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Abstract

This thesis describes our characterization of a specific tetraspanin domain: the large
extracellular loop (LEL). Tetraspanins are involved in cellular migration, adhesion, and
metastasis, sperm-egg fusion, and viral infectivity. The large extracellular loop domain is
the major extracellular domain of tetraspanins and the binding of a monoclonal antibody
against the tetraspanin CD9 serves to inhibit fertilization, consistent with the CD9-null
mouse model. The first area of focus in this thesis is the characterization of the murine
CD9-LEL domain. We present a methodology to express and purify the mCD9-LEL to
homogeneity. Biophysical characterization of the mCD9-LEL protein reveals that it is an
autonomously folding, a-helical dimer. Mutagenesis over much of the mCD9-LEL
protein reveals that it is composed of two subdomains: a dimerization subdomain and a
variable subdomain proposed to mediate heterotypic interactions. These results suggest
both a means for exploring endogenous tetraspanins functions and a mechanism by which
tetraspanins may oligomerize. Surprisingly, we were not able to detect oligomerization
of the intact CD9 molecule, in discordance with our biophysical data on the mCD9-LEL.
In the latter part of this thesis, we expand our methodology to purify and characterize
three different tetraspanins-LELs, the hCD9-LEL, the hCD63-LEL, and the hCD8 1-LEL.
These tetraspanins-LELs all exhibit similar characteristics to the mCD9-LEL, consistent
with a published crystal structure of the hCD81-LEL. Lastly, we demonstrate the ability
of our tetraspanin-LEL proteins to bind integrins, to inhibit sperm-egg fusion, and to
inhibit hepatitis C viral infectivity. Taken as a whole, these studies present novel,
biophysically validated tetraspanins-LELs that lend insight into endogenous tetraspanins
functions.

Thesis Co-Supervisor: Peter S. Kim
Title: Professor of Biology
Thesis Co-Supervisor: Richard 0. Hynes
Title: Professor of Biology
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Introduction.

Tetraspanins are cell surface membrane proteins comprising a family of over

twenty-five genes sharing a characteristic membrane topology. Tetraspanins have been

identified in both vertebrates and invertebrates, suggesting the early evolutionary

development of these proteins (Levy and Shoham 2005). Furthermore, tetraspanins have

been implicated in a wide range of functions involving the immune and nervous systems,

development, cancer progression (Hemler 2003), and infectious diseases. These

functions have been identified through function-inhibitin anti-tetraspanin antibodies,

modulation of tetraspanin expression levels, recombinant, soluble mimics of tetraspanins,

and genetics.. However, the molecular mechanisms by which tetraspanins mediate these

effects are unknown. Strong sequence and structural conservation among all tetraspanins

suggest the existence of a generalized tetraspanin function. This function, which we

propose is to regulate affinity and/or avidity at the cell surface, is propagated through

protein-protein interactions specific to each biological system. In the body of this thesis,

we describe our attempts to probe the role of tetraspanin large extracellular loops, the

major extracellular domain of tetraspanins. Towards these ends, we have developed

novel reagents that enhance our understanding of both the role of CD9 in sperm-egg

fiusion in particular and tetraspanin functions in general. This introduction serves to

introduce tetraspanins and their multitude of effects, with specific emphasis on

biochemical studies of tetraspanins and their roles in membrane fusion. Ultimately, this

thesis strives towards enabling us to understand how tetraspanins function at the cell

membrane.

The Tetraspanin Family

The first sequence characterization of a tetraspanin protein, CD63, was identified

in the late 1980s as an antigen associated with melanoma tumor progression (Hotta, Ross

et al. 1988). Subsequently, sequence identification of another tetraspanin, CD81, as the

target of an anti-proliferative antibody by Shoshana Levy's group in 1990 established

tetraspanins as a family of conserved proteins (Oren, Takahashi et al. 1990).

Tetraspanins have been identified in fungi (but not yeast), sponges, schistosomes,

Caenorhabditis elegans, Drosophila melanogaster, zebrafish, and all mammals. With the
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advent of whole-genome sequencing, 28 human (Figure 1. B), 37 Drosophila (Todres,

Nardi et al. 2000), and 20 C. elegans tetraspanins (Moribe, Yochem et al. 2004) have

been identified. All mammalian cells, except for erythrocytes, express tetraspanins and it

has been estimated that 20 individual tetraspanins are expressed in the immune system

(Levy and Shoham 2005).

Tetraspanins are small, ranging between 250 and 350 amino acids in length

(Figure 1. A). SDS-PAGE analysis reveals that many tetraspanins (although not CD9 or

CD81) are heavily glycosylated, resulting in the addition of 20-50 kDas of additional

molecular weight (Boucheix and Rubinstein 2001). As their name suggests, tetraspanins

are a family of proteins that have four transmembrane domains. Conserved, polar amino

acid residues exist in each of the transmembrane domains (Figure 1. 1A)(Stipp,

Kolesnikova et al. 2003), resulting in hypotheses suggesting that tetraspanins may

oligomerize to form channels (Horejsi and Vlcek 1991). However, no experimental

evidence has supported these suggestions and this role for tetraspanins has been

discounted. At this time, it is not clear what role conserved residues in the

transmembrane regions serve.

Tetraspanin proteins share a common membrane topology, having intracellular

amino- and carboxyl-termini and four transmembrane segments delimiting two

extracellular loops of unequal size (Figure 1.2A). Transmembrane segments one and two

delimit a short extracellular loop (-20 amino acids) and transmembrane segments three

and four delimit a large extracellular loop (-80 to 140 amino acids). Lastly, an

absolutely conserved cysteine motif, CCG, and two other conserved cysteine residues in

the large extracellular loops define the tetraspanin family. It is worth noting that not all

four transmembrane containing proteins (L6, MM3, PERP, claudins) contain these

signature motifs and likely have different functions from tetraspanins.

Sequence Conservation Of the Tetraspanin Large Extracellular Loop

When we started working on tetraspanins, a number of functions had already been

assigned to them, most commonly in the haematopoietic and hemostasis systems

(Hemler 2001). As with the cloning of CD63 and CD81, a number of monoclonal

antibodies recognize tetraspanins and induce dramatic cellular changes (Boucheix and
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Rubinstein 2001). The tetraspanin CD9 was first cloned as the antigen of an antibody

which inhibits cell motility (Miyake, Koyama et al. 1991). To date, all function-

inhibiting anti-tetraspanin antibodies bind to the tetraspanin large extracellular loop

(Stipp, Kolesnikova et al. 2003), suggesting the critical importance of this domain to

tetraspanin function.

Tetraspanin large extracellular loops (LELs) vary between 70 and 120 amino acids

in length. Overall, there is quite low homology (5-40%) between tetraspanin-LELs, with

an average pairwise homology of 15% (Seigneuret, Delaguillaumie et al. 2001). As

tetraspanin-LELs vary greatly in length, alignment of this region results in significant

gaps. Even with low sequence homology, there are sufficient conserved residues to allow

LELs to be aligned with one another (Figure 1.2A). Tetraspanins almost all contain

either four, six, or eight cysteines which are presumed to oxidize to form intramolecular

disulfide bonds. In the case of outlying tetraspanin family members such as RDS and

ROM, there is an additional cysteine which may participate in an intermolecular covalent

bond (Loewen and Molday 2000).

The tetraspanin large extracellular loops (LELs) have a conserved cysteine residue

pattern, including a tri-amino-acid sequence of cysteine-cysteine-glycine (CCG).

Strikingly, the distance between transmembrane segment three and this CCG motif,

which is always the most N-terminal of LEL cysteines, is conserved at approximately 40

amino acids. Secondary structural analysis of these forty amino acids predicts that they

form two a-helices in all tetraspanins. Furthermore, the last cysteine residue in all

tetraspanin-LELs is positionally conserved at approximately ten amino-acids N-terminal

to transmembrane segment four. These ten amino acids are also predicted to form an ca-

helix (Seigneuret, Delaguillaumie et al. 2001). Predicted solvent accessibility of these

two segments, the most N-terminal and C-terminal portions of the LEL, revealed a

hydrophobic periodicity in a roughly 3-4 residue pattern, also suggestive of the helical

nature of these regions (Seigneuret, Delaguillaumie et al. 2001). These regions are not

predicted to form coiled-coils (Wolf, Kim et al. 1997) (C.C.L., data not shown).

The two described a-helical segments bracket a variable region. This region

contains the CCG motif that is a defining characteristic of tetraspanins (Figure 1.2A. All

tetraspanins contain four or more cysteines in this region and the position of these
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cysteine residues has allowed the classification of tetraspanins into 3 groups containing

four, six, or eight cysteines (Seigneuret, Delaguillaumie et al. 2001). Among tetraspanin

orthologues, which contain approximately 70% identity, this region contains the majority

of amino-acid substitutions (Hemler 2001). Studies mapping epitopes of function-

inhibiting anti-tetraspanin antibodies (including one described in this thesis) have all

identified this region as particularly antigenic. Furthermore, functional studies of

tetraspanin-LELs have suggested that this variable region is important in sperm-egg

fusion and the binding of tetraspanins to integrins (Zhu, Miller et al. 2002). Only

recently, through biophysical analysis of recombinant tetraspanin-LELs and the solution

of a crystal structure of the human CD81-LEL (Figure 1.2B) (Kitadokoro, Bordo et al.

2001), has the role of sequence conservation in tetraspanin-LEL oligomerization been

revealed. In fact, historically, the series of sequence analyses described in this section

were conducted after this tetraspanin-LEL structure was solved.

Structural Studies of the hCD81-LEL

In 2001, the Bolognesi group solved the structure of the human CD81-LEL, a

tetraspanin-LEL containing four cysteines (Figure 1.2B) (Kitadokoro, Bordo et al. 2001).

Ultimately, the Bolognesi group found that the hCD8 1-LEL protein crystallized into two

similar, but non-identical forms: a monoclinic form solved as pdb ID: 1G8Q and a

hexagonal form solved as pdb ID: IIV5 (Kitadokoro, Ponassi et al. 2002). Both of these

structures had two molecules in the crystallographic asymmetric unit and formed similar,

superimposable structures (Figure 1.3A), although the crystal contacts were dramatically

different. In fact, the second structure (IIV5) was solved through molecular replacement

with the first structure (1G8Q).

The CD81-LEL molecule consisted of five ct-helices, consistent with secondary

structure predictions of the protein sequence. There were two ct-helices N-terminal of the

variable region (designated helix A and B), two cc-helices formed by the variable region

(designated helix C and D), and a single ct-helix C-terminal of the variable region

(designated helix E). The N- and C-termini fall in close proximity to one another and

extend to transmembrane segments three and four respectively (Kitadokoro, Bordo et al.
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2001). Two disulfide bridges stretch in opposite directions from the conserved CCG

motif and serve to stabilize the structure (Figure 1.2B).

Surprisingly, the CD81-LEL structure was solved with two molecules in the

crystallographic asymmetric unit. These two molecules assemble around a local two-fold

axis in an anti-parallel fashion. A large hydrophobic region of approximately 1000 A2

mediates CD81-LEL dimerization and no water molecules were observed at the dimer

interface. Each monomer adopts a similar tertiary structure of five helical regions as

described and helices A, B, and E all contribute to form the hydrophobic dimerization

interface. These three helices have been called a "stalk" or dimerization subdomain and

are predicted to be conserved among all tetraspanin homologues (Figure 1.2A and Figure

1.2B).

The remaining two helices, helices C and D, constitute a head subdomain and

present a second, smaller, low polarity region. As noted previously, this variable region

of approximately 30 amino acids is where function-blocking antibody epitopes have been

localized (Figure 1.2A and B). The antiparallel nature of CD81-LEL dimer serves to

present the head subdomains at apposing ends of the molecules (Figure 1.2B), with a

distance of approximately 30 A between the two small hydrophobic patches (Kitadokoro,

Bordo et al. 2001).

Both CD81-LEL structures contain a similar dimerization sub-domain mediated

through helices A, B, and E. However, the head sub-domain is slightly altered between

the two structures with helices C and D presented at different angles respective to one

another. The disparities in the head sub-domain are most likely due to dramatically

different crystal packing contacts (Kitadokoro, Ponassi et al. 2002). Analysis of average

mass-weighted fluctuation of all atoms in each molecule suggests that under

physiological conditions, the hCD81-LEL quarternary structure is plausible, with some

flexibility in the head sub-domain (Neugebauer, Klein et al. 2004). This molecular

dynamics study of both hCD81-LEL crystal structures also suggests that the latter crystal

structure (1IV5) is more accurate (Neugebauer, Klein et al. 2004). As the first,

monoclinic 18Q, CD81-LEL structure was solved concurrent with our biophysical

analysis of the mCD9-LEL protein; we refer to this structure of the CD81-LEL
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exclusively in the body of this thesis. Close analysis of both isoforms of the hCD81-LEL

structures suggests that the structures are interchangeable for our level of analysis.

Spurred on by crystallographic studies of the hCD81-LEL, several groups

(including our studies in Chapter 3) have modeled other tetraspanin-LEL domains, both

in isolation and with the transmembrane domains, onto the hCD81-LEL structure.

Conjead et. al. used the hCD81-LEL crystal structure, homology alignments, and

secondary structure predictions to predict the disulfide connectivites of tetraspanin-LELs

(Figure 1.3C) (Seigneuret, Delaguillaumie et al. 2001). They present a compelling body

of evidence for structural conservation among all tetraspanin dimerization subdomains

mediated by the conserved helices A, B, and E. They further classified all tetraspanin-

LELs into three classes based upon signature patterns of cysteine residues in the variable

subdomain (Figure 1.3C). The variable subdomain is not predicted to be structurally

conserved among tetraspanin-LELs (Seigneuret, Delaguillaumie et al. 2001).

In an ambitious study, Bienstock and Barrett attempted to model the

transmembrane-intact CD82 molecule (Bienstock and Barrett 2001). The tetraspanin

CD82, also called Kai 1, has been functionally identified as a metastasis suppressor

(Dong, Lamb et al. 1995), although its mechanism of action is unclear. Bienstock and

Barrett modeled each domain of the CD82 molecule individually and then combined each

domain to form the intact molecule (Figure 1.3B). To model the transmembrane regions

of CD82, an alignment of tetraspanin transmembrane proteins was created. Helical

hydrophobic moments were calculated to predict the orientation of each transmembrane

region with respect to one another. Molecular models of the short intracellular segments,

the short extracellular loop, and large extracellular loop, were constructed, assembled,

and energy minimization and molecular dynamics simulations of the intact molecule

were performed (Bienstock and Barrett 2001). As expected, the hCD82-LEL model

adopts a global fold similar to the hCD81-LEL (Figure 1.3B). However, there are many

caveats to this model.

All of the tetraspanin-LEL models described (including ours) have been modeled

onto a monomeric CD81-LEL molecule. As described above, the CD81-LEL contains a

desolvated, 1000 A2, hydrophobic region that lies at the interface between each monomer

(Kitadokoro, Bordo et al. 2001). Deconvoluting the dimer and computationally exposing
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this region to solvent serves to artificially minimize the dimerization interface (Bienstock

and Barrett 2001) (Seigneuret, Delaguillaumie et al. 2001). As a result, these models

most likely (1do not accurately represent intersubunit contacts between tetraspanin

homodimers.

Furthermore, the model of the hCD82 molecule does not take into account the

effects of glycosylation on the hCD82 molecule. Although all tetraspanins have a

predicted molecular weight of between 22 and 30 kDa, CD82 is observed to be especially

glycosylated (Boucheix and Rubinstein 2001). SDS-PAGE analysis of CD82 reveals

bands ranging from 50 to 80 kDas, suggesting that glycosylation may double or triple the

molecular weight of CD82. No studies on tetraspanin glycosylation have been reported

and currently, it is not clear what are the functions of sugar residues.

Most importantly, sequence, structural, and our biophysical studies strongly

suggest an intrinsic, dimeric nature to all tetraspanin-LELs. Barrett's model of the whole

CD82 molecule displays the CD82-LEL as projecting in a perpendicular manner to the

cellular membrane (Figurel.3C) (Bienstock and Barrett 2001). Extrapolating from the

antiparallel CD81-LEL dimer, only a CD82 trans dimer, or a dimer traversing two

apposing lipid bilayers, would seem plausible and serve to cap the large, hydrophobic

dimerization interface. It is plausible that the angle between helix A and transmembrane

3 (presented as -180 ° in this figure) is highly flexible and that the CD82-LEL lies in a

more planar fashion to the lipid bilayer. This model would allow the formation of a cis

tetraspanin dimer, or a dimer existing on the same lipid bilayer. Although currently no

trans tetraspanin/tetraspanin interactions have been observed, the antiparallel nature of

the CD81-LEL dimer is plausible either in cis or in trans.

The fiunctional relevance of tetraspanin-LEL-mediated oligomerization remains a

contentious issue in the field. A common misgiving lies in reconciling the orientation of

the CD81-LEL antiparallel dimer with its endogenous, adjacent, transmembrane domains

(Levy and Shoham 2005). The hCD81-LEL structure does not rule out the formation of a

cis antiparallel tetraspanin dimer (in the same lipid bilayer). As in many crystal

structures, several amino acid residues at the distal N- and C-termini of the hCD81-LEL

protein were disordered in the crystal structure. Given the -helical nature of residues

proximal to these termini, the addition of each helical amino acid to the (o-helix would
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twist the orientation of the adjacent transmembrane domains 100° (Branden and Tooze

1999). This helical nature of both N- and C-termini allow almost any orientation of the

tetraspanin transmembrane segments three and four relative to the dimeric structure, as

long as they are in close proximity to the N- and C- termini. To date, these issues have

not been resolved and misgivings about the biological relevance of the hCD81-LEL

structure have not been laid to rest.

In summary, crystallization of the CD8 1-LEL has identified two subdomains: a

dimerization region and a variable region whose organization is predicted to be conserved

among all tetraspanin-LELs. The CD81-LEL structure matches predicted secondary

structural elements of tetraspanins. Furthermore, previously identified functional

residues and antigenic regions were surface-exposed and clustered to the variable region.

By these criteria, the CD81-LEL meets the benchmark of all crystal structures: "does this

structure make sense?" Although many homology models of tetraspanin-LELs based

upon the CD8 1-LEL structure have been constructed, they are not completely accurate.

As a result, it would be highly desirable to determine atomic level structures for a number

of other tetraspanin-LELs. In lieu of these detailed structural studies, biophysical

characterizations of tetraspanin-LELs in solution are clearly necessary.

Recombinant Tetraspanin-LELs

Both anti-tetraspanin antibody and mutagenesis studies have underscored the

importance of tetraspanin-LELs. As a result, tetraspanin-LELs have been expressed,

purified, and studied in a variety of ways. For the crystallization studies described above,

the human CD81-LEL was expressed as a fusion sandwiched between the IgG binding

domain of Staphylococcus Aureus Protein A, which was subsequently removed, and a

hexahistidine tag, which was not ordered in the crystal structure (Kitadokoro, Bordo et al.

2001). The Grandi group, which collaborated on the CD81-LEL structure, has also

successfully expressed the CD81-LEL as both a thioredoxin fusion (Pileri, Uematsu et al.

1998) and also as a glutathione-S-transferase (GST) fusion (Petracca, Falugi et al. 2000).

Removal of the GST tag resulted in a single CD81-LEL species as assessed by reverse-

phase HPLC, which was shown to inhibit Hepatitis C viral entry (Petracca, Falugi et al.

2000). Inhibition of hepatitis C viral fusion was also shown with a GST-CD81-LEL
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fusion protein constructed by the Monk group, albeit with decreased efficacy (Flint,

Maidens et al. 1999).

The GST fusion system has been used by the Monk group to express the CD9-

IEL (Higginbottom, Takahashi et al. 2003), the CD81-LEL (Flint, Maidens et al. 1999),

and the CD63-LEL (personal communication). This GST-fused CD9-LEL has been

shown to inhibit lymphocyte transendothelial migration by the Sanchez-Madrid group

(Barreiro, Yanez-Mo et al. 2005). The Primakoff group has also used a GST-CD9-LEL

fusion to inhibit sperm-egg fusion (Zhu, Miller et al. 2002) (see Chapter 7 and

Appendix). On the other hand, the Mekada group has shown a pro-fusogenic effect on

macrophage fusion with both GST-fused CD9-LEL and CD81-LEL (Takeda, Tachibana

et al. 2003).

The Levy group has expressed the CD81-LEL as fusions with Fc, GST, or

maltose-binding protein fusion (MBP) (Maecker, Todd et al. 2000; Nakajima, Cocquerel

et al. 2005). By surface plasmon resonance, they measured the binding kinetics of both

GCST-fused and MBP-fused CD81-LEL constructs to soluble, recombinant hepatitis C

glycoproteins. Analysis of the oligomeric states of these two fusion proteins by both gel

filtration and sedimentation equilibrium yielded surprising results (Nakajima, Cocquerel

et al. 2005). Both assays revealed that the GST-CD81-LEL protein was dimeric and the

MBP-CD81-LEL protein was monomeric. As the GST protein is dimeric and the MBP

protein is monomeric, their data suggest that the CD81-LEL fusion partner is monomeric.

These results are antithetical both to our understanding of tetraspanin-LELs as a family

and to results presented in Chapter 6 of this thesis, suggesting that more detailed

biophysical analysis of fusion GST and MBP fusion proteins is required. No other

detailed biophysical analysis of tetraspanin-LELs has been published. Lastly, when these

tetraspanin-LEL proteins were used as antigens to generate polyclonal antibodies, the

resulting antibodies were never immunoreactive to the intact CD9 molecule, also

suggestive that the fusion proteins may be misfolded, even after repeated trials (Shoshana

Levy, personal communication).

Almost all soluble, recombinant, tetraspanin-LEL-mediated inhibitions of

function match the effects observed when anti-tetraspanin antibodies are added.
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Nevertheless, soluble, recombinant tetraspanin-LELs are an important and increasingly

utilized tool to probe endogenous tetraspanin functions.

In this thesis, we describe our own studies with soluble, recombinant tetraspanins

(Figure 1. 1B). Complementary to the studies described above, we show that it is

unnecessary to fuse tetraspanin-LELs to a large carrier protein to achieve high protein

expression. By utilizing a short, C-terminal hexahistidine tag and the nickel and reverse-

phase chromatographic systems these fusions make tractable, we are readily able to

express and purify to conformational homogeneity the CD9-LEL, the CD81-LEL, and the

CD63-LEL (see Chapter 6). These conformationally pure proteins exhibit significantly

greater potency of inhibition (except for the study of the CD81-LEL (Petracca, Falugi et

al. 2000) in all assays tested to date (see Chapter 7 and 9). Given the nearly ubiquitous

binding nature of tetraspanins (described below), the importance of pure, validated

reagents is increasingly appreciated. The reagents described in this thesis are rapidly

becoming the touchstone of tetraspanin-LEL biology.

More importantly, the lack of a large fusion partner allows detailed biophysical

characterization of tetraspanin-LELs which may lend insight into their functional

mechanisms. Concurrently with the crystal structure of the CD81-LEL described above

(Kitadokoro, Bordo et al. 2001), our biophysical analysis of the murine CD9-LEL

revealed that it is an autonomously folding, ca-helical dimer. Our empirical estimate of

secondary structure content matched secondary structure predictions of the CD9-LEL and

we observed that proper disulfide-connectivites were critical for achieving cc-helical

content. Sedimentation equilibrium analysis also revealed that the murine CD9-LEL is a

stable dimer (Chapter 2). Our extension of these analytical techniques to the CD81-LEL

and the CD63-LEL proteins revealed that these proteins are also autonomously folding cx-

helical dimers (Chapter 7).

The development of a rapid, biochemical and biophysical methodology to

express, purify, and analyze tetraspanin-LELs allowed us to identify the determinants of

the folding stability of the murine CD9-LEL. Mutational analysis based upon a structural

homology model of the mCD9-LEL (Chapter 3) confirmed the presence of two

subdomains: a dimerization subdomain and an antigenic, variable region in solution

(Chapter 4). Furthermore, we show that the variable region of the mCD9-LEL is discrete
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from the dimerization subdomain and hypothesize that function-inhibiting anti-

tetraspanin antibodies have no effect on mCD9-LEL-mediated homooligomerization

(Chapter 4). These results, combined with the structural studies of the CD81-LEL and

inhibition of tetrapanin functions by soluble tetraspanin-LELs (Chapter 7), reinforce the

importance of tetraspanin-LELs to endogenous tetraspanin functions. Although the

significance of tetraspanin-LELs is undisputed, their precise contribution to endogenous

tetraspanin functions is still unclear.

Heterotypic Tetraspanin Interactions

Many classes of proteins have been hypothesized to complex with tetraspanins

(Figure 1.4) (Boucheix and Rubinstein 2001). These interactions vary highly in their

composition., strength of their interaction, and the stoichiometry of complex formation

(Hemler 2003). For simplicity, we have codified these interactions by their components.

We refer to tetraspanin/non-tetraspanin interactions as heterotypic interactions and

tetraspanin/tetraspanin interactions as homotypic interactions. Furthermore,

oligomerization of individual tetraspanins is described as homooligomerization.

Heterotypic interactions have been further classified by the detergent sensitivity of

macromolecular complex formation. In most instances, it is necessary to use mild

detergent conditions, such as Brij 96, Brij97, or CHAPS before these complexes can be

immunoprecipitated (Charrin, Manie et al. 2003).

Detergent solubilization is often an essential step to isolate transmembrane

proteins. However, any experiment that requires the addition of detergent is fraught with

the possibility of artifacts. Detergent solubilization of membranes often results in

incomplete membrane protein isolation, leaving large patches of the native lipid bilayer

that can be visualized by electron microscopy. Furthermore, detergent treatment often

brings about fusion of disparate portions of the membrane, fusing fragments into

continuous sheets (Mayor and Maxfield 1995). It is essential to be careful with the

interpretation of detergent-solubilized protein complexes (Chamberlain 2004). It is only

necessary to look to the lipid raft or detergent-resistant microdomain field to realize how

contentious detergent solubilization of membrane proteins may be (Simons and Vaz

2004).
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To overcome these controversies, we will focus this introduction on only robust

tetraspanin heterotypic interactions which have been shown to interact in either TX-100

or digitonin and characterized as primary interactions. By restricting this introduction to

robust tetraspanin interactions (Hemler 2003), we do not focus on the vast majority of

weaker, and possibly artifactual, tetraspanin complexes. Although we do not wish to

discount the validity of these complexes, we deem them to be controversial. Under weak

detergent conditions, tetraspanins associate both with one another (homotypic

interactions) and with numerous non-tetraspanin proteins (Rubinstein, Le Naour et al.

1996), raising the likelihood of large, indirect macromolecular interactions and possibly

artifactual results. Severely restricting the focus of this introduction in this manner also

eliminates any direct involvement of tetraspanins in mediating signals across the cellular

membrane. Tetraspanins have been shown to mediate FAK (Berditchevski and

Odintsova 1999) and PI4-kinase-dependent signalling pathways (Yauch and Hemler

2000) and protein kinase C (Zhang, Bontrager et al. 2001); however, it is unclear whether

these effects are direct or mediated through intermediaries. The large number of

identified binding partners to tetraspanins under mild detergent conditions is confusing, at

best.

A limited number of primary, robust, heterotypic tetraspanin complexes have

been observed. The most striking primary tetraspanin complexes are with uroplakins,

distant relatives to canonical tetraspanins. These tetraspanins, uroplakin la and uroplakin

lb, associate heterotypically with uroplakin II and uroplakin III (Wu, Medina et al.

1995). These proteins are expressed exclusively on the bladder epithelium and have been

suggested to play a role in uropathogenic E. coli infection (Wu, Sun et al. 1996; Mulvey,

Lopez-Boado et al. 1998). Uroplakins are expressed at such high concentrations that they

form hexagonal, two-dimensional lattices that can be visualized and resolved using Cryo-

EM techniques (Min, Zhou et al. 2003). Presently, these techniques are not at sufficient

resolution to model the predicted dimerization and variable subdomains of the uroplakin-

LEL.

On the surface of B-lymphocytes, CD81 has been shown to associate in a

complex with CD19, CD21, and Leu-13 (Levy, Todd et al. 1998) (Horvath, Serru et al.

1998). Monoclonal antibodies against CD81, CD19, CD21 and Leu-13 share similar
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effects on B-cell co-stimulation, proliferation, and homotypic aggregation, suggesting

that this complex is functionally relevant (Cherukuri, Shoham et al. 2004). Targeted

deletion of CD81 in a mouse model also reduces all components of this complex, making

it difficult to assign individual functions to each member of the complex (Shoham,

Rajapaksa et al. 2003). A large number of weak, heterotypic interactions in the immune

system have been identified and are extensively reviewed elsewhere (Levy and Shoham

2005).

A third, robust complex, between the tetraspanin CD9 and the precursor of

heparin-binding epidermal growth factor (Nakamura, Mitamura et al. 2000), which is also

the diphtheria toxin receptor, has been observed (Iwamoto, Higashiyama et al. 1994).

Overexpression of CD9 serves to increase diphtheria toxin binding. The tetraspanins

CD9 and CD81 have also been shown to interact with the immunoglobulin superfamily

members EWI-2 (also called PGRL) (Stipp, Kolesnikova et al. 2001) (Charrin, Le Naour

et al. 2003) and EWI-F (also called CD9P-1 or FPRP) (Stipp, Orlicky et al. 2001). This

interaction is TX-100 resistant and of high stoichiometry (Charrin, Le Naour et al. 2001).

To date, the functions of these proteins and the biological relevance of their association

with CD9 and CD81 is unknown.

Lastly, tetraspanins have been shown to associate with integrins (Figure 1.5),

consistent with observed roles for tetraspanins in cellular motility and metastasis

(Boucheix, Duc et al. 2001) (Berditchevski 2001).

Tetraspanins and Integrins

Integrins are obligate cell-surface heterodimers that mediate cellular adhesion to

the extracellular matrix and play major roles in immune functions, leukocyte traffic, and

human disease (Hynes 2002). Each integrin subunit is a class 1 transmembrane domain

and their N-terminal regions are in close association to form a head domain consisting of

a beta-propeller (in the ca subunit) (Springer 1997) and a Rossman fold (in the 13 subunit)

(Takagi and Springer 2002). Carboxy-terminal to the head domain are elongated legs

leading to the transmembrane domains and cytoplasmic tails. Integrins have the ability to

change conformation (affinity) (Takagi, Petre et al. 2002), cluster (avidity) (Li, Babu et

al. 2001) (Luo, Springer et al. 2004), and to bind the cytoskeleton (anchoring) (van der
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Flier and Sonnenberg 2001). A recent crystal structure of the av133 extracellular domain

raised the prospect of global conformational changes in this domain to mediate integrin

affinity (Xiong, Stehle et al. 2001). A series of molecular design (Luo, Springer et al.

2003) and electron micrographic (Takagi, Petre et al. 2002) studies revealed that integrins

undergo both global and local (in the head domain) conformational changes, reinforcing

the notion that regulation of integrin affinity is complex (Takagi and Springer 2002).

Artificially, integrin affinity can be modulated by cations (EDTA decreases, Mn++

increases), monoclonal antibodies (to both increase and decrease), and peptidomimetics

of integrin ligands (cyclic RGD peptides). Biologically, integrin affinity can be

modulated by binding to natural ligands (outside-in signaling) or separation of the

cytoplasmic tails (inside-out signaling) both resulting in the separation of integrin

transmembrane and stalk domains and affinity upregulation (Hynes 2002).

Recently, it was shown that integrin transmembrane domains may play a role in

both modulating integrin affinity and avidity (Li, Mitra et al. 2003). Individual a integrin

and 13 integrin transmembrane domains were shown to spontaneously homooligomerize.

It is enticing to envision an extended lateral network of ca/f integrin heterodimers

coupled with ca/ia and 3/13 oligomeric transmembrane domains, although avidity

regulation by integrin transmembrane domains remains controversial (Luo, Carman et al.

2005). Biologically, the ability of integrins to cluster into large, extended, high-avidity

complexes has been observed for some time (Hynes 2002). It is plausible that

tetraspanins may participiate in integrin affinity regulation, avidity regulation, or both

through binding either extracellularly or within the lipid bilayer.

Although fairly ubiquitous binding between tetraspanins and integrins have been

observed (Figure 1.5), only a small subset of these heterotypic interactions have been

documented under stringent detergent conditions. Of these, the best-characterized

interaction is between the tetraspanin CD151 and integrin t331 (Yanez-Mo, Alfranca et

al. 1998; Stipp and Hemler 2000). Through chimeric molecule and mutagenesis

experiments, it was shown that this interaction requires the CD151-LEL and stalk domain

of the oc3 integrin subunit and it is presumed that this is the heterotypic interaction

domain (Yauch, Kazarov et al. 2000; Berditchevski, Gilbert et al. 2001). Domain

swapping between the ct3 (CD151-binding permissive) and o5 (CD151-binding non-
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permissive) of their respective transmembrane and cytoplasmic domains did not

disrupt the robust CD151/a3151 association (Yauch, Kazarov et al. 2000).

When detergent stringency is lowered, a wide array of tetraspanin/integrin

interactions is observed (Charrin, Manie et al. 2003). As observed pairwise interactions

are a subset of expressed, potential tetraspanin/integrin interactions, these observed

interactions have been classified as low-affinity, specific interactions (Berditchevski,

Zutter et al. 1996). Again, due to widespread co-immunoprecipitation of tetraspanins

under these conditions, it is difficult to assess if these interactions are specific or

artifactual. The ability to cross-link pairwise detergent-solubilized tetraspanin/integrin

complexes, although technically distinct from immunoprecipitation experiments, is

subject to the same detergent-induced experimental caveats described above.

Tetraspanin/integrin association under mild detergent conditions is not affected by

changes in integrin conformation. The addition of divalent cations, function-blocking,

and function-inducing anti-integrin antibodies had no effect on tetraspanin/integrin

interactions (Mannion, Berditchevski et al. 1996) (Longhurst, White et al. 1999).

Ligand-binding also had no effect on the association of tetraspanins and integrins under

mild detergent conditions (Yanez-Mo, Tejedor et al. 2001).

In the studies described in this thesis, we circumvent potential problems of

detergent-induced lipid domain fusion by testing pairwise interaction of soluble

tetraspanin-LELs with a panel of integrins (see Chapter 8). Contrary to the published

literature, we observed a strong influence of cations on tetraspanin/integrin interactions,

but could not decipher a specific pair-wise binding pattern (see Chapter 8). To reconcile

the disparity between our own and published data, we speculate that mild detergent

conditions may have dual effects. Mild detergent may serve both to disrupt low-affinity

extracellular-mediated tetraspanin/integrin interactions (which we observe in Chapter 8)

and also serve to constitutively bring tetraspanins and integrins together, thus obscuring

preferential, conformation-dependent interactions. As a result, observed, constitutive

tetraspanin/integrin interactions under mild detergent conditions would obscure the

integrin-conformational dependence of these interactions. Strong detergents may serve to

completely disrupt these low-affinity tetraspanin/integrin interactions.
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In summary, this hypothesis suggests that lateral association on the cellular

membrane is necessary to form a high avidity tetraspanin/integrin complex. Formation of

this complex (which may be mediated by both transmembrane regions and tetraspanin

palmitoylation) brings the extracellular tetraspanin and integrin domains into close

proximity and allows tetraspanin-LEL regulation of extracellular integrin activation.

Indeed, the ability of anti-tetraspanin antibodies and tetraspanin expression levels to

induce integrin-mediated signaling (Zhang, Bontrager et al. 2001), adhesion

(Lammerding, Kazarov et al. 2003), and cellular motility (Sugiura and Berditchevski

1999) strongly suggests the influence of tetraspanins (and tetraspanin-LELs in particular)

on integrin-related cellular functions. This hypothesis, which postulates that both

tetraspanin transmembrane regions and dimeric tetraspanin-LELs are necessary for

heterotypic tetraspanin interactions, is consistent with the notion of both the tetraspanin

web and transmembrane-enriched microdomains (discussed below). Furthermore, this

hypothesis is consistent with our biophysical observations that the tetraspanin-LEL form

two functional domains: a large hydrophobic interface that mediates homodimerization

and a much smaller hydrophobic interface that mediates heterotypic interactions (Chapter

4).

Homotypic Tetraspanin/tetraspanin Interactions

As described previously, our biophysical analysis of multiple tetraspanin-LELs

and the structure of the hCD8 1-LEL strongly suggested a conserved role for tetraspanin-

LELs to mediate tetraspanin dimer formation. These observations raised two attractive

possibilities: tetraspanin-LELs may mediate homo- and/or hetero-dimerization. The

combinatorial assembly of homo- and hetero- oligomers is a common phenomenon in

biology that serves to increase the number of potential interactions in an exponential

fashion (Newman and Keating 2003) (Klemm, Schreiber et al. 1998). For example,

homodimerization of the known mammalian tetraspanin genes would result in 28

homotypic tetraspanin interactions that would in turn bind to 28 heterotypic partners. If

tetraspanin heterodimers were to exist, the potential number of homotypic tetraspanin

complexes rises dramatically to 282, or 784, potential tetraspanin complexes. These
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complexes, in turn, could interact heterotypically to bind any number of non-tetraspanin

partners.

In the limited number of pair-wise tetraspanin-LELs tested, potential

heterooligomers were not observed (Chapter 6). Even more discouragingly, we did not

observe homooligomerization of intact CD9 molecules under strong detergent conditions,

although we did observe homooligomerization under weak detergent conditions (Chapter

5). The requisite use of detergents when working with the intact CD9 molecule

precluded an accurate estimate of the CD9 oligomerization state. Although surprising to

us, the inability to observe homooligomerization under strong detergent conditions was

neither surprising to the tetraspanin field nor inconsistent with the published results

described above. Although we did not observe robust detergent resistance of tetraspanin-

LEL-mediated homooligomerization, it is quite possible that the presence of other

tetraspanin domains serves to abrogate tetraspanin-LEL mediated oligomerization

(discussed fuirther in Chapter 5).

On the other hand, a large number of homotypic, tetraspanin/tetraspanin,

oligomers have been observed in mild, but not strong, detergent conditions (Rubinstein,

Le Naour et al. 1996). The ubiquitous nature of tetraspanin interactions under mild

detergent, and the observation that antibodies against different tetraspanin may induce

similar effects, has resulted in the proposal of a tetraspanin web on the cell surface

(Rubinstein, Poindessous-Jazat et al. 1997). This model, that extracellular tetraspanin-

LELs mediate heterotypic interactions and tetraspanin hydrophobic domains (both

transmembrane domains and palmitoylation) mediate homotypic tetraspanin interactions.

Inhibition endogenous tetraspanin palmitoylation may serve to impair homotypic

tetraspanin interactions (Berditchevski, Odintsova et al. 2002; Charrin, Manie et al. 2002;

Yang, Claas et al. 2002). Again, it is difficult to interpret these results. The presence or

absence of hydrophobic palmitate groups may influence the non-specific recruitment of

individual tetraspanins into detergent solubilized complexes. Given the large number of

observed interactions under mild detergent conditions, it is impossible to decipher direct

and indirect tetraspanin interactions.

To further complicate matters, ubiquitous observations of tetraspanin

palmitoylation (Yang, Kovalenko et al. 2004) has led to the proposal that they may
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constitute a new form of rafts on the cellular membrane. However, detergent

solubilization of tetraspanins reveals that they only partially exhibit traditional raft-like

characteristics (Cherukuri, Shoham et al. 2004) (Claas, Stipp et al. 2000). As these

results are more ambiguous (and indirect) than the contentious characterization of lipid-

rafts (Simons and Vaz 2004), it is difficult to fully ascertain the biological relevance of

these experiments. We feel that without further, rigorous characterization, the current

hypotheses of the tetraspanin web and tetraspanin-enriched microdomains, which are

core concepts in the tetraspanin field, will remain unresolved. Detailed analysis of

homotypic and heterotypic tetraspanin oligomerization will most likely require more

detailed biophysical methods, such as fluorescence resonance energy transfer (FRET) and

fluorescence recovery after photobleaching (FRAP) of purified, reconstituted tetraspanins

and their mutants.

Lastly, we note that our hypothesis: mild-detergent solubilization of lipid bilayers

serving to artificially coalesce disparate tetraspanin complexes into a single, large

complex (Chamberlain 2004), is sufficient to explain both the ubiquitous interactions

seen in the tetraspanin literature and the notion of a tetraspanin web and lipid-raft-like

tetraspanin-enriched microdomains.

Our characterization of tetraspanin-LELs, and their ability to disrupt endogenous

tetraspanin functions on the cell surface, suggest that tetraspanin-LEL mediated

oligomerization is biologically relevant. The most fascinating of these inhibition studies

is for the mCD9-LEL to inhibit the role of CD9 in sperm-egg fusion (Stein, Primakoff et

al. 2004). This unique function of CD9, which until recently was the only gene shown to

be necessary for sperm-egg fusion, was the result of various genetic studies on

tetraspanins.

Genetic Studies of Tetraspanins

Tetraspanin-null organisms have been generated in a number of model organisms

by targeted deletion of genes, siRNA, and mutagenesis screening. In the nematode C.

elegans, all twenty predicted tetraspanin molecules have been sequentially targeted with

small interfereing RNAs with no significant consequences. Only one, tsp-15, has been

shown to have a defect in epithelial cell integrity, leading to blistering of the hypodermis
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(Moribe, Yochem et al. 2004). The Drosophila tetraspanin, latebloomer, had a delay in

synaptic contacts at the neuromuscular junction (Kopczynski, Davis et al. 1996).

However, latebloomer is not essential for embryo viability. Genetic deletion of nine (out

of 37 predicted) drosophila tetraspanins had no effect on the Drosophila lifecycle

(Fradkin, Kamphorst et al. 2002). Recently, deletion of another non-essential Drosophila

tetrapanin, sunglasses, results in light-induced retinal degeneration (Xu, Lee et al. 2004).

Human genetics has identified a number of tetraspanin-deficiency related

diseases. Similar to the drosophila sunglasses deletion mutant, mutation of

peripherin/RDS in humans leads to several retinal diseases (Kohl, Giddings et al. 1998).

Although phenotypically similar, RDS and Drosophila sunglasses (which is most related

to CD63) are, not orthologues. A series of missense mutation in the RDS large

extracellular loop, as well as deletion mutants, result in the onset of retinopathies, In

mouse model systems, targeted deletion of RDS (Sanyal, De Ruiter et al. 1980) or its

closest homologue, ROM (Clarke, Goldberg et al. 2000), lead to abnormal photoreceptor

morphogenesis. Lastly, the tetraspanin, TM4SF2, is associated with mental retardation in

humans (Zemni, Bienvenu et al. 2000). Either truncation of the protein or a single

missense mutation, P172H (which lies in the large extracellular loop), is sufficient for

onset of the phenotype.

A number of tetraspanin-null mice have been generated which result in mild

immune defects (Figure 1. lB). Deletion of CD37 results in slight defects of B-cell

humoral responses and B-and T-cell interactions (Knobeloch, Wright et al. 2000).

Targeted deletion of the CD81 gene also resulted in a slight reduction of B-cell humoral

responses but: had no effect on T lymphocyte development (as expected from antibody

inhibition experiments) (Maecker and Levy 1997; Miyazaki, Muller et al. 1997;

Tsitsikov, Gutierrez-Ramos et al. 1997). On the other hand, deletion of the tetraspanin

Tssc6 resulted in normal B cell development but a slight elevation in T cell receptor-

dependent proliferation (Tarrant, Groom et al. 2002). CD151-deleted mice also exhibit

an increase in T-cell mediated hyperproliferation (Wright, Geary et al. 2004).

Furthermore, CD151 deletion results in hemostasis problems, including prolonged

bleeding times, due to defects in mild defects in caIIb3 integrin signaling (Lau, Wee et
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al. 2004). Targeted deletions of the tetraspanins, CD37, CD81, CD151, and Tssc6 in

mouse models were viable and fertile (Hemler 2001).

In the central nervous system, deletion of either CD9 or CD81 results in mice that

have enlarged brains due to increased numbers of glia and astrocytes (Geisert, Williams

et al. 2002). Neuronal binding to CD81 on astrocytes inhibits astrocyte proliferation

(Kelic, Levy et al. 2001). As a result, deletion of CD81 results in astrocytic

hyperproliferation. Puzzlingly, in vitro experiments show that antibodies against CD81

serve to suppress astrocyte proliferation, suggesting a case where antibody binding to a

tetraspanin is the reverse of the null-phenotype (Geisert, Yang et al. 1996; Dijkstra,

Geisert et al. 2001). In the central nervous system, CD9 has also been shown to be

essential for proper paranodal maintenance and staltory conductance in the axon

(Ishibashi, Ding et al. 2004).

Unexpectedly, the only dramatic tetraspanin-null phenotype was due to deletion

of the CD9 gene. The CD9 molecule has proposed roles in cellular migration

(Scherberich, Giannone et al. 2002), adhesion (Rubinstein, Le Naour et al. 1994),

metastasis (Ikeyama, Koyama et al. 1993). It has been shown to bind both 31 integrins

and the platelet integrin cIIbf33 under mild detergent conditions (Longhurst, White et al.

1999). Targeted deletion of the CD9 gene did not result in dramatic effects in any of

these systems. On the other hand, CD9, which is expressed on the oocyte, was shown to

be essential for fertilization (Kaji, Oda et al. 2000; Le Naour, Rubinstein et al. 2000;

Miyado, Yamada et al. 2000). CD9 is expressed on oocytes (Kaji, Oda et al. 2000) and

CD9-null oocytes bind normally, but can not fuse with sperm (Le Naour, Rubinstein et al.

2000). Bypassing the sperm-egg fusion event using intracytoplasmic sperm injection

resulted in normal onset of development (Miyado, Yamada et al. 2000). The CD9-null

phenotype is mimicked by the exogenous addition of an antibody against CD9 (Chen,

Tung et al. 1999; Miller, Georges-Labouesse et al. 2000).

Given the dramatic effects induced by the addition of antibodies against

tetraspanins, the mild phenotypes described above were surprising. Except for the case

of astrocytic hyperproliferation, deletion of a tetraspanin gene mimics the binding of

antibodies to the tetraspanin-LEL, albeit with a milder effect. Perhaps in the case of null-

mice, these non-deleted tetraspanins may serve to compensate for one another through
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the formation of novel tetraspanin complexes. Only in specific biological systems, such

as fertilization, is compensation insufficient to make up for the loss. We further

hypothesize that antibody addition serves to rapidly disrupt cell-surface tetraspanin

macromolecular complexes mediated by the tetraspanin-LEL. This effect is rapid and

eclipses the rate of de novo complex formation, which results in the near wild-type

phenotypes observed in tetraspanin-null mice.

Viral Membrane Fusogens

Only one gene, CD9, has been shown to be essential for sperm-egg fusion

(another gene, izumo, was just recently shown to be essential (Inoue, Ikawa et al. 2005)).

Since the invention of the microscope, sperm and egg cells have been the focus of intense

biological interest. The regulated fusion of these two cells restores diploidy and marks

the beginning of a new embryo. Functionally, this fascinating biological event is most

analogous to viral-cell fusion and this functional similarity served as the basis for our

interest into this field.

Virions are inert particles with a wide range of sizes and shapes (Fields 2001).

Like spermatozoa, virions are terminally differentiated and do not have the ability to self-

replicate without external assistance. Virions encapsulate genomic material (either DNA

or RNA), contain structural proteins (and possibly polymerases), and a set coat proteins

that mediate virion entry (Eckert and Kim 2001). Like the sperm cell, virions need to

recognize that they are in proximity to a potential host cell, bind to it, and release its

genomic material into the cytoplasm of the host cell. In the case of the sperm cell, this

host cell is also a fully differentiated gamete, the egg (Talbot, Shur et al. 2003). Carrying

genetic material from one location to another is the central purpose of both sperm cells

and virions. In fact, both sperm and viruses generate huge numbers of these genetic

packages, many orders of magnitude in excess of what ultimately is needed. In the case

of human fertilization, a typical male ejaculate contains about 100 million sperm, only

about 100 of which reach the upper reproductive tract, and only one of which fuses with

the egg. The dynamics of both virus infectivity and sperm competition is an actively

investigated field of research (Brikhead and Moller 1998; Nowak and May 2000).
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Membrane lipid bilayers are stable structures that do not fuse spontaneously.

Furthermore, cell membranes do not have spontaneous curvature and are fully hydrated

(Tanford 1980). To overcome the barriers to lipid mixing, a wide variety of membrane

fusogens have evolved to catalyze this event, which is central to fertilization, vesicle

trafficking, muscle development, and viral entry (Earp, Delos et al. 2005). The most well

characterized protein catalysts of membrane-fusion are viral fusion proteins.

As obligate intracellular parasites, it is essential for viruses to enter and infect host

cells. This entry event is controlled and catalyzed by large, extracellular viral surface

proteins (fusogens) that have been structurally classified into two groups. Class I fusion

proteins are synthesized as a single protein precursor that is subsequently activated and

cleaved. This proteolytic processing creates a metastable trimeric structure that is

conserved among several classes of virions and forms a "spike" on the surface of the

virion (Figure 1.6) (Eckert and Kim 2001). Activation of these metastable proteins

through either receptor binding or pH changes results in global conformational changes

and the insertion of an amphipathic fusion peptide into the target membrane, creating a

fusion intermediate (Carr and Kim 1993). Subsequent formation of a thermodynamically

stable six-helical bundle, termed a "trimer of hairpins" (Figure 1.6), likely provides the

energy for bringing apposing phospholipids into close proximity and mediating fusion

(Chan, Fass et al. 1997). A similar membrane fusion mechanism, utilizing the formation

of a stable alpha-helical coiled-coil structure to mediate lipid mixing has also been shown

for SNAP/SNARE mediated vesicle fusion (Jahn, Lang et al. 2003).

Structurally, class II fusion proteins are quite dissimilar from the conserved alpha-

helical class I fusion proteins (Earp, Delos et al. 2005). The most studied models of class

II fusion proteins (which include Hepatitis C virus) are the tick-borne encephalitis (TBE)

and Semliki Forest Virus (SFV) virions. Unlike the ca-helices characteristic of class I

fusion proteins, the TBE (Rey, Heinz et al. 1995) and SFV envelope (Lescar, Roussel et

al. 2001) proteins both adopt a predominantly beta-strand structure. The TBE

glycoprotein forms an antiparallel dimer that lies flatly on the viral surface (Figure 1.7).

A putative amphipathic fusion peptide (which inserts into the target membrane) is

internal, unlike class I fusion proteins (Allison, Schalich et al. 2001). Upon activation

under acidic conditions, the homodimer globally rearranges into an elongated homotrimer
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that lies perpendicular to the virion surface (Allison, Schalich et al. 1995; Ferlenghi,

Clarke et al. 2001; Stiasny, Allison et al. 2001; Bressanelli, Stiasny et al. 2004), possibly

allowing the fusion peptide to insert into the target membrane (Figure 1.7). Although no

detailed structural analysis of the hepatitis C viral glycoproteins is available, they have

been proposed to adopt and undergo similar conformational changes as their closely

related flaviviridae family members TBE and SFV (Garry and Dash 2003).

In conclusion, although class I and class II viral fusion proteins are structurally

dissimilar, they share many conserved features. They are synthesized in a metastable

state that upon activation, undergo global oligomerization rearrangements to catalyze

lipid mixing (Chan and Kim 1998). This membrane fusion event, similar to most cell-

cell fusion events is irreversible and unlike vesicle fusion, does not require recycling of

fusion proteins (Sudhof 2004). Extrapolating from known fusogens in these diverse

membrane fusion systems, tetraspanins do not appear to directly catalyze lipid mixing

and fusion. The extracellular domains of tetraspanins are relatively small and few known

trans binding partners are known. The studies described in this thesis indicate that the

CD9-LEL exists as a stable, a-helical dimer and does not adopt multiple conformations

(Chapter 2). Furthermore, inhibition of fertilization by soluble, recombinant mimics of

the CD9-LEL show that the major role of the egg CD9 is to act in cis(Zhu, Miller et al.

2002), on the egg surface, and not to function in trans, with the sperm cell (Chapter 7).

So why is CD9 essential for membrane fusion? First we review other cell-cell fusion

systems.

Cell-Cell Fusion

A number of genetic and biochemical screens have attempted to probe the

molecular mechanisms of membrane fusion. As a- and alpha- type yeast mating involves

membrane apposition and fusion, a screen for yeast fusogens was conducted by the

Walter laboratory. They identified a single protein, Prmpl, which showed normal

membrane apposition and decreased fusion. However, deletion of the prmpl gene

yielded ambiguous results, where membrane fusion was only reduced 50% (Heiman and

Walter 2000). Given the ease and elegance of yeast genetics, it is unclear why this screen

has been unsuccessful to date.
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Recently, the C. elegans protein Eff-1 has been identified as a potential epithelial

fusogen (Mohler, Shemer et al. 2002), although it has no effect on sperm-egg fusion (del

Campo, Opoku-Serebuoh et al. 2005). The Eef-1 protein is a novel type 1

transmembrane protein with no orthologues in other sequenced organisms (Mohler,

Shemer et al. 2002). Similar to canonical membrane fusion proteins (syncytia review),

ectopic expression of Eef-1 in non-fusogenic cell is sufficient to induce cell-cell fusion,

although its mechanism of action is unclear (Shemer, Suissa et al. 2004). Without the

presence of orthologues, it is unlikely that the identification of eef- will lend insight into

mammalian cell-cell fusion. A C. elegans screen for fertilization-incompetent sperm

specific mutations has yielded spermatogenesis and gamete binding defects, but not

fusion defects (L'Hernault, Shakes et al. 1988; Singson, Mercer et al. 1998). A

systematic screen of C. elegans genes using RNAi (Kamath, Fraser et al. 2003) did not

yield a sperm-egg fusogen. However, often RNAi does not work in C. elegans gametes

(L'Hernault, personal communication).

Genetic screens have implicated a variety of genes in the fusion of drosophila

myoblasts to form myotubes (Schnorrer and Dickson 2004). These screens have

identified intracellular small GTPases, GTPase exchange factors (GEFs), and adaptor

proteins as essential genes in myoblast fusion. Furthermore, identification of cell-surface

proteins containing immunoglobulin-domains are thought to function in homotypic

myoblast recognition and adhesion and not to directly mediate fusion. At this time a

myoblast fusogen has not been identified.

Recently, a review has noted the widespread identification of IgG superfamily

proteins playing essential roles in a wide variety of cell-cell fusion events (Chen and

Olson 2005). As a result, they have proposed that ct-helical structures are non-essential

for catalysis of membrane fusion. As described above, although ac-helical coiled-coil

structures are widely used to catalyze membrane fusion, other O-strand glycoproteins

(class II viral fusogens) may also serve to mediate membrane fusion (Earp, Delos et al.

2005). The common mechanism underlying all known membrane fusion events is the

presence of metastable proteins that undergo global, oligomeric, conformational changes.

This specific class of proteins does not include either tetraspanins or the immunoglobulin

superfamily of proteins. Although putative cell-cell fusogens have yet to be identified,
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we are optimistic that in time the mechanisms underlying heterotypic and homotypic cell-

cell membrane fusion events will converge with those already known.

Sperm-Egg Fusion

Like many researchers in the tetraspanin field, our interest in tetraspanins was

sparked in other cell-biological systems. CD9 first came to our attention through work

by Brent Miller in Paul Primakoff's laboratory, who showed that a monoclonal antibody

against CD9, clone KMC8, could specifically inhibit sperm-egg fusion (Miller, Georges-

Labouesse et al. 2000). As CD9 was thought to be complexed with integrin a6p1 on the

egg surface, these results were striking, but fit the paradigm for a central role of egg-

surface integrins interacting with the sperm-surface ADAM family members (Chen, Tung

et al. 1999).

The ADAM family of molecules were first identified as the targets of a

monoclonal antibody, PH-30, that inhibited sperm-egg binding and fusion (Blobel,

Wolfsberg et al. 1992) (Primakoff and Myles 2000). PH-30 was especially striking as its

antigen was spatially restricted to the equatorial region of murine sperm, a subdomain of

the sperm head that had been observed to mediate sperm-egg binding and fusion

(Primakoff and Myles 1983). After a decade of intense research, mouse genetics

revealed that targeted deletion of a PH-30 antigen, ADAM2, had minimal effects on

sperm-egg binding and no effect on sperm-egg fusion (Cho, Bunch et al. 1998).

Subsequently, mouse genetics studies showed that integrins also played a non-essential

role in sperm-egg binding and fusion (He, Brakebusch et al. 2003). Currently, the

molecular mechanism underlying sperm-egg binding is not known.

Concurrently, three groups independently presented mouse genetic experiments

illustrating that CD9 is essential for sperm-egg fusion, with no role in sperm-egg binding

(Kaji, Oda et al. 2000; Le Naour, Rubinstein et al. 2000; Miyado, Yamada et al. 2000).

These results are striking. Sperm-egg fusion was specifically blocked and the phenotype

was 98% penetrant. This surprising role for the tetraspanin CD9 raises several intriguing

questions. Are there other factors that mediate sperm-egg fusion? Furthermore, no other

major effects have been observed with any tetraspanin-null mice to date as it is believed
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that many tetraspanins may compensate for one another. Why does this not occur at the

egg surface?

The functional nature of the clone KMC8 targeted our fertilization studies to the

extracellular domain of the protein CD9. Our inhibition results with the soluble,

recombinant mCD9-LEL protein further suggest that CD9 functions on the egg surface,

and not as a receptor for sperm. This result suggests againsts experiments to probe the

sperm-surface for a CD9 receptor, which we have contemplated.

A recent finding that CD9 may bind in trans to pregnancy-specific glycoprotein

17 (PSG17) is puzzling (Ellerman, Ha et al. 2003). PSG proteins are members of the

immunoglobulin superfamily, synthesized by the placenta during pregnancy, and secreted

into the maternal circulation. They are hypothesized to play a role in the immune system

and may function in inhibiting maternal rejection of the foetus (Ha, Waterhouse et al.

2005). Consistent with this role, PSG17 has been shown to interact with CD9 on

macrophages (Waterhouse, Ha et al. 2002). It is not certain if PSG17 is present on

mature spermatogonia and their expression pattern does not match that expected for a

protein with a role in sperm-egg fusion. On the other hand, the Primakoff lab showed

binding specificity of PSG17 to the murine CD9-LEL; the introduction of non-fusogenic

permissive mutations abolished the interaction. Interestingly, it was shown that transient

binding of PSG17 (washing out PSG17 prior to gamete mixing) was insufficient to

inhibit sperm-egg fusion (wash-out experiments were not attempted with our mCD9-LEL

protein inhibition), suggesting that the CD9-LEL is not involved in priming the egg for

sperm entry (Ellerman, Ha et al. 2003). These results also suggest that CD9 does not

serve to hold a fusogen in a metastable state.

Although we have identified CD9 as acting in cis on the egg surface, the

molecular mechanisms underlying sperm-egg fusion remain opaque. It is possible that

CD9 functions as a chaperone to assist in the maintenance of an egg fusogen in a

metastable state. However, transient inhibition results with the PSG17 protein suggest

against this. It is also possible that CD9 functions only to provide a high-affinity or high-

avidity scaffold for either a egg-bound membrane fusogen or a receptor to a sperm-bound

fusogen. A role for CD9 in mediating affinity or avidity is consistent with its proposed

roles in other cellular contexts.
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Recently, a gene on the sperm cell, izumo, was also characterized as a necessary

protein to sperm-egg fusion (Inoue, Ikawa et al. 2005). Izumo is the antigen to a sperm-

egg fusion-blocking antibody and is localized to the posterior head of sperm (the

membrane domain where fusion occurs). Targeted deletion of izumo was results in a

specific defect in sperm-egg fusion and bypassing this event with izumo-null

spermatozoa resulted in normal development. Izumo is a small type 1 transmembrane

protein with a single, extracellular, immunoglobulin fold with no predicted homology to

other characterized proteins. Izumo does not directly bind CD9 (Okabe, personal

communication). It is striking that the only two known essential genes for membrane

fusion are small with unknown functions.

Motivated by evidence for the role of CD9 in sperm-egg fusion, we focused our

studies on the CD9-LEL. This approach both targets our approach to the domain

recognized by a fertilization-inhibiting antibody and also circumvents the issues of

detergent solubility problematic for transmembrane proteins. In this thesis, I describe the

purification and characterization of the mCD9-LEL. This methodology is expandable to

some, but not all, tetraspanins-LELs. Using our biophysical characterization of the

mCD9-LEL as a model, we explore both the oligomerization of intact CD9 molecules

and the interactions of tetraspanins-LELs with integrins. Lastly, we demonstrate the

inhibitory activity of our panel of soluble tetraspanins-LELs in a number of biological

contexts, including fertilization and hepatitis C viral infectivity.
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Figure 1.1 Sequence conservation and phylogeny of tetraspanin proteins. A) Conserved amino
acids among 28 known human tetraspanin and 37 Drosophila tetraspanins. The short
extracellular loop (SEL) and large extracellular loop (LEL) are labeled. The non-a-helical
variable region is indicated with a red bar. The predicted, conserved, a-helical lies N- and C-
terminal of this region, extending to transmembrane segment 3 and transmembrane segment 4.
B) Twenty-seven human and one murine tetraspanin sequence were aligned. The murine
sequence is indicated with "**". Shaded genes are mutated tetraspanins in humans or targeted
deletions in mouse. Tetraspanins with a red box are studied in more detail in Chapter 6

(from Martin Hemler, Journal of Cell Biology, 155(7) 1103-1107, 2001)
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Fig 1.3 Homology Analysis of the hCD8 I1-LEL
structure A) Superposition of the monoclinic
1G8Q (green) and hexagonal IIV5 (red) crystal
structures. B) Model of the intact CD82 molecule
using the hCD81-LEL structure as a template.
Helical elements are shown in red. Disulfide bonds
are shown in yellow. C) Predicted disulfide-bond
connectivitiesof tetraspanin-LELs containing two
disulfides bonds (Group 1; top) three disulfide
bonds (Group 2; middle) and four disulfide bonds
(Group 3). Conserved helical structures
comprising the dimerization subdomain are shown
in blue. The variable subdomain is shown in red
and key conserved residues are indicated in green.

(From A) Neugebauer et. al. Bioorg Med Chem Lett
14: 1765-1769 (2004) B) Bienstock and Barrett Mol
Carcin. 32: 139-153 (2001) C) Seigneuret et. al. JBC
267 (43) 40055-40064 (2001))





Tesnspanin Species Cell type Associated molecule.

Platelets

HeLa cells

NALM-6, HEL cell lines
Platelets
Vero cells

Schwann cell line Sl16
B cells
Hematopoietic cell lines
Lymph node; thymoma
B cells
NK cell line, T cells
Hematopoietic cell lines
HeLa cells, melanoma cell lines

Multiple cell lines
Neutrophils
Basophilic leukemia cell line
B cells

T cells
Hematopoietic cell lines
HeLa cells

T cells
Hematopoietic cell lines

B cells
Photoreceptor cells

Photoreceptor cells
Bladder epithelium
Bladder epithelium

allbA (CD41/CD61) integrin
(mAbinduced association)

1xol integrin, asI integrin
and CD81 or CD63

P1 integrins
25-26 kDa G-proteins
diphtheria toxin receptor
proHB-EGF and alsI integrin
alI. a6l integrins
MHC class II
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An unknown phosphatase
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CD2
a4l1 integrin
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CD9
a3Wl and a6iP integrins
LFA-I
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CD19/CD21/Leu-S 3 complex
MHC class n
CD4, CD8, and CD82
a4pl, aP47 integrins
a6P1 integrin, a1l integrin,
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a3, ail integrins
MHC class 1
Peripherin

Rom-I
UPIb, UPII, UPII!
UPIa. UPH, UPIII

Figure 1.4 A table of observed tetraspanin heterotypic interactions circa 1997. Listed are
the tetraspanin family members (left), species, cell type where the interaction was observed
and associated molecules. The list includes tetraspanin binding partners under both robust
and non-robust detergent conditions

(from Maecker et. al. FASEB J. 11 (6) 428-42 (1997).
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Table 1. Integrin-tetraspanin complexes
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Rubinstein et a., 1994; Hira et al., 1999;
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Park et al., 2000

Tachibana and Hemler 1999
Jores et al., 1996
Slupsky et a.. 1989

Mamion et a.. 1996

Berdibevski et al., 19%
Mamrion e al.. 1996
Berditebevr et al., 1996
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Berditcesk et al., 1996; NManion et al, 1996

Tachibana and Hemler. 1999

Berdmbitcheki and Odmntsva, 1999
MaonicnRt at.. 1996
Ono et al., 2000
Mannion et al.. 1996

YiFez-Mo et al., 1998; Yiiez-M6 et al., 2001.
Seru et al., 1999; Stipp and Hler. 2000,
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HaseSawa et al, 1998
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Sterk et a., 2000, Sincock et al, 1999
Fitr et a.. 1999

Nag2Tspan4 4:63,1
c;c61

Tspan3

CO-29

Epitetia (breast), fibosarcoma
Epittia (breast), ibrosarcoma

4*1 Olgodndrocytrs
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Tachibana et al.. 1997
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Figure 1.5 A table of observed tetraspanin integrin interactions circa 2001. Listed are the
tetraspanin family members (left), integrin heterodimer, cell type where the interaction was
observed and references where the interaction was initially observed. This list includes
tetraspanin binding partners under both robust and non-robust detergent conditions and
illustrated the rapid curation of tetraspanin heterotypic binding partners.

(from Berditchevski J of Cell Sci. 114, 4143-4151 (2001).
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Figure 1.6 A model of HIV (Class I) Membrane Fusion. The native state of the HIV
glycoprotein is depicted on the left. Binding to cellular receptors induces insertion of a
fusion peptide(red) into the host target membrane, forming a pre-hairpin intermediate. This
inhibition is long-lived and susceptible to multiple inhibition. The pre-hairpin intermediate
then collapses to a hairpin structure, where trimeric N peptide coiled coils (gray) form a six
bundle with helical C peptides (blue). This global conformational rearrangement results in
membrane apposition and fusion. Ultimately, both fusion peptide (red)and the
transmembrane segments (purple) in the same membrane.

(from ChanDC and KimPS Cell 93, 681-684 (1998).
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Figure 1.7 A model of TBE (Class II) Membrane Fusion. The primary domain structure of
the TBE glycoprotein is depicted with regions color coordinated to the domain structure
below. Transmembrane segments are in gray towards the C- termini and the internal fusion
peptide is in orange towards the N-termini. A) A cartoon of the native TBE glycoproteins as
planar antiparallel dimers on the left. A cartoon of the final post-fusion TBE glycoproein as
a trimer that sits orthogonal to the lipid bilayer on the right. B) A cartoon of the TBE
glycoprotein hairpin structure with fusion peptides inserted into the target membrane. This
intermediate structure is formed upon receptor activation of the native TBE glycoprotein (A
left) and ultimately resolves into the post-fusion TBE glycoprotein (A right)

(from Bressanelli et.al.EMBO J. 23, 728-738 (2004).
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Chapter 2

Purification and Characterization of the Murine
CD9 Large Extracellular Loop

These experiments were conceived by Christopher C. Liu and Peter S. Kim. All
experiments were carried out by Christopher C. Liu. We thank Michael W. Burgess for
technical assistance with chromatography and David L. Akey for technical assistance
with both biophysical instrumentation and analysis of data. All errors are my own.
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Introduction

Tetraspanins have been implicated in a wide variety of cell biological effects.

Surprisingly, knockout mouse models of several tetraspanin proteins have resulted only

in mild immune phenotypes (Hemler 2001). In contrast, female CD9-null mice are

infertile, and this phenotype was pinpointed to a defect in sperm-egg fusion (Kaji, Oda et

al. 2000; Le Naour, Rubinstein et al. 2000; Miyado, Yamada et al. 2000). Lack of CD9

does not affect either sperm-egg binding or subsequent development of the zygote, when

sperm-egg fusion is artificially bypassed. Exogenous addition of an antibody against

murine CD9, clone KMC8, mimics the CD9-null mutant (Chen, Tung et al. 1999; Miller,

Georges-Labouesse et al. 2000). This antibody specifically inhibits sperm-egg fusion and

has no effect on gamete binding.

Due tlo our interest in cell-cell membrane fusion, we chose to focus our studies on

the murine CD9-large extracellular loop (mCD9-LEL). By focusing on the extracellular

domain of the murine CD9 molecule, we targeted our experiments to the protein domain

recognized by a fertilization-blocking monoclonal antibody(Miller, Georges-Labouesse et

al. 2000). Furthermore, restricting our studies to this domain also circumvented issues of

solubility and aggregation commonly associated with the biophysical characterization of

membrane proteins.

In this chapter, we describe our method to express and purify to conformational

homogeneity a single disulfide-bonded species of the murine CD9-LEL. Furthermore,

we show that this mCD9-LEL species is specifically recognized by the fertilization-

blocking monoclonal antibody KMC8 and biophysical analysis reveals that it is an

autonomously folding cc-helical dimer. Lastly, we present evidence of the critical

importance in the contribution of proper-disulfide bond formation to the stability and

function of this mCD9-LEL species.
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Materials and Methods

Cloning and Expression of the Murine CD9-LEL.

Fresh, primary bone marrow cells were flushed from the long-bones of a BL6

mouse. Total ribonucleic acid (RNA) was prepared from bone marrow cells using the

RNA STAT-60 total RNA purification kit (Tel-Test, Friendswood, TX). Total RNA was

reverse-transcribed using oligo-dT primers with the Superscript Preamplification System

(Gibco BRL, Grand Island, NY). The oligonucleotide primers CL34 and CL35 (Research

Genetics, Huntsville, AL) were designed to amplify the murine CD9-LEL:

CL34 = 5'-CCCGCTAGCACCCACAAGGATGAGGTGATTAAAGAACTGC-3'

CL35, = 5'-(CCCTCGAGGATGTGGAACTTGTTGTTGAAGACCTCAC-3'

PCR was peiformed in a Robocycler (Stratagene, La Jolla, CA) with a 45-65 0 C gradient.

The amplified product was inserted into the NheI-XhoI restriction site of the carboxy-

terminal hexahistidine expression vector pET24a (Novagen, Madison, WI). Proper

plasmid construction was confirmed by DNA sequencing through the open reading frame

and referenced to the NCBI database.

Purification of the Murine CD9-LEL

The resulting plasmid, denoted recmCD9-LEL, was transformed into E. coli

BL21/pLysS competent cells for protein expression. Cells were grown in Luria-Bertani

medium to an optical density of 0.2 at 600 nm. Protein expression was induced with 1

mM isopropyl-beta-D-thiogalactopyranoside, and cells were harvested after 5 hours.

Cells were lysed in a French press and separated into soluble and insoluble

fractions by centrifugation. The insoluble portion was resuspended in 6 M guanidine-

HCI, and subsequently clarified by both centrifugation and filtration. The recombinant

protein was purified by nickel-nitrilotriacetic acid metal-affinity chromatography

(Qiagen, Chatsworth, CA), followed by reverse-phase HPLC (Waters, Milford, MA)

using a Vydac C18 preparative column (Vydac, Hesperia, CA) with a water/acetonitrile

gradient of 0.05%/min in the presence of 0.1% trifluoroacetic acid.
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Protein samples were analyzed by reverse-phase HPLC connected to an LCQ

electrospray mass spectrometer (Finnigan-MAT, San Jose, CA). Proteins were

centrifuged under vacuum to remove the acetonitrile, lyophilized, and resuspended in

PBS (pH 7.4); all protein concentrations were determined by absorbance at 280 nm in 20

mM phosphate-buffered 6M guanidine-HCl (pH 6.5) (Edelhoch 1967).

Western Blot Analysis

Lyophilized samples were resuspended in PBS and analyzed by 18% SDS-PAGE

under non-reducing and reducing conditions and Coomassie Blue staining (Lu, Blacklow

et al. 1995). Gels were transferred onto Hybond-C membrane (Amersham-Pharmacia,

Piscataway, NJ) in 10 mM CAPS/10% MeOH (pH 11.0). Membranes were blocked for 2

hours at room temperature in 4% non-fat dry milk/TBS/0. 1% Tween-20. A monoclonal

antibody against mCD9, clone KMC8 (BD Pharmingen, San Diego, CA), was used as the

primary probe at a 1:1000 dilution. Horseradish peroxidase (HRP)-conjugated goat anti-

rat (BD Pharmingen) at a 1:1000 dilution was used to detect the presence of KMC8. The

membrane was developed using the ECL system (Amersham-Pharmacia) and exposed to

film.

Quantitation of Free Thiols.

Free thiols were quantified using Ellman's Reagent (Pierce, Rockford, IL) as per

the manufacturer's instructions. In brief, resuspended protein was added to a fresh 0.08

mg/ml solution of Ellman's reagent in 100 mM sodium phosphate, pH 8.0. Absorbance

was measured at 412 nm using an extinction coefficient of 14,000.

Circular Dichroism Spectroscopy

Circular dichroism (CD) spectra were measured at 10 tM protein concentration in

PBS buffer with an AVIV 62A DS CD spectrometer (Aviv Associates, Lakewood, NJ) as

described (Wu and Kim 1997). Thermal melts were performed over a temperature range

from 0-80°C in 2°C increments. Protein samples were equilibrated for 90 seconds and

data were acquired over 30 seconds. The midpoint of the thermal unfolding transition

(Tm) reported is the maximum of the first derivative of the thermal melt data.
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Sedimentation Equilibrium Analysis

Sedimentation equilibrium analysis was performed on a Beckman XLA-90

analytical ultracentrifuge (Beckman Instruments, Palo Alto, CA). Samples were dialyzed

overnight against PBS and spun at 20,000 and 30,000 rpm. Protein samples were

analyzed at concentrations of 10, 20, and 50 gM. Data were collected at three

wavelengths per rotor speed after spinning for 24 hours at 25°C. For all speeds and time

points, a second data set was acquired 3 hours after the first. The two data sets were

compared to ensure that the samples were at equilibrium. A single ideal species model

was fit to the data and the partial specific volume was calculated from the residue-

weighted average of the amino acid sequence. Solvent density was calculated from the

solvent composition (Laue, Shah et al. 1992).

Disulfide-Shuffling of the Murine CD9-LEL protein

The murine CD9-LEL was expressed, purified, and eluted from a Ni-NTA

column under denaturing conditions. This protein fraction was diluted 10-fold into PBS

(for a final concentration of .6M guanidine-HCl) containing the specified concentrations

of reduced or oxidized glutathione. The protein solution was shaken at room temperature

for 5 hours, and simulated disulfide shuffling was stopped with the addition of neat

HOAc to a final concentration of 5% (pH 2.0). Each solution was clarified by both

centrifugation and filtration and analyzed by reverse-phase HPLC on a Vydac C18

analytical column. Protein content was monitored at 229 nm.
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Results

Expression and Partial Purification of the Murine CD9-LEL construct.

To study the mCD9-LEL we isolated primary murine bone marrow cells by

flushing the long bones of a mouse. Total RNA was extracted and first-strand cDNA

synthesis was used to create a template pool containing the murine CD9 cDNA. The

oligonucleotides CL34 and CL35 were designed to amplify the mCD9-LEL,

corresponding to murine CD9 residues 110-193 with an NheI and XhoI site inserted 5'

and 3' of the: LEL respectively for subcloning purposes. The large extracellular loop

portion of the CD9 cDNA was successfully amplified and inserted into pET24a, excising

almost the entire multiple-cloning site, and verified by DNA sequencing. The plasmid

was designed to contain a C-terminal hexahistidine tag in frame with the mCD9-LEL

(Figure 2.1A).

The recmCD9-LEL plasmid was transformed into BL21/pLysS cells for protein

expression. Overnight cultures were diluted 1:100 into Luria-Bertani growth medium

and protein expression was induced with mM isopropyl-beta-D-thiogalactopyranoside

when cells were at an optical density of 0.2 at 600nm. It should be noted that no protein

expression was observed when cells were induced at higher optical densities. Post-

induction, E. coli cells continued to grow in near-logarithmic phase, as monitored at

OD600 nm, and induced cells were harvested after 5 hours.

The mCD9-LEL protein was highly expressed and sequestered into inclusion

bodies. The mCD9-LEL protein was solubilized, air-oxidized under denaturing

conditions, and partially purified using metal-ion chromatography (Figure 2. iB). Non-

reducing SDS-PAGE analysis of the nickel-purified mCD9-LEL protein revealed several

higher order oligomers which collapsed to the monomeric form upon addition of 10%

beta-mercaptoethanol prior to loading onto SDS-PAGE (data not shown). This suggests

that nickel-purified higher order oligomers are intermolecular disulfide-bonded variants

of the mCD9--LEL protein.

Isolation and Characterization of Two mCD9-LEL Protein Species

Nickel-purified mCD9-LEL protein was diluted 10-fold into PBS, acidified, and

clarified by both centrifugation and filtration. The sample was loaded onto a reverse-
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phase C18 HPLC and protein content was monitored at 229nm. We observed and

isolated two mCD9-LEL species, designated mP1 and mP2, respectively, which were

chosen for further characterization (Figure 2.2A). Mass spectrometry revealed the

molecular weights of each of mP1 and mP2 to be 10,989.5 +/- 0.3 Da. These data

matched the predicted molecular weight of mCD9-LEL (for the oxidized species) with

the N-terminal methionine residue cleaved, but no further modifications. Using Ellman's

reagent, we detected no free sulfhydryls in either mP1 or mP2 (data not shown).

Western blot analysis revealed that only the mP1 protein was recognized by a

fertilization-blocking monoclonal antibody, clone KMC8 (Figure 2.2B). Residual KMC8

immunoreactivity of the mP2 protein may be due to traces of mP1 in the protein prep.

Reduced mP1 was weakly recognized by KMC8 at the same low levels as reduced mP2,

suggesting that KMC8 recognizes only a single, oxidized isomer of the mCD9-LEL

protein. Sandwich ELISA studies revealed that the C-terminal hexahistidine tag did not

interfere with KMC8 binding (data not shown). These results suggest that the

hexahistidine epitope is discrete from the KMC8 epitope and that the hexahistidine tag

may be utilized to probe KMC8 function (Chapter 7).

Circular Dichroism and Sedimentation Equilibrium Analyses of mCD9-LEL

Protein Species.

The mP1 protein folds into an a-helical structure in PBS as determined by

circular dichroism analysis (Figure 2.3A), with characteristic minima at 208 nm and 222

nm (Chen, Yang et al. 1974). Our measurement of a mean molar ellipticity at 222nm of

approximately -11,000 empirically corresponds to approximately one-third global,

helical content. The mP1 protein undergoes a cooperative, reversible, thermal unfolding

transition, with a Tm value of approximately 58°C. Conversely, circular dichroism

experiments reveal that mP2 does not have a well-folded structure. At 80°C, when mP1 is

thermally denatured, both mP1 and mP2 have the same CD signal at 222 nm (Figure

2.3B). When mP1 was thermally denatured to 1000C and then renatured, it did not regain

native levels o.f a -helicity. As a result, all subsequent thermal denaturation/renaturation

analysis was done to 80°C.
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Sedimentation equilibrium analyses clearly indicate that mP1 is a dimer in

solution (Figure 2.4A). Residuals (deviations) from the predicted molecular dimeric

weight were randomly distributed (Laue, Shah et al. 1992). These data are consistent at

concentrations of 10, 20, and 50 [tM in PBS (pH 7.4). The dimerization state of mP1 was

confirmed by gel filtration chromatography (see Chapter 4). Sedimentation equilibrium

experiments with the mP2 protein reveal that it is a slightly aggregated monomer (Figure

2.4B). The best linear fit for mP2 was estimated at a molecular weight of 1.14 times that

of the monomeric molecular weight. Lastly, there was a high degree of auto-correlation

in the residuals, indicative of a poor fit to a linear molecular weight model (Laue, Shah et

al. 1992). This sedimentation equilibrium result is consistent with the unstructured nature

of mP2.

Disulfide-Shuffling of the mCD9-LEL Protein Variants.

The presence of two variants of the mCD9-LEL (P1 and P2) that had identical

masses, but different chromatographic properties allowed us to hypothesize that these

proteins were disulfide-bonded variants. However, the presence of two adjacent cysteine

residues (Figure 1A) frustrated attempts to map the disulfide-bond connectivities by

tryptic proteolysis followed by mass spectral analysis (data not shown). To explore the

role of cysteine residues in the P1 and P2 variants of the mCD9-LEL protein, we turned

to simulated disulfide-shuffling conditions (Tu and Weissman 2004).

It has been shown that a mix of reduced and oxidized glutathione can simulate the

redox environment of the endoplasmic reticulum (Tu and Weissman 2004). In our

purification scheme, the mCD9-LEL protein is oxidized as it is solubilized by 6M

Guanidine-HCl from the insoluble portion of E. coli cells. This oxidation occurs under

denaturing conditions, which is consistent with the approximately equimolar ratio

between the mCD9-LEL P1 and P2 (Figure 2.2A). We rapidly diluted equivalent

quantities of fully oxidized, denatured mCD9-LEL into non-denaturing conditions

containing various ratios of reduced and oxidized glutathione. In most cases, significant

amounts of protein precipitate formed within several minutes. After 5 hours, we stopped

the redox reaction by lowering the pH and monitored mCD9-LEL P1 and P2 quantities

with an analytical C18 column.
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We observed that the presence of a glutathione mix significantly increased the

yield of both the mCD9-LEL P1 and P2 proteins (Figure 2.5). Under all redox

conditions, there was more mCD9-LEL P1 than mCD9-LEL P2, suggesting that the

mCD9-LEL is the preferred disulfide-bonded state. The ability of a redox reaction to

increase mCD9-LEL P1 yields emphasizes the contribution of a proper disulfide-bond

connectivity both to the thermodynamic stability and the cc-helical nature of the mCD9-

LEL. Lastly, the identification of redox conditions that optimize protein yield may be

critical for the extension of our methodology to other tetraspanin-LELs. For studies in

Chapter 6, we selected the redox condition consisting of 2mM GSH/0.5mM GSSG as it

both optimized yield and minimized off-pathway tetraspanin-LEL isomers (Figure 2.5C).
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Discussion

In this chapter we present evidence that the LEL of mCD9, a prototypical

tetraspanin, is an independently folding domain. mCD9-LEL can be expressed without a

large fusion partner. The properly oxidized species can be purified to homogeneity and is

approximately one-third a-helical and dimeric. The ca-helical, dimeric nature of the

mCD9-LEL protein most likely depends on attaining of a proper disulfide-bonding

pattern.

We chose to restrict our studies of the murine tetraspanin CD9 to a single domain

of the molecule: the large extracellular loop. This strategy allows significant technical

simplification, as subsequent experiments are not complicated by the necessity of adding

detergents. All of our biophysical characterization is done in phosphate-buffered saline.

However, we note that this strategy excludes the transmembrane regions, which not only

constitute a significant portion of the tetraspanin molecule but also has distinguishing

sequence conservation(Stipp, Kolesnikova et al. 2003), implying evolutionary

significance beyond anchoring the protein in the lipid bilayer of the cell. Furthermore,

this strategy does not allow the exploration of the short extracellular loop, which has

largely been ignored by the tetraspanin community. Lastly, it also does not allow the

exploration of post-translational modifications. Most importantly, palmitoylation has

been shown to play significant roles in tetraspanin function (Yang, Kovalenko et al.

2004). These issues will be further addressed in Chapter 5.

Regardless, our experiments illustrate a straighforward investigative avenue to

explore tetraspanin function in general, and CD9 in particular. By expressing the mCD9-

LEL protein in Escherichia coli, we are readily able to express and purify milligram

quantities of pure protein. Although using a prokaryotic expression system precludes the

inclusion of glycosaccharides (the CD9-LEL has no predicted glycosylation sites), it

allows fast and cheap expression of mutant constructs (see Chapter 4). An attempt to

express the CD9-LEL in S2 insect cells has not been successful to date (Jack Lawler,

personal communication). Using a hexahistidine purification tag, we eliminate the

necessity to add a large fusion partner such as glutathione-S-transferase (Zhu, Miller et

al. 2002) or maltose binding protein. Although the hexahistidine tag is not ideal for

immunoprecipitation experiments (as it binds many metal-chelating proteins), it adds
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little molecular weight to the protein of interest, further simplifying subsequent

biophysical analysis. Lastly, the use of a hexahistidine tag allows the purification of

recombinant proteins under denaturing conditions.

A critical component of our purification strategy is the use of reverse-phase

HPLC. By purifying our nickel-purified mCD9-LEL protein over C18 chromatography,

we were able to eliminate contaminating higher order oligomers, bringing our protein

purity up significantly (as assessed by SDS-PAGE). In actuality, the purity of the nickel-

purified mCD9-LEL protein (which was estimated at 85% in Figure 2. iB) significantly

overestimated protein purity. As assayed over a C18 column with a fine elution gradient,

the KMC8 immunoreactive mCD9-LEL species (P1) was estimated to be a mere 20%.

We were pleasantly surprised that a C18 reverse-phase column could separate protein

species with identical molecular weight but different disulfide-connectivities at pH 2. It

should be noted that for a protein the size of the mCD9-LEL (i lkDa), the suggested

reverse-phase column is either C4 or C8, as C18 is recommended for shorter synthetic

peptides. We have not tested the chromatographic performance of the mCD9-LEL

protein on C4 or C8 reverse-phase columns.

Circular dichroism analysis proved to be a powerful analytical tool for the study

of the mCD9-LEL. Our circular dichroism measurement of the mCD9-LEL protein, with

a 0222 of approximately -11,000 corresponds to one-third average, global helical content

(Chen Yang). For example, coiled-coils, which contain almost complete c-helicity,

exhibit a circular dichroism 0222 of between -30,000 and -35,000 (O'Shea, Rutkowski et

al. 1989). These circular dichroism measurements of the mCD9-LEL protein are

consistent with predictions of its secondary structure content.

As all tetraspanins-LELs are predicted to have significant cc-helicity, circular

dichroism may allow us to identify well-folded tetraspanin-LEL species, even without

clearly defined, conformation-specific antibodies such as the clone KMC8. By

monitoring the c-helicity of the mCD9-LEL protein over a range of temperatures, we

concluded that the mCD9-LEL protein is a very stable protein. Thermal denaturation

data may allow us a rapid, if qualitative, methodology to assay the stability of mCD9-

LEL variants. Most importantly, it directly suggests that the mCD9-LEL protein is

folded at physiological temperatures (37°C), which is critically important in analysis of
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inhibition data (Chapter 7). Thermal renaturation data also allow us to identify

incubation times and temperatures where the mCD9-LEL will no longer be folded (ie.

>80°C) which may prove useful in later experiments (Chapter 6). Lastly, the

autonomously folding nature of the mCD9-LEL suggests that there are no kinetic traps in

the folding landscape of the mCD9-LEL (Pain 1994).

Our sedimentation equilibrium suggests that the mCD9-LEL protein behaves as a

globular, ideal protein species (Laue, Shah et al. 1992). Although this experimental

method is tedious, it allows us to characterize carefully the oligomerization of the mCD9-

LEL under equilibrium conditions (versus gel filtraion). Empirically, the minimum

sequence size for a protein to exhibit a stable tertiary structure is approximately 50 amino

acids (Dyson and Wright 1991). Evidence of a dimeric mCD9-LEL may explain the

relatively high thermal stability of the 83-amino acid protein.

Although our attempts to map the disulfide connectivities was not technically

tractable, the isolation of two mCD9-LEL species with identical molecular weights

suggested that the difference in the chromatographic properties of these variants lay in

their disulfide connectivities. The ability of a redox mix to significantly alter the yields

of the two mCD9-LEL species (relative to random oxidation) strongly suggests that

disulfide connectivities result in the observed shift in reverse-phase elution times.

Equimolar yields of the two mCD9-LEL species under random oxidation (due to

denaturing conditions) also points to the importance of disulfide connectivity in

determining tx-helicity. Lastly, the greater yield of mCD9-LEL P1 under redox

conditions suggests that the a-helical mCD9-LEL species is in a lower thermodynamic

state than its disulfide-shuffled variants. For the remainder of this thesis, we will refer to

the mCD9-LEL P1 species as the mCD9-LEL protein.

A soluble, properly folded form of the mCD9-LEL protein and the general

methodology described in this chapter may assist both in studying the intrinsic nature of

the mCD9-LEL protein, its cell biological roles, and the functions of other tetraspanin-

LELs. In this thesis, we both build upon and expand the methods and results described

within this chapter.
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Figure 2.1 Preparation of Recombinant CD9-LEL. A) Schematic diagram of the mCD9-LEL
protein sequence. The region encoding the murine CD9-large extracellular loop (LEL) was
amplified by PCR and inserted in the pET24a expression vector with a C-terminal hexahistidine
tag. B) The mCD9-LEL protein was partially purified using Ni-column chromatography and
analyzed by nonreducing SDS-PAGE: Lane 1) preinduced BL21/pLysS cells; Lane 2) induced
BL21/pLysS cells; Lane 3) insoluble fraction; Lane 4) 6 M guanidine-HCI solubilized fraction;
Lane 5) elution from Ni-column; Lane 6) molecular weight marker.
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Figure 2.2 HPLC Purification and Analysis of mCD9-LEL. A) HPLC purification profile of Ni-
purified mCD9-LEL. Three peaks corresponding to oxidized mCD9-LEL were identified. The first
two eluted proteins, designated mPI and mP2, were analyzed further. B) Peaks were analyzed by
Coomassie blue staining and Western blotting. Equal amounts of protein were loaded onto 18%
SDS-PAGE under reducing or non-reducing conditions, and blotted onto Hybond-C. Blots were
probed with KMC8 and HRP-conjugated anti-rat secondary antibody. KMC8 recognizes only the
nonreduced form of mP1.
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Figure 2.3 Circular Dichroism Characterization of mCD9-LEL Isomers. A) CD spectra of 10 [M
mPl(O) or mP2 () at 25°C in PBS. The minima at 208 and 222 nm for mP1 indicate that the
protein is highly helical. B) Temperature dependence of the CD signal at 222 nm for the mP1 (0)
and mP2 (0) species. Thermal denaturation is indicated by the filled symbols and thermal
renaturation is indicated by the open symbols. Protein concentrations were 10 ~tM in PBS. mP2
has little organized structure, whereas mP1 has a significant at-helical structure that unfolds at
high temperature and refolds upon cooling.

O -4000
E

N I

-6000

., -8000

-10000

I nnn

a

0

0

. u SO o
. Xp~~~h

* mPl MU
a mP1 MD

mD) kA11 I
U iiL Ir VlU

* mP2MD

o0
o

·
0so 00 *

a0 

t 0 00000 50a0 _ **-

A B
n1

I



A B
.o)

a
0

(#) o
4)

nM

U)

-.0

U. .

17.4 17.6 17.E 18.C 18.2 18.4 18.E 21.2 21.4 21.6 21.8 22.0 22.2 22.4

l I I I WI I I I I

I trimer I dimerdimerd
ON- JA At,- d

??S Sk ·lle d | dimer I g

rC. N
_ 4. I_ _ - rA d·/ / t ,monomer

17.4 17. 17. 18. 18.2 18.4 18.6

r2/2(cm 2) r2 /2(cm 2 )

Figure 2.4 Equilibrium Sedimentation of mP1 and mP2 at 25°C in PBS at 20,000 rpm. If the
experimental data fit a single species model, a single experimental molecular weight can be
derived by comparing the radius2/2 versus log absorbance (In). Deviation from the predicted
oligomeric molecular weight is revealed by the residuals from this line. In an idealized case,
residuals off the predicted slope should be random. The deviations in the data from the linear fit
are plotted (upper). A) mP1 data closely fit a dimer model with random residuals around the
predicted dimeric molecular weight. B) mP2 data reveal an oligomerization state of 1.16 with
nonrandom residuals, indicating a predominantly monomeric species with some aggregation.
Lines expected for monomeric, dimeric, and trimeric oligomerization states are indicated for
comparison.
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Figure 2.5 Glutathione Reduction/Oxidation Mix Effects on mCD9-LEL Variant Yields.
Equivalent quantities of oxidized, reduced mCD9-LEL in denaturing buffer was rapidly diluted
into redox conditions. Protein samples were mixed for 5 hours, acidified, and analyzed by
reverse-phase HPLC. Protein content, as monitored at 229 nm, was analyzed over time to collect
an HPLC profile. Reduced glutathione (GSH) concentrations are indicated in the upper-left
corner of each set of HPLC profiles. Oxidized glutathione (GSSG) concentrations are indicated to
the right of each individual HPLC trace. Under conditions with no reduced or oxidized
glutathione present, mPI and mP2 are indicated. mPl, which is the a-helical dimeric mCD9-LEL
variant is indicated in red. Under conditions with a reduced/oxidized glutathione mix, the mPI
protein peak is indicated with red arrow. As these samples were analyzed in an automated
fashion, protein abundance (as assessed by area under the peak) is quantitative and may be directly
compared between HPLC traces.
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Chapter 3

Structural Studies of the Murine CD9 Large
Extracellular Loop

These experiments were conceived by Christopher C. Liu and Peter S. Kim. All
experiments were carried out by Christopher C. Liu. We thank Vladimir Malashkevich
for technical assistance with protein crystal trials, Peter Carr for technical assistance with
both NMR instrumentation and analysis of data, and Steve Johnston for technical
assistance with structural homology modeling. All errors are my own.
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Introduction:

We have described a methodology by which we can express and purify to

homogeneity a single disulfide-bonded species of the murine CD9-LEL. The mCD9-

LEL is autonomously folding, a-helical, and dimeric in nature. Our experimental

observations of the mCD9-LEL are consistent with a study in which the structure of the

human CD81-LEL was solved by x-ray crystallography (Kitadokoro, Bordo et al. 2001).

The hCD81-LEL structure consists of five a-helices (designated A-E) (Figure

3.1). The regions corresponding to helices A, B, and E, which appear to be conserved

among all tetraspanin family members, form a dimerization (stalk) subdomain of the

tetraspanin-LEL. These helices bracket a hypervariable region or head subdomain

(Kitadokoro. Bordo et al. 2001). Among tetraspanins, the head subdomain varies in

length and number of disulfide bonds(Boucheix and Rubinstein 2001). The two

subdomains are clearly demarcated by a conserved cysteine motif characteristic of

tetraspanins. Although the hCD81-LEL head subdomain consists of two a-helices (C and

D), the CD9 head subdomain is not predicted to be a-helical (Seigneuret, Delaguillaumie

et al. 2001). Our observation that the mCD9-LEL is approximately one-third ct-helical

roughly matches the predicted secondary structure content of the CD9 dimerization

subdomain. Furthermore, sedimentation equilibrium data clearly show that the mCD9-

LEL is a dimer at low concentrations in physiological buffer. This suggests that the dimer

seen in the hCD81-LEL structure is also observed in solution and that dimer formation of

tetraspanin-LELs is conserved and biologically significant.

Often, detailed structural knowledge of a protein gives a deeper understanding of

the functional properties of that protein. Although both sequence and solution studies

strongly suggest that the CD9-LEL adopts a similar global structure to the hCD81-LEL

(Seigneuret, Delaguillaumie et al. 2001), we initiated structural studies to derive atomic

level resolution of the CD9-LEL. We chose to pursue three parallel experimental

methodologies: x-ray crystallography, nuclear magnetic resonance, and structural

homology modeling. As the human and mouse CD9-LEL share 89% sequence similarity,

we chose to use the hCD9-LEL sequence for our homology model studies.

A detailed, structural basis for mCD9-LEL function would lay the foundation for

probing the molecular nature of the mCD9-LEL protein and may also serve as a template
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for both the rational design of inhibitory molecules and of dominant-negative constructs.
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Materials and Methods:

Crystal Trials:

The mCD9-LEL protein, devoid of salt and buffer, was prepared by dissolving

lyophilized protein in H20 at 9.5mg/ml. Protein concentration was determined using

Edelhoch's reagent and monitored for aromatic absorbance at 280nm. Crystals were

screened using the sitting drop method in 48-well plates. One P1 drops of protein

solution were mixed with 1-1l of each crystallization solution from the Hampton Sparse

Matrix Screens I and II (Hampton Research). One hundred pls of mother liquor was used

for vapor diffusion. All crystal trials were set up and incubated in a 20°C humidity-

controlled room and crystal chambers were assayed under a dissection microscope after

2, 7, 14, and 28 days. All crystallization trials were undertaken in two independent trials.

Nuclear Magnetic Resonance Analysis

The mCD9-LEL protein, devoid of salt and buffer, was prepared by dissolving

lyophilized protein in 50mM deuterated acetic acid/100mM NaCl/10%2H2 0/adjusted to

pH 5.5 with NaOH. NMR experiments were performed at 760pM protein (8mg/ml). 'H

NMR experiments were performed by using a Bruker (Billerica, MA) AMX spectrometer

operating at 500 MHz and 25 C. Data were processed with Felix 98.0 (Molecular

Simulations) on Silicon Graphics computers and all spectra were referenced using 2,2-

dimethyl-2-silapentane-5-sulfonic acid (DSS) (Sigma).

After data collection from nuclear magnetic resonance analysis, the mCD9-LEL

solution was recovered. Protein sample was diluted into a matching buffer as used for

NMR analysis and quantifed with Edelhoch's buffer by monitoring absorbance at 280 nm

(Edelhoch 1967). The pH of the buffer was checked with a pH buffer strip. Circular

dichroism spectra were monitored as in Chapter 2.

Homology Modeling

The hCD81-LEL and hCD9-LEL sequences were aligned with Clustal using the

BLOSUM62 matrix (Jung and Lee 2000). The three-dimensional coordinates for the

hCD81-LEL structure (1G8Q) were downloaded from the Protein Data Bank (PDB).

This structure contains two molecules in the crystallographic asymmetric unit
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(Kitadokoro, Bordo et al. 2001). As there are two protein chains (designated Chain A

and Chain B) with similar, but non-identical structures, the PDB file was deconvoluted

into individual protein chains prior to modeling. Two disulfide-bond constraints were

placed on the hCD9-LEL model: between cysteine 41/cysteine 70, and between cysteine

42/cysteine :56 respectively. These disulfide-bond connectivities correspond to the

connectivities observed in the hCD81-LEL structure. The hCD9-LEL was modeled

separately onto either the hCD8 1-LEL ChainA or Chain B with MOE-HOMOLOGY

(Chemical Computing Group), resulting in two similar, but non-identical models.

Secondary structure analysis was conducted with the PHD prediction algorithm through

the ProSite (Rost, Sander et al. 1994) web-based portal.
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Results:

Protein Crystallization Trials of the mCD9-LEL

To explore the structural basis underlying the c-helical, dimeric nature of the

mCD9-LEL molecule, we attempted protein crystal trials (Hendrickson 1991). Large

quantities of the a-helical, dimeric mCD9-LEL protein were purified as described in

Chapter 2 and no contaminant was detected by SDS-PAGE, reverse-phase

chromatography, or mass spectrometry. For expediency we chose to use the sitting drop

methodology (which is a variant of standard hanging drop methods) coupled with two

commercially available sparse matrix screens (Page and Stevens 2004). In all, one

hundred disparate crystallization conditions were tested. All conditions were tested in

two replicates, yielding highly similar results. Protein solutions were observed over time

and classified into clear (no precipitate), precipitate (appearance of "dust" in the drop

chamber), and oil (appearance of a diffracting film at the surface of the protein solution).

Although precipitating conditions were observed and catalogued (Figure 3.2), we

determined that successful identification of crystallizing conditions would require

significant amounts of time and material. Given the limited size of the murine CD9-LEL

and the derivation of a workable homology model (see below), this avenue of analysis

was not pursued further.

Nuclear Magnetic Resonance Studies of the mCD9-LEL

Concurrent with crystal trials, we began initial structural studies by nuclear

magnetic resonance. Due to protein limitations, we used a 8mg/ml protein sample in

10% 2H20 at pH5.5. One-dimensional proton spectra revealed multiple significant peaks,

although peak dispersion was far from ideal (Figure 3.3) (Evans 1995). Empirically, it

has been observed that approximate global secondary structure may be measured through

peak chemical shift changes, without the need for specific proton assignment (Wishart

and Sykes 1994). These chemical shift regions have been designated secondary

structural signature regions. Qualitatively, we see (i) no evidence for -strands (4.85-

5.9ppm), (ii) significant helical structure (3.4-4. 1ppm), and (iii) significant random coil

(8.2-9ppm).
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Total correlated spectroscopy reveals numerous cross peaks (Figure 3.4).

Focusing on the helical fingerprint region did not reveal many well-dispersed

amide/alpha cross-peaks (Figure 3.5). To explore possible acid denaturation of the

mCD9-LEL protein at pH5.5, we recovered our protein sample and analyzed a-helicity

by circular dichroism at lowered pH (Figure 3.6). Our analysis revealed that although

there was some loss of a-helicity, the protein still appeared to be significantly helical.

Homology Model Construction of the hCD9-LEL

There is significant sequence similarity among tetraspanin family members

(Seigneuret, Delaguillaumie et al. 2001). For structural homology modeling, we chose to

model the human CD9-LEL sequence onto the only existing tetraspanin structure: human

CD81-LEL (Figure 3.1B). There are two amino-acid chains in the hCD81-LEL

crystallographic asymmetric unit. For simplicity, we deconvoluted the crystal structure

coordinates and modeled the hCD9-LEL molecule onto either hCD81A or hCD81B,

resulting in two models, designated hCD9ModA and hCD9ModB respectively (Figure

3.7B)

A basic homology program, MOE, was able to derive an averaged hCD9-LEL

model with no steric clashes. This program derived a model of the hCD9-LEL that is

composed of five a-helices, similar to the published hCD8 1-LEL structure (Kitadokoro,

Bordo et al. 2001)(Figure 3.7). However, secondary-structure prediction of the hCD9-

LEL using the program PHD predicted the region modeled as helix C to be in an

extended (non-helical) conformation (Figure 3.1A). Furthermore, the hCD9-LELModA

and ModB minimized solvent exposure of the dimerization interface, resulting in a more

compact intermolecular surface than in the hCD81-LEL interface (Figure 3.8). Although

our model gives us a basis upon which to begin molecular dissection of the mCD9-LEL

dimer, it clearly is not completely accurate. In summary, we believe that the tertiary

structure and the majority of the secondary structural elements of our hCD9-LEL model

are accurate. However, we have low confidence in the side-chain rotamers of our model.

Complete coordinates of the hCD9-LEL protein modeled to both Chain A and Chain B

are included in the appendix.
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Discussion

In this chapter, we present three avenues of experimentation to derive detailed

structural analysis of the murine CD9-LEL protein. As the mCD9-LEL protein may be

readily purified in large quantities, attempts at x-ray crystallographic and nuclear

magnetic resonance structural determination were inititated.

With the advent of multiwavelength anomalous diffraction techniques

(Hendrickson 1991), solving a protein crystal structure has become much less labor-

intensive than in previous years. However, the ability to derive well-ordered protein

crystals is still a major limiting factor (Page and Stevens 2004). It is nearly impossible to

determine crystallization buffer conditions intuitively. We initiated crystallization trials

with the mCD9-LEL protein with this significant caveat in mind. As a result, we

restricted our crystallization trial conditions to commercially available sparse matrix kits.

Our ability to identify precipitating, but not crystallization conditions of the mCD9-LEL

protein on a first-pass basis is not surprising. Subsequent to these crystal trials, Francoise

Martin and Peter Monk (University of Sheffield) have repeated our experiments with no

success. Martin and Monk are currently testing crystallization conditions for the

humanCD63-LEL protein (see Chapter 6) in collaboration with us.

There are many reasons why our crystal trials may have failed. Given the small

size of the mCD9-LEL protein, it is possible, that the C-terminal hexahistidine tag

precluded the formation of well-ordered interchain contacts. The Bolognesi group's

hCD81-LEL protein also contained an uncleaved C-terminal hexahistidine tag

(Kitadokoro, Galli et al. 2001). Although their crystal trials were successful, it is difficult

to extrapolate between proteins, however phylogenetically similar they are (Boucheix and

Rubinstein 2001). We do note that of various tetraspanin-LEL proteins we have studied,

the hCD81-LEL is the most easily purified of the family (Chapter 6).

Our nuclear magnetic resonance experiments qualitatively confirmed our circular

dichroism data (Wishart, Sykes et al. 1991). However, the mCD9-LEL protein appeared

to contain significant unstructured regions. Circular dichroism analysis at lowered pH

did not reveal significant unfolding. Another possible reason for non-resolved cross-

peaks could be due to low protein concentration. To circumvent these problems, we

considered large-scale expression and purification of the mCD9-LEL protein with 3C or
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15N isotope metabolic labeling. However, given the relative success of our structural

homology modeling, we decided not to pursue detailed structural analysis further.

CD9 is the most homologous tetraspanin to CD8 1, especially in respect to their

sequences in the large extracellular loops (for phylogeny, see Chapter 1). Between the

human CD9-LEL and human CD81-LEL, there is 18% identity and an additional 16%

homology for an overall sequence similarity of 34%. In actuality, this underrepresents

the similarities between the CD9-LEL and CD81-LEL as the putative dimerization

subdomains have increased similarity. On the other hand, a hypervariable region in the

LEL structure demarcated by a strictly conserved cysteine amino-acid residue pattern has

very low sequence similarity.

By definition, our structural homology modeling resulted in a hCD9-LEL

structure that was very similar to the hCD8 1-LEL structure. Given the sequence

similarity between helix A, helix B, and helix E of the hCD81-LEL and the

complementary sequence regions of hCD9-LEL (Figure 3. 1A), we have confidence in

our homology model of the dimerization subdomain of the hCD9-LEL. We believe that

our model of this region roughly represents the buried, hydrophobic dimerization

interface conserved among many tetraspanins. However, our efficient strategy of

modeling the hCD9-LEL onto individual hCD81-LEL chains, whose hydrophobic

dimerization interface is normally capped, while minimizing the hydrophobic effect is

clearly flawed. As a result, direct molecular dissection of this interface is necessary (see

Chapter 4).

More seriously, forcing the putative head domain of the hCD9-LEL protein to fit

secondary structural elements of the hCD81-LEL is grossly flawed. Although we

surmise that the unique disulfide bonding pattern is conserved among tetraspanins-LELs,

(and thus severely restricts the global conformation of the head subdomain), we have low

confidence in the ability of our homology model to predict surface exposed amino acid

residues. Again, further molecular biological analysis of the head domain is necessary.
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A

hCD9-LEL -SHKDEVIKEVQEFY-KDTYNKLKTKD-EPQRETLKAIHYALNGLAGGVEQFISDI PKKDVLET-FTVKSPDAIKEVFDNKF-H-

A B C D E

hCD81-LEL FVNKDQIAKDVKQFYDQALQQAVVDDDANNAKAVVKTFHETLDCCGSSTLTALTTSVLKNNLCPSGSNIISNLFKEDCHQKIDDLFSGK

ChaiII I I

hCD1-LE I FVNKDQIAKDVKQFYDQALQQAWVVDDDANNAKAVVKTFHETLDCCGSSTL TAL TTSVLKNNL CPSGSNIISNL FKEDCHQKIDDLFSGK I
ChainBl Ii I

(

Figure 3.1 Sequence Alignment of hCD9-LEL and hCD81-LEL. A) Schematic diagrams of the
primary sequence for the hCD9-LEL and hCD81-LEL are shown. These sequences were aligned
in Clustal and gaps in the alignment are denoted with a hyphen. Human CD9-LEL putative
disulfide-bond connectivities are indicated with lines. Human CD81-LEL disulfide-bond
connectivities are as indicated in the structure shown in B. Human CD9 predictions of a-helices
by the red boxes above the sequence. Observed human CD81-LEL a-helices are represented in
red. Amino acid residues in the hCD81-LEL Chain B for which an electrostatic surface potential
was generated (as shown in B) are indicated in a gray box. B) The hCD81-LEL Chain A is
depicted in flat ribbon, with a-helices indicated in red. Helix A, B, C, D, and E are indicated by
arrows on Chain A. Chain B is depicted in Ca stick mode and an electrostatic surface potential
was generated around the amino-acid residues indicated in A. Figure prepared using DS
ViewerPro.
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Precipitating conditions:

Hampton ID # Precipitant Buffer Salt
I-4 2M AS Tris 8.5
I-6 30% Peg 4K Tris 8.5 .2M Magnesium

chloride
1-13 30% Peg 400 Tris 8.5 .2M trisodium

citrate
1-14 28% Peg 400 Hepes 7.5 .2M CaC12
1-16 1.5M LiSO4 Hepes 7.5
1-17 30% PEG 4K Tris 8.5 .2M lithium sulfate
1-22 30% Peg 4K Tris 8.5 .2M sodium acetate
1-23 30% PEG 400 Hepes 7.5 .2M magnesium

chloride
1-33 4M sodium formate
I-38 1.4M trisodium Hepes 7.5

citrate
1-39 2%Peg 400/2M AS Hepes 7.5
1-41 10%IP/20%PEG 4K Hepes 7.5
1-45 18% PEG 8K NaCacodylate 6.5 .2M zinc acetate
1-47 2M AS Na Acetate 4.6

II-1 10% PEG 6K 2M NaCI
II-14 2M AS .1M Nacitrate 5.6 .2M KnaTartarate
II-25 1.8M AS Mes 6.5 .01M CoCl
II-27 25% PegMME550 Mes 6.5 ZnSo4
II-28 1.6M tri-sodium -

citrate pH6.5
II-30 10% PEG Hepes 7.5

6K/5%MPD
II-32 1.6M AS Hepes 7.5 .1M sodium citrate
II-34 1M sodium acetate Hepes 7.5 .05M cadmium

sulfate
II-36 4.3M NaCI Hepes 7.5
II-37 10% PEG 8K/8% Hepes 7.5

ethylene glycol
II-38 20% Peg 10K Hepes 7.5
II-41 IM lithium sulfate Tris 8.5 .O1M nickel

chloride
II-42 12% glycerol Tris 8.5 1.5M AS

anhydrous
II-44 20% EtOH Tris 8.5
II-45 20% PEG MME Tris 8.5 .O1M Nickel

2000 chloride
II-46 30% PEGMME 550 Bicine 9.0 .1M NaCI

Figure 3.2 Precipitant Conditions for hCD9-LEL: Protein crystal trials were attempted using a
10mg/ml solution of the mCD9-LEL using the sitting drop method. Tabulated are conditions by
which the hCD9-LEL precipitated in an unordered fashion. No conditions were found with
protein crystals. Hampton Buffer ID#s are listed with roman numeral I corresponding to the
Hampton Sparse Matrix Screen I. Components of the precipitating buffers, listed as precipitant,
buffer., and salt components are as indicated.
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Figure 3.3 One-Dimensional 1H Nuclear Magnetic Resonance Spectrum of the mCD9-LEL:
Lyophilized mCD9-LEL was dissolved in 50mM deuterated acetic acid/lOOmM NaCI/10% 2H2 0

adjusted to pH 5.5. One-dimensional nuclear magnetic resonance was collected at 500MHz at
25°C. Fingerprint regions of peak chemical shifts due to secondary structure are indicated above
the spectrum by bars. These are ca-helix (3.4-4.1ppm), n-sheet (4.85-5.9ppm), and random coil
(8.2-9ppm). The 2H20 peak is indicated with an asterisk.
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Figure 3.4 Two-Dimensional 1H Nuclear Magnetic Resonance Spectra of the mCD9-LEL: Two-
dimensional NMR spectra were collected with the first dimension plotted on the Y-axis and the
second dimension plotted on the X-axis. Fingerprint regions of secondary structure corresponding
to random coil (8.2-9ppm), 1-sheet (4.85-5.9ppm), a-helix (3.4-4.1ppm), in order, are boxed in
blue on the diagonal. The expected region for a-helical amide/alpha cross-peaks is indicated with
a red box.
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Figure 3.5 Helical Cross Peak Region of the mCD9-LEL NMR spectra: Amide/alpha cross peaks
in the fingerprint a-helical region are shown. Well-dispersed stable cross-peaks are indicated with
arrows. A poorly-resolved patch of cross-peaks is indicated with an asterisk.



Circular Dichroism Wavelength Scan of mCD9-LELat pH 5.5

Wavelength (nm)

Figure 3.6 Circular Dichroism Spectrum of mCD9-LEL at pH 5.5: The circular
dichroism spectrum of the murine CD9-LEL protein was analyzed as described
previously. Protein was tested in 50mM acetic acid/100mM NaCI with the pH adjusted to
5.5 by sodium hydroxide (conditions used for nuclear magnetic resonance experiments).
The sample was blanked to a buffer reference lacking protein. A spectral minimum at
222nm was clearly evident and the spectrum was not collected to 200nm as a high
dynavoltage at low wavelengths was observed.
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Figure 3.7 Secondary Structures of the hCD81-LEL Chain A and B and hCD9-LEL
ModA and ModB: All subunits are depicted with the N- and C-terminal residues pointing
to the bottom of the page. Helices A, B, and E are depicted in a flat ribbon and the
remainder of the molecule is depicted in Ca stick. A) Individual hCD81-LEL peptide
chains extracted from the hCD81-LEL crystal structure. Helix C and Helix D are to the
rear. In the structure of the dimer, a subunit would bind to the front of the indicated
molecule (Helix A, B, and C). B) The structure of hCD9-LEL homology modeled onto
the hCD81-LEL Chain A is shown to the left. The structure of hCD9-LEL homology
modeled onto the hCD81-LEL Chain B is depicted to the right. Figure prepared using DS
ViewerPro
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hCD9ModA hCD9ModB

Figure 3.8 The Dimer Surface Properties of hCD81-LEL and hCD9-LEL: All protein
geometries are identical to those presented in Figure 3.7. An electrostatic surface potential
was generated around all residues N-terminal and C-terminal to the head domain (non-
italicized amino acid residues in Figure 3.1).



Chapter 4

Molecular Biological Studies of the
Murine CD9 Large Extracellular Loop

These experiments were conceived by Christopher C. Liu, Richard 0. Hynes and Peter S.
Kim. All experiments were carried out by Christopher C. Liu. All errors are my own.
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Introduction:

The hCD81-LEL structure is a novel protein fold, with no sequence or structural

homology to other known domains (Kitadokoro, Bordo et al. 2001). Our biophysical

analysis of the murine CD9-LEL protein, hCD81-LEL's closest related gene, suggests

that the novel dimeric fold elucidated in the hCD8 1-LEL structure exists in solution at

biological concentrations. However, we were not able to empirically obtain detailed

structural knowledge of the mCD9-LEL. Based upon our theoretical homology model,

we designed a series of experiments to probe the molecular basis of the mCD9-LEL's a-

helical, dimeric properties.

To probe the molecular nature of mCD9-LEL oligomerization, we replaced

conserved, hydrophobic residues hypothesized to contribute to LEL-dimerization with

charged mutations. As the mCD9-LEL is proposed to exist as an anti-parallel dimer,

introduction of a single charged mutation presents two charged mutations into the dimer

interface, one on each subunit. In addition, these designed mutations also served to

promote a-helicity (Popot and Engelman 2000), which we have shown is a hallmark of

the native-fold of the mCD9-LEL. This series of experiments serves both to define the

contribution of the dimerization interface to the folding stability of the mCD9-LEL dimer

and to test the robustness of our homology model in designing a soluble, well-folded

monomeric version of the mCD9-LEL.

Concurrently, we wished to identify critical amino-acid residues for sperm-egg

fusion in the mCD9-LEL protein. Toward these ends, we epitope-mapped a function-

inhibiting a-CD9 antibody, clone KMC8 (Miller, Georges-Labouesse et al. 2000). The

identification of key residues will also serve to: (i) illustrate our rapid recombinant

protein expression and purification system in screening tetraspanin-LEL variants (ii)

derive a-helical dimeric variants of the mCD9-LEL to act as negative controls in cellular

inhibition assays (see Chapter 7); (iii) explore the mechanism of inhibitory antibody

function.

In this chapter, we describe extensive mutagenesis over both the dimerization

subdomain and the head subdomain of the mCD9-LEL protein. We also produce and

purify Fab fragments of the KMC8 antibody and demonstrate that it binds the mCD9-

LEL protein in a 2:2 macromolecular complex. These results are consistent with our
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previous biophysical characterization of the mCD9-LEL and lend insight to both the

mechanism of antibody-induced and tetraspanin-mediated cellular phenotypes.
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Materials and Methods:

Monomeric mCD9-LEL trials

Multiple point mutations in the mCD9-LEL sequence were constructed with the Quik-

Change Site-Directed Mutagenesis Kit (Stratagene) and confirmed by DNA sequencing.

By sequence alignment, we utilized the following oligos, designated CL89 through

CL100 to introduce mutations into the mCD9-LEL construct.

CL89, which mutated V 115R was

5'-CGCTAGCTAGCACCCACAAGGATGAGCGCATTAAAGAACTGC-3'.

CL90, which mutated VI 15D, was

5' -CGCTACGCTAGCACCCACAAGGATGAGGAGATTAAAGAACTGC-3 '.

CL91, which mutated L119R, was

5' -CGCTAC;CTAGCACCCACAAGGATGAGGTGATTAAAGAACGCCAGGAG-3 '.

CL92, which mutated L119D, was

5 '-CGCTAGCTAGCACCCACAAGGATGAGGTGATTAAAGAAGAGCAGGAG-3'.

CL93, which mutated V l15R/L119R, was

5' -CGCTAGCTAGCACCCACAAGGATGAGCGCATTAAAGAACGCCAGGAG-3'.

CL94, which mutated V115D/L119D, was

5' -CGCTAG-CTAGCACCCACAAGGATGAGGAGATTAAAGAAGAGCAGGAG-3'

CL95, which mutated V186R, was

5 '-CCGCTCGAGGATGTGGAACTTGTTGTTGAAGCGCTCACTGATGG-3'

CL96, which mutated V186D, was

5'-CCGCTCGAGGATGTGGAACTTGTTGTTGAACTCCTCACTGATGG-3'

CL97, which mutated F187R, was

5 '-CCGCTCGAGGATGTGGAACTTGTTGTTCGCGACCTCACTGATGG-3'

CL98, which mutated F187D, was

5'-CCGCTCGAGGATGTGGAACTTGTTGTTCTCGACCTCACTGATGG-3'

CL99, which mutated V186R/F187R, was

5 ' -CCGCTCGAGGATGTGGAACTTGTTGTTGCGGCGCTCACTGATGG-3'

CL100, which mutated V186D/F187D, was

5' -CCGCTCGAGGATGTGGAACTTGTTGTTCTCCTCCTCACTGATGG-3'
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CL89 through CL94 were used individually with CL35 (Chapter 2) to mutagenize the

mCD9-LEL construct. CL95 through CL100 were used individually with CL34 (Chapter

2) to mutagenesis the mCD9-LEL construct. Mutants were transformed into E. coli

BL21/pLysS, induced with isopropyl-beta-D-thiogalactopyranoside, and insoluble

fractions were purified over Ni-NTA agarose under denaturing conditions. SDS-PAGE

followed by silver staining was used to assess protein expression and purity. Selected

mCD9-LEL variants were further purified over reverse-phase HPLC. Biophysical

analysis was conducted as described in Chapter 2.

Alanine-scanning Mutagenesis and Epitope-Mapping of the mCD9-LEL protein

Multiple point mutations in the recmCD9-LEL sequence were constructed by

recombinant PCR (Higuchi 1990) and confirmed by DNA sequencing. These series of

oligos, which were used in pairs in conjunction with CL34 and CL35, mutated each

amino-acid residue to an alanine as follows:

To mutate L157,

CL 103: 5' -GGCATAGCTGGTCCTGCCGAGCAGTTTATCTCGG-3'

CL104: 5 '-CCGAGATAAACTGCTCGGCAGGACCAGCTATGCC-3 '

To mutate E158A,

CL131: 5'-CATAGCTGGTCCTTTGGCGCAGTTTATCTCGGACACC-3'

CL132: 5'-GGTGTCCGAGATAAACTGCGCCAAAGGACCAGCTATG-3'

To mutate Q 159A,

CL133: 5 '-CATAGCTGGTCCTTTGGAGGCGTTTATCTCGGACACC-3'

CL134: 5'-GGTGTCCGAGATAAACGCCTCCAAAGGACCAGCTATG-3'

To mutate F160A,

CL105: 5'-CTGGTCCTTTGGAGCAGGCGATCTCGGACACCTGCCCAAG-3'

CL 106: 5 '-CTTGGGGCAGGTGTCCGAGATCGCCTGCTCCAAAGGACCAG-3'

To mutate I161A,

C.L135: 5'-G(:GTCCTTTGGAGCAGTTTGCCTCGGACACCTGCCCCAAG-3 '

C L136: 5'-CTTGGGGCAGGTGTCCGAGGCAAACTGCTCCAAAGGACC-3'
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To mutate S 162A,

CL137: 5'-GGTCCTTTGGAGCAGTTTATCGCGGACACCTGCCCCAAG-3'

CL 138: 5 '-CTTGGGGCAGGTGTCCGCGATAAACTGCTCCAAAGGACC-3'

To mutate D 163A,

CL 139: 5 '-GGAGCAGTTTATCTCGGCCACCTGCCCCAAGAAACAGC-3'

CL140: 5'-GCTGTTTCTTGGGGCAGGTGGCCGAGATAAACTGCTCC-3'

To mutate L170A,

CL 107: 5 '-CACCTGCCCCAAGAAACAGGCGTTGGAAAGTTTCCAGG-3'

CL108: 5'-C'CTGGAAACTTTCCAACGCCTGTTTCTTGGGGCAGGTG-3'

To mutate L1I71A,

CL 109: 5'-CCTGCCCCAAGAAACAGCTTGCGGAAAGTTTCCAGGTTAAGCCC-3'

CLI 10: 5'-GGGCTTAACCTGGAAACTTTCCGCAAGCTGTTTCTTGGGGCAGG-3'

To mutateEl72A,

CL 141: 5' -GCCCCAAGAAACAGCTTTTGGCAAGTTTCCAGGTTAAGCCC-3'

CL142: 5'-G-GGCTTAACCTGGAAACTTGCCAAAAGCTGTTTCTTGGGGC-3'

To mutate S -173A,

CL143: 5'-GCCCCAAGAAACAGCTTTTGGAAGCTTTCCAGGTTAAGCCC-3'

CL144: 5'-GGGCTTAACCTGGAAAGCTTCCAAAAGCTGTTTCTTGGGGC-3'

To mutate FI[ 74A,

CL 11: 5 '-GAAACAGCTTTTGGAAAGTGCGCAGGTTAAGCCCTGCCC-3'

CL 112: 5'-GGGCAGGGCTTAACCTGCGCACTTTCCAAAAGCTGTTTC-3'

To mutate Q 175A,

CL 113: 5 '-CAGCTTTTGGAAAGTTTCGCGGTTAAGCCCTGCCCTGAAGCC-3'

CL 114: 5'-GGCTTCAGGGCAGGGCTTAACCGCGAAACTTTCCAAAAGCTG-3'

To mutate V176A,

CL145: 5'-CTTTTGGAAAGTTTCCAGGCTAAGCCCTGCCCTGAAGCC-3'

CL144: 5 '-GGCTTCAGGGCAGGGCTTAGCCTGGAAACTTTCCAAAAG-3'

Mutants were transformed into E. coli BL21/pLysS, induced with isopropyl-beta-D-

thiogalactopyranoside, and whole-cell lysates were crudely analyzed by Western blot for

reactivity to the antibody KMC8. Point mutants that were not recognized by the antibody
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KMC8 were chosen for further purification over metal-ion chromatography and reverse-

phase HPLC. Circular dichroism and sedimentation equilibrium analyses of mCD9-LEL

variants were carried out as described in Chapter 2. HPLC-purified mCD9-LEL variants

were reassessed for KMC8 reactivity.

KMC8 Fab generation:

Milligram quantities of purified, unconjugated KMC8 antibody (BD Pharmingen, San

I)iego, CA) were purchased. 2X crystallized papain (Sigma, St. Louis, MO) was

activated in 1 mg/ml cysteine-HCl (Pierce)/10 mM EDTA (pH 8.0) at a concentration of

I mg/ml for 1 hour prior to use. Antibody of the rat a-murine CD9 antibody, KMC8,

was digested with papain (2% w/w) for 3 hours at 37C in a circulating water bath

(Rousseaux, Rousseaux-Prevost et al. 1986). Digestion was stopped with the addition of

15 /M iodoacetamide (Sigma). Proteolytic digestion of KMC8 into Fab and Fc fragments

was tracked by nonreducing and reducing SDS-PAGE analysis. Fab fragments were

purified away from full-length IgG by gel filtration over a Superdex 200 10/30 column

(Amersham Pharmacia) in PBS at a flow rate of 0.4 ml/min using an AKTA/FPLC

(Amersham Pharmacia). Purified KMC8 Fab fragments were concentrated using a

Microcon-10 (Millipore) and final protein concentrations were determined using a Micro

BCA Protein Assay Kit (Pierce). Purity was assayed by SDS-PAGE and Coomassie

staining.

Gel filtration Studies of KMC8Fab and mCD9-LEL interactions:

Gel filtration standards in PBS (Bio-Rad) were loaded onto a Superdex 200 10/30 column

(Amersham Pharmacia) using an AKTA/FPLC (Amersham Pharmacia) to optimize

chromatographic conditions. KMC8 Fab fragments and individual mCD9-LEL variants

were analyzed for their respective apparent molecular weights at a constant flow rate of

0.4ml/min. Eluted fractions were collected every 0.5 mls. For binding studies, KMC8

Fab fragments were mixed with either mCD9-LELwt or mCD9-LELQ159A at a 1:1

molar ratio for 30 minutes at room temperature. Samples were spun at 14,000 rpm and

decanted. There was no visible precipitate. KMC8 Fab/mCD9-LEL binding was analyzed

using gel filtration with UV absorbance monitored at 280nm. Collected fractions were
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also analyzed by SDS-PAGE and subsequent Coomassie staining. mCD9-LEL levels

were detected by Western blotting with a biotinylated KMC8 antibody (BD Pharmingen)

followed by the Vectastain ABC Kit (Vector Labs, Burlingame, CA). The membrane was

developed using the ECL system and exposed to film.
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Results:

The Folding Stability of the mCD9-LEL Dimer

The analysis of multiple tetraspanin sequences strongly suggested the existence of

a conserved subdomain in all tetraspanin-LELs that mediates dimerization (for full

discussion, see Chapter Introduction). As our homology modeling suggested that this

conserved dimerization subdomain was hydrophobic in nature, we hypothesized that it

might be possible to construct a well-folded, ca-helical monomer by replacing conserved

hydrophobic: residues with basic amino acids that had a propensity to maintain an c-

helical secondary structure (Popot and Engelman 2000). Identification and

characterization of a monomeric mCD9-LEL would serve as a guide for studies with the

whole CD9 molecule and it would be straightforward to extend this rationale to the

construction of dominant-negative monomeric tetraspanin constructs.

Oligonucleotides were designed to replace conserved, buried hydrophobic

residues with either arginine (R) or aspartate (D) amino acid residues (Figure 4.1). We

constructed a series of mutations in the mCD9-LELwt plasmid, confirmed the cloning by

sequencing, and partially purified mCD9-LEL variants as described in Chapter 2 (Figure

4.2A). Upon induction, we observed variable expression, including several point

mutations that resulted only in disulfide-linked higher order oligomers. We chose

mCD9LELV11 5R/L1 19R for further study as it was highly expressed and introduced

two amino-acid charges. The mCD9-LEL*V15R/L119R protein had a similar protein

elution profile to the mCD9-LEL wild-type protein and a single species was purified to

homogeneity (Figure 4.2B). Circular dichroism and sedimentation equilibrium analysis

revealed that the mCD9LELoV1 5R/ L119R protein was both c-helical (Figure 4.3) and

dimeric (data not shown). These results suggested that the introduction of Vl 15R/L119R

residues is insufficient to disrupt dimerization of the mCD9-LEL.

We utilized our panel of oligonucleotides to generate mCD9LEL constructs with

four mutations in each amino acid chain (eight total amino-acid substitutions for the

intact dimerization interface). We chose two constructs for further analysis:

mCD9LELoV 115R/L 119R/V186R/F187R and

mCD9LEL-V 115D/L119D/V186R/F187R. Both constructs were readily expressed and

purified (Figure 4.4A and 4.4C). The mCD9LELV1 15D/L119D/V186R/F187R protein
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showed a clear a-helical structure (Chen, Yang et al. 1974). However, the

mCD9LELoV 115R/L119R/V186R/F187R protein had a peculiar a-helical circular

dichroism signal, albeit with a clear minimum at 0222nm (Figure 4.4B). Monitoring the

circular dichroism signal at 0222nm revealed that the midpoint temperature of thermal

unfolding was significantly lowered for both constructs, resulting in a significant fraction

of unfolded protein at 37°C (Figure 4.5). As these results precluded the use of these

variants under physiological conditions, we did not continue these studies. We conclude

that the hydrophobic nature of the dimerization interface is critical to maintain the folding

stability of the mCD9LELwt construct.

Epitope-Mapping of the KMC8/mCD9-LEL Binding Site

Our homology model of the head subdomain of mCD9-LEL (modeled onto the

hCD81-LEL head structure) did not match secondary structure predictions for the mCD9-

LEL in this region. As a result, it was not possible to predict surface-exposed amino acid

residues in the region bracketed by the conserved tetraspanin cysteine motifs.

Consequently, we chose to do alanine-scanning mutagenesis (Wells 1991) over much of

the presumed head subdomain of the mCD9-LEL protein domain (Figure 4. 1B).

We constructed a series of alanine-substitutions, checked for proper construction

by sequencing, and screened for reactivity to the antibody KMC8 by Western blotting

against whole E. coli lysates (data not shown). Only two mutations - glutamate 158 or

glutamine 159 to alanine -were sufficient for loss of KMC8 binding (Figure 4.6C).

These mutants were purified using the same methodology as for the wild-type protein.

The glutamine 158 to alanine mutant, denoted mCD9-LELE158A, did not yield

separable peaks (over a C18 HPLC column (Figure4.6A) and was not pursued for further

analysis. The glutamine 159 to alanine mutant, denoted mCD9-LEL-Q159A, revealed an

HPLC profile, similar to wild-type (Figure 4.6A), and two species were collected. CD

analysis allowed us to identify a properly folded species with helical content similar to

the mCD9-LELwt (Figure 4.7A), although with slightly decreased thermal stability (Tm

of 53°C vs. 58°C for wild-type) (Figure 4.7B). mCD9-LEL-Q159A is dimeric at

concentrations of 20 ytM and 50 M as assessed by sedimentation equilibrium (data not

shown). Thus, the mutant is well-folded.
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Binding of KMC8 Fab Fragments to the mCD9-LEL

Initial attempts to purify large quantities of the KMC8 antibody from its parental

hybridoma were not successful (data not shown). As a result, several milligrams of

purified monoclonal antibody KMC8 were purchased from BDPharmingen, where the

antibody was produced in a bioreactor (BD Pharmingen, personal communication).

The antibody KMC8 was successfully digested into its respective Fc and Fab

domains. Although the digestion was far from complete, yields were sufficient for our

experiments. Proteolytic KMC8 Fab fragments were fully separated from the whole IgG

molecule using gel filtration chromatography (Figure 4.8A). However, there remained a

20% contamination from the KMC8 Fc fragment (as assessed by Commassie SDS-

PAGE) that was not resolved (Figure 4.8B). Gel filtration analysis of the KMC8 Fab

fragment shows that it is a well-behaved monomer with an observed molecular weight of

37 kDa. The KMC8 Fc fragment consistently behaved as a 46-kDa protein, irrespective

of protein concentration. The mCD9-LEL protein behaved as a 21-kDa dimer

(theoretically 22-kDa) at the concentrations loaded onto the column. (Figure 4.9).

When a pre-mixed solution of the KMC8 Fab fragment and the mCD9-LELwt

protein was analyzed by gel filtration, we observed a major complex with an apparent

molecular weight of 99-kDa suggestive of a 2:2 macromolecular complex (theoretically

95-kDa) (Figure 4.10). SDS-PAGE and Western analysis of the protein content of the

99-kDa complex revealed that it was composed principally of the 37-kDa KMC8 Fab

fragment and the 11 -kDa mCD9-LEL. A novel protein peak with an apparent molecular

weight of 46-.kDA was revealed in the gel filtration analysis. SDS-PAGE analysis

identified this component as the contaminating KMC8 Fc fragment, which did not exhibit

a change in its apparent molecular weight upon addition of the mCD9-LELwt protein

(Figure 4.1 1).

These results demonstrate that the mCD9-LEL presents two apposing KMC8

binding surfaces. Furthermore, it confirms our epitope mapping studies to identify

residues of the mCD9-LEL critical for KMC8/CD9 interaction.
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Discussion:

In this chapter, we use a combination of molecular biology and biochemistry to

dissect out amino-acid residues critical for the folding stability of the mCD9-LEL

protein. By replacing hydrophobic amino-acid residues posited to contribute to

oligomerization, we show that dimerization of the mCD9-LEL protein is connected with

the intrinsic hydrophobicity of that domain. We also show that the antibody KMC8 binds

in a 2:2 complex and that this binding site is discrete from the dimerization site. The

ability of the mCD9-LEL to bind KMC8 in a 2:2 macromolecular complex reinforces our

conceptual model of the mCD9-LEL protein as a two sub-domain protein: a dimerization

sub-domain and an antigenic, non-dimerizing sub-domain (Kitadokoro, Bordo et al.

2001).

Our inability to develop a monomeric version of the mCD9-LEL is not surprising.

The large, buried, hydrophobic interface between the hCD81-LEL protein chains should

contribute significantly to the folding stability of the molecule. Our homology model

(Figure 3.7) and tetraspanin sequence conservation strongly suggest that this buried

hydrophobic interface is conserved (Seigneuret, Delaguillaumie et al. 2001).

Experimentally, we introduced charged, disruptive mutations into the

hydrophobic interface that retain a propensity to form helical secondary structures. In

retrospect, the ability of our proteins to maintain helical structure, while losing thermal

stability is expected. We hypothesized that the introduction of proline residues that

severely perturb helical structure may eliminate both the oligomerization and the folding

of the mCD9-LEL protein. Discrete from the dimerization sub-domain is a head sub-

domain, delimited by conserved cysteines in the tetraspanin's large extracellular loop.

This region is encoded by a single exon and is highly variable both among tetraspanin

family members and among species. This region is also where the vast majority of

functional amino acid residues have been pinpointed (Boucheix and Rubinstein 2001).

Through alanine-scanning mutagenesis (Wells 1991), we identified key residues

in the head sub-domain that are responsible for KMC8 antigenicity. These single alanine

mutants had minimal effects on the alpha-helical, dimeric nature of the mCD9-LEL,

while severely abrogating KMC8 immunogenicity. Our localization of amino acid

residues critical for KMC8 antigenicity to the N-terminal half of the hypervariable region
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is surprising. With the human CD8 1-LEL, critical residues have been identified between

cysteine 3 and cysteine 4, or the C-terminal half of the hypervariable region

(Higginbottom, Quinn et al. 2000). To date, most functional point mutations have been

localized to the region between cysteine 3/cysteine 4 (Kazarov, Yang et al. 2002) (Zhu,

Miller et al. 2002). These two loops (between cysteine 2/cysteine 3 and between cysteine

3/cysteine 4 are most likely in close proximity as they are restricted by the characteristic

tetraspanin disulfide connectivities.

With our gel filtration analysis, we present evidence that binding of the KMC8

antibody does not disrupt mCD9-LEL-mediated oligomerization. KMC8 is a monoclonal

rat anti-murine CD9 antibody of isotype IgG2aK. This clone was first derived by

injecting the mouse bone-marrow-derived stromal cell line BMS2 into rats and selecting

for monoclonal antibodies that inhibit production of myelioid, but not lymphoid cells

(Oritani, Wu et al. 1996). In subsequent studies, exogenous addition of this ac-mCD9

antibody has been shown to specifically inhibit sperm-egg fusion (Chen, Tung et al.

1999).

The ability of the KMC8 antibody to bind in a 2:2 complex, while preserving

dimerization, allows us to speculate about the antibody inhibition experiments. Our

observations suggest that KMC8 does not inhibit cellular functions by inhibiting the

endogenous climerization ability of the CD9 protein. Rather, KMC8 most likely serves to

disrupt CD9-ligand interactions, mediated through the head-subdomain of its large

extracellular loop. Currently, all epitope-mapped function-blocking antibodies against

tetraspanins bind to tetraspanin-LELs. We speculate that the addition of other tetraspanin

antibodies may serve to modulate cellular phenotypes through disruption of an

endogenous tetraspanin/non-tetraspanin complex, with no effect on the endogenous

tetraspanin dimer. Our studies describing key binding residues in the head-subdomain of

the CD9-LEL may also assist in the deconvolution of this endogenous cell-surface

complex.

Our molecular dissection of the mCD9-LEL although suggestive of a common

function for tetraspanins at the cell surface, leaves many outstanding questions. What is

the role of a higher-order tetraspanin cell surface complex? Are our biophysical

observations of the murine CD9-LEL complex represented on the cell surface? Lastly, is
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the mCD9-LEL protein itself capable of disrupting endogenous cell-surface complexes?

The remainder of this thesis outlines our attempts to explore these questions.
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hCD9-LEL -SHKDEVIKEVQEFY-KDTYNKLKTKD-EPQRETLKAIHYALNCGLAGGVEQFISDI PKKDVLET-FTVKSCPDAIKEVFDNKF-H-
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Figure 4.1 Targeted Mutagenesis of the Murine CD9-LEL. A) We schematically depict the
primary sequence organization of the murine CD9-LEL structure. The conserved putative
tetraspanin dimerization domain is depicted. Amino acid residues that were chosen for
mutagenesis to charged lysine (K) or arginine (R) residues are depicted below the wild-type
sequence with a "+". Amino acids chosen for alanine-scanning mutagenesis are depicted
with an "A". B) We present our homology model of the human CD9-LEL sequence
modeled onto Chain B of the human CD81 structure Chain B. The hCD9-LEL model is
depicted in solid wire with secondary structure illustrated (a-helix in red and disulfide bonds
in yellow). Amino acid side chains are illustrated in wire format. The amino acid residues
on which we ultimately focused our studies are illustrated with their Van der Waals radii in
space fill. These are labeled as Valine 115, Leucine 119, Valine 186 and Phenylalanine 187.
These hydrophobic amino acids appear to be loosely conserved among all tetraspanin-LELs.
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Figure 4.2 Expression and Purification of Murine CD9-LEL Dimerization Mutants. A) A
series of mutations in the putative dimerization motif of the mCD9-LEL molecule was
generated by PCR. These constructs were transformed into BL21/pLysS E. Coli cells and
protein expression was induced as described in Chapter 2. Insoluble protein was solubilized
and purified over a nickel-NTA drip column, eluted with imidazole, and diluted 10-fold.
Protein expression was monitored by non-reducing SDS-PAGE and assessed for both purity
and expression by silver-stain. Monomeric mCD9-LEL variants are indicated with an arrow.
Covalent dimeric mCD9-LEL variants were also observed and are indicated with double
arrows. B) A double mutation, mCD9LEL*V1 5R/L1 19R, was chosen for further study
based upon high expression of the monomeric form. Large scale cultures of this variant were
induced and purified by procedures as described in Chapter 2. We illustrate here a reverse-
phase HPLC profile of the mCD9LEL*V1 15R/L119R variant as monitored at absorbance
229nm. The purification profile of this variant was similar to that of the mCD9-LEL-wt
protein.
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Figure 4.3 Biophysical Analysis of the mCD9LEL*V1 15R/L119R Variant. A) Circular
dichroism spectrum was collected under standard conditions. Analysis reveals a spectral
minimum at 222 and 208nm, indicative of a well folded a-helical structure. All biophysical
analyses were conducted under conditions similar to those described in Chapter 2. We chose
not to analyze the second peak from the reverse-phase HPLC trace, which we assume to be a
disulfide-bonded variant of the a-helical form analyzed above.
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Figure 4.4 Purification and Biophysical Analysis of the
mCD9LEL*V 1 15R/L1 19RV 186R/F 187R and mCD9LEL*V 115D/L 119D/V 186R/F187R
Variants. Large-scale amounts of the variants listed above were expressed in E. Coli and purified
over Ni-NTA agarose as described in Chapter 2. These partially purified proteins were injected
over reverse-phase HPLC and protein content was monitored by absorbance at 229nm as
described. A) HPLC trace of the mCD9LEL*V115R/L1 19R/V186R/F187R protein, and C)
HPLC profile of the mCD9LEL*V 115D/L1 19D/V 186R/F187R protein. Note in C the significant
deviation from the typical C18 purification profile of the mCD9-LEL wild-type protein (see
Figure 2.2). The species chosen for further analysis are indicated with a red asterisk in A and C.
B and D) Circular dichroism spectra were collected under standard conditions. For both murine
CD9-LEL variants, a minimum at 222nm is clearly observed. However, in B we begin to see
deviation from a completely well-behaved a-helical structure.

C

Ig

,vvv



Thermal Denaturation/Renaturation of
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Figure 4.5 Thermal Denaturation Profiles of the Murine CD9-LEL Variants. The thermal
stability of the murine CD9-LEL variants was monitored by tracking the circular dichroism
signal of the dimerization mutant constructs at 222nm. Temperature was controlled by a
thermal jacket and the signal was monitored as described in Chapter 2. A) The thermal
denaturation profile of the mCD9LEL*V 115R/L1 19RNV186R/F87R protein is illustrated in
pink. The midpoint temprerature of thermal denaturation was derived by calculating the
second moment of the thermal denaturation profile and monitoring its transition across zero.
The midpoint of thermal denaturation is illustrated by a green arrow. Thermal renaturation is
illustrated in blue (completely matching and overlaid by denaturation profile). B) The thermal
denaturation/renaturation profile of the mCD9LEL*V 15D/L119D/V 186R/F 187R protein.
The graph is as in A.
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Figure 4.6 Purification and Antigenicity of murine CD9-LEL Variants. After crudely
assessing KMC8 antigenicity of alanine-scanned mCD9-LEL variants, two mutations:
mCD9LEL*K158A and mCD9LEL*Q159A were chosen for further study. Large-scale
amounts of mCD9-LEL variants were expressed and partially purified over Ni-NTA agarose as
described previously. Samples were analyzed by reverse-phase HPLC and protein content was
monitored by absorbance at 229nm as described. A) The reverse-phase HPLC trace of the
mCD9LEL*K158A variant revealed a recognizable, analogous profile to the mCD9-LELwt
profile. However, what we suspect is the correctly-folded protein isomer (as denoted by an
asterisk) could not be resolved from a second protein isomer. This protein variant was not
pursued further. B) The reverse-phase HPLC trace of the mCD9LEL*Q159A variant revealed
two peaks characteristic of the mCD9-LEL protein. Both peaks were purified for further
analysis. C) Western blot analysis of the mCD9LELwt and mCD9LEL*Q159A protein
antigenicities. Equal amounts of the proteins were analyzed on a 18% SDS-PAGE gel and
probed with the KMC8 antibody. At higher exposure, trace amounts of KMC8 antigenicity of
the mCD9LEL*Q159A variant could be detected. It is unclear if this is due to residual epitope
antigenicity or contaminating mCD9LELwt from the adjacent well. No other bands were
detected by Western analysis.
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Circular Dichroism Wavelength Scan of
mCD9-LEL*Q159A-P1 and mCD9-LEL*Q1 59A-P2
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Figure 4.7 Biophysical Analysis of the mCD9LEL*Q159A Variant. A) Circular dichroism
spectra were collected under standard conditions. Minima at 222 and 208nm were clearly
observed. Circular dichroism spectru of the first purifiable peak of the mCD9LEL*Q159A
variant, called Q159Apl, was markedly different from the second purifiable peak, Q159Ap2.
The Q159Ap2 circular dichroism spectrum is characteristic of a mix between a-helix and
unfolded secondary structures. B) Thermal denaturation profiles of the non-antigenic
mCD9LEL*Q159A variant reveals that it is autonomously folding. The thermal denaturation
profile of Q159Apl is charted in blue and the renaturation profile is charted in pink. Q159Ap2
is yellow and aqua, respectively. The temperature midpoint of thermal denaturation was
computed to be 53 0C.
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Figure 4.8 Fab Fragment Purification of the KMC8 Antibody. Purified KMC8 antibody was
digested with papain, and stopped with iodoacetamide. A) Digested KMC8 was loaded onto a
Superdex 200HR 10/30 column with PBS at a flow rate of 0.4ml/min using an AKTA/FPLC.
Protein content was monitored continuously at 280nm and mls of buffer post-sample injection
is graphed on the X-axis. Absorbance at 280nm is graphed in arbitrary units on the Y-axis
(profiles were multiplied by a scalar to bring all spectra into range). Protein profiles of gel
filtration standards are drawn in stippled black with reference peaks labeled. The digested
KMC8 protein profile is drawn in solid blue, with the whole IgG , Fc, and Fab fragments
labeled. Eluted fractions were collected every 0.5mls. B) Sequential, eluted fractions were
analyzed by non-reducing 12% SDS-PAGE followed (non-quantitatively) by silver stain.
Whole IgG, Fc, and Fab fragments were clearly identifiable and are labeled. The migration
position of the Fab fragment is labeled in red. Eluted fractions are labeled by the mls of buffer
eluted from the gel filtration column post-sample injection. Samples 15 and 15.5, which were
used for subsequent analyses, are labeled with red asterisks. The purification procedure was

repeated several times to yield sufficient quantities of the KMC8 Fab fragment.
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Figure 4.9 Gel Filtration Analysis of KMC8 and mCD9-LEL proteins. All proteins were
analyzed by gel filtration chromatography under similar conditions to those described in Figure
4.8. Mls of buffer post-sample injection is graphed on the X-axis and arbitrary absorbance
units at 280nm are graphed on the Y-axis. Molecular weight reference standards are identical
to those used previously and the profiles are drawn in black. The KMC8 Fab fragment profile
is drawn in red. The mCD9-LEL profile is drawn in green and the co-incubated KMC8
Fab/mCD9-LEL profile is drawn in blue. A contaminating KMC8 Fc fragment, which did not
shift upon co-incubation is indicated with a gray arrow. Apparent molecular weights of each
protein (as calculated relative to the gel filtration standards) is indicated with arrows below the
chart.
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Figure 4.10 SDS-PAGE Analysis of Eluted Gel Filtration Fractions. Sequentially eluted
sample were collected from the previous gel filtration run (drawn in blue in Figure 4.10) and
analyzed by SDS-PAGE. The fraction number is denoted at the top of the gels, with earlier
eluting fractions to the left of the gel. In the top panel, the non-reducing SDS-PAGE gel was
analyzed by Coomassie analysis and the migratory positions of the KMC8 Fab and the KMC8
Fc fragments are denoted to the right. In the bottom panel, the mCD9LEL protein (which
could not be detected by SDS-PAGE) was detected by assayed by Western blot analysis using
the antibody KMC8 as a primary antibody. Theoretical and observed (boxed) positions of the
complex relative to the eluted fractions are denoted below the bottom panel.
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Chapter 5

Oligomerization Studies of
the CD9 Protein

These experiments were conceived by Christopher C. Liu and Richard 0. Hynes. All
experiments were carried out by Christopher C. Liu. All errors are my own.
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Introduction:

Previously, we have described our biophysical, biochemical and molecular

characterization of the murine CD9-LEL protein. These results suggested that the

mCD9-LEL protein is a a-helical dimer. This dimer consists of two subdomains: a

conserved ca-helical dimerization domain, and a less conserved, antigenic region which

we propose is responsible for interacting with non-tetraspanin ligands.

Historically, tetraspanins were identified as the targets of monoclonal antibodies

that perturbed cellular proliferation, adhesion, and differentiation (Maecker, Todd et al.

1997). As a result, there are a panoply of well-characterized antibodies directed against

tetraspanins. Readily available and highly characterized antibodies against tetraspanins

directed the bulk of biochemical analysis to focus on immunoprecipitations interactions.

A wide range of binding partners have been proposed to interact with tetraspanins,

including homotypic (tetraspanin/tetraspanin) (Rubinstein, Le Naour et al. 1996) and

heterotypic (tetraspanin/non-tetraspanin) (Boucheix and Rubinstein 2001) associations.

These protein complexes may be composed of integrins (Berditchevski 2001), major

histocompatibility class proteins (Szollosi, Horejsi et al. 1996), signaling molecules

(Hemler 2003), and other tetraspanins (Rubinstein, Le Naour et al. 1996). Given the

wide range of binding partners, immunoprecipitated tetraspanin interactions have been

classified into categories based upon a series of increasingly stringent detergent

conditions (Hemler 2001). Very few heterotypic (tetraspanin/non-tetraspanin) and

homotypic (tetraspanin/tetraspanin) interactions immunoprecipitate under standard

conditions (1%TX-100). The widespread use of milder detergent conditions, such as

CHAPS and Brij97, 98, and 99 result in the precipitation of a greater variety of

tetraspanin-ligands including integrins, MHC proteins, CD4 (Imai, Kakizaki et al. 1995),

CD8 (Imai and Yoshie 1993), and each other.

A limited number of heterotypic interactions have been characterized in TX-100

or digitonin. These interactions are robust and of high stoichiometry (Stipp, Orlicky et al.

2000). Strikingly, although there has been widespread speculation about the existence of

a tetraspanin web (Levy and Shoham 2005) or tetraspanin-enriched microdomains

(Cherukuri, Shoham et al. 2004), homotypic (tetraspanin/tetraspanin) interactions are not

robust and are only detected under mild detergent conditions.
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Given the high thermal stability of the mCD9-LEL, we hypothesized that full-

length CD9 homooligomerization is robust and detectable under stringent detergent

conditions. In this chapter, we present several methodologies to probe murine CD9

oligomerization. Surprisingly, we observed CD9 oligomers only under weak detergent

conditions (CHAPS) (Chamberlain 2004) and not under stringent detergent conditions

(TX-100 or RIPA). Although in many ways inconclusive, our results are consistent with

published and unpublished data in the tetraspanin field.
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Materials and methods:

Full-Length CD9 construction and Expression:

Oligonucleotides CL191 and CL207 were designed to amplify the full-length

murine CD9 cDNAs with flanking EcoRI (5') and NotI (3') restriction enzyme sites.

CL191: 5'-CCGGAATTCATGCCGGTCAAAGGAGGCACC-3'

CL207: 5'-ATAAGAATGCGGCCGCGACCATCTCGCGGTTCCTG-3'

These sites were used to insert the mCD9 cDNA into the multiple cloning site of

pCDNA3.1 myc-HIS and pCDNA3.1V5-His eukaryotic epitope-tagged vectors

(Invitrogen). Vectors were checked for proper subcloning by DNA sequencing. Large

quantities of vector were purified from DHSo5' E. coli cells using the Qiagen Maxi-Prep

system and quantified by monitoring absorbance at 260/280nm.

Epitope-tagged vectors were transfected individually or in pairs into COS-7 cells

with the Fugene transfection kit according to manufactorer's instructions. In brief, 3 Pl

of Fugene transfection reagent (Roche) were mixed with 1 g of DNA and incubated in

100l1s of DMEM serum-free media for 20 minutes. This mix was then added in a drop-

wise fashion to freshly fed COS-7 cells in E4HG/10%FBS at 90% confluency.

Forty-eight hours post-transfection, cells were washed in PBS+Ca++/Mg++, lifted

off the plate with a scraper, aliquoted, and lysed in buffer containing either 1%CHAP,

1%TX-100 or RIPA (150mM NaC1, 20mM Tris, .1%SDS, 1%NP-40, 0.5%

deoxycholate, pH7.4). Lysates were cleared of particulates by centrifugation and murine

CD9 insoluble fraction was solubilized in X SDS-loading buffer. Total protein content

was monitored by the microBCA (Pierce) as per the manufacturer's instructions.

Immunoprecipitation of Epitope-Tagged CD9:

Anti-mouse IgG-conjugated agarose beads (Sigma) were washed in detergent

buffer and incubated with two /gs of either anti-myc or anti-V5 monoclonal antibody

(Invitrogen) for 2 hours at 4°C with agitation. Excess, unbound antibody was removed

from the antibody-bound beads by sequential centrifugation and washing (3X in total).

Concurrently, cell lysates were pre-cleared by the addition of anti-mouse IgG-conjugated
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agarose (Sigma) (without anti-epitope antibodies) for 2 hours at 40 C with agitation.

Agarose beads were removed by centrifugation. Pre-cleared cell lysates were added to

antibody-bound beads and rocked overnight at 40 C. Agarose beads were washed 3X with

detergent buffer to clear unbound proteins. Bound proteins were eluted by the addition of

LX SDS-loading buffer (Bio-Rad) and incubation at 100°C for 10 minutes. Eluted

proteins were loaded onto 12% SDS-PAGE gels and analyzed by Western blotting under

non-reducing conditions.

Cell-Surface Labelling:

Forty-eight hours post-transfection, cells were washed 3X with PBS+Ca++/Mg++.

Fresh sulfo-NHS-LC-biotin (Pierce) was added to PBS+ Ca++/Mg++ to a final

concentration of 0. lmg/ml and allowed to react for 30' at 37C/5%CO 2. Sequentially

washing and incubation with Tris-buffered saline for a total of 10' quenched the

reactions. Cells were harvested as described previously with the cross-linker-quenching

TBS replacing PBS in all solutions. Immunoprecipitation reactions were carried out as

previously described.

Gel Filtration Analysis:

Transfected cells were freshly lysed in RIPA buffer and cleared by centrifugation.

Soluble cell lysate was loaded onto a Superdex 200HR 10/30 column (Amersham

Pharmacia), pre-equilibrated with PBS at a flow rate of 0.4 ml/min using a AKTA/FPLC

(Amersham Pharmacia). Due to the complexity of the loaded proteins, tracking protein

content at 280nm did not yield meaningful information. Eluted fractions were collected

every 0.3mls and analyzed for CD9 content by Western blotting as previously described.

Native Blue Electrophoresis:

Native-blue electrophoresis (NBE) is a polyacrylamide gel electrophoresis

(PAGE) technique that uses the amphipathic qualities of the Coomassie Brilliant Blue

(CBB) protein-binding dye instead of ionic detergent to probe native macromolecular

complexes of transmembrane proteins (Schagger and von Jagow 1991). This technique

bypasses the requirement for highly pure transmembrane protein necessary in traditional
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analyses of protein complexes. Cells are lysed under detergent conditions and the

addition of excess CBB serves both to displace non-ionic detergents and to introduce a

charge onto proteins to allow electrophoresis (Schagger, Cramer et al. 1994).

For native-blue electrophoresis, a 30% acrylamide stock of 29:1 monomer to

cross-linker was made from powder. A 4X buffer solution consists of 200mM BisTris

pH 7.0 and 2M aminocaproic acid (Sigma). Buffer was mixed with the acrylamide stock

to make a 6%XO and an 18% acrylamide stock respectively. TEMED was added to .05%

and 10% AF'S was added to .5% to catalyze acrylamide cross-linking and continuous

gradient gels were poured into a 5-8XlOcm multi-gel caster (Hoefer) and overlaid with

water-saturated butanol. Upon polymerization, a 2.5% acrylamide stacker was poured

with the BisTris/amino-caproic acid buffer as above.

Transfected cells were freshly lysed in either CHAPS, TX-100, or RIPA buffers

as for immunoprecipitations. An equal volume of native-blue loading buffer (5%

CBB/1OOmM BisTris pH7.0/0.5M amino-caproic acid/pH7.0) was added and cell lysates

were loaded onto the gradient gels without boiling. Anode buffer (without CBB) was

composed of 25mM BisTris, 0.5M amino-caproic acid, pH7.0. Cathode buffer was

composed of 50mM Tricine, 15mM BisTris supplemented with .01% CBB. When the

CBB dye front reached the end of the gel, the cathode buffer was replaced without CBB

and the CBB was allowed to electrophorese off the gel. Gels were washed in H20 to

remove excess dye (which can compete with protein binding) and transferred to

nitrocellulose in 10mM CAPS pH1 1.0. Protein blots were blocked and developed with

anti-Myc and anti-V5 antibodies as previous.

Cross-Linking of CD9:

Co-transfected cells were freshly lysed in either CHAPS, TX-100, or RIPA

buffers as described previously. A fresh stock of 40mg/ml of dithio-bis succinimidyl

propionate (DSP) (Pierce) was dissolved in dimethyl sulfoxide. Whole cell lysates were

cross-linked with 0, 0.1, 0.4, or 0.8 mg/ml of DSP cross-linker (DMSO final

concentration is 1%) and allowed to incubate at RT for 1 hour. Reactions were quenched

with the addition of 1M Tris pH 8.0 to a final concentration of 200yM. 2X SDS-Loading
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buffer was added immediately and samples were loaded onto SDS-PAGE gels for

Western analysis.
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Results:

Detergent Stability of CD9 Homooligomers

Detergents of varying stringency have been used to characterize both homotypic

(tetraspanin/tetraspanin) and heterotypic (tetraspanin/non-tetraspanin) tetraspanin

interactions (Berditchevski, Zutter et al. 1996). As detergents of increasing stringency

are utilized, the complexity of immunoprecipitated protein complexes decreases. In the

presence of weak, non-ionic detergents (CHAPS), many homotypic and heterotypic

interactions occur. Under stronger, non-ionic detergent conditions (TX-100), homotypic

interactions disappear and only a small subset of strong heterotypic interactions remain

(Hemler 2003). With ionic detergents (RIPA), almost no interactions are detected

(Figure 5.1).

We utilized this array of detergents to monitor the stringency of homotypic

intraspecies tetraspanin interactions. The protein CD9 was tagged with either a V5 or

Myc epitope in similar vectors (pCDNA3. 1) and co-transfected into COS-7 cells. Protein

production was monitored by Western blot analysis and optimal expression was at 48

hours post-transfection (data not shown). Cells were lysed and aliquoted in either

CHAPS, TX-100, or RIPA buffer (Figure 5.1). We tracked fractionation of CD9 by

Western blot and although a bit of CD9 was detected in the CHAPS-insoluble portion,

minimal insoluble CD9 was detected in stronger detergents (Figure 5.2A). This figure

overrepresents the proportion of insoluble CD9, as correcting for volume, the insoluble

fraction is approximately 5 times as concentrated as the soluble portion. Cell-surface

biotinylation with a membrane-impermeable biotin cross-linker revealed that a significant

portion of CD9 was biotinylated and presumably reached the cell surface (Figure 5.2B).

CD9 molecules were immunoprecipitated by either anti-Myc or anti-V5

antibodies pre-bound to anti-mouse IgG agarose beads. Bound protein complexes were

eluted from the beads with SDS and analyzed by SDS-PAGE and Western blot analysis.

The efficiency of CD9 immunoprecipitation was analyzed by Western blot. Co-

immunoprecipitation of the complementary, co-transfected CD9 molecule was also

analyzed by Western blot. We observed co-immunoprecipitation only in weak, non-ionic

CHAPS buffer and no co-immunoprecipitation in either TX-100 or RIPA buffer (Figure

5.2C). This detergent stringency of co-immunoprecipitation was observed regardless of
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which detergent epitope-tagged CD9 was bound to agarose. The immunoreactive

doublets observed in all gels are consistent with published accounts.

Gel Filtration Analysis of CD9 Oligomerization State:

As we did not observe co-immunoprecipitation of co-transfected epitope-tagged

CD9 constructs under stringent detergent conditions, we attempted to get an apparent

molecular weight of the CD9 molecule. The native molecular weight of monomeric CD9

is approximately 25kDa (as assessed both by SDS-PAGE and the predicted molecular

weight of the protein without glycosylation).

Transfected cells were lysed in stringent, ionic detergent buffer (RIPA) and the

cell lysate was cleared of particulate matter by centrifugation. Cell lysate was loaded

onto a gel filtration column pre-equilibrated with RIPA buffer. Due to both the high

absorbance background of the RIPA buffer and protein lysate complexity, monitoring at

OD280 was not informative. As a result, protein fractions were collected, analyzed by

SDS-PAGE and Western blot analysis and CD9 elution was estimated by densitometry.

The CD9 elution profile was compared to gel filtration markers run under the same

conditions. We derived an estimated molecular weight of 130-kDa for the CD9/micellar

complex (Figure 5.3A). It is difficult to estimate an oligomeric state from these results.

Although unlikely, it is plausible that the binding of detergent molecules may add 100-

kDa to the native molecular weight of a CD9 monomer through binding to the four

transmembrane regions, native palmitoylation sites, and possibly large, exposed

hydrophobic surfaces in the CD9-LEL (Kitadokoro, Bordo et al. 2001). However, the

observed 130-kDA apparent molecular weight is also consistent with a detergent-bound

CD9-LEL dimer.

Native Blue Electrophoresis Analysis of CD9 Oligomerization State:

Although SDS-PAGE allows precise molecular weight analysis of a protein, it

does not preserve quarternary protein complexes. One method to circumvent this is to

use native-blue electrophoresis, a specialized PAGE technique (Schagger and von Jagow

1991). This technique utilizes the amphiphilic nature of the common protein dye,

Coomassie Brilliant Blue R-250 (CBB), to solubilize integral membrane proteins. By

10l



providing a negative charge to bound proteins, the Coomassie dye also allows all proteins

(regardless of native pI) to electrophorese and helps to limit protein aggregation. These

attractive attributes persuaded us to attempt to obtain a more precise molecular weight of

the CD9 complex than gel filtration allowed (Schagger, Cramer et al. 1994).

We lysed transfected COS cells expressing CD9 in detergents of varying

strengths. This allowed defined quarternary membrane protein complex solubilization.

Subsequent to lysis, we added CBB loading buffer to ensure membrane solubilization in

the native-blue PAGE system. After electrophoresis, proteins were transferred to

nitrocellulose and analyzed by Western blotting according to standard methods (Figure

5.4).

Cell lysates prepared with detergents of varying strengths resulted in quite

different electrophoretic mobilities. CHAPS lysis resulted in a wide migratory range of

the CD9 complexes with a much lower apparent molecular weight complex evident when

cells were lysed in stronger detergents. These results suggest that CHAPS lysis results in

much greater heterogeneity of CD9 complexes than either TX-100 or RIPA

solubilization. Migration of the 120-kD epitope-tagged LacZ (beta-galactosidase) is also

indicated (Figure 5.4). The LacZ protein contains no transmembrane segments but is

homo-tetrameric, and it is not clear if subunit binding was disrupted with CBB dye

binding. Soluble, protein markers (which contained some sodium dodecyl sulfate)

migrated as broad bands. However, we estimated the TX-100 solubilized CD9 complex

to be between 25-50-kDas in molecular weight. Lastly, it is clear that the CD9

complexes behave differently when solubilized in CHAPS versus stronger detergent. It is

difficult to draw conclusions about CD9 homooligomerization from this series of

experiments.

Cross-Linking Analysis of CD9 proteins:

Chemical cross-linkers are often used to identify protein partners in close

proximity. We chose to use a range of chemical cross-linkers at different concentrations

to explore oligomerization of CD9 molecules (Kovalenko, Yang et al. 2004). In brief,

equal amounts of the CD9 molecule were incubated with an amine-specific cross-linker
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for a period of time. The reaction was then quenched with Tris buffer (which contains an

amine) and protein complexes were analyzed by non-reducing SDS-PAGE.

DSP is a 12A cross-linker that reacts with amine groups (Figure 5.5A). With a

CHAPS solubilized CD9 lysate, addition of the DSP cross-linker resulted in a higher

molecular weight CD9 species corresponding to a covalent dimer. Higher order complex

formation was not observed when CD9 was solubilized in more stringent detergents such

as TX-100 or RIPA (Figure 5.5B). Although we tried a panel of amino-specific cross-

linkers with varying spacer arms, only DSP was successful in capturing a covalent dimer

(data not shown). These observations are consistent with the notion that stronger

detergent precludes the formation of CD9 quarternary complexes.

Detergent stability of tetraspanin-LEL proteins:

To probe the detergent stability of tetraspanin-LEL-mediated oligomerization, we

chose to estimate the apparent molecular weight of CD9 in TX-100 buffer. We chose this

detergent condition as it did not allow oligomerization between CD9 molecules. Our

biophysical analysis of the mCD9-LEL protein in isolation suggested that LEL-mediated

dimerization would be insensitive to non-ionic detergents. Gel filtration analysis of

molecular weight standards in TX-100 resulted in significant noise. However, it was

possible to estimate approximate molecular weights. Utilizing these standards, we

estimate that the mCD9-LEL in TX-100 has an apparent molecular weight of 30-kDa

suggestive of a dimer with bound detergent (data not shown). Given the hydrophobic

head domain of the mCD9-LEL, it is plausible that detergent-bound molecules may have

shifted the molecular weight of the mCD9-LEL. The observed apparent molecular

weight of the mCD9-LEL protein in the absence of detergent is 21-kDa (Chapter 4).
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Discussion.

The most common method to probe tetraspanin interactions is to observe these

interactions in a range of detergent conditions. Strong interactions are characterized in

stronger non-ionic detergents such as TX-100. Extraction of tetraspanin complexes under

weaker detergent stringency results in many binding partners. Under weaker stringency,

it is not clear if protein interactions are direct or indirect, as immunoprecipitates contain

many tetraspanin and non-tetraspanin proteins. These observations have led to the

hypothesis of a tetraspanin web, or a network of tetraspanin molecules that serves as an

organizing nucleus at the cell surface (Rubinstein, Le Naour et al. 1996).

The goal of this chapter was to utilize a panel of detergents to observe conditions

under which the CD9 molecule could form homodimers. Our biophysical analysis on

the mCD9-LEL protein suggests that LEL-mediated oligomerization is very stable. Both

a high midpoint of thermal denaturation and a large hydrophobic dimerization surface (in

the case of hCD8 1-LEL structure) suggest that a constitutive tetraspanin-LEL mediated

dimer sits at the center of the tetraspanin web.

Empirically, we have shown previously that the mCD9-LEL is structurally similar

to the hCD8 I-LEL crystal structure. If the mCD9-LEL structure is represented in the

whole molecule, there are several hydrophobic interfaces which may bind detergent

molecules. The most prominent hydrophobic domain is the four transmembrane

segments, which we assume require a desolvated environment to maintain solubility.

Furthermore., the CD9 molecule has been shown to contain six potential palmitoylation

sites (Charrin, Manie et al. 2002), further increasing the size of the CD9 membrane-

bound domains. Therefore, unlike the mCD9-LEL, which is soluble in PBS, the CD9

molecule requires detergent solubilization. The requisite addition of detergents for our

studies of the, CD9 molecule have severely limited out ability to estimate a molecular

weight for the CD9 complex (gel filtration studies). Native-blue electrophoresis, which

should give higher resolution of transmembrane protein complex molecular weight

(Schagger, Cramer et al. 1994) revealed lower approximate molecular weights than gel

filtration, but still did not eliminate the possibility of a dimer. CHAPS solubilization of

CD9 molecules revealed a broad heterogeneous spread of complexes, further reinforcing
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the difficulties to derive meaningful information in the presence of weak detergents. It is

clear that we are unable to identify a definitive oligomerization state using these assays.

Our most surprising result is the ability of strong non-ionic detergents (TX-100)

to disrupt CD9 oligomerization. There are many possible reasons for these negative

results. As noted in Chapter 1, studies of the CD9-LEL in isolation may not be

representative of the intact molecule. The presence of four transmembrane domains

(which is approximately equivalent to the molecular weight of the CD9-LEL) may

perturb the structure of the CD9-LEL domain, resulting in reduced oligomerization

capacity. The short extracellular loop and palmitoylation may also play critical roles in

mitigating CD9 oligomerization. Inhibition of palmitoylation may play a role in lateral

interactions among tetraspanins (Charrin, Manie et al. 2002).

The functional relevance of the a-helical, dimeric hCD81-LEL structure is still

widely debated in the tetraspanin community (Levy and Shoham 2005). Although some

role for tetraspanin-LEL mediated dimerization is not disputed, it is still unclear to what

degree extracellular oligomerization is a central feature of tetraspanin function. The root

of this argument lies in the amino- and carboxy-termini of the ordered portion visualized

in the hCD8 I-LEL structure (see Figure 3.1). Although each amino-acid chain's two

termini are in close proximity in the crystal structure (Kitadokoro, Bordo et al. 2001), the

antiparallel nature of the dimerization interface points each set of transmembrane 3 (N-

terminal) and transmembrane 4 (C-terminal) helices in opposite directions. I believe that

this view can be reconciled by adding an additional half-turn to the terminus of either

helix A or helix E. Given the results in this chapter, the answer may lie between

complete dismissal of the dimeric crystal structure and my rationalization. Currently, I

believe that inclusion of the tetraspanin transmembrane domains (as with the experiments

discussed in this chapter) lowers the oligomeric stability of the mCD9-LEL. These

confusing results have been discussed in more detail in Chapter 1.

Regardless of how directly our biophysical studies of the mCD9-LEL protein

correlate with tetraspanin behavior at the cell-surface, the mCD9-LEL domain in

isolation proves to inhibit fertilization, closely matching experimental studies with both

anti-CD9 antibodies and also CD9-null mice. These experiments are described in the

remainder of this thesis.
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Figure 5.1 Epitope-Tagged CD9 Transfection and Lysis: Full-length cDNAs of the murine
CD9 were tagged at the carboxyl-terminus with either a Myc-6XHis or a V5-6XHis.
These constructs were transiently transfected into COS7 cells and ubiquitous expression was
driven by the C.MV promoter. Post-transfection, cells were scraped, lysed with buffer
containing either CHAPS, TX100 or RIPA, and aliquoted. Tetraspanin-protein interactions
have been characterized by the detergent sensitivity of their association and the detergent
conditions we chose to explore are depicted.
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Figure 5.2 Epitope-Tagged CD9 Is Soluble, Cell-Surface Presented, and Associates Only in
CHAPS A) Transfected cell lysates were separated into detergent soluble and insoluble
portions and analyzed by SDS-PAGE followed by Western blot analysis against the epitope

tag. We loaded approximately 5X the amount of insoluble portion as soluble. Note that the

observed doublets are consistent with other publications. B) Post-transfection, cells were

labeled with the membrane-impermeable NHS-LC-biotin cross-linker. Cells were then lysed

under varying detergent conditions and immunoprecipitated. Bound protein was analyzed by

SDS-PAGE followed by Western blotting against either the epitope-tags or the biotin label.

C) Transfected cells were lysed under varying detergent conditions, aliqoted, and
immunoprecipitated. Bound proteins were analyzed by SDS-PAGE followed by Western
analysis against both the immunoprecipitating epitope and its complement.
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Figure 5.3 Gel Filtration Analysis of CD9/RIPA Lysate: A) Transfected cells were lysed and
cleared of particulates by centrifugation. This portion was loaded onto a Superdex200HR gel
filtration column and fractions were collected every 0.3mls. Each fraction was analyzed by
SDS-PAGE/Western analysis and protein was quantified by densitometry. Comparison to gel
filtration standards analyzed in RIPA buffer gave an apparent molecular weightfor the CD9
peak of 130-kDa. CD9 eluted over the range indicated by a red line. Maximal protein elution
is indicated by the arrow. B) Western blot analysis of CD9 at various eluting fractions.
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Figure 5.4 Native Blue-Electrophoresis: A) Picture of a transferred native-blue
electrophoresis gel after transfer to nitrocellulose. M = marker; C = CHAPS; T = TX-100; R =
RIPA. Lanes are presented in sets of three, with transfections of either Myc (M), Myc and V5
cotransfected (MV) or V5 (V) indicated. Singly epitope-tag transfections include the
complementary-tagged LacZ control. The triplet lanes with P-ME had beta-mercaptoethanol
added to 10-% volume prior to loading. M in the first and last lane denotes molecular weight
markers. B) Western blot analysis of native-blue gel with the same lane orientation as in A.
The migration position of LacZ is indicated as are myc-tagged CD9 molecules.
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Figure 5.5 DSP Cross-linking of CD9: A) Chemical diagram of the bi-functional amine

specific DSP cross-linker. B) Transfected cells expressing the V5/CD9 protein were lysed

under varying detergent conditions. The concentration of DSP cross-linker is indicated below

the Western blot with the negative control indicated in the leftmost lane. All samples were

analyzed by 12% non-reducing SDS-PAGE/Western. Bands corresponding to a covalent

dimer and trimer are indicated with red arrows to the left of the blot.



Chapter 6

Purification and Characterization of Human
Tetraspanin Large Extracellular Loops

These experiments were conceived by Christopher C. Liu and Peter S. Kim. All
experiments were carried out by Christopher C. Liu. All errors are my own.
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Introduction:

We have described the biophysical, biochemical, and molecular analysis of the

murine CD9-LEL. Our results with the large-extracellular loop in isolation have not

completely translated into experiments with the intact molecule, indicating that other

domains of the protein (short extracellular loop, transmembranes, palmitoylation) may

contribute to the state of oligomerization of the murine CD9 protein (Charrin, Manie et

al. 2002). Does our characterization of the mCD9-LEL as an c-helical dimer translate to

other tetraspanin family members?

There are 28 mammalian tetraspanins, with many orthologues characterized in

Drosophila,(Fradkin, Kamphorst et al. 2002) (Todres, Nardi et al. 2000) C.

elegans,(Moribe, Yochem et al. 2004) and zebrafish (Maecker, Todd et al. 1997). Of

this diverse family of genes, CD9 and CD81 represent two similar members with the

simplest large-extracellular loops as determined by length, disulfide-bonding pattern, and

glycosylation (Seigneuret, Delaguillaumie et al. 2001). More complex tetraspanin-LELs

may contain six, seven, or even eight cysteine residues in this domain. Although widely

expressed, there are several tetraspanin-family members that are both restricted in

function and expression (Levy, Todd et al. 1998). Most notably, the uroplakins form a

uroepithelial lining of the bladder and are essential for the maintenance of organellar

plasticity (Wu, Lin et al. 1994). Uroplakins are expressed at such high concentrations on

the bladder epithelium that they form two-dimensional lattices which are amenable to

electron microscopic analysis (Min, Zhou et al. 2003).

By applying our methodology to more canonical tetraspanin family members, we

explore the limits of our technology as applied to tetraspanin-LELs of greater complexity.

As most tetraspanins (but not CD9 or CD81) have putative glycosylation sites in their

respective large extracellular loops, what role does this have on the folding stability of

the LELs? Do other tetraspanin-LELs have similar biophysical characteristics? May we

develop an array of useful reagents to study the range of cellular functions in which

tetraspanins are involved? Will these tetraspanin-LELs serve as functional controls in

inhibition assays? With a panel of tetraspanin-LELs, we may also explore the possibility

of tetraspanin-LEL-mediated hetero-oligomerization. This chapter describes the

expansion of our methodology to the purification and characterization of human
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tetraspanin-L-ELs.
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Materials and methods:

Construction of human tetraspanin-LEL constructs:

Human tetraspanin cDNAs were kindly provided by Martin Hemler (Dana-Farber

Cancer Institute, Harvard Medical School, Boston, MA). Oligonucleotide primers

(Research Genetics) were designed to amplify the tetraspanin-LEL domain based upon

the region predicted to lie between transmembrane 3 and transmembrane 4.

For cloning of the human CD9-LEL, we used

CL77: 5'-C(GCTAGCTAGCTCCCACAAGGATGAGGTGATTAAGG-3'

('L78: 5'-C(-GCTCGAGGTGGAATTTATTGTCGAAGACCTC-3'

For cloning of the human CD63-LEL, we used

CL87: 5'-CGCTAGCTAGCAGAGATAAGGTGATGTCAGAGTTTAATAAC-3'

CL88: 5'-CCGCTCGAGCACATTTTTCCTCAGCCAGCCC-3'

For cloning of the human CD8 I1-LEL, we used

CL85: 5 '-CGCTAGCTAGCTTTGTCAACAAGGACCAGATCGCC-3'

CL86: 5'-CCGCTCGAGCTTCCCGGAGAAGAGGTCATCGATC-3'

For cloning of the human CD151-LEL, we used

CL79: 5'-CGCTAGCTAGCGCCTACTACCAGCAGCTGAACACGG-3'

CL80: 5'-CCGCTCGAGCCTCAGGTGCTCCTGGATGAAGGTC-3'

For cloning of the human CO-029-LEL, we used

CL127: 5'-CGCTAGCTAGCAAATCTAAGTCTGATCGC-3'

CL128: 5'-CCGCTCGAGATTTTTTGCCAAGAAGTC-3'

Human tetraspanin-LEL fragments were PCR-amplified and inserted between the

NheI and XhoI restriction sites of the carboxy-terminal hexahistidine expression vector

pET24a (Novagen). All resulting plasmids were sequenced to check for errors.

Plasmids were transformed into BL21/pLysS competent cells (Novagen) for

protein expression as described previously (see Chapter 2). In brief, expressed proteins

from inclusion bodies were solubilized in guanidine-HCl buffer and partially purified

over Ni-NTA chromatography (Qiagen). The solubilized protein was then lowered to
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pH2 and analyzed by reverse-phase C18 HPLC with protein content monitored as

absorbance at 229nm.

Qualitative dot-blot Analysis and Purification of Human Tetraspanin-LELs:

HPLC-eluted protein peaks were collected and centrifuged under vacuum to

remove the acetonitrile. For qualitative dot blots, 1 microliter of each peak was added to

dry nitrocellulose membrane and air-dried. Membranes were blocked for 2 hours at room

temperature and the Westerns were developed by a standard protocol (see Chapter 2).

Protein immunoreactivity was probed with the following mouse anti-human monoclonal

antibodies (all from BD Pharmingen): mouse anti-human CD9 clone M-L13, mouse-anti-

human CD63 clone H5C6, mouse anti-human CD81 clone JS-81, and mouse anti-human

CD151 clone 14A2.H1 at 1:1000 dilutions.

Simulated Disulfide-Bond Shuffling:

For simulated disulfide-bond shuffling experiments, oxidized tetraspanin-LEL

proteins in denaturing buffer (6M Guanidine-HCl, pH 8.0) were diluted 10-fold into PBS

containing 2mM reduced glutathione/0.5mM oxidized glutathione. The glutathione-

containing protein solution was mixed overnight, brought to pH 2.0 with 5% HOAc,

clarified by filtration through a 0.21jM syringe filter, and loaded onto a reverse-phase

HPLC under standard conditions. Observed peaks were analyzed as above.

Biophysical Analysis:

Purified, immunoreactive human tetraspanin-LEL species were monitored for

helicity and thermal denaturation by circular dichroism as described in Chapter 2. All

proteins were monitored at 10M concentrations at 25°C. For thermal denaturation and

renaturation profiles, proteins were heated in a step-wise fashion to 80°C before

renaturation. When an antibody was unavailable, individual tetraspanin-LEL HPLC-

purified protein peaks were lyophilized and monitored for helicity by circular dichroism.

For oligomerization state analysis, human tetraspanin-LELs were loaded in PBS onto a

Superdex200HR column as described in Chapter 4.
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Heterodimer Experiments:

To probe for heterodimer formation, lyophilized tetraspanin-LELs were

resuspended in PBS and mixed individually and together to a final concentration of

LIO1M each. Samples were heated in a Stratagene Robocycler PCR machine (Stratagene)

to 75°C for 10 minutes and allowed to gradually cool to room temperature. Protein

samples were analyzed using a PhastGel automated electrophoresis system (Amersham

Pharmacia) with precast pH 3-9 isoelectric focusing (IEF) gels (Amersham Pharmacia)

with IEF standards (Amersham Pharmacia). Coomassie Brilliant Blue was used to

develop IEG gels by standard techniques.
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Results:

Expression of Human Tetraspanin-LEL Proteins

Previously, we had cloned and sequenced full-length human tetraspanin cDNAs

into the retroviral expression vector pMig (data not shown) (Liu, Constantinescu et al.

2000). Tetraspanin-LELs were sublconed into the pET24a vector and protein expression

was induced and partially purified using nickel chromatography. Protein expression and

purity were monitored by 18% SDS-PAGE under non-reducing conditions (Figure 6.1).

As expected, each tetraspanin-LEL was purified as a ladder of covalently disulfide-

bonded species. The uniform migration pattern of each oligomer is typical of non-

glycosylated proteins. Varying quantities of purified protein and ratios between

individual oligomers were also observed, with the human CD81-LEL protein exhibiting

very few contaminating bands. HPLC-purified hCD9-LEL was loaded onto the gel as a

molecular weight comparison. Empirically, tetraspanin-LELs tend to migrate faster than

their predicted molecular weights, consistent with published observations (Kovalenko,

Yang et al. 2004). However, the observed migratory patterns of tetraspanin-LELs,

relative to one another was as expected. The hCD151-LEL, hCD63-LEL, and hCO-029-

LELs all contain six cysteines and are greater in length than either hCD9-LEL or hCD81-

LEL.

Purification and Characterization of Four-Cysteine Containing Tetraspanin-LEL

Proteins

Due to high sequence identity between the murine CD9-LEL and the human CD9-

LEL, we concentrated our initial efforts on the hCD9-LEL. As expected, the hCD9-LEL

had a similar protein elution profile over C18 reverse-phase HPLC as the mCD9-LEL

protein (Figure 6.2A). By dot blot analysis, immunogenicity of an antibody directed

against the hCD9-LEL protein was also restricted to a single HPLC peak, clearly

distinguishable from other isomers (Figure 6.2B). This antibody had no cross-reactivity

to other tetraspanin-LEL species. Circular dichroism analysis characterized the hCD9-

LEL protein as a a-helical dimer (Figure 6.3A). Monitoring the circular dichroism signal

of the hCD9-LEL protein over a range of temperatures revealed that this protein is
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autonomously folding. A midpoint of thermal denaturation was measured at 600C,

indicative of' a stably folded protein (Figure 6.3B).

The human CD81-LEL was readily purified and crystallized as a glutathione-S-

transferase fusion protein by the Bolognesi group (Kitadokoro, Bordo et al. 2001). In E.

coli, we expressed and partially purified significant quantities of the hCD81-LEL protein

(Figure 6.4A). Separation of hCD81-LEL species over C18-reverse phase HPLC resulted

in a significantly different elution profile from hCD9-LEL. Furthermore, hCD81-LEL

species eluted at much higher concentrations of organic buffer, suggestive of a greater

overall hydrophobic content.

Given the success of our anti-hCD9 antibody to recognize specific, well-folded

HPLC peaks, we developed a novel, rapid assay to assess the immunogenicity of various

tetraspanin-LEL peaks using dot blot analysis. Our analysis of hCD81-LEL variants

revealed that the second, not the first, C18 resolvable peak was recognized by our

antibody (Figure 6.4A). Unfortunately, it was not feasible to purify biochemical

quantities of hCD81 -LEL both due to the cross-contamination from the first (non-

immunoreactive) eluting peak and low protein yield.

To resolve these problems, we turned to the disulfide-shuffling experiments

previously described in Chapter 2. A rapid screen of reduced and oxidized glutathione

conditions directed us to a redox mix of 2mM reduced glutathione/0.5mM oxidized

glutathione. By diluting randomly oxidized hCD81-LEL protein (with an elution profile

as in Figure 6.4A), we dramatically changed the protein content of individual hCD81-

LEL isomers (Figure 6.4B). After disulfide shuffling, we saw five individual resolvable

protein peaks. The major peak, hCD81-LEL P3, was immunogenic and clearly resolved

from contaminating, non-immunoreactive hCD81-LEL isomers. Biophysical analysis of

this immunoreactive hCD81-LEL species revealed that it was also a Ca-helical dimer

(Figure 6.5A and Figure 6.5B).

Purification and Characterization of Six Cysteine-Containing Tetraspanin-LEL

Proteins

The human CD63 protein is glycosylated and contains six cysteines forming three

disulfide-bonds (Hotta, Ross et al. 1988). Separation of randomly- oxidized hCD63-LEL
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isomers over C18-reverse phase HPLC revealed multiple peaks. Unfortunately, none of

these peaks were immunoreactive to an a-hCD63 antibody (Figure 6.6A). Disulfide

shuffling under similar conditions to the hCD81-LEL protein resulted in significant

repositioning of hCD63-LEL peaks. Surprisingly, there was a dramatic shift of all peaks

to elution at a higher organic solvent concentration. The most prominent of these peaks

was immunoreactive by dot-blot analysis (Figure 6.6B), although there are presumed to

be several minor, contaminating hCD63-LEL variants. Biophysical analysis of the

immunoreactive hCD63-LEL protein was shown to be an a-helical dimer (Figure 6.7A).

Monitoring the circular dichroism signal of the hCD9-LEL protein over a range of

temperatures revealed that this protein is autonomously folding. The midpoint of thermal

denaturation was measured at 640 C, slightly higher than the hCD9-LEL. There also

appeared to be increased cooperativity of folding (relative to hCD9-LEL) and incubation

at 80°C resulted in loss of some native-like structure (Figure 6.7B).

We also attempted to purify two different tetraspanin-LELs; the hCD151-LEL

and the hCO-029-LEL (Horejsi and Vlcek 1991). Although we also had an antibody for

the hCD151-LEL, we were unable to isolate an immunoreactive hCD151-LEL species

(Figure 6.8A), even after extensive disulfide-shuffling experiments (Figure 6.8B).

Disulfide shuffling of the hCD151-LEL protein also resulted in a shifting of the protein

elution profile to higher organic solvent conditions. Irregularities in the HPLC trace are

due to nonideal HPLC performance. We did not have an antibody towards the hCO-029

protein. Random oxidation of the hCO-029 protein yielded a daunting number of

resolvable peaks (Figure 6.9A). Disulfide shuffling lowered the number of protein peaks

and shifted resolvable proteins to more aqueous elution conditions (Figure 6.9B).

Although we attempted to purify some hCD151-LEL and hCO-029-LEL species and

assessed their "native-like" conformation by circular dichroism spectroscopy, we were

unable to identify species that exhibited a a-helical structure (data not shown).

Heterodimer Formation of Tetraspanin-LEL Proteins

Our biophysical analysis of human tetraspanin-LELs indicates that each of our

purified proteins is autonomously folding. These proteins are denatured at high

temperatures and can spontaneously regain native-like a-helicity if the temperature is
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lowered. Our thermal denaturation and renaturation analyses allow empirical

determination of the thermal limits of tetraspanin-LEL refolding. For example, when the

murine CD9-LEL is denatured to 1000C it will not spontaneously renature. These results

are not surprising as under the circular dichroism conditions tested, the murine CD9 is

thermally denatured for approximately 1 hour.

Our thermal denaturation profile indicates that heating tetraspanin-LELs to 75°C

for 10 minutes does not restrict the reattainment of native ct-helicity. As a result, we

mixed CD9 and CD81 individually and in pairs at RT, thermally denatured the proteins,

and allowed spontaneous renaturation. Complex formation was analyzed under native

conditions by isoelectric focusing electrophoresis.

As expected, individual human CD9-LEL and CD8 1-LEL proteins focused as

single bands. When the CD9-LEL and CD81-LEL were mixed, denatured, and renatured,

we observed no novel bands (data not shown). We would expect a heterodimer to both

focus to an intermediate pI and also to decrease the intensity of individual CD9-LEL and

CD81-LEL focused bands. This experiment suggests that the CD9-LEL and CD81-LEL,

which are phylogenetically similar tetraspanin-LELs, do not preferentially form

heterodimers.
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Discussion:

In this chapter, we describe our experiments to purify three human tetraspanin-

LELs: hCD9-LEL, hCD63-LEL, and hCD81-LEL. These three proteins were all stable,

autonomously folding, a-helical and dimeric in nature. Although we successfully

expressed and partially purified the hCD151-LEL and hCO-029-LEL proteins, we were

unable to purify a a-helical form of these proteins, suggesting that these nickel-purified

proteins were not well folded.

Our biophysical characterization of three distinct tetraspanin-LELs strongly

suggests that a conserved a-helical, dimeric sub-domain is conserved. Biophysical

analysis of the folding stability of the hCD9-LEL, hCD8 I-LEL, and hCD63-LEL

revealed that each is approximately equal in thermal stability. The denaturation and

renaturation profiles of hCD81-LEL were particularly striking. Among all three

tetraspanin-LELs characterized, it exhibited the most cooperativity of folding, with

almost no loss of secondary structure before unfolding. This observation is consistent

with high yields of the hCD81-LEL protein relative to the hCD9-LEL and hCD63-LEL.

Our methodology is not readily applicable to tetraspanin-LELs of greater

complexity. There are many potential reasons for this. The CD9 and CD81 large

extracellular loops are some of the simplest tetraspanin-LELs both in length and in

number of disulfide connectivities. Our ability to isolate an cc-helical, dimeric version of

the CD63-LEL, which has three disulfide bonds, is encouraging, although we were not

able to expand this methodology to the CD151-LEL, which is of comparable length and

complexity to the CD63-LEL. Another reason for this deficit may be a critical

contribution of glycosylation to the folding of tetraspanin-LELs. The length of the short

extracellular loops (SELs) of all tetraspanins is conserved among all tetraspanins

(Seigneuret, Delaguillaumie et al. 2001). Although we surmise that the SEL most likely

does not contribute to the folding stability of the tetraspanin-LEL, this hypothesis can not

be dismissed. We speculate that the success of our methodology with the CD9-LEL,

CD81-LEL, and CD63-LEL may be expanded to closely related tetraspanin-LELs, but

not to tetraspanin-LELs with sequence similarity to either the CD151-LEL or the CO-

029-LEL proteins (for tetraspanin-LEL phylogeny, see Chapter 1).
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Other prokaryotic expression systems have been used to study tetraspanin-LELs.

Peter Monk's group has reported the purification of a panel of tetraspanin-LELs fused to

glutathione-S-transferase. They report successful purification of the hCD9-LEL

(Barreiro, Yanez-Mo et al. 2005), hCD81-LEL (Flint, Maidens et al. 1999), and

surprisingly., the hCD151-LEL (Peter Monk, personal communication). However,

attempts to express and purify the hCD63-LEL did not yield sufficient material (Peter

Monk, personal communication). These proteins were affinity purified over a glutathione

column and the presence of a large carrier protein precluded further analysis. By SDS-

PAGE, contaminating protein or proteolytic degradation was evident (Higginbottom,

Takahashi et al. 2003).

Currently, we are collaborating with Peter Monk to crystallize both the hCD9-

LEL and the hCD63-LEL proteins. Initial trials with the hCD9-LEL protein have not

yielded well--ordered protein crystals, consistent with our results in Chapter 3. Crystal

trials with the hCD63-LEL (which would yield the first structural insight into a

tetraspanin-LEL with three disulfide-bonds) are currently in progress.

If the lack of glycosylation precludes tetraspanin-folding, it will be necessary to

use eukaryotic expression systems to express tetraspanin-LELs. Unfortunately, an

attempt to express and purify the hCD9-LEL in S2 insect cells did not readily yield

protein expression (Jack Lawler, personal communication). There are no published

attempts to express tetraspanin-LELs in glycosylation-permissive eukaryotic systems.

There were multiple motivations to expand out methodology to other tetraspanin-

LEL family members. One motivation was to search for heterodimers. Our observation

that the murine CD9-LEL is a o-helical dimer, coupled with strong sequence

conservation among tetraspanin-LELs, suggested the possibility of heterodimers.

However, our experimental analysis of the human CD9-LEL and the human CD81-LEL

did not corroborate this hypothesis. These results are consistent with the published

literature (Charrin, Manie et al. 2002; Charrin, Manie et al. 2003). By

immunoprecipitation, tetraspanins have only been observed to co-IP under mild (less

stringent than TX-100) detergent conditions, suggesting that heterodimerization does not

occur (Rubinstein, Le Naour et al. 1996).
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Although it is imperative that we do not overinterpret our data, we believe that

without biophysical and biochemical analysis of tetraspanin-LELs, results with these

reagents may be difficult to interpret. Our ability to express tetraspanin-LELs that are

clearly misfi:lded (and by analogy, nonfunctional) emphasize the difficulties in purifying

tetraspanin-LEL reagents. In the remainder of this thesis, we describe experiments with

our panel of folded, native-like tetraspanin-LELs in a variety of cellular assays.
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Figure 6.1 Expression and Partial Purification of Human Tetraspanin-LELs. Human-
tetraspanin LELs (defined as the region between predicted transmembrane 3 and
transmembrane 4 from the reference sequence) were cloned into the pET24a Histag expression
vector in a similar way to the mCD9-LEL and verified by sequencing. Large-scale batches of
protein were expressed in E. Coli and partially purified over Ni-NTA agarose as described in
Chapter 2. These partially purified proteins were analyzed over 18% SDS-PAGE under non-
reducing conditions, followed by silver staining. The tetraspanin name is labeled above each
lane. With the hCD9-LEL, reverse-phase HPLC purified protein was loaded onto the gel as a
molecular weight reference. Molecular weight standards are also included in the righ-most
lane. Differences between the molecular weight of the human tetraspanin-LELs correspond
roughly to the predicted molecular weight of the molecule and roughly represent the
complexity (length) of the respective tetraspanin-LELs. These partially purified protein
fractions were utilized for subsequent purification procedures.
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Figure 6.2 Purification of the Human CD9-LEL. A) Partially purified hCD9-LEL was
resolved into individual peaks using reverse-phase C18 chromatography as described in
Chapter 2. Protein content was continuously monitored at absorbance 229nm and the
approximate concentration of buffer B (90%acetonitrile/10%H20/. 1%TFA) is indicated below
the trace. Protein peaks that were chosen for further study are labeled as P1, P2, etc.. B)
Qualitative dot blot analysis was used to screen multiple tetraspanin-LEL peaks. In brief,
protein eluted from the reverse-phase C18 column was centrifuged under vacuum to remove
acetonitrile and lpl was applied to dry nitrocellulose. The nitrocellulose was blocked with 4%
BSA and treated as a standard Western. The peak identity(from 6. 1B) is denoted above the dot
blot and the molecule is denoted to the left. The Western was developed using anti-hCD9.
Note that the anti-hCD9 antibody recognizes only hCD9P2, with minimal cross-reactivity both
to other hCD9 peaks and also to other tetraspanin-LELs.



Circular Dichroism Wavelength Scan of
hCD9-LEL-P1 and hCD9-LEL-P2
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Figure 6.3 Biophysical Characterization of the Human CD9-LEL: A) Large quantities of the
immunoreactive hCD9-LEL-PI and non-immunoreactive hCD9-LEL-P2 (see Figure 6.2) were
purified as described previously. Circular dichroism spectra were collected under standard
conditions and revealed a spectral minima at 222nm, indicative of a well folded a-helical
structure. The spectrum profile of hCD9-LEL-P1 is charted in blue and the profile of hCD9-
LEL-P2 is pink. B) The thermal stability of the human CD9-LEL variants was monitored by
tracking the circular dichroism signal of the proteins at 222nm as described in Chapter 2. The
thermal denaturation profile for hCD9-LEL-P1 is charted in blue and the renaturation profile is
charted in pink. The midpoint of thermal denaturation is indicated.
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Figure 6.4 Purification of the Human CD81-LEL. A) Partially purified hCD81-LEL (see
Figure 6.1) was resolved into individual peaks using reverse-phase C18 chromatography as
described in Chapter 2. Protein content was continuously monitored at absorbance 229nm and
the approximate concentration of buffer B (90%acetonitrile/10%H20/. 1%TFA) is indicated
below the trace. Protein peaks that were chosen for further study are labeled as P1 through P5,
with P4 and P5 not shown on the HPLC trace. Qualitative dot blot analysis surprisingly
revealed strong immunoreactivity in the hCD81-LEL P2, with a minor immunoreactivity from
the hCD81-LEL P1, presumably through cross-contamination of collected fractions. B) An
oxidized/reduced glutathione mix was used to shuffle the disulfide-bonds in hCD81-LEL. In
brief, oxidized, denatured, partially-purified hCD81-LEL was rapidly diluted ten-fold into
phosphate-buffered-saline containing freshly dissolved 2mM reduced glutathione and .5mM
oxidized glutathione. After an overnight incubation at RT, the protein solution was clarified
by both centrifugation and filtration, and analyzed by reverse-phase C18 HPLC as above. The
resulting protein peaks eluted with a significantly different protein elution profile. Qualitative
dot blot revealed that the the most abundant protein species (P3) was immunoreactive.
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Circular Dichroism Wavelength Scan of hCD81-LEL-P3
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Figure 6.5 Biophysical Characterization of the Human CD81-LEL: A) Large quantities of the
immunoreactive human CD81-LEL P3 (see Figure 6.4B) were purified as described
previously. Circular dichroism spectrum was collected under standard conditions and revealed
a spectral minimum at 222nm, indicative of a well folded a-helical structure. B) The thermal
stability of the human CD81-LEL protein was monitored by tracking the circular dichroism
signal of the tetraspanin-LEL at 222nm as described in Chapter 2. The thermal denaturation
profile is charted in blue and the renaturation profile is charted in pink. The midpoint of
thermal denaturation is indicated.
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Figure 6.6 Purification of Human CD63-LEL. A) Partially purified hCD63-LEL (see Figure
6.1) was resolved into individual peaks using reverse-phase C18 chromatography as described
in Chapter 2. Protein content was continuously monitored at absorbance 229nm and the
approximate concentration of buffer B (90%acetonitrile/10%H20/. 1%TFA) is indicated below
the trace. Protein peaks that were chosen for further study are labeled as P1 through P5, with
P4 off-scale. Qualitative dot blot analysis revealed no immunoreactivity in any of these
protein peaks. B) Simulated refolding with an oxidized/reduced glutathione mix (as in Figure
6.4B) resulted in a significantly different protein elution profile, with protein peaks eluting at
much higher concentrations of buffer B (indicated below the trace). Qualitative dot blot
revealed that the the most abundant protein species (P3) was immunoreactive.
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Circular Dichroism Wavelength Scan of hCD63-LEL-P3
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Figure 6.7: Biophysical Characterization of the Human CD63-LEL: A) Large quantities of
the immunoreactive human CD63-LEL P3 (see Figure 6.6B) were purified as described
previously. Circular dichroism spectrum was collected under standard conditions and revealed
a spectral minimum at 222nm, indicative of a well folded a-helical structure. B) The thermal
stability of the human CD63-LEL variants was monitored by tracking the circular dichroism
signal of the tetraspanin-LEL at 222nm as described in Chapter 2. The thermal denaturation
profile is charted in blue and the renaturation profile is charted in pink. The midpoint of
thermal denaturation is indicated.
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Figure 6.8 Analysis of the hCD151-LEL. A) Partially purified human CD151-LEL (see
Figure 6.1) was resolved into individual peaks using reverse-phase C18 chromatography as
described in Chapter 2. Protein content was continuously monitored at absorbance 229nm and
the approximate concentration of buffer B (90%acetonitrile/10%H20/. 1%TFA) is indicated
below the trace. Protein peaks that were chosen for further study are labeled as P1 through P7,
with P7 not shown on the HPLC trace. Qualitative dot blot analysis revealed no
immunoreactivity in any of the 7 peaks. B) Simulated refolding with an oxidized/reduced
glutathione mix resulted in significant shifts of protein peaks relative to randomly oxidized
human CD151-LEL. However, there were still no detected immunoreactivity of the peaks,
despite prolonged exposure (data not shown).
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Figure 6.9 Analysis of the hCO-029 LEL. A) Partially purified human CO-029-LEL (see
Figure 6.1) was resolved into individual peaks using reverse-phase C18 chromatography as
described in Chapter 2. Protein content was continuously monitored at absorbance 229nm and
the approximate concentration of buffer B (90%acetonitrile/10%H20/.1%TFA) is indicated
below the trace. B) Simulated refolding with an oxidized/reduced glutathione mix resulted in
significant shifts of protein peaks relative to randomly oxidized human CO-029-LEL (above).
As there were no clearly resolvable peaks, this protein was not pursued further.



Chapter 7

The Role of Tetraspanins in Cell-Cell Fusion

The majority of these experiments were conceived by Christopher C. Liu, Richard 0.
Hynes and Peter S. Kim. CD9 inhibition of sperm-egg fusion experiments was conceived
in collaboration with Guo-Zhang Zhu and Paul Primakoff. Inhibition studies of in vitro
fertilization experiments were carried out by Guo-Zhang Zhu. Macrophage fusion
experiments were conceived and carried out by Partha Varadarajan and Peter Monk. We
thank Arjan van der Flier for technical assistance with myoblast fusion assays. All other
experiments were carried out by Christopher C. Liu. All errors are my own.
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Introduction:

Our primary interest in studying the murine tetraspanin CD9 was to use our

knowledge of CD9 as a means to study mammalian sperm-egg fusion. Sperm-egg

binding and fusion is the first developmental step in the creation of a new organism

(Stein, Primakoff et al. 2004). Although this phenomenon has been observed to occur for

well over a century, the molecular mechanisms underlying this critical developmental

step have not been clearly elucidated.

For the past two decades, panels of monoclonal antibodies have functionally

implicated many genes in the sperm-egg binding and fusion event (Primakoff and Myles

1983). This list most notably includes ADAMI and ADAM2: proteins on sperm which

bind to their integrin receptor partners on the egg (Myles, Kimmel et al. 1994).

Antibodies against ADAM1 inhibit sperm-egg binding and fusion (Primakoff, Hyatt et al.

1987). Unexpectedly, targeted deletion of the ADAM 2 gene had no effect on sperm-egg

fusion (Cho, Bunch et al. 1998) (Figure 7.1). Equally surprising, targeted deletion of the

murine CD9 gene results in almost a complete ablation of sperm-egg fusion, with no

effect on sperm-egg binding (Kaji, Oda et al. 2000; Le Naour, Rubinstein et al. 2000;

Miyado, Yamada et al. 2000).

CD9 is expressed on oocytes (Le Naour, Rubinstein et al. 2000). Although there

is also strong expression of CD9 on platelets, monocytes, and pre B cells (Clay,

Rubinstein el: al. 2001) (Miao, Vasile et al. 2001), CD9-null mice did not exhibit strong

phenotypes in these cell types. Strikingly, CD9-null females were almost (but not

completely) incapable of offspring. Studies showed that this effect was due not to a

defect in sperm-migration up the female reproductive tract (as was seen with ADAM1

null-mice) or to sperm-zona pellucida interactions. Furthermore, in in vitro fertilization

studies, sperm could bind to zona-stripped oocytes at wild-type levels. However,

deletion of the CD9-gene resulted in almost no penetration of the oocyte membrane by

sperm, as assessed by exit from M2 arrest and second polar body extrusion (Kaji, Oda et

al. 2000). Lastly, intracytoplasmic sperm injection (ICSI) of CD9-null oocytes

(bypassing the membrane fusion event) resulted in normal initiation of development

(Miyado, Yamada et al. 2000).
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Exogenous addition of a rat monoclonal anti-murine CD9 antibody, clone KMC8,

was previously shown to effectively inhibit sperm-egg fusion, with no effect on binding

in an in vitro fertilization assay (Chen, Tung et al. 1999; Miller, Georges-Labouesse et al.

2000). These antibody-inhibition experiments served to direct our studies to the

extracellular domain of CD9, specifically the large extracellular loop (LEL). In

collaboration with Paul Primakoff's laboratory (UCDavis), we tested the efficacy of our

mCD9-LEL mimics in in vitro fertilization assays (Zhu, Miller et al. 2002). The full

reprint of our studies is included in Appendix A.

Here, we also describe our attempts to expand on the fertilization inhibition

studies by isolating and identifying CD9 binding partners on the oocyte. To overcome

the critical biochemical limitations to the gamete-fusion model we explore a previously

described role for CD9 in a myoblast fusion system (Tachibana and Hemler 1999).

Currently, we do not believe the inhibition of CD9 and CD81 on the myoblast fusion

system is replicable. Lastly, we describe experiments on the role of CD63 in another

homotypic cell-cell fusion assay: foreign-body-induced macrophage fusion (Takeda,

Tachibana et al. 2003). This series of experiments not only explore the role of

tetraspanin-LELs in cell-cell fusion, but also suggest that our recombinant, soluble

tetraspanin-LELs serve to disrupt endogenous tetraspanin functions.
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Materials and methods

In vitro Fertilization Assay:

Gametes from CD9 wild-type and null mice were collected (Zhu, Miller et al.

2002) as described in Appendix A. In brief, sperm was collected from the caudal

epidydymis and allowed to capacitate prior to in vitro fertilization. Oocytes were

collected from the oviducts of super-ovulated females and cumulus cells and the zona-

pellucida coat were enzymatically removed. Eggs were visually inspected for

maintenance of M2 arrest. The GST-CD9-LEL was constructed and purified using

standards methods as described in the appendix. Our mCD9-LEL protein was purified

and characterized as described in Chapter 2. The GST-CD9-LEL and mCD9-LEL were

incubated with individual gametes at 300g/ml and 250jg/ml respectively for 3 hours.

The complementary gamete was then added for a 40 minute insemination period and

fertilization indices were quantified by microscopy.

For CD9-rescue of fertilization-incompetent CD9-null oocytes, CD9-null oocytes

were collected as described above. Plasmids containing either the full-length murine

CD9 wild-type or murine CD9 variant cDNAs fused to green fluorescent protein were

linearized and mRNAs were synthesized by in vitro transcription. Each CD9-null oocyte

was microinjected with 30pg of mRNA and allowed to express the CD9 wild-type or

CD9 variant protein for 28 hours prior to in vitro fertilization assays as above.

mCD9F174A and mCD9SFQ(173-175)AAA Large Extracellular Loop Purification

and Analysis.

Plasmids encoding full-length murine CD9 with the mCD9F174A and mCD9SFQ(173-

175)AAA mutations were provided by Zhu GZ and Primakoff P; originally constructed

by Rubenstein E and Boucheix C. The portion of the murine CD9 cDNA corresponding

to the large extracellular loop was PCR-amplified using CL34 and CL35 (for sequence,

see Chapter 2), and subcloned into pET24a. Proper subcloning was checked by DNA

sequencing through the open reading frame. Protein expression was induced in

BL21/pLysS cells and purified as described in Chapter 2. Circular dichroism and

sedimentation equilibrium experiments were performed as described previously.
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Oocyte collection and Immunoprecipitation with mCD9-LEL variants

Eight-week-old FVB females were superovulated and eggs collected by standard

procedures (Hogan, Beddington et al. 1994). In brief, superovulated FVB mice were

cervically dislocated and Fallopian tubes were isolated. Oocytes were collected in

freshly prepared M199 media with a dissecting microscope and treated with

hyaluronidase to remove cumulus cells. Oocytes were washed and treated with pronase

for 6-10' to remove the zona pellucida. Oocytes washed in M199 media were then

visually inspected for M2 arrest and culled. All gametes were handled and incubated

under a mineral oil overlay. Oocytes were lysed in 20mM Tris-buffered saline/0.5% NP-

40 (Sigma) supplemented with a protease inhibitor cocktail (Boehringer Ingelheim).

Either mCD9-LELwt or mCD9SFQ(173-175)AAA were added to a final protein content

of .lmg and incubated at 40C for 3 hours. A 101 bed-volume of pre-equilibrated Ni-

NTA agarose (Qiagen) was added for 1 hour. The immunoprecipitate was subsequently

washed in an empty spin column (Vendor). Bound proteins were eluted by boiling in

SDS-Loading buffer and analyzed by SDS-PAGE.

Myoblast Fusion Assay

The murine myogenic cell line C2C12 was obtained from the American Type

Culture Collection. Cells were cultured in DMEM/20% fetal bovine serum at

subconfluency. For differentiation and syncytium assays, C2C12 cells were grown on

sterilized coverslips coated with 2% gelatin. At confluency, DMEM/20%FBS growth

medium was replaced with DMEM/2% horse serum to induce differentiation (Tachibana

and Hemler 1999). At subsequent time points, coverslips were washed in PBS and fixed

for 10' in 4% paraformaldehyde/PBS. Cells were stained with phalloidin-TRITC and

FITC-conjugated mouse anti-desmin and visualized using both fluorescent and Nomarski

optics. Antibodies recognizing murine CD9 and murine CD81 (or an isotyped antibody

control) was added at 10Opg/ml either concomitantly with the addition of horse serum or

at 3 days post-differentiation. Functional activity of the anti-CD9 antibody was assayed

by removing C2C12 culture medium for use as a primary antibody in standard Western

analysis with the mCD9-LEL protein as antigen.
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Macrophage Fusion Assay:

Peripheral blood was bled from healthy donors of both sexes with informed

consent according to a protocol approved by the ethical committee, University of

Sheffield.

Peripheral blood in 1% heparin was layered over a mixture of Ficoll-Hypaque

(Amersham Pharmacia) at a ratio of 2:1 and centrifuged at 400g for 35 minutes. A

mononuclear cell layer consisting of lymphocytes, monocytes, and platelets was cleanly

separated from both blood plasma and eythrocytes with a Pasteur pipette. Mononuclear

cells were washed and plated on plastic in RPMI/10%FBS for overnight incubation.

Non-adherent cells (such as lymphocytes) were separated from adherent macrophages in

cell-culture dishes by aspiration. The plates were washed thoroughly with 3xlOml

volume of pre warmed RPMI without FBS to ensure all non-adherent cells are removed.

Isolated cells were composed of 80-95% macrophages and the remainder being

lymphocytes. The adherent macrophages would then be harvested or cultured further.

Macrophages were plated in either 96-well microtiter plates (Takeda, Tachibana

et al. 2003) or Lab-Tek® chamber slides at a density of 5 X 105 /chamber. Macrophages

were stimulated to undergo homotypic fusion with 10yg/ml of the lectin concanavalin A

(Sigma) for 72 hours at 370 C (Takashima, Ohnishi et al. 1993). Concurrent with the

addition of concanavalin A, recombinant hCD9-LEL proteins were added at a

concentration of 20yg/ml (or lower concentrations as indicated). The fusion index was

calculated as the ratio of total number of nuclei in fused cells/total number of nuclei by

visual inspection.
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Results:

CD9-LEL Inhibition Studies of Fertilization

In collaboration with Paul Primakoff's group, we tested two variants of soluble,

recombinant, murine CD9-LEL mimics: our previously characterized mCD9-LEL

protein with a C-terminal HisTag, and also a glutathione-S-transferase-fused mCD9-LEL

(constructed and purified by Guo-Zhang Zhu and Paul Primakoff) for inhibition in a

fertilization assay. Wild-type murine gametes were isolated and cultured under standard

conditions. Recombinant proteins were added individually to either capacitated sperm or

zona-free eggs and incubated for 3 hours prior to insemination (mixing of the gametes)

for 40 minutes and quantification of fertilization. Three parameters were measured: (1)

fertilization rate FR = the percentage of eggs that fuse with at least one sperm; (2)

fertilization index FI = total number of fused sperm/total number of eggs: and (3) the

mean number of sperm bound at the equator of the egg.

When sperm were pre-incubated with either mCD9-LEL or GST-mCD9-LEL,

there was no significant effect on either fertilization rate, fertilization index, or sperm-egg

binding (Figure 7.2A). However, pre-incubation of soluble recombinant CD9-LELs with

eggs, resulted in significant inhibition of both fertilization rate and fertilization index,

with no significant effect on sperm-egg binding (Figure 7.2A). At high concentrations,

although both constructs resulted in significant inhibition, the mCD9-LEL his-tagged

construct was significantly more potent than the GST-tagged construct (Figure 7.2B).

Neither constuct resulted in complete inhibition (see discussion).

CD9 Rescue Studies of CD9-Null Eggs

To test for recovery of fertilization potential in CD9-deficient oocytes, mRNAs

encoding either the wild-type or mutant CD9 variant mRNAs were synthesized and

injected into CD9-deficient oocytes. As expected, CD9-null oocytes did not allow

sperm-egg fusion. This gamete-fusion defect was significantly rescued by expression of

the wild-type CD9 cDNA. However, a point mutation in the mCD9-LEL, F174A

abrogated the ability of the mCD9 transcript to rescue the CD9-null phenotype (Figure

7.3A). Injection of this cDNA had no effect on sperm-egg binding (Figure 7.3B). Post-

injection, CD9 expression was monitored by immunofluorescent staining and Western
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blot analysis (Appendix A) There was no detectable differences in CD9 expression as

compared to wild-type oocytes. A triple mutation in the CD9-LEL, SFQ(173-175)AAA

did not have an effect on the immunoreactivity of CD9, consistent with confirming our

earlier KMC8 epitope analysis (Chapter 4). These results support the critical role of the

CD9-LEL in sperm-egg fusion.

Characterization of Non-Fertilization Permissive CD9 Variants

Microinjection of full-length CD9 mRNAs rescued the CD9-null gamete fusion

phenotype. Both wild-type and variant CD9 constructs were shown to be expressed and

presented at the cell surface of CD9-null eggs. These variants were still recognized by

the fertilization-inhibiting KMC8 antibody and were in a segment of the mCD9-LEL

separate from our epitope-mapping experiments (Chapter 4 and Figure 7.4A). As a

result, it was unclear if the rescue deficiency of the CD9-LELoSFQ(173-175)AAA

construct might be due to a global change in the CD9-LEL structure. To test for this

possibility, we subcloned, expressed, and purified the mCD9.F174A and mCD9-

LEL°SFQ(173-175)AAA variants as soluble, recombinant LELs. Circular dichroism

analysis revealed that these constructs had comparable a-helical content to the wild-type

mCD9-LEL (Figure 7.4B). Although the two mCD9-LEL variants had decreased thermal

stability (Tm = 52 and 48°C), thermal denaturation analysis of a-helical content revealed

significant protein stability (Figure 7.5A, B). Most importantly, the mCD9-LEL variants

would have had comparable a-helical structure under the physiological conditions where

the in vitro fertilization assay was performed. The inhibitory effect of these LEL proteins

in an in vitro fertilization assay was not performed.

Immunoprecipitation of mCD9-LEL oocyte binding partners:

We hypothesized that the mCD9-LEL protein inhibited sperm-egg fusion by

binding to and disrupting an endogenous egg surface protein complex (Zhu, Miller et al.

2002). To explore this possibility, we attempted immunoprecipitation experiments of our

mCD9-LEL protein with an oocyte lysate.

Approximately 200 wild-type oocytes were collected from twelve super-ovulated

FVB females. Eggs were lysed under mild detergent conditions (0.5% NP-40) and
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incubated with mCD9-LELwt or the fertilization-incompetent mCD9-LELoSFQ(173-

175)AAA proteins. Nickel-NTA agarose was used to isolate both mCD9-LEL variants

and their respective binding partners. Immunoprecipitates were checked for equal

starting material and complete washing until binding background was negative (Figure

7.6). Upon elution, there were no significant differencesbetween proteins

immunoprecipitated by the mCD9-LELwt and mCD9-LELSFQ(173-175)AAA proteins

(Figure 7.7). As it was necessary to silver-stain before detection of immunoprecipitated

bands, these experiments were deemed intractable (also see discussion).

The Effects of Tetraspanin-LELs on Myoblast Fusion:

To further study cell-cell fusion, we turned to a system where larger biochemical

quantities could be obtained. The regulated homotypic fusion of individual myoblasts to

form myotubes is an essential step in muscle development (Schnorrer and Dickson 2004).

Previously, it has been shown that CD9 is upregulated concomitant with myosin heavy

chain and desmin, markers for myoblast differentiation (Tachibana and Hemler 1999).

Furthermore, anti-CD9 and anti-CD81 antibodies inhibited and delayed homotypic

myoblast fusion in the murine myogenic cell line C2C12. The ability to culture and

differentiate large quantities of these cells made myoblast fusion an attractive alternative

cell-cell fusion system to gamete fusion.

We obtained the C2C12 cell line and monitored in vitro differentiation into

myotubes by microscopy. Greater than 60% of mononuclear C2C12 cells reproducibly

fused into multinucleated myotubes (data not shown). Qualitatively, the addition of the

antibodies against CD9 and CD81 did not affect either the rate or the formation of

myotubes (data not shown). Addition of antibodies against CD9 and CD81 three days

post-differentiation also had no effect on either the rate or the formation of myotubes,

conflicting with the previously published study. When these antibodies were recovered

post myoblast differentiation, they were shown to retain wild-type activity as assayed by

Western analysis (data not shown). These studies suggest that the tetraspanin antibodies

were not degraded over the duration of the assy. Lastly, the addition of micromolar

quantities of hCD9-LEL or hCD81-LEL had no effect on myogenic ability. Without a

significant difference in fusogenic ability, we did not pursue these experiments further.
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The Effects of Tetraspanin-LELs on Macrophage Fusion:

A recent paper showed that antibodies to CD9 and CD81 promoted macrophage

fusion (Takeda, Tachibana et al. 2003). On the other hand, preliminary studies by the

Monk group showed inhibition by recombinant GST-CD63-LEL fusion proteins. To test

both for the inhibitory effects of our tetraspanin-LELs and as a feasibility study for

biochemical studies, we initiated a collaboration to study macrophage fusion.

We measured the index of macrophage fusion in the presence or absence of our

hCD9-LEL, hCD63-LEL, and hCD81-LEL proteins. We observed significant inhibition

solely in the presence of the hCD63-LEL protein, implying specificity (Figure 7.8A).

Surprisingly., the hCD63-LEL protein was incredibly potent, with an ICo in the

nanogram/ml range (Figure 7.8B), suggestive of catalytic activity. This result was

especially puzzling as we envision a structural role for tetraspanin-LELs in membrane

fusion, not a catalytic one. Compared with GST-fused tetraspanin-LELs, our

hexahistidine-tagged hCD63-LEL exhibited significantly higher potency.
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Discussion

Sperm-egg fusion is a critical step in development (Hogan, Beddington et al.

1994). The controlled fusion of gametes to restore diploidy is essential to the formation

of a proper embryo. Onset of development without sperm-egg fusion (parthenogenesis)

or excess sperm-egg fusion (polyploidy) results in severe developmental defects (Gilbert

2003). The phenomenon of sperm-egg membrane fusion, which has been visualized by

electron microscopy for many decades, is an intensely studied topic of interest not only to

developmental biologists, but also to membrane-fusion researchers in general

(Hernandez, Hoffman et al. 1996).

Until recently, the genes involved in sperm-egg fusion were not known. Although

various proteins were implicated to play a role in this biological process (most notably

ADAMs (Cho, Bunch et al. 1998) and integrins (He, Brakebusch et al. 2003)), mouse

genetics has refined their role as non-essential (Kaji, Oda et al. 2000; Le Naour,

Rubinstein et al. 2000; Miyado, Yamada et al. 2000). On the other hand, mouse genetic

experiments have clearly implicated the tetraspanin CD9 as playing an essential role in

this process. In the fertilization field, the identification of CD9 has been a mixed

blessing. For the first time, a gene was clearly defined as being a central player in this

process. On the other hand, very little is known about the role of CD9 on the egg surface

and the mechanisms by which it is necessary for sperm-egg fusion. Subsequent to the

identification of CD9 as an essential gene in sperm-egg fusion, research progress has

been disappointingly slow.

The phenomenon of membrane fusion has been most extensively studied in viral-

fusion and vesicle-fusion systems (Eckert and Kim 2001) (Jahn, Lang et al. 2003). The

identification of proteins directly involved in these membrane-fusion processes has

allowed the process to be both reconstituted and specifically inhibited. Extrapolating

from our knowledge of viral and vesicle membrane fusion proteins, the tetraspanin CD9

does not appear to be a fusogen: a protein that directly mediates membrane apposition

and mixing (for further discussion, see Chapter 1). Current hypotheses envision CD9 as

playing a supporting, albeit essential, role to a sperm-egg fusogen. Currently, the identity

of this hypothetical protein is unknown.
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Our in vitro inhibition experiments indicate that the CD9 gene does not act as a

receptor for sperm (Zhu, Miller et al. 2002). Although deletion of the CD9 gene had no

effect on sperm-egg binding (and currently, sperm-egg binding proteins on the egg have

not been identified), sperm-egg binding and fusion may be decoupled events. Our

inhibition data not only shows that CD9 serves a role in cis on the egg surface, it also

suggests that our mCD9-LEL protein is a specific inhibitor of endogenous CD9 function.

Extrapolating on the role of CD9 in cis on the egg surface, we hypothesized that

the mCD9-LEL protein serves to disrupt endogenous heterotypic CD9/non-CD9 protein

complexes on the egg surface. However, immunoprecipitation experiments with the CD9

protein and its non-functional analogue, mCD9-LELSFQ(173-175)AAA did not prove

fruitful. It may be possible that although mutation of the mCD9-LEL SFQ residues is

sufficient to inhibit rescue experiments, it is insufficient to inhibit CD9-partner

interactions.

Gamete quantities are also too severely limited for this system to be

biochemically tractable. In a Herculean effort, the Primakoff lab committed 8 personnel

to a month of collecting oocytes to yield a lysate of approximately 100,000 eggs. An

immunoprecipitation experiment with an antibody against murine CD9 yielded integrins

and other known CD9-binding proteins, but no proteins with restricted oocyte expression

patterns (Paul Primakoff, personal communication). These experiments prompted us to

identify other, more biochemically tractable cell-cell fusion systems (Chen and Olson

2005).

Our in vitro inhibition experiments should be considered with several caveats in

mind. The inability of several point mutations in the CD9 large extracellular loop to

rescue CD9 activity suggests the importance of the CD9-LEL domain to sperm-egg

fusion (Higginbottom, Takahashi et al. 2003). This result, coupled with KMC8 antibody

inhibition data, also suggests that the proper presentation of the CD9-LEL is necessary

for sperm-egg fusion. Ideally, we would like to see the effects of the mCD9-

LEL-Q159A, mCD9-LEL ·F174A, mCD9-LELS 173A/F 174A/Q1 75A variants on

sperm-egg binding and fusion. We would also like to see dose dependence of inhibition,

which was not performed.
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Most importantly, although our inhibition is statistically significant, maximal

inhibition was not very impressive. The inability to inhibit greater than 60% of sperm-

egg fusion was also seen when GST-mCD9-LEL proteins were independently tested for

inhibition activity (Higginbottom, Takahashi et al. 2003). It may be possible that the

membrane-bound form of CD9, which is in a high avidity complex with cis-fusion

partners, is too tightly complexed to allow complete inhibition.

Surprisingly, a recent study by the Okabe group has identified a sperm protein,

izumo, to function analogously to CD9 on the sperm cell (Inoue, Ikawa et al. 2005).

Genetic studies show that izumo is essential for sperm-egg fusion, not binding and this

phenotype is recovered by transgenic rescue experiments. A monoclonal antibody

against izumo inhibits in vitro fertilization (the means by which izumo was cloned) and

intracytoplasmic sperm injection (to bypass sperm-egg fusion) resulted in the normal

onset of development. The protein izumo consists of a single extracellular novel IgG fold

and also is not presumed to directly mediate membrane fusion. Izumo does not bind the

CD9-LEL as assayed by immunoprecipitation (Okabe, personal communication).

Currently, an optimal strategy to identify a sperm-egg fusogen is unclear.

The closest functional analogue to the sperm-egg fusion system is a homotypic

cell-cell fusion system: the fusion of single-nucleated myoblasts to multi-nucleated

myotubes (Schnorrer and Dickson 2004). Upon induction, myoblasts differentiate and

fuse with one another in an ordered, linear fashion. Many genes implicated in sperm-egg

fusion have been characterized to have analogues in a myoblast-fusion system, such as

ADAM15 (Yagami-Hiromasa, Sato et al. 1995). To date, no essential myoblast-fusion

protein has been identified (although many essential myoblast differentiation genes in

Drosophila have (Schnorrer and Dickson 2004)). Although functionally analogous,

many genes involved in myoblast differentiation and fusion do not directly translate to

sperm-egg fusion, and vice versa.

The proteins CD9 and CD81 have been implicated in myotube formation

(Tachibana and Hemler 1999). Given the ability to grow large quantities of precursor

myoblasts and the significant inhibition presented by antibodies against CD9 and CD81,

we hoped to replicate these results as a source for biochemical studies on cell-cell fusion.

Unfortunately, we did not see significant inhibition of myoblast fusion with antibodies
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against CD9, CD81, or soluble, recombinant forms of CD9 or CD81. No other papers

have implicated CD9 and CD81 in myoblast fusion and, currently, we do not believe that

CD9 and CD81 play a role in myoblast fusion.

Another system for homotypic cell-cell fusion is macrophage fusion. The

induction and formation of multi-nucleated macrophage giant cells (osteoclasts), cells

containing several hundred nuclei after the introduction of a foreign body (such as a

splinter), have been medically observed for some time (Takashima, Ohnishi et al. 1993).

In vitro, this phenomenon can be reproduced by the addition of a lectin, concanavalin A,

to macrophages. Whether homotypic macrophage fusion is a true cell-cell fusion event

or "phagocytosis gone terribly wrong" is still wide debated to this day.

In collaboration with Peter Monk, we show a small but significant inhibition of

homotypic macrophage fusion with the hCD63-LEL, but not hCD9-LEL or hCD81-LEL.

There are many puzzling aspects of these results. The ICO of fusion inhibition

(nanogram/ml) is incredibly low. All other inhibition studies with tetraspanin-LELs have

shown ICOs in the microgram/ml range (see Chapter 1). Although a role for tetraspanins

in macrophage fusion has previously been characterized (Takeda, Tachibana et al. 2003),

these results suggested that endogenous CD9 and CD81 inhibited, not promoted,

macrophage fusion, the reverse of sperm-egg fusion data. Antibodies against CD63 had

no effect on macrophage fusion in their hands. Lastly, soluble CD9-LEL and CD8 1-LEL

promoted macrophage fusion at microgram/ml quantities.

In summary, we have addressed the role of tetraspanins in three independent cell-

cell fusion systems. Although our results are most significant in the sperm-egg fusion

system, limited biochemical quantities preclude further exploration of the role of CD9 in

this system. Our exploration of CD9 on other cell-cell fusion systems has not made

significant headway. In conclusion, it is not clear if the CD9 protein will be fruitful in

bootstrapping to a cell-cell fusogen in the near future. However, our addition of

recombinant mCD9-LEL protein shows both that the endogenous CD9 acts in cis on the

egg-surface and that tetraspanin-LELs may function to inhibit endogenous tetraspanin

functions.
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Figure 7.1 Model of Molecules Thought to Play a Role in Sperm-Egg Fusion; A schematic of
cell surface proteins on both the sperm (bottom) and the egg (top). ADAM 1 and ADAM2
have been previously caller fertilin-a and fertilin-0 respectively. These proteins contain a
disintegrin domain and have been shown to bind to the egg surface a6P 1 integrin heterodimer.
Through gene-deletion experiments, these proteins are no longer thought to play an essential

role in sperm-egg fusion. Cyritestin is an ADAM family member thought to function upstream
of ADAM1/2 in the sperm-egg binding and fusion cascade. The CD9 protein is expressed on
the egg and has been shown to be essential for sperm-egg fusion. Its role in mediating sperm-
egg fusion is unknown.
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The Effect of mCD9-LEL on Fertilization Rate

Control Sperm Egg

B
The Effect of GST-mCD9-LEL and mCD9-LEL on in vitro Fertilization

Incubation Pre-incubated Number of Fertilization Fertilization Sperm bound
Protein Gamete Eggs Tested Rate (%) Index per Equator

GST Egg 78 100_0 1.5-0.15 6.2±0.5

GST-mCD9-LEL Egg 86 60±5.1 0.6±0.05 5.7±0.5

GST-mCD9-LEL Sperm 63 97±3.0 1.1±0.11 7.1±1.6

Buffer (PBS) Egg 56 83+3.5 0.83±0.04 4.6±0.3

mCD9-LEL Egg 76 43±2.6 0.42±0.02 4.8±0.4

mCD9-LEL Sperm 67 75±5.2 0.75±0.05 4.5±0.3

Figure 7.2 The mCD9-LEL inhibits Sperm-Egg Fusion. A) Murine sperm and egg cells were
isolated in defined media as described in the methods. Gametes were independently pre-
incubated with the recombinant mCD9-LEL protein for 3 hours. Gametes were then mixed for
40 minutes and the fertilization rate (percentage of eggs that fuse with at least one sperm) was
measured. The control sample is gametes non-incubated with recombinant proteins (and this
fertilization rate (83% of eggs) was set to 100%). Pre-incubation of the mCD9-LEL protein
with sperm resulted in a small and non-significant (P>0. 1) decrease in fertilization rate. Pre-
incubation of the mCD9-LEL protein with eggs resulted in a significant (P< 0.002) decrease in
the fertilization rate. In vitro fertilization experiments were done on multiple occasions and
yielded similar results. B) Comparisons of multiple mCD9-LEL constructs on in vitro
fertilization rate. The in vitro fertilization assay was similar to that conducted above. In this
table, fertilization rate was quantified as above. Fertilization index was measured as the total
number of fused sperm/total number of eggs. The number of sperm bound at the equator of the
zona-stripped eggs were also measured. Inhibition data for Glutathion-S-transferase (GST)
tagged mCD9-LELs (constructed by Guo Zhang) are also included, showing significant
(P<0.02), but less substantial inhibition than our mCD9-LEL construct (P<0.002).
Recombinant mCD9-LEL variants had no significant effect on sperm-egg binding (P>0.1).
Values are means ± s.e.m. This experiment was conducted by G-Z. Zhu with tetraspanin
reagents provided by C.C. Liu.



Recovery of Fusion

B

Incubation Fertilization Fertilization Sperm bound Number of
Protein Rate (%) Index per Egg Replicates
WT eggs 66 0.83 14 5

KO eggs +WT 55 0.85 12 4

KO eggs + F174A 13 0.2 12 4

KO eggs + blank 1 0.02 14 5

Figure 7.3 Microinjection of the Full-Length Murine CD9 cDNA Rescues the Null-
Phenotype. A) Wild-type sperm cells were collected as before. Eggs of varying genetic
backgrounds were also harvested and used in in vitro fertilization assays. CD9-null eggs are
denoted as KO. The fertilization rates of microinjected cDNA transcripts encoding the full-
length wild-type CD9 gene (denoted WT) or with a single point mutation (denoted F174A) are
also graphed. B) Tabulated data of the fertilization rate, fertilization index, sperm bound/egg
and number of replicates for the conditions listed in Figure 7.2A. This experiment was
conducted by G-Z. Zhu with tetraspanin reagents provided by C.C. Liu.
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KMC8 epitope

Circular Dichroism Wavelength Scan of mCD9-LEL*F174A
and mCD9-LEL*S173A/F1 74A/Q1 75A
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Figure 7.4 Biophysical Analysis of Fertilization Defective mCD9 Mutants: A) The murine
CD9-LEL primary sequence is shown with predicted a-helical elements depicted with red bars

above the sequence. The point mutation (Q159A) that abrogates KMC8 immunogenicity is
denoted with a green asterisk. A series of mutations (SFQ173-175AAA) which did not allow
recovery of the CD9-null phenotype are also listed as red asterisks. B) Murine CD9-LEL point
mutations were subcloned into pET24a from full-length constructs by polymerase chain
reaction using the oligonucleotides CL34 and CL35. Protein was expressed and purified using
Ni-NTA agarose and C18 reverse-phase HPLC as described in Chapter 2. HPLC profiles did
not deviate from the canonical CD9 trace (data not shown). Circular dichroism analysis
revealed that both the F174A mutation (designated FA) and the SFQ triple mutant (M3)
exhibited characteristic minima at 222 and 208nm, indicative of an a-helical structure. For
circular dichroism data on Q159A, see Figure 4.7.
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Figure 7.5 Thermal Stability of Fertilization defective mCD9 mutants. A) The thermal
stability of the mCD9-LEL*F174A variant (FA) was monitored by tracking the circular
dichroism signal of the fertilization defective mutant at 222nm as described in Chapter 2. The
thermal denaturation profile is charted in blue and the renaturation profile is charted in pink.
The midpoint of thermal denaturation is indicated. B) The thermal stability profile of the
mCD9-LEL*S173A/F174A/Q175A triple mutant (M3). The chart is graphed as in Figure
7.4A.
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Figure 7.6 Immunoprecipitation of Egg/CD9 Interactions. Eggs from superovulated FVB
female mice were harvested under standard conditions. Eggs were stripped of both cumulus
cells and zona pellucida and assessed for maintenance of meiosis 2 arrest. Eggs were lysed in
1% NP-40 and cell surface protein content was assessed by SDS-PAGE and Coomassie
staining (Lane 2) The supernatant was split into two aliquots, incubated with either mCD9-
LELwt or the fertilization non-permissive mCD9-LEL*S173A/F174A/Q175A variant. After
incubation and immunoprecipitation with Nickel-conjugated agarose beads, the non-bound
fractions (lane 3; 8) and washes (lanes 4-7; 9-12) were assayed by SDS-PAGE. Molecular
weight markes are in lane 1.
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Figure 7.7 Elution Profile of CD9-LEL/egg Interactions: An egg lysate was incubated with
0.1mg of mCD9-LELwt or mCD9-LELS 173A/F174A/Q175A protein and
immunoprecipitated. Total protein content was eluted by boiling with 2X SDS-Loading Buffer
and analyzed by SDS-PAGE followed by silver-staining. The stacker of the SDS-PAGE gel is
included. The mCD9-LEL variants have a molecular weight of approximately 11-kDa and
were allowed to run off the gel (as they would have been severely overdeveloped). The protein
profile eluted from the mCD9-LELwt is labeled as WT and the protein profile eluted from the
mCD9-LEL*S173A/F174A/Q175A protein is labeled as M3. Molecular weight standards are
to the right of the gel.
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Figure 7.8 Macrophage Fusion Assay. A) Effects of recombinant tetraspanin-LELs on
macrophage fusion. Concentration of all exogenously added proteins are in nanograms/ml.
Standard error bars and P values are included above each bar. NS stands for not-significant (P

= >.05). B) Dose dependence curve of hCD63-LEL inhibition. Glutathione-S-transferase
fused hCD63-LEL inhibition is graphed as GST-CD63. When this construct was cleaved to
remove remove the GST tag, inhibition is graphed as cleaved CD63. Our hCD63-LEL is
graphed as His6-CD63. This experiment was conducted by p Varadarajan with teraspanin
reagents provided by C.C. Liu.
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Chapter 8

Tetraspanins and Integrin Interactions

These experiments were conceived by Christopher C. Liu, Jun Takagi, Richard 0. Hynes,
and Timothy Springer. All integrin reagents were constructed by Jun Takagi and all
tetraspanin reagents were constructed by Christopher C. Liu. Jun Takagi conducted all
solid-phase ELISA assays. Christopher C. Liu conducted all other experiments. All
errors are my, own.

162



Introduction
Integrins are an important class of cell-surface proteins that mediate cellular

adhesion to the extracellular matrix. There are 24 mammalian integrins, each comprised

of an ct-subunit and a n-subunit and having specific, non-redundant functions (Hynes

2002). Integrins play major roles in development, immune functions, leukocyte traffic,

and human disease.

A striking feature of integrins is their ability to rapidly (<Isec) activate and

mediate cellular adhesion. The abilities of integrins to change conformation (affinity),

cluster (avidity), and to bind the cytoskeleton (anchoring) all may contribute to this rapid

activation timeframe (Takagi and Springer 2002). Recently, several studies have

emphasized the critical role of integrin transmembrane domains in the regulation of

adhesion (see discussion), which may play a role in both affinity and avidity (Li, Babu et

al. 2001; Luo, Springer et al. 2004). However, the majority of research describes affinity

changes in the integrin extracellular domain (Takagi, Petre et al. 2002). Multiple

antibodies have been described that specifically recognize, or even induce, integrin

conformers in high or low affinity states (Humphries 2004).

Recently, the structure of the ccVf33 extracellular domain was solved by x-ray

crystallography. Unexpectedly, the integrin structure was crystallized in a bent

conformation, completely at odds with the canonical view of integrins as a headpiece

attached to an extended stalk-like domain (Figure 8.1). Both electron micrographic and

molecular design studies have revealed that integrins may exist in both a bent, inactive

conformation and a straightened, active conformation and that these two conformers are

in dynamic equilibrium. Furthermore, antibodies thought to modulate integrin affinity

may also modulate integrin conformations (Takagi, Beglova et al. 2001).

In this chapter, we utilize both a panel of recombinant integrin extracellular

domains and our three recombinant, tetraspanin-LELs to probe putative tetraspanin-

integrin interactions. With both solid-phase ELISA and cell-based integrin binding

assays, we show that tetraspanin-LELs bind integrins in a cation-dependent manner.

Although there are clear rankings in integrin-tetraspanin binding, we could not decipher a

pair-wise set of interactions. These interactions could be inhibited or enhanced by
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antibodies that modulate integrin affinity, although a specific tetraspanin binding pattern

to integrins in high or low affinity states could not be deduced.
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Materials and Methods:

Recombinant Integrin Extracellular Domains:

Wild-type, human extracellular portions of integrin alpha and beta subunits were

fused to the 30-residue acid and base a-helical coiled-coil peptides (also called Velcro for

their specific heterodimerization properties) (O'Shea, Lumb et al. 1993) respectively,

with one cysteine mutation at the N-terminal end. In the beta subunits, a seven-amino

acid recognition sequence for TEV protease was inserted before the base peptide (Takagi,

Erickson et al. 2001). These fragments were stably introduced into CHO lec 3.2.8.1 cells.

Cell-culture supernatants containing secreted, soluble integrin fragments were purified

using Ni-NTA agarose (Qiagen) followed by anion-exchange (monoQ) and gel filtration

(Superdex200HR) chromatographies. Recombinant integrin fragments were stored at

0.5-1mg/ml at 40C in TBS containing mM CaCl 2 and lmM MgCl2. release of the C-

terminal clasp was achieved by incubation with 250U/ml TEV protease (Invitrogen) at

25°C for 16hr.

Recombinant tetraspanin-LEL variants:

Soluble, recombinant versions of the hCD9-LEL, hCD63-LEL, and hCD81-LEL

were expressed and purified as previously described. The hCD9-LEL*Q161A and

hCD9-LEL°E160A/Q161A proteins were designed by sequence alignment to the mCD9-

LELoQ159A variant described in Chapter 4. Point mutations were constructed by

recombinant PCR (Higuchi 1990) and expressed and purified under similar conditions to

the hCD9-LEL protein. Folding stability of the hCD9-LEL variants was monitored by

circular dichroism as described in Chapter 2. Antibodies to the hCD9-LEL, hCD63-LEL,

and hCD81-LEL were described in Chapter 6.

Enzyme-linked Immunosorbent Assay Analysis:

Recombinant tetraspanin-LELs were dissolved in H2 0 at 2mg/ml. Protein stocks

were subsequent diluted to lOg/ml in TBS and 501s were bound to each ELISA well at

4°C overnight. All wells were blocked with 1% bovine serum albumin for 2 hours at RT.

Soluble, recombinant integrin fragments were added to each well under varying buffer

conditions for 2 hours at RT and washed once with TBS. Ten pg/ml of biotinylated a-

165



velcro antibody (which recognizes the C-terminal fusion tag) was added in TBS/lmM

Mn with 1% BSA for 30' at RT and washed 3X with TBS/Mn++. Horse-radish

peroxidase streptavidin/1% BSA was added for 15' at RT, washed 4X with TBS/Mn and

developed using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid (ABTS).

Absorbance was monitored at 415nm.

TetraspaniIn Binding to Cell-Surface Integrins:

K562 cells are human myelogenous leukemia cells that express the a51I integrin

at high levels. K562 cells were stably transfected with either aIIbIf3 or the a4 integrin

(to express cx41) in conjunction with endogenous levels of the a5pl1 integrin. For FACS

analysis, K562 cell lines were preincubated in PBS containing either mM CaCl2/lmM

MgCl2 or 5mM EDTA for 45' at RT. Cells were incubated with for 30' with .2mg/ml of

hCD9-LEL and anti-CD9 antibody M-L13. Incubation with either hCD9-LEL alone or

antibody M-L13 alone was used as negative controls. All samples were then incubated

with PE-conjugated anti-mouse IgG for detection. All samples were analyzed in a

FACS-Caliber machine, positively selected for live cells by forward and side scatter.

Gated cells were then analyzed for hCD9-LEL binding by analysis along the FL2 axis

with compensation adjusted to background.

For cell-binding assays, K562 variants were washed in PBS containing either

lmM CaCl2 /lmM MgC12 or 5mM EDTA and then incubated with hCD9-LEL at .2mg/ml

for 45' at RT. Cells were washed, lysed in RIPA buffer, and total protein was quantified

using the microBCA kit (Pierce). Equal amounts of total protein were loaded onto an

SDS-PAGE gel and bound hCD9-LEL protein was quantified by Western blotting.
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Results:

Cation-Dependence of Tetraspanin/Integrin Binding

We used an ELISA assay to test pairwise interactions between tetraspanin-LELs

and recombinant integrin fragments under a variety of conditions. As both tetraspanin-

LELs and integrins contained a hexahistidine tag, this epitope could not be used to probe

interactions. As a result, in all solid-phase ELISA binding assays, tetraspanin-LELs were

bound to plates. Integrins were then added under a variety of conditions and the presence

of bound integrin was detected with an antibody against the acid-base coiled coils (which

replace the integrin transmembrane domains) (Takagi, Erickson et al. 2001).

Previously, it has been shown that Manganese (Mn) and a cyclic peptides RGD

will activate integrins and EDTA, which sequesters cations, will inhibit integrin

activation (Hynes 2002). Our results showed binding of tetraspanin-LELs with the

cIIbi3 integrin above non-specific bovine serum albumin (BSA) background. Pre-

incubation of integrin fragments with EDTA significantly increased tetraspanin binding

(Figure 8.2A). However, there did not appear to be differences between aIIbi3

interactions with the hCD9-LEL, hCD63-LEL or hCD81-LEL. Binding of the hCD9-

LEL with a5f31 fragment was minimal. Given these results, we expanded our panel of

integrins and restricted our cation conditions to either Calcium (low-binding) or EDTA

(high-binding) buffers. Again, we observed consistently higher binding under conditions

without cations (Figure 8.2B). However, there did not appear to be a specific

tetraspanin/integrin binding pattern (Figure 8.2C). The hCD63-LEL consistently

exhibited higher binding than either hCD9-LEL or hCD8 1-LEL,which both exhibited

similar effects. Strikingly, tetraspanin-LELs appeared to bind as tightly to full-length

cIIbf33 integrin as to a mini-cIIb[3 domain, which contained only the head domain.

K562 are leukemia cells that endogenously express only the integrin cp511

heterodimer. We tested hCD9-LEL binding to either K562 cells or variants stably

expressing acIIb33 or a4p1 in addition to the endogenous a5f1 integrin heterodimer. We

used two different techniques to analyze binding of hCD9-LEL binding to K562 variants:

FACS analysis and also whole-cell lysates.

Our hCD9-LEL proteins were tagged at their C-termini with a hexahistidine tag.

However, a FITC-conjugated anti-HisTag antibody did not work by FACS (data not
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shown). As a result, we probed a panel of monoclonal antibodies against CD9. One

monoclonal, clone M-L13, detected hCD9-LEL without interfering with binding. K562

variants were pre-incubated with PBS containing either divalent cations (+/+) or EDTA.

By FACS we observed that, with all K562 variants, pre-incubation in the presence of

cations increased binding of the hCD9-LEL protein (Figure 8.3). K562 variants

expressing cIIbI33 or a411 (in addition to cz5P1) exhibited stronger binding. The

K562/c4I3 cell line had the greatest sensitivity to cations (Figure 8.3).

We further tested binding of the hCD9-LEL protein to K562 variants using

whole-cell lysates. The hCD9-LEL was bound to K562 variants incubated under varying

cation conditions and equal amounts of whole-cell lysates were analyzed by SDS-PAGE

and Western blotting. Again, we observed higher cell-surface tetraspanin-integrin

binding in the presence of cations (Figure 8.4A). EDTA dramatically lowered hCD9-

LEL binding. These results correlated with the results seen by FACS (Figure 8.3),

although they are the inverse of our solid-phase ELISA results. Taken as a whole, they

suggest that cations modulate tetraspanin-LEL/integrin binding.

Integrin Tail-Release Effects on Tetraspanin/Integrin Binding

All recombinant integrin fragments had their C-terminal transmembrane regions

replaced with heterodimeric coiled-coil sequences. A disulfide-bond introduced into the

coiled-coil further increased constitutive oligomerization, bringing the integrin stalk

domains into close proximity. The close proximity of integrin stalks has been shown to

hold integrins in an inactive state (Figure 8. 1A). A TEV protease cleavage site was

inserted between the beta integrin subunit and its base peptide fusion. Treatment with the

TEV protease released the integrin stalk constraint and resulted in activation of ligand

binding (Takagi, Erickson et al. 2001).

We tested whether TEV protease cleavage (and the release of the intersubunit

constraint) perturbed tetraspanin/integrin interactions. Although a decrease in binding

was observed when the c6134 constraint was released, in general TEV treatment (and

subsequent integrin activation) had no effect on tetraspanin/integrin interactions (Figure

8.4B).
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Antibody Inhibition of Tetraspanin/Integrin aIIb[53 Binding

As tetraspanin-LELs bound most strongly to the recombinant cIIb33 fragment

(Figure 8.2C), we tested the effects of a panel of anti-cdIIb33 antibodies on

tetraspanin/integrin interactions. A single monoclonal antibody, 10E5, inhibited

caIIbIf3/CD9 interaction and reduced binding to background levels (Figure 8.5A). The

10E5 antibody not only inhibited CD9/aIIbI33 interactions, it reduced binding in all

tetraspanin-L,ELs/aIIb3 interactions (Figure 8.5B). In the case of the hCD63-LEL, this

binding was not reduced to background, possibly suggestive of significant non-specific

background. When the hCD9-LEL was tested for antibody-dependent binding to aIIb133

under cationic conditions, no antibody inhibition was observed (8.5C). The addition of

two small molecule acivators to the aIIb33 integrin, EF5154 and cyclic-RGD did not

perturb integrin binding. These interactions were probed in Ca/Mg as the small molecule

EF5154 does not bind in EDTA. These results are consistent with the notion that high

affinity integrin conformers bind weakly to tetraspanins by solid-phase ELISA analysis.

Tetraspanin Specificity in Tetraspanin/Integrin Binding

To test further the specificity of tetraspanin-LEL/cIIb33 integrin interactions, we

utilized a panel of anti-tetraspanin antibodies. As these antibodies presumably bind the

head subdomain of tetraspanin-LELs, we hypothesized that they would serve to inhibit

tetraspanin/integrin interactions. Anti-tetraspanin antibodies were pre-incubated with

each tetraspanin post-binding to ELISA plates and then binding was compared to anti-

aIbP33 10E5 inhibition (Figure 8.6A). Although 10E5 consistently lowered binding to

background levels, antibodies against tetraspanins had minimal effect. Only in the case

of anti-CD63 was there a significant inhibition of interaction, comparable to 10E5

inhibition. Inhibition of hCD63-LEL/cIIbf33 interaction by the anti-CD63 antibody was

specific. As expected, anti-tetraspanin antibodies did not inhibit aIIb33 interactions with

non-recognized tetraspanins (Figure 8.6B)

With the hCD9-LEL, we constructed, expressed, and purified two hCD9-LEL

variants that are analogous to the mCD9-LEL species that fail to bind KMC8 (as

described in Chapter 4). The hCD9-LELoQ161A and hCD9-LEL°E160A/Q161A

variants had comparable biophysical characteristics to the hCD9-LELwt (data not
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shown). These variants were tested for binding to acIIb33 under divalent cation

conditions (Figure 8.6C). We did not observe any difference in binding among all the

hCD9-LEL variants, suggesting that interaction is not mediated by this region of the

hCD9-LEL head sub-domain.

Anti-a41 Antibody Modulation of Interaction:

Using BSA background as a negative control and hCD81-LEL/c431 integrin

binding under cationic conditions as a positive control, we tested antibody modulation of

this specific interaction. A panel of antibodies revealed that one anti-1 antibody, clone

4B4 reduced binding to background levels (Figure 8.7A). Another anti-P1 antibodies,

clone TS2/16, actually increased binding although TS2/16 and 4B4 have overlapping

epitopes and compete with each other for binding (Takada and Puzon 1993). A series of

anti-a4 antibodies also inhibited binding, although the pattern of inhibition did not match

known inhibitory antibody functions (Figure 8.7A). These surprising results were

reproducible, with clones TS2/16, SG7, and L25 augmenting binding and clones 4B4,

5D5, 8F2, and HP1/7 inhibiting binding (Figure 8.7B).

Specificity of Anti-a41 Antibody Modulation of Binding:

To test for the specificity of hCD8 1-LEL/a43 1, binding between the hCD8 1-LEL

protein and a531 integrin was tested under cationic conditions. No increase by either of

the augmenting antibodies, clones TS2/16 or SG7, was observed (Figure 8.8A). The

inhibitory antibody 4B4 also had no effect, although this could be due to the lack of

resolution under these experimental conditions. Specificity of hCD81-LEL/a4P31

interaction was also probed by testing binding between the hCD81-LEL protein and

ca6i4 integrin under cationic conditions. Screening a panel of anti-c6 antibodies revealed

a clone, S198, that inhibited interaction (Figure 8.8B). As before, anti-P4 antibody

clones 5D5, 8F2, and HP1/7 inhibited binding. Surprisingly, inhibition by the anti-I31

antibodies, 4E34 suggests that perhaps antibody-mediated inhibition was non-specific

(Figure 8.8B). Furthermore, it was observed that the majority of inhibitory antibodies

were ascites, an effect also observed with CD81 binding to aIIb[i3 integrin (data not

shown).
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With our cell-based binding assay, we preincubated K562 cells expressing

endogenous (x51 integrin with a series of modulating antibodies before probing binding

with the hCD9-LEL protein. All buffers contained Ca/Mg and whole-cell lysates were

quantified, equated, and loaded onto 18% non-reducing SDS-PAGE. Nucleoporin was

used as a loading control. The anti-131 antibodies, 13, AG89, TS2/16, and SG89

increased interaction (Figure 8.9). Disturbingly, the anti-ca4 antibody, L25, which

augments c4 binding but should have no effect in this assay, increased hCD9-LEL

binding. These results were reproducible and densitometry analysis suggested that clone

TS2/16 induced a 5-fold increase in hCD9-LEL binding and was dose-dependent on

hCD9-LEL concentrations (data not shown).
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Discussion.

In this chapter, we utilize three different techniques to show the influence of

various cations on binding between tetraspanins and integrins. These cation-dependent

effects were observed with a large number, but not all, of integrins tested. Furthermore,

they were observed with three different, soluble, tetraspanin-LELs. Surprisingly, we

observed inverted cation-dependent effects depending upon the assay used. With solid-

phase ELISA binding, we observed higher binding under cation-deficient, or inactivating,

conditions. However, with cell-binding assays, we observed higher binding under cation-

activating conditions. The simplest explanation for this discrepancy is to assume the

ELISA binding assays, which contain minimal binding components, is authentic and that

tetraspanin-LELs bind inactivated integrins.

In the case of our cell-binding assays, where we see increased binding under

cation-positive or integrin active conformations, our inverted observations to the ELISA

binding experiments may be explained by endogenous CD9, which has been shown to be

present in low copies on K562 cells (Mannion, Berditchevski et al. 1996). If interaction

between CD9 and integrins is real, endogenous CD9 molecules may be constitutively

bound to inactive integrins on K562 cells. Under inactivating conditions (EDTA), this

endogenous cis interaction would preclude the binding of exogenous, soluble forms of

the CD9-LEL. However, release of this CD9/integrin complex by cation-induced

integrin activation could expose novel, low-affinity binding sites and allow interaction of

soluble CD9-LELs in trans with cell-surface integrins. The low-affinity of tetraspanin-

LEL interactions is also suggested by our inability to observe CD9-LEL/cdIIb3 integrin

binding by gel filtration analysis, which only detects high affinity interactions (data not

shown).

Our observed cation-dependence of tetraspanin/integrin interactions is not in

concordance with several published reports (Mannion, Berditchevski et al. 1996)

(Longhurst, White et al. 1999), which suggest that modulation of integrin affinity does

not affect tetraspanin/integrin interactions. Longhurst et. al. observed the association of

CD9 with l:Ibf3 (and also the GPlb/V/IX complex) using CHAPS solubilization. An

activating antibody, D3, inhibited CD9/aIIbf33 immunoprecipitation, but the interaction

was not cation dependent (Longhurst, White et al. 1999). Mannion et. al. shown the
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cation independence of CD81/a4[ 1 interaction. However, the introduction of two point

mutations to the c4 subunit that inhibit adhesion, D346E and D408E also inhibit

immunoprecipitation (Mannion, Berditchevski et al. 1996). Association between CD81

and a4[51 is only observed in CHAPS or weaker detergents. The binding inhibition of

extracellular antibodies (which may disrupt the tetraspanin/integrin binding site)

described by Longhurst et. al. is encouraging. However, similar to the results described

in this chapter, many of these observations are discordant with one another. How would

an activating antibody decrease binding and yet not be cation-dependent? We

hypothesize that the use of weak detergents (such as CHAPS and even weaker detergents,

such as Brij58) to observe interactions causes tetraspanins and integrins to constitutively

and non-specifically associate with one another through their hydrophobic domains. This

constitutive effect may mask the conformational-dependence of tetraspanin-integrin

interactions.

It is possible that under integrin activating conditions, extracellular tetraspanin

binding to integrins is minimal. However, binding was significantly increased in the

presence of inactive integrins (as with our solid-phase ELISA assays), and induction of

the inactive conformation may expose a tetraspanin-LEL binding site. Cation-dependent

tetraspanin-IEL/integrin binding strongly suggests that this interaction may depend upon

different integrin conformations. To test this hypothesis, we used the Tev protease to

activate integrins by releasing an artificial coiled-coil clasp (Takagi, Erickson et al.

2001). However, release of the integrin inactivation constraint did not significantly affect

tetraspanin-I,EL/integrin binding. Lastly, we queried tetraspanin-LEL/integrin

interactions in both solid-phase binding and cell-binding assays with modulating

antibodies. Although these antibodies were also able to modulate tetraspanin/integrin

interactions, they did not suggest preferred binding of tetraspanins to either activated or

inactivated integrin conformational state (Takagi, Petre et al. 2002). As we noted that a

number of antibodies produced as ascites all had inhibitory effects on tetraspanin-LEL

binding, regardless of their function, we have low confidence in these results.

Lastly, to test the specificity of our tetraspanin-LEL binding, we constructed two

point mutations in the human CD9-LEL that we hypothesized would serve to disrupt

heterotypic interactions. Unexpectedly, these mutations had no effect on the interactions
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between the CD9-LEL and integrins, suggesting a lack of specificity in our observations.

Furthermore, the addition of antibodies that recognize tetraspanin-LELs (and supposedly

block heterotypic interactions) had no inhibitory effect on interactions. These results do

not support the specificity of our tetraspanin-LEL/integrin binding experiments.

However, unlikely, it may be possible that the dimeric, not the variable, subdomain of

tetraspanin-LELs does not mediate our observed interactions. However, this hypothesis

is not supported by our cell-binding assays, where we incubated integrin-expressing cells

with tetraspanin-LELs at concentrations where the tetraspanin-LELs would be dimeric.

Lastly, addition of the mCD9-LEL protein, which is thought to interact with the platelet

integrin aIIb133(Longhurst, White et al. 1999), had no effect on the activation or

aggregation kinetics of human platelets in a aggregometer assay (data not shown).

Unlike our initial results showing the cation-dependence of tetraspanin/integrin

interactions, all of our latter experiments suggest a discouraging lack of binding

specificity. Regardless, many reports suggest the role of tetraspanins in regulating cell

migration. For example, antibodies against CD9, CD81, a3 integrin, and 131 integrin

inhibit in vitro keratinocyte wound-healing (Penas, Garcia-Diez et al. 2000). Antibodies

against CD63 inhibit melanoma cell migration and overexpression of CD63 increased 31

integrin mediated adhesion and migration (Radford, Mallesch et al. 1995). Whether

tetraspanin-dependent modulation of integrin-mediated adhesion and migration is direct

or indirect is unclear.

In summary, we have presented a series of experiments to directly reconstitute

and probe teltraspanin/integrin interactions. These experiments suggest that commonly

observed interactions between tetraspanins and integrins occur through the extracellular

portions of these molecules. However, we were not able to decipher a pair-wise binding

pattern (i.e., all tetraspanin-LELs bound equivalently to acIIbf3), although these data did

roughly correlate to published observations (none bound well to caV33 integrin). Most

importantly, we were unable to show specificity of tetraspanin-LEL interactions either

through the addition of putative function-inhibiting antibodies or the introduction of

putative non-heterotypic interacting mutations.
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Figure 8.1 Global Conformational Rearrangements of Integrin Heterodimer Structures: A)
Integrins in a bent form (left-most structure) have been shown to be inactive. Straightening of
the integrin heterodimer to an active conformation can occur either by ligand binding or
through the cytoplasmic domains, resulting in the straightening and the separation of the
integrin legs (middle/right diagrams). B) Two proposed models for global rearrangement of
integrin structure are through either the switch-blade or flick-knife model, or an angle-poise
model. The orientation of the integrin heterodimer relative to their respective transmembrane
domains is unknown. Experimentally, it has been shown that global integrin conformational
changes can occur through either cations, tail release, or modulating antibodies. It is unknown
if tetraspanin molecules regulate integrin conformations.



Figure 8.2 ELISA Analysis Reveals Cation-Dependent Tetraspanin/Integrin Interactions:
A) The hCD9-LEL, hCD63-LEL, and hCD81-LEL proteins were bound to ELISA plates at
lOg/ml. Recombinant a5fp1or caIIb33 integrin (10jg/ml) was incubated in TBS
supplemented with either lmMCa/lmMMg (red), 2mM Mn (blue), 4mM EDTA (yellow),
2mM Mn + 200M GRGDNP for a5131 and GRGDSP aIIbP3 (Green). Bovine serum
albumin (black) was added as a negative control. The stippled lines indicate background
binding, as set to BSA. B) The hCD9-LEL (blue), hCD63-LEL (red), and hCD81-LEL
(green) proteins were bound at 5/g/ml to ELISA plates. Recombinant cIb3, mini-cdIIb33,
caVI33, cVI 1, ca531, ca6134 at 5/g/mlwere incubated in TBS supplemented with either
lmMCa/lmM.Mg (thatched) or 2mM EDTA (solid). Baseline was set to the BSA control
(stipple line). C) The hCD9-LEL (blue), hCD63-LEL (red), and hCD81-LEL (green)
proteins were bound at 5pg/ml to ELISA plates. Recombinant IIb33, mini-acIIbf3, aVP3,
caVf3, a5131, x6134, a431, a41i7 at 5/g/mlwere incubated to the plates in TBS

supplemented with 2mM EDTA (solid). This ELISA experiment was conducted by J. Takagi
using tetraspanin reagents provided by C. C. Liu.
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Figure 8.3 FACS Analysis of Cation-Dependent Tetraspanin/Integrin Interactions: K562 cells
expressing endogenous a531 and stably transfected aIIbp3 or ct4(fll) integrins were washed
and incubated in phosphate-buffered saline containing either ImM Ca2+/lmM Mg 2+ or 5mM
EDTA for 1 hour at 40 C. Cells were washed and co-incubated with the hCD9-LEL protein
(final concentration 2mg/ml) and a 1:100 dilution of a-CD9 antibody, clone M-L13, for 1 hour
at 40C. Subsequently, cells were washed IX in PBS/cation and incubated with a 1:100 dilution
of PE-conjugated anti-mouse IgG. Cells were washed 1X and analyzed by FACS. Forward
and side scatter gates were optimized to select for live cells. Region 2 was defined by K562
samples with either no hCD9-LEL protein or no M-L13 antibody. Under these conditions,
<0.5% of K562 cells fell in region 2. Increasing PE fluorescence (CD9 binding) is indicated in
the FL2 range. Percentages of region 2 cells under various conditions are indicated in
parentheses. This experiment was conducted by C.C. Liu using cells provided by J. Takagi.
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Figure 8.4 Cell-Surface Integrin Binding of Tetraspanins: A) K562 cells expressing
endogenous a5pl and stably transfected aIIbP3 or a4(fl1) integrins were washed and
incubated for 1 hour at RT in phosphate-buffered saline containing either ImM Ca2+/ImM

Mg2+ or 5mM EDTA. Cells were washed and incubated with the hCD9-LEL protein (final
concentration 2mg/ml) for 1 hour, washed in PBS/cation and lysed in RIPA buffer. Insoluble
portion was cleared by centrifugation and cell lysate was quantified with the microBCA kit.
Equal amounts of protein were loaded on 18% non-reducing SDS-PAGE and probed for
hCD9-LEL with the antibody 72F6. B) Tetraspanins were bound to ELISA plates as
previously described. Integrins with C-terminal coiled-coil clasps were released with 250U/ml
of TEV protease by overnight incubation at RT. Non-cleaved integrins were incubated with
TEV-negative buffer. Integrins were added to tetraspanin-ELISA plates and developed under
standard conditions. TEV protease addition is indicated under each set of data.

Experiment in A was conducted by C.C.Liu and ELISA in B was conducted by J. Takagi using
tetraspanin reagents provided by C. C. Liu.

I .It

05 i
0

'3'\

I 1
I hi

2,5• IIBSA IICD9 IICD81 QCD63

-

---··-------· ·-

a -- -

+/+ 5mM EDTA



Figure 8.5 cIIb303 Binding to Tetraspanins: To further explore aIIb133 binding to
tetraspanin-LELs, we used a series of anti-integrin modulating antibodies. A) The hCD9-
LEL protein was bound to ELISA plates. Integrin caIb[3 was incubated with a panel of
modulatory antibodies listed. No antibody addition is listed as cont(rol). B) To test
binding inhibition by the anti-aIIb[3 antibody 10E5, tetraspanin-LELs were bound as
before. The acIIb[3 integrin was incubated in 2mMEDTA with either no-antibody (blue),
non-modulating antibody (red), or the modulating 10E5 antibody (green). Baselines are set
to the BSA background control. C) To test the effects of associating drugs, the hCD9-LEL
was bound to ELISA plates. Integrin ctIIb33 binding was tested as before, except instead
of 2mM EDTA, TBS was supplemented with mM Ca2 +/lmM Mg2+. As indicated,
integrin aIIbP3 was supplemented with 1OOyM EF5154 or GFGDSP.

This experiment was conducted by J. Takagi using tetraspanin reagents provided by C. C.
Liu.
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Figure 8.6 Tetraspanin Antibody and Point Mutation Effects on cIIb[3 Binding: To test
specificity of txIIb33/tetraspanin interactions, hCD9-LEL, hCD63-LEL, and hCD81-LEL
were bound to ELISA plates as before. A) Integrin aIIb[3 was incubated in TBS/EDTA to
ELISA plates with either no antibody (blue), an antibody against the bound tetraspanin (red),
or the inhibitory 10E5 antibody (green). Background is indicated with a stippled line. B)
Tetraspanin-LELs were bound to the plate and incubated with aIIb33 integrin in
TBS/EDTA. Anti-CD9 (pink), anti-CD81 (green), anti-CD63 (orange) or 10E5 (red) were
added at 20g/'ml. No antibody addition (blue) and BSA (black) were used as positive and
negative controls respectively. Background binding is indicated with stippled lines. C) To
test specificity of human CD9-LEL interactions, two point mutations were constructed
hCD9-LEL-Q161A and hCD9-LELE15A/Q161A and bound to ELISA plates. caIIb3
integrin was incubated with TBS/lmM Ca2 +/lmM Mg2 +and background binding is indicated
with a stippled line.

This ELISA experiment was conducted by J. Takagi using tetraspanin reagents provided by
C. C. Liu.
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Figure 8.7 Antibody Modulation of a4•1/Tetraspanin Binding: The hCD81-LEL was bound
to ELISA plates. a4P~ integrin was incubated in TBS/lmM Ca2+/lmM Mg 2+with a 1:100
dilution of the indicated antibody (either from a 1mg/ml stock or ascites). A) BSA background
was set to 0 and the stippled line indicates binding without the addition of antibody. B) An
independent replicate of A. Stippled lines indicate background (bottom line) and baseline
binding (top line). The function of anti a4 integrin antibodies is indicated with either an I
(inhibitory) or N (non-blocking) or ? (unknown). Antibodies that have overlapping epitopes
are indicated with an asterisk. This experiment was conducted by J. Takagi using tetraspanin
reagents provided by C. C. Liu.
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Figure 8.8 Specificity of a431 Antibody Effects: A) To test the specificity of anti-Pl
antibodies, hCD81-LEL was bound to ELISA plates. a5P1 integin heterodimer was incubated
with plates in TBS/lmM Ca2+/lmM Mg 2+ with antibodies at 1:100 dilution. B) To test binding
to a5p•, hCD81-LEL was bound to ELISA plates. a634 integrin was incubated with plates in
TBS/lmM Ca2+/lmM Mg 2+ with antibodies at 1:100 dilution. Antibodies against the a4
integrin are indicated with a red X. Stippled lines indicate both background binding (lower
line) and baseline binding (upper line). This ELISA experiment was conducted by J. Takagi
using tetraspanin reagents provided by C. C. Liu.
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Figure 8.9 Antibody Modulation of Cell-Surface Integrin Binding: K562 cells expressing
endogenous 0a501 were washed in PBS/lmMCa/lmMMg, aliquoted, and incubated with a
1:25 (40mg/ml or ascites dilution) in 50Als for 15' at RT. Fifty pls of a 2mg/ml solution of
hCD9-LEL (for a final concentration of lmg/ml protein) was added to the cells and incubated
for 45' at RT. Cells were washed 3X in PBS+/+. Cells were lysed in RIPA buffer with
protease inhibitor cocktail (Boehringer) and insoluble portion was cleared for by
centrifugation. Protein content was monitored by microBCA assay and equal amounts were
loaded onto 18%SDS-PAGE. Westerns were developed using the anti-human CD9 antibody
clone 9F27. Anti-nucleoporin antibody was used as a loading control. Antibodies against ct4,
aS, and 01 integrin subunits are indicated. This experiment was conducted by C.C. Liu using
reagents provided by J. Takagi.



Chapter 9

Conclusions and Future Directions

This discussion was written by Christopher C. Liu with helpful discussion and editing
from Richard 0. Hynes. All conclusions and errors are my own.
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Introduction

This thesis has described a rapid methodology to purify and characterize

tetraspanin-LELs. Biophysical and molecular biological analyses show that the CD9-

LEL, CD63.-LEL, and CD81-LEL are all ca-helical dimers composed of a conserved

dimerization subdomain and a variable subdomain, consistent with a published crystal

structure of the human CD81-LEL. We are readily able to purify a single conformational

species of each tetraspanin-LEL dimer. These reagents can be used to inhibit endogenous

tetraspanin functions, further suggesting that our tetraspanin-LEL proteins are

biologically relevant. The discussion and future directions of these inhibition studies

(fertilization and hepatitis C infection) are discussed in Chapter 7 and the Appendix,

respectively. In this chapter, we discuss future experiments that are both a natural

extension of the work described in this thesis and may also serve to lend the most insight

into tetraspanin functions.

Tetraspanin Extracellular Domains

The first area of focus of this thesis has been on the biophysical characterization

of tetraspanins-LEL domains in vitro. We have purified and characterized three different

tetraspanins-LELs, including many variants of the murine CD9-LEL. As the hCD8 1-

LEL sructure has proven to be instrumental in developing our conceptual framework for

tetraspanin functions (Kitadokoro, Bordo et al. 2001), we have attempted (and failed) to

derive atomic-level structures of other tetraspanin-LELs. Structural studies of other

tetraspanin-LELs would add significantly to the mutagenesis analyses described in this

thesis. More detailed biophysical techniques to measure the binding kinetics of one

tetraspanin monomer to another, such as isothermal calorimetry, may also prove useful.

Currently, we have not measured the binding and dissociation constants of tetraspanin

oligomerization, although biophysical and mutagenesis studies indicate that tetraspanin-

LELs are obligate homodimers.

In many ways, the global stability, small size, dimeric nature and cooperativity of

folding of tetraspanin-LELs suggest that these proteins are ideal substrates for oligomeric

protein folding and design studies (Cordes, Davidson et al. 1996). Based upon structural

and sequence homologies (Seigneuret, Delaguillaumie et al. 2001), it may be possible to
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further stabilize the tetraspanin-LEL homodimers either through introducing an

interchain disulfide-bond or by designing a single-chain tetraspanin-LEL dimer (Root,

Kay et al. 2001). These studies may serve both to validate further the quarternary

structure of the tetraspanin-LEL dimer and to increase both the stability and potency of

tetraspanin-LELs in inhibition experiments.

Our 'observations of well-folded homodimeric tetraspanins-LELs immediately

suggested the attractive possibility of heterodimers, especially as multiple homotypic

tetraspanin interactions have been observed. Experimentally, we saw no evidence of

preferential heterodimerization between the hCD9-LEL and the hCD8 1-LEL. The role of

specific protein dimerization and oligomerization is of key importance in regulating

biological functions (Klemm, Schreiber et al. 1998). Protein oligomerization serves not

only to increase functional diversity combinatorially, but also to regulate receptor avidity

and to define spatio-temporal boundaries of signaling complexes. The small size and

global stability suggests the possibility of rationally designing heterodimeric tetraspanin-

LELs (Keating, Malashkevich et al. 2001).

Our initial attempts to disrupt dimerization and to design a monomeric, folded

version of the murine CD9-LEL were not successful. However, we have not completely

exhausted the possibilities in this avenue of research. By introducing intramolecular,

buried disulfide bonds, it may be possible to stabilize further each independent

tetraspanin-LEL subunit (Betz 1993). Such stabilization, coupled with a more rigorous

attempt to introduce polar and charged amino acid residues into the dimerization interface

may allow the design of a monomeric tetraspanin-LEL. A monomeric tetraspanin-LEL

variant would allow researchers to explore the contribution of tetraspanin-LEL

dimerization to inhibition experiments. Currently, we view tetraspanin-LELs as

dominant negatives, serving to disrupt endogenous heterotypic complexes at the cell

surface. It is unclear if the bivalent nature of the tetraspanin dimer is essential to their

inhibititory effects.

As technology for peptide synthesis advances, the relatively short length of

tetraspanin-LELs (-80 amino-acids) will allow chemical synthesis of these molecules

(either by standard synthesis reactions or through sequential peptide ligation). The ability

to synthesize tetraspanin-LELs chemically would allow the incorporation of covalent
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cross-linkers into the amino acid chain that do not disrupt heterotypic interactions but

allow direct cross-linking to heterotypic binding partners. The molecular dissection of

the KMC8 epitope as presented in this thesis lays the groundwork for the design of these

tetraspanin-LEL variants. These reagents, used in tandem with our studies on both the

inhibitory effects of recombinant tetraspanins-LELs and their interactions with integrins

would serve to decipher the complex roles of tetraspanins-LELs. The ability to

covalently cross-link tetraspanins-LELs to their specific binding partners would also

assist in clearly mapping heterotypic interaction domains.

Inhibitory Effects of Soluble Tetraspanin-LELs.

Our primary, motivating interest in tetraspanins was, and still remains, their

unique roles in membrane fusion (Stein, Primakoff et al. 2004). The proteins directly

responsible for cell-cell fusion remain unknown. Given the recent, significant advances

in viral-cell and vesicle-vesicle fusion (Earp, Delos et al. 2005), an understanding of cell-

cell fusion at the molecular level would be a giant advance towards our appreciation of

this fascinating topic

CD9, which was shown to be essential for sperm-egg fusion, did not fit our view

of a membrane fusogen. To further explore the role of CD9 in membrane fusion, we

developed a methodology to produce and purify the CD9-LEL. A well-characterized,

soluble CD9--LEL could be useful in several ways. Logically, if CD9 does not play a

direct role in catalyzing membrane fusion, it may bind to either a sperm or an egg protein

that does. We made the CD9-LEL and a series of folded, characterized mutants with this

series of experiments in mind.

Indeed, our CD9-LEL protein exhibited significant, but far from complete

inhibition of fertilization (Zhu, Miller et al. 2002). Furthermore, pre-incubation of the

CD9-LEL protein with either sperm or egg cells suggested that endogenous CD9

functions on the egg surface, and not as a sperm receptor. We, and others, have

attempted to identify CD9 binding partners on the egg surface with no luck.

The search for a heterotypic CD9 binding partner is far from complete. The

inhibitory activity of our CD9-LEL protein has is a small, but significant step forward

towards our understanding of how CD9 functions on the egg surface. As limited
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numbers of egg cells is a significant technical hurdle for classical biochemistry, it may be

possible to find oocyte specific binding partners through either screening a Xgtl 1 phage

library (Mierendorf, Percy et al. 1987), or expression cloning in eukaryotic cells. The

reversible effect of PSG17-mediated inhibition on CD9, suggests that CD9 does not

function as a chaperone to a membrane fusogen (Ellerman, Ha et al. 2003). Our ability to

rescue CD9-null oocytes with de novo expression of CD9 also suggests that CD9 may

serve to increase affinity or avidity of other, essential proteins in sperm-egg fusion (Zhu,

Miller et al. 2002).

The ubiquitous binding nature of tetraspanins-LELs makes the development and

characterization of CD9-LEL variants described in this thesis essential for this series of

experiments. Coupled with the possible generation of novel, covalent cross-linking CD9-

LELs described above, we remain optimistic that CD9 may serve as a conduit to

bootstrap towards a sperm-egg fusogen. Our inability to make greater headway into

probing the molecular mechanisms underlying sperm-egg fusion remains a point of deep

disappointment for us.

Recently, we initiated a collaboration with Jane McKeating to utilize our

recombinant tetraspanins-LELs to study another membrane fusion event: the infectivity

of hepatitis C. For some time, hepatitis C (HepC) envelope proteins have been known to

bind to the tetraspanin CD81 (Pileri, Uematsu et al. 1998) (Flint, Maidens et al. 1999).

As CD81 expression is not limited to HepC permissive cells (Levy, Todd et al. 1998) , it

has been hypothesized to function as a viral co-receptor (McKeating, Zhang et al. 2004).

Recent advances in replicating the hepatitis C lifecycle, including genomic replication

(Blight, Kolykhalov et al. 2000), viral pseudotyping (Hsu, Zhang et al. 2003), and finally,

the full HepC viral lifecycle (Lindenbach, Evans et al. in press) may serve to accelerate

the pace of flavivirus research. Lastly, the detailed mechanism of HepC glycoprotein

mediated membrane fusion is converging with the better understood retroviral and vesicle

fusion systems (Earp, Delos et al. 2005).

Our results showing specific inhibition of HepC infectivity with the CD81-LEL is

not novel. Multiple groups have produced and shown inhibition with similar reagents

(Flint, Maidens et al. 1999; Higginbottom, Quinn et al. 2000; Petracca, Falugi et al.

2000). However, our methodology to produce and characterize highly purified CD81-
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LELs and their non-inhibitory variants results in significantly greater potency of

inhibition (unpublished results). These reagents may serve to both probe hepatocyte

specific CD81-LEL binding partners (in a manner similar to that described for

fertilization) and also to probe the mechanism of HepC glycoprotein function. In

collaboration, Jane McKeating will utilize both our reagents and the ability to produce

high HepC viral titers to search for escape mutants from CD81-LEL mediated inhibition.

Lastly, the greater potency of our reagents will allow us to test inhibition of HepC

virions in a SCID mouse model system transplanted with human hepatocytes (Meuleman,

Libbrecht et al. 2005) in collaboration with both Jane McKeating and the Leroux-Roels

laboratory. If these in vivo inhibition experiments are successful, I expect that the CD81-

LEL protein may be commercialized.

Tetraspanin Interactions in the Membrane

Shortly after the identification of tetraspanins as a family of proteins (Oren,

Takahashi et al. 1990), the concept of a tetraspanin web was raised (Rubinstein, Le Naour

et al. 1996). Almost a decade after this hypothesis, the existence of a tetraspanins web, or

the ability of tetraspanins to spatially organize complexes at the cellular membrane,

remains contentious.

A large body of literature suggests that tetraspanins bind in a robust,

stoichiometric, heterotypic fashion with other membrane proteins (integrins

(Berditchevski 2001) and immunoglobulin superfamily members (Stipp, Kolesnikova et

al. 2003). This interaction is mediated through the tetraspanins-LEL (Kazarov, Yang et

al. 2002). When the stringency of these techniques is lowered , significantly greater

numbers of interactions are also observed, including homotypic tetraspanins interactions

(Berditchevski, Zutter et al. 1996), MHC proteins, CD4 (Imai, Kakizaki et al. 1995), CD8

(Imai and Yoshie 1993), CD36 (Miao, Vasile et al. 2001), and a larger array of integrins

(Berditchevski 2001).

An outstanding question raised and unresolved in this thesis is the role of

tetraspanin oligomerization at the cell surface. Both the structure of the CD81-LEL

(Kitadokoro, Bordo et al. 2001) and our characterization of tetraspanins-LELs as helical

dimers immediately suggested that tetraspanins-LELs might play a central role mediating

192



oligomerization at the cell surface. However, many biochemical attempts to probe this

function, including some described in this thesis, have been attempted without resolving

conclusively the nature or even the validity of these proposed interactions.

Our biophysical and molecular analysis of a number of tetraspanins-LELs is

internally consistent and suggests that dimerization is a key factor in the folding stability

of the tetraspanins-LEL. Surprisingly, we were not able to detect oligomers with intact

CD9 molecules, in direct disagreement with our biophysical data. We have no choice but

to conclude that either our biophysical data is incorrect, is not biologically relevant, or

that the inclusion of other tetraspanin domains serves to mitigate the oligomerization of

tetraspanins--LELs.

We do not believe our biophysical data to be incorrect. Our observations that the

tetraspanins are ac-helical dimers composed of two subdomains is consistent with a large

body of literature, including structure (Kitadokoro, Bordo et al. 2001), sequence

(Seigneuret, Delaguillaumie et al. 2001), and antibody-induced effects (Maecker, Todd et

al. 1997). On the other hand, dimerization of tetraspanins-LELs may be biologically

irrelevant. Both sequence conservation and disulfide-bonding patterns strongly suggest

that a large hydrophobic patch exists in the tetraspanins-LELs (Seigneuret,

Delaguillaumie et al. 2001). However, this surface does not necessarily need to mediate

dimerization. It is possible, however unlikely, that the tetraspanins small extracellular

loop (SEL) may serve to cap this surface. As SELs are short (Maecker, Todd et al.

1997), 15-20 amino acids in length, chemical synthesis of this tetraspanins domain and

the analysis of its influence on both the biophysical properties of tetraspanins-LELs and

tetraspanins-ILEL mediated inhibition are intriguing. Lastly, multiple observations that

tetraspanins-LELs specifically inhibit functions and that these inhibitory effects match

both mouse model and antibody-induced effects support the biological relevance of our

methodology.

Our experiments with the intact CD9 molecule raise the probability that other

tetraspanins hydrophobic domains may serve to mitigate tetraspanin-LEL mediated

oligomerization. The presence of conserved, polar residues in all tetraspanins

transmembrane segments suggests an evolutionarily conserved role (Stipp, Kolesnikova

et al. 2003). Although our null hypothesis is that the crystal structure the CD81-LEL is
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consistent with the existence of a tetraspanins dimer on the same lipid bilayer, this

assumption is still quite controversial. To reconcile, the antiparallel structure of the

CD81-LEL, it is necessary to envision a flat, planar tetraspanins dimer lying in close

proximity to the lipid bilayer. It is conceivable that the hydrophobic, putative

dimerization interface lies embedded into the lipid bilayer, similar to a peripheral

membrane protein.

To ideally resolve these issues, we propose that it is necessary to characterize

tetraspanin molecules in isolation, in reconstituted lipid vesicles. Reconstitution of

purified tetraspanin molecules would allow the use of both fluorescence resonance

energy transfer (FRET) or fluorescence recovery after photobleaching (FRAP) to probe

the oligomerization state of tetraspanins. These studies, coupled with the mutagenesis

studies described in this thesis, would allow precise measurements of the contribution of

each tetraspanin domain to oligomerization - if indeed it occurs. Reconstitution of

tetraspanins with heterotypic partners would also explore the potential influence of

heterotypic partners on oligomerization and avidity regulation. Lastly, synthesis of

tetraspanin transmembrane segments in isolation and subsequent introduction into lipid

vesicles would directly measure the contributions of these domains to oligomerization,

which has been alluded to, but not directly explored.

Given the technical difficulties underlying reconstitution of intact tetraspanins

into lipid bilayers, we also propose an alternative methodology. In parallel with the

tetraspanin variants that abolish heterotypic interactions, it may be possible to use

rapamycin-induced FKBP dimerization to induce tetraspanin dimers (Klemm, Schreiber

el: al. 1998). By artificially inducing high-avidity homo- or hetero- oligomeric tetraspanin

complexes, it may be possible to decipher the contribution of oligomerization to

endogenous tetraspanin functions.

The ideas and future directions described here are not novel. The study of

membrane proteins, their functions, and their oligomerization states is complex. In this

thesis, we have taken a traditional approach to study membrane proteins, by largely

ignoring the hydrophobic domains. It appears that in tetraspanins, even more so than

other transmembrane proteins, the effects of hydrophobic domains may not be ignored.

However, given the complexity and contribution of different domains to the endogenous
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functions of transmembrane proteins, these studies must be undertaken. Recently, the

integrin field has undergone a renaissance of ideas, both with the description of global

conformational changes long known to occur, and a strong indication that lateral

association of transmembrane segments may modulate extracellular domain functions

(Hynes 2002). The concept of lateral association between tetraspanin transmembrane

segments is appealing and needs to be explored in full detail.

The idea of a tetraspanin-enriched microdomain (TEM), similar to that observed

with lipid rafts, is both alluring and fraught with controversy. Various experimental

approaches, including tetraspanin palmitoylation and detergent-insoluble flotation

gradients hint at the existence of a TEM (Cherukuri, Shoham et al. 2004). However,

current techniques lack the resolution or rigor to resolve outstanding issues. Without

detailed analysis of tetraspanin partitioning into and out of high avidity complexes, this

idea will remain in the hypothesis stage. In this thesis, we have presented detailed

molecular analysis regarding the tetraspanin-LEL segment. These insights, in

conjunction with mutations of conserved amino acid residues in each tetraspanin

transmembrane segment and the techniques described above may shed light on TEMs.

Curre ntly, an active avenue of tetraspanin research is the generation and analysis

of tetraspanin knock-out mice. Targeted deletion of CD82 (a prostate metastasis

suppressor (I)ong, Lamb et al. 1995)) and CD63 are eagerly anticipated. Transgenic

rescue of tetraspanin-null mice (which has only been described with CD9-null oocytes in

Chapter 7) with multiple tetraspanin variants may also begin to decipher tetraspanin-LEL

finctions. Analysis of detergent-solubilized tetraspanin complexes, potential recruitment

of these complexes into TEMs, and the contribution of tetraspanin palmitoylation to

complex formation (Charrin, Manie et al. 2002; Charrin, Manie et al. 2003) also remain

active areas of research. Detailed analysis of these hydrophobic tetraspanin domains,

coupled with an increasing cognizance of tetraspanin-LEL-mediated functions, may serve

to reveal the underlying function of all tetraspanins.

Over the course of this thesis it has become evident that without the reconstitution

and analysis of specific tetraspanin domains in isolation and together, an inclusive

understanding of endogenous tetraspanin functions will prove difficult. The approaches

taken in this thesis underscore the parallel approach I have taken to explore tetraspanin
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functions relative to the rest of the field. Rather than the deletion of specific genes (a

reverse genetic approach (Hemler 2001)) or the sequential characterization of cellular

tetraspanin complexes (a deconvolution approach), we have sought to characterize the

roles of a specific tetraspanin domain (a reconstitution approach). This reconstitution

approach has both allowed the development of novel hypotheses for tetraspanins

functions and also the precise exploration of tetraspanin-LEL mediated inhibition.

The success of reverse genetics and deconvolution has served to reveal a panoply

of exciting, novel roles for tetraspanins in many diverse cell types, functions, and model

organisms (Hemler 2003). However, our reconstitution approach has yet to reach full

concordance with these other approaches and a unifying theory of tetraspanins function is

unclear. When these approaches meet and merge, hopefully with the completion of the

experiments described in this chapter, we believe that tetraspanins will fully reveal their

central roles, which we propose is in regulating both the affinity and the avidity of

membrane proteins.
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Appendix A

Specific hCD81-LEL inhibition of
Hepatitis C Infection

These experiments were conceived by Christopher C. Liu, Jane McKeating, and Richard
0. Hynes. All tetraspanin reageants were constructed by Christopher C. Liu. All
inhibition of Hepatitis C pseudotyped virions assays was performed in the laboratory of
Jane McKeating. Non-pseudotyped Hepatitis C virions (HepCpp) was made and
analyzed by Brett Lindenbach.
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Tetraspanin CD81-LEL Inhibition of Hepatitis C Infection

The experiments described in this appendix were initiated over the summer of

2004 through a series of discussions with Jane McKeating at the FASEB Tetraspanin

2004 meeting. Since my undergraduate studies, I have followed research on Hepatitis C

infectivity and the mechanisms offlaviviral membrane fusion closely and with great

interest. It is quite an honor to both finally study and contribute reagents to this body of

research. However, I must admit that Jane McKeating intellectually drives this

collaboration and I am merely providing useful reagents. As a result, Ifeel the series of

experiments described below are not worthy of a full chapter in this thesis. A

publication, appended in this thesis, has already risen from this fruitful collaboration.

The most prominent role for a tetraspanin in infectious disease is CD81, which

has been characterized as a receptor for the flavivirus Hepatitis C (Pileri, Uematsu et al.

1998).

Hepatitis C virus (HCV) is a major cause of liver disease, with over 170 million

infected individuals worldwide. Currently, HCV infection is the major cause of liver

transplants in the United States and current drug therapies are mostly ineffective (De

Francesco and Rice 2003). A member of the flaviviradae viral family, HCV encodes two

envelope genes, El and E2, believed to be type I transmembrane proteins that mediate

viral entry (Fields 2001). These proteins have been structurally categorized as class II

membrane fusion molecules (see Chapter 1) (Earp, Delos et al. 2005). It has been shown

that recombinant, soluble versions of the HCV E2 proteins bind a number of cell-surface

proteins, including CD81 (Pileri, Uematsu et al. 1998; Flint, Maidens et al. 1999),

scavenger receptor class B (SR-B 1) (Scarselli, Ansuini et al. 2002), dendritic cell-

specific ICAM 3-grabbing nonintegrin (DC-SIGN) (Pohlmann, Zhang et al. 2003), and

low-density lipoprotein (LDL) (Wunschmann, Medh et al. 2000).

The best characterized of these putative HCV receptors is CD81. Although CD81

is necessary for HCV infection of liver cells, CD81 expression alone is insufficient to

mediate viral entry, suggesting that other factors are necessary (McKeating, Zhang et al.

2004). Furthermore, CD81 is expressed on a diverse array of cell types, many of which

199



are not susceptible to HCV entry. As a result, CD81 has been characterized as a HCV

co-receptor. Soluble, recombinant CD81-LELs have been shown to bind the

pseudotyped hepatitis C virions (Pileri, Uematsu et al. 1998; Flint, Maidens et al. 1999).

Binding of HepC pseudotyped virions is dependent on the CD81-LEL and mutagenesis to

non-permissive CD81-LEL sequences abrogated viral entry.

In this section, we present evidence for the role of our hCD81-LEL in specific,

dlose-dependent inhibition of HCV entry. Our purified, recombinant hCD81-LEL protein

, and not the CD9-LEL, inhibits envelope-null human immunodeficiency virus (HIV)

pseudotyped with HepC H and Conl glycoproteins (Figure A. 1). Neither protein

inhibited the entry of envelope-null HIV particle pseudotyped with vesicle stomatitis

virus (VSV) envelope, which mediates ubiquitous cellular entry. The inhibitory effect

was dose dependent with an IC,, in the high ng/ml range, exhibiting approximately an

order of magnitude greater potency than previously observed with GST-CD8 1-LEL

fusions.

To further test both the specificity and potency of inhibition, we constructed and

purified mouse and rat hCD81-LEL. Rat CD81-LEL did not inhibit binding, similar to

negative controls. As expected, none of the recombinant CD8 1-LEL proteins inhibited

virions pseudotyped with Murine Moloney Leukemia virus. Mouse CD81-LEL inhibited

virions pseudotyped with HepC envelope strain H77, but not HepC envelope strain JFH

(Figure A.2).

Recently, Brett Lindenbach and colleagues were able to produce infectious non-

pseudotyped HepC virions (Lindenbach, Evans et al. in press). Infection of these virions

were inhibited both with a antibody against the HepC glycoprotein known to inhibit entry

(clone C1) and also with our hCD81-LEL protein (Figure A.3). These inbition

experiments suggest that the HepC viral particle, called HCVcc, is similar to native HepC

virions. To further study the mechanism of hCD81-LEL mediated inhibition, Jane

McKeating will screen for HCVcc escape mutations. Lastly, the greater potency of our

reagents will allow us to test inhibition of HepC virions in a SCID mouse model system

transplanted with human hepatocytes in collaboration with both Jane McKeating and the

Leroux-Roels laboratory (Meuleman, Libbrecht et al. 2005). If these in vivo inhibition

experiments are successful, I expect that the CD8 1-LEL protein may be commercialized.
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Figure A.1 Plasmids carrying Hepatitis C virus strain H or Conl E1E2 glycoproteins were
cotransfected with a luciferase plasmid containing an env-defective human immunodeficiency
virus (HIV) proviral genome into 293T cells. Supernatants were collected after 48h post-
transfection, HIV p24 antigen was assessed, and equal volumes of p24-antigen normalized viral
supernatants were added with the indicated concentration of tetraspanin-LELs to target cells.
After 4 hours, media was changed and 72 hours post-infection, cells were washed, lysed, and
assayed for luciferase activity. Dose dependence of both the hCD81-LEL and hCD9-LEL is
graphed at top and tabulated below.
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Figure A.2 Pseudotyped Hepatitis C virions were produced as described in A. 1. Instead,
glycoproteins from either Hepatitis C virus strain H77 or JFH were used as experimentals with
the Murine Moloney Leukemia virus envelope as a negative control. All tetraspanin-LELs were
tested at 5pg/ml. Data with the CD9-LEL protein, which had no effect on infectivity, is not
shown. Dose dependence curves are in progress.
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Figure A.3 Entry of the non-pseudotyped Hepatitis C virion, HCVcc, is indicated by
immunohistochemical staining for epitope-tagged NS5A protein with monoclonal antibody
9E10 (brown). Huh-7 cells were treated with A) clarified, filtered culture sup containing
HCVcc virions or B) untreated. To test for inhibition, HCVcc supernatants were pretreated for
lhr at 370 C with either C) inhibitor anti-E2 human monoclonal antibody Cl or D) lpg/ml of
hCD81-LEL. Cell nuclei are stained with hematoxylin (blue).
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SUMMARY

Gamete fusion is the fundamental first step initiating
development of a new organism. Female mice with a gene
knockout for the tetraspanin CD9 (CD9 KO mice) produce
mature eggs that cannot fuse with sperm. However, nothing
is known about how egg surface CD9 functions in the
membrane fusion process. We found that constructs
including CD9's large extracellular loop significantly
inhibited gamete fusion when incubated with eggs but not
when incubated with sperm, suggesting that CD9 acts by
interaction with other proteins in the egg membrane. We
also found that injecting developing CD9 KO oocytes with
CD9 mRNA restored fusion competence to the resulting
CD9 KO eggs. Injecting mRNA for either mouse CD9 or

human CD9, whose large extracellular loops differ in 18
residues, rescued fusion ability of the injected CD9 KO
eggs. However, when the injected mouse CD9 mRNA
contained a point mutation (F174 to A) the gamete fusion
level was reduced fourfold, and a change of three residues
(173-175, SFQ to AAA) abolished CD9's activity in gamete
fusion. These results suggest that SFQ in the CD9 large
extracellular loop may be an active site which associates
with and regulates the egg fusion machinery.

Key words: Gamete fusion, CD9, Tetraspanin, mRNA injection,
Mutation, Mouse

INTRODUCTION

Sperm-egg binding and fusion initiate the development of a new
organism, but the molecular mechanisms of gamete adhesion,
gamete membrane fusion and associated signaling are still poorly
understood. Recently, one egg surface protein, CD9, was shown
to be essential for gamete fusion. The fertility of CD9-deficient
female mice is severely reduced because membrane fusion
ability is lost in CD9-deficient eggs (Kaji et al., 2000; Le Naour
et al., 2000; Miyado et al., 2000). CD9 belongs to a family of
proteins called tetraspanins, which contain four transmembrane
domains, one small extracellular loop (EC1) and one large
exlracellular loop (EC2), and cytoplasmic amino and carboxyl
termini (Boucheix and Rubinstein, 2001). Tetraspanins are
reported to function in a variety of cell activities including cell
adhesion., motility, proliferation, differentiation and signaling
(Maecker et al., 1997; Lagaudriere-Gesbert et al., 1997).
Immunoprecipitation and other studies suggest that tetraspanins
in the plasma membrane are associated with each other and with
several other cell surface molecules, including a subset of 1
integrins and Ig superfanmily members, to form a tetraspanin web
(Nakamura et al., 1995; Berditchevski et al., 1996; Rubinstein et
al., 1996:, Serru et al., 1999; Charrin et al., 2001; Stipp et al.,

2001; Maecker et al., 1997; Boucheix and Rubinstein, 2001).
Tetraspanins may organize specific cell surface molecules to
form functional macromolecular complexes on the surface of the
cell that express the tetraspanin (Maecker et al., 1997; Boucheix
and Rubinstein, 2001). Additionally, it is possible that
tetraspanins are ligands for receptors on other cells, as reported
for the tetraspanin CD81 (Kelic et al., 2001).

Another egg surface protein, the integrin ic6pl, was
previously proposed as the receptor for sperm on mouse eggs
(Almeida et al., 1995). It was thought that a631 binds to the
disintegrin domain of fertilin 3 on the sperm surface (Chen and
Sampson, 1999; Chen et al., 1999; Evans, 2001). Because it was
found that xa631 and CD9 could be coimmunoprecipitated from
mouse eggs, it was suggested that CD9 plays its crucial role in
gamete fusion through involvement in a fertilin 3-a6t61/CD9
intergamete complex (Miyado et al., 2000). This view, however,
is challenged by two other reports. One shows that fertilin 3-
deficient sperm fuse with eggs at 50% of the wild-type level
(Cho et al., 1998). The other shows that a63 1-deficient eggs fuse
with sperm at the same level as the wild-type eggs (Miller et al.,
2000). These two reports indicate that there must be other
molecules on the cell surface of gametes that can act in sperm-
egg fusion.
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Thus, how CD9 functions in gamete fusion is still unknown.
In the present study, we addressed two questions. Does CD9
work by binding to sperm or to other egg surface proteins? What
is the binding site on CD9? Our data suggest that CD9 interacts
through its large extracellular loop (EC2) domain with other egg
surface proteins (i.e. in cis), and that the three residues SFQ (173-
17'5) in EC2 are required for CD9's function in gamete fusion.
These findings add to our understanding of the mechanism of the
gamete fusion process and emphasize the importance of
identifying the egg protein(s) that interact with the SFQ site in
CD9.

MATERIALS AND METHODS

Plasmid construction
The plasmid pmCD9 was constructed by inserting the full-length mouse
CD9 cDNA (GenBank accession number NM007657) into the EcoRI
site of the pBluescript vector (Stratagene). The plasmid phCD9 was
constructed by inserting the full-length human CD9 cDNA (GenBank
accession number NM001769) into the EcoRI site of pcDNA3.1
(Invitrogen). pmCD9 was used as the parental plasmid to construct the
three-amino-acid-mutant plasmid pmCD9-SFQ(173-175)AAA by PCR.
Two overlapping mutated fragments were generated by two sets of
primers (forward 5'-GCAGGAATTCCGGCCCTTCTGT-3' and reverse
5'-AACCgcGgccgcTTCCAAAAGCTGTTTCTTGGG-3', forward 5'-
GG&AgcggcCgcGGTTAAGCCCTGCCCTGAAGC-3' and reverse 5'-
ATCGATAAGCTTGATATCGAATTC-3', the mutated sequence in
lowercase)., digested with NotI and ligated together to form a single
fragment. This fragment was digested with EcoRI and ligated back into
the parental EcoRI-digested pBluescript vector.

The green fluorescent protein (GFP)-tagged chimeric plasmids were
constructed as follows. The forward primer 5'-ACGTagatctAGTCACG-
AC(GTTGTAAAACGACGGCC-3' (BglII site in lower case) and the
reverse primer 5'-ACGTaagcttGACCATTTCTCGGCTCCTGCGGAT-
3' (HindlII site in lower case) were used in PCR to make a construct
including the T7 promoter and the open reading frame (ORF) of the
mouse CD9 cDNA from the plasmid pmCD9. After digestion with BglII
and HindII, the PCR product was ligated into the vector pEGFP-N1
(Clontech) to obtain the GFP chimeric plasmid pmCD9-eGFP. This
plasmid was used as the parental vector to construct the single-amino-
acid-mutant plasmid pmCD9-F174A-eGFP, according to the instruction
of the Quick-ChangeTM mutagenesis kit (Stratagene). The primers used
in the mutagenesis were forward 5'-CCAAGAAACAGCTTflTG-
GAAAGT(GCCCAGGTTAAGCCCTGCCCTGAAGCC-3' and reverse
5'-GGCTTCAGGGCAGGGCTTAACCTGGGCACTTTCCAAAAG-
CTGC;ITTCI'ITGG-3'.

All constructs were sequenced to show that undesired mutations had
not been introduced during the PCR and cloning steps.

In vitro synthesis of mRNA
The plasmids pmCD9, phCD9, pmCD9-SFQ(173-175)AAA, pmCD9-
eGFP and pmCD9-F174A-eGFP were linearized by digestion with
appropriate restriction enzymes whose recognition sites are downstream
of the ORErs of the corresponding cDNAs. The linearized plasmids
were used as templates to synthesize mRNA using the mMessage
mMachine 'M capped RNA transcription kit with T7 RNA polymerase
(Ambion), according to the manufacturer's protocol. The mRNAs were
dissolved in RNase/DNase-free water.

Antibodies
Antibodies used include the anti-mouse CD9 monoclonal antibodies:
KMC8 (Pharmningen), 4.1F12, 1.2C4, 1.1F2 and 1.4G1, isolated and
characterized in one of our laboratories (C. B. and E. R., unpublished
results). The anti-human CD9 monoclonal antibody, ALB-6, has been
described (Rendu et al., 1981).

Media for oocyte culture and in vitro fertilization assay
Medium 1: (M199; Gibco BRL), 3.5 mM sodium pyruvate, 1,000 i.u.
penicillin-streptomycin, 0.1% polyvinyl alcohol, 2 mM L-glutamine,
0.2 mM 3-isobutyl-1 -methylxanthine (IBMX, Calbiochem); Medium 2:
10 mM Hepes (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic
acid] in Medium 1; Medium 3: 5% fetal calf serum in Medium 1;
Medium 4: Medium 3 without IBMX; Medium 5: Medium 2 without
IBMX; Medium 6: 0.3% bovine serum album (BSA) in Medium 1
without IBMX; Medium 7: 3.0% BSA in Mediuml without IBMX.

Oocyte culture and microinjection
Wild-type or CD9-deficient C57BL6 female mice (Le Naour et al.,
2000) (6-8 weeks old) were primed with 10 i.u. of pregnant mare serum
gonadotropin 48 hours prior to ovary isolation. Isolated ovaries were
placed in Medium 1 to collect germinal vesicle (GV)-stage oocytes.
After the removal of granulosa cells, the GV-stage oocytes were allowed
to recover in Medium 1 at 37C, 5% CO2 for 2-3 hours and then loaded
into a 25 1tl drop of Medium 2 in a 35 mm tissue culture dish (Corning).
A 0.5 gl drop of mRNA solution was placed approximately 2 mm away
from the drop containing oocytes in Medium 2. Both drops were
overlaid with dimethylpolysiloxane (DMPS, 20 centistokes; Sigma) to
prevent evaporation. Each oocyte was injected with approximately 30
pg of mRNA. Injections were carried out on a Zeiss Axiovert 135
equipped with a bipolar temperature controller set at 37°C (Medical
Systems Co.) Injected oocytes were transferred to Medium 3 for a period
of approximately 12 hours at 37°C, 5% CO2. After incubation, oocytes
were allowed to incubate for approximately 16 hours in Medium 4. The
metaphase II eggs among the cultured oocytes were selected for use in
experiments.

In vitro fertilization assay (IVF)
Eggs, prepared as described above, were treated with acid Tyrodes
solution for about 30 seconds to remove the zona pellucida and then
allowed to incubate in Medium 6 at 37°C, 5% CO2 for 3 hours. Sperm
for the in vitro adhesion and fusion assay were isolated from the cauda
epididymis and the vas deferens of C57BL6 male mice (10-12 weeks
old) into Medium 7, and capacitated for 3 hours in Medium 7 at 37°C,
5% CO2, resulting in a population of 60-70% acrosome-reacted sperm
(Moller et al., 1990). The other steps for in vitro fertilization were
carried out as previously described (Miller et al., 2000).

Indirect immunofluorescence of eggs expressing human
or mouse CD9
After in vitro fertilization, the eggs were fixed in 4% paraformaldehyde
and 0.1% PVA in phosphate-buffered saline (PBS, pH 7.4) for 10
minutes at room temperature. After fixation, eggs were incubated with
either 10 gg/ml anti-mouse CD9 antibody KMC8 (BD Pharmingen) or
10 gg/ml anti-human CD9 antibody ALB-6 for 1 hour at 37°C, 5% CO2
in Medium 6, followed by a 30-minute incubation with an appropriate
secondary antibody conjugated to Oregon GreenTM or Alexa FluorTM
488 fluorophore (Molecular Probes Inc.). The fluorescence images were
acquired with a laser scanning confocal microscope (model LSM 410;
Carl Zeiss).

Visualization of CD9-eGFP fusion protein expression
using confocal microscopy
For eggs injected with CD9-eGFP or CD9-F174A-eGFP mRNAs, the
expression of the eGFP fusion protein on the eggs was observed with a
laser scanning confocal microscope (model LSM 410; Carl Zeiss) after
the eggs were incubated in Medium 4 for 16 hours and then coincubated
with sperm for in vitro fertilization assay.

Preparation of glutathione S-transferase (GST)-mouse
CD9 extracellular large loop (EC2) fusion protein and EC2-
histidine (HT) fusion protein
The DNA fragment encoding the extracellular loop of mouse CD9
(EC2) was inserted into EcoRI and BamHI restriction sites of the PGEX-
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3X vector (Amersham Pharmacia Biotech, Piscataway, NJ, USA). The
GST-EC2 fusion protein and GST alone were expressed in E. coli BL21
cells (Amersham Pharmacia Biotech). The cells were lysed by mild
sonication, and GST-EC2 or GST was allowed to bind to a glutathione
affinity matrix (Amersham Pharmacia Biotech). The GST-EC2 fusion
protein or GST was eluted from the affinity matrix using 10 mM reduced
glutathione in 50 mM Tris-HCI (pH 8.0). The eluted proteins were used
fresh in the in vitro fertilization assay.

The EC2 DNA fragment was also inserted into the NheI and XhoI
restriction sites of the carboxy-terminal hexa-histidine expression vector
pET24a (Novagen, Madison, WI, USA). The resulting plasmid, denoted
pET24a-CD9EC2/HT, was transformed into E. coli BL21/pLysS cells
for protein expression. The cells were lysed in a French press and
separated into soluble and insoluble fractions by centrifugation. The
insoluble portion was resuspended in 6 M guanidine-HC1, and
subsequently clarified by both centrifugation and filtration. The fusion
protein EC2/HT was purified by nickel-nitrilotriacetic acid metal-
affinity chromatography (Qiagen, Chatsworth, CA, USA), followed by
reverse-phase HPLC (Waters, Milford, MA, USA) using a Vydac C18
preparative column (Vydac, Hesperia, CA, USA) with a
water/acetonitrile gradient of 0.05%/minute in the presence of 0.1%
trifluoroacetic acid. Protein peaks were collected, centrifuged under
vacuum to remove the acetonitrile, and lyophilized. A single oxidized
species was recognized by the monoclonal antibody KMC8. Circular
dichroism analysis revealed that this species had significant helical
structure and was thermally stable (C. C. L. et al., unpublished results).
This fraction of the EC2/HT was resuspended in PBS just before use in
the in vitro fertilization assay.

Western blot analysis
Western blot analysis was performed according to the standard method
for ECL western blotting detection reagent (Amersham Pharmacia
Biotech). Protein samples were analyzed by non-reducing SDS-PAGE.
Gels were transferred onto Hybond-C membranes (Amersham
Pharmacia Biotech) by electroblotting. Monoclonal antibody KMC8
(BD Pharmingen) against CD9 was used as the primary antibody at a
final concentration of 0.5 gtg/ml. The blotting signals were developed
using the ECL system (Amersham Pharmacia Biotech), using film
development times that gave a signal in the linear range of blot
intensities.

RESULTS

The fusion proteins GST-EC2 and EC2/HT inhibit
mouse sperm-egg fusion
We first asked which region(s) of the CD9 protein is important

1 2

- 45
- 31

Fig. 1. Western blot of GST-EC2 and
EC2/HT. Western blotting was carried out
as described in Materials and Methods.
Lane 1, 50 ng GST-EC2; lane 2, 10 ng
EC2/HT. The molecular mass (kDa) of
protein standards is indicated.

- 21.5 for its function in gamete fusion. The
monoclonal antibody KMC8 to mouse

S14 CD9 has been reported to inhibit
sperm-egg fusion but not binding
(Miller et al., 2000), but the KMC8
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large extracellular loop (EC2) of mouse CD9 as a GST fusion
protein (GST-EC2) and this fusion protein bound KMC8 in
western blotting (Fig. 1, lane 1), suggesting that a functional
site of CD9 may be in EC2. Freshly purified GST-EC2 fusion
protein was tested for its effect on gamete fusion. Three
parameters were measured: (1) fertilization rate FR = the
percentage of eggs that fuse with at least one sperm; (2)
fertilization index FI = total number of fused sperm/total
number of eggs; (3) the mean number of sperm bound at the
equator of the egg. When zona-free eggs were incubated with
GST-EC2 for 3 hours before insemination, gamete fusion was
inhibited (Table 1). The fertilization rate was reduced from
100% to 60%, and the fertilization index was reduced from 1.5
to 0.6. The average number of sperm bound to the egg plasma
membrane was unaffected. When sperm were incubated with
GST-EC2 for 3 hours before insemination, no significant
inhibitory effect was seen (Table 1).

To test the effect of EC2 in another kind of construct, EC2
was fused with a histidine tag (HT) and purified by HPLC.
EC2/HT binds KMC8 in western blots (Fig. 1, lane 2) and folds
properly by biophysical criteria, e.g. it shows expected
amounts of helical structure by circular dichroism and has a
conformation related to the native form of CD9 on the mouse
egg (C. C. L. et al., unpublished results). When zona-free eggs
were incubated with the EC2/HT polypeptide for 3 hours
before insemination, gamete fusion was inhibited (Table 1).
The fertilization rate was reduced from 83% to 43%, and the
fertilization index from 0.83 to 0.42. The average number of
sperm bound to the egg plasma membrane was not affected
(Table 1). When sperm were incubated with EC2/HT for 3

Table 1. The effect of GST-EC2 and EC2/HT on in vitro fertilization
Incubation Pre-incubated Number of Fertilization Fertilization Sperm bound
protein gamete eggs tested rate (%) index per equator

GST
GST-EC2
GST-EC2
Buffer (PBS)
EC2/HT
EC2/HT

Egg
Egg

Sperm
Egg
Egg

Sperm

100±0
60±5.1
97±3.0
83±3.5
43±2.6
75±5.2

1.5±0.15
0.6±0.05
1.1±0.11

0.83±0.04
0.42±t0.02
0.75±0.05

6.2±0.5
5.7±0.5
7.1±1.6
4.6±0.3
4.8±0.4
4.5±0.3

Values are meants.e.m.
300 gtg/ml of GST-EC2 or 250 gg/ml of EC2/HT were pre-incubated with sperm or with eggs for 3 hours. Then the EC2 construct remained present

(undiluted) during a 40 minute insemination period beginning when the other gamete was added. After the 40 minute insemination, fertilization rate, fertilization
index and sperm bound per equator were scored (see text).

For eggs pre-incubated with GST-EC2, significant inhibition was seen for both fertilization rate and fertilization index (P<0.02).
For sperm pre-incubated with GST-EC2, fertilization rate was unaltered and fertilization index showed a slight, statistically non-significant reduction (P>0.1).
For eggs pre-incubated with EC2/HT, significant inhibition was seen for both fertilization rate and fertilization index (P<0.002).
For sperm pre-incubated with EC2/HT, fertilization rate and fertilization index showed statistically non-significant reduction (P>0.2).
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Fig. 2. Immunofluorescent staining of
CD9 on the surface of CD9 - /- eggs
injected with either mouse or human
CD9 mRNAs. (A) Immunofluorescent
staining using the anti-mouse CD9
antibody KMC8 on wild-type eggs.
(B) Immunofluorescent staining using
the anti-mouse CD9 antibody KMC8
on CD9 - /- oocytes injected with
mouse CD9 mRNA.
(C) Immunofluorescent staining using
the anti-human CD9 antibody ALB6
on CD9 - /- oocytes injected with
human CD9 mRNA.

hours before insemination, no
significant inhibition was observed
(Table 1).

In the protocol used in these
__n__m__n__I _c_ _ ___ __rl -F TAlu s
1), the CD9 EC2 construct is
preincubated with sperm or with
eggs for 3 hours. Then the EC2
construct remains present
(undiluted) during the 40 minute
insemination period beginning
when the other gamete is added.
Inhibition occurs when the eggs
are ncuoatea wltn vLi9 tv2z or

the initial 3 hours plus 40 minutes insemination but not when
they are incubated with CD9 EC2 for only the final 40 minute
insemination. This indicates that the preincubation time of the
CD'9 EC2 with the eggs is required for inhibition of gamete
fusion. Overall, the results suggest that EC2 is a functional
region of the CD9 molecule in gamete fusion, that sperm may
lack a counter-receptor for egg CD9, and that the constructs
GST-EC2 and EC2/HT may displace endogenous egg CD9
from a complex with other egg molecules, thereby inhibiting
sperm-egg fusion.

Injection of CD9 mRNA into CD9-deficient oocytes
restores their fusion ability
Given that the CD9 EC2 loop has a role in sperm-egg fusion,
we asked what is the functional site within EC2? To address
this question, we applied a mouse oocyte expression system
(detailed below) using oocytes from CD9 null female mice,
along with CD9 mutagenesis and IVF techniques, to
investigate the key amino acid residues in EC2 required for
CD9's function in sperm-egg fusion.

It has been well demonstrated that mouse oocytes can
express functional proteins from injected mRNAs (Paynton et
al., 1983; Kola and Sumarsono, 1996; Williams et al., 1998).
The mRNAs encoding mouse or human CD9 were synthesized
and injected into CD9-deficient oocytes. The injected oocytes
were cultured in vitro to the metaphase II stage (see Materials
and Methods). After the in vitro culture period, the mean
percentages of wild-type (WT) oocytes, KO (CD9-/ -) oocytes,
or injected KO oocytes that produced first polar bodies were
in the range 61-78% and were not significantly different among
the different groups (data not shown). This result indicates that
CD9-deficient GV-stage oocytes, after injection with mRNA,
can develop normally to metaphase II.

As expected, KO eggs, injected with CD9 mRNA, express
CD9 on the egg surface as seen by immunofluorescent staining
using the anti-mouse CD9 monoclonal antibody KMC8 or the
anti-human CD9 monoclonal antibody ALB6 (Fig. 2B,C). The
localization of staining is similar to that of WT eggs, with CD9
over the microvillar region and absent over the metaphase plate
(Fig. 2A). CD9 KO eggs without mRNA injection show no
surface staining (data not shown). The absence of CD9 in
uninjected CD9 KO eggs and the expression of CD9 in KO
eggs injected with CD9 mRNA was also confirmed by western
blot (Fig. 6, lanes 1,2).

To test whether or not in ovum expression of the CD9 protein
on the egg surface was capable of restoring fusion ability, GV-
stage KO oocytes were injected with CD9 mRNAs, allowed to
mature to metaphase II, and promptly used for in vitro
fertilization assays (see Materials and Methods). The

Table 2. In vitro fertilization assay with CD9-/ - oocytes injected with different CD9 mRNAs
Oocyte Injected Number of Fertilization Fertilization Sperm bound
genotype mRNA eggs tested rate (%) index per equator

_ _.

None
Mouse CD9 (mCD9)
Human CD9 (hCD9)

None

None
mCD9-eGFP

mCD9-F174A-eGFP
None

None
mCD9

mCD9-SFQ(173-1 75)AAA
None

131
76
64

140

166
92
73

131

122
54
68
78

83±4.3
46±4.2
48±3.3
0±0

66±7.4
55±13.0
13±4.0
1±1.2

80±3.3
48±3.1
1±1.1
0±0

0.89±0.07
0.46±0.04
0.58±0.08

0±0

0.83±0.04
0.85±0.09
0.20±0.07
0.02±0.01

0.81±0.04
0.48±0.03
0.01±0.01

0±0

10.0±1.3
10.1±2.2
12.1±1.0
10.2±1.2

14.4±1.7
12.3±1.2
12.0±2.1
14.0±1.7

8.3±0.8
8.4±1.2
8.3±1.2
8.6±0.5

Values are mean±s.e.m.
(A.) 'The mean fertilization rate and index for CD9- /- oocytes injected with mouse CD9 mRNA are not significantly different from the values of CD9- /- oocytes

injected with human CD9 mRNA (P>0.2).
(B) The mean fertilization rate and index are reduced about fourfold after injection of mCD9-F I 174A-eGFP mRNA compared to mCD9-eGFP mRNA.
(C) Fertilization is almost abolished after injection of mCD9-SFQ(173-175)AAA mRNA compared to mCD9 mRNA.

(A)
CD9+/+
CD9-/-
CD9-/-
CD9-/-

(B)
CD9+/+
CD9-/-
CD9-/-
CD9-/-

(C)
CD9+ /+

CD9-/-
CD9-/-
CD9-/-
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Fig. 4. Western blot assay of CD9-eGFP expression in CD9-/- eggs
injected with either wild-type or F174A mutant mouse CD9-eGFP
mRNA. The injected eggs were allowed to develop to the M-II phase,
then were lysed in non-reducing SDS-sample buffer. Western blots
were carried out as described in Materials and Methods. Each lane
contains 20 eggs. Lane 1, CD9-/- eggs; lane 2, CD9- - eggs injected
with wild-type CD9-eGFP mRNA; lane 3, CD9-/- eggs injected with
mutant CD9- F174A-eGFP mRNA. The molecular mass (kDa) of
protein standards is indicated.

Fig. 3. CD9-eGFP fluorescence observed for CD9-/ - oocytes injected
with either wild-type or F174A mutant mouse CD9-eGFP mRNA.
(A) Fluorescence observed in CD9 -'- eggs injected with wild-type
CD9-eGFP mRNA. (B) Fluorescence observed in CD9- '- eggs
injected with F174A mutant CD9-eGFP mRNA. In A and B, both
intracellular and surface fluorescence are observed. (C) Fluorescence
observed in uninjected CD9-/ - eggs. (D-F) Phase contrast images of
A-C, respectively. Fluorescence levels were somewhat variable
within each group of eggs injected with the identical amount and
type of mRNA.

expression of mouse or human CD9 on the surface of KO eggs
rescued sperm-egg fusion (Table 2A). The mean fertilization
rate for WT eggs is 83±4.3%; for KO eggs expressing mouse
CD9, 46±4.2%, and for KO eggs expressing human CD9,
48±3.3%. No fusion was observed in the KO eggs without
mRNA injection. The fertilization index mirrors the
fertilization rate (Table 2). Sperm-egg binding is not
significantly different in the four groups tested (Table 2).

Reduced fusion ability of CD9-deficient oocytes
injected with the CD9-F174A-eGFP mutant mRNA
To hypothesise about which CD9 EC2 residues might be
critical for gamete fusion, we considered the structure of the
related human tetraspanin CD81 EC2, which has been solved
by X-ray crystallographic methods (Kitakodora et al., 2001).
The CD81 EC2 structure reveals a 'head domain', delineated

Fig. 5. Immunofluorescent staining of CD9 on the surface of CD9-/-

eggs injected with either wild-type or SFQ(173-175)AAA mutant
mouse CD9 mRNA. After in vitro fertilization, eggs were fixed and
washed as described in Materials and Methods. The fixed eggs were
incubated with anti-mouse CD9 antibody KMC8 as the primary
antibody, followed by a goat anti-rat IgG (H+L) conjugated with Alexa
FluorTM 488 as the secondary antibody. Immunofluorescent staining
was obtained with a laser scanning confocal microscope (Carl Zeiss,
LSM 410). (A) Immunofluorescent staining on CD9-/- eggs injected
with wild-type mouse CD9 mRNA. (B) Immunofluorescent staining
on CD94- - eggs injected with SFQ-to-AAA mutated mouse CD9
mRNA. (C,D) Phase contrast images of A and B, respectively.
Fluorescence levels were somewhat variable within each group of eggs
injected with the identical amount and type of mRNA.
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blot are very similar for CD9 and CD9-SFQ(173-175)AAA
(Fig. 5A,B, Fig. 6, lanes 2,3). The SFQ (173-175) to AAA
mutation essentially abolished the ability of CD9 to rescue the
fusion competence of KO eggs (Table 2). While the mean
fertilization rate is 48±3.1% for KO eggs injected with wild-
type CD9 mRNA, it is only 1±1.1% for KO eggs injected with
mutant CD9-SFQ(173-175)AAA mRNA (Table 2C). Similarly,
the mean fertilization index is 0.48+0.03 for KO eggs injected
with wild-type CD9 mRNA, but 0.01+0.01 for KO eggs
injected with mutant CD9-SFQ(173-175)AAA mRNA (Table
2). Sperm binding, as measured by the number of sperm
bound/egg equator, is statistically equivalent for all
experimental groups (Table 2).

DISCUSSION

Fig. 6. Western blot assay of CD9 expression in CD9-4- eggs injected
with either wild-type or mutant CD9-SFQ(173-175)AAA mRNA.
The injected eggs were allowed to develop to the M-II phase, then
were lysed in non-reducing SDS-sample buffer. Western blots were
carried out as described in Materials and Methods. Each lane
contains 20 eggs. Lane 1, CD9-/- eggs; lane 2, CD9-/- eggs injected
with wild-type CD9 mRNA; lane 3, CD9-4- eggs injected with
mutant CD9-SFQ(173-175)AAA mRNA. The molecular mass (kDa)
of protein standards is indicated.

by disulfide bond patterning conserved in all tetraspanin family
members. This head domain contains regions of the tetraspanin
molecule that can associate with other surface proteins. In its
head domain CD81 EC2 has a phenylalanine residue F186 in
a solvent-exposed, low polarity patch. F186 is required for
CD81 binding with hepatitis C virus (Higginbottom et al.,
2000). CD9 F174 is present in a corresponding head domain
region and we mutated CD9 F174 to alanine to determine if
there would be an effect on sperm-egg fusion.

To allow direct observation of CD9 protein expression,
eGFP was fused at the carboxyl terminus of the F174A mutant
or wild-type CD9. The wild-type CD9-eGFP or mutant CD9-
F174A-eGFP mRNAs were synthesized and injected into
CD9-deficient oocytes (see Materials and Methods). In
CD9-deficient oocytes, levels of expression detected by
immunofluorescence and by western blot are very similar for
CD9-eGFP and CD9-F174A-eGFP (Fig. 3A,B, Fig. 4, lanes
2,3). However, the F174A mutant is crippled in its ability to
rescue sperm-egg fusion. The mean fertilization rate and
fertilization index are reduced about fourfold after injection of
mutant mRNA compared to wild-type mRNA (Table 2B).
Sperm binding, measured by the number of sperm bound/egg
equator, is not significantly different in any of the experimental
groups (Table 2).

Lack of fusion ability of CD9-deficient oocytes
Injected with the CD9-SFQ(173-175)AAA mRNA
The above result indicates that residue F174 may be part of a
required site necessary for CD9 function in sperm-egg fusion.
To test this, we further mutated the three CD9 amino acid
residues SFQ (173-175) to AAA, and determined the effect of
injecting this mutant mRNA on the fusion ability of CD9-
deficient oocytes. In CD9-deficient oocytes, levels of
expression detected by immunofluorescence and by western

Previous work demonstrated that egg surface CD9 is essential
for sperm-egg fusion (Kaji et al., 2000; Le Naour et al., 2000;
Miyado et al., 2000), but nothing is known about how CD9 acts
in this system. Egg CD9 could bind in trans to a counter-
receptor on sperm as suggested for CD81 on astrocytes
interacting with neurons (Kelic et al., 2001). Alternatively,
CD9 may function by cis interactions on the egg surface with
other egg surface molecules. One egg protein suggested to
interact in a physiologically significant way with CD9 is the
integrin a631 (Chen et al., 1999; Miyado et al., 2000).
However, eggs lacking a6j31 fuse normally with sperm, so a
role for this integrin in gamete fusion is in doubt (Miller et al.,
2000).

The anti-CD9 monoclonal antibody KMC8 blocks sperm-
egg fusion (Chen et al., 1999; Miller et al., 2000), and we found
that KMC8 binds to constructs containing CD9 EC2,
suggesting a role for EC2 in the fusion process. The EC2
constructs, preincubated with sperm, had no significant effect
on fertilization rate or index, suggesting that either the
constructs lack biological activity or that sperm do not have a
receptor for CD9. The EC2 constructs when preincubated with
eggs reduce fertilization rate and index, showing that the
constructs do have biological activity. The data therefore
suggest that CD9 acts in cis at the egg surface and that sperm
lack a receptor acting as a trans partner for CD9.

Why do the EC2 constructs inhibit sperm-egg fusion when
preincubated with eggs? The simplest interpretation is that the
exogenously added EC2 can compete with endogenous CD9
for association with some key egg surface molecule(s). But the
exogenous EC2, having associated and displaced endogenous
CD9, cannot function to promote gamete fusion. The inability
of the exogenous EC2 to exercise all CD9 functions may reflect
the need for other CD9 regions for full function.

To allow further dissection of the basis of CD9 function, we
tested if the fusion ability of CD9 KO oocytes could be
restored after the injection of CD9 message. We found a high
level of rescue of fusion ability by CD9 message injection. In
the current experiments uninjected KO eggs usually did not
fuse, and their fertilization rate was 0% (Table 2), though in
one test uninjected KO eggs had a fertilization rate of 2%. KO
eggs injected with wild-type CD9 mRNA fused at rates of 46-
55%, far above the rate for uninjected KO eggs, but usually a
little lower than the rate for uninjected wild-type eggs (66-
83%).

25 --
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We found that injection of KO eggs with wild-type mouse
CD9 mRNA and wild-type human CD9 mRNA gave
equivalent levels of rescue of fusion. Sequence comparison
of EC2 of mouse and human CD9 shows they differ by 18
residues, including nine non-conservative substitutions,
indicating that certain alterations of amino acids in the
mouse EC2 structure are compatible with retention of full
function. This result reveals the position of various EC2
residues where specific amino acid substitutions are not
deleterious and serves as a control for mutations that do
reduce function.

We found that the fertilization index obtained with CD9 null
oocytes injected with mutant CD9-F174A-eGFP mRNA was
reduced fourfold compared to wild-type CD9-eGFP mRNA.
This result indicates that F174 plays a significant role in CD9
function in sperm-egg fusion. It also suggests that F174 might
be part of a required site necessary for CD9 function. Further
experiments showed that a change of three residues SFQ (173-
175) to AAA essentially abolished the ability of CD9 message
to restore fusion competence to CD9 KO eggs. This loss of
activity is probably not due to misfolding of the mutant protein,
and this conclusion is supported by three types of evidence (our
unpublished data). (1) Several anti-mouse CD9 monoclonal
antibodies including K.MC8, 4.1F12, 1.2C4, 1.1F2 and 1.4G1
bind to the SFQ-to-AAA mutant as well as to wild-type CD9;
(2) after expression in tissue culture cells, CD9 with the SFQ-
to-AAA mutation associates as well as does wild-type CD9
with CD9 P-1, the major cis partner of CD9 in various cell
types (Charrin et al., 2001; Stipp et al., 2001); (3) EC2
containing the SFQ-to-AAA mutation folds properly by
biophysical criteria, e.g. it shows amounts of helical structure
equivalent to wild-type by circular dichroism. Therefore, the
absence of fusion activity in the SFQ-to-AAA mutant suggests
that SFQ in the CD9 EC2 loop comprises a functional site,
which may associate with and regulate the egg fusion
machinery.

One reason to posit a close interaction of CD9 with an egg
protein(s) acting in fusion is that in the in vitro fusion assay
with CD9-null eggs, the number of sperm bound to the egg
plasma membrane is the same as wild type (Kaji et al., 2000;
Le Naour et al., 2000; Miyado et al., 2000). In all the
experiments here, addition of EC2 constructs and the mutations
in CD9 did not affect the number of sperm bound. These results
suggest that CD9 may interact with the egg fusion machinery
downstream of sperm adhesion.

A possible model to explain our findings is that CD9 is
associated with an egg fusion protein. The process of sperm
binding to the egg plasma membrane triggers and promotes the
formation and stability of an association between the SFQ site
of CD9 and the egg fusion protein. The egg fusion protein,
upon associating with CD9, changes conformation and
specifically interacts with a sperm fusion protein. Thus, relying
on a portion of CD9's association repertoire, an inter-gamete
functional fusion machinery composed of CD9, the egg fusion
protein and the sperm fusion protein, is established and
promotes membrane fusion.

This work was supported by NIH grants U54-29125 and HD 16580
(to P. P. and D. G. M.) and CA17007 (to R. O. H). We thank Lisa
Mehlmann and Richard Schultz for advice on the oocyte injection
procedure.

Functional site of CD9 in gamete fusion 2001

REFERENCES

Almeida, E. A., Huovila, A. P., Sutherland, A. E., Stephens, L. E., Calarco,
P. G., Shaw, L. M., Mercurio, A. M., Sonnenberg, A., Primakoff, P.,
Myles, D. G. and White, J. M. (1995). Mouse egg integrin alpha 6 beta 1
functions as a sperm receptor. Cell 81, 1095-1104.

Berditchevski, F., Zutter, M. M. and Hemler, M. E. (1996). Characterization
of novel complexes on the cell surface between integrins and proteins with
4 transmembrane domains (TM4 proteins). Mol. Biol. Cell 7, 193-207.

Boucheix, C. and Rubinstein, E. (2001). Tetraspanins. Cell Mol. Life Sci. 58,
1189-1205.

Charrin, S., Le Naour, F., Oualid, M., Billard, M., Faure, G., Hanash, S.
M., Boucheix, C. and Rubinstein, E. (2001). The major CD9 and CD81
molecular partner. Identification and characterization of the complexes. J.
Biol. Chem. 276, 14329-14337.

Chen, H. and Sampson, N. S. (1999). Mediation of sperm-egg fusion:
evidence that mouse egg alpha6betal integrin is the receptor for sperm
fertilin beta. Chem. Biol. 6, 1-10.

Chen, M. S., Tung, K. S., Coonrod, S. A., Takahashi, Y., Bigler, D., Chang,
A., Yamashita, Y., Kincade, P. W., Herr, J. C. and White, J. M. (1999).
Role of the integrin-associated protein CD9 in binding between sperm
ADAM 2 and the egg integrin alpha6betal: implications for murine
fertilization. Proc. Natl. Acad. Sci. USA 96, 11830-11835.

Cho, C., Bunch, D. O., Faure, J. E., Goulding, E. H., Eddy, E. M.,
Primakoff, P. and Myles, D. G. (1998). Fertilization defects in sperm from
mice lacking fertilin beta. Science 281, 1857-1859.

Evans, J. P. (2001). Fertilin beta and other ADAMs as integrin ligands:
insights into cell adhesion and fertilization. BioEssays 23, 628-639.

Higginbottom, A., Quinn, E. R., Kuo, C. C., Flint, M., Wilson, L. H.,
Bianchi, E., Nicosia, A., Monk, P. N., McKeating, J. A. and Levy, S.
(2000). Identification of amino acid residues in CD81 critical for interaction
with hepatitis C virus envelope glycoprotein E2. J. Virol. 74, 3642-3649.

Kaji, K., Oda, S., Shikano, T., Ohnuki, T., Uematsu, Y., Sakagami,
J., Tada, N., Miyazaki, S. and Kudo, A. (2000). The gamete fusion
process is defective in eggs of Cd9-deficient mice. Nat. Genet. 24, 279-
282.

Kelic, S., Levy, S., Suarez, C. and Weinstein, D. E. (2001). CD81 regulates
neuron-induced astrocyte cell-cycle exit. Mol. Cell Neurosci. 17, 551-560.

Kitadokoro, K., Bordo, D., Galli, G., Petracca, R., Falugi, E, Abrignani,
S., Grandi, G. and Bolognesi, M. (2001). CD81 extracellular domain 3D
structure: insight into the tetraspanin superfamily structural motifs. EMBO
J. 20, 12-18.

Kola, I. and Sumarsono, S. H. (1996). Microinjection of in vitro transcribed
RNA and antisense oligonucleotides in mouse oocytes and early embryos
to study the gain- and loss-of-function of genes. Mol. Biotechnol. 6, 191-
199.

Lagaudriere-Gesbert, C., Le Naour, E, Lebel-Binay, S., Billard, M.,
Lemichez, E., Boquet, P., Boucheix, C., Conjeaud, H. and Rubinstein,
E. (1997). Functional analysis of four tetraspans, CD9, CD53, CD81, and
CD82, suggests a common role in costimulation, cell adhesion, and
migration: only CD9 upregulates HB-EGF activity. Cell Immunol. 182, 105-
112.

Le Naour, F., Rubinstein, E., Jasmin, C., Prenant, M. and Boucheix, C.
(2000). Severely reduced female fertility in CD9-deficient mice. Science
287, 319-321.

Maecker, H. T., Todd, S. C. and Levy, S. (1997). The tetraspanin superfamily:
molecular facilitators. FASEB J. 11, 428-442.

Miller, B. J., Georges-Labouesse, E., Primakoff, P. and Myles, D. G. (2000).
Normal fertilization occurs with eggs lacking the integrin alpha6betal and
is CD9-dependent. J. Cell Biol. 149, 1289-1296.

Miyado, K., Yamada, G., Yamada, S., Hasuwa, H., Nakamura, Y., Ryu,
F., Suzuki, K., Kosai, K., Inoue, K., Ogura, A., Okabe, M. and Mekada,
E. (2000). Requirement of CD9 on the egg plasma membrane for
fertilization. Science 287, 321-324.

Moller, C. C., Bleil, J. D., Kinloch, R. A. and Wassarman, P. M. (1990).
Structural and functional relationships between mouse and hamster zona
pellucida glycoproteins. Dev. Biol. 137, 276-286.

Nakamura, K., Iwamoto, R. and Mekada, E. (1995). Membrane-anchored
heparin-binding EGF-like growth factor (HB-EGF) and diphtheria toxin
receptor-associated protein (DRAP27)/CD9 form a complex with integrin
alpha 3 beta 1 at cell-cell contact sites. J. Cell Biol. 129, 1691-1705.

Paynton, B. V., Ebert, K. M. and Brinster, R. L. (1983). Synthesis and
secretion of ovalbumin by mouse-growing oocytes following microinjection
of chick ovalbumin mRNA. Exp. Cell Res. 144, 214-218.



2002 G.-Z. Zhu and others

Rendu, F., Boucheix, C., Lebret, M., Bourdeau, N., Benoit, P., Maclouf, J.,
Soria, C. and Levy-Toledano, S. (1987). Mechanisms of the mAb
ALB6(CD9) induced human platelet activation: comparison with thrombin.
Biochem. Biophys. Res. Commun. 146, 1397-1404.

Rubinstein, E., Le Naour, F., Lagaudriere-Gesbert, C., Billard, M.,
Conjeaud, H. and Boucheix, C. (1996). CD9, CD63, CD81, and CD82 are
components of a surface tetraspan network connected to HLA-DR and VLA
integrins. Eur. J Immunol. 26, 2657-2665.

Serru, V., Le Naour, F., Billard, M., Azorsa, D. O., Lanza, F., Boucheix, C.

and Rubinstein, E. (1999). Selective tetraspan-integrin complexes
(CD81/alpha4betal, CD151/alpha3betal, CD151/alpha6betal) under
conditions disrupting tetraspan interactions. Biochem. J. 340, 103-111.

Stipp, C. S., Orlicky, D. and Hemler, M. E. (2001). FPRP, a major, highly
stoichiometric, highly specific CD81- and CD9-associated protein. J. Biol.
Chem. 276, 4853-4862.

Williams, C. J., Mehlmann, L. M., Jaffe, L. A., Kopf, G. S. and Schultz,
R. M. (1998). Evidence that Gq family G proteins do not function in mouse
egg activation at fertilization. Dev. Biol. 198, 116-127.



erval:ion of both types of information in the
hippocampal output may form the basis of its
key role in episodic memory (2, 34).
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Complete Replication of Hepatitis
C Virus in Cell Culture
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Many aspects of the hepatitis C virus (HCV) life cycle have not been reproduced
in cell culture, which has slowed research progress on this important human
pathogen. Here, we describe a full-length HCV genome that replicates and
produces virus particles that are infectious in cell culture (HCVcc). Replication of
HCVcc was robust, producing nearly 105 infectious units per milliliter within 48
hours. Virus particles were filterable and neutralized with a monoclonal anti-
body against the viral glycoprotein E2. Viral entry was dependent on cellular
expression of a putative HCV receptor, CD81. HCVcc replication was inhibited
by interferon-a and by several HCV-specific antiviral compounds, suggesting
that this in vitro system will aid in the search for improved antivirals.

HCV is a major cause of chronic liver disease,
with over 170 million persistently infected
individuals worldwide (1). HCV-associated
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liver disease frequently progresses to cirrhosis,
which can lead to liver failure and hepato-
cellular carcinoma. Current drug therapies are
often poorly tolerated and effective in only a
fraction of patients; there is no vaccine for
HCV. A major obstacle to understanding the
virus life cycle and to developing improved
therapeutics is the inability to efficiently grow
HCV in cell culture.

HCV is an enveloped, positive-sense RNA
virus of the family Flaviviridae. Naturally
occurring variants of HCV are classified into
six major genotypes. The 9.6-kb genome
encodes one large polyprotein that is processed
by viral and cellular proteinases to produce the
virion structural proteins (core and glycopro-
teins El and E2) as well as nonstructural (NS)

proteins (p7 through NS5B) (Fig. 1A). Sub-
genomic RNA replicons have been adapted for
efficient RNA replication in the human hepa-
toma line Huh-7 and other cultured cells (2-5).
However, full-length genomes containing cell
culture-adaptive mutations do not produce
infectious virus particles in culture and are
severely attenuated in vivo (6-8). This led us
to hypothesize that mutations that enhance
RNA replication may have deleterious effects
on virion production. To test this idea, we used
a genotype 2a subgenomic replicon, SGR-
JFH1, that efficiently replicates in cell culture
without adaptive mutations (4). Full-length
chimeric genomes were constructed with the
use of the core-NS2 gene regions from the
infectious J6 (genotype 2a) and H77 (genotype
la) virus strains (Fig. 1A). Both full-length
chimeras and the subgenomic RNA were
competent for RNA replication, as seen by
the accumulation of NS5A protein and viral
RNA 48 hours after RNA transfection into the
Huh-7.5 cell line (Fig. B). As expected, mu-
tation of the NS5B RNA polymerase active
site [GlyAspAsp to GlyAsnAsp (GND)]
destroyed the ability of FL-J6/JFH to replicate
(Fig. B). Within transfected cells, both full-
length genomes expressed core, E2, and NS5A
(Fig. 1C). As expected, SGR-JFH1 expressed
NS5A but not core or E2. While z30% of
cells were productively transfected with FL-
J6/JFH, FL-H77/JFH, or SGR-JFH1 RNA
(Fig. lB), >95% of FL-J6/JFH-transfected cells
were positive for NS5A by 96 hours (fig.
Si). This suggested that FL-J6/JFH spread
within the transfected cell cultures.

To test whether infectivity could be trans-
ferred to naive cells, we clarified conditioned
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media from these cultures by centrifugation
(9), filtered the supernatants (0.2 pm), and
incubated them with naive Huh-7.5 cells.
NS5A expression could be transferred by
the FL-J6/JFH-transfected culture media
but not by media from cells transfected
with FL-H77/JFH or SGR-JFHI (Fig. IB).
Interestingly, the amount of FL-J6/JFH RNA
released into the transfected cell culture media
exceeded that of the other RNAs by a factor of
>200, and only FL-J6/JFH produced an
extracellular form of core (Fig. IC, lower
panel). Given that the infectivity of the
genotype 2a chimera is filterable and is
associated with the release of HCV RNA and
core protein, we refer to this cell culture-
produced virus as HCVcc. The ability of the
genotype la/2a chimera to replicate but not
spread suggests that interactions between the
structural and nonstructural gene products may
be important for HCVcc formation, as has
been observed for other members of this virus
family (10, 11).

Limiting dilution assays for NS5A expres-
sion in electroporated cells showed that 30.3 +
9.5% (n = 6) of cells were productively
transfected with FL-J6/JFH, and of these,
55% produced infectivity that was detectable
upon transfer to naive cells. Thus, FL-J6/JFH
RNA transcripts were highly infectious and
formation of HCVcc did not depend on the
emergence of rare variants. Limiting dilution
assays were also used to quantitate the amount
of HCVcc infectivity between samples as
median tissue culture infectious units per
milliliter (TCIDso/ml). The TCIDso is the
dilution that infects 50% of replicate cell
cultures (9). After an eclipse phase (29 hours),
FL-J6/JFH infectivity could be detected in the
media by 18 hours posttransfection, and it
continued to accumulate until 48 hours (Fig.
ID). Interestingly, FL-J6/JFH (H2476L),
which contained a weakly adaptive mutation
in NS5B (4), showed slightly delayed growth
kinetics but also peaked to similar levels by 48
hours. Viruses could be serially passaged,
infecting 50 to 90% of cells within 5 days
after two rounds of passage at a low multi-
plicity of infection (MOI) of 0.1 to 1.0 (Fig.
lE). The expression and subcellular localiza-
tion of core, E2, and NS5A within FL-J6/JFH-
infected cells was consistent with what was
previously seen in full-length and subgenomic
replicon-bearing cells [supporting online ma-
terial (SOM) text]. Taken together, these
measurements show that HCVcc replication
is robust and occurs with kinetics similar to
those of other Flaviviridae.

A classic method in virus identification is
to neutralize the suspected virus with specific
antisera. As shown in Fig. 2A, an E2-specific
human monoclonal antibody neutralized
HCVcc infectivity in a dose-dependent man-
ner, whereas an isotype-matched control anti-
body had no effect on HCVcc titer. These

data affirm the viral nature of HCVcc infec-
tivity and show that E2 is essential for virus
entry.

HCV E2 has been shown to bind to the
cellular surface protein CD81 (12), which is
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an essential coreceptor for the entry of HCV
glycoprotein-pseudotyped retroviruses (13-15).
We found that HCVcc infectivity could be
blocked with a soluble recombinant form of
the CD81 large extracellular loop (Fig. 2B).

NONSTRUCTURAL

II I4
NS3 4A 4B

II I

FL-H7/JFH s' NCR

II I

ii I

SGR-JFHI

HCV RNA: 359 62 265 62

NS5A NSSB
1-3 NCR

_ i-3 NCR

-T 3" NCR

FL-J6/JFH(GND)

V

220 ±24

I7
7-

-. - ,,- .core

E2

S NS5A

M gg IM 'Kactin

o
E

CI-
aE

0 12 24 36 48 60 72
Time (h post-transfection)

E FL-J6/JFH

408 2 1 ND HCV RNA

I0- core
it

Fig. 1. Production of infectious HCV in cell culture. (A) The structures of the HCV RNA genome,
the SGR-JFH1 replicon, and full-length chimeric genomes FL-J6/JFH and FL-H77/JFH. NCR,
noncoding region; C, core; yellow, J6; cyan, H77. (B) Huh-7.5 cells were electroporated with RNA
transcripts of the indicated genomes [or the RNA-polymerase defective mutant FL-J6/JFH(GND)]
48 hours before immunostaining for NS5A (brown, upper panel). Nuclei were counterstained with
hematoxylin (blue). Below is the relative amount of HCV RNA detected in each transfected cell
population at 48 hours by quantitative reverse transcription polymerase chain reaction (RT-PCR).
Naive Huh-7.5 cells were incubated for 48 hours with filtered, conditioned media from the
transfected cells and immunostained for NSSA expression (lower panel). (C) Western blot for HCV
core, E2, NSSA, or actin protein expression at 48 hours in RNA transfected Huh-7.5 cells. Below
each lane is the relative amount of HCV RNA and core detected in cell culture media by
quantitative RT-PCR and Western blot, respectively. ND, not determined. (D) The accumulation of
HCVcc infectivity after electroporation of FL-J6/JFH (blue) or FL-J6/JFH (H2476L) (purple) into 6 x
10s cells/timepoint, assessed by a limiting dilution assay (mean ± SEM; n = 4). Dotted line, assay
sensitivity. (E) Cells were immunostained for NS5A 5 days after infection with serially passaged
virus. Scale bars, 100 gm.
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To further examine the role of CD81 in virus
entry we used HepG2 cells, which lack CD81
expression but are capable of supporting HCV
RNA replication (3). As seen in Fig. 2C,
normal HepG2 cells were not infected by
FL-J6/JFH, whereas CD81-expressing HepG2
cells were infected under the same conditions,
albeit with reduced efficiency (=850 times less
than Huh-7.5 cells). These data confirm that
interactions between E2 and CD81 are impor-
tant for HCV entry.

The physical nature of HCV particles has
been difficult to study in the absence of an
infectious culture system. In density gradients,
clinical isolates of HCV exhibit a broad
distribution and unusually low buoyant den-

sities [reviewed in (16)]. These properties have
been partly explained by the interaction of
HCV with serum components such as immuno-
globulins and 3-lipoproteins. We examined
the profiles of RNA and infectivity associated
with HCVcc particles by equilibrium centrifu-
gation in 10 to 40% iodixanol, an iso-osmotic
gradient material. A series of controls con-
firmed that this method accurately measured
the buoyant density of HCVcc (SOM text).
HCV RNA was broadly distributed through
the top of the gradient, with a peak in fractions
16 and 17 (1.13 to 1.14 g/ml), and was not
found beyond fraction 20 (1.18 g/ml) (Fig.
3A). HCVcc infectivity was also broadly
distributed among fractions I to 15 (1.01 to
1.12 g/ml), and infectivity was not seen
beyond fraction 18 (1.17 g/ml). Surprisingly,

REPORTS

fractions 16 and 17, which contained the
highest levels of HCV RNA, had little
infectivity associated with them. The specific
infectivity of a virus preparation relates the
amount of infectivity to the total number of
virus particles or genomes in the preparation.
Interestingly, a plot of HCVcc-specific infec-
tivity versus buoyant density indicates that the
most infectious material is at 1.09 to 1.10 g/ml
(Fig. 3B), which is similar to the peak of
infectivity (1.09 to 1.11 g/ml) previously seen
in chimpanzees (17). In contrast, RNA-
containing material with a buoyant density of
1.14 g/ml (fraction 17) had a low specific
infectivity, with =300,000 RNA molecules per
infectious unit. Many groups have reported an
HCV RNA peak near this density (18-20),
although infectivity could not be assessed.
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Fig. 3. Characterization of HCVcc particles. (A) The profiles of FL-J6/JFH (H2476L) RNA (open circles)
and infectivity (solid gray) are shown after isopycnic centrifugation in a 10 to 40% iodixanot
gradient. Closed circles indicate the buoyant density of each fraction. (B) The specific infectivity of
each fraction in panel (A) was calculated as the infectivity per RNA copy and plotted against the
buoyant density.
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Fig. 2. HCVcc infection is dependent on HCV
glycoprotein functions. (A) FL-J6/JFH (H2476L)
was pre-incubated for 1 hour at 370C with the
indicated concentrations of recombinant hu-
man anti-E2 C1 (circles) or anti-dengue virus
NS1 (square) immunoglobulin G1 monoclonal
antibodies (mAb), then titered by limiting
dilution assay (mean ± SEM; n = 3). Assays
for both antibodies were conducted in parallel.
The dotted line indicates the titer of untreated
virus. (B) FL-J6/JFH (H2476L) was preincubated
with 12 glg/ml of a recombinant form of the
large extracellular loop (LEL) of CD81 and used
to infect naive cells. The levels of HCV RNA,
relative to an untreated control, were deter-
mined at 48 hours postinfection by quantita-
tive RT-PCR (mean ± SEM; n = 4). (C) HepG2 or
HepG2/CD81 cells were infected with FL-J6/JFH
for 48 hours before immunostaining for NS5A
expression. Scale bar, 100 pm.
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tion of HCVcc. (A)
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The fraction of inhibi-
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The inhibition of RNA accumulation at 48 hours was
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Thus, HCVcc exhibits physical properties
similar to those that have been previously
described for natural isolates of HCV.

There is an urgent need for improved HCV
drug therapies. The current standard treatment,
pegylated interferon-a (IFNa) and ribavirin,
leads to a sustained response in only =50% of
genotype l-infected patients. We examined
the ability of HCVcc replication to be inhibited
by IFNa and other antiviral compounds. Dose-
response experiments showed that IFNa in-
hibited HCVcc RNA accumulation in infected
cells with a median effective concentration
(EC,,o) of 1 international unit (IU)/ml (Fig.
4A). We also tested three HCV-specific in-
hibitors of the NS3 serine protease for their
effects on HCVcc infection. As seen in Fig.
4, El to D, BILN 2061 (21), SCH6 (22), and
PI-i (23) all inhibited HC'Vcc RNA accumu-
lation in the submicromolar range. In addition,
a nucleoside analog inhibitor of the NS5B
RNA polymerase, 2'C-methyladenosine (24),
was found to inhibit HCVcc replication in the
low nanomolar range (Fig. 4E). Thus, HCVcc
infection can be inhibited by IFNa and sev-
eral HICV-specific antiviral compounds. The
specificity of these latter compounds further
shows that HCVcc infection leads to au-
thentic replication in target cells and dem-
onstrates that this infectious system may be
useful for testing current and future anti-
viral compounds.

We describe a full-length genotype 2a
HC'V genome that replicates and produces
virus particles that are infectious in cell culture.

This system lays a foundation for future in
vitro studies to examine new aspects of the
virus life cycle and to develop new drugs for
combating HCV.

Note added in proof: Full-length JFH-I
has also been recently reported to produce
infectious virus in cell culture (25-27), as has
a genotype lb Coml/JFH-1 chimera (28),
albeit with lower efficiency and slower
growth kinetics than the system reported here.
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Genome-Scale Identification
of Nucleosome Positions

in S. cerevisiae
Guo-Cheng Yuan, Yuen-Jong Liu,* Michael F. Dion,

Michael D. Slack, t Lani F. Wu, Steven J. Altschuler, Oliver J. Rando}

The positioning of nucleosomes along chromatin has been implicated in the
regulation of gene expression in eukaryotic cells, because packaging DNA into
nucleosomes affects sequence accessibility. We developed a tiled microarray
approach to identify at high resolution the translational positions of 2278
nucleosomes over 482 kilobases of Saccharomyces cerevisiae DNA, including
almost all of chromosome III and 223 additional regulatory regions. The majority
of the nucleosomes identified were well-positioned. We found a stereotyped
chromatin organization at Pol II promoters consisting of a nucleosome-free
region -200 base pairs upstream of the start codon flanked on both sides by
positioned nucleosomes. The nucleosome-free sequences were evolutionarily
conserved and were enriched in poly-deoxyadenosine or poly-deoxythymidine
sequences. Most occupied transcription factor binding motifs were devoid of
nucleosomes, strongly suggesting that nucleosome positioning is a global
determinant of transcription factor access.

Nucleosomes prevent many DNA binding
proteins from approaching their sites (1-3),
whereas appropriately positioned nucleosomes

can bring distant DNA sequences into close
proximity to promote transcription (4). Current
understanding of the primary structure of chro-

matin and its effects on gene expression comes
from a handful of well-characterized loci (see
examples below). High-resolution measurements
of nucleosome positions over chromosome-scale
distances would enhance our understanding of
chromatin structure and function.

To measure nucleosome positions on a
genomic scale, we developed a DNA micro-
array method (5) to identify nucleosomal and
linker DNA sequences on the basis of suscep-
tibility of linker DNA to micrococcal nuclease
(fig. S1). Nucleosomal DNA was isolated,
labeled with Cy3 fluorescent dye (green), and
mixed with Cy5-labeled total genomic DNA
(red). This mixture was hybridized to micro-
arrays printed with overlapping 50-mer oligo-
nucleotide probes tiled every 20 base pairs
across chromosomal regions of interest (fig.
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