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Abstract

Elastic form factors are fundamental quantities that characterize the electromagnetic struc-
ture of the nucleon. High precision measurements of these quantities are essential in under-
standing the structure of hadronic matter.

Although the proton elastic form factors are well known, knowledge of the neutron form
factors has been limited due to the lack of pure neutron targets. Few nucleon targets,
deuterium in particular, are typically used to study the electromagnetic structure of the
neutron. Cross section measurements are not sufficient for high precision determination of
the electric form factor of the neutron, G%, due to its small value. Recently, experiments
using polarization observables which are proportional to the product of the electric and
magnetic form factors of the neutron have been used instead. Such measurements require
highly polarized electron beams and either a vector polarized neutron target (typically 2H)
or else a neutron final state polarimeter.

The Bates Large Acceptance Spectrometer Toroid (BLAST) provides a unique opportu-
nity to measure the shape of the neutron electric form factor at low momentum transfers.
BLAST combines a high duty-factor polarized electron beam in the South Hall Ring (SHR),
an Atomic Beam Source (ABS) target of highly polarized deuterium atoms and a large ac-
ceptance detector. This work reports the results of measurements of the neutron electric
form factor using the 2H (€, €'n)p reaction at five 4-momentum transfer squared, Q?, points
of 0.14, 0.20, 0.29, 0.38 and 0.50 (GeV /c)? using data taken in 2004. The experimental setup
is discussed in detail and the results for G% are presented and discussed in the context of
various theoretical predictions.

A fit to the world’s data including new BLAST data determines G% to +6.5% over
0 < Q* < 1 (GeV/c)? The best fit includes contributions from a low Q? bump and a
smooth dipole term.

Thesis Supervisor: Richard Milner
Title: Professor
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Chapter 1

Introduction

The discovery of the neutron and subsequent study of the deuterium atom have played a
key role in the development of the theory of nuclear force. In the 1932, right before the
discovery of a neutron, there was no acceptable theory explaining the structure of a nucleus.
The atoms were shown by Rutherford to consist of a massive core, nucleus, and super light
particles, electrons, ”orbiting around” the nucleus. The nuclei themselves were also shown
by Rutherford to consist of positively charged particles named protons. However, there was
a discrepancy between the mass and the charge of those nuclei. To account for this problem
a proton-electron pair inside of the nucleus was introduced.

In 1932 J. Chadwick [1] discovered a neutral particle, then thought to be that proton-
electron pair. By scattering a-particles from the beryllium target he observed a signal
consistent with an emission of a neutral particle. The energy conservation relation led him
to conclude that the emitted particle had a mass 1 (in atomic units). However, in a series of
papers Heisenberg showed from quantum mechanics that there cannot be a neutral spin-%
proton-electron pair [2, 3]. Instead, this was an elementary particle with no charge and a
spin of 1/2. At this point the picture of an atom’s nucleus became clearer. It consisted of
positively charged protons and neutrally charged neutrons.

However, two mysteries still remained. The first mystery had to do with an experiment
that was conducted by R.Frisch and O. Stern [4]. They found that the magnetic moment
of a proton deviated strongly from the simple magnetic moment of a structureless spin—%

particle. The only satisfactory explanation was that a proton had a finite structure. The
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second mystery was the existence of the neutron itself. The electromagnetic force will cause
the nucleons inside of a nucleus to be repelled since there are only positively and neutrally
charged particles. Clearly, there had to be another, stronger, force that was responsible
for containing protons and neutrons together. This force had to be electric charge neutral,
which meant that the nucleons had to have an additional quantum number(s) to couple to
this unknown force.

To further study these problems it was important to find a source of free or quasi-free
neutrons. This was the diplon or as it is know now deuterium, discovered by H. Urey [5].
The deuteron is the only known bound two nucleon system. After physicists had developed a
way to isolate the isotope of deuterium, Chadwick and Goldhaber conducted the first photo-
disintegration experiment [6]. By measuring the energy of a recoiled proton and knowing the
energy of the photon, they were able to measure the deuteron binding energy of 2.1 MeV and
determine the mass of a neutron to be 1.008 & 0.0005 amu (atomic mass units). Moreover,
Chadwick and Goldhaber showed the feasibility of using deuterium as a source of quasi-free
neutrons. From this moment deuteron became a heavily studied N-N system. Most of the
current knowledge about the neutron was obtained from studies on the deuteron.

It is now known that the nucleons (proton and neutron) are extended objects consisting
of quarks and gluons. Quantum Chromodynamics, the standard model theory of the strong
force points to a complex electromagnetic distribution inside of a nucleon. The precise
knowledge of these distributions constrains quark-gluon models making them more precise
and more realistic. Better knowledge of the electromagnetic structure of a nucleon also
benefits better description of the nucleon-nucleon forces in deuterium and heavier nuclei.

The structure of the nucleon is principally studied by high energy electromagnetic probes.
The most popular of these probes are the lepton beams (electrons or muons), since leptons
are structureless elementary particles. The lepton probes are called “clean probes” since
their electromagnetic interactions are well understood from QED. In lepton scattering the
nucleon is probed by a single wvirtual photon in a one photon exchange approximation which
is emitted by a lepton. The size of the four-momentum transfer, ) of a virtual photon
determines the scale at which a nucleon is probed. The de Broglie wavelength of the virtual

photon A & 1/Q has to be of the order of the size of a nucleon, ~ 1 fm in order to be sensitive
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to the internal structure of the nucleon .

Today, medium energy electron scattering experiments are used as a tool to study the nu-
cleon structure at the Jefferson Laboratory, Mainz and the Bates Linear Accelerator Center.
Also, high energy lepton scattering is used to study nuclear interactions in the perturbative
regime at the HERA Ring in Germany and the COMPASS muon scattering experiment at
CERN.
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Chapter 2

Theoretical Background

In this chapter, the theoretical framework for determination of the neutron’s electric form
factor, G% is reviewed. Initially the theoretical description of elastic electron-nucleon scat-
tering is presented. Both unpolarized and polarized elastic scattering are discussed. Then
the theoretical description of the deuteron is introduced by discussing the latest models of
the nucleon-nucleon bound state (Bonn and V18) and their relation to the static (Q? = 0)
and dynamic (Q? > 0) properties of the deuteron. The model dependent extraction of G%
from elastic electron-deuteron scattering follows. Next, the determination of G% in polar-
ized electron-deuteron quasielastic scattering is described. In conclusion, an overview of the

latest progress in the theory of the electromagnetic properties of the nucleon is presented.

2.1 Unpolarized Elastic Electron-Nucleon Scattering

An electron with initial four-momentum, K* = (&, E) acquires recoil momentum, K'* =
(£', k') when it scatters off a nucleon by exchanging a virtual photon with four- momentum
Q* = (w,§) = K* — K" = (€ — €,k — k). The four-momentum of the recoil nucleon is
defined as Py = Q"+ P}, where P} is the initial four-momentum of the nucleon. The initial
three-momentum of the nucleon in the fixed target experiments is p; = 0 in a lab frame and

the initial energy, &; is equal to the nucleon mass, M;.

17



Following Bjorken and Drell [7] the most general differential cross section can be written as

m? &K d3p;

[

"7 €@n)? By (20

M; Z:, IMpi2@2n)'64(K* + PE— K™ — P¥),  (2.1)

where m, is the mass of the electron. By integrating over the final three-momentum, gy and

Figure 2-1: The tree-level Feynman diagram of electron-nucleon elastic scattering.

by using the differential form d3k’ = k2dk’dS2., the differential cross section becomes!

do  m2f

-1 2
= — My; 2.2
dQ, 47r26frec§f:| le ’ ( )

where fe. is a nuclear recoil factor given in the extreme relativistic limit (m, << £’) by

frec =1+ L—g sin2 (%) . (23)

The sum in eqn. 2.2 is the average over the initial leptonic and hadronic states and the sum

over all final states. My; is the invariant matrix element representing the factorized product

!Here the four-momentum conserving delta-function is used with the identity g—gl, = %—:
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of the leptonic and hadronic currents, j¥(K’, K) and J*(Py, P;), respectively. Accordingly,

My = LK™, K")J,.(Pf, P!, (2.4)

Q?”e

where the leptonic current represents the electron vertex in the tree-level Feynman scattering
diagram (fig 2-1). Since the electron is a structureless, spin—% particle, the current 7% is simply

expressed by combination of the Dirac spinors, u, and .,
JHK™, S K*, 8) = (K™, ")y u.(K*, S), (2.5)

where S and S’ are the spins of the incident and scattered electron, respectively.
If the nucleon is also a structureless point particle, its current can be defined in a similar
fashion,

J#(P“’ Sf; Pip’ S) = an(PF? Sf)’yuun(Piuv S)a (26)

The differential cross section of the electron scattered by the structureless spln-- particle is

obtained by combining eqns. 2.2, 2.4, 2.5 and 2.6.

do  ( do 1 5 [ be
o= (dQe>Mfm {1+27‘ tan (2>}, (2.7)

where 7 is the convenient kinematic variable, defined as 7 = Q?/(4M2) and Q? is defined

as the negative of the 4-momentum squared of the virtual photon (Q* = —Q,Q"). The
quantity ( ~)m is the Mott cross section, which is the extension of the Rutherford cross

section to the scattering of a relativistic, spin—§ particle [8, 9]

( do )M _ oo’ () (2.8)

Q2. 4€2%sint (%) ’

where o is the fine-structure constant. The last term in the equation 2.7 reflects the fact
that the target nucleon is the spin—% particle.
However, the scattering formalism needs to be extended to a nucleon with an extended

internal structure. The most complete form of the electromagnetic hadronic current that
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satisfies current and parity conservation? is

1

JH(PY, Sy, P, S) = 6(PY, S ) (v FIQ) + 57

U“UQVFQ(Q%}U’(P@'Ma Sia 771'), (29)
where 7 is the isospin quantum number and the functions F}(Q?) and F3(Q?) represent the
unknown extended electromagnetic structure of the nucleon. The Dirac form factor, F(Q?)
represents the charge distribution, whereas the Pauli form factor, F3(Q?) represents the
magnetization distribution inside of the nucleon. Accordingly, the boundary conditions of

the form factors are defined by the static electromagnetic properties of a nucleon with an

isospin 7,
1 =41 « proton
FI(Q*=0) = =T P (2.10)
0 n=—3 ¢ neutron
k, =1.79 =+1 « proton
Q=0 = { " L (2.11)
k,=-191 n= —% < neutron

The differential cross section in terms of these structure function has well known Rosenbluth

form [10]:

do do _ Oe
o= (dﬂe)M ! {(Ff + TF22) + 27(F, + F)*tan® (5> } (2.12)
A more convenient form for the nucleon elastic form factors has been suggested by Sachs et

al. [11]. By moving to a special frame defined by the following kinematic condition,

£ = &
k= —F, (2.13)

the Dirac spinor in eqn. 2.9 can be re-written as

This frame is known as the Breit or the “brick wall’? frame where the energy transfer,

2Current conservation is expressed as Q,J* = 0.
3The name “brick wall” comes from the fact that the electron behaves kinetically like a ball bouncing off
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w = 0. In the Breit frame, the Sachs electric and magnetic form factors Gg(Q?) and
Gm(Q?) associated with the transfer of zero and one unit of the angular momentum along
the direction of the virtual photon are the true representation of the electric and magnetic
distributions of the nucleon. The Dirac and Pauli form factors can be written as a linear

combination of the Sachs form factors as

1
Flz'f_[GE+TGM] Gg=F, —1F,

41” , (2.15)
F2=m[GM—GE] GM=F1+F2

The Rosenbluth cross section in eqn. 2.12 in terms of the Sachs form factors becomes

do [ do 1 [GE+7G3, o . o0
dQe = (dQe)M f'rec {T + 27'GMt(ZTL -2— (216)

In the non-relativistic limit, the Sachs form factors are interpreted as the Fourier transforms

of spacial distributions of charge, pcharge(™) and magnetization, pme4(7) inside of the nucleon,

GE(Q2) = /pcharge(f")e—i(ifds'r (217)
Cu(@) = [ wbmag(Pe T, (2.18)

where 4 is the nucleon dipole magnetic moment (u, = 1+ &, and p, = k,). In this context,
it is possible to define the nucleon charge and magnetization mean square radius by Taylor
expansion of eqns. 2.17 and 2.18 around @Q* = 0. The expectation values of the charge and

magnetic radii are defined as

dG
<T§harge> = /szcharge(ﬂdar = —6d—Q§ |Q2—'0 (219)
6 dG
<Tr2nag> = /T2pmag(7_")d37' = _;W |Q2—>0 (220)

The interpretation of the mean square charge radius of the proton and especially of the
neutron has been a point of much discussion in the literature. The neutron square charge

radius can be written [12] as a sum of the square radius associated with the neutron rest

a brick wall
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frame charge distribution, 7%, and the Foldy term [13], 73,4y, The Foldy term arises from
the relativistic corrections associated with the neutron magnetic moment. Isgur [12] showed
that in certain models the Foldy term is canceled exactly by the contribution from the Dirac
form factor Fi. Thus, rcherge as defined in eqn. 2.19 predicts exactly the rest frame charge

distribution of the neutron.

2.1.1 Form Factor Data from Unpolarized Scattering

The proton electric and magnetic form factors have been measured extensively in unpolarized
electron scattering using the Rosenbluth separation technique. In the Rosenbluth separation

scheme, the differential cross section 2.16 is re-written in the following form

N e e e

where € is a measure of the longitudinal polarization of the virtual photon. If the value of

QQ? is fixed, this quantity is a function of electron scattering angle, 6. only, i.e.

€= [1 +2(1 + 7) tan® (%)} : (2.22)

0<e<1

The form factors are extracted from the linear fits in ¢, by keeping the momentum transfer
constant. The electric form factor term in eqn. 2.21 is inversely proportional to Q2 through
the kinematic factor, 7. Thus, at a low momentum transfer the Rosenbluth measurement is
very sensitive to (G%)2, whereas at large Q? it is dominated by (G},)%.

G?, is well known from Rosenbluth separation measurements in the range of Q*upto 5
(GeV/c)? and G%, is known up to 30 (GeV/c)®. Compiled in fig. 2-2 are the present data
on the electromagnetic form factors of the proton measured in unpolarized electron scatter-
ing experiments. The electric and magnetic form factors of the proton can be reasonably
described by the dipole form factor, Gp over a large momentum transfer range. The dipole

form is most commonly written as

1

P~ Gh ~ = e————
GENGM/NP Gp (1+ Q2/A)?

(2.23)
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Figure 2-2: Elastic electric (left) and magnetic (right) form factors of the proton from the
unpolarized electron scattering experiments plotted as a ratio to the dipole form factor. G%
data are taken from references [14, 15, 16, 17, 18, 19]. G4, data are taken from references
20, 17, 21, 22, 18, 23, 19].

where A = 0.71 (GeV/c)? is the global dipole fit parameter to the data. The dipole form
factor is a Fourier transform of the exponential, radially symmetric charge and magnetization

distributions [24],
3/2
_A f f"sm Sintar) (2.24)

Since there is no free neutron target, the magnetic form factor of the neutron is typically
measured with ?H and more recently 3He targets. Because G%, is almost two orders of
magnitude larger than the G%, the exclusive? quasielastic scattering cross section is almost
purely determined by the magnetic form factor. However, there are two difficulties with
the X (e, e'n) cross section measurement. Firstly, the cross section is modified by the finite
motion of the neutron in the nuclear target and by the final state interaction of the recoil

nucleons®

The second difficulty stems from the uncertainty in the absolute cross section measure-

4The neutron is detected in the final state to insure that the electron scatters off the neutron.
5The issue of initial and final interactions is further discussed in section 2.4.2.

23



14

r @ Kubon
L W Xu
B A Anklin
130 -
- ¢ Rock
12} 8 b
- (% [}] V¥ Gao
110 r}z
S . I\ % $
:z_ 1 1.
a -
| g
0.9F -‘]L
0.8]-
07}
0-6:"“| ! Ll 1 111l
10™ 1 10
Q? (GeV/ic?)

Figure 2-3: World data on the elastic magnetic form factor of the neutron. Data are taken
from references [25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Open points are the cross section
measurements and where the neutron detection efficiency was determined from a known
nuclear reaction and filled points are the polarization measurements or experiments where
the neutron detection efficiency was measured with the neutron beams.

ment due to the neutron detection efficiency. This difficulty can be overcome by using
polarized scattering, where the detection efficiency cancels out to the first order.

For completeness, fig. 2-3 combines all the unpolarized and polarized measurements of
G7%,. Although the data are still lacking, it appears that neutron’s magnetic form factor
can also be parametrized with the dipole form factor in eq. 2.24. There is a significant
discrepancy between most polarization and cross section measurements of G%, where the
neutron detection efficiency was calibrated using a known nuclear reaction. Jourdan and
collaborators [35] published a paper critiquing the method used by Bruins et al. [33] to
calculate the neutron efficiency in the cross section measurement, thus casting doubt on
their results for G%, which is in significant disagreement with the polarization experimental

data.
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Due to the smallness of the neutron’s electric form factor, for a long time the only reliable
unpolarized data on G were extracted from the unpolarized elastic scattering on deuterium.

These experiments will be discussed in detail in section 2.4.

2.2 Polarized Elastic Electron-Nucleon Scattering

Target Plane

Scattering Plane

Figure 2-4: Schematic representation of polarized electron-nucleon scattering in the limit of
single photon exchange.

The discussion of polarized electron-nucleon scattering is largely based on the review
articles by Donnelly and Raskin [36, 37] and by Arenhovel, Leidemann and Tomusiak [38].
Figure 2-4 shows the schematic representation of this type of scattering. The kinematic

variables are defined in the same way as in the unpolarized case. However, for each po-
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larization vector, an additional kinematic plane needs to be defined to fully describe the
reaction mechanism. In the case of a longitudinally polarized electron the Scattering Plane
is introduced (see fig. 2-4). Typically this plane’s definition follows the so-called Madison
convention, defined by the following identities

. kxK

ol > ¥ TkilR

N

3 L =93 (2.25)

With a polarized target, there is another kinematic plane added. It is denoted as the Target
Plane in fig. 2-4. The target plane is defined by the target polarization vector S, with

respect to the scattering plane as
S = (sinb*cos¢*, sinb*sing*, cosd*) (2.26)

where 0* is the polar angle between the target spin vector and the three-momentum transfer
vector and ¢* is the azimuthal angle of the target spin direction relative to the scattering
plane.

In the one-photon approximation the most general differential cross section is given by

dO’ /
O C{pLfr + prfr + prrfur + profrr + hP(pprfir + Prfr)} (2.27)

where h is the electron polarization, P, is the target polarization and C = &% The

virtual photon density matrices, p,, have to be boosted into the inertial frame in which the

structure functions, f,, are evaluated

2
pL = —ﬂ2Q2§—n , pLT = — 2@?%\/%
2

1 5 § £
_ 1 s - 0*& 2.2
pT 2Q {1+277} , PTT Q an (2.28)
b _Lgme & S Py (]
Prr = QﬁQ 5 , pr = 50 m_—
where,
I r e L e (B 2.20)
= AN @

In the Breit frame, the structure functions can be explicitly written in term of the nucleon
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electromagnetic current, J, and the initial nucleon density matrix, py. These quantities
are defined in terms of the Sachs form factors, Pauli matrices and the target polarization

vector as

Jy = (Cg,i—=—=Grp0y, —i——0,,0) (2.30)

pN = %(1+Pz§-a) (2.31)

where M is the mass of a nucleon, 3 is defined in eq. 2.29 and & is the vector of Pauli
matrices in the coordinate system defined in eq. 2.25.
Using eqns. 2.30 and 2.31 along with the known properties of Pauli matrices, the structure

functions, f,, can be written as [38]

fu= Tr(JopnJd) =G% (2.32)
fr= Tr(JzpnJi) + Tr(JypnJ)) =27G%, (2.33)
fir= —V2 {TT(JOPNJD + Tr(szNJg)} =0 (2:34)
frr = =Tr(JzpnJ}) + Tr(Jypn J}) =0 (2.35)
fir=VZ{Tr(JopnJ}) + Tr(Jyondy)} = —2V2rGpGyS* (2.36)
fr=—i{Tr(LpnJ}) + Tr(Jyon )} = —2rG3,S! (2.37)

The differential cross section in eqn. 2.27 can be rewritten by combining eqns. 2.28 and

2.32-2.37 as

do
ds,

=% {1+ hP.S- A}, (2.38)

where,

o = C (G}, + 2rprGiy) (2.39)

is the unpolarized elastic cross section. The polarized term in the cross section can be

expressed by the components of A,y associated with the direction of the target polarization
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vector, S as

21 05-G?
Aly = —CT—’g;——M (2.40)
2\/%[)’ GEGM
AL, = -C g"; (2.41)
AR = 0 (2.42)

The asymmetry measured in parallel kinematics, where the momentum transfer is parallel
to the target spin vector, is proportional to the nucleon’s magnetic form factor squared. The
asymmetry in perpendicular kinematics is proportional to the product of the magnetic and
electric form factors.

If the asymmetries in both kinematic regimes are measured simultaneously, one can build

Ay [2pG
eN =\ﬁp LT7E (2.43)

AL' N T PrGu

a so-called super ratio as

In the super ratio measurement, the beam and target polarizations drop out. Therefore, this
measurement is less sensitive to the systematic uncertainties of the product of beam and
target polarizations, hP,.

It follows from equation 2.38 that polarized beam alone does not produce additional infor-
mation about the structure of the nucleon in elastic electron-nucleon scattering as compared

to unpolarized scattering. The target also has to be polarized.

2.2.1 Proton Elastic Form Factors from Polarization Measure-

ments

The measurement of the asymmetry in the double polarized electron-nucleon scattering is
a very sensitive method to determine the nucleon electromagnetic form factors. However,
these experiments are difficult since they require highly polarized electron beam and target.
Alternatively, a technique was developed by Milbrath et al. [39, 40], where the polarization
of the recoiling proton is measured in a polarized electron scattering on an unpolarized ' H
target. It can be shown that such a polarization transfer measurement also probes the

nucleon form factors in a similar fashion as in eqns. 2.40 and 2.41.
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High precision data on u,G% /G, became available within the last five years from mea-
surements using the recoil proton polarimeters at Jefferson Lab [41, 42, 43]. These measure-
ments consistently show a steep decrease of the u,G% /G4, ratio at Q% > 1 (GeV/c)? (see fig.

2-5). The decrease of the form factor ratio is in strong disagreement with the unpolarized
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Figure 2-5: Proton form factor ratio, p,G%/G%, from recoil polarization experiments. Data
points are taken from [40, 41, 42, 44, 43].

measurements, as noted by Arrington [45]. A possible explanation could be a correction due
to the two-photon contribution to the unpolarized scattering becoming significant at large
momentum transfer. However, it appears that the two-photon contribution to the polarized

measurement is small [46].
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2.3 Polarized Elastic Electron-Deuteron Scattering

2.3.1 Deuteron Ground State Wave Function

The deuterium nucleus is the only known bound state of two nucleons. The neutron and
proton, both spin-% particles, combine to form a spin-1 bound nucleon-nucleon state with
a positive parity. This indicates the presence of a spin and orbital angular momentum
dependent force in the nucleon-nucleon potential (i.e. spin-spin, spin-orbit and tensor) [47].

The most general form of the non-relativistic Hamiltonian can be written as [48]
H=S -1 v+, (2.44)
1<j

A non relativistic wave function of the deuteron in coordinate space can be written in general

as [49]
Uy (7) = @Ym('f')ll s) + —Ybo Zng —m, (F)(21m — msm,|1lm)|1, ms), (2.45)

where the Yj,,, are spherical harmonic wave functions and states |1,m,) represent a spin-1

multiplets for m; = 41,0. In eqn. 2.45 u(r)/r and w(r)/r represent the spatial components

6

of the reduced S— and D-wave functions in coordinate space®. These wave functions are

Fourier transformed into the momentum space using Bessel’s functions, j;(pr) as

u(p) = /ooo rdru(r)jo(pr)
w(p) = /0 * rdrw(r)ja(pr). (2.46)

The normalization condition for the u(r) and w(r) wave functions in terms of S— and D-wave

probability densities is

[ / dru?( ]+PD[ / drw?( )]:1. (2.47)

While the angular properties of the wave function are explicitly dependent on the orbital

6Since the deuteron has a positive parity, only the wave functions with even angular momentum are
allowed.
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and total angular momenta, the radial wave function is determined by the choice of the
potential Vj; in eqn. 2.44. In this work the emphasis is on the Bonn [50] potential. The
choice of this potential is driven by the fact that all of the theoretical calculations performed
for this work by H. Arenhével were done using the Bonn potential. Figure 2-6 shows u(r) and
w(r) radial wave function in coordinate space and the corresponding probability densities

ps(p) and pp(p) in momentum space.

p (im")

0 1 2 3 4 5

1p UL B L O S B L L AL L L L S M

4
)

ps(P):0p(P) (GeV?)

u(r),w(r) (fm

o-l'l'fl"llIAL]JJIIIIIIJ_LllAllllHIIlIll]]|I|I||A’|1 10"0
0 05 1 15 2 25 3 35 4 45 5 0 0102 03 04 05 06 07 08 09 1

r (fm) p (GeV/c)

Figure 2-6: On the left are the S-wave (solid) and D-wave (dotted) components of a deuteron
radial wave function determined with the Bonn [50] potential in the coordinate (left) multi-
plied by r2. On the right are the densities of S (solid) and D (dotted) wave functions in the
momentum space.

A successful nucleon-nucleon potential must be able to precisely predict the static prop-
erties of the deuteron. One of these static properties is the root mean square matter radius’
of the deuteron, r4 defined as a half distance between two nucleons in the deuteron. The

matter radius is expressed in terms of the wave function as

Tq= L {/Ooo ridr [uz(r) + w2(r)] }% : (2.48)

This static quantity is not very sensitive to the D-wave component of the wave function,

"Not to be confused with a charge radius.
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since the S-wave state is a significantly larger contributer to the integral in eqn. 2.48.
A more interesting static property of the deuteron is its electric quadrupole moment,

written as

Q4= \/—-15—6 /:o 7'2drw(r) [u(r) - %g] (2.49)

This quantity is explicitly proportional to the size of the D-wave component in the wave
function. Hence, its measurement is a very sensitive test for the deuteron model.
Analogously the magnetic dipole moment of the deuteron can be defined entirely in terms

of the D-wave probability, Pp [47]

3 3
Hd = (/J:p + ,Up)(l - *Q-PD) + ZPD = 0.8798 — 0.5697 Pp, (2.50)

where 4, and p, are the magnetic moments of the proton and neutron respectively.
Another interesting static property of the deuteron is the asymptotic behavior of the

wave function as 7 — oo®. In this limit the wave functions are parametrized as [50].

u(r — oo0) — Age™ "

3 3 ) (2.51)

w(r — 00) — Ape™"" (1+—+—— ;

where v = \JAMZMZ — (M — MZ — M2)?/2M; = 0.2315380 fm~! with My, M, and M,
being the masses of a deuteron, neutron and proton, respectively. The ratio of the asymptotic
normalization factors Ag and Ap is a good test of the theoretical models, since it explicitly
establishes the relative sizes of S and D-wave function in the p — 0 limit.

The relative size of the D-wave component is still uncertain. Also, the interpretation of
the D-wave contributions to the dipole and the quadrupole moments is subject to relativistic
corrections and meson exchange currents.

Table 2.1 shows the experimental measurements of these static properties and the cal-
culations using the Bonn [50] potential and another modern potential, Argonne V18 [51].
Calculations using both potentials predict the static properties of the deuteron relatively
well. However, some discrepancies still remain. One of these discrepancies is due to the fact

that both potentials underestimate the size of the electric quadrupole moment, while cor-

8This corresponds to the asymptotic behavior at p — 0 in the momentum space.
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Properties Recent data AV18 Bonn
L 0.8574382284(98)un | 0.871uy ° 0.852uy 1©
Qu 0.2859(3) fm? 0.275fm? ¢ | 0.270fm? 10
Ap/As 0.0256(4) 0.0250 0.0256
ra 1.975(3) fm 1.967 fm 1.966 fm
Ea 2.22456612MeV 2.224575MeV | 2.224575MeV

Table 2.1: Comparison between recent data on the static properties of the deuteron and
theoretical predictions by the Argonne V18 [51] and Bonn [50] potentials. The table is taken
from the review paper by Garcon [47]. Refer to this paper for all citations.

rectly predicting the size of the magnetic dipole moment. These inconsistencies indicate that
despite the successes of the modern nucleon-nucleon potentials, there is still some theoretical

work that remains to be done.

2.3.2 The Elastic Form Factors of the Deuteron

In addition to its static properties, the deuteron has a dynamical electromagnetic structure.
The observables that correspond to the internal properties of the deuteron are best measured
in the elastic electron scattering. These observables are of the great interest, since they can
potentially access the density distributions of the S— and D-wave functions in the momentum
space. Similarly to electron-nucleon scattering, the electron-deuteron scattering amplitude
is a product of the leptonic (eqn. 2.5) and hadronic currents. The most general form of the

deuteron hadronic current in terms of the elastic form factors is [52]

~Ga(Q?) [e4,(P)(EL,(Py) - (P — R)¥) — €53 (Py)(E4,(P) - (P — P)M)]
+G3(Q%) 52 [€57(Py) - (P — P)(&4,(P) - (P — P)*)(Py + R)H],
(2.52)

where P; and Py are the initial and final momenta of the deuteron respectively and §’S‘i
and &5 , are the initial and final polarization four-vectors. The form factors G; and G are
analogous to the Dirac and Pauli form factors of the nucleon. The additional form factor,
G3, is due to the deuteron being a spin-1 particle. In direct analogy with the nucleon Sachs

form factors, the deuteron elastic form factors can be identified with the charge, magnetic

9Corrected for relativistic effects and meson exchange currents (MEC)
10Not corrected for relativistic effects and MEC
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and an additional electric quadrupole form factor. These quantities are written in terms of
the form factors G; in eqn. 2.52 as [52]
Go(Q%) = Gr(@) (30 +1) — 21Ga(@) + 21(1 + 1)Gs(@?)
Gu(Q?) = G2(Q?) (2.53)
Go(Q%) = G1(Q%) — G2(Q") + (1 +m)G3(Q),

where 7 is the kinematic parameter equivalent to the parameter 7 in the elastic electron-
nucleon scattering, n = Q2/(4M,)2.
The measurements of the deuteron form factors provide an additional constraint on the

theoretical models of the deuteron.

2.3.3 Elastic Electron-Deuterium Scattering

In the simplest case of the elastic scattering of the unpolarized electron beam from the
unpolarized deuterium target, the form of the differential cross section is similar to the

elastic electron-nucleon unpolarized cross section in eqn. 2.16.

jgg - ( jgg)M fret {A(Q2) + B(Q*)tan’ (%)} (2:54)

Therefore, the technique of the Rosenbluth separation introduced earlier in this chapter,

can be applied to electron-deuteron elastic scattering cross section in eqn. 2.54 in order to
determine elastic form factors, A(Q?) and B(Q?) separately. These elastic form factor are

the linear combination of the three electromagnetic form factors G¢, G and G introduced

in eqn. 2.53. g )
A = GBQ")+gn'Go(@) + 3nG(@”) 2.55)
B@QY) = 3u(l+mGi (@)

Both A(Q?) and B(Q?) are reasonably well-determined quantities'! up to a momentum
transfer of Q? = 4 (GeV/c)2. However, the unpolarized elastic scattering observables by

themselves are not sufficient to independently determine all three electromagnetic form fac-

11A 10 % discrepency in A(Q?) remains between separate experimental data sets.
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Figure 2-7: World’s data for the observable A(Q?). The data were compiled by the Jefferson
Lab Hall C Ty collaboration [53] from references [54, 55, 56, 57, 58, 59, 60, 61, 62, 63].The
curves are theoretical predictions based on the Bonn OBEPQ-B potential [64] with non
relativistic nucleon current (dashed), relativistic nucleon current(dotted), relativistic nucleon
current with 7, p and heavy meson exchange currents (solid).
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Figure 2-8: World’s data for the observable B(Q?). The data were compiled by the Jef-
ferson Lab Hall C Ty collaboration [53] from references [54, 61, 65, 60, 66]. The curves
are theoretical predictions based on the Bonn OBEPQ-B potential [64] with non relativistic
nucleon current (dashed), relativistic nucleon current(dotted), relativistic 7-meson exchange
currents (dot-dashed), relativistic nucleon currents and m, p and heavy meson exchange
currents (solid).

36



tors of the deuteron. Hence, at least one more observable is needed.
The new observables are introduced by using a tensor polarized target in elastic scattering.

Using Donnelly and Raskin formalism [36], the polarized differential cross section is expressed

12

as
d d ]- * 1 %* *
dg = (d%) frec ll + ﬁPzng(cosﬂ )Tzo(Q2) — %PZZPQ(COSH Ycosd Tgl(Q2)+

2\/_Pzsz (cos8*)cos2¢* Tz (Q?)

R = A@)+B@an? (%),

(2.56)
where P,, is the tensor polarization of the deuterium target, 8* and ¢* are the angles of
the target polarization vector with respect to the momentum transfer direction and P} are
associated Legendre polynomials. The tensor polarization observables, T;; are written in

term of the electromagnetic form factors as

T - flRo $6e(@IG@) + grPaR(@) + 3 (142040 e (%) ) 63,0
T22 - 2\/31?077(;’2 (Q2) )
T = —aeen|n a4t (%)| Gm(@)6o@)

(2.57)

Since it is the largest of the three tensor polarization observables, Ty is typically the
third elastic scattering observable of choice used to separate G¢, Gy and Gg. Figures
2-7, 2-8 and 2-9 show the world’s data on the unpolarized elastic scattering observables
A(Q?*) and B(Q?) and tensor polarized observable Ty(Q?) compiled by the Jefferson Lab
Ty collaboration [62, 67]. The availability of high precision Ty data. is still lacking. The
precision in the determination of G¢, G and Gg form factors is limited by the inadequate

knowledge of the Ty polarization observable.

12The electron beam’s polarization is taken to be zero for simplicity of discussion.
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Figure 2-9: World’s data for the T59(Q?). The data were compiled by the Jefferson Lab
Hall C Ty collaboration [67] from [62, 68, 69, 70, 71, 72, 73, 74, 75]. The curves are
theoretical predictions based on the Bonn OBEPQ-B potential [64] with non relativistic
nucleon current (solid), relativistic nucleon current(dashed), relativistic nuclear currents and
m-meson exchange currents (dotted), relativistic nuclear current and 7, p and heavy meson
exchange currents (dot-dashed).
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2.3.4 Extraction of the Elastic Form Factor of the Neutron from

the Elastic Form Factors of the Deuteron

In the non-relativistic limit and in the absence of exchange currents, the electromagnetic

form factors of the deuteron can be expressed in terms of the isoscalar nucleon form factors

G? defined as

1 n
Gy = —2‘(GTL)E+GE)
2 (2.58)
Gi = 5(Ch+Ch),

weighted by the so-called body form factors, D; [76, 49].

Go(Q?) = Gu(Q*) Do(@?)

Gu(@) = 5 {G3(Q)Du(@) + G1(@)D5(Q")} (2.59)

Go(Q%) = GE(Q")Do(@?),

where the body form factors are the Fourier transforms of the S— and D-wave function
densities, defined as
De(@) = [ (w(r) + w?(r))io(@r)dr
Dy (Q?) = f [(2u2(r) = w?(r))jo(Qr) + (V2u(r)w(r) + w?(r))j2(Qr)] dr
De(@) =5 [ Lio(@n) + (@) w?(r)ar

;
Do(@?) = [~ w(r)(ulr) - “Z)a(@rar

(2.60)

In the static limit, as Q* — 0, the body form factors are determined by the static

properties of the deuteron in eqns. 2.48, 2.49 and 2.50,

Geo(0) =1

Gu(0) = %ud (2.61)
P

Go(0) = miQq.

Figure 2-10 shows contributions from G¢, G and G to the A(Q?) observable, calculated

by Arenhé6vel using the Bonn potential. At low momentum transfer the contribution from
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Figure 2-10: Contribution to the observable A(Q?) (solid line) from G¢ (dashed), Gy, (dot-
ted) and Gg (dot-dashed) using the Bonn OBEPQ-B Total potential [50].

the charge form factor, G¢c dominates by several orders of magnitude the contributions from
Gy and Gg. Thus, by measuring A(Q?) one can infer the value for the isoscalar nucleon
form factor, G%. By using the fact that G% is a well known quantity in this Q? region, it is
possible to deduce the value of the neutron elastic form factor, G%. Since this measurement
involves a calculation of the body form factors, the extraction of G% from A(Q?) depends
heavily on the choice of a nucleon-nucleon potential. Also, relativistic corrections and meson
exchange currents have to be handled correctly in this calculation.

The first such analysis was done by Galster et al [59]. Using the best available potential
in 1971, Galster and collaborators extracted the best fit to their parametrization of choice

for G% (known as the Galster parametrization). The resulting Galster form is

Galster,n UnT
== 2.62
G 1+ bTGD’ (2.62)

where u,, is the magnetic moment of the neutron, b is an arbitrary fit parameter and Gp is the

dipole form factor. The best fit was obtained for b = 5.6 using the Feshbach-Lomon potential.
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It is worth noting that the Galster formulation of the neutron electric form factor is
purely phenomenological and has no physical meaning. However, it seems to fit the data
rather well. It predicts behavior at low Q? corresponding to the neutron’s mean charge

radius squared of

dG 3u

< T >Gutster= —
This value coincides with the value of the Foldy term, < r%o,dy,n >= —0.126 fm?. However,
it seems to be in contradiction to the best experimental value of the neutron radius. Table
I in reference [77] summarizes the best known experimental data for the charge radius of
the neutron, determined from scattering of thermal neutrons by atomic electrons. Although,
some discrepancy remains between these data, the best experimental value of the charge
radius is [77]

<712 >¢h — _0.115 4 0.003 £ 0.004.

exp—

This type of an analysis was extended by Platchkov and collaborators [58] in 1990. By
using more modern potentials and introducing a second multiplicative fitting parameter, a
to the Galster formula, they refitted the existing and newly measured A(Q?) data to the
Platchkov’s G% parametrization, expressed as

GPlatchkov,n
E

=—a 1+b HnT a, (2.63)

An introduction of a second fit parameter had produced a better fit. The result of
the fit varied greatly with the choice of a nucleon-nucleon potential, as can be seen from
fig. 2-11. The most commonly quoted values of a = 1.25 + 0.13 and b = 18.3 &+ 3.4 were
obtained with the Paris potential. However, this fit violates the low Q? behavior governed

13 The value of a = 0.98 is the closest to

by the neutron charge radius measurements
the correct @Q? = 0 slope, extracted with the Reid Soft Core (RSC) potential. All of these

parameters carry a strong theoretical uncertainty due to the lack of a precise knowledge of

13A value of a = 0.90 is required for the Platchkov parametrization to correctly match the slope at Q2 =0
predicted by the the neutron charge radius [77].
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Figure 2-11: Platchkov et al. best fit [58] results for G% (circles) from the A(Q?) data
using Paris potential. The curves represent the values of G% derived from A(Q?) data using
various potentials. The thin red line has the slope according to the neutron’s charge radius
as measured by the thermal neutron scattering [77].

the nucleon-nucleon potential.

Recently, Schiavilla and Sick used the world’s data on the elastic quadrupole form factor
of the deuteron to determine G [78] over a larger Q? range. At large momentum transfer,
G¢ and Gg have equal strength, hence model dependence becomes even stronger. The
authors tried to avoid this problem by using only data on the electric quadrupole form factor.
However, the major difficulty with this analysis at large Q? is the lack of high precision Ty
data. Also, some model dependence remains, as noted by the authors.

Due to the theoretical difficulties, the measurements of the neutron’s electric form factor
from elastic electron-deuteron scattering have not produced results matching the precision
of other nucleon elastic form factors. Also, this measurement is limited to a small region of
momentum transfer. There is a possibility that better knowledge of the individual elastic

electromagnetic form factors of the deuteron can constrain G, with less uncertainty. How-
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Figure 2-12: G% extraction by Schiavilla and Sick (circles) along with the Galster parame-
trization (solid line).

ever, a far more effective and less model dependent method to measure G% over a larger

momentum transfer range is by using polarized quasielastic scattering on deuterium.

2.4 Polarized Quasielastic Electron-Deuteron Scatter-
ing

Quasielastic scattering refers to the scattering of a lepton from a single nucleon inside of an
A > 2 nuclear system, where either the lepton is detected alone (inclusive) or in coincidence
with a recoiling nucleon (ezclusive). In the Born Approzimation, the incoming lepton ex-
changes a single virtual photon with the nucleon inside of the nucleus. If the momentum
transfer is large enough the scattering can be described by the Plane Wave Impulse Ap-
prozimation (PWIA) in which the knocked-out nucleon does not interact with the spectator

A — 1 recoil system which is not involved in reaction. However, the PWIA turns out to
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Figure 2-13: Schematic representation of the polarized quasielastic scattering.

be a crude approximation especially in the medium energy scattering regime. At the same
time the assumption of the PWIA is not required to work out a full quasielastic scattering
formalism. The formalism developed by Arenhovel et al. [79] for the electro-disintegration
of the deuteron is followed in this section. This treatment includes the initial motion of the
nucleon inside of the deuterium nucleus and the interactions between the recoil nucleons.
As in the case of the elastic scattering from a nucleon, the four-momentum of the virtual
photon is Q* = (w,§) = K* — K" = (€ — €',k — k’). However, it can no longer be assumed
that the nucleon is originally at rest. Hence, the three-momentum and the energy of the

recoil nucleon detected in coincidence with the scattered electron is defined as

ﬁf (T_ﬁm
Ef = Mj+w-—E,,

(2.64)

where, f corresponds to a neutron or proton detected in the final state, p,, and E, are

the momentum and energy of the recoil system which is not measured'*. The energy of the

En=\M2?+p +&", (2.65)

14 These quantities are usually referred to as missing momentum and missing energy.

undetected recoil system is
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where M, is the mass of the recoil system and £* is its excitation energy. In the deuterium
two-body break up, where the undetected recoil nucleon is in the ground state, the excitation
energy is simply the binding energy of a target nucleus, £* = E}, = 2.2 MeV and the missing
mass is simply the mass of the undetected nucleon, M,, = M,.

The kinematic condition corresponding to the center of the quasielastic peak is charac-

terized by the relation
Q2

= (2.66)

w

At the top of the quasielastic peak the undetected recoil nucleon is at rest before and after
the quasielastic knock-out. However, it would be a mistake to think that the top of the
quasielastic peak corresponds to the PWIA reaction, since the effects of the initial and final
state interactions are present in all kinematic regimes.

In the electro-disintegration reaction the virtual photon can be absorbed by either the
proton or the neutron. A more natural way to describe the kinematics of either nucleon
being knocked out is consider the opening angle of a cone created by p; around ¢. In the
lab frame, this angle is defined as
¢ +p} — P

2.67
240, (2.67)

cos bpq =

where 6, can be Lorentz boosted into the final state center-of-mass frame where the cross
section is evaluated [79]. In the center-of-mass frame the sum of all hadronic momenta is
zero, pp + pn = 0. Please see Appendix A for the discussion of rotations and boosts from the
lab (BLAST) frame into a g-cms inertial reference frame. The convenience of this kinematic
quantity is that it describes simultaneously the quasielastic scattering on the proton and
the neutron. That is, 85*° = 0° kinematics corresponds to the quasielastic knock-out of the
proton and 67" = 180° corresponds to the quasielastic neutron knock-out.
The final hadronic state is characterized by the kinetic energy of the final state system,
E,p, defined as
Ewp=W - M, — M, (2.68)
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where W is the invariant mass defined in the lab system as

W= /(w+ Mg)? - ¢ (2.69)

2.4.1 Differential Cross Section For Polarized Electro-Disintegration

of the Deuteron

The derivation of the exclusive differential cross section for the electro-disintegration of
the deuteron reaction follows all of the same steps outlined earlier for polarized elastic e-p
scattering. However, since the final hadronic state consists of two nucleons, the phase space in
which the cross section is defined is larger. The exclusive differential cross section is defined in
the five-dimensional phase space (w, {2, and 257°), due to the detected nucleon which is not
integrated over in the final state. The additional nucleon vector in the final state introduces
another kinematic plane, denoted as the Reaction Plane in fig. 2-13. The hadronic tensor is
now expressed in terms of 41 structure functions representing 35 helicity amplitudes. It was
shown [80] that these 35 helicity amplitudes represent the complete set of all polarization
observables in the exclusive electro-disintegration of deuterium. The structure functions
f;(LI;ZI M (u € {L,T}) contain the complete information about the dynamical structure of the
transition from the deuteron to the final n-p system.

Similarly to the case of polarized elastic electron-nucleon scattering, the differential cross
section is written in terms of the target polarization vector. The direction of the target

polarization vector is rotated into the reaction plane introduced in eqn. 2.25 by
Py = P{e™?idyo(6), (2.70)

where 6% and ¢}, are the target polarization angles with respect to the scattering plane, where
% is in the direction of §. The dl,, are the rotation matrices defined in eqn. 2.80. P{ is the

deuterium target polarization tensor, written as

3 1
PId = (51,0 + \/;PZ(SIJ + \/-;-PZZCSI,Q, (271)

where I = +1,2 and P,, P,, are the vector and tensor polarizations respectively.

46



The differential cross section naturally breaks up into the components of the target po-
larization tensor in eqn. 2.71. The full differential cross section can be expressed as [79]

d°c

—— e ICmms h, P;, P.;) =
dwdSiabd(cms =5

5(0,0,0) {1+[PAd \[P,,,.,A +h(Ae+\/§PzA;;+\/>PZZA )}
(2.

72)
where the unpolarized cross section $(0,0,0) and the asymmetries, A} can be obtained in

terms of the structure functions, f{)'™

5(0,0,0) = ¢ {poL + prfr + prr frrcosdyg”® + PTTfTTCOS2¢pCZns} (2.73)
A = ’Sch’LTfI,JTSin e (2.74)
Ay = 50 Z (o fi™ + prf2™ + pur fig Feosgiy® + prrfri ™t cos25y®)sinM

(pLTfLT singS™ + prpfin sm2¢p°2"3)cosM$]d}wo(02) (2.75)
A = =+ A;:O[ prftM + Pqu% + pLr fEY T cosdSn® + prr fRf T cos2¢m ) cosM &
—(pLTfLT—sm ,,q3+pTTf%¥"sm2 ow)sin M $ld3 o (63) (2.76)
Ag = Z (o fr+™ + Prrfit' cos va*)cosM ¢
—PLTf ortsin cmssan¢]dM0(9d) (2.77)
AZd = So MZO[ PT M4 prrfi 2M_003¢pc:1n3)3mM<5
o R singSrecos M @)d,0(65) (2.78)
af’
= sezov (2.79)

where Sp = 5(0,0,0), ¢5r* is the angle between the scattering and reaction planes. The
angle ¢ is defined as b = — ¢ (see fig 2-13). The virtual photon density matrices pﬂl)f M

are introduced earlier in eqn. 2.281%,

15Here, the Lorentz boost is done into the center-of-mass frame, not the Breit frame. The Lorentz boost
~dab
constant, (3, is expressed as 3 = ]Jq—‘ile.
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The elements of the rotation matrix, d},, are defined as

1
dbo(8) = cost); , di(05) = 5(3c0329;) -1
1
dio(6;) = —\/;sin% , d3,(0)) = — gCOSB;SiTLe; (2.80)

: 6 . 20
do(03) = Tsngd

In the Plain Wave Born Approximation (PWBA)!® the asymmetries A} and Al; are
expected to equal zero, since these polarization observables are T-odd imaginary combina-
tions of the deuteron electromagnetic current. However, with the addition of the final state
interactions these quantities can acquire small, non-zero values. A, is expected to be small,
especially because in this experiment, all observables are integrated over all out-of-plane
angles, thus (singg*) = 0.

The two significant polarization observables are AY, and AJ. The tensor polarization
observable, A7 is sensitive to the D-wave component of the deuteron wave function. It is
expected to be small at low missing momentum!?, where the S-wave dominates the total
wave function. AT becomes larger as the missing momentum increases.

The vector asymmetry, AY, is sensitive to both S— and D-waves of the deuteron. At low
missing momentum the proton and neutron are both in the S-state. In this state the spins
of both nucleons point in the direction of the deuteron spin. Hence, both the proton and
neutron in the deuterium target are polarized in the same direction as the target. However, as
the missing momentum increases, the D-wave starts to contribute to the total wave function
2-6. In the D-state the spins of the nucleons must be anti-parallel to the spin of the deuteron
in order to conserve total angular momentum. Thus, the direction of the nucleon polarization
becomes opposite to the nuclear polarization. Correspondingly, the average projection of the
nucleon spin along the quantization axis defined by the polarization vector of the target is

expressed as

N\ _ Ps(Pm) = pp(Pm)
B (o) = ps(Pm) + pp(Pm) (2.81)

A graph of P"(p,,) using the Bonn potential is plotted in fig. 2-14. It is safe to assume

16pWBA is defined as the PWIA in one photon exchange approximation.
17Missing momentum in this context is equivalent to the momentum of the nucleons due to the Fermi
motion inside of the nucleus.
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Figure 2-14: Average projection of the nucleon spin vector with respect to the deuterium tar-
get polarization vector. PN(p,,) is calculated using the Bonn probability density functions,

ps(p) and pp(p) (see fig. 2-6).

that the spin vector of the nucleon inside of deuteron is in the direction of the deuterium

target polarization vector up to a missing momentum of 0.2 (GeV/c).

2.4.2 Extraction of G from the 2H (€, e'n)p Reaction

The influence of the neutron electric form factor on the polarized observables in the deu-
terium break-up reaction was originally investigated by Arenhével, Leidemann and Tomusiak
[38]. They found that the beam-target vector asymmetry in the perpendicular kinematics,
AL(0; = Z,¢5 = 0) was most sensitive to G%. In the PWBA, electron scattering on the
deuterium target can be approximated as an electron scattering on a single nucleon inside
of the deuteron, where the nucleons do not interact with each other in the final state. The

quasielastic proton knockout approximation corresponds to a center-of-mass angle, o of

zero degrees. In the quasi-free neutron knockout approximation, Opg° = 180°. In this ap-
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proximation A};(%,0) becomes simply

AV (E O) - _ 2\/ZP£TG%GR/I o
2 pr(GR? +27pr(GR? | o e =180

(2.82)

/o )

A‘;(E O) - _ 2 2Tp}4TGEG5)W fO’f' opq =(°
3 pu(GEY + 2o (Gl

This formula is identical to the perpendicular beam-target vector asymmetry from the elastic

electron-proton scattering on a polarized hydrogen target, A2y in eqn. 2.41 . Figure 2-15

shows a comparison between A}, and A};(3,0) at 057 = 0° in the PWBA approximation.

This comparison shows that in the approximation described above, the observable Agl(g, 0)

s [ —H@E.e'p)
SIS =25
<o - _D(e.e’p)n
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Figure 2-15: Comparison of theoretical A, from 1H(€,¢'p) (line) and AYy(%,0) from

2f (€,€'p)n (points). The asymmetry from the ﬁ(é’, e'p)n reaction is taken at f5'° = 0°
corresponding to a purely quasielastic scattering. The hydrogen asymmetry is calculated
using Hohler [18] form factors and the deuterium asymmetry is calculated by Arenhdvel et
al. [79] using Bonn potential and PWBA formalism.

in the polarized electro-disintegration of deuterium where the proton is detected indeed
follows the form predicted by the electromagnetic form factors of the proton. Analogously,
the neutron asymmetry should follow the form factors of the neutron. This fact can be used
in order to extract G%/G%;.

Figure 2-16 shows the sensitivity to G at three out of five Q2 kinematic points considered
in this work. The sensitivity increases near the quasielastic peak at 67" = 180°. Away from

the quasielastic kinematics the sensitivity rapidly gets smaller and completely disappears.
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Figure 2-16: The spin-correlation parameter Ag,(%, 0) as a function of 65 for Q% = 0.14
(top left), 0.2 (top right) and 0.29 (GeV/c)? (bottom ). The angle of the target polarization
is fixed at 32°, while the three-momentum transfer angle is changing with Q?. Hence, angle,
67, is not precisely set to 7, but varies by small amount § = 10°,2° and —3° in each Q? bin,
respectively. The calculations ware performed by Arenhovel using the Bonn potential. The
Final state interactions (FSI), Meson Exchange Currents (MEC) and Isobar-Currents (IC)
are included in the calculations.
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Equation 2.82 indicates that in the PWBA the AY;(%,0) would vanish when G7 is zero.
However, this is not true when the final and initial state interactions are considered. Also,
as ? varies across the BLAST acceptance the perpendicular kinematics condition is slightly
violated and €} is no longer at exactly 90°. In this case the parallel asymmetry term,
proportional to (G%,)?, starts to contribute. Since the value of G% is an order of magnitude
smaller than that of G%,, any contribution from the parallel asymmetry is significant.

The quasielastic scattering on the neutron, even at the top of the quasielastic peak, where
g = 180°, is very sensitive to the reaction mechanism corrections. The largest correction is
from the Final State Interactions (FSI). Other corrections include Meson Exchange Currents
(MEC), Isobar-Currents (IC) and Relativistic Corrections (RC).

Figure 2-17 represents the reaction model dependence of AY)(%,0). At the lowest mo-
mentum transfer, Q? = 0.14 (GeV/c)?, the PWBA prediction deviates from the full model
by almost 50% at 65° = 180°. It is clear that the FSI play an important role in the asym-
metry observables. At the same time, the MEC, IC and RC are small at this kinematic
point. At Q* = 0.2 (GeV/c)? the FSI become less of a factor at 65** = 180°. However, FSI
becomes more important as " moves away from 180°. At these kinematics inclusion of the
MEC, IC and RC starts to significantly change the calculated asymmetry from the results
for quasielastic kinematics. This trend continues at the @? = 0.29 (GeV/c)? kinematics.
Here the PWBA and PWBA+FSI curves converge at the quasielastic peak. Away from the
quasielastic peak, the MEC and IC modify values of the calculated asymmetry. The same
follows for higher Q% kinematic points.

Since the quasielastic cross section peaks strongly at 67" = 180°18, the effects of the
reaction mechanisms (MEC, IC and RC) on the vector polarization observable are small
compared with sensitivity of the asymmetry to the size of G%. However, the G% measure-
ments have to rely heavily on Arenhovel’s description of the Final State Interactions.

At the same time the spin-correlation parameter A;/d(fz-, 0) is not sensitive to the choice
of the nucleon-nucleon models, i.e. Bonn, Paris, V18 and V14 potentials (see fig. 2-18).
Thus, the dependence on the choice of the potential which severely limited the precision of

the Platchkov analysis, plays no role in the quasielastic scattering analysis.

1811 fact the cross section peaks at ~ 175° since the cross section is multiplied by the Jacobian which goes
as singy®. However, the Jacobian does alter the sensitivity to the reaction mechanism or G%.
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Figure 2-17: Effect of a reaction mechanism on the spin-correlation parameter A};(3,0)
for Q2 = 0.14 (top left), 0.2 (top right) and 0.29 (GeV/c)? (bottom ). Calculations were
performed by Arenhovel for the BLAST kinematics using Bonn potential and G% equals
Galster. The solid circle represents the asymmetry from an electron-neutron elastic scattering
with Galster-like neutron form factors. Model “N” is the PWBA+FSI.
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Figure 2-18: Effect of a N-N potential model on the spin-correlation parameter AY, %,0) for
Q? = 0.20 (GeV/c)? Calculations were performed by Arenhével for the BLAST kinematics
using “Total” reaction mechanism and G% equals Galster.

At 0;7° =0, AY, shows little model or reaction mechanism dependence. This means that
the quasielastic knock-out reaction on the proton inside of a deuteron is well described in
of terms of the electron-proton elastic scattering cross section. This allows the use of the
2f (€, ep)n reaction channel to measure a product of the beam and target vector polarizations,

hP,, with a high precision and little model uncertainty.

2.5 Theoretical Models of the Elastic Form Factors of
the Nucleon

Ideally the internal electromagnetic structure of the nucleon should be calculated from the
theory of the strong interactions, Quantum Chromo-Dynamics (QCD). So far, however, QCD

has not been solved exactly. A large number of QCD inspired effective models were developed
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over the past 30 years to describe the nucleon’s form factors at low Q2. However, ab initio
QCD calculations at low momentum transfer remain elusive. The overview of the theoretical
models in this section uses a compilation of the latest model predictions in a review article by
Gao [81]. The numerical values of the theoretical curves were compiled by Bradley Plaster

[82].

2.5.1 Scaling and pQCD

Much work has been done to understand the electromagnetic form factors of the proton using

the so-called perturbative QCD frame work. Perturbative QCD (pQCD) is the perturbation

theory where the expansion is performed in terms of the strong coupling constant, a,. The

parameter a,(Q?) is a “running constant” that becomes small at a large momentum transfer.
In this framework, Brodsky and Farrar [83] developed the following scaling law governing

the behavior of the Dirac and Pauli form factors,

F} «x @% and Fy ~ El— (2.83)

Using this scaling law the Sachs form factors have the same asymptotic behavior,
Gem ~ 1/Q*. The scaling predicts a constant Sachs form factor ratio, G%/G%, at large Q2.
Although the derivation of eqn. 2.83 was done using dimensional analysis, it was veri-
fied by a calculation using pQCD done by Brodsky and Lepage [84]. In their 1980 article
they considered a proton in an infinite-momentum frame struck by a highly virtual photon
with a large transverse momentum. The form factor is the probability of the proton to
absorb a large transverse momentum while not breaking up. This probability is a product
of three probability amplitudes: a) probability of finding a three-quark state in the proton,
b) amplitude to produce a three-quark state with a collinear momenta and c) probability
for the three-quark state to remain as a proton. In this framework the authors calculated

the asymptotic behavior of the Sachs form factors of the proton.

2 202 2\ —4/38
Gn(Q?) — %LC ng i (5"%) (eg — e-p), (2.84)

where a; and A are the strong coupling constants, and the exponent § = 11 — %nﬂa,m,
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where 7 iq00r = 3 is the number of quark flavors in QCD. )| and e_;, are the average charges
of quarks with helicity parallel and anti-parallel to the spin of a nucleon, respectively. The

average charges of the quarks inside the proton and neutron are
p_ _ - -
6” = 1, e’i” = 0, Eﬁ = CEH = —= (2.85)

Eqns. 2.84 and 2.85 predict at large Q? that G%,/G%, = —2/3, assuming isospin-spin sym-
metry. The authors noted that this result is remarkably close to the value of p,/(1 + p,) =
—0.685.

2.5.2 Lattice QCD

As mentioned before, the exact solution to the strong interaction theory is unattainable at
this time. However, recently lattice QCD calculations present the possibility of determining
observable properties of the nucleon from the full QCD Lagrangian [85]. Currently all lattice
QCD calculations are done in the “heavy pion” regime. Initial efforts have been made to
explore the chiral regime by extrapolating results from the “heavy pion” regime. However,
the uncertainty in this extrapolation is rather large. Dunne et al. [86] were able to calculate
the proton charge radius at the physical pion mass based on the lattice calculation in the

“heavy pion” region, by expanding the charge radius around the chiral limit (m, — 0).
My 9
(rey =c1 £ leog7 + comy, (2.86)

where p is the mass scale and xy = —(1+5g%)/(4n fr)?, where g4 is the axial form factor and
fr is the pion decay constant. Ashley et al. [87] used the fact that in a dipole parametrization

the mean square radius of a nucleon is defined in terms of the dipole fit parameter, A as
(r?) = 12/A%. (2.87)

The authors used the present QCDSF lattice calculations [88] to fit for the dipole parameters,

A for all nucleon form factors with a certain degree of success.
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2.5.3 Dispersion Theory

Effective field theories of the strong interaction have been more successful, to date, in de-
scribing nucleon electromagnetic structure at medium and low momentum transfers. The
first such effective field theory to be discussed in this chapter is the Dispersion Theory.

In the Dispersion Theory the isoscalar and isovector nucleon form factors can be written

in a spectral representation as

1 e ImFi,s(lﬁ) 2
E,S(Qz) = ;Lm” u2+Q2 dl'l/

1 oo ImFi,v(:uz) 2
Fio(@) = —Lm” Wdﬂ :

- (2.88)

where ¢ = 1, 2 refer to the Dirac and Pauli form factors respectively. Meissner and collabora-
tors have fitted the dispersion relation to the existing scattering data [89, 90] by choosing the
residues of the vector meson pole so that the leading term would cancel in a 1/Q? expansion,
thus preserving proper scaling in the pQCD regime. The minimum number of poles needed
to fit the data was three isoscalar and three isovector poles. Of these two isovectors and

three isoscalars could be identified with the physical vector meson masses.

2.5.4 Vector Meson Dominance

Vector Meson Dominance (VMD) is an approximation to the Dispersion Theory, when the
eqn. 2.88 is parametrized as a sum over all possible vector mesons. In the VMD model a
virtual photon couples to a nucleon through the vector mesons. A linear combination of the
Dirac and Pauli form factors of the proton and neutron make up the isoscalar and isovector

form factors

1 1
F;Z,S(Qz) = E(E,p + E,n) and E,’u(Q2) = 'é(ﬂ,p - -Fi,n)a (289)
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where ¢ = 1,2 represents Dirac and Pauli form factors. These form factors are generally

expressed as a sum over all mesonic contributions

FP@)= Y MU _RQY) (2.90)

2 2
i=mesons Q + m;

where q; is the photon-meson coupling constant, m; is the mass of a vector meson and Fj is
the meson-nucleon coupling form factor. A sum over all vector mesons is done so that the
exchanges of mesons with I = 0 belong to the isoscalar form factors and exchanges of I =1
belong to isovector from factors. Eqn. 2.90 does not take into account the individual vector
meson’s mass distribution widths.

The Vector Meson Dominance model expressed in eqn. 2.90 violates the high Q? behavior
derived from the pQCD in eqn. 2.84, since F; scales as 1/Q? and not as 1/Q° predicted by
Brodsky, et al. Gari and Kriimpelmann have worked out a “synthesis” of the VMD and the
quark dynamics in the asymptotic pQCD limit [91, 92]. In this theory, w-mesons were used
for I = 0 vector mesons and p-mesons were used to represent I = 1 vector mesons. Gari and
Kriimpelmann introduced a product of low Q? VMD-like behavior, F} ~ Fy ~ aéé\? and
high Q? behavior from eqn. 2.83 as
Af A3

FrF = = X =
C@HA Q@A

(2.91)

2
] A? y [A A2 }
Q@+AF Q2+ A3
where

QCD

QCD

Here, if A2 > A2, then both the low and high momentum transfer behavior is conserved.
If Q2 < A% then the form factors are dominated by the meson dynamics and have a
A2/(Q* + A?) form. If Q? > A2, then the form factors are dominated by quark dynamics

and have the proper Q2 scaling. Connecting low and high Q? introduces two additional
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fitting parameters, making a total of seven'®. By fitting to all existing form factor data Gari

and Kriimpelmann obtained a x2/Ndf of less than unity.

2.5.5 Chiral Quark Soliton Model

The Chiral Quark Soliton Model arises from consideration of the role of spontaneous chiral
symmetry breaking in the dynamics of the bound state of a nucleon and the 1/N, expansion,
where N, is number of colors [93]. When chiral symmetry is spontaneously broken, the
light?® Goldstone bosons are expected to be present in the theory. In the Chiral Quark
Soliton Model these bosons are in the form of pions, the lightest of all hadrons. The pion

field can be written in terms of the (N7 — 1) x (N7 — 1) unitary matrix

A_A

U(z) = exp (ZTFj ) ) (2.92)

where 74 are the three SU(2) Pauli matrices (in case of Ny = 2), F,, = 93 MeV is the pion

decay constant. The simplest chiral Lagrangian was suggested by Skyrme [94] as

r F? 1
Seurme = {TrL,L, + M2Tr(U+ U} + 5l [L,L,) (2.93)

where L, = U'9,U is the gradient of a pion field, e = 4.25 is the standard Skyrme parameter
and M, = 138 MeV is the mass of a pion. Holzwarth [95] extended the pionic Lagrangian
in eqn. 2.93 to include p and w vector meson fields explicitly as the dynamical degrees of

freedom?!, so that the total skyrmion Lagrangian is the sum of the three meson Lagrangians,
ESkmie = ‘C:kyrme + Egkyrme + ‘C:)kyrme (294)

Holzwarth used this Lagrangian to obtained the results for the nucleon form factors.

19Masses in this theory are fixed.
20These bosons are massless in the pure Goldstone theory.
21Model B in reference [95]
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2.5.6 Relativistic Constituent Quark Model

In the constituent quark model, the electromagnetic structure of a nucleon is understood
purely in terms of the electromagnetic properties of constituent quarks. In a non-relativistic
three constituent quark model the nucleon is an antisymmetric wave function of three spin~%
point quarks. The proton consists of two up quarks with the charge of +-§- and one down
quark with the charge of —%, while the neutron consists of one up and two down quarks.
The mass of a constituent quark in the non-relativistic model is ~1/3 of a nucleon mass. Up

and down quarks in the proton and neutron are related by the isospin symmetry,

u?P = d"

> = u".

(2.95)

This isospin symmetry is used in many model calculations.
The electromagnetic current of the nucleon, J* can be approximately expressed as a sum

of “one-body” quark currents,

X i ()2 (A2 L

P = 3 (@0 s @) (2.96)

where f7(Q?) and fJ(Q?) are the Dirac and Pauli form factors of the jth quark respectively

and m; is the mass of that quark®. To evaluate the form factor from the one body current

the constituent quark wave function has to be constructed from a realistic quark potential.

Cardarelli and Simula [96, 97] have calculated the nucleon elastic form factors using

a One-Gluon-Exchange (OGE) potential. The authors assumed valence quark dominance.

The constituent quarks are then allowed to have structure, with the form factors of a given

functional form. The constituent quark wave function is calculated by solving the three body
Hamiltonian.

Wagenbrunn, Boffi et al. [98, 99] used the Goldstone-Boson-Exchange (GBE) potential

with a single particle current operator for point-like constituent quarks. This formalism is

called Point Form Spectator Approximation (PFSA), where a single quark is struck by a

22Rememb.er that if the quarks are structureless point particles then Dirac and Pauli form factors become
identically f{ =1 and fJ =0.
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photon, coherently or incoherently. The authors were able to achieve a good agreement with
G% at low Q2. They postulate that G7 is driven by the small hyperfine components of
the Hamiltonian and Lorentz boosts. The hyperfine components explicitly break the SU(6)

symmetry in the quark interaction Hamiltonian?3.

2.5.7 Cloudy Bag Model

In the cloudy bag model the three constituent quarks are surrounded by a cloud of pions.
Here a distinction is made between the bare nucleon, consisting of constituent quarks and

the physical nucleon observed in the elastic scattering. In this model an incident photon can

¥

W
—-——b—w—

N N

c)

Figure 2-19: Diagram of a virtual photon interacting with a bare nucleon (a), nucleon in the
presence of a pion (b) and a pion from cloud (c).

interact electromagnetically with the bare nucleon (fig. 2-19a), the nucleon in the presence
of a pion (fig. 2-19b) or with a charged pion from the cloud (fig. 2-19¢). The effect of the
pion cloud is especially pronounced in the neutron electric form factor, G%, due to the small
contribution to the electromagnetic structure of the neutron from the constituent quarks.
Recently Miller [100] calculated the effect of the pion cloud in a relativistic framework
to account for the latest data at large Q2. The calculation was done in the Light Front
formalism, similar to the approach of Cardarelli and Simula. The total nucleon form factor

is expressed as a sum of three possible photon interaction form factors,
FAQ%) = Z [F(Q%) + FH (@) + F(@Y)] (2.97)

where ¢ = 1,2 and o = p,n. F%(Q?) is the bare nucleon form factor, F*'(Q?) is the form

23This was also noted by Cardarelli and Simula [96].
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factor of the nucleon in a presence of a pion and F{”Z(Q2) is the photon-pion vertex form

factor. The factor of Z is needed for a proper physical nucleon form factor normalization at

Q?=0.

2.5.8 Phenomenological Models

Kaskulov and Grabmayr [101, 102] used the pion cloud around a bare nucleon model to obtain
the theoretical justification for the success of the Galster parametrization [59]. They showed
that the pion cloud content of a nucleon under a set of approximations leads to the Galster-

like Q% dependence. Based on their work they propose a modified Galster parametrization,

br

—=G(QY), (2.98)

GE(Q*) =d

where b = 4M2/A2, A2 = 0.53 GeV?, o’ is the value related to the pion-cloud content and
Gp is the dipole form factor of a bare three quark core. By using this parametrization the
authors were able, with a large degree of success, to unite data from pion electroproduction
with the G, measurements. A best x? fit of the parametrization in eqn. 2.98 was found
with b = 6.65 and o’ = 0.26 being fixed by the pion data and A as the only free parameter.

Friedrich and Walcher [103] have phenomenologically parametrized the G%. Their para-
metrization was inspired by the non-relativistic constituent quark model surrounded by a
pion cloud. The contribution to the total nucleon from factor from each constituent quark,

G9N was parametrized with a dipole. The contribution from the pion cloud, G* was para-

metrized with a Gaussian form.

gN
GV = i
(1+Q21/a‘1’ )? o (2.99)
G = a1 @ aDe T

where agN and af are given by quark and pion charges, respectively.
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2.5.9 Diquark Model

In the quark spectator-diquark model a virtual photon incoherently strikes the constituent
quark in the nucleon, with the remaining constituents treated as the quasi-particle spectators
to supplement other quantum numbers of the nucleon. Ma and collaborators [104] have
calculated the nucleon elastic form factors in the Light Front formalism. They took the mass
of a quark to be m; = 0.22 GeV which is much less than the mass of a quark in the non-
relativistic model (1/3 of a nucleon mass). The authors explained the lower constituent quark
mass as the effect of relativity. The correct prediction of the neutron mean square charge
radius was achieved by breaking SU(6) symmetry?!. SU(6) was broken by the difference in
the scalar and vector diquark parameters along with the Melosh rotation in the Light Front

formalism.

2.5.10 Summary

The recently measured data on G% at Q2 near or above 1 (GeV/c)? [105, 106, 107] have
favored models based on constituent quarks surrounded by a pion cloud. In particular
Cardarelli and Simula calculations at large Q? seem to successfully predict a ratio of electric
to magnetic form factors, uG%/G%, in fig. 2-20, while they incorrectly predict a low Q2
behavior of G%. They also predict an incorrect neutron charge radius. However, calculations
by Miller show that the addition of a pion cloud around a bare nucleon generated by the
constituent quarks can preserve the correct shape at large Q? while being more accurate in
predicting the small Q? behavior.

The G7% data appear to show an enhancement at low momentum transfer, Q? ~ 0.25
(GeV/c)?. In fact, the calculations based on the Chiral Soliton model, while misrepresent-
ing the shape at large Q?, seem to indicate an enhancement at small Q2. Friedrich and
Walcher have focused on this idea and used a phenomenological form to parametrize this
enhancement as a long distance diffuse pion cloud. This contribution of the pion cloud ap-
pears to be connected to the deviation of the other three elastic form factors from the dipole
parametrization at low momentum transfer.

There is still a sizable theoretical uncertainty in the calculation of the neutron electric

24 Already indicated by Wagenbrunn and Boffi [98, 99] and Cardarelli and Simula [96, 97).
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form factor at low Q? partly due to lack of high quality G data. High precision data
in this momentum transfer region would be very useful in constraining theoretical model
predictions.

Precise knowledge of the neutron electric form factor will enhance the interpretation
of results from parity-violating scattering experiments designed to probe the strangeness
content of a nucleon. Recent parity-violation experiments [108] have indicated that the
elastic form factors of the nucleons, G% in particular, are one of the biggest contributions
to the systematic uncertainty. The special interest of the parity-violating experiments is in
the region of extremely low Q2. This work should be of great value for such low momentum

transfer experiments.
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Figure 2-20: World’s data on uG%/G?%, along with the theoretical calculations. The data
are from references [109, 110, 111, 112, 113, 114, 115, 105, 116, 117, 106, 107]. The thin
solid line marked as “GK” is a calculation by Lomon based on the extension of the Gari-
Kriimpelmann VMD+pQCD theory (section 2.5.4). The thin dashed line is a Chiral Soliton
model calculation performed by Holzwath (section 2.5.5) The thin dot-dashed line marked
as “LF OGE” is a calculation by Carderelli and Simula, the thin dotted line marked as
“PFSA GBE” is a calculation by Wagenbrunn and Boffi. Both calculations are done with
the constituent quark model (section 2.5.6). The thick solid line marked as “CB OGE”
is a calculation by Miller performed in cloudy bag model using the One-Gluon-Exchange
potential in a core nucleon (section 2.5.7).The thick dotted line is a calculation by Ma and
collaborators using the Diquark model (section 2.5.9).
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Figure 2-21: World’s data on G7, along with theoretical calculations. The data are the
same as in fig. 2-20. The theoretical calculations are the same as in fig. 2-20. Added to
this plot is the Friedrich and Walcher parametrization marked as “Walcher” inspired by the
non-relativistic constituent quark model.
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Chapter 3

Polarized Hydrogen/Deuterium Gas
Target

The success of an experiment in which the target polarization observables are measured is
largely dependent upon the performance of the polarized target. Two types of targets are
used in these kinds of experiments, solid and gaseous. Solid polarized targets, in the form
of ammonia (NH3) or the deuterated ammonia (NDj3) are used with the extracted beams
[118] (e.g. CEBAF beam at Jefferson Laboratory). The advantage of a solid target is in
its high density which, in combination with a high-duty factor CW beam, provides high
luminosity. The maximum hydrogen atom polarization achieved with an ammonia target is
75 %. However, the polarization of deuterium atoms inside of the deuterated ammonia target
is rather low, ~25 %. Ammonia targets are not pure hydrogen or deuterium targets. This
introduces backgrounds from scattering on other atomic species and the target’s aluminum
container.

A solid target cannot be used with a stored beam. Instead, a polarized gas produced
by the Atomic Beam Source (ABS) and stored in the storage cell internal to a beam line is
used as a target. The advantage of the polarized gas target is its high polarization, typically
85 %. Since the gas targets are pure, the scattering reaction is almost background free.
The advantages of a polarized atomic gas target make it an excellent choice for the BLAST
experiment.

The Atomic Beam Source used in BLAST was based on the source used in the AmPs
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Figure 3-1: Schematic representation of the ABS. Gas is injected into the dissociator (C1).
The Skimmer chamber is separated from the first sextupole vacuum chamber by the valve,
V11. The first sextupole chamber is followed by the MFT transition unit vacuum chamber.
The SFT and WFT transition units and the second sextupole system share the same vacuum
chamber. The target chamber is separated from the ABS by a valve, V14. A Breit-Rabi
polarimeter vacuum chamber is located underneath the target chamber and separated by a
valve V15. All valves are remotely controlled. All vacuum chambers are equipped with ion
gauges.
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Ring at the NIKHEF laboratory [71]. The NIKHEF ABS was delivered to Bates in August,
2000. However, before the ABS could be installed into the South Hall Ring major differences
between the AmPs and BLAST running conditions had to be addressed. These conditions

are summarized below.

e Space Consideration: The ABS has to fit between the top two coils of the BLAST
toroid (see fig. 4-4). The tight space requirements rendered some components of the

NIKHEF ABS design unusable.

e BLAST Field: The ABS has to operate in the strong magnetic field (up to 3 kGauss)
produced by the BLAST spectrometer magnet. Since all of the RF transitions in the
ABS rely on the precise setting of the magnetic field, special consideration has to be
given to shielding the magnetic components of the RF transition units from the BLAST
field. The turbo pumps have to be either taken out of the high field region or replaced
by pumps that can operate in a high magnetic field.

e Reliability: Due to limited access to the ABS during the experiment, the reliability
is an important characteristic. The improvements to the ABS’ reliability over the
NIKHEF design are achieved by completely automating the ABS controls using the
EPICS control system. Since the South Hall Ring control systems are all EPICS based
it became easy to integrate the ABS operation into that of the South Hall Ring. The
reliability of the RF transitions was improved by adding a magnetic feedback loop

mechanism to the controls of the RF transition units.

e Improved Figure-of-Merit: The BLAST scientific program demands high figure-
of-merit from the ABS target. Improvements over the NIKHEF design were made in

order to raise the polarization of atoms in the target.

e Multiple Modes of Operation: The new ABS design allows for rapid switching
between hydrogen and deuterium polarized targets, thus addressing one of the require-

ments of the BLAST experiment.

Figure 3-1 is a schematic representation of the ABS. Almost all of the components have

been modified to some extent in order to satisfy the requirements of the ABS operation at

BLAST.
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3.1 The RF Dissociator
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Figure 3-2: Diagram of the RF dissociator. The 'H, or 2H, is injected into the gas tube.
The cooling water flows on the outside of the gas tube. The gas is dissociated by the RF
field in the coil. The nozzle is cooled by the cold head connected to the nozzle by a copper

braid.

An RF field with a fixed frequency of 27.12 MHz is used to dissociate the hydrogen
(deuterium) molecules into atoms in the RF dissociator. The molecular gas is injected
by the Polarized Gas Feed System (PGFYS) into a 2 mm thick Pyrex glass tube with a 9
mm inner diameter. The PGFS is designed with the capability to switch quickly between
injecting hydrogen and deuterium gases (see fig. 3-3). The PGFS also injects a small amount
of oxygen gas into the gas tube to mix with hydrogen (deuterium) for reasons explained later.
'H, and 2H, gas flow rates are controlled by the MKS 1479A mass flow controller (MFC),
with a dynamic range of 0 to 200 standard cubic centimeters per minute (sccm). The MFC
with a dynamic range of 0 to 1 sccm is used for the O, flow. The estimated accuracy of

these devices is ~2-3%.
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Figure 3-3: Polarized Gas Feed System (PGFS). The PGFS has four gas lines allowing quick
switching between hydrogen (H2) and deuterium (D2) targets. N2 was not used during
the experiment. The gas flow rate is regulated by the Mass Flow Controllers (MFC). The
baratron (B) and convectron (C) gauges measure gas pressure in the PGFS lines. Valves
V10 and V9 direct the gas flow either into the dissociator or the pump.

The gas tube is surrounded by a larger 4 mm thick and 16 mm inner diameter glass
tube which is used to flow cooling water (CT). The deionized (DI) cooling water is used to
cool the plasma produced during the dissociation. It was found that the temperature of the
cooling water has a significant effect on the performance of the dissociator. The temperature
of the cooling water was kept constant at ~10 °C.

The glass tube is surrounded by the RF coil (L), which provides a resonant electromag-
netic field needed to dissociate molecules into atoms. The RF coil is shielded by an aluminum
can to reduce the amount of the RF field “leaking” into other ABS and BLAST detector
components. A fixed frequency RF generator (ENI Genesis) is used to provide the RF field
with power up to 500 Watts. The generator is located 130 meters away from the dissociator
coil which results in ~40% of RF power being dissipated in the semi-rigid RF cable. The
actual power out of the supply used during the experiment is ~250 W.

Since the RF field has the fixed frequency of 27.12 MHz, adjustments to the dissociator’s
RF coil have to be made to maximize the Q-value of a resulting resonator at this particular

frequency . The Q-value was optimized by properly choosing a tap point on the RF coil and

71



adjusting the capacitor inside of the aluminum can . The capacitor consists of a piece of
dielectric placed between the bottom of the RF coil and the aluminum can which also serves
as a ground. The coil (L), capacitor (C) and plasma (R) effectively create an LRC circuit.

In the Q-value maximization procedure, an RF signal in the range of 20 to 30 MHz is
fed into the dissociator while the frequency response of the cavity is being measured by a
pick-up coil. The capacitor inside of the can is adjusted until the peak of the frequency
response is at 27.12 MHz. Then a small correction is made to account for the effect of the
DI cooling water in the outer tube. It was discovered that the DI cooling water lowers the
peak of the frequency response curve by ~1 MHz. A Q-value of ~150 was established for
the dissociator resonant cavity .

The combination of two outside capacitors is used to minimize the power reflected from
the dissociator RF circuit while maximizing the forward power. The “Load” capacitor is
connected in series with the RF coil, and the “Tune” capacitor is in parallel. Both capaci-
tors are remotely controlled. The Tune and Load capacitors are adjusted until a minimum
reflected power is achieved. The minimum reflected power occurs when the load impedance
of the effective dissociator RF circuit satisfies Re(Z) = 50 2 and Im(Z) = 0.

The atomic gas is ejected out of the dissociator into the ABS through a system of aper-
tures, nozzle-skimmer-collimator. The diameters of the nozzle, skimmer and collimator are
chosen to match the acceptance of the first sextupole system. The nozzle is cooled to 70 K
in order to avoid the recombination of the dissociated atoms into molecules on its surface.
Also, the cold nozzle cools the atomic beam, thus reducing the velocity of the individual
atoms, which results in the cold atomic beam being focused more effectively in the sextu-
pole system. The nozzle is cooled by a single stage GM type cold head with an external
helium compressor which supplies 60 Watts at 80 K. The nozzle temperature is controlled
by a heater-sensor combination connected to the PID controller. Four Cernox CX-1070-CU
sensors are used to monitor and control the temperature on the cold head, nozzle and along
the solid copper arm which connects the cold head to the nozzle.

To reduce the recombination rate further, a trace amount of O, gas (~ 0.5% of the H,
flow) is injected into the dissociator. The oxygen molecules combine with the hydrogen (deu-

terium) atoms to form water which, in turn, freezes on the surface of the nozzle. The ice on
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the nozzle provides a surface coating which reduces the probability of atomic recombination.
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Figure 3-4: Unpolarized Gas Feed System (UGFS). The UGFS is capable of flowing both
hydrogen and deuterium gases.

The BLAST target is also equipped with the Unpolarized Gas Feed System (UGFS). The
UGFS is used for systematic false asymmetry measurements and luminosity calibrations.
Both hydrogen and deuterium gases are fed by the UGFS directly into the target cell (see
fig 3-4.) The flow rates in the UGFS are controlled by the MFCs. However, the precision of
the MFC is not sufficient for the luminosity calibration purposes. For this reason a buffer
system was attached to the UGFS to better monitor a gas flow into the target cell. The

precision in the flow rate measurement with the buffer system is better than 1%.
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3.1.1 Performance of the RF Dissociator

Before the RF dissociator was used in the full ABS configuration, its performance was studied
with a Quadrupole Mass Analyzer (QMA 200). The vacuum chamber with the QMA inside
was placed underneath the nozzle. The QMA vacuum chamber was separated from the nozzle
by a set of apertures in oder to limit the gas that scatters off the vacuum chamber walls
from entering into the QMA. The atomic beam out of the nozzle was chopped by a chopper
wheel in order to separate the atomic beam signal from background. Correspondingly, the
lock-in amplifier was used to extract the AC component of the QMA analog signal.

The objective of this study was to measure the efficiency of the RF dissociator in break-
ing up the molecules into atoms which is described by the degree of dissociation, am/p.

Numerically ay/p is defined as

Ppp
PLp+26,P%

OH/D = (3.1)
where P} /p and Pf,/ p are the partial pressures of the atomic and molecular gases, respec-
tively. The correction factor k, ~ \/L'Z is due to the difference in the atomic and molecular
velocities. The value of the degree of dissociation measured with the QMA can be redefined

in terms of signal amplitudes in the QMA as

Suyp
H/D = Shp + 2&{1“/-31,8%,/1)’ (3-2)
where S}{/ p and S% /p are the respective atomic and molecular signals and f g is a relative
detection probability in the QMA. The detection probability, kg4 is a function of the gas type
and the QMA acceptance only. It should be constant over all flows and nozzle temperatures.
Figure 3-5 shows the quantity g measured for two different types of gases and various
nozzle temperatures as a function of the gas flow into the dissociator. Parameter rge is
constant over all flows and has two distinct values for hydrogen and deuterium gas.

The fraction of dissociation was measured for hydrogen and deuterium gas as a function

of the RF power!. The dissociation fraction, Yiyrs of ~90% was achieved for both gases? (see

1The RF power was measured at the output of the RF supply. However, there is close to 40% power loss
in the cable.
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Figure 3-5: Relative QMA detection probability x4 as function of the gas flow into the
dissociator for deuterium (solid square) at 85 K and for hydrogen at 65 K (solid triangle),
75 K (solid upside-down triangle), 80 K (open circle), 100 K (open square), 120 K (open
triangle), 85 K (open diamond).

fig. 3-6). As expected, a higher flow rate corresponding to a higher molecular density inside
of the dissociator requires more RF power to reach a high level of dissociation. A slight
difference in ap (< 10%) was observed as a function of the nozzle temperature within the
range of 60-100 K. The optimal nozzle temperature was chosen to be 70 K. The optimal flow

rate of oxygen gas was found to be 50 % higher for hydrogen gas than for deuterium.

3.2 Focusing in a Sextupole Magnet System

A set of sextupole magnets is used to focus and defocus atoms with the magnetic moments
of u = puggsms, where mg = :i:% is the projection of an electron spin in the atom? and pp
is the Bohr magneton. The spin of an atom in the external magnetic field is oriented in the
direction of that field, i = uf? . Hence, the force on the atom passing through the magnetic

field can classically be expressed as

F=vV(i-B)=pu-VB. (3.3)

2This measurement was done with the BLAST magnet off. The magnetic shield around the dissociator
is installed to achieve the same performance with the BLAST magnet on.

3To a very good approximation, the nuclear magnetic moment is neglected in the magnetic focusing
calculation, since up > un.
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Figure 3-6: The atomic fraction of hydrogen (top) and deuterium (bottom) gas measured by
the QMA immediately outside of the dissociator’s nozzle as a function of the RF power.
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The components of this force can be written in Cartesian coordinates as

F, o= u
g (3.4)

F, = 1( By Bz‘*' dy By)a

where the equality V-B =0 is used. The quantity Bo(z) is the amplitude of the pole-tip
field of the sextupole magnet and ry is the pole-tip radius. Using eqn. 3.3, the total force
on the atom is

— T

F=2uB, (3.6)

7
However, the ABS operates in the strong magnetic field created by the BLAST toroid.
Following the established ABS coordinate system this field is generally in the % direction.

Hence, the x-component of the field, B, in eqn. 3.5, is modified as
B. = By + Bey. (3.7)

Accordingly, the components of the magnetic forces on the atom are expressed in Cartesian

coordinates as

o= 2 (5L + B
2530 v (3:8)
2
Fg; = B y(BO(E) —Bel‘t),

where

B' = /B2 + B?

The magnitude of the total magnetic force remains unchanged. However, the force, F’, is no
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longer purely along 7. By using eqn. 3.8 the full expression for the radial component of the

sextupole force exerted on the atoms in the external magnetic field is

G 1+ b5§c03(20)
e = = =, (3.9)
¥ \/1 + 2b8cos(26) + b? %
where
b = —B;;:t
tan(d) = L

and F' is defined in eqn. 3.6.

The effect of the external magnetic field increases as the radius, r, goes to zero. This
is due to the fact that the magnetic field in a sextupole magnet goes to zero at the origin.
This means that a change in the external magnetic field, Be,:, the pole-tip field, By, or the
radial position dependent, B(r), produces the same effect on the radial component of the

sextupole force and can be studied by simply varying the parameter b.

—b(r)=0

_‘ ....... b(r) =1
2k - b(n=3
wsf b(r) = 25

%7 - e
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===ty
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Figure 3-7: Radial component of the force, F}, acting on the atom inside of a sextupole
magnet in the presence of the external magnetic field, Be,, plotted for different values of
b(r) = Best/B(r) vs. azimuthal coordinate, 6.

Figure 3-7 shows a plot of the radial component of the magnetic sextupole field, F,
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for different values of Bey/B(r) vs. the azimuthal coordinate, , of an atom inside of a
cylindrical magnet. In the presence of a small, non-zero external magnetic field, the force on
an atom in the sextupole system is reduced, but it remains in the proper direction. As the
parameter b increases, the force changes sign in some intervals of 8. At § = 0° and 180° the
magnetic force has a magnitude of 1 and points in the +7 direction, whereas at 6 = 90° and
270° the force is exactly in the opposite direction. At the azimuthal angles of 90° and 270°
the force on the atoms has only a y-component, Fé from eqn. 3.8. Conversely, at 8 = 0°
and 180° the force is purely in the Z direction. Hence, in the strong external magnetic field
limit, the ! component of the force remains the same as F; (the field in the absence of Beg;)
while F; switches sign. When this happens, the sextupole focusing is significantly reduced
and the atoms in those positions along the azimuthal direction get completely defocused.
This subtle effect was not observed in any other atomic beam sources, since all of them
have been operated in the presence of only weak external fields. Once the significance of
this phenomenon was realized the external field value was accounted for in the ray trace
program. The results are plotted in figure 3-8 [120]. The figure clearly shows a strong
defocusing due to the external BLAST field. The transmission drops by almost a factor of
two. The only way to reduce this effect is to add magnetic shielding to the sextupole magnet
system. The result of shielding was a significant increase in the atomic beam intensity (see

the discussion of the intensity results in section 3.6.1).

3.2.1 ABS Sextupole Magnet System at BLAST

The original sextupole magnet system was received from NIKHEF. However, it soon became
apparent that the pole-tip fields of these magnets were not up to specifications. Most prob-
ably these permanent magnets were damaged at Bates during heat activation of the pumps
in the area close to the magnets. A new set of magnets was ordered. The material for the
new set was chosen to be VAC Vacomaz 225HR-2:17 samarium cobalt which has better high
temperature characteristics.

Each magnet consists of 24 individual segments (see fig. 3-9) that were assembled and

epoxied together at Bates. In all there are seven sextupole magnets used in the ABS.

41t was first assumed that the effect had to be small due to the strength of the pole-tip field of the
sextupole magnet.
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Figure 3-8: The effect of the external BLAST magnetic field on focusing in the sextupole
system. The left panel shows focusing with no external field. The right panel shows focusing
with a strong external magnetic field.The circle is the injection tube into the target cell.
Due to the defocusing caused by the external magnetic field the transmission through the
sextupole system is reduced by a factor of two.

Magnets 1, 2 and 3 have a tapered inner diameter design, whereas magnets 4, 5, 6 and 7

have a constant diameter.

The magnetic field of an untapered sextupole magnet is written in cylindrical coordinates

as a function of its radius and length as [121]

r\2 1
B(r.z) = Bo (r_o) 1+ e

5
s = Y a,d (3.10)
n=0
z—L/2
d N 21"0 ’

where L is the length of a magnet, By and ry are the pole-tip field and pole-tip radius of

the magnet, respectively. In case of a magnet with a tapered inner diameter, the field has a
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Figure 3-9: A diagram of a typical sextupole
magnet used to focus/defocus atoms passing
through the opening inside. A magnet con-
sists of 24 permanent magnets epoxied to-
gether. The magnetic axis is rotated by 45°
in each successive piece.

Magnet NIKHEF BATES
Pole-tip Field, kG | Pole-tip Field, kG
1 8.3 13.5
2 9.1 124
3 9.9 12.0
4 11.6 11.6
5 15.6 12.7
6 15.4 12.5
7 15.2 11.9

Table 3.1: Pole-tip field values of the individual sextupole magnets from NIKHEF and Bates.
The strength of the first three magnets is improved.

more complex form

B(r,z) = B ( r )2 ! !
LT T\ o) T4 biz+ b2l 4es
r _ 1 +T‘2
0 2 (3.11)
z—;% for 2 <0
d = 1

3
Z—ETI—JE for 2>0
2

where s is defined in equation 3.10, 7; and r, are the inner radii at the top and bottom of
the cylindrical magnet.

All seven new magnets were carefully mapped at Bates and the values were fitted for all
parameters in eqns. 3.10 and 3.11. The pole-tip field values are listed in table 3.1. Even

though magnets 4 through 7 show no improvement, the intensity is most sensitive to the
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strength of the top three magnets (1, 2 and 3). The magnets were encased in steel to reduce
the effect of the BLAST magnetic field described above.

The measured sextupole magnetic fields were used in a ray-tracing program (see fig. 3-10)
which is capable of tracking hydrogen or deuterium atoms through the ABS volume. The

velocity distribution of the atoms streaming from the nozzle is assumed to be Maxwellian

top bottom top bottom
sextuples sextuples Cell sextuples sextuples Cell

0.03

0.02

0.01
LI
"
-0.01
-0.02 1
-0.03

Figure 3-10: Ray tracing in the ABS. The atomic beam is moving from left to right. The
top (very left) sextupole system focuses the atoms in hyperfine states with mg = +%. In the
left figure the atoms’ electron spin of mg = +% transition into mg = —% between the top
and bottom sextupole sets and get defocused in the bottom sextupole system. In the right
figure the atoms keep their electron spin and get focused in the bottom sextupole set.

flv) =

v

a [ mv?\? _me-w?
<2kBT) L (3.12)

where T is the temperature at the nozzle (= 70 K), m is the mass of an atom, v is the
velocity of an individual atom and vg is the average velocity, a is the arbitrary constant
used for normalization and kg is the Boltzmann constant. The distances between the ABS
elements were optimized for the intensity and polarization simultaneously. The sextupoles
were designed to focus all atoms in a hyperfine state with mg = +% and defocus all atoms in
mg = —é— states. The tracking simulation was used to optimize the focusing of the mg = +%
atoms in the top sextupole system and focusing/defocusing of the atoms in the bottom

sextupole system. The defocusing in the bottom sextupole system was optimized for those
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atoms in the simulation that change their hyperfine population from a mg = +% tomg = —%
state between the top and bottom sextupoles systems® (see fig. 3-10). The focusing in the

bottom sextupole was studied when there was no hyperfine population transition. Table 3.2

ABS Elements | Distances (mm)
Skimmer 12.0
Collimator 52.0
Sextupole #1 65.7
Sextupole #2 111.7
Sextupole #3 157.7
Sextupole #4 208.4
Sextupole #5 589.6
Sextupole #6 681.0
Sextupole #7 721.6
Cell Inlet 1056.0

Table 3.2: Distances from the nozzle of the focusing and collimating elements in the ABS.

shows the distances from the nozzle in the present ABS configuration.

3.3 Polarization Techniques

3.3.1 Hyperfine States of Hydrogen and Deuterium

The polarization technique in the Atomic Beam Source exploits the energy splitting in a
single electron atom due to the hyperfine interaction, which arises from the interaction
between the spins of the electron (S) and the nucleus (I). The pure hyperfine Hamiltonian
has 25 + 1 distinct eigen-values. The hyperfine energy levels are further split when the spins
of the electron and nucleus couple to the external magnetic field. In the presence of the

external magnetic field, B, the total hyperfine interaction Hamiltonian can be written as

B
HEP = fIPT. S+ up(g?'°T + g55) - B ~ [P (1 S+8§. H/D) (3.13)

were up is the Bohr magneton and gfl/ Pis the gyromagnetic factor of hydrogen (g =

H/D

—0.00304) or deuterium (gP = —0.00047) nuclei. The gyromagnetic factor g;’" is orders of

magnitude lower than that of the electron (gs = 2.0023). Thus, to a high degree of precision,

5The hyperfine population transitions will be discussed in section 3.3.2.
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the external magnetic field only couples to the spin of the electron. The characteristic

frequency of the hyperfine interaction in eqn. 3.13 is defined as
hvigl = pg (9s + gr) B/ ~ ppgsBEIP, (3.14)

where BA/D is the “characteristic” magnetic field. The characteristic hyperfine quantities,
H/D

vy and BH/P | are known to high precision [122].
vilp = 1.420GHz and B =507G
(3.15)

vP,.=0.327GHz and BP =117G

The expectation value of the interaction Hamiltonian, ’H%:D, can be found by calculating the
expectation values of (F,mp;S, mslf- §|I, mp; Fymp) and (F,mp; S, mg|S,|I,mr; F,mp),
separately, where the direction of the magnetic field can be taken to be purely in the z-
direction. The total angular momentum is defined as F = I+ § with mp being its z-
component.

In the matrix form the interaction Hamiltonian can thus be written for hydrogen as ©

1+ 2z 0 0 0
H —
M = hvg g 0 142z 0 2 , (3.16)
4 0 0 1-2z 0
0 2 0 -1 -2z

6The details of the calculations can be found in reference [123].
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where z = B%. For deuterium, the interaction Hamiltonian has the form

1+3z 0 0 0 0 0
0 3z 0 0 0 V2
D, = hvb 0 0 -1+3z 0o V2 0 (317
2 0 0 0 1-3%z 0 0
0o 0 V2 0 -3z 0
L 0 v2 0 0 0 -1-3z

The energy levels are obtained by diagonalizing the interaction Hamiltonian in eqns. 3.16 and 3.17

Hydrogen Deuterium
vy 3
H D
vH = KZ—F(H%) WP = UHTF(—1+ (3z + 1)2 + 8)
JH D
vl = 142V = -V’é—F(—l ++/(Bz—1)2+8) (3.18)
H D
vl = ﬁZ—F(l—m) P = ”—55(1—23:)
H Viip 3T ’/II;F
Vitr

Figure 3-11 shows plots of the hyperfine energy level as a function of the external magnetic
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field. This figure illustrates that when the external field is turned off the energy levels become
2F + 1 degenerate, whereas at the non-zero external magnetic field each of these two levels
split further into 2F + 1 levels.

Hydrogen states |1) through |4) and deuterium states |1) through |6) are the normal-
ized eigenvectors of the interaction Hamiltonian, 'HHF . The wave functions are the linear

combinations of states |F, mp;mr, mg) written in the so-called Breit-Rabi basis [124] as

Hydrogen Deuterium
1) = 11,13,3) ) = 15513
|2> = a|1,0 %%)-I—,BH 0,2, —) |2> = a+lgaéa0’2>+:@+|g,é’la__>
13) = |L,-L;1,-1) 3) = a-|f,—3-1,3) +B-13,-5:0,—3)
) = a]0,0,-1, -1y = pj0,0;1, 1y, 149 = 15 -5-1-3)
|5> = a—l%a'— ) ﬂ |2? _? ’é>
|6> = Ol+|2,2,]_ _—> ﬁ+|;7;7072>
where where
T — (3z+1)
@ = V%(l_'- :c+1) A \/(1+ (3:ci1)2+8)
= 1 — 3z+1
o= Vel be = 3l Zai)

(3.19)
One can note from eqn. 3.19 that some eigenstates are “pure” states while some are functions
of the external magnetic field.

The electron polarization, P., and the nuclear vector polarization, P,, of an atom in an
external magnetic field are defined as the expectation values of (S,) and (I,), respectively.
Also, in the case of deuterium one can define a tensor polarization, P,,, as the expectation
value of ((3I2 — 2)). Using eqn. 3.19 the polarizations can be expressed in terms of the

external magnetic field as
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Figure 3-11: Hyperfine structure of hydrogen (left) and deuterium (right).
Hydrogen Deuterium
P. = (Ny— Ny)+ (N2 — Ng)(of — B2)
Pe = N1 - N3 + (N2 — N4)\/;§ﬁ +(N3 —_— N5)(012_ - ,83)

P, = N;— N3+ (Ns— Ny)—=% P, = N;— Ny+ NyS3 — N3a? — N5B3% + Nea?

T4+
Pzz = 1- 3N20(_2’_ - 3N3)6f_ - 3N5a3 - 3N6,33,
(3.20)

—

where N is the relative population of the |k)th eigenstate.

The discussion of the nuclear polarization as a function of the atomic hyperfine state is
important in the context of the atomic states injected into the target cell, since the atomic
states that produce the best nuclear polarization at a given holding magnetic field should be
selected for injection.

Figure 3-12 shows the electron polarization, P,, and the nuclear polarization, P,, for each
hyperfine state of hydrogen. States |1) and |3) are independent of the static field. However,
the polarizations of the |2) and |4) states grow as a function of the field. The holding field was
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Figure 3-12: Electron (left) and nuclear vector (right) polarizations of each hydrogen hy-
perfine state as a function of the external magnetic field. The vertical band indicates the
holding field in the BLAST target.

chosen to be ~450 Gauss’ indicated by a gray vertical band in the picture. Although both
states |1) and |4) produce positive nuclear polarization, the holding field is not strong enough
for state |4) to have a high polarization. Thus, injecting both states |1) and |4) effectively
dilutes the nuclear polarization. The analog applies to the negative nuclear polarization
states. Due to this, a single state injection mode was chosen for the hydrogen target, i.e.
the state |1) is injected for P, = 1 and |3) for P, = —1.

Figures 3-13 and 3-14 show the electron polarization, P,, the nuclear vector polarization,
P,, and the nuclear tensor polarization, P,,, of the individual hyperfine states of deuterium.
With the deuterium target, the holding field is high enough for a two state injection. The
difference is due to a lower critical field in deuterium than in hydrogen (see eqn. 3.15).
One can notice from the deuterium polarization plots that the states which produce vector
polarization, P, = £1, also produce tensor polarization, P,, = +1. This is an important

aspect of the polarization scheme employed at BLAST.

"This is the highest field limit of the holding field magnet.
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Figure 3-13: Electron (left) and nuclear vector (right) polarization of each deuterium hyper-
fine state deuterium as a function of the external magnetic field. The vertical band indicates
the holding field in the target.

3.3.2 RF Transitions

The previous section described the hyperfine states in the external static magnetic field,
where the population of each hyperfine state remains unchanged. However, when the external
time-varying magnetic field is applied the hyperfine states can exchange their populations.
This process is typically referred to as the hyperfine RF transitions.

There are two possible cases of the RF transitions. In the first case, the time-varying

magnetic field is parallel to the static magnetic field, such that the total magnetic field is
B(t) = (Bo + Brrcos(wt))3. (3.21)

In this case the interaction Hamiltonian has the same matrix form as in eqns. 3.16 and
3.17, where xz(t) = B(t)/B, is now a function of time. This type of RF transition is called a
o-transition. The eigen-states have a time-dependent Breit-Rabi basis. Since only hydrogen
states |2) and |4) are functions of an external magnetic field, the only possible RF o-transition

in hydrogen is |2) — |4). Similarly, in deuterium, possible o-transitions are |3) — |5) and
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Figure 3-14: Nuclear tensor polarization, P,, of each deuterium hyperfine state as a function
of the external magnetic field. The vertical band indicates the holding field in the target.

|2) — |6). Accordingly, all RF o-transitions satisfy the Amp = 0 selection rule.
In the second case, the time-varying magnetic field is perpendicular to the static magnetic

field, such that the total field has the following form
B(t) = By% + Brpcos(wt)i. (3.22)

The interaction Hamiltonian corresponding to this field has a more complex form

= 1 Bz 1 B:r: t
HYP (1) = P (1 S48, g+ Sk +5)- B"(/g) , (3.23)

where S, and S_ are the raising and lowering spin operators. Solving the time-dependent

Schrodinger equation,
o
ih—|¥) = Hyg (£)|9), (3:24)
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with this Hamiltonian yields the frequencies at which the RF transitions occur as a function
of the external static magnetic field. These RF transitions are called n-transitions. As such,
RF m-transitions satisfy the Amp = £1 selection rule.

Both o- and 7-transitions have one frequency for the particular value of the external
static magnetic field at which they occur. However, the atoms in the atomic beam spend
different amounts of time in the magnetic field (both static and RF), due the Maxwellian
profile of the velocity distribution. This fact limits the efficiency of the RF' transitions. For
this reason, the high frequency RF transitions are done in the adiabatic regime [125, 126].

In the adiabatic regime an atom passes through the static magnetic field, By, super-
imposed with a gradient and a high frequency time-varying magnetic field, By, and Bgp,

respectively. The total magnetic field seen by an atom in case of the 7-transition is
B(y,t) = (Bo + Bgrvst)# + Brrcos(wt)#, (3.25)

where v, is the velocity of an atom passing through the gradient field. The total static
magnetic field (By + By, ) slowly (adiabatically) changes along the flight path of an atom.

Typically, the Schrodinger equation (eqn. 3.24) for the Hamiltonian with the magnetic
field in eqn. 3.25 is solved numerically. However, R.J. Philpott [126] found an exact analytical
solution for the case where there are only two hyperfine states exchanging their populations.

In this simpler case the transition probability was found to be
P=1-erp *™, (3.26)

where & is defined as
pBgsByp
2By v.h

/LBgSBgtF

d(Bo+Bgrvzt)
A T egrrzn]
gdbottarvatlpy

K =

(3.27)

Hence, for the probability of an adiabatic transition, P, to be close to unity, the following

adiabatic condition needs to be satisfied

NBQSB%F

By,
or < 2u.h

(3.28)
It follows that for a proper match between the gradient field, By, and the RF field amplitude,
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Bgr, can provide close to 100% efficiency of an RF transition.

Medium Field and Weak Field RF Transitions

The Medium Field Transition (MFT) and Weak Field Transition (WFT) are RF n-transitions.
In the medium and weak field transition regimes the hyperfine states of the same multiplet
exchange their populations. The possible 7-transitions in hydrogen and deuterium are listed

below.

Hydrogen Deuterium
1) < [2) (MFT1-2)
1) < [2) (MFT1-2) 2) « |3) (MFT2-3) (3.29)
2) < |3) (MFT2-3) 13) < |4) (MFT3-4)

5) < |6) (MFT5-6)

0.02}-

0.01F

b) deuterium
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Figure 3-15: The frequency of the RF n-transitions in hydrogen (left) and deuterium (right)
as a function of the static magnetic field. Horizontal lines indicates the frequency at which
the MFT and WF'T transition units are operated during the BLAST experiment. A negative
gradient corresponds to the field seen by the atom changing from right to left, while a positive
gradient corresponds to change from left to right.

Figure 3-15 shows the frequency of these transitions in the MFT and WF'T units as a
function of the static magnetic field. A choice of the positive gradient along the flight path
of a particle induces a sequence of hydrogen RF transitions MFT2-3 followed by MFT1-
2 and of deuterium RF transitions MFT3-4, MFT2-3, MFT1-2, respectively. The resulting
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transition is MFT1-3 in hydrogen and MFT1-4 in deuterium. The negative gradient produces
the hydrogen RF transition MFT2-3 and deuterium RF transition MFT3-4.8 The MFT
frequencies of the individual transitions are chosen so that the magnetic fields at which the
transitions occur are well separated.

The WFT transition is operated at a lower frequency at which the static magnetic fields of
the hyperfine transitions are not separated. The atoms passing through the WF'T experience
a static field at which all 7-transitions are taking place at once?. Therefore, the WFT
operates with a positive gradient along the atomic flight path, inducing the transition WFT1-
3 in hydrogen and cascading WFT1-4 in deuterium. In fact, the WFT is typically used to

induce hydrogen |1)-|3) and deuterium |1),|2)-|3),|4) transitions in the atomic beam, since

the WFT requires a lower gradient field thus improving the transition efficiency.

Strong Field RF Transition

The Strong Field Transition (SFT) refers to the RF o-transition. The atoms passing through
the SF'T change their hyperfine state population between states in different multiplets (AF =

+1) with Amp = 0. Hence, possible RF o-transitions in hydrogen and deuterium are

Hydrogen Deuterium
|2) < |6) (SFT2-6) (3.30)

|2) < |4) (SFT2-4) 13) < |5) (SFT3-5).

The condition in eqn. 3.28 also applies to the o-transition. Therefore, a well-chosen
gradient field is also important to the efficiency of the SFT transition. Figure 3-16 shows
the frequencies of the RF o-transitions in hydrogen and deuterium as a function of the
external magnetic field. The two o-transitions in deuterium are well separated. The SFT2-4
transition in hydrogen is not used in the BLAST polarization scheme while both the SFT2-6

and SFT3-5 transitions in deuterium are required for the target operation.

81t is assumed here that the hydrogen hyperfine states |3) and |4) and deuterium hyperfine states |4),
|5) and |6) have been rejected in the top sextupole system before entering the MFT unit . For details see
section 3.3.3

9These are called cascading transitions.
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Figure 3-16: The frequency of SF'T RF o-transitions in hydrogen (left) and deuterium (right)
as a function of the magnetic field. Horizontal lines indicate the frequency at which the SFT
unit is operated.

3.3.3 Polarization States in the Target

As discussed before, the hydrogen atoms are injected into the target cell in the single state
mode due to the limitation of the holding field magnet. Since the critical field of deuterium
is significantly lower, both vector and tensor polarization states in the target are prepared
using the two state injection.

The hydrogen atoms are ejected from the nozzle with all four hyperfine states equally
populated by ni, ng, n3, ns. Vector plus and vector minus polarized hydrogen atomic beam
is separately injected in the target cell after it undergoes a sequence of transitions. For the

vector plus state the transition sequence is

nq n ny ny
ny | 6 —pole | no MFT 0 6 — pole 0 (3.31)
ns —> 0 — n3 — 0o |’ )
Ty 0 0 0
and for the vector minus state the sequence is
n n n 1 0
Ty 6 — pole Ty MFT 0 6 — pole 0 WET 0 (3.32)
N3 — 0 — n3 — 0 — N3 )
N 0 0 0 0

The unpolarized deuterium atomic beam exiting the nozzle has all six hyperfine states
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equally populated by n;, na, nz, ng, ns, ng. The beam of deuterium atoms becomes vector
plus, vector minus and tensor minus polarized by passing through a sequence of transitions.

For the vector plus beam the transition sequence is

i (51 m m n
Ng Tig o oy 0
ng | 6—pole | n3 | MFT 0 6 — pole 0 SFT 0 (3.33)
N — 0 — T4 — 0 — 0o |’ ’
ns 0 0 0 0
g 0 0 0 Ng
for the vector minus the sequence is
m n n n 0
n2 o D) o 0
n3 6 — pole ns MFT 0 6 — pole 0 WFT ns (3.34)
N4 — 0 — N4 — 0 — ng |’ )
ns 0 0 0 0
and for the tensor minus the transition sequence is
m ny 0 0 0
Ny No N9 To N9
n3 6 — pole ns MFT n3 6 — pole n3 SFET 0 (3.35)
Ny - 0 — T4 — 0 — 0 )
Ny 0 0 0 Ny
Ng 0 0 0 0

Table 3.3 has a compilation of the required transitions for all polarization states injected
into the target cell at BLAST.

As noted before, the vector plus and vector minus states in deuterium are also a tensor
plus state. Therefore, the experiments that require both vector and tensor polarized deu-
terium target can be run simultaneously with the sequence of P, = +1,—1 and P,, = —2
injected. In this “three-state” scheme the experiment requiring the tensor polarized target
runs 100% of the time, while the experiment on the vector polarized target uses 2/3 of the

total run time. Compared to the sequentially running of the vector and tensor polarization
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Hydrogen | Deuterium
Vector + | Vector - Vector + | Vector - | Tensor -
MFT T2—3 To-3 T3—4 T34 T1—-4
SFT off off 026 off J3._5
WET off mT1-3 off T1,2-3,4 off
P, +1 -1 1 -1 0
P,, - - 1 1 -2

Table 3.3: RF transitions used in the ABS operation to produce vector polarized hydrogen
and vector/tensor polarized deuterium atomic beams.

experiments this effectively increases the figure of merit for the vector polarization experi-
ment by 30 % and for the tensor polarization experiment by a factor of 2. For example, if
there are vector and tensor target experiments designed to run 1000 hours each, with the
“three-state” scheme the tensor target experiment runs for 2000 hours and the vector target

experiment runs for 2/3 x 2000 hours.

3.4 The RF Transition Units

The operation of the RF units is controlled by a special sequencer program which manages
the flipping of the polarization states in the target. During each polarization change which
occurs every 5 minutes an RF unit magnet is cycled through the hysteresis loop before a

new field value is set.

3.4.1 MFT

The Medium Field Transition Unit had to be redesigned to fit the BLAST specifications.
In redesigning the new MFT unit, the problem of the strong magnetic field created by the
BLAST toroid had to be addressed. In the region of the MFT the BLAST spectrometer
field is ~ 2.2 kG with a strong vertical gradient (solid curve in fig. 3-17).

The full TOSCA magnetic field calculation was used to study possible magnetic shielding
schemes. The design was adopted in which a thick metal shield reduces the external BLAST
magnetic field to ~1.3 kG and a set of water cooled copper coils capable of generating fields
inside of the MFT of up to 2 kG sets the correct static field (dashed curve in fig. 3-18).

However, due to a simulation flaw, the magnetic coils were heavily over designed. The
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Figure 3-17: TOSCA model of the magnitude of the BLAST magnetic field along the path
of the atomic beam. The atomic beam moves from right to left in this picture. The full
curve is the field without the MFT shielding and the dashed curve is the field after the MFT
shielding was put into the TOSCA model. The MFT unit is located between 70 and 90 cm

inY.
magnetic shield turned out to be more efficient in shielding the external BLAST field (down
to ~200 G) than expected. It is believed that the TOSCA simulations were performed with
a lower grade steel than the one used to build the magnetic shield. Hence, the coils are
operated at a significantly lower current than they were designed for. This, however, does
not preclude the efficient operation of all RF transitions in the MFT. The reduction of the
BLAST field by the magnetic shield of the MFT is localized only to the region of the MFT,
as can be seen in fig 3-17 which shows the magnetic field profile along the flight path of the

atomic beam predicted by TOSCA simulation.
After the BLAST field is canceled by the magnetic shield a small positive field gradient
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Figure 3-18: The TOSCA design of the MFT magnetic shield (blue) and magnetic coils
(red). A heavy set of coils was needed to handle a large current. Gradient coils (in red) are
seen on the walls of the magnetic shield. An RF coil fits inside.
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along the flight path of the atomic beam remains. This small residual gradient is useful for
some RF transitions in the MFT. At the same time the MFT unit is equipped with a set of
gradient coils, which can easily reverse the residual positive gradient.

The RF field is fed into the MFT through the RF coil, which is 12 cm long solenoid with
6 turns and 3 cm in diameter. The time-varying magnetic field in the solenoid is parallel to
the flight path of the atomic beam. The RF frequency is remotely controlled inside the RF
power supply. A pick-up coil is used to monitor the amplitude of the RF field in the MFT
(see fig 3-19).

2 N—Pick-up cail

B RF coil

Figure 3-19: MFT RF unit which fits inside of the MFT magnet in fig. 3-18. The atomic
beam is directed downward. Not shown is the magnetic field Hall probe which is located on
the inside of the magnetic shield.

The static magnetic field created by the MFT coils is controlled by the PID loop. The
magnetic field is set by the sequencer which controls flipping of the target polarization states.
The current in the MFT coils is remotely adjusted while the Hall probe inside of the MFT

unit measures the magnetic field. The rate of the current adjustment is proportional to the
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difference between the set and measured fields. This PID loop operates until the field inside
of the MFT is correctly established. The PID loop stays active to correct any drifts of the
MFT static field away from the set value. The drifts of the static field in the MFT were
observed to be large enough to completely move the RF transitions off resonance. With the

PID loop on, the magnetic field is kept constant within 1 G.

3.4.2 WFT

The WFT unit is located in the lower part of the BLAST magnet, closer to the target (see
fig 3-1). This means that the BLAST field in the WFT unit is significantly lower (~300
Gauss). A simple electromagnet is capable of producing a magnetic field large enough to
cancel the external BLAST field and the field due to the target holding magnet. Due to this
fact, the open geometry design of the WFT magnet was adopted from the NIKHEF design
(see fig. 3-21). The WF'T unit shares the static and gradient field coils with the SFT. The
same PID loop mechanism that is used in the MFT is also used with the WFT/SFT magnet,
resulting in a magnetic field stability of less than 1 Gauss for all transitions.

Similarly to the MFT, the RF field is fed into the RF coil, producing the time-varying
magnetic field along the flight path of the atom beam essential to the m-transition. The
pick-up coil is used to monitor the amplitude of the RF field in the WFT (see fig 3-20)

3.4.3 SFT

The high frequency RF field is used to induce SFT transitions in the deuterium atomic beam.
The RF source for the SFT unit has a fixed frequency of 420 MHz. The RF power used
to induce an SFT transition in deuterium is ~9 Watts. This level of power output requires
dynamic PID retuning capabilities as the RF conditions change inside of the cavity. The
changes in the RF conditions arise from the thermal heating of the copper cavity. To limit
the heating of the cavity the copper material of the cavity was silver-plated (see fig 3-20) .
The RF field in the SFT is created between two copper conductors inside of the RF
cavity with a large Q-value. The time-varying magnetic field is oriented along the static
field and perpendicular to the flight path of the deuterium atoms. The pick-up coil inside
of the SFT is used for both monitoring of the RF amplitude and the PID control of the RF
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Figure 3-20: The WFT and SFT RF units share the same magnet shown in fig. 3-21. The
top coil is the WFT RF coil and the box on the bottom is the silver plated SF'T RF cavity.
The atomic beam is directed from top to bottom.

tuning circuit.

3.5 The Scattering Chamber

The target scattering chamber was also received from NIKHEF. It consists of a holding
field magnet capable of generating longitudinal and transverse magnetic fields, a target cell
on a holder with a cooling system and thin aluminum windows. Since the target chamber
is internal to the South Hall Ring, it shares vacuum with the ring. Thus, strong vacuum

pumping is needed to ensure reliable beam operation. The aluminum windows have to be
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Figure 3-21: The TOSCA design of the SFT/WFT magnetic shield (blue) and magnetic
coils (red). The gradient coils (in red) are seen on the walls of the magnetic shield. The RF
cavities fit inside.

thin to reduce multiple scattering and energy loss of the particles exiting the target.

3.5.1 Gas in the Storage Cell

The storage cell is used to increase the luminosity over the pure polarized atomic beam
experiment while preserving the stored electron beam quality in the ring. The atomic beam
is injected through an inlet tube into a cylindrical cell of a small diameter, fig. 3-22. The
polarized atoms are confined by the cell around a stored electron beam thus increasing the

probability of a scattering reaction.
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Figure 3-22: Schematic of the atomic beam injected into the storage cell. The polarized
atomic beam is injected from the ABS into the inlet tube. The atoms diffuse in the cell until
they are pumped out. The electron beam passes through the cell from left to right. A small
hole at the bottom of the cell samples atoms injected into the cell. The density profile along
the target cell is approximately triangular.

The density profile along the target cell (z-profile) is approximately triangular [127].

@( +1/2) , 2<0
p(z) =

zg’ﬁ(l/z—z) , 2>0 (3-36)
Po = IO/Ctota

where Ij is the intensity of the atomic beam into the cell,  is the length of the cell and C,,; is

the total conductance of the cell. Since there are three openings in the cell’® through which

19Two ends and the inlet tube. Plus there is a small exit hole straight below the inlet tube that samples
atomic beam. However, its conductance is negligible.
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the gas is pumped out, Cy,; is written as

Ctot = C’cell + Cinlet,
a3 T,
Cot = 2Cp—i [zt :
cell T, 2\ M (3.37)
a3 T.
Ci . — C inlet ___ffl_l ,
et 0 lz’nlet M

where Cy = 3.81 x 10° ¢m3/s is the conductance constant, T,y is the cell temperature in
Kelvin and M is the atomic mass of the target gas in atomic mass units (amu). The factor
of 2 in the equation for C,ey; is due to the two open ends in the cell. The gas target thickness

per unit area is thus

1/2 4 l
oo = | Pz = o, (3.38)

where pg is defined in eqn. 3.36.

An increase in luminosity can be achieved by increasing the length of a cell, I. However,
due to the limited length of the target magnet, only data collected within 20 cm from the
center of the cell are useful in the analysis. Hence, [ in eqn. 3.38 must remain constant and
increasing the length of the cell would increase the luminosity purely due to the decrease in
the total conductance, Ciy;.

Three different cells were used during the commissioning and the production experiment.

Table 3.4 lists the conductances and densities for a given flow for these three cells!!.

Cell #1 Cell #2 Cell #3
Cell Inlet Cell Inlet Cell Inlet
Length, [ (mm) 400 125 600 125 600 150
Diameter, d (mm) 15 119 15 11.9 15 119
Temperature, T' (K) 90 290 90 290 90 90
Conductance, C' (x10% cm3/s) | 8.62 6.19 5.76 6.19 5.76 2.87
Crot (X103 cm®/s) 14.81 11.95 8.63
prot (X1073 atoms/cm?) 1.61, 2.511, 3.481,

Table 3.4: Three cells were used during this experiment. Listed here are cells’ geometries,
temperatures, conductances and density integrated over a whole length of the cell. I is the
ABS flow into the cell.

11Conductances are listed for the deuterium atoms. Conductances for hydrogen are larger by a factor of

V2.
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The low conductance value in cell #3 was achieved by increasing the cell length and
cooling the inlet tube. An increase in target thickness between cell #1 and #3 is a factor of
2.2. However, by factoring in a |z| < 20 cut, the increase in thickness is 66%. Close to 90 %

of all data used in this work were collected with cell #3.

_alemperature sensor

Figure 3-23: Storage cell on the frame. The temperature sensors are located on the cell and
on the frame upstream and downstream from the center. An additional temperature sensor
(not shown) is on the cryo cold head.

3.5.2 Polarized Atomic Gas in the Storage Cell
In a polarized target experiment the luminosity is not the only quantity that needs to be
optimized. The Figure of Merit (FOM) of a polarization experiment is defined as

FOM = Polarization’ x Luminosity, (3.39)

where Polarization could be vector, P,, or tensor, P,,, target polarization or in many cases a
product of the beam and target polarizations. Therefore, preservation of a high polarization

of atoms in the storage cell is of the highest priority.
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Since no significant measurements were made to study different processes of polarization
loss in the BLAST target, the following discussion of the depolarization mechanisms in the
BLAST target will be purely qualitative and mostly based on the experiences from other

internal target experiments.

Depolarization Due to Recombination on the Wall

The time an atom spends in the cell is related to the conductance through the diffusive flow

equations by
T2 euleett
= —cel e 4
Td 4 Ctot (3 0)

During the time 7,4 the atom collides with the cell walls on average (N) times. The number

of wall collisions experienced by an atom can be derived from the kinetic gas theory as [123]

_ Tdeentleen
(N) = 3C,., (v), (3.41)

where (v) = 4/ '—‘fll is the average thermal velocity of an atom. Using eqn. 3.37 one can see

that the average number of bounces on the cell wall is purely a function of the cell geometry!?

_ 3 linlet lcell
(N) = gdeetlcen (——d;_, + di’eu)' (3.42)

inlet

The rate of the volume recombination is negligible at the density inside the cell. The only
time when the atoms can recombine is when they find themselves on the cell surface. Hence,
the recombination rate is proportional to the number of the wall bounces. The recombination
rate is also proportional to the dwell time of an atom on the cell wall during each bounce.

This time can be expressed in terms of Arrhenius law [128] as

By
Tdwell = To€*B7, (3.43)

where FE, is the surface adsorption energy characteristic to the chemistry of the surface.

Typically, the dwell time is on the order of ~107!° sec, which is much less than the time the

12This equation assumes that temperature of the inlet tube is the same as the cell temperature, as in cell
#3 setup.
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atom spends between bounces. The recombination probability is parametrized as

£S5y kv
T -T

P(T) = kieT + kye™ T, (3.44)

where the first term is due to an increase of the atom’s dwell time at a lower temperature
(Arrhenius law). The second term is interpreted as being due to the activation barrier needed
to be overcome by an atom to recombine with chemically bound atoms on the surface of
the cell. Hence, the recombination probability increases at a very low temperature due to
the dwell time and it also increases at high temperature due to an effective lowering of the
activation barrier.

No quantitative studies of the recombination were done with the ABS at BLAST. The
operation of the ABS is optimized based on extensive experience from other polarized gas
storage cell experiments at HERMES [129, 130}, NIKHEF [131, 132] and Indiana [133]. It is
generally believed that in order to reduce the dwell time of an atom on the surface of the cell
(first term in equation 3.44), the cell should be coated with a layer of a Drifilm [134]. This
decreases the probability of binding an atom with the cell surface since the Drifilm layer is
chemically saturated and has no available bonds. Further increase of the cell surface binding
energy comes from accumulated water molecules (in the form of ice) on the cell surface which
originate from the dissociator (see section 3.1).

In order to reduce the second term in eqn. 3.44, the cell was cooled down to increase
the activation barrier for the interactions between the atoms on the surface. However, this
increases the dwell time of the atoms on the surface of the cell. Therefore, there is an
optimal temperature that will lower the recombination rate, typically around 100 K. The
cell temperature at BLAST is set to ~90 K.

It is generally believed that once the atoms recombine into molecules they become com-
pletely depolarized. However, the NIKHEF ABS collaboration [131] found some evidence
that the atoms do preserve their tensor polarization even after recombining into molecules.
Also, the Indiana collaboration [133] observed that at room temperature with a sufficient
magnetic holding field (~ 6 kG) nearly 40 % of the hydrogen atoms retain their vector po-
larization. The observation by the Indiana collaboration, however, is not applicable to the

BLAST target, since the magnetic holding field is not strong enough to reproduce this effect.
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Depolarization Due to Wall Collisions

A wall collision is a chemical interaction in which an attractive potential between the cell
surface and an atom makes that atom spend some time dwelling infinitesimally close to the
surface. As first suggested by Bouchiat and Brossel [135], an electron in the atom interacts
with any magnetic dipoles found on the cell surface and with the unpaired electrons through
both spin exchange and Pauli exclusion interactions. The depolarization then occurs through
induced transitions between different Zeeman and hyperfine levels. The probability of this
transition is characterized by its frequency. The relaxation rate of a single spin is given as
[134]

Tdwell
we g2b*Te X

—_— _—, 3.45
Tdwell + Tbounce 1+ Wg Tc2 ( )

2
Vg = =
3

where gg is the gyro-magnetic ratio, b is the local magnetic field on the cell surface, Thounce
is the time between each surface collision, w, is the Larmor frequency of the spin and 7. is
the correlation time of the modulation.

In the strong magnetic field regime the electron spin is decoupled from the nuclear spin.
Since the wall interactions affect mostly the electrons in the atom, the nuclear polarization
relaxation is weak, as observed at HERMES [136].

In the weak magnetic field regime the electron spin is coupled to the nuclear spin. What
is observed then is a (5 . 1‘5 relaxation. Therefore, the nuclear polarization relaxes just as
fast as the electron polarization. The time dependence of such relaxation was suggested by

Bouchiat and Brossel [135] to be of the following form
(§-1) = (8- Dyoe™™, (3.46)

where vy is defined in equation 3.45 as v, with w, becoming the frequency of a hyperfine
transition, wyy.

The BLAST target operates in the strong magnetic field regime when the polarized
deuterium gas is in the target whereas the polarized hydrogen target is operated in the weak

magnetic field regime.
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Spin Exchange Collisions

When the atoms collide with each other there is a finite probability for them to exchange

their spins. The rate of the spin exchange collisions per unit time per unit volume is [128]
Vse = N{0ge0), (3.47)

where n is the number of atoms per unit volume, o, is the cross section for a spin-exchange
collision and v is the velocity of an atom. Hence, there is a linear density dependence of the
relaxation rate due to the spin exchange collisions.

In a physical internal target there is no way to separate the spin relaxation due to the wall
collisions or spin exchange collisions. However, these processes are of different nature. Wall
depolarizations have a strong temperature dependence in very low or very high temperature
limits as well as a strong dependence on the quality of the cell and magnitude of the target
holding field and the cell geometry. At the same time, wall depolarization has a small density
dependence.

Spin exchange collisions, on the other hand, have an explicitly strong density dependence
and a weak temperature dependence. In a diffusive flow, the density is an inverse function
of the velocity of an atom. At the same time the spin diffusion rate due to spin exchange
has a linear velocity dependence!3. When this relaxation rate is integrated over the time an
atom spends in the cell, a 1/ VT dependence exists. Hence, the spin exchange collision rate
is relatively insensitive to the temperature of a cell.

In general, it is believed that the depolarization rate in the BLAST target is dominated
by the wall effects (recombination and cell wall depolarization). This is important for a 60
cm cell, since the atoms diffusing along this cell would at some point cross zero magnetic
field while still being in the cell. At this point they become completely depolarized. The
part of the cell where the holding field crosses zero is not used in the data analysis. However,
in the presence of a strong spin exchange rate the polarization along the whole cell would
be negatively impacted due to the depolarized atoms at the edge of the cell having a finite

probability to return back to the center and scatter off the polarized atoms. However, this

13An approximation is made here that (Tsev) = 0ge{v).
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has not been observed when the performance of a 60 cm cell was compared with that of a

40 cm cell.
Cell #1 | Cell #2 | Cell #3
Time in the cell, 74 (ms) 44.1 60 73.6
Number of wall bounces, (N) 1130 2323 2829
Time between wall bounces, Toounce (148) 39 25.8 26.0

Table 3.5: For each cell used in the experiment the time the atom spends in the cell, the
number of wall collisions and the time between wall collisions can be calculated from the
diffusion flow equations.

Tabulated in table 3.5 are the characteristic quantities!* of each cell that can be calculated
from the diffusive flow equations. Unfortunately, due to the lack of available run time, the
quantities specific to the quality of an individual cell, such as relaxation rates, were not
measured. Looking at table 3.5 it is noticed that by going from cell #1 to cell #3 the number
of wall bounces almost triples. One would thus expect an increase in the polarization loss in
the longer cell. This is especially true for the case of polarized hydrogen gas in the target,
since the magnetic holding field is too low to decouple the atomic and electric spins. However,
as it will be shown in the target’s performance discussion (section 3.6.2), cell #3 turned out
to produce the largest figure of merit. This points to the importance of the internal quality

of a cell when considering its performance.

3.5.3 Target Magnetic Holding Field

The magnetic holding field for the atoms in the target is provided by a strong electromagnet.
The requirement for the magnitude of the holding field is that it should be at least a few
times larger than the critical field, B.. The second requirement concerns the uniformity
of the magnetic field along the target length. The atoms diffusing through the cell must
constantly experience the uniform magnetic field in order to avoid depolarization.

The polarization direction of the target is defined by the direction of its holding field.
The target magnet provides field only in the laboratory x-z plane. However, purely in-
plane target polarization direction is sufficient for the experimental program at BLAST. All

experimental asymmetries measured at BLAST have a strong dependence on the polarization

14T hese quantities are calculated for the deuterium target.
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direction. Therefore, for a precision measurement the target field direction has to be well
known and stable over the duration of the experiment. For this purpose, a high resolution
two-dimensional Hall probe was installed in the scattering chamber to monitor the target
holding field angle.

The holding field magnet had not been altered since it was shipped from NIKHEF [137]
(see fig. 3-24). The magnet has an open geometry with the coils placed at the top and bottom

'—|~L|—
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Figure 3-24: Holding field magnet as it was built at NIKHEF [137]. The magnet has not
been modified for BLAST. Slight adjustments were made to the mounting of the storage cell.
Also, the positions of the temperature (TC) and field (HP) probes were changed to provide
more precise readings. The cell in the picture is 40 cm long. A 60 cm long cell was used in
the experiment. The diagram is taken from the Ph.D. thesis by Zilu Zhou [119)].

of the scattering chamber to allow space for the target windows on the sides. The water
cooled copper coils are wound along the electron beam direction to provide the transverse
field and perpendicular to the beam for the longitudinal field. The coils are designed so
that there is room for the inlet tube on the top and the exit tube on the bottom allowing a
sampling of the atomic beam for analysis with the Breit-Rabi Polarimeter (see section 3.5.4).
The coils are wound around two steel plates, one on top and one on the bottom. The steel
plates increase the strength of the holding field in the target region and at the same time
make the field uniform along the cell length. Both plates have a small hole in the center
for the inlet and outlet tubes. The discontinuity in the copper coils along with the holes in
the steel plates create a slight non-uniformity in the transverse magnetic field at the center
of the target (see fig. 3-25, right). Due to the influence of the transverse magnetic field on
the orbit of the stored electron beam, two correction magnets were installed upstream and

downstream of the target.
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Figure 3-25: On the left is the field vs. current measurement of longitudinal (circles) and
transverse (squares) holding field magnets. On the right is the data on longitudinal (circle)
and transverse (squares) magnetic fields with the derived target angle (triangle) along the
length of the target cell. The lines are from the TOSCA calculation.

Figure 3-25 shows a map of the target field measured before the target was installed into
the South Hall Ring. The B vs. I curve (left) shows that there is little saturation in the
transverse field magnet while the longitudinal field magnet starts to saturate around 400 A.
Also, the full field strength of the transverse magnet is close to one half of the longitudinal
magnet.

The longitudinal field is uniform around the center of the target and starts to vary more
strongly at |z| > 15 cm. The transverse field has a dip in the middle of the cell due to the
break in the magnet coils and a hole in the steel. This dip is even more pronounced when
the target polarization angle is calculated from the transverse and longitudinal fields. The

magnetic field of the target magnet is modeled with TOSCA. The calculations agree with

the data reasonably well.
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3.5.4 Breit-Rabi Polarimeter

Historically, the atomic beams entering the storage cell were analyzed with a Quadrupole
Mass Analyzer (QMA), similar to the one used in the dissociator studies described in section
3.1. However, the QMA does not function properly in the strong or even moderate ambient
magnetic field. It is also impractical to take the QMA-based analyzing device outside of the
BLAST field, since the distance from the target cell becomes so large that the signal-to-noise

ratio in the QMA precludes any precise measurements. Instead, the Breit-Rabi Polarimeter

lon Gauge

Figure 3-26: Breit-Rabi Polarimeter. To enhance the details the figure is not drawn to scale.
The atomic beam is directed from top to bottom.

(BRP) is instrumented underneath the storage cell in a form of dipole magnet with a strong
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and uniform gradient field. A small 2 mm aperture is placed at the entrance of the magnet to
limit the acceptance of the atomic beam to the spatial resolution of three compression tubes.
The aperture improves the signal-to-noise ratio significantly. The atomic beam is deflected
in the strong gradient field of the BRP in a similar fashion to the sextupole magnets (see
section 3.2). Three compression tubes (CT) equipped with ion vacuum gauges are installed
1.5 m below the magnet to sample the deflected beams. The central CT collects both the
atomic and molecular gas with the BRP magnet off. When the BRP magnet is on the left
and right CTs are sampling the deflected atomic beams. The atomic beam polarization can
be monitored during the experiment by using the signals in the left and right CTs. By
comparing the central CT signal with the ABS sextupoles in the atomic beam to the signal
with the sextupoles moved out of the atomic beam, the atomic fraction of the beam as it
leaves the nozzle, ay,p, is measured.

Since it only samples the central trajectories of the atomic beam, the BRP set-up is not
designed to measure the absolute polarization of the target with a great certainty. Also, the
BRP is not sensitive to the polarization of the atoms stored in the cell. The polarization of
the atoms in the cell can be different from the polarization of the atomic beam injected in
the cell due to the various depolarizing mechanisms in the cell described in section 3.5.2. The
absolute polarization of the target is measured by the electron scattering reaction. However,
together with electron scattering, the BRP provides a good monitor of the relative strength
of the atomic states in the ABS.

The BRP also provides a good method to tune the RF transition units with the BLAST
field on. A static field scan is performed for all RF units to determine the location of the

hyperfine transitions needed to polarize the atomic beam (see fig. 3-27 for example).
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Figure 3-27: MFT static field scan with the SFT2-6 transition turned on for the atomic

deuterium beam. Compression tube, CT1 (left) samples hyperfine states with mg = —1.
The CT2 (right) samples mg = +3 states. MFT 3-4, 2-4 and 1-4 transitions are clearly

discernible.

3.6 ABS Performance

3.6.1 Intensity

The ABS intensity is a strong function of the pumping speed along the path of the polarized

atoms. The atomic beam intensity is parametrized as [138]

HQ)=1I,- Q- e ¥/%, (3.48)

where Q is the flow into the dissociator, Iy is the intensity in the absence of rest gas scat-
tering and (o is the beam attenuation parameter which is a function of the rest gas density
in the ABS chambers. The intensity I; is a function of the ABS parameters, such as the de-
gree of dissociation, geometry of the nozzle-skimmer-collimator system, sextupole transition
probability, etc. In the case of the BLAST ABS the atomic beam attenuation is dominated
by the rest gas scattering and intra-beam scattering is negligible. When the ABS was origi-
nally assembled at BLAST the production of a high intensity atomic beam was significantly

limited by the vacuum pumping. The vacuum components were redesigned and assembled
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Figure 3-28: Attenuation of the Atomic Beam in the ABS as a function of the gas flow into
the dissociator. The measurements were performed on the two state hydrogen target in the
old ABS pumping configuration with the BLAST field on (triangles) and off (circles) and
the new pumping configuration (squares) with the BLAST field on.

into the final configuration. The intensity measurements were performed with the ABS in its
original low pumping speed and in the final high pumping speed configurations by injecting
hydrogen into the target in two state mode (see fig. 3-28). Also, the sextupole magnets
were not shielded from the BLAST magnetic field in the original configuration. In the final
set-up the sextupole magnet strength was improved and the magnets were shielded from
the BLAST field. The measurements were performed with the storage cell replaced by a
compression tube equipped with an ion vacuum gauge. The intensity was measured with the

RF transition units off!>. The results of these measurements are collected in table 3.6. The

Configuration | BLAST field | I (atoms/s/sccm) | Qo (scem) | Ijq, (atoms/s)
Oold on 4.65 x10'° 57.4 1.25 x10%°
Old off 1.03 x10% 57.4 2.5 x10'¢
New on 1.75 x10'7 73.3 5.4 x10'

Table 3.6: ABS intensity measurements for the hydrogen gas in two state injection mode.

15In this configuration all mg = +% states are injected into the target. Correspondingly, during the
experiment, when the RF transitions are used, the hydrogen and deuterium intensities would be down by
1/2 and 1/3, respectively.
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effect of the BLAST field on the focusing in the sextupole system can be seen by comparing
the intensity, Iy, with the BLAST spectrometer on and off. The difference between I in
the old and new configurations is due to the stronger sextupole magnets used in the new
configuration. A significant improvement in (o between the old and new ABS configura-
tions was achieved by improving the overall pumping speed. No significant difference was
observed between the intensity measured with the BLAST field on and off in the new ABS
configuration, due to the shielding of the sextupole magnets.

The atomic density in the storage cell was determined with the known elastic scatter-
ing reaction. The average target thickness achieved with cell #3 during the experiment
is estimated to be ~4.5 x10'® atoms/cm? for both hydrogen (1 state injection) and deu-
terium (2 states). This thickness corresponds to an atomic beam intensity of ~2.6 x10®
atoms/s. A precise determination of the target density is not possible, since it requires an
exact knowledge of the detector efficiencies. The average intensity for hydrogen is in line
with the expected value from I,,,,, in table 3.6, whereas for deuterium the average intensity
is somewhat lower, mainly due to the non-optimal ABS running conditions in the beginning

of the runl®.

3.6.2 Polarization

As mentioned before, the target polarization is measured by means of electron scattering
reactions. The precision of the vector polarization measurement from electron scattering is
limited by the precision of the electron beam polarization measurement using the Compton
polarimeter. The precision of the deuterium tensor polarization, P,,, measurement is limited
by the systematics of the T59 measurement.

The target polarization was monitored daily during the experiment (see figs. 3-29, 3-
30 and 3-31). With cell #3 placed in the target the vector and tensor polarizations have
remained stable over the course of the experiment. The overall polarizations quoted in this
section have been achieved with cell #3. The vector polarization in deuterium is about

10 % larger than the vector polarization of hydrogen. This is expected considering that the

16The hydrogen experiment followed a long deuterium run. The running conditions were being improved
in the course of the deuterium run. The optimal ABS running conditions were achieved by the time of the
hydrogen target running.
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Target Reaction P, P,
Hydrogen LH(é, e'p) 8% + 4% -
Deuterium | 2H (€, e'p)n and 2H(€,e' 2H) | 86 % +4 % | 68 % + 6 %

Table 3.7: Vector and tensor polarization results. The uncertainties in the vector polariza-
tion, P,, of the hydrogen and deuterium targets are mostly determined by the systematic
uncertainty of the Compton polarimeter measurement. The tensor polarization, P,,, uncer-
tainty is determined by the systematic uncertainties in the 75y measurement.

. #M |
N ) f ¢: %ﬂr ‘gﬁ

month/day

Figure 3-29: Vector polarization, P,, of the deuterium target measured each day of the
experiment with an electron scattered into the left and right sectors separately. The error
bars are purely statistical.

magnetic holding field of the target is better suited for the critical field of deuterium. In fact,
it is somewhat surprising to measure such high P, in hydrogen considering the inadequate
magnitude of the holding field. This kind of performance with the hydrogen target could
only be explained by a cell of a very high quality.

The deuterium tensor polarization, P,,, is about 15 % lower than the vector polarization.
This may be due to the electron depolarization in the cell having a greater effect on the
tensor polarization. An atom has to go from a state with m; = 1 to a state with m; = —1
in the same hyperfine multiplet to completely vector depolarize while it only has to go to
a state with m; = 0 for a complete tensor depolarization. However, this has not yet been
investigated in great detail.

Overall, the BLAST target performed exceptionally well. The figure-of-merit achieved
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Figure 3-30: Tensor polarization, P,,, of the deuterium target measured each week of the
experiment with left and right sectors combined. The error bars are purely statistical.
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Figure 3-31: Vector polarization, P,, of the hydrogen target measured each day of the
experiment with left and right sectors combined. The error bars are purely statistical.

with cell #3 is somewhat bigger than projected in the proposals. It is almost a factor of
three greater than the NIKHEF FOM with deuterium gas in the target and factor of ten
greater with the hydrogen gas.
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Chapter 4

The BLAST Experiment

4.1 The Stored Polarized Electron Beam in the South
Hall Ring

The South Hall Ring (SHR) is located at the Bates Linear Accelerator Center. Polarized
electrons extracted from the laser driven GaAs crystal are accelerated to an energy of up to
1 GeV. The acceleration is achieved by the 500 MeV linear accelerator. The 500 MeV beam
is recirculated into the linac to nearly double the energy to 1 GeV. The electron beam is

then injected into the South Hall Ring.

SHR Parameter Value
Energy Range 300-1000 MeV
Circumference 190.204 m
Revolution Frequency | 1.576  MHz
Bend Radius 9.144 m
Stored Current > 100 mA
Internal Duty Factor 99 %
Injection Frequency 1-1000 Hz
RF Frequency 2.856 GHz
Harmonic Number 1812

Table 4.1: SHR Design Parameters

The South Hall Ring operates either as a storage ring for the internal target experiment
(BLAST) or as a pulse stretcher ring to produce nearly CW beam for the external target

experiments. In a storage mode, currents in excess of 200 mA are achieved by means of
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Figure 4-1: South Hall Ring. The electron beam is circulating counter clockwise.

stacking beam pulses of a few mA at an injection rate of about 10 Hz [139].

A beam tune was found to accommodate the storage cell in the center of the west straight
section of the ring (see fig. 4-1). The small diameter of the storage cell requires a low (-
function of the beam in order to limit scattering from the cell walls and beam lifetime loss.
To further limit scattering of the beam from the target cell walls, a tungsten collimator with
the inner diameter slightly smaller than the diameter of the storage cell was placed at the
upstream end of the cell. The collimator also helps to protect the target cell Drifilm coating

from damage caused by the electron beam and the synchrotron radiation.

The current in the ring is measured with a zero-flux DC current transformer (LDCCT).

The LDCCT is designed for non-destructive measurements of electron beam currents. It has
a frequency response from DC to 100kHz, an absolute accuracy of 0.05%, and is routinely

calibrated. A 16 bit ADC digitizes the output and broadcasts the EPICS value in units
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of mA. This signal is digitally filtered to a final bandwidth of approximately 0.5 Hz. The
technology used is a saturatable core primary winding. A secondary winding is injected with
a known level sine signal. Pickup electronics on the primary winding measure the level of
the resultant second harmonic product. This level is related to the DC flux through the
primary core [140].

The electrons in the beam are longitudinally polarized. To prevent polarization loss due
to the electron spin precession around its momentum vector, a Siberian snake was installed
in the east straight section of the ring (see fig. 4-1). The snake flips the spin vector to the
opposite side of the momentum vector so that the g — 2 precession in the north arc of the
ring cancels the precession in the south arc.

The beam polarization is monitored by the Compton polarimeter [141]. The Compton
polarimeter exploits the spin asymmetry of the backscattered circularly polarized light. The
circularly polarized light is produced by a high intensity laser. The electron beam upstream
of the target scatters the circularly polarized laser light at a very small angle. The backscat-
tered light travels in a straight path and exits the beam pipe when the electron beam is
bent in a dipole magnet. A set of absorbers, sweep magnet and charged particle veto coun-
ters are designed to reduce charged particle and synchrotron light backgrounds. The energy

spectrum of the backscattered photons is measured by a CsI calorimeter (see fig. 4-2). The
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Figure 4-2: Flight path of the backscattered light.

beam polarization is measured during BLAST data taking, thus reducing helicity-dependent
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systematic uncertainties of the experiment. The average polarization during the experiment
was measured by the Compton polarimeter to be 65 = 4%. The uncertainty in this mea-

surement is dominated by the internal systematic uncertainties of the Compton polarimeter.
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Figure 4-3: Polarization of the stored electron beam measured each day over the 2004 BLAST
running period.

Overall, the polarized source, linac and the SHR have performed exceptionally well con-
sistently delivering high intensity and high polarization electron beam for the experiment
(see fig. 4-3). This is especially significant considering the challenges to the beam quality
from the internal target operating in the SHR. The combination of the collimator and stor-
age cell limits the conductance of the ring. The gas in the storage cell becomes ionized and
increases the emittance of the beam. The target magnetic holding field steers the electron

beam. All of these challenges were overcome by the operations group at Bates.

4.2 The BLAST Toroid Magnet

The Bates Large Acceptance Spectrometer Toroid magnet consists of eight copper conductor
coils arranged symmetrically around the beam line (see fig. 4-4). The toroidal magnetic
field generated by the coils provides curvature to the charged particle trajectories for precise
tracking and momentum determination. The coils are made of 1.5" square copper hollow

conductors, with 26 turns in each coil. The operating current of a coil is 6731 A, creating a
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Figure 4-4: BLAST Toroidal Magnet

maximum field of 3.8 kG.

The magnetic field produced by the BLAST magnet was carefully mapped in the target
and detector regions [142] to provide a three-dimensional field map used in the reconstruction
of charged particle tracks. The measurements were then compared to Biot-Savart calcula-
tions with ideal coil locations. Figure 4-5 shows a scan of the vertical component of the
magnetic field along the axis perpendicular to the beam axis (x-axis) at y = 0 and z = 0.
The measurements are in relatively good agreement with the Biot-Savart calculations. The
deviations of < 5% are mostly due to shifts of the coils from the ideal positions, and the

presénce of magnetic materials in the field.

4.3 The BLAST Detector

The BLAST detector is designed to accommodate the geometry of the BLAST toroidal spec-
trometer magnet. The drift chambers in the left and right sectors fit between two neighboring
spectrometer coils. The entrance window of the smallest drift chamber is positioned near
the aluminum windows of the target chamber. The Cerenkov detectors are located behind
the drift chambers. The Time-of-Flight (TOF) scintillators are located behind the Cerenkov
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Figure 4-5: Vertical component of the magnetic field along along the axis perpendicular to
the beam axis (x-axis) at y =0 and z = 0.

counters. The drift chambers, Cerenkov and TOF detectors are all mounted on a detector
subframe which can be moved out of the region of the BLAST coils for servicing, or to allow
work on the target. The neutron detectors are mounted on their own support frame a few
meters away from the target (see fig. 4-6).

All detector and drift chamber high voltage is supplied by remotely controlled high voltage
modules in a Lecroy 1458 HP mainframe. The high voltage is controlled using the EPICS
slow control system, the same system that operates the South Hall Ring. This allows for
a smooth integration of the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>