolute muscle activity. This complicates a direct comparison of synergies and
our motor primitives.

In addition to this incongruity, there are good reasons to suspect the motor prim-
itives and synergies may differ: the hind limb model. The hind limb model used in
this study has many simplifications and modeling assumptions that make it distinct
from the real hind limb. For example, muscle properties, such as maximum isometric
tension and insertion points may be inaccurate. Furthermore, the hind limb model,
and the forces the musculo-tendon models produce, are in a plane, whereas the real
frog limb and it’s muscle forces are not constrained to a plane. These assumptions,
could be sources of disparity between the model’s motor primitives and the muscle
synergies found experimentally.

Given the above information, the comparisons we make between our motor prim-
itives and muscle synergies will be based only on the muscle prominently contained
therein. Without reviewing the details of the experimental methods, the synergies
found from three studies will be used for comparison. Each study obtained the EMG
measurements from differnet motor behaviors, and extracted the synergies using dif-
ferent numerical methods, so the comparisons between synergies and motor primitives
will be made for each study seperately.
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Amongst four synergies used to reconstruct the EMG of ten muscles collected
from cutaneous stimulation of the limb ([67]), two synergies bare resemblance to the
motor primitives. The two synergies are reproduced in figure 5-20. Synergy 3 (the
second from the bottom) has prominent activity for Gluteus, with smaller activities
for Gracilus, Adductor Magnus and Cruralis (Tensor Facia Latae was not recorded
from). This synergy corresponds well with our third motor primitive (we will refer to
the motor primitives as 1-5, from top to bottom in figure 5-19), which commands, in
decreasing magnitude, Gluteus, Tensor Facia Latae, Semimebransosus and the two
heads of Adductor Magnus.

Synergy 4 in figure 5-20 has large contributions for Illiacus Internus and Iliofibu-
laris, with a smaller amount of activity for Sartorius. Compare this with our primitive
5, which activates, in decreasing magnitude, Iliacus Internus, Sartorius, and Ilifibu-
laris, with smaller activations for Iliacus Externus and Tensor Facia Latae, both not
represented in the synergies of figure 5-20.

In another study, [57], EMG data from 12 muscles, and from 10 frogs was pooled.
The data, collected through chemical stimulation of spinalized animals, was used
to generate seven synergies. Three sets of seven synergies were found. Amongst
these, two sets of synergies contain a synergy that bares close resemblance to our
motor second primitive. The synergies, reproduced in figure 5-21 correspond to large
activations of Peroneus (a muscle that is not included in our model) and Cruralis, with
smaller activations for Gluteus, Sartorius, and Gracilus. Our second motor primitive
is a command to Cruralis, with a very small activation to Gluteus.

In the same study, EMG activity evoked from cutaneous stimulation of one frog
was also collected and used to find synergies. Of this set of seven synergies, two are
similar to our motor primitives and are reproduced in figure 5-22. One prominently
represents activations of Gluteus and Tensor Facia Latae, similar to our third prim-
itive. The second synergy, similar to the chemically stimulated synergies, represents
activity of Cruralis Gluteus and Sartorius, similar to our motor second primitive.

Also from the same study, in a set of seven synergies constructed from the EMG
recordings of a single frog, three synergies (shown in figure 5-23) are similar to our
motor primitives. The synergy labeld D, with activations for Gluteus, Tensor Facia
Latae and Semimembranosus, is similar to motor primitive 3. The synergy labeled E,
with activations for Semitendinosus, Adductor Magnus, Iliofibularis, and Sartorius,
is similar to our fourth motor primitive. Finally, synergy labeled F, which represent
activities for Sartorius, Tensor Facia Latae and Iliacus Internus, is similar to our
primitive 5.

In the last study we use for comparison, [11], EMG was collected from 13 muscles
while awake and behaving frogs swam in a laboratory setting. This EMG activity was
used to construct six synergies using a non-negative matrix factorization algorithm.
From these six synergies, we see that one in particular bares resemblance to our
motor primitive 3. The synergy, shown in figure 5-24 prominently represents activity
for Tensor Facia Latae, Gluteus and Semimebransosus, (as well as Iliacus Internus,
Cruralis, Iliofibularis and Sartorius).

110



synay Y
w

L

8T 8A M AM VI SM VE BF WP

ynergy 2
-]

ST SA F1 AM V! 3 VE BF P

(-]

SY SA W AM W M VE BF P

synsgy 4 ynemgy )

8T SA R{ AM Vi S VE BF P

-]

Figure 5-20: Synergies from [67]. Muscle synergies 3 and 4, are similar with motor
primitives 3 and 5, respectively.
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Figure 5-21: Synergies from [57]. Both muscle synergies are similar to motor primitive
2.
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Figure 5-22: Synergies from [57]. The top muscle synergys is similar to motor primi-
tive 3, while the bottom muscle synergy is similar to motor primitive 2.
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Figure 5-23: Synergies from [57]. Muscle synergy, D, is similar to motor primitive 3,
synergy E is similar to motor primitive 4, and synergy F is similar to motor primitive
5.
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Figure 5-24: Similar synergy from [11], that is similar to motor primitive 3.
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5.3.7 Low-dimensional controller

We now investigate control with the linear low-dimensional model and its attendant
motor primitives. This will serve two similar purposes. First, it will establish that a
controller, based on a reduced order representation can in fact be used to control the
hind limb. Second, though synergies can accurately reconstruct EMG signals of motor
behaviors, they have never been shown to be capable of generating the commands
necessary to recreate these behaviors. There is the possibility that slight inaccuracies
in the ability to reconstruct EMG records give rise to inabilities to generate a class of
movements. For instance, it could be that motor commands restricted to primitives
cannot produce natural reflexive movements. Therefore, by devising motor control
restricted to motor primitives, we demonstrate the possibility of control using a low-
dimensional model, and some of the motor behaviors possible with motor primitives.

Our first attempt to control the hind limb is to produce commands for natural
kicking behavior. We merely seek a non-negative linear combination of motor prim-
itives that can drive the along the approximate trajectory of a kick. To this end,
motor primitives (see figure 5-19) were used to generate commands for the hind limb
model. The desired limb kinematics for a kick could be defined and used to invert the
limb’s equations of motion to find the appropriate joint torques. However, to produce
activations for each primitive in this manner is a complicated procedure requiring the
characterizaiton of how each primitive produces torque as a function of joint position,
velocity and activation level. Therefore, primitives were commanded with steps in
activation. The time and magnitude of these steps was “hand-tuned” through trial
and error to produce limb motion that approximated the kinematics of awake and
behaving animal’s kicks [17], (unpublished data, Andrea d’Avella).

In figure 5-25 three kicking movements are displayed. In the top plot is a caudally
directed kick. It begins with the hip and knee flexed (the red circle at [0.01, -0.01])
and moves downward in the figure (the dotted line). After a brief pause, the limb
then retracts approximately back to the initial limb position (the red x). The bottom
plot displays a laterally directed kick, while the middle plot displays a kick directed
at a location between these two other kicks. All kicks start in the same flexed limb
location, and end in approximately the same location.

The command for each kick is composed of two portions, a brief step in command
to drive the limb towards the perimeter of the workspace, and a second brief step
in command to bring the limb back to the starting orientation. Each portion (the
outward going, and returning) of the command was made constructed with only two
of the five motor primitives. Thus, the requirement for controling the 13 independent
muscles of the limb has been collapsed to specifying five primitives weightings (three
of which were not used).

The kicks shown are a first pass at investigating the motor behaviors possible with
a low-dimensional model. Unfortunately, the process of designing the commands by
hand is lengthy and tedious, so an exhaustive investigation of similar behaviors is
not practical. Instead, we turn our attention to designing a controller, rather than
commands.

We now demonstrate control design with the linear low-dimensional model. To do
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Figure 5-25: Three kicking movements built with hand-tuned primitive step-
commands. Each kick starts at the red circle, and ends with the red x.

this we find the optimal solutions for the terminal state problem. As briefly mentioned
in the toy problem analsys (section 5.2.3), by introducing the non-negative command
constraint into the optimal solution the problem is significantly harder. Therefore, we
again remove the positivity constraint on the command signals (some non-negative
solutions have been found, but more work remains to complete this task). Again,
we solve the Euler Lagrange equations for the reduced system, with a neighboring
extremal algorithm. The high order and nonlinear features of the full nonlinear system
are such that no solutions have been found, illustrating the difficulty involved in
controlling a high-dimensional nonlinear system. Therefore the only data we present
are the solutions for the linear low-dimensional system and the result of using this
low-dimensional optimal control signal to drive the full nonlinear system. This was
done for six target movements to the joint orientations, {(.5 .5), (0 .5), (-.5 .5), (-
5 -.5), (-5 0), (-5 -.5)} (units in radians). Figure 5-27 is a plot of the resulting
trajectories. The solid lines are the full system’s trajectory. The dotted lines are the
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low-dimensional system’s estimate. The red x’s are the desired final position for the
system. There is good agreement between the estimated and actual trajectories.

In figure 5-27 is a workspace plot of the same trajectories. We observe that the
full-dimensional response (solid lines), again, using the motor command derived from
the low-dimensional system, does come close to reaching the desired targets (denoted
by x’s). The low-dimensional estimate of the system response (dotted line) closely
follows the trajectory of the full system.

Joint Trajectories Joint Trajectories

Figure 5-26: Joint trajectories for movements using low-dimensional optimal com-
mand solutions. The solid lines are the actual system response, the dashed lines the
estimated response.

5.4 Summary

In this chapter we have demonstrated the utility of a reduced order model of the hind
limb’s musculo-skeletal system. A linear transformation based on empirical gramians
was used to compute a reduced order variable, z. It was shown that when z is five
(out of 17) dimensional, good transformations/estimations between the full and low-
state were possible. Using this low-dimensional transformation and training data,
a linear low-dimensional model for estimating the full nonlinear system output (the
joint angles and velocities) was computed. This low-dimensional (5 order) model
was shown to produce good estimates of the full system output.

We have also presented a procedure for defining motor primitives when the dy-
namics are linear in the command. We argue that motor primitives, for our bio-
logical system, ought to be a best approximation to a non-negative spanning set of
the orthogonal compliment of the null space of By, N(Bi)*. Through this choice
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Results with Low-Dimensional Optimal Solutions
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Figure 5-27: Workspace trajectories for movements using low-dimensional optimal
command solutions. The blue dashed lines are the estimated system response of with
the optimal command. The red solid lines show the movement of the full system
when driven with the same optimal commands.

of primitives we are ensured maximal controllability of the low-dimensional system,
while still maintaing non-negative motor commands.

It has been demonstrated that the motor primitives are, in part, an attempt to
alleviate the redundancies of muscles, as witnessed by their groupings in primitives
with consistent effects on limb dynamics. The favorable comparisons with experimen-
tally derived synergies present evidence that our method for determining primitives
is promising, if not accurate. This can also be offered as further support that muscle
synergies are not an epiphenomenon due to numerical algorithms, and do in fact re-
flect aspects of the motor system. Furthermore, the correspondence between motor
primitives and muscle synergies offers evidence that the frog’s control may reflect a
similar coordination of muscle activities based on biomechanical properties. This is
also evidence for a stronger assertion, that the frog does in fact use a similar control
system based on a reduced order representation.

The motor primitives derived from the low-dimensional model have been shown
capable of generating commands for natural kicking motions. The kicks are com-
pelling evidence that our motor primitives are capable of generating a large class of
natural limb behaviors, though this has yet to be fully explored.

A further demonstration of control employed the low-dimensional model to find
optimal control solutions for the full-dimensional system. It was shown that these
optimal commands were sufficient to bring the nonlinear limb within close proximity
of the desired target locations. Currently, there is no data yet available for optimal
solutions obtained using the full-dimensional system, or the reduced nonlinear system,
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so no quantitative comparisons with these optimal solutions can be made. However,
this is suggestive of the difficulties associated with controlling this large dimensional
nonlinear system, and the simplifications afforded with the reduced order model.
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Chapter 6

Discussion

Comparison of Linearity Results with Experimental Data

Now we perform a series of computational exercises on the simulated force fields.
This is done to demonstrate that the musculo-skeletal model examined in this thesis
can produce results similar to the experiments reviewed in the opening chapter, and
to then use the linearity analysis of chapter 3 to explain these results.

Mussa Ivaldi et.al. [49] reported the results of isometric force fields at the an-
kle and their ability to be superposed. Force fields of individual stimulation sites
were recorded. Then these sites were costimulated and the resulting force fields were
recorded. These costimulated force fields were compared with the linear superposition
of the individually stimulated sites. To quantify the similarity between the costimu-
lated force field, and the vector superposition of the individual fields, a “similarity”
measure was defined. To do this, an inner product was first defined,

N
< Fa,Fg >=)_ Fa(z:) - Fa(z:) (6.1)

where the sum was over all sampled locations of the force fields measurements,
x1,Z32,...n, and F4 and Fp are force fields produced by stimulating at sites A and
B, respectively. With this they then defined a “cosine” between two force fields.

< Fy4,Fg >
I Eallll F5ll

This cosine was used to quantify the similarity of two force fields. Note that —1 <
cos(F4, Fg) < 1 and if the two fields are proportional to eachother, then the measure
is 1. This measure was used to compare the costimulated force fields, F4g with the
superposed force fields, F4 + Fp.

Of 41 costimulated force fields, 87.8% were found to have a cosine of > 0.9. The
average for the entire data set was 0.938 & 0.045. The results implyed that the force
fields did, in a statistically significant way, linearly superpose when simultaneously
costimulated.

In a follow up study by Lemay et.al. [41] the results of a similar examiniation were
reported. The scaling of force magnitude with stimulation as well as the superposition

cos(Fu, Fg) = (6.2)

119



Force Field Similarity Fab, (Fa + Fb)
T T T

0.06 T T T T
0041 s S
S
- =
0.02[ i -
P _ —
2 N} == et
Bo t ’ M “ g
§ ' = \\ ~ - ~
> t -~
L \ - W
-002f ' . s i N R S
7 o y , \ X -~ \ :
’ ’ v \ (N \
-0.04} : 4 Loy \ N \ : % i e
R '
B Ty —— 0 9(:)1 Iin%i:g 0B oo 005 0.06

Figure 6-1: Force fields used to compute similarity measurement comprised of Gluteus
and Semitendinosus Dorsal. In red is the force field found when the individual fields,
F4 and Fp are summed. In blue is the field, Fap.

property were reported. In contrast to the study by Giszter et.al., the total force fields
and not simply the active component were examined.

The effects of varying stimulus parameters on force strength were examined under
the heading of single site recruitment modulation. Four parameters were systemati-
cally varied during electrical stimulus delivery to spinal sites, pulse amplitude, pulse
duration, stimulation frequency and train duration. To compare force magnitude with
stimulation parameters consistently, each of the stimuli were converted into units of
charge (Coulombs). In 16 of 17 spinal sites, the average correlation coefficient be-
tween charge delivered and magnitude of resulting forces was > 0.9, implying that
the relation between force strength and stimulus was linear.

Field structure was also investigated in terms of changes in force direction with
varying stimulus levels. Angular deviations of the force directions at each location
measured were computed for varying levels of stimulation at the same spinal location.
The average change in angle was 1.3° £ 11.8°.

The findings of these two papers shall be used for comparison with the thesis
model. To compute the same measures with our model of the hind limb, force fields
will have to be created. As noted previously, Gluteus and Semitendinosus Dorsal
are examples of the most and least linear muscles in our model. Therefore, we shall
examine a simulated force field that is composed of these two muscles.

Two force fields were compared. First, a force field that comprised Gluteus and
Semitendinosus Dorsal at activation levels of 0.25 and 0.5, respectively, was computed.
This is meant to represent stimulation at, say, site A. A second force field with
activations levels of 0.5 for Gluteus and 0.25 for Semitendinosus Dorsal was also
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computed for stimulation at some site, B. Then the field representing costimulation
of sites A and B was computed, by simulating a field with activaiton levels of 0.75 for
both Gluteus and Semitendinosus Dorsal. In this way, F4 + Fj could be compared
with ﬁeld, FAB-

The cosine, similarity measurement for these fields was found to be 0.976, within
one standard deviation of the experimental results (0.938). For illustrative purposes,
the two fields are shown in figure 6-1. The cosine is nearly 1.0 for most of the
workspace. In the rostral lateral portion of the workspace, the length of Semitendi-
nosus Dorsal is such that it’s muscle force is nonlinear in activation. The forces it
produces in this location do not scale linarly with activation. The forces produced
by Gluteus do, however, scale with activation, and the resulting force at the ankle
rotates. The cosine measure drops to values less than one accordingly.

Continuing on with the comparisons, from the second study, [41], we wish to com-
pute a single site recruitment modulation score for our model. We again use force
fields comprised of Gluteus and Semitendinosus Dorsal. Each muscle was activated
with levels, 0.1, 0.25, 0.5, 0.75 and 1.0, and the correlation coefficient for the resulting
force, at each point in the workspace, was computed. A plot of the correlation coeffi-
cient is show in figure 6-2. The correlation coefficient is greater than 0.9 for most of
the workspace. The average of all the coefficients computed was 0.9656. Again, in the
rostral lateral portion of the workspace Semitendinosus Dorsal reaches lengths that
make it behave nonlinearly in activation. This can be seen in the figure. The linear-
ity of Gluteus, however, masks the nonlinear increase in force from Semitendinosus
Dorsal, allowing for relatively high (> .9) correlation coeficients.

0.05 vy

-
0.05

PEa
0.01 0.02 0.03
x coordinate

0.04

Figure 6-2: Correlation coefficients across workspace for increasing activation.
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Using the field structure measure (angular deviations) from the Lemay study, two
more force fields were computed for comparisons. The first field was composed of
Gluteus and Semitendinosus Dorsal, both with activation levels of 0.1. The second
field was the same muscles but now activated at 0.75. At each point measured in the
workspace, the change in angle is computed. A plot of the angular deviation across
the worksapce is shown in figure 6-3. We note how in the upper right region of the
workspace, corresponding to large hip flexion and knee extension, the angluar devi-
ations are large, > 120°. This area corresponds with the nonlinear operating region
of Semitendinosus Dorsal, and can be explained as the sole result of this muscle’s
nonlinear behavior (Gluteus is still very nearly linear in this region). The average
acorss the entire workspace is 35.3°. However, as noted several times now, this is
computed over a much larger region of the limb’s workspace than done in the study
by Lemay et.al. In figure 6-3 we observe that over the approximate region forces were
measured in the experimental study, the angular deviations are very small (close to
0°). This, again, is due to the lengths of Glutues and Semitendinosus Dorsal in this
region of the workspace.

Force Field Angular Deviation

y coordinate

i
-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
x coordinate

Figure 6-3: Angular deviations across workspace.

Motor primitives and muscle synergies

We have argued (section 5.3.6) that our derived motor primitives have some clear
correspondences with muscle synergies reported in the literature. However, through-
out the thesis we have distinguished between motor primitives and muscle synergies,
in name (and spirit). This is done for a number of reasons. As was discussed in
section 5.3.6, if motor primitives, similar to the ones we have defined in this thesis,
are used as a basis for generating motor commands, then the muscle synergies found
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experimentally would not correspond exactly to the primitives, since they are not
normalized with respect to maximal EMG activity. Furthermore, various extraction
algorithms for finding low-dimensional features in data might result in different mus-
cle synergies, another source of possible discrepency between motor primitives and
synergies.

That being said, we have a unique opportunity to compare synergies and primitives
quantitatively, regardless of how strong or tenuous their connection might be. For
comparitive purposes, we have acquired muscle synergies from the study by Cheung
et.al. [11]. A set of six synergies, obtained from EMG data collected while a frog
swam, were found using a non-negative matrix factorization algorithm. These muscle
synergies are compared with a set of six motor primitives. The motor primitives
were found using the procedures outlined in section 5.3, only with a low dimensional
variable of dimension 6 (kK = 6). Figure 6-4 is a plot of the six motor primitives.
They are similar to the motor primitives presented previously for the case k = 5
(figure 5-19), with each primitive grouping muscles that have similar biomechanical
influences on the system dynamics.
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Figure 6-4: New motor primitives derived from a low-dimensional model for the case
k=14,

In order to compare these new motor primitives with the muscle synergies, the
following alterations were made. The values for Adductor Dorsal and Ventral in the
motor primitives were averaged to be consistent with the single value for Adductor
in the muscle synergies. The same was done for Semitendinosus Dorsal and Ventral.
Iliacus externus is neglected from our motor primitives as there is no measurement for
this muscle in the synergies. Finally, Gastrocnemius, Tibialus Anticus and Peroneus
are neglected from the muscle synergies as those muscles are not in our hind limb
model and therefore, not in our motor primitives. Having made these changes, each
motor primitive now has ten elements, consistent with the muscle synergies. The
resulting altered motor primitives and the set of six muscle synergies are shown in

figure 6-5.
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The first comparison we make between muscle synergies and motor primitives is
their “orientation”, or direction in the vector space of motor commands. We seek to
quantify how similar the primitives and synergies are in terms of an inner product. If
the inner product between a motor primitive and a muscle synergy is one (they both
have unitary norm) then they produce equivalent commands; if it is zero, then they
produce commands that are orthogonal. In figure 6-6 is a matrix of inner product
values between our six motor primitives and the muscle synergies. The vertical axis
corresponds to the primitives and the horizontal axis to the synergies. Therefore,
for instance, we see that motor primitive 6 and muscle synergy 1 have a large inner
product, 0.93. Similarly, motor primitive 1 and muscle synergy 2 have a large inner
product, 0.81.

For random vectors with unitary norm (chosen from a uniform distribution be-
tween zero and one) the inner product is approximately 0.76. We find that the first
three motor primitives (the top three in figure 6-5) have inner products with mus-
cle synergies of 0.77 or larger. Therefore, the first three motor primitives have a
correspondence with the muscle synergies that is greater than chance.

The inner products compare the motor primitives and muscle synergies individ-
ually, without explicit reference to the commands they can generate. However, as
mentioned earlier (and discussed shortly in further detail), there may be good rea-
sons to suspect that synergies and primitives may differ. Muscle synergies, extracted
using different algorithms, might differ even when found from the same data set. Yet,
within error tolerances, regardless of the synergy extraction algorithm, the space the
various sets of synergies span (of which the EMG data belongs to) should be invariant.
That is, no matter how muscle synergies are computed, the set of motor commands
they can produce should be the same. The next comparison we make will be an
attempt to address this fact. We compare the spaces of commands spanned by the
synergies and the primitives. To this end, we shall look at the portion of each motor
primitive that is orthogonal to the span of the muscle synergies.

Figure 6-7 is a plot of the component of each motor primitive (from our set of
six altered primitives, figure 6-5) that is orthogonal to the space spanned by the six
muscle synergies. If the entries for each primitive are zero, then that primitive is
entirely within the space of motor commands spanned by the muscle synergies. If, on
the other hand, elements in a primitive’s orthogonal components have large nonzero
values, then that primitive commands combinations of muscles that are not available
to the muscle synergies. From the figure we see that there are some clear differences
between the commands motor primitives can generate and those of muscle synergies.
For instance, it appears that (based on the second, third, and fourth primitives)
our motor primitives are a better set of commands for generating nearly individual
commands to Gluteus, Cruralis, and Gracilus (the same could be said for Iliacus
Internus and Adductor as well, only these commands are not as strong). It is difficult
to interpret these results physiologically as this set of muscle synergies is based on
EMG data during swimming, and our motor primitives are based on a model that
does not take into account interaction with the environment.

Furthermore, we can conclude that the first, fifth and sixth motor primitives are
almost entirely within the span of the muscle synergies. This indicates that any
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Figure 6-5: Altered motor primitives and muscle synergies for k = 6. The left plot
displays the set of 6 motor primitives based on a 6% order low-dimensional model.
The right plot is the set of six muscle synergies from Cheung et.al.

motor commands generated using these three primitives can be explained in terms of
linear combinations of the muscle synergies. This overlap between three of six of our
primitives (1, 3 and 6) and the span of the synergies, as well as the large inner product
between another three of our primitives (1, 2 and 3) and the synergies, indicates a
correspondence between some of our motor primitives and the experimentally derived
muscle synergies.

Figure 6-6: Inner products between motor primitives and muscle synergies. The
vertical axis corresponds to the six motor primitives, while the horizontal axis refers
to the six muscle synergies.
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Figure 6-7: Components of each motor primitive that are orthogonal to the span of
the muscle synergies.

The correspondences between motor primitives and muscle synergies are an inter-
esting outcome not to be dismissed. Yet, there are still good reasons to distinguish
between primitives and synergies. In addition to the reasons mentioned earlier, an-
other reason to distinguish between motor primitives and muscle synergies is the
“space” they occupy. For instance, in our reduced order model, the dynamics for the
low-dimensional variable, z, were linear in the command signals. This was done on
purpose to allow for easy definitions, and interpretations, of motor primitives; they
were chosen to be a non-negative linear basis for the space of commands that influ-
enced the low-dimensional dynamics. A numerical extraction algorithm operating on
motor commands derived with our low-dimensional model would most likely find a
basis for the same space that our primitives span. The synergies themselves might
differ from the primitives, but the synergies and motor commands would span the
same space. This scenario may correspond to the overlap between three of our motor
primitives and the muscle synergies shown above.

If, on the other hand, the low-dimensional model was not linear in motor com-
mands, this correspondence between spaces may not hold. For instance, if the input
matrix was a function of state, Bi(z), then primitives would have to be defined dif-
ferently. In keeping with our previous theme, motor primitives could be defined as
non-negative bases for the space of commands that influence the low-dimensional
dynamics. This, however, would now be a set of bases that were state dependent,
and varied in time. A numerical algorithm similar to the ones used for extracting
synergies, acting on motor commands composed of these state-varying bases, would
extract more synergies than motor primitives.

To understand why a numerical algorithm would uncover more muscle synergies
than there are motor primitives, consider a simple case and assume there is only
one, state-varying motor primitive (in this case z € R). If this single primitive were
constant in value, all motor commands produced with the low-dimensional model
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would lie on a line, and a single synergy could explain the resulting data. However,
for the state-varying case, as z evolves in time, the motor primitive changes, and the
commands it produces sweep out an arc in the space of motor commands. These
commands would not lie on a line, and two or more synergies would be required to
explain the data.

An example of this scenario is schematically depicted in figure 6-8. In the left plot
is an image of motor commands produced when the motor primitives are constant.
Two constant motor primitives define a plane, in a three dimensional space of motor
commands. All motor commands will lie in this plane, and when an extraction algo-
rithm is used to find synergies in these data, labeled u, two synergies will be found.
The span of these synergies will be coincident with the plane. In the right plot is an
image of the same motor commands, produced by a single state-varying motor primi-
tive. As this primitive changes in orientation, it sweeps out a plane (in general it will
not be a plane and can be a nonlinear surface) upon which the motor commands are
contained. If the same extraction algorithms were used on these motor commands,
the same synergies would be found (again, we assume the motor command, u is the
same in both examples). It is clear in this case that there is no good correspondence
between the motor primitives and the muscle synergies. Indeed, in this case, muscle
synergies are merely a best approximation to a linear basis for the space that contains
motor commands. This could be the case for the experimentally found synergies of
Cheung et.al., and would explain why three of our motor primitives did not overlap
with the span of the muscle synergies.

Finally, we consider a further reason for making a distinction between motor
primitives and muscle synergies: the effects of proprioceptive feedback. Propriocep-
tive feedback has not been included in any of this investigation, either at the level of
modeling, or in the design of control. In the frog, feedback most certainly does play
a role, as motor behaviors with and without feedback have markedly distinct charac-

Figure 6-8: The space of motor commands for the cases of linear, constant, and
state-varying, motor primitives.
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terisitics (e.g. [35]). The motor primitives in this thesis are a feedforward basis for
motor commands, as they are not influenced by system state. However, experimental
evidence demonstrates that feedback does play a role in the muscle synergies found
(11). This further emphasizes the need to distinguish between motor primitives and
muscle synergies.

In summary, there is good reason to distinguish between primitives and synergies.
The strong correspondences between our motor primitives and muscle synergies, both
in terms of the inner products and the spaces of motor commands spanned, are in-
teresting and compelling evidence, but not strictly necessary outcomes of a motor
control system that uses a reduced order representation.

Motor primitives and force fields

Based on our findings, we can offer an explanation for the small number of linear
isometric force fields observed experimentally, and their apparent use as modular
primitives in motor behaviors of spinalized animals. If a reduced order representation
for the hind limb resides in the circuits of the spinal cord, then exciting the spinal cord
may trigger motor primitive commands. If the excitation is strengthenend, the motor
primitive commands are further increased. If two or more sites within the spine are
costimulated, they may produce commands that are superpositions of motor primitive
commands. Due to the biomechanic properties of the limb, as examined in chapter
3, the resulting forces will be linear in stimulation, consistent with the empirical
evidence.

Reflexive motor behaviors, mediated by spinal circuits, could be based on fixed
temporal sequences of motor primitive commands. If, as is done in experimental con-
ditions, the hind limb is restrained and one such reflexive behavior is evoked, then
the resulting forces measured would appear to be modular force fields. This too, is
consistent with experimental evidence.

Equilbrium point control and biomechanical regularities

Several studies, e.g. [5], [25], have reported isometric force fields that are termed
convergent, that is they have stable equilibria, within the area the limb’s reach mea-
sured. These same studies, and others like them [43], have shown that the likelihood
of random muscle activations producing convergent force fields, is small. Results like
these have been viewed as an indication that spinal motor circuits encode informa-
tion for the hind limb’s equilibria. This could be relevant for an a equilibrium point
controller.

To reap the benefits of an equilibrium point controller, over those of say a controller
that utilized inverse dynamics, the controlling commands ought to have behaviorally
relevant equilibria. For instance, allowing for stable equilibria that lie along a typical
limb trajectory.

The motor primitives in this thesis (see Appendix), however, do not contain equi-
Ibria within the limb’s workspace. The only stable equilbria for these motor primitive
induced force fields are at the edge of the limb’s workspace, where the joints reach

128



their kinematic limits. Yet our primitive force fields, unlike force fields examined ex-
perimentally, do not have proprioceptive feedback. The effects of feedback, combined
with our motor primitives, could certainly allow for the introduction of different equi-
libria, but this has not been investigated. Instead, what has been observed is that our
motor primitives reflect groupings of potentially redundant motor activity. The prim-
itives in this thesis reflect biomechanical regularities that ease the computations of
motor control, as opposed to equilibria that are relevant for a posture-based controller.

Low-Dimensional optimal controllers

A low-dimensional model, based on an approximate balanced truncation has
demonstrated the capacity to generate control signals relevant for use in controlling
the full-dimensional system, when trying to minimize motor commands (as defined
through equation 5.20). The same low-dimensional model is capable of predicting the
outcome of these control signals as well.

We have not been able to use the low-dimensional system to compute optimal
commands restricted to non-negative values. Similarly, optimal solutions for the full-
dimensional system, with or without the non-negative restriction, were not found
either. Therefore, comparisons between the low-dimensional and full-dimensional
optimal commands could not be made. Nevertheless, low-dimensional control reduces
computational burden, simplifying motor control. Moreover, based on the results from
linear examples (section 5.2.3), and the low-dimensional model’s ability to predict the
full system’s output well, we are optimistic that optimal commands derived from the
reduced order model are comparable to those that would be obtained using the full
system dynamics. Further analysis is required for conclusive results.

In the event that commands computed using the low and full-dimensional systems
differed, this would raise the possibility for testable predictions. If it was found that
the hind limb trajectories predicted from a low-dimensional controller, and a con-
troller that utilizes the full-dimensional system dynamics, differed in distinct ways,
experiments could be designed to test these predictions. This would help further our
understanding of the organization of motor control.

A possible connection with sub-movements

Human movements appear to be composed of discrete units of motor activity
[16], [61], [40]. These units are fairly typical in their temporal character. It is as
if the motor commands are “chunked” in time. This intermittent feature of motor
control, sometimes termed sub-movements, has led to assertions of a sampled feedback
controller [47], perhaps to avoid destabilizing feedback delays [32].

In analogy with this temporal discretization, control signals with a reduced order
model could be described as “chunking” commands in space. It is tempting to spec-
ulate that just as a reduced order model simplifies control, intermittency could be a
signature of further attempts to reduce computational burdens.

A reduced order representation could produce estimates of the system outputs
for use with a feedback controller, allowing motor commands to be computed while
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avoiding destabilizing feedback delays. Or the reduced order representation could
produce feedforward estimates of optimal motor commands. Given the fidelity of
the reduced representation, the information it estimates may need to be updated and
recomputed, perhaps many times, before a motor goal is achieved. The results of such
an episodic use of a reduced order representation would most certainly be consistent
with the empirical evidence. Although pure speculation, we feel this line of reasoning
deserves further investigation.
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Chapter 7

Conclusions

7.1 Thesis Contributions

In this thesis we set out to examine two questions: 1) can the linearity observed in
isometric force production be explained solely in terms of biomechanical properties?
2) can a compact description of the system dynamics be used for motor control, and
offer an explanation for the low-dimensional phenomena associated with frog motor
behaviors? Both questions were examined in the context of the simplifying strategies
that biological systems might employ for the motor control problem.

To answer the first question, regarding forces that scale linearly in activation, a
physiologically realistic model of the frog hind limb was examined. A measure was
defined to quantify the muscle’s deviation from linear behavior, and the measure
was then used to explain this behavior in terms of a normalized muscle length. This
analysis indicated that the biomechanical system does allow for linearity in activation,
when the musculo-tendons are operating in low-scoring regions of their workspace.
Due to the transduction of muscle forces to forces at the limb’s endpoint, forces
measured at the animal’s ankle will exhibit this same linearity.

Through counterexample, we have shown that the linearity in force production is
not an inevitable result of our musculo-tendon model, but a result of properly chosen
parameter values. Furthermore, the parameter values that accurately describe the
animal in question do allow for the linearity. This was verified through simulations
meant to reproduce the isometric force field experiments that have exhibited this
linear phenomenon. Based on these results, we argued that the central nervous system
need not employ linearizing controllers to exploit this property, as it may be a natural
biomechanical property. We also propose that the linearity is an evolved property,
allowing the animal to manipulate force production through linear modulation of the
controlling signals and possibly simplifying control efforts.

Regarding a low-dimensional controller, we demonstrated that a reduced order
model based on an approximate balanced truncation is capable of generating estimates
of the input-output dynamics of a musculo-skeletal model of the hind limb of Rana
pipiens. We have shown that for the purposes of the model presented in this thesis,
a linear reduced order model of the limb would suffice as well as a nonlinear model.
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Based on the assumption of low-dimensional dynamics that are linear in the command,
we devised a procedure for defining motor primitives. We propse that motor primitives
should be chosen as a best approximation to a non-negative spanning set for the
orthogonal compliment of the low-dimensional input matrix’s null space, N'(B;)*.
This choice of motor primitives assures that the low-dimensional system is maximally
controllable, given the non-negative constraints on motor commands.

We have shown that control with a reduced order model allows for an explanation
of the low-dimensional motor commands experimentally observed in muscle synergies,
and the appearance of force field-like primitives in reflexive motor behaviors. Muscle
commands derived using the low-dimensional model are necessarily constrained to a
low-dimensional subspace of the available motor commands. Therefore, the activity
of muscles during behaviors commanded with the low-dimensional model will exhibit
low-dimensionality in the form of synergy-like commands. Furthermore, if reflexive
motor behaviors are based on stereotyped motor primitive based commands, the
restrained limb will exhibit what appear to be modular force fields when said reflexes
are elicited. These modular force fields are a natural outcome of the limb’s linear
force production and motor primitive commands.

Validating the utility of the reduced order model as a means to control the full-
dimensional nonlinear limb, we generated motor behaviors using the low-dimensional
model. Kicks, which have similar kinematics to natural behaviors, were generated
by tailoring motor primitive commands to drive the limb towards the extermities of
the workspace. This was done relatively simply with step commands, and confirmed
the ability of motor commands restricted to primitives to arrive at natural motor
behaviors. The solutions of optimal control problems using the low-dimensional model
were also used to command the full system. It was found that these commands
were sufficient to move the limb to the approximate location of the desired target
locations. This suggested the low-dimensional model may approximate the optimal
solutions for the full-dimensional dynamics. These optimal control solutions did not
enforce the non-negative constraint on the control signals; however, we feel this is not
a deficiency of the controller, but simply a practical limitation of the computational
methods employed to find optimal solutions, it is also compelling evidence as to how
difficult motor control for the full-dimensional system is, and how the low-dimensional
representation may help.

Despite all the known discrepencies between our model and the real animal, several
of the motor primitives found in the thesis agree well with experimentally derived
muscle synergies. This alone is compelling evidence that the biological system may
employ a reduced order representation and use motor primitives derived accordingly.
We also argue that due to the small order of the reduced model, its use in estimation
and control is a great simplification over computations that would otherwise require
a complete description of the full system dynamics.
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7.2 Future Work

There are still a great number of issues left to explore with this work. The need
to examine more examples of low-dimensional controllers is foremost on our agenda.
A few typical movements (kicks) were generated using primitive commands. How-
ever, if we find the reduced order model and its attendant motor primitives are not
sufficient to produce the range of motor behaviors desired, options are available.
Multiple reduced models, based on approximate balancings at multiple locations in
the workspace, could be found. This would allow for better approximations to the
full nonlinear dynamics, and perhaps motor primitives that varied as a function of
workspace location.

The low-dimensional optimal controllers can be examined further as well. Though
optimal command solutions that are restricted to non-negative values have not been
obtained, the underlying motivation for explaining the low-dimensional features of
motor control, and a connection to synergies, has been fruitful. If optimal non-
negative commands found using the low-dimensional system were eventually found
to approximate the same optimizations for the full-dimensional dynamics, this would
further support the thesis work.
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Appendix A

SIMM model parameters
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Muscle | I™ (m) 1T (m) IT/im | F™ (N) | mono-articular?

ADd 15.66 E-3 | 3.27 E-3 [ 0.21 | 1.89 Yes

ADv 14.02 E-3 | 6.54 E-3 [ 047 |2.24 Yes

CR 10.85 E-3 | 19.77 E-3 | 1.82 | 14.19 No

GL 15.95 E-3 | 19.01 E-3 | 119 |39 No

GR 14.82 E-3 | 9.31 E-3 | 0.63 | 6.46 No

ILf 11.056 E-3 | 14.77 E-3 | 1.34 | 1.53 No

ILe 431 E-3 | 549E-3 |1.27 |27 Yes

ILi 943 E-3 |131E3 |0.14 |1.63 Yes

SA 19.88 E-3 | 4.81 E-3 [ 0.24 | 1.01 No

SM 2155 E-3 | 545 E-3 | 0.25 |4.81 Yes

STd 7.46 E-3 | 17.23 E-3 | 2.31 | 1.51 No

STv 7.80 E-3 | 16.72 E-3 | 2.14 | 1.46 No

TFL 9.96 E-3 | 19.92E-3|2.00 |1.19 No

Table A.1: Musculo-Tendon Properites
Segment, Mass I, I, I,
(Kg) | (Kgm?) | (Kgm?) | (Kgm?)

Pelvis 36 E-3|25E-7 |31E-7 |42E-7
Femur 20E-3|06E7 |19E-7 | 23E-7
Tibiofibular | 14 E-3 | 0.2 E-7 | 1.2 E-7 | 14 E-7
Tarsals 04E-3|01E7 |08E-"7 |08 E-T7
“Foot” 05E3|01E7 |02E7 |02E-7

Table A.2: Skeletal Properties
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Appendix B

Isometric Force Field Error in
Linearity Plots
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Figure B-1: Plot of error in linearity found through simulation of SIMM model for
Gracilus, Semitendinosus Dorsal and Ventral, and Cruralis.
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Gluteus Tensor Facia Latae
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Figure B-2: Plot of error in linearity found through simulation of SIMM model for
Gluteus, Tensor Facia Latae, Iliofibularis and Sartorius.
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Figure B-3: Plot of error in linearity found through simulation of SIMM model for
Semimembranosus, Adductor Dorsal and Ventral, and Iliacus Externus.
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lliacus Internus
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Figure B-4: Plot of error in linearity found through simulation of SIMM model for
Iliacus Internus.
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Appendix C

Musculo-Tendon Length Plots

Gracilus Semitendinosus Dorsal

1.5 15
14 14
13 13

) )

k]

£ 12 E 12

§ 11 § 1.1

> >
1 1
09 09

2 0.8 0.8
-0.02 0 0.02 0.04 -0.02 0 0.02 0.04
X coordinate X coordinate
Semitendinosus Ventral

15 1.5
14 14
1.3 13

) )

T ®

£ 12 & 12

§ "

> >
1 1
0.9 0.9
0.8 08

-0.02 0 0.02 0.04 -0.02 0 0.02 0.04
X coordinate X coordinate

Figure C-1: Plots of musculo-tendon length found with SIMM model for Gracilus,
Semitendinosus Dorsal and Ventral, and Cruralis.
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Gluteus Tensor Facia Latae
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Figure C-2: Plots of musculo-tendon length found with SIMM model for Gluteus,
Tensor Facia Latae, Iliofibularis and Sartorius.

Semimembranosus Adductor Dorsal
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Figure C-3: Plots of musculo-tendon length found with SIMM model for Semimem-
branosus, Adductor Dorsal and Ventral and Iliacus Externus.
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Figure C-4: Plots of musculo-tendon length found with SIMM model for Iliacus In-
ternus.
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Appendix D

Motor Primitive Force Fields

Primitive 1 Force Field
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Figure D-1: Force field for motor primitive 1 (maximally activated).
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Primitive 2 Force Field
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Figure D-2: Force field for motor primitive 2 (maximally activated).
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Primitive 4 Force Field
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Figure D-4: Force field for motor primitive 4 (maximally activated).

Primitive 5 Force Field
0.06 T T T T

/v
0.04f /
Cd
s
0.02f Lot
® - ©
© ~ ©
£ \ X - %
2 H : =~ 14
g Y R
% SN g
> = - >
e ,’ p R 2
. ! \
-002} iy ' -4
*: ! \
’ ’ ' \
e & By N
-0.04+ % ' ‘\ \
Ny
Pt
0.08L—L- A i s
-0.02 0 002 004 006
x coordinate

Primitive 5 Force

T ¥

Magnitude

0.05

0
x coordinate

0.02 0.04
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