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ABSTRACT

Deterministic coding schemes are presented for the additive white
gaussian noise two user multiple access and broadcast channels with
noiseless feedback. The error probabilities for these schemes approach
zero at a rate which is doubly exponential in block length.

Outer bounds on the capacity region are also obtained for both
channels. The achievable region obtained for the multiple access chan-
nel is shown to coincide with the outer bound, yielding a solution of
the capacity region for this problem. While the achievable region for
the broadcast channel does not coincide with the outer bound, for all
cases except that in which one channel is a physically degraded version
of the other, the achievable region lies outside the set of rates
achievable in the absence of feedback. This is the first case in which
it has been demonstrated that feedback can enlarge the capacity region
of broadcast channels.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Much of the recent work in information theory has involved
multiple user channels. Such configurations seem natural in view of
modern communication environments, for example satellite or data net-
works. In addition the results obtained for multiple user channels are
sufficiently different in character from those in single-source
single-~-destination problems to justify interest in the area from a
purely theoretical standpoint. A reasonably complete survey
of known results in multiple user communication problems is contained
in [1].

In a multiple user problem the notion of the capacity of a
channel is extended to that of an admissible rate region, or capacity
region. In a most general setting, each of M data sources wishes to
communicate reliably with each of N data sinks over some given M-input
N-output channel. An admissible rate vector is a point {Rij} in RTN
(the positive orthant of real MN space) such that the ith transmitter
can communicate to the jth receiver with arbitrarily small probability
of error for all i,j at rates Rii' The closure of all such {Rij} is
the capacity region ofvthe channel. A further generalization sometimes
considered is to allow the messages to have some correlation. That is,
two or more transmitters might have one common message intended for a
receiver, which they can communicate cooperatively, in addition to a set

of independent messages. The dual situation is also possible; one trans-




_lo_
mitter might have a common message intended for all or some subset of
the receivers, in addition to private messages for each.

Multi-user problems are rarely considered in such generality.
Two canonical problems of both theoxetical and practical significance are
the two user broadcast channel (BC) in which one transmitter wishes
to communicate separate information to two distinct receivers, and the
two user multiple access channel (MAC) in which two transmitters wish
to communicate separate information to one receiver. Admissible rate
regions in these cases are subsets of the positive quadrant of Rz.

In this dissertation we extend these models in that we allow
feedback from receivers to transmitters. The results of the use of
feedback are interesting since, unlike the single-input single-output
channel, where it is known [32] that feedback does not increase the ca-
pacity of memoryless channels, it has been shown that in the case of
memoryless MAC's, feedback can increase the capacity region ([12],[13]).
On the other hand, it has been shown that for at least one broadcast model,
that in which one channel is a physically degraded version of the other,
feedback does not increase capacity ([8]1,[16]). Although El-Gamal in
[8] conjectures that this result holds true for more general broadcast
channels, it will be shown in this dissextation that this conjecture is
false.

The results presented in this dissertation will involve
deterministic coding schemes for additive white gaussian noise (AWGN)
multiple user channels with feedback, whose operation require tﬁat the

feedback be noiseless. The coding schemes are extensions of the feed-
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back coding scheme for single user AWGN channels developed by Schalkwijk
and Kailath [2] and Schalkwijk [3], which also required noiseless feed-
back. The noiseless assumption might be well justified for example, in
the case of satellite communication, where the satellite-to-ground link,
inherently power limited, is considerably more error prone than the
reverse link, over which ground stations can operate at much higher power.
The results obtained here are guite interesting in that the codes
are deterministic and reasonably simple to implement, and yield error
rates which approach zero with doubly exponential behavior in block length.
In addition the data rates achiewved both disprove the conjecture men-
tioned above for the BC, and also exceed previously known achievable
rates for the AWGN MAC. Indeed for this MAC we will show that the set
of achievable rates coincides with the capacity region.
Before proceeding we summarize two basic multi-user techniques
which will be useful in the sequel. The first is time-sharing. The
time sharing argument is that if two rate pairs (Ri,R;) and (Ri,Rz) are

achievable, any point of the form

QR

e

+ (l—u)Ri

!

2

(1.1.1)
)

2
+ (1—oc)R2

N

is achievable for all o between 0 and 1. The intermediate point is

. 1 .
achieved by employing a code which achieves (Ri,Rz) for a fraction o
of the time, and a code which achieves (Ri,Rg) for the remaining l-0.

One consequence of the time-sharing argument is that capacity regions
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are always convex. 2Another is that in cases for which the capacity

region is a polygon, the achievability of the extreme points suffices
to demonstrate the achievability of the entire capacity region. Another
property derivable from time sharing arguments is that if a point (R!,R!)

2
is achievable, then all points (Rl'RQ) which satisfy

(1.1.2)

are also achievable. Therefore, in general, achieving points on the
boundary (in R2) of the achievable region suffices to demonstrate the
achievability of the entire region.

The other technique which is useful is superposition. The
exact form of the superposition argument varies with the specific appli-
cation, but essentially it is as follows: when two independent codewords
are combined by some method appropfiate to the structure of the channel,
one codeword may be decoded by treating the other as noise (that is,
part of the randomization imparted by the channel). Once this code-
word is known (at least with high probability) its effect can be removed
by the decoder, and the other codeword detected as though the first were
known. See [4] for a discussion of the superposition argument in the
broadcast context.

In the remainder of this chapter we will discuss the two models
to be considered, the nature of previously known results, and the

Schalkwijk-Kailath coding scheme. The fundamental information theoretic
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quantities used below are as in Gallager [24]. Non-standard or ambi-

guous terminology will be defined when necessary.

1.2 Background

1.2.1 The Multiple Access Channel

The MAC was first discussed by Ahlswede [9] and Liao [10]. A
fairly complete discussion generalized to include the presence of
correlated sources was contributed by Slepian and Wolf [11].

Figure 1.1 shows a general discrete time MAC (with dashed lines
representing feedback links). The channel output variable at time k,

, is a random function of the kth input letters, X and

denoted by Y 1k

k

x2k, governed by a time-invariant memoryless conditional probability

law p(ylxlxz). The capacity region without feedback is given by

C=colU K(p)] (1.2.1)
peP

where co[ ] denotes closure of the convex hull, K(p) is given by

Kp) = {(R,R,): Ry < I(Xy:¥[X,)

R, < I(X,:¥|x) (1.2.2)

R + R, < I(X X2;Y)}

1l

and P is the set of probability assignments on (xl'x2) for which Xl and

x2 are statistically independent. In the sequel we will omit the cus-

tomary but redundant imposition of a lower bound of zero for rates.
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|
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m, . |
— Transmltter1 -1X1k |
|| Channel |Yk :

P(y | x1,x2)p_’ Receiver
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1.1 Multiple Access Channel with Two Senders.
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Aﬁalogous expressions hold for some continuous amplitude
channels with suitable constraints on the inputs. For the additive
x.) ~ N(x_ +x_,0? i
1 2) (x1 X,y ), where p( ) is

in this case a probability density function, resulting from the addition

white gaussian noise channel, p(ylx

of an independent gaussian noise variable with variance 0% to the sum

of x1 and x2. Under the constraint that E[Xi] 5-Pi for i =1,2 (1.2.1)

and (1.2.2) reduce to

1 P
C={(r/R): Ry <Z 1In(1 + —02)
P
1 2
R2 1-2- In(l + 0—2) (1.2.3)
P_+P
1 12
R1+R2121n(1+ 02) }

Figure 1.2 shows the capacity region for Pl/c2 = p_ /0% = 10. This
result was shown in [25] ‘and [19].
Superposition arguments can be used to justify the achieva-

bility of the entire region in Fig..l.2. Points A and B can be obtained by

allowing only one transmitter to communicate, at capacity. Point C is

obtained by allowing transmitter 1 to transmit with power P, using a code

1

which is reliably decodable in the presence of noise with wvariance P2+02.
Then if the code letters {xik} (k=1,...,N and i=1,2) are sequences of

gaussian random variables with variance Pi' reliable transmission of the

message sent by transmitter 1 is possible at rates up to
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Cip . C'=12 nats
\ . | C12= 152 naﬁs
ol N oe
n.
AN
N\
N
N\
B \
-  §
R C C12

1.2 Capac}ty Region of the AWGN MAC without Feedback for P1 = P2 =
10, o° = 1.
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R, = H(Y) - H(lel)

-1 2 1 2
=3 1n 2ﬂe(Pl+P2+0 ) > in 2ﬂe(P2+0 )
P
1
=31n (1+ I (1.2.4)
22+o2

Once message 1 is decoded,{xlk}?can be subtracted from the received

data. Then message 2 may be reliably decoded at rates up to

R, = H(Y[Xl) - H(Y[Xlxz)
= 2 In 2me(p +0?) - % 1n 2mec? (1.2.5)

P
= %-ln (1+ —l-)

g?

This argument may be reversed to obtain point D. The remainder of the
capacity region may be achieved by the use of time-sharing.

The addition of feedback, as mentioned above, can enlarge the
capacity region. This result was first shown using an ad hoc scheme
for the noiseless binary erasure MAC by Gaarder and Wolf [12]. This
channel has input alphabets Xl = X2 = {0,1}, output alphabet Y = {0,1,e},
and a channel probability function given by p(OIOO) = p(l[ll) = p(eIOl) =
‘p(ello) = 1. That is, when the inputs agree, the output equals their
common value, and when they disagree an erasure occurs. For this

channel, the region specified by (1.2.2) is

(1.2.6)

CFUR CCERERE Tt c MR Sy e e s o e e A
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R, +R, < 1.5 bits/transmission (1L.2.6)

Roughly, the approach of [12] is as follows: let the transmittexs
independently choose sequences of input letters of length Nl’ where each
letter is equiprobably 0 or 1. They then send these bits over the chan-
nel. On the average Nl/2 transmissions will result in erasures. For
each erasure, specifying either transmitter 1l's or transmitter 2's bit
will resolve the receiver's uncertainty. By the use of feedback both
transmitters know which bits were erased, and what transmitter 1l's in-
tended bit was for each transmission (transmitter 1 does since he sent
it and transmitter 2 does since it disagreed with his own). The trans-
mitters must now resolve N1/2 bits of uncertainty in N2 transmissions.
With the transmitters sending a common message, the channel is noiseless

with ternary output and quaternary input. It may therefore be used

at rates up to

H(Y) = 10923 bits/transmission (1L.2.7)

so that Nl bits can be conveyed in

1

N
N_. = ?%- transmissions. (1L.2.8)

2 10923

Therefore the rate pair achieved is given by

R1 =R = — = .76 bits/transmission (1.2.9)
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which lies outside the region given by (1.2.6).
Since the appearance of [12], Cover and Leung [13] have found
- an achievable region for discrete memoryless MAC's with feedback given

by

A= colU K(p)] (1.2.10)
peP

where K(p) is given by

Kp) = {(R/Ry): Ry < T(Xy;Y|X,0)

R, < I(X,;¥|x,0) (1.2.11)

Rj+R, < I(XX,;¥V)}

and P is the set of joint probability assignments on (U,X ,X2) for which

1

plux;x,y) = p(wp(x, [wp(x,[wpy|xx,) (1.2.12)

The region given by (1.2.7) is at least as large as that given by (1.2.2)
since we can always choose U to be a degenerate random variable which
takes on only one value with probability one, in which ‘case (1.2.7)
reduces to (1.2.2).

When applied to the noiseless binary erasure MAC, this region

can be shown to include the point (Rl'R2) given by

R1 = R.2 = ,7911 bits/transmission (1.2.13)
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An outer bound based on total cooperation between the transmitters
can be used to show that the maximum achievable R for which Rl = R2 = R

is given by

R = .7925 bits/transmission (1.2.14)

The result obtained by Cover and Leung is thus very close to optimum for
this channel.

In [13], Cover and Leung found an achievable region for the
AWGN MAC with feeedback analogous to that specified by (1.2.7), given

by the set of all (Rl'RZ) such that

) nats/transmission (1.2.15)

P +P,+2 ‘/alazplpz\
7

02

where Oioniil and &'i = 1-a, for i = 1,2. In figure 1.3 the region de-
scribed by (1.2.15) is superimposed on the non-feedback capacity region
of figure 1.2. The region given by (1.2.15) is formally identical to
that given by (1.2.7) when all the random variables have density func-
tions, power constraints are imposed on the inputs, and a "test encoder"
of the form shown in figure 1.4 is employed. This encoder yields the
mutual informations appearing in (1.2.15), and the joint probability

density function of (u,X ,¥) is of the form given in (1.2.12).

1'%
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C 2 C*'=12 nats
1 =162 nats
\ -
. Gz
AN
\
Cﬁ A \C
Boundary of Achievable Region of [13].

Ry

1.3 Achievable Region of Cover and Leung for the AWGN MAC with Feedback

— 3 2 3
for Pl = P2 10, o 1.
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1.4 Test Encoder for Feedback Coding Scheme of Cover and Leung. -
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We now present a heuristic discussion of the coding approach
of [13] and of the encoder of figurel.4. The essence of the coding approach
is that during a code block transmitter 1 (Tl) uses a fraction ul of his

power to transmit a "new" message.. T, independently chooses a new mes-

sage, transmitted by a fraction o, of his power. Each uses the remaining

2

@, = 1-0. of his power ¥o transmit information known to both transmitters,
i e

which is derived from past data. This information is represented by random

variable U in fig.-1.4. Using the feedback link, T. can both perceive what

2

the receiver has, and decode the new code word sent by T Since U is known

1°
by both transmitters and T

5 knows his own transmissions, the rate at which

he can reliably decode T.'s new message is simply the mutual information

1

between T.'s input and the receiver's output (which is also T

1 's output),

2

given U and X The same reasoning applies with T, and T, exchanged.

2° 1 2

Requiring then that each transmitter decode the other's new message, we have

that

) (1.2.16)

The receiver, however, is rather more confused at this point, as
it knows neither U nor either of the new code words a priori. We now define
U to be an encoded signal intended to resolve the receiver's uncertainty
about the "new" messages of the previous block. Since, by the reasoning
of the previous paragraph, each transmitter at the end of a block knows both
codewords and the state of the receiver's knowledge, the transmitters can
cooperate to coherently resolve the receiver'sresidual uncertainty about

both previous messages. Random variable U denotes this encoded data.
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Now this joint codeword is designed to be feliably decodable in the
presence of channel noise, and while treating the encoded new data as
noise. Therefore U can be decoded first by the receiver and its effect
removed, and then the receiver can resolve as much uncertainty about the
new messages as possible from the remaining signal.

We can now obtain the last part of equation (1.2.15) (the first part
is just (1.2.16)). We note that an upper bound on the amount of-uncertainty
about a message resolved by a single use of a gaussian channel is given by
1 P

T
= ln(agé, where P
e

> is the total received power , and Gé is the power of

T
that portion of the received signal which is independent of the message.
This is the standard capacity result for gaussian noise channels, with the
change that "unwanted" transmitted data are combined with channel noise.

We now consider a block of data and the two new messages associated with it.
Since that portion of the received signal which corrects old data is

decoded and removed, the net signal received is just channel noise plus

and o.P Since these variables

the twe new codewords, with powers alPl oFs -

are independent of each other, the total energy received is just

- 2
PT = ozlpl + 01.2P2 + O (L.2.17)

of which o? is independent of the data. Therefore the uncertainty H1

removed at the receiver in this stage is bounded by

QP t0P,

0..2

H f_%-ln(1+

1 ) (1.2.;8;
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Further uncertainty is resolved by the U transmissions in the next block.
Since the U data is decoded while treating the superimposed codewords

as noise the effective noise for this code is given by

= g%+ q,P., + q.P

2

The effective total power is just the total received power given by

2
= + + —_— = 2
PT o, P, + aP, (¢a1¢P1+¢a2/Fé) + 0 (1.2.20a)
— 2
Pl + P2 + 2/u1a2/§1P2 + 0 (1.2.20b)

where the first two terms in (l.2.20a) are due to new data, the third term
is due to coherent transmission of U, and the fourth term is additive noise.

The amount of uncertainty resolved, H_ , is then bounded by the quantity

2

- 2
+ = 5 o
1 Pn 1 Pl P2+2/ala2/P1P2+
H, < = 1lIn—5==1n (1.2.21)
222 oz 2 0% B 4 P
%5175,

The total entropy about the original two messages which can be resolved at

the receiver, which bounds the total data rate is then

) (1.2.22)

Pl+P2+&/alu2PlP2

2

R, + R. < H,  + H_< + In(1l+
> s

1 2 -1 2
which is the last part of(1.2.15)
A rigorous proof of the achievability of this region, based on

typical sequence arguments, is provided in [13].
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An outer bound to the capacity region for MAC's with feedback
can be obtained by generalizing equation (1.2.2) to encompass all joint
distributions on Xl,x2 instead of just statistically independent distrib-
utions. Statistical dependence between channel letters is made possible
in the feedback case since the transmitters have the common variable rep-
resented by the feedback data available, on which to base their new trans-
mitted letters. The authors of [13] exploited this possibility implicit-
1y by having the transmitters partially cooperate in transmitting their
joint message. The region obtained, while larger than the non-feedback
region, is strictly smaller than the outer bound.

In general, it is not clear how the transmitters can cooperate
to achieve the outer bound, or whether it is possible in all cases. In

Chapter 2 below, we present a method for the AWGN case which actually

achieves the outer bound.

1.2.2 The Broadcast Channel

The broadcast channel was introduced by Cover [4]. Prior to
the appearance of [4] communication with more than one receiver was
generally considered in the context of time or frequency division multi-
plexing, in which the transmitter allots part of its total power to each
of any number of receivers by dividing its power, in either time or fre-
‘quency, between signals intended for each receiver. The nature of the
results attainable using this approach is discussed at length in [5] where
it is shown éhat the superposition approach introduced in (4] allows

simultaneous communication at rates outside the region allowed by various
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sharing strategies. An exception to the use of time sharing in the earlier
literature is for the case of two users communicating with each other over
a common channel, discussed in a quite general setting by Shannon [6].

Figure 1.5a) shows the general two user broadcast channel, with
dashed lines representing feedback links. Figure 1.5b) is the special
case of physically degraded channels. In this dissertation we treat the
problem where the channels are discrete-time additive white gaussian
noise channels, with an average power constraint at the transmitter.

In order to ©obtain a simple characterization of the capacity
region of a broadcast channel, it has so far (except for special cases,
e.g. [27]) been necessary to be able to compare the channels with out-
puts ¥ and Z in some way. Identifying a channel with its output, we
say that Y and Z satisfy one of the following relations if the correspond-
ing probabilistic or information theoretic relationship is satisfied.

In all cases below, U and X are random variables for which
plu,x,y,z) = p(U)p(x[u)p(y,zlx) (1.2.23)
i) 2 is a physically degraded version of Y if p(y,z‘x) = p(zly)p(y[x).
That is, Z is independent of X given Y.
ii)Z is a degraded version of Y if p(zlx) = E:p(2|y)p(le)-
Yy

iii) Z is more noisy than Y if I(U;2) < I(U;Y).

iv) 2 is less capable than Y if I(X;2) < I(X;¥).
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b) Physically Degraded Case
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Note that ii) is satisfied if and only if there exists a channel of
type i) with the same marginal conditional probabilities p(ylx) and
p(zlx).

Each successive ordering can be shown to be strictly weaker
than the one preceeding it [1].

The capacity region for each of these orderings has been found
in the absence of feedback. For orderings i) and ii) (forward part by
Bergmans [28] converse by Gallager [30]) and iii) (Korner and Marton [18])
the capacity region is characterized by the set of all rate triples
(RO'Rl’R2) where R, corresponds to a common message intended for both

0

receivers, R1 is intended for Y and R2 is intended for Z, such that

< .
Ry + R, < I(U;2)

Ry < I(x;Y[0)

(1.2.24)

where p(u,x,y,z) satisfies (1.2.23).
Recently El-Gamal [14] has found the capacity region for

ordering iv), given by the set of triples such that

R, + R, + R, < I(X;Y)

o "1 "2
Ry + R, + R, < I(X;¥|0) + 1(U;2) (1.2.25)
Ry *+ R, < I(U;2)

The above characterizations exploit the fact that Y is better

than Z in some sense and that receiver 1 can use superposition by decoding
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the message intended for receiver 2, and then decoding his own message.
This approach also leads to the definition of "degraded" message sets
(Korner and Marton [33]), for which receiver 2's message is required to
be decodable by receiver 1, in which case the capacity region (for a

general BC) is given by

< I(x;Y|U)
s (1.2.26)

Ry < min(I(U;Y),I(U;2))

Of course under this restriction R.2 might as well be zero.

The capacity region for the AWGN BC has also been found. Cover

[4] found an achievable region given by the set of all rates such that

R1 < %.1n (1 + 920
- 2
Gi nats/transmission (1.2.27)
R < =1n (1+ —2%,
2 —2 aP+0

where P is the power constraint, di is the additive noise wvariance at
receiver i (nggi), 0 is between 0 and 1, and G4 = 1 - 0. Bergmans [7]
proved the converse. Of course, by extending the notion of degradedness
appropriately, using integrals instead of matrix product, it is true
that all AWGN BC's are degraded. As in the case of the MAC, the capacity
region for the AWGN BC is formally identical to that for discrete BC's.
The only previously known feedback result for BC's is El-Gamal's
that feedback does not increase the capacity of physically degraded BC's

(discrete memoryless [8] and AWGN [16]). In Chapter . 3 we present a
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constructive coding scheme for AWGN BC's which enlarges the achievable
region for cases where the dégradedness is non-physical. This is the
first demonstration of the fact that feedback can enlarge the capacity
region of broadcast channels. We will also obtain outer bounds on the
capacity region with feedback, both for discrete memoryless and AWGN
BC's. 1In addition, in Appendix D, we give a new outer bound on the
capacity region of general discrete memoryless BC's without feedback
which is tighter than previously known bounds.

Figure 1.6 is an example of the results of Chapter 3, for
P/Oi = 2P/G; = 10, and channel outputs Y and Z are independent of each
other given the input. Figure 1.6 includes the time sharing line, the
superposition curve (equation (1.2.27)), and the achievable region and

outer bound of Chapter 3.

1.2.3 The coding scheme of Schalkwijk and Kailath

Schalkwijk and Kailath in [2] &nd Schalkwijk in [3] presented
coding schemes for the AWGN channel with power-limited transmission and
noiseless feedback. Actually two schemes were given; the one in [2] is
suitable for infinite bandwidth channels, and the one in [3] for band-
limited channels. Both schemes are actually presented in a discrete-
time framework, but their bandwidth requirements can be obtained from
sampling theorem considerations. The scheme discussed here is that of [3],
since in the infinite bandwidth case, simultaneous communication at capacity
can be achieved for the MAC, and time-sharing generates the entire capacity

region for the broadcast channel.
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C1 =1.2nats

czz 90 nats

Outer Bound with Feedback

Capacity Region without Feedback
Achievable Region with Feedback

Time-sharing

1.6 Capacity Region without Feedback and Achievable Region and Outer

Bound with Feedback for P = 10, ci = 1 and o; =2,
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We consider the problem of communicating a random variable 6
using average-power limited signals over a discrete-time AWGN channel
with instantaneous noiseless feedback. This communication model is sketched
in Fig. 1.7. Although the noiseless assumption is necessary, feedback with
delay can be incorporated with slight modifications. We will communicate
N-1

® wvia a block of N channel transmissions {tk} . Assume that after the

kth transmission the receiver has an estimate of 6 given by

Gk =0 + Ek (1,2.28)
where Ek is a zero mean gaussian r.v. with variance ak. Assume further

that the transmitter knows Ek. Then, at the k+1St time, the transmitter

sends

=

Tkl o (1.2.29)

Note that since Eak+1 = P, the power constraint is satisfied.

The receiver's k+lSt channel output is t corrupted by an

k+1

independent additive zero mean gaussian r.v. with variance o?, which we

call Zk+l' Then denoting the received value by rk+1
Teal = Srel T %l (1.2.30)
We have assumed that Tl is instantaneously available to the

transmitter, so that both transmitter and receiver can form the receiver's
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1.7 Single-Source Single-Destination Communication with Additive Noise
and Feedback.
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new estimate, given by

5 _4 . etk
k+1 k ';5 k+1
k+1
= + e
O+ & 1 (1.2.3)

§k+1 is readily shown to be the maximum likelihood estimate of 6 given
) 28 31 i i
Gk and LSRR From (l1.2.49 and (1.2.31l) we see that Ek+l is a linear

combination of Ek and r , and is available to the transmitter for the

k+1

next transmission.

To compute the variance of €k+1' write
a =g2 = (E - fEiZ_& )2
k+l ~ “k+l k —  Tk+l
b o
k+1
2
Tyr1bk
= - XX (1.2.32)
kT T2
k+1
Now
- 33
T .‘;Ek E * Zpy (1.2.33)
e _V’azk a = /F/a (1.2.34)
and
— _ T2 —z
K+l - Trel T Fan (1.235)
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Therefore
P
. S
k+1 %%k~ pro? _ %k peg?

2 k+1
( -m%oz) : (1.2.36)

%0
To compute the performance of this scheme, assume that 0 can

A1
take on any one of |8 equally spaced values in the interval [-5/51. Then

the spacing between adjacent values of O is given by

1

A= T
[lell- 1

(1.2.37)

After N iteratdons (a code block), the receiver's estimate is given by

O-170 * & -1 (1.2.38)

and the message is decoded as the closest allowable value of 6.

An error is made if £ is sufficiently large that an incor-

N-1

rect value of 0 is closer to the estimate than the true one. This can

occur only if

IEN—ll >Jé‘ (1.2.39)
so that the probability of error, Pe' is bounded by
A
< 4 > — ‘ : 40
P, _pr[lgN_ll > ] (1.2.40)

The inequality comes from the fact that when the true value of 0 is at an

A

end point, noise which drives 6 out of [- %7%ﬂ does not cause an error.
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Since EN-l is a sim of jointly gaussian r.v.'s, it is gaussian. Therefore

P, < 29( (1.2.41)
2\,
where Q(x) is the tail of the gaussian pdf, equal to /%— fe-y /2dy
X
Substituting (1.2.36) into (1.2.41) yields
N-1
1 (P+02)—
P =2 2 (1.2.42)
e = 225EI-D A, )

Since N total iterations are used, if we define R to be the

transmission rate in nats/channel use, then

loll = "’ (1.2.43)

In addition the capacity of the channel is given by the well-

known result

C = %—ln( Bi% ) nats/ transmission (1.2.44)

Substituting (1.2.43) in (1.2.42) we obtain

1 N(C~-R)
P <29( - ) (1.2.45)
e 21/;0 (—z—P;,G )1/2

(We have replaced eNR-l by eNR which decreases the argument. Since Q(*)

is a monotonic decreasing function, this upper bounds Pé.)

For the initial transmission, 6 is scaled up to the average

transmitted power and sent without coding. That is,
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P
to "¢/ °© (1.2.46)
—
8
Therefore
r = £ 8+ z 1.2.47
0 61 0 ( ° ° )
and

D>
i

O e +".6P_ zo = 8 + Eo (1=2948)

L

2
D o (1.2.49)

a. = E(gg) =

Substituting in (1.2.45) we obtain

P <20(—im g—g N (CR) (1.2.50)

NG

For any R < C the argument can be made arbitrarily large by

increasing N. Thus since Q(xX) decreases as x increases, the error prob-

2

ability can be made arbitrarily small. Furthermore, since Q(x) ~ e X /2,
and Bzﬂf; for N large, then

- 3 _P _2N(C-R) 51

Pe_ exp( - = ——e ) (1.2.5L)

2 P+02

exhibiting a doubly exponential decrease with block length. This is in
contrast with non-feedback codes, whose performance is typically singly

exponential in block length.
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An.additional point worth mentioning is that this scheme works
for arbitrary zero mean finite variance noise distributions, as long as
the noise is uncorrelated in time, and independent of the data. The
equations giving the noise variances are valid regardless of the gaussian
assumption, although the expressions for error probability are no longer
necessarily true. In [2] it is shown that for the infinite bandwidth
channel, the scheme analogous to the one used here does yield an asymptotically
gaussian noise term, hence doubly exponential behavior. No such claim is
made for the finite bandwidth scheme of [3] (i.e. the one discussed here).

Singly exponential decay can be demonstrated as follows.

p, = prijg, ,[> (1.2.52)

By Chebyshev's inequality

A 4
rijeg >3 <3

2
2 g N-1
4 |l 30(3162)

e

ne

P+02e-2N(C-R)

1.2.5
3P ( 3)

Therefore, as long as R <C, pé can ke made arbitrarily small.
Of course, the capacity for non-gaussian channels is in general larger than
that for gaussian channels with the same variance, so the set of rates

achieved by this scheme is sub-optimum for all but gaussian channels.
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CHAPTER 2

AWGN MAC WITH FEEDBACK

In this chapter the capacity region of the additive white gaussian
noise MAC with feedback (fig. 2.1) is determined. The forward part of the
result will be proved constructively, i.e. a deterministic coding scheme
(similar to the one in Section 1.2.3) will be presented in Section 2.1,
yielding an achievable region. In Section 2.2 an outer bound to the capa-
city region is found by means of a weak converse. In Section 2.3 the two
regions are shown to be equal.

The result obtained is the following.

Theorem 2.1. Define

P
C= U {(RR): R <3 In(l + =(1-p?)
0<p<l o?
2
1 2 2
R, < = In(l + ==(1-p?)) (2.1.1)
2 —2 o2
1 P, + P, + 2,/131P2[p|
R. + R_ < = 1n(1 + ) }
2 — 2 02

C is the capacity region of the AWGN MAC with feedback, where transmitter

1 and 2's signals {xik} (k =1,...,N, i = 1,2) satisfy

2
) x5 < NP (2.1.2a)
oy 1k 1
3 2
) x5, < NP (2.1.2b)
=72
oy 2k

and the additive noise has variance o2
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2.1 AWGN MAC with Feedback.



-42-

2.1 Achievable Region

In Section 2.1.1 we demonstrate the achievability of a certain
rate point denoted (RI,R;). In 2.1.2, superposition arguments are used to

extend the result of 2.1.1 to a non-empty subset of R2.

2.1.1 The Point (RI,RE)

Each of the transmitters (Ti, i=1,2) has a message ei to com-
municate to the receiver using a code of block length N. At each time k
the transmitters send signals over the forward link. These signals (real
variables) are added, corrupted by additive gaussian noise with zero mean
and variance g%, and received. The receiver instantaneously transmits his
received variable back to both transmitters, so that the kth received vari-
able yk may be used in the encoding of the k+lSt transmitted data xl,k+l
and x2,k+l'

We assume that after k-1 channel uses the receiver has estimates

of 91 and 62 of the form

k-1
E)1 - el * Ex—l
(2.1.3)
k-1
O, =0, v

where Ei—l and 1N are jointly distributed gaussian random variables, with

k-1

means zero, variances ak and bk respectively, and correlation coeffi-

1 -1

cient pk 1° Further assume that the estimates are formed from linear
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Combinations of previously received data. Since both transmitters know all
. . k-1 .
of the previous received data, then Ti knows ei . Since he also knows

ei, then Tl knows E% 1 and T2 knows n Each also knows the covariance

k-1~
parameters, since these are statistical averages.
th . . . .
At the k step each transmitter would like to amplify his cor-
ion t i.e. £
rection term (i.e %(-l or T

and nk_ for T2) and transmit it to the

1 1

receiver as in the scheme of Section 1.2.3. In general these terms may be
negatively correlated, so that when added, they can destructively inter-
fere. However, since all parties involved know pk—l' one transmitter can
alter the sign of his transmission, so that the transmitted signals are
positively correlated and thus constructively interfere. The receiver

can then use its knowledge of pk_ to compensate for this sign change.

1

We require then that

%-1

1k
(2.1.4)
*k son(Py_1) Mk-1
. t .
The received data at the k step is then
r, =X + X + z (2.1.5)

where Zy is the new AWGN term with variance 02, independent of all previous

data.
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Based on the received data and his previous estimates, the re-

ceiver forms new estimates of 91 and 82 given by

~k
b, =8 &
A by
= oL . k -1 r (2.1.6)
1 - k .
r
co 4k Tk kel
1 k-1 =z k
k
Similarly,
A r n
k k k-1
= + . o
62 62 N1 r (2.1.7)
Tx

It is easily verified that

1

2
z _ J/P_P
£, =P + P, +2/p 2|pk_l| + 0

(2.1.8)

rehop =3, (R + e, le 1 )

rknk-l

By defining a = ?k' and b_=

-z
k. x

ka_l sgn(pk_l) (/FZ + /lih)k_l[ )

and substituting, we obtain
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2 )
0°+P, (1-pp ;)

2
o] +P1+P2+2¢P1P2|pk_l|

2, a2
o Pl(l pk-l)

2
o +Pl+p2+2¢?lpzlpk_l|

Similarly, define cp = Eknk' and we obtain

k k-1 -z
Tk
°k
By substituting (2.1.8), noting that pk = —=— , and substituting
fayby,

and (2.1.9b) into (2.1.9c) we obtain

2 _ S (1 o2
) o, 1 sgn(pk_l)/Ple(l pk_l)

p,.. =
k 2 _A2 2 _A2
/o +Pl(l pk_l) Vo +P2(l pk-l)

(2.1.9a)

(2.1.9b)

(2.1.9¢)

(2.1.9a)

(2.1.10)

Let us assume that pk—l = p, where p € (0,1) and p solves the quartic

equation

= g2 (c%+P_+ /P P
P(p) o° (o +Pl P2+2 Pl 5 )

- (oz+pl (1-p2%)) (02+P2 (1-p2))

(2.1.11)

We will show in Section 2.3 that this equation also specifies the joint

distribution of XIXi that achieves a point on the boundary of the
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outer bound to the capacity region of the AWGN MAC with feedback, and
use this fact to determine the capacity region. 1In Appendix A it is
shown that P(p) has exactly one root in (0,1l). By squaring (2.1.10)

and subtracting from 1, we obtain

2 2
o2 (o2+p +P_+2VP_P_|po. |}
1- 02 = (1 - o2 ) : 12 2 1 2 'k 12 (2.1.12)
0%+, (L-pi ;) (C +P, (1-0p 1))

But the rational term equals one by equation (2.1.11). Hence

2

= 02 . - e A
pk = pk_l,.and kal ka—ll' In (2.1.10) note that if 0<pk_1<l, then

pk is strictly less than pk-l' and if -l<pk_l<0, then pk is strictly
greater than Pre-1" Therefore if [pk-ll € (0,1), then

P = Py (2.1.13)

The rational term in the iterated version of (2.1.12) is now 1, so that
(2.1.13) holds inductively.
We now describe an initialization procedure which can achieve

any desired initial correlation (#+1). At the -1St epoch, let T. trans-

1l
mit
‘/P
X, = w2 V1 8, (2.1.14a)
’ o2+l ‘/55
1
where 0 is a number to be determined. Let T2 transmit
‘/P
» S22 V2 (2.1.14b)

2,71 %.TZEVI’G—E 2

2
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It is true, then, that

s 20.2

xl -1 = C—17+—l Pl (2.1.15a)
14

2 (2.1.15b)

v 2
= P
x2,-1 o+l

1'

t
At the O h epoch send

/oo
. =2 =1 6, (2.1.16a)
1,0 a +1‘!ez

1

and

vP
w2 2 ) (2.1.16b)

2,0 GY:I ’EE 2
2

It is easily verified that

- -
X + x = 2P (2.1.17
1,-1 " "1,0 1 ( a)
and
-z -7z
+ = el
x2,_1 x2'O 2P2 (2.1.17b)

so that the average power constraints are satisfied.

st t .
Now the -1 and O h received data are




[ v Ve,
r, = o el + — 82 + z_y (2.1.18a)
Va2+l 52 52
~ 1 2
-
V2 ‘/P_l 3] Ve, ) ( )
r = — + 0 — + 2z 2.1.18b
0 Vo2 +1 - ! = 2 0
3] )
- 1 2
The receiver can weight and combine r 4 and r0 to form the initial estimates
-1
A ( = —) V 1
63 = (r_, = =xr,)
1 -1 a 0
Ve
oz z —
=6, + —=—0 Valu Yol (2.1.19a)
(@2-1)v/2p
1
and
A a2z - 2 —_—
83 = 0, + —90 L ATay ez (2.1.19b)
(a2-1)/2p2
It can easily be shown that
2 2 2 —
a, 9—*1)—20- ei (2.1.20a)
(@2-1)“2p
1
2 2 2 —
b, = “"—*1’—2"— ej (2.1.20b)
(a?-1)“2p
2
and
2,.2 = 5
gy = —2 ) y6? o2 (2.1.20c)
(a2-1)“vP.P

12
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Therefore,

DO=' = (2.1.21)

1
a =J—7 -1 oL (2.1.22)
Po
Returning to our problem, we choose 0 so as to obtain
p. =P (2.1.23)

where p solves P(p)=0.

Equations (2.1.13), (2.1.9) and (2.1.10) then become

©
Il

k
Kk (-1)'p (2.1.24)

2 2
o” + P2(l p°)

a
k k-1
02+P1+1>2+2,/131P2 lo|

[ 62 + p,(1-p?) k

= a N (2.1.25a)
+

o?+p, P2+2/P1P2|p|

- Hk

o+ Pl(l-pz)

b, = b - (2.1.25b)
+P +P + P

| o%+2 +2 +2/P P, [p]
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Define
2 =
o?+p +P_+2/P P_|p]|
RE = % In r 2 12 (2.1.26a)
o? + P2(l—p2)
1 02+P1+P +2/P1P lo|
R§ = > 1n 2 2 (2.1.26b)
0% + P_(1-p?)
1
Then
-2KkR*
ak = aO e 1 (2.1.27a)
_ -2KkR*
bk = bO e 2 (2.1.27b)

Proceeding as in Section 1.2.3, let Gi equiprobably take on one

of I|Gi|| values distributed uniformly between -%-and %u Then for a block

of N transmissions (corresponding to N-2 iterations after the initialization)

R, = %-ln ||ei]| nats/transmission (2.1.28)

The separation between adjacent values of Gi is

1 1 1
= - = > (2.1.29)
i 2(||ei|| 1) 2R - 1) 2eMRy

Pe 1’ the error probability for message 1 is given by
’




P < 29( — 1)
e/l ZeNRl /éo
(2.1.30)
*-R
= 20(—i— MR
2e lva
0
and similarly
X -
P, 5 < 20( 2R:*L= — NRITR,) ) (2.1.31)
! 2¢" 2vb

Both of these can be made arbitrarily small by increasing N, so long as
Ri < R; for i=1,2. These error probabilities, like their counterpart for
the single user scheme in Section 1.2.3, decay to zero in a doubly expo-
nential manner with increasing block length.

By way of a numerical example, consider P, = P_ = 10, and o? = 1.

1 2
Then the equation P(p)=0 is satisfied by p = .71164, and

RI = R* = ,8905 nats/transmission (2.1.32)

*
2

For the scheme described in [13], the largest value of R for

which Rl = R2 = R is achievable is given by

%,ln(z E-+ 1 -1) = .8643 nats/transmission (2.1.33)

. O.2

R =

The largest achievable value without feedback is (from equation (1.2.3))
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R = %—ln 21 = .761l1l nats/transmission (2.1.34)

2.1.2 Completion of the Achievable Region

We now extend the result of Section 2.1.1. We will describe a
superposition approach which allows communication at all points along a
curve between (RE,RE) of Section 2.1.1 and point D of Section 1.2 (see
Fig. 1.2). By symmetrical arguments, the point (RI,RE) and point C can
be connected. By using the fact that any point in R2 dominated by an
achievable point is in turn achievable, we will have demonstrated the

achievability of a region of the form shown in Figure 2.2.

(1) and 6(2).

We allow Tl to choose two independent messages, Gl 1

Tl will transmit Gil) by means of a code of block length N whose letters
are drawn. independently from a zero-mean normal distribution with variance

aPl(Ofgf}). T. uses the remainder of his power, &bl(aél—a) to participate

1
in the scheme of Section 2.1.1 while treating the code letters for eil) as

noise. T2 uses all of his power as in Section 2.1.1.

(1)

Since the code letters for el are independent identically dis-

tributed N(O,aPl), the results of the previous section apply for the detec-

2 .
tion of ei ) and 02, except that o%is replaced by o? + aPl, and P1 is

replaced by &b

1 everywhere. Equation (2.1.26) then becomes

) —
1 o +aPl+apl+p2+2/a'plP2'{p|
R¥(q) = 5 1n [ ] (2.1.35a)

2 2
g° + apP_ + P2(l p°)
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02+P1+P o+ /a_plp2 lo| ]

2 + _A2
o} +aPl Pz(l )

1n [

|
N

o2+oP +a1= +P +2.,/‘= |p|
in [ (2.1.35b)
02+o:1=1+aP1(1 0?)

0'+P +P, +2F |p|

o] +Pl(l ap 2

R5 (o)

]
(NI

=<% In [

The equation satisfied by Ip] (replacing (2.1.11)) is now

P(cx,p)=(02+o:.Pl) (02+Pl+92+zFaplP2|p|)
-(g? —ap2 2 -n2
(0°+P, (1-ap”)) (0 +oP, +P, (1-p%))

=0 (2.1.36)

At the end of a block, 9(2)

and 82 are known with high probability
at the receiver, so that all of the correction terms are also known. These
terms can be subtracted from the received data (which must be stored),

(1)

leaving just the codeword for 9 and the added channel noise. This code

may be decoded reliably at rates up to
RE*(0) = = ln(——3) (2.1.37)
i > 1.

The net result is that Tl can communicate at all rates satisfying
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R, < R¥* + R**
Rl(OL) Rl (o)

1 (2.1.38)
2 + = 2
1 0%+, P2+2,/aPlP2|p] 1 o+ap,
=51n[ ]+Eln(T)
2 2
+ -
o +aP, P2(l p°)
and T2 at rates satisfying
< R*
R, R2(0L)
2
+P_+2 OP_P
. 02+ +P, 1 2lpl
= E-ln [ 1 (2.1.39)

02+Pl (1-0p?)

Since p satisfies equation (2.1.36), we can solve for the denominator term

in RI(G) and express equation (2.1.38) as

P
1 1 - 2
< — — . .
Rl > 1ln [(l‘l?z(l ap)] (2.1.40)

Note that when & = 0, P(0,p) reduces to equation (2.1.11). When
a =1, P(a,p) becomes

_ 2 2 (-2 2 -n2
P(1,p) = (O +Pl)(0 +P1+P2) (o +Pl)(0 +P +P2(l P%)) (2.1.41)

1
which has the unique solution p = 0. Denoting the solution of (2.1.11) by
p*, noting that P(a,p) is continuous in both p and o, and is guaranteed (by
Appendix A) to have a unique root in (0,1l), we see that as 0 varies between

0 and 1, p (and &b) varies continuously between p* and 0, so that the right
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hand side of equations (2.1.40) and (2.1.392) vary continuously. At o =1,

(2.1.40) and (2.1.39) become

1 Pl
< = + .1.
Rl 3 in [1 57 ) (2.1.42a)
1l P2
= 1l + .1.
R2 < > 1n [ 52:;; ] (2.1.42Db)

which is just point D in Figure 1.2.

We can estimate (bound) the overall probability of error for this

approach as follows: Let ¢ ,32 be the probabilities that 8;2)

and 6_ are
1 2

decoded incorrectly. By the results of Section 2.1.1 these probabilities

can be driven to zero by making N large. Let 83 be the probability that
2

e(l) (2)

1 is decoded incorrectly given that Bl and 62 are decoded correctly,

which also may be made arbitrarily small. KA Then by the union bound

(1)
1

(2)

r 6 (1)
1

or 82] < Prlerror on 6 ]

Prerror on 6 1

(2)

+ Prl[error on 61 ] + Pr[error on 62] (2.1.43)

Now,

(1)

(1) | 4(2)
) 18,7

Pr[error on © 6 _ correct]

] = Prlerror on 61 5

(2)

Pr[el

62 correct] + Prlerror on el

(l)leiz) or 92 incorrect]x

Pr[eiz) or 82 incorrect]
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(2) (2)

< 83(1—Pr[6l or 92 incorrect]) + Pr[el or 02 incorrect]
=g, + Pr[e(z) or 0. incorrect] (1-€.)
3 1 2 3
< g_. + Pr[6 (2) or O, incorrect]
- 3 1 2
< 1.
e tE,t 53 (2.1.44)

so that (2.1.43) becomes

Pr[error] < 281 + 252 + €, (2.1.45)
We have shown that we can reliably communicate at.all rates ar-
bitrarily close to, but dominated by, a curve in R2 from (Ri,R;) given by
equations (2.1.26) and (2.1.11) to point D in Figurel.2. By reversing the
roles of Tl and T2 on this section we can prove a similar result for a
curve between (Ri,RE) and point C in Figurel.2. The entire region of the
form displayed in Fig, 2.2 is thus achievable. Doubly exponential error
decay is no longer guaranteed, since the error probability is now dominated

by the error rate for a non-feedback code, which has singly exponential

behavior.

2.2 Converse

In this section we obtain an outer bound to the capacity region
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C*=12 nats

Ff1 =Ff2=.89 nats
c Capacity Region with Feedback
(R R5)
Capacity
Region without
RZ Feedback

Achievable Region of
Cover and Leung

R,

2.2 Capacity Region of the AWGN MAC with Feedback for P, = P2 =10
and o? = 1. 1
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of the AWGN MAC with feedback. In 2.2.1 we give a single letter charac-
terization of the outer bound for discrete memoryless MAC's. In 2.2.2 we
argue that the formal result of 2.2.1 may be applied to the AWGN MAC with
the addition of a power constraint, and evaluate the expression using stan-

dard entropy inequalities.

2.2.1 Outer Bound for Discrete'Memoryless MAC's

Theorem 2.2. The capacity region of a discrete memoryless MAC with feedback

is included in the region

CO = co [ ﬁép K(p) 1 (2.2.1)

where co [*] denotes closure of the convex hull (in R2), and K(p) is given

by

Ke) = {(R/R): Ry < T(X:Y[K)

o
A

< I(X:‘2;Y|_Xl) (2.2.2)
R +R, < I(XlXZ;Y)]—

and P is the set of all joint probability assignments on Xl,Xz.
The difference between this outer bound and the capacity region
of the MAC without feedback is that the union is carried out over all p(xl,x2)

rather than just product (i.e., independent) distributions.
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The convexification implied by (2.2.1) is really unnecessary since
(UK(p) is already convex. To see this, note that the constraints in (2.2.2)
Zre concave (Appendix B) and consider any two points inUK(p). If they are
contained in a single K(p), then any convex combination is also in K(p)

since each K(p) is by itself convex. Assume then, that they are in dif-

1.1 2 2 .
ferent K(p), say (Rl,RZ)EK(pl) and (Rl,RZ)EK(pZ). Define

_ .11 2 2 _
(Rl'R2) = a(R ,Rz) + (1 a)(Rl,Rz) and p = apl+(l a)pz, where a € [0,1].

Then

1 2
R. = OR_+(1-0)R. <oI X ;Y| X + - : X ;Y(X
L = OR )l_apl(l %) (1a)1p2(l [2)
(2.2.3a)
< X ;Y|X
< I(%) %)
R, = aRl+(l-oa)R2 <al (X;Y]X) + (1-a)I_ (X ;Y[X)
2 2 2 = %p BN py 2171
(2.2.3b)
< T (X.;Y|X
< T, (%,:¥[%)
R.+R. = a(Rl+Rl) + (l-a)(R2+R2) <al (XX ;Y + (l1-a)I_ (X X ;Y)
1 2 172 1720 = Tpy 12t P, 172’
X X .Y
< rp( 1% ) (2.2.3¢)

where the subscripting of the mutual informations denotes evaluation at the
appropriate probability. The first inequality in each case is by definition

of K(pi) and the second is by the concavity of the mutual informations as

—————————teE B WIEE ¢ MMCTWS ‘e FME* AW SSDEEE ¥
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functions of p(xl,xz). Equation (2.2.3) shows that (Rl'RZ) e K(p) Co'
so that Co is convex. This reasoning does not apply to the MAC without
feedback, since a conxex combination of product probabilities is not
necessarily a product probability. Therefore convexification is necessary

in (1.2.1).

We proceed to prove Theorem 2.1. We define the data sources to
independently produce strings of letters drawn from arbitrary discrete
alphabets at rates Li (i=1,2) symbols per second. We denote the size of
the ith alphabeth by Mi<w. We further assume that the sources are stationary,
that is, the joint statistics of any finite string are independent of time

origin. For message a;,a string of L letters produced by source i, we de-

fine the quantity

1
HL(ai) = E—H(gi) nats/letter (2.2.4)

which is the average per-letter entropy of source i, for a string of L
letters. In general HL(ai) is a bounded monotonically decreasing function
of L [24].

We consider the problem of transmitting data produced by sources
1 and 2 over a channel using a block code of length N. Assuming the channel

may be used Nc times per second, then

L = (2.2.5)

source letters are produced per code block. The entropy of this string is

given by
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H(a.) = LiH i(a,) nats (2.2.6)
-1 L 1

and the amount of information communicated per channel use (rate) is given

by

-

i
L . .
)= —H j(a,) = H ;(a,) nats/transmission (2.2.7)

er'
a |n

We now define the encoding and decoding strategies allowed. For

transmitter i, we require that
X, . = f.(gi,¥k_1) i=1,2  k=1,N (2.2.8)

. .t . . .
where X, " is the i h transmitters channel symbol at time k, fi is a deter-
1,

k-1

ministic function, and X_- is the receiver's channel output up to and

including time k-1. X_-l is available to both transmitters via the feed-

back links.

Similarly, define a pair of decoding functions
Ei = gi(X), i=1,2 (2.2.9)

which are functions of Y, the vector of N channel outputs.

We will use a per-letter form of Fano's inequality ([24], Theorem
4.3.2) which states that
I A

i? H(a.|&8 ) < e. In(M ,-1) + h(e ) = n,(€,) nats/letter (2.2.10)
i —1'—5 - i 1 3 i 1

L 1



-62-

L
where €, = -lT ¥ Pria,. # &,.] (2.2.11)
Lo j=1 J 1]
and
h(x) = -x 1In x - (1-x) 1ln (l-x) (2.2.12)
. . .th A
and a,.( or 2,.) is the j  letter of a, (or &,).
1] 1] =i =
Now consider source l. Since éi = gl(z)vwe can apply the data
processing theorem [24] to obtain
¥Y) < = a
H(a, |0 < H(a |9, (D) = H@ [8) (2.2.13)
Also, since conditioning cannot increase entropy,
< < a
Ha, |y a) < H |y <H@ &) (2.2.14)
Applying (2.2.10) we have
H(a IYa)<Lln (g,) (2.2.15)
=1'==2" — 171 T
By independence,
H = H el
(a,]a,) (a,) (2.2.16)

Subtracting(2.2.15) from (2.2.16) we have
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I(ay Y|a,) > H(ay - Llnl(el) (2.2.17)

We bound the left hand side of (2.2.17) as follows:

I(ayp¥|ay) = H(Y|a) - H(Y|aa,)
N Sl Py
= Y -
21 Y |Y Tay) - B, [¥ e a,)]
N
a) _ . k-1 _ k-1
=) By X, ¥ Tay) -H(Y | TTaya))]
k=1
N k-1
b) < Loy fx) - B XX, ¥ a8,
k=1
. N
c) = 3 [H(Ykazk)- H(Yklxlkxzk)]
k=1
N
= ) I(X_.; ¥ [X_) (2.2.18)
kel 1k’ “k!T2k
Step a) is true since X2k is a deterministic function of (XF-IEQ)'

step b) is true since conditioning cannot increase entropy, and c) follows
from the fact that given the current inputs, the output is independent of
the past.

We can combine (2.2.17) and (2.2.18) to obtain

N

) I(X

1
) > H(a,) - L'n_(g,) : (2.2.19)
k=1 k 1 11

1 el %,

Subtracting both sides from NR, = H(Ei)' we have

1
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N
1 1
- - 4 el
N[R, - T} T ]|(x2k)1 < Ln (e (2.2.20)
k=1
L Lt
Note that §—= EE (equation (2.2.5)) which is fixed, so that
C
LY i
R, - Ek_z_lx(xlk;yk|x2k) < E n, (e)) (2.2.21)

A similar series of steps, applied to source 2, yields

R, - ﬁkglx(x%;yk[xlk) <5 Nyley) (2.2.22)
. C

We also consider the joint source (21'22)' As in equation (2.2.13)

H(z,a,[|¥) < H(aja, |8 8)
< H(a [a,8) + H(a,|q8)
< H(z, |8) + H(z [&) (2.2.23)
so that
I(a,a_;Y) > H(a,a ) - Ll (e.) - L2 (e,) (2.2.24)
2127 2548 M1 PR -2

The left hand side is bounded by

I(a,2,;¥Y) = H(Y) - H(¥[a 2)

e T TS Y R P T
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N

_ k-1, _ k-1
= Zl BO, YD) - HEY| Y Taja)]
N
k-1
a) S ) W) - B XX, Taa))]
k=1
N
b) = ] IH(Y) - HY X X )]
k=1
N
= ] I(X, X .iY) (2.2.25)
T L

where a) follows since conditioning cannot increase entropy, and b) follows
since given inputs, the current output is independent of the past.

Substituting (2.2.25) into (2.2.24) we have

N

1 2
X ;Y > - - «2.
E I X iY) 2 H@a) - Ln (e) - Liny(e ) (2.2.26)

, + + - .
Subtracting from N(Rl R2) H(Ei) H(EQ) H(éiéi) (by independence)

we get
N
NR, + R, - = Y OI(X, X Y )] < Lln (€) +1°n(e)) (2.2.27)
1 2w L 1k 2k 'k T = 171 2°72 Te
and
1 v > L.
+ - = Y —= ; .2.
R S kZlI(leXZk x < N, npley) + ﬁ;ﬂz(ez) (2.2.28)

Now any code of arbitrary block length must yield average (per-
transmission) mutual informations which lie inside C . To see this, assume
o

a block length of N and a joint probability assignment on §1,§2 given by



X X ) (2.2.29)

X =
P (X X)) kglP(Xlk'x2k,—i =2

In general, the probabilities at any time will depend on the values at all
other times, but the mutual informations of equations (2.2.21) (2.2.22) and
(2.2.25) depend only on single-letter probabilities, so this dependence

does not affect the average. If we define the "average" probability assign-
ment by

) (2.2.30)

1
* = =
p (xl.xz) N péxlk,xzk

Il o~ 2

k=1

then we can apply Jensen's inequality to (for example) I(Xl;YIXZ) to obtain

|
Z |~
o~12
H

1 N
N g I(Xlk;YkIXZk)

I.p*(xl;Y|x2) (2.2.31)

since I(xl;lez) is concave in p(Xl,Xz). All of the mutual informations

are concave (Appendix B), so that (2.2.21), (2.2.22) and (2.2.28) become

L;
- ; < T .2.
Ry - L. (% Y[X,) < N n, (e)) (2.2.32a)
Li
R, - I;P*(xz;Y|x1) 53}: n,(e,) (2.2.32b)
:! 2
+ R, - X 3Y) < =7 ( = .2.
R, * R, Ip* (X, ,X,:Y) S nyle)) + N_ n,(e,) (2.2.32c)
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Assume (R1R2) is not in Co. Since qo is a closed convex subset

2 ‘ .
of R+, then there exists a vector (Al,Az) where Al,lz_z 0 and Al,kz are not

both zero, for which

AlRl + XZR > sup AX. + Azx (2.2.33)

2 11 2
(xl,xz)eco

(see, for example [26]). In particular, there is a positive § such that for

all (x,,x )eC
( 1 2) o

AlRl * AR, - _)\lxl A%, 28>0 (2.2.34)

Combining (2.2.32) and (2.2.34) we have

1 2
Ls Ls
= + —
Ay N_ n,(e) + A, N n,(e)) > 8 (2.2.35)
Now define
< =
0 A max(Alkz) < ®
L]s' Li
0 <K = max(ﬁ—q EF') < ™
c c

™

]
3
o
®
™
™

h' ()

|A
™
A

(2.2.36)

>
P~
jog

—

m

e

NjE O
|~

m

IA
= N[
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and
nie) = Eln(MlM2 - 1) + h'(€) (2.2.37)
Clearly
n(e) Zma"(”l(el)’”z(ez)) (2.2.38)
and
Ll L2
§ <A, ==mn,(e) +A_ —=n, ()
My ME 2 N M2'82
C C
g
< )\[ﬁ— nl(el) t 5 nz(ez)]
C C
< AK[Al(sl) +n,(e,))]
< 2)Kn(e) (2.2.39)
Therefore
S
nie) > 2K >0 (2.2.40)

Since n(0) = 0 and n(e) is strictly mononotonically increasing in €, then
(2.2.40) implies that € is greater than some positive constant, independent

of block length. Theorem 2.1 is proven.

2.2.2 Outer Bound for AWGN MAC's

We first note that the formal result of Section 2.2.1 is valid for

arbitrary ensembles as long as the various entropies involved can be defined
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by either using the conventional "absolute" entropy for discrete random

variables, or the "differential" entropy defined by

H(x) = -/  1n p(x)p(x)dx (2.2.41)

-
where p(x) is a probability density function. We follow the standard nota-
tion (e.g. [24]) in using the same symbol for absolute and differential en-
tropy. In going from equation (2.2.17) to (2.2.18) we identified a mutual
information defined as a difference between absolute entropies with one
defined using differential entropies. This step is justified so long as
the differential entropy is defined (i.e. Y has a density function) and
finite ([24] Section 2.5). Y has a density function, since it is a sum of
the inputs and gaussian noise. Its entropy is bounded since

o < %m 2mec? = H(Y ) < H(Y[X,) < H(Y)

klxlk 2k

%m CN(/_ + VP ) a?)
< ® (2.2.42)

where 0% is the noise variance and Pi are the average power constraints.
The fourth term above may involve either xlk or sz. All of the wvarious
conditioning properties hold in this case.

We also note that the concavity of the mutual informations in

(2.2.2) allows us to reduce the per-block average energy constraint to a
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per-letter average energy constraint. That is, for any code satisfying

T2
) X < NP i=1,2 (2.2.43)
k=1 *

a code using the average joint letter probability law (i.e.
1 N

— z P(X. ,X
N &, lk'T2k

(when averaged over the block), and for which each letter satisfies

P(xlxz) = )) vields mutual informations which are no smaller

X <P, i=1,2, k=1,...,N (2.2.44)

We proceed by fixing a joint probability assignment on (Xl,XZ) and

bounding K(p). Any assignment on (xl,xz) has the characteristic parameters

2
o] =X <P
1—1

2
= <
o X2 P2

o = 22 ¢ [-1,1] (2.2.45)

We have assumed, without loss of generality, that xl and x2 are zero-mean.

By our definition,

2 2 2 2
+ 2.
var(Y) = E[Y ] 01 +.02 20102p + 0 (2.2.46)

where 02 is the additive noise variance. The gaussian distribution has the




-71-

maximum entropy of all continuous distributions subject to a constraint on

the variance. Its entropy, for variance s is given by
1 A
=3 In 2mes = g(s) nats (2.2.47)
The entropy of Y is then bounded by

2 + 20.0.0 + g2) (2.2.48)

H(Y) < g(Var(y)) = g(oi + 05 1%

Given xl and X2, the only random component of Y is the additive noise,

which is gaussian, so that

H(Y]|X X)) = g(o®) (2.2.49)

Now consider the conditional entropy of Y given X By definition

o
H(Y|X,) = ExgH(Y|X2=x2)] (2.2.50)

where the expectation is over x2. Now given x2=x2 the entropy of Y may be

The variance of Y given X2=x is given by

2
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= = 2 =
var (Y[X,=x,) = .0° + Var(xl|X2 x,) (2.2.52)

since channel noise is independent of both Xl and x2. The second term on

the right hand side of (2.2.52) in turn, is by definition

2
= = - = X . =x 0l
Var(Xl|X2 x,) Exi(xl Ex[x1|x2 x,1) | =%, (2.2.53)
where the expectation is over Xl given X2=x2.
Also the conditional expectation of xl given X2=x2 is the unique function
of X, which minimizes the right hand side. To upper bound the expression,
we approximate the conditional mean by the best linear estimate of Xl given
X2=x2, which is
!
X = a—-pxz (2.2.54)
2
yielding
= E_[(x, - Sl X )2lx 1
Var (X, |X,=x,) < x{1 7 5, Pxy) X, (2.2.55)
Averaging over X2 we have
X = = X
EX2[Var(X1| ,=X,)] = var(x |X.)
o 2|
= EE [(x, -—9¢ x,) |x,]
2 2
x2X1 1 o,
o)
1 2
= E[(x:L -3 p=x2) ]




io} a
2 1 2, 12
= + - —
Ul —2'0_ P 0'2 2 o o] 010'2
2 2
2 2
= Ol(l-p ) (2.2.56)

Going back to equation (2.2.50) we note that g(x) is concave in x,

so that Jensen's inequality yields

H(Y[X,) = E[H(Y[X,=x,)]

2 =
< g(o + E[Var(xllx2 x,)1)

g(o? + Var(Xllxz))
2 2 2
2 g(o® + 07 (1-P)) (2.2.57a)

since g(x) is monotonic in x.

We can exchange xl and X2 in the above argument to obtain

H(Y|X)) < g(o® + og(l-pz)) (2.2.57b)

Substituting (2.2.48, (2.2.49) and (2,2,57) into the definitions

of mutual information, and observing that

gix) - g(y) = % 1n (2.2.58)

-l ]
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equation (2.2.1)-(2.2.2) becomes

- (2.2.59)
Cy = e Ko
02
- . i 1102
where Kp) = {(R,R)): R <3 1In(l + 57(1-p%))
2
[0}
R. < = 1n(l + —=(1-p?))
2=2 o
2 2
o) o] 20.0.0
1 1+ 92 + “019
R +
Lt Ry S5 1a(l+ — ) (2.2.60)
and
= . 2
p=1ptx,,x): o] <P
2
93 2P
lo| < 1} (2.2.61)

We now observe that a region yielded by a negative correlation p
is included in the corresponding region yielded by lpl. Also, for positive

P, the bounds are all maximized when Oi =P and 02 =P Equation (2.2.59)-

1 2 2°

(2.2.60) may be re-written then, as

Theorem 2.3.  An outerbound on the capacity region of the AWGN MAC with

feedback is given by
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C U K'(p) (2.2.62)

Ospf}

where
1 P 2
] - . it -
K' (p) {(Rl,Rz). R, <5 1n(l + =7(1-p%))
1 P2 2
R, <3 In(l + Ez-(l-p )) (2.2.63)
P P ,/
R. + R <lln(l;1+ 2+2P1P2p)}(2263)
1 2 =2 ' o* te.

We have replaced K(p), a function of a probability assignment, by K'(p), a
function of the correlation coefficient.

Observe that (2.2.63) reduces to (1.2.3), the capacity region of the
AWGN MAC without feedback, when P = 0, which of course for gaussian (xl,xz)

corresponds to independent transmitted signals.

2.3 The Capacity Region of the AWGN MAC With Feedback

We will now show that the achievable region of Section 2.1 and
the outer bound of Theorem 2.3 are identical. To simplify notation in the

sequel, we define the following auxiliary gquantities:

P+ B+ 227 o
Z

PT(p) =1+ S (2.3.1a)
P1
_ _n2
PA(Q) =1+ U—,g-(l.p ) (2.3.2b)
P

-2
P.(p) =1+ Ez-(l-pz) (2.3.3c)
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Equation (2.2.63) then becomes

' - : L
K'(p) = {(R/R)): R, <5 1n P, (p)
R, < l-ln P_(p)
223 B'P
R, + R <£lnP()} (2.3.4)
1 2 =2 T P °e
The achievable region is
A=AUA, (2.3.5)

where Al is given by (2.1.39) and (2.1..40), which become

A =

1 -
1= o {®,/R,): R <3 1n P, (/dp)

l_

1 — —
R, <5 In PT(ﬁp)/PA(ﬁp)} (2.3.6)

where p satisfies (2.1.36), which we repeat:

P(a,0) = (07 + aP )P (JGp) - P, (/3p) (cx.2 + P +P_ (1-p%))

=0 (2.3.7)

A2 is given by an identical expression with Pl and P2, Rl and R2’ and
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A B

(p > 0) and that PT(p) is monotonically increasing in p. For a particular

value of p, one of three situations can obtain.: Either-% 1n PA + %-ln PB
. 1
is less than, equal to, or greater than E-In PT. These three cases and

the resqlting K'(p) are summarized in Figure 2.3.

At this point we make two observations:

I. No set of the type portrayed in Figure 2.3a) can contribute
any points to Co that are not in sets of the types of figures 2.3b) or c).
To see this, recall the monotonicity just mentioned. By decreasing p a small
amount, PA(p) and PB(p) may be increased incrementally while PT(p) decreases
by a sufficiently small amount so that Figure 2.3b) applies. The resulting
K'(p) is larger than the original one. Thus any K'p) of type a) is strictly
included in one of type b). We will use this fact to place an uﬁper bound
(strictly less than 1) on the value of p needed to generate the capacity
region.

II. Any point oﬁ the boundary of q) must be on the boundary of
some K'(p). It clearly cannot be interior to any K'(p). That it is ac-
tually in K'(p) for some p is a consequence of the fact that the distance
from a boundary point to qo is zero, and is the infimum of its distance
from KWp) as p varies on [0,1]. Since the -coordinates defining KY(p) are
continuous functions of o the distance from a point to K'(p) is also a
continuous function of p. It is a standard result from analysis that the
extremg of a continuous function on a compact set are achieved in the set.

As a result of this observation, we see that every point on the boundary of
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a)2 Linp (o) >L1np (o) +%1np_(o)
2 o) 73 APl T3 B

2.3 Basic Sets for the Outer Bound to the Capacity Region of the
AWGN MAC with Feedback.
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Cb is included in the set of boundary points of the collection of K'(p).
We now find the point on the boundary of Co which maximizes
Rl + R2, and show that it is just the point (Ri,RE) of Section 2.1. The

K{p) which maximizes R, + R_ must be of the type shown in Figure b), since

1 2
for any K(p):
R, + R, < l-ln P_(p) + l-ln P_(p) (2.3.8a)
1 2 =2 A 2 B
and
R. +R. <=1n P (0) | (2.3.8b)
1 22732 p'P 3.

The first bound decreases with p; the second increases. The maximum must

then occur when they are equal. This equality, however, requires that

1 1 _1

5 1n PA(p) 3 1n PB(p) =3 1n PT(p) (2.3.9)
oxr

PA(p)PB(p) = PT(p) (2.3.10)

But this is precisely equation (2.1.11) (or (2.1.36) evaluated at g = 0),
which defines the correlation coefficient obtained by the scheme of Section
2.1.1. sSince the solution to (2.1.11) is unique (Appendix A), our coding

scheme yields the appropriate correlation between X_ and X2. The point

1
achieved by this scheme is (from (2.3.6) with g = 0)

R¥ = =

1 3 1n PA(_p)
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P_(P)
1 T
R; =3 in 5 (o) (2.3.11)
A
By substituting PA(p)PB(p) for PT(p) we have
R* = = 1n P_(p) (2.3.12)
22 B'P -2

so that (RI,R;) coincides with the upper right hand corner of K\p) for the
o (which we will call p*) which yields the maximum (R1+R2), and thus is
that extremizing point.

Now consider a point on the boundary of Co for which Rl > Ri. By ob-
servation II above, any such point must lie on the boundary of K(p') for
some p'. Also p'< p* since PA(p) is strictly monotonically decreasing
with p (observation I). Finding this boundary point for some fixed Ri is
equivalent to maximizing R2 as a function of Ri. In this light it is clear

that the maximum (and hence the boundary point) occurs at the corner labelled

P in Figure 2.3.c), and thus that p' must be such that % 1ln PA(p') = Ri.
If p' were larger, then Ri would not be achievable in K(p'), and if p'
were smaller, then PT(p') is diminished, so that a smaller R2 (bounded by
L In P_(p') - Rl) would result
2 r'P 1 :

These considerations lead us to conclude that the boundary of
Cy is generated by the corners of the basic sets K'(P) of type c) as p varies
between 0 and P*. At P = 0 we have not reached the positive axes, but the

time sharing argument applied to the points




1 1 2
_ 1 - 2.3.
R2 > In(l + ——0_-2———) Rl (2.3.13)
generated at p = 0
P
1 1
= = +
and Rl > In(1 far)
R2 =0 (2.3.14)

generated by not using Transmitter 2, suffices to connect with the Rl axis,

and a similar argument connects with the R2 axis.

Now a point on the boundary of Co for which Ri > RI is generated

by p' < p*, which is given by

1_1

P
L L. _ .2
;=3 In(+ Sz(1-p ) (2.3.15)

The value of R, (call Ré) corresponding to this value of p',

at the corner P, is given by

, 1
1n PT(p ) - Rl

N
N

PT(p‘)
PA(,p')

[

= — 1ln (2.3.16)

N

Now consider region Al. From equation (2.3.6) we see that if a
p such thatvﬁib = p' can be obtained as a solution to (2.3.7), then

(Ri,R;) can be obtained. As noted in Section 2.1.2 at o = O,
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vﬁip = p = p*, and at o = 1, (obviously) vﬁip = 0. The function vﬁip is con-
tinuous in o and p. Thus, if p (as the solution of (2.3.7)) is a continuous
function of o, then all values ofyﬁ§p between 0 and p* can be achieved and,
in particular any (Ri,R;) on the boundary of C(Dfor which Ri > Ri is at-
tained in Al° The continuity of p as a function of o is a straightforward
consequence of the continuity of P(c,p) in both o and p, and the fact that

a unique root exists for all a.

The desired result (Theorem 2.1) has been proven, that
Cb = AlLJ A2 (2.3.17)

and the capacity region is given by C We refer back to Figure 2.2 for an

o°

example of the capacity region.

2.4 Capacity Region with Correlated Messages &and Feedback

In [11] Slepian and Wolf obtained the capacity region for the
discrete memoryless MAC with messages which have a common part. That is,

in addition to two private messages Ei and a, known only by Tl and T2 res-

pectively, there is a common message , known to both. Slepian and Wolf

a,

showed, defining

=1 -
R, = T H(a) i=0,1,2 (2.4.1)

that the region



-83-

Cc= co {£E£R(p)} (2.4.2)
where
Re) = {(R/R)): R 5_I(xl;y|xzu)
Ry, < I(X,:Y|x U)
R, + R, 5_I(xlx2;Y|U)
Ry+ R + Ry < I(X,X,;Y) } (2.4.3)
and
P= {p(uxlxzy) = p(u)p(xllu)p(x2Iu)p(ylxlxz)} (2.4.4)

is the capacity region. (Actually they proved the weaker result that outside

Cc Pr[gi # §i] is bounded away from zero as opposed to a per-letter converse.)
P is the set of joint input-output probabilities where U - (Xl,X2)+Y

form a Markov chain in that order, and (XlXZ) are conditionally independent

given u. We will now extend the results of Sections 2.1 and 2.2 appropriate-

ly to this case. We will show that if P above is replaced by P' where

P' = {p(ux;x,y) = p(wp(x x,|u)ply|x )} (2.4.5)

that

Cs col \p, Re)} (2.4.6)




-84~

is an outer bound to the capacity region, and that it is achievable for
gaussian channels.

To derive the outer bound we will make the following definition; 21 and

a, are as in Section 2.3, and a, is the common message. The encoder out-

puts are then

_ k-1
xlk fl (gla Y ) (2.4.7a)
k-1
= Y
x2k fz(gza ) (2.4.7b)
Define
k-1
Uk = (90,3_ ) (2.4.8)
Now, analogous to equation 2.2.17, we have
I(a,;¥|a a ) > H(a,) - Lln () (2.4.9)
=1"--'—0—=2" — "= 11
N
k-1
Also Y =
H(Y[aga) = ] H(Y, |¥" "aa)
k=1
N
k-1
a) =1 H(Y, |X) ¥ aa)
k=1
N
b) =L (Y, |%,,02a)
N
T <
c) _} H(Yk|X2kUk) (2.4.10)
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. . . e . k-1
where a) is true when x2k is a deterministic function of (Y ’ 50, 52),
b) is by definition of Uk, and c) follows from the fact that conditioning

does not increase entropy.

Similarly,
N
| _ k-1
H(Z|agay2)) = ZIH(YkIE 3523
N
_ k-1
a) = Z H(Yklxlkxzkz a:azgi)
k=1
N
b) = LHE[x X
k=1
N
= H(Y, |X_ X .4.
1-:21 RSN (2.4.11)

where a) follows from the deterministic encoders and b) from the fact that
the output is independent of the past, given current inputs.
(2.4.10) and (2.4.11) may be substituted into (2.4.9) to obtain

N

1
kZlI(Xlk'Yk|x2kUk) > H(a) - L'n, (e)) (2.4.12)

We can obtain a similar expression involving H(§2). The bound

on Rl + R2 follows by similarly showing that

N
i < X i U 4.
Iaa,i¥|ay) < kzll(.xlk o i 10 (2.4.13)

and the bound on R0 + Rl + R2 from
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I(aga a,i¥)= H(Y) - H(¥[|aga a)

N
< i 2.4.14
—kz 11 X k! ( )

All of the subsequent steps of the derivatioﬁ of Section 3.2.1
are the same. The sums in (2.4.12), (2.4.13) and (2.4.14) can be reduced
to single letter quantities by convexity considerations and the fact that
U - (Xlk,x ) = Y 1is a Markov chain.

k 2k k
To show that the region defined by (2.4.6) is achievable for the

AWGN case we use the following superposition: let 30 be mapped into a code-
word of block length N, whose letters are drawn independent identically dis-

tributed from a gaussian distribution N(O,l). Then let Tl amplify the

codeword by ValPl and T_ by /asz where 0 < ai < 1. The transmitters then

2

use the remainder of their powers (&;Pi, i=1,2) to cooperate as in Section
2.1, where the correction terms are computed at the transmitters by assuming

that the receiver will correctly decode . At the end of a block the de-

a
_O
coder then subtracts the superimposed codeword and proceeds as in Section

2.1.2. Clearly this scheme can achieve any R_. in the range

0]

2
(/1§+ /g)

GZ )

0 < R < Zln(l + (2.4.15)

0
and a derivation similar to the one in 2.2.2 and 2.3 shows that the inter-
section of the achievable region with any plane of the form R_ = Ra coincides

0

with the intersection of the outer bound with that plane.
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CHAPTER 3

AWGN BROADCAST CHANNEL WITH FEEDBACK

In this chapter we introduce a constructive deterministic
feedback coding scheme for the AWGN BC with feedback, shown in Figure
3.1. The noise variables are independent of each othexr, uncorrelated in
time, and independent of the transmitted data. The variance of W, (the

k

common noise) is 02, the variance of wi (the separate noise at receiver

k
i's output) is G;. We assume that the average transmitted power is limited
to NP per block of N signals. Note that by setting.c2 (or Ui) to zero,
our model includes as a special case the AWGN BC with independent (or
physically degraded) channels.
As mentioned@ in Section 1.2.2 it has been shown that for both
the discrete memoryless [8] and AWGN [16] BC, feedback does not enlarge
the capacity region if one channel is a physically degraded version of
the other. The results of this chapter will show that such is not the
case when the channels are not physically degraded, at least for the
AWGN case., Since all AWGN broadcast channels are degraded (that is,
there exists a cascade channel with the same marginal probability density
functions, conditioned on the input), the result of [8] and [16] will have
been shown to fail to apply to a class of (continuous) degraded channels.
The contents of this chapter parallel those of Chapter 2.

In Section 3.1 we present the feedback coding scheme, and obtain an

expression for an achievable region. In Section 3.2 we Sbtain first
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w ~N(0,07)
W, ~N(0,0})
W, ~N (0,02)

3.1 AWGN Broadcast Channel with Feedback.
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an outer bound for the capacity region of arbitrary discrete memoryless
BC's with feedback, and then extend this result to the AWGN case. In
Section 3.3 we will compare the achievable regions and outer bounds for

some examples.

3.1 Achievable Region

For the problem we are considering, a single transmitter wishes
to communicate two messages, 61 and 92, to two separate receivers using
the feedback channel of Figure 3.1. The transmitter will use a single
block of N transmissions to communicate both messages. We assume that
the feeedback links are noiseless and delayless. In this section the
outputs Yk and Zk in Figure 3.1 are denoted by Tix and Tox for the sake
of notational compactness.

.Assume that after k-1 transmissions the receivers have their

respective estimates of 91 and 92 in the form

~k-1
0 =0, + &
g 1 7kl (3.1.1)
6%l - 6. 4+

2 2 k-1

£ and n are jointly gaussian with zero means, variances 41 and

k-1

and correlation coefficient pk. As in the case of the MAC, we assume

k-1
bk-l
that the estimates are deterministic functions of the previously received

data, and are therefore available to the transmitter. Since the transmit-

ter also knows the messages, it can form Ek-l and nk-l'
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th P .
For the k transmission, the transmitter forms a linear com-

bination of gk-l and nk-li normalizes it to average power P, and transmits

it. Let the transmitted signal X be

& _ n, _
X = J_%- [ =1 bk 1 g sgn(py _,)] (3.1.2)
V-1

k-1

where D is the mean squared value of the term in square brackets, given

by
2
D=1+g" +2glp_,| (3.1.3)

The parameter g € [0,») may be varied to allot a varying proportion of
the available transmitter power to communication with receiver one vs.
receiver two. It is readily seen that with D chosen as above, the va-
riance of X (i.e., the transmitted power) is P.

The receivers then receive noisy versions of xk, where rik

. t . .
(i=1,2), which is the ith receiver's channel output at the k h time, is

given by
Lo = X + wk + wik (3.1.4)

where w, is the common noise with variance 02, and W

i t
" x 1is the separate

noise at receiver i, with variance Gi.
The receivers then form their new estimates of the appropriate

messages, given by




1 1 % T T 2 1k
1k
(3.1.5)
0k _ k-1 _ Dok k-1 .
2 2 ;7 2k
2k
Using the above, it is easy to verify that for i = 1,2
2 =P+ 02+ ol
ik i
= o2 /A
P
Tl = Y 9VPeo1son (o) g + oy ) D)
From equation(3.1.5) we see that
r, &
1k "k=-1
e = &1 —-—:3-—— T (3.1.7a)
1k
r,.n
2k k-1
M= M™k-1" " 3 T2 (3.1.70)
2k

These may be squared and averaged to obtain the new variances given by

2, 2, P 2 2
040+ 5 g (1 pk—l)

R S 02+o§+P
s 2 P ) (3.1.8)
0%+0,+ 7 (1-py _4)
by = By
0%+02+p
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similarly, if we define c, = E;ﬁk' and T =(rik§k—l)(riknkrl)'then we

can multiply (3.1.7a) and (3.1.7b), take expected values, and obtain

Y X,
~ 1 1 1x "2k
S = Cq T( = + = -5 = ) (3.1.9)
T1x  Tox  Fix Tk
Also
=P + o2 ’ (3.1.10)

TixFox =

By substituting (3.1.6) and (3.1.10) into (3.1.9) and using the definition

ck = /akbk pk, we obtain the following recursive expression for pk:

2 2_2 PL 2
(0°2+40,0,) 0, 1= - 9 sgnlp, ;) (1-p, ;)

pk = (3.1.11)
VT /NN
12
where
= 2,2, .2
X P+0 +01+02
I = (P+02+ci)(P+oz+c§)
s 2 P 2 ) (3.1.12)
N, =001+ 59 (1-pp _4)
= a2:024 B 1.42
N, = 07+0,+ 5 (1-p ;)

As in the case of (2.1.10) for the MAC, equation (3.1.11) may
be shown to have a solution in the sense that there exists a p ¢ [0,1]

such that if pk_1 = p, then pk = -p. To see this, one can substitute
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P = ~Pr_1 into (3.1.11) and square. The resulting sixth-order poly-

nomial in is of opposite sign at p =0 and p =1, and therefore
k-1 k-1

Px-1
has at least one solution in that range. We have not been able to
determine whether the resulting value of p is unique. The values of

p for the numerical examples in Section 3.3 were obtained by iterating
(3.1.11). 1In all cases, the iterations converged to an appropriate
value, regardless of the starting point, so that we suspect that the
solution is unique.

Given the stable value of p, equations (3.1.11) and (3.1.8)

become

oy = -1)%0 (3.1.13)
32+ci+ % g2 (1-p2) ¥
a =a (3.1.14a)
0 2, 2
P+o2+0
1
_02+0§+% (1-p2) 1%
bk = bo (3.1.14b)
P+0'2+0§

and the initialization may be carried out in a manner analogous to that
in Section 2.1. The error probability analysis is identical to that

of Section 2.1 and is not repeated. The result is that with p selected
as the (largest if not unique) stable solution of (3.1.11), then all

rates such that

P+02+0

N~

In

N

< R*(g) = (3.1.15)
MR oz+oi+ %g (1-p2)
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1 P+02+c§
R. < R;(g) = E-In (3.1.15)

2 2,2, P o 2
ag +02+ D (1-p7)

are achievable with error probabilities which decay doubly exponentially
with block length, as for the MAC.
The solutions obtained in this section are evaluated numerically

for some examples in Section 3.3.

3.2 Outer Bound to the Capacity Region

In this section we derive a simple expression for an outer bound
to the capacity region of the broadcast channel with feedback. 1In
Section 3.2.1 we derive a bound for discrete memoryless channels, and
in 3.2.2 for AWGN channels. 1In this section we revert to the notation of

Figure 3.1, in that the channel outputs are denoted by Y and 2.

3.2.1 Outer Bound for Discrete Memoryless BC's

We prove the following result

Theorem 3.1 Define
C, = U{([®,,R): R < I(X;YZ|U)
1 opep 12 1 (3.2.1)
Ry, < I(U;2) }
C, = U{(R,,R): < I(U;Y)
2 pEP Rl 2 Rl - (3.2.2)

R, < I(x;vz|0)}
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where
P = {plu,x,y,2) = p(u)p(xlu)p(yzlx)} (3.2.3)

Then the capacity region C of the discrete memoryless BC with feedback

satisfies

CcC C1FWC2 (3.2.4)

To prove this result we introduce the channel shown in Figure 3.2.
It is identical to that of Figure 1l.5a) except that receiver one knows
receiver two's output. BaAny rate pair achievable for the channel of Figure
1.5a) must be achievable for that of Figure 3.2, since receiver one can
always ignore Z. Therefore, denoting the capacity region of the channel in

Figure 3.2 by C',

ccc (3.2.5)

But the channel of Figure 3.2 ié physically degraded, since if we
consider (¥,Z) to be receiver one's channel output, then receiver two's
output, Z, is trivially independent of the channel input given (Y,Z).
The result of [8] then applies, that is, feedback does not enlarge

the capacity region in Figure 3.2. Therefore

C'= U {(r,,R)): R < I(X;YZ|U)
PEP l 2 1 - (3.2.6)

R, < I(U;2) }
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3.2 Augmented Broadcast Channel.
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= (3.2.6)

Therefore CCZCl. By reversing the direction of the added link in Figure
3.2 and exchanging the roles of receivers one and two, it follows that
CCZCZ. Equation (3.2.4) follows immediately.

In Appendix D we apply the technique of this section to general
BC's without feedback, to obtain an outer bound to the capacity region of

those channels.

3.2.2 Outer Bound for the AWGN BC with Feedback

In Section 2.2.2 we applied the formal result of Section 2.2.1
directly to obtain a single letter characterization of the outer bound
on the capacity region of the AWGN MAC with feedback. We used the fact
that the differential entropy of .the channel output was well-defined and
bounded and that the resulting information theoretic constraints were
concave in the input probability assignment. For broadcast channels
where neither channel is noiseless, the use of differential entropies is.
still justified, but since I(U;Z) is not concave in p(u,x) we cannot
directly apply the single letter expression of Section 3.2.1. 1In [16],
El-Gamal obtained the result that feedback does not increase the capacity
of physically degraded AWGN BC's using a method similar to that used by
Bergmans [7] for the case without feedback. Furthermore, El-Gamal showed
that in the case of physical degradedness, allowing the better receiver .

to see both channel outputs does not increase capacity, regardless of
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whether there is feedback.

Using the results of [16], we will prove the following:

Theorem 3.2

For the channel of Figure 3.1, with

the capacity region satisfies

where

N —
in < NP
k=1
2
W= o
2 2 .
Wlk— oy (k= 1,...N) (3.2.7)
2
o= 92
(- Clﬁc2 (3.2.8)
1 ap
C = U {(R,,R): R, <=1n (1L + =)
1 ocmcy 12 1 -2 oz
- _ (3.2.9a)
R, <3 ln (1+—2—) )
ap+02+02
2
C,= U {(R,R): R <> 1ln(l+ —2—
0<o<1 aP+02+0i
- (3.2.9b)
1 ap
< —
RZ <3 1n(l + Ez' ) }
e
q’a)
oé = g%+ (3.2.10)

g, +0

i~ N
NN




=99~

To show this result we consider the AWGN version of Figure 3.2.
Assume a coding strategy which allows reliable communication at some

rate pair. Then consider the problem where receiver one's output is

2 2
02, +0°Y

(S,.,2,) = (2k 2k z,) (3.2.11)
oi+ c:;

The mapping between (Sk'zk) and (Yk,Zk) is invertible (as long as 0;#0),

so that any code involving an encoder of the form

_ k-1 _k-1
X, = f(el,ez,_ 20 ) (3.2.12)
and decoders
6. = g.(¥,2)
L1 (3.2.13)
6, =g,(2)

can be applied to the new channel by substituting the appropriate func-
tional dependence on S,Z for every occurrence of Y,Zz. The code, when
applied to the new channel, will hawve the same probability of error as
on the 0ld channel. . The channels represented by ((Y,2),2) and ((S,Z),2)

are equivalent. We now show that Zk is statistically independent of xk

given 8, so that the channel (S,Z) is physically degraded, and from the

k
result in [16], has the same capacity ((S,Z),2) with feedback.

. Random ‘variable Z  may be written as zk = sk + (Zk—Sk).

k

R - = g (o PEEE ST ek
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We need show that (Zk - Sk) is statistically independent of Xk given
Sk' But
2 2
C W, +0O_W
_ 12k 21k
stk—xk+Wk+W2k (Xk+Wk+ > " )
o,+ O
2 1l 2
9
= S2ro? (W2k - Wlk) (3.2.14)
1 72
Since the noises are independent of the signal, Zk-Sk is independent of

Xk. Since the noises are independent of each other, Zk—Sk is indepen-

dent of Wk. As for the remainder of sk'

2 2
931 91 "ok
E|W.. =W, ) (=228 _ 4
2k 1k o2+ g2
1t %,

(3.2.15)

Since both texms in (3.2.15) are gaussian, and they are uncorrelated,

they are independent. Therefore Zk-Sk is independent of both Xk and

S Z is therefore a physically

k' k’
degraded version of S and the result of [16] applies. The capacity

and hence independent of Xk given S

region desired is therefore the capacity region of the channel with

outputs S and Z with no feedback. By definition of S,

2 2
O W.,. +O_ W
s, =x +w +——2x 21k (3.2.16)
k k k g2+g2 .
172

so that the channel from X to S is an AWGN channel with noise variance

52g2
2 2 172
0 = 04 —g—— (3.2.17)
e oy + 0,
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The channel from X to Z is gaussian with noise variance 0%+ o Equation

2
5°
(1.2.27) applies, with the appropriate noise variances inserted, and this
yields equation (3.2.9a). A symmetric argument applies in obtaining
(3.2.9b), and Theorem 3.2 follows.

In connection with the AWGN model of Figure 3.2, we have obtained
a coding approach suited to this model which employs superposition, made
possible in this case since receiver one can form receiver two's estimate.

This coding scheme achieves all points in Cl’ and is discussed in Appendix

C.

3.3 Comparison of Inner and Outer Bounds

In this section we present some numerical results for achiev-
able and converse regions for various realizations of Figure 3.1. 1In the
subsections to follow, we will discuss degraded channels, independent

channels, and some intermediate cases.

3.3.1. Degraded Channels

2

By setting o1

= 0 in Figure 3.1 we obtain the physically

degraded AWGN BC. For this model, C1 is specified by

(3.3.1)
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which is just the standard superposition region. C2 becomes

(3.3.2)

The region described by (3.3.2) is the triangle in R2 bounded by the

positive axes and a straight line from (C_,0) to (O,Cl), where

1

c =3I 1+ (3.3.3)
It is an easy matter to show that C1C1C2.

In Figure 3.3 we plot the achievable region of Section 3.1 and
the capacity region represented by (3.3.1) for P=10, and o2= O§=l.
The achievable region is obtained by varying g in equation (3.1.15), and
the capacity region by varying o in (3.3.2). Observe that the coding
scheme of Section 3.1 is sub-optimal in that the entire capacity region
is not achieved. This result is somewhat disconcerting in view of the

optimality of the related scheme for the MAC, as demonstrated in Section

3.3.2 Channels with Independent Noise

By setting 0%= 0 in Figure 3.1, we obtain a BC with independent

noises at the receivers. The region C1 is then characterized by
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C1 =1.2nats
Cz= .90 nats

Boundary of Capacity Regiocn

Achievable Region

3.3 Achievable Region and Capacity Region for Physically Degraded

AWGN BC with Feedback for P = 10, oz=1andc§=1.
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1 ap
< = =
Rl 23 1In (1 + 5 )
e
(3.3.4)
R,<zln (1+ —2—)
aP + G2

where O: = cicg/(0i+0;). The region C2 is described by the same expression
with 1 and 2 exchanged.

Unlike the physically degraded case, where C1CZC2, we can easily
see that (0,C2) and (C*,0) are on the boundary of Cl' and (Cl,o)and (0,C%)
are on the boundary osz.Ciis the single user capacity to the ith receiver,
and C* is the capacity to a receiver with noise variance 0;. Since for

2 and o2

91 2

>0, 0; < min(oi,oé), then (C*,0) is outside of C2 and (0,C*) is
outside of Cl’ so that neither region includes the other. Figures 3.4

to 3.6 show the achievable regions and outer bounds for equal noise cases,
for P/Oi = P/G; = 1,10, and 100, respectively. Note that the achievable
regions and outer bounds are quite close for P/ci = 10 and 100, but that
this is not the case for low signal to noise ratios. 1In all of these
cases the superposition region, which represents the non-feedback capacity
region, is just the time sharing region, as can be seen from the super-

position equations which become, for o2 =0

2 2
1 2

=0
c’

1n(1+%2)
Cc

N =

R <
(3.3.5)
P

Y
[ A
™

In (1 + )

ap+02
(o]

I e o e i e i e e e
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Outer Bound with
Feedback

Achievable Region

3.4 Achievable Region and Outer Bound for AWGN BC with Independent
Noises and Feedback for P = 1, ci = 03 = 1.
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, Outer Bound
)
Achievable
. Region
Ra
|
C
R1 1
3.5 Achievable Region and Outer Bound for AWGN BC with Independent

Noises and Feedback for P = 10, oi = 05 = 1.
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Achievable Region

Outer Bound C1= Cz= 2.31nats

Cq

3.6 Achievable Region and Outer Bound for AWGN BC with Independent

Noises and Feedback for P = 100, oi = 0; =1.
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Adding, we obtain

1 P _
R1+ R2i5 ln(1+62) =C, = C (3.3.6)

Since (Cl,O) is achieved by communicating with only receiver one, and
(O,Cz) by communicating with only receiver two, time sharing can achieve
any point on the boundary of the region represented by (3.3.6). Thus,
for these examples, the use of feedback has enlarged the capacity region.
Figures 3.7 through 3.9 are analogous to Figures 3.4 through

3.6, but for the cases where 02 = 202

2=
5 1 and P/Gl 1,10, and 100. The

time sharing line, and the boundary of the capacity region without
feedback (superposition curve) are added to each of these examples, as
well. Behavior is similar to that for equal noise. We point out that
though the marginal noise distributions for this model are the same as
for the degraded example of Section 3.3.1, the achievable region here
lies outside the superposition region, while for the degraded example,
the achievable region was inside the superposition region. The behavior
of the coding scheme of Section 3.1, therefore depends critically on the
joint statistics of the noise wvariables, rather than just the marginals.
Observe that in Figure 3.6 the achievable region is not convex,
and that in Figure 3.9 part of the boundary of the achievable region lies
inside the superposition region. The coding scheme is sub=-optimal fox

these examples as well.
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C1=.35
Cz=.20

Capacity Region without Feedback

Outer Bound :
Achievable Region

3.7 Achievable Region and Outer Bound for AWGN BC with Independent
Noises and Feedback for P = 1, c-i =1and o

2
2 .
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C1 =1.2nats
cz-_- .90 nats

Capacity Region without Feedback

Achievable Region

Achievable Region and Outer Bound for AWGN BC with Independent
Noises and Feedback for P = 10, c-i =1 and c—é = 2.
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(1=2.37nats

Outer Bound E2=1. 97 nats

Achievable Region

Capacity Region without Feedback

3.9 Achievable Region and Outer Bound for AWGN BC with Independent
Noises and Feedback for P = 100, oi =1 and 05 = 2,
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3.3.3 Intermediate Cases

We conclude this section on numerical results with two inter-
mediate cases, that is, examples wherxre the noises are partially cor-
related. Recall that for the examples of Figures 3.3 and 3.8, the total
noise variance at receiver one was 1, and at receiver two it was 2. 1In
the former case the common noise had variance 1, and in the latter, variance
0 (it was non-existent). In both cases P = 10. Figure 3.10 repeats the
results for those cases, and gives the achievable region and outer bound
when the common noise has variance %u As expected, the results lie bet-
ween the previous results.

For the equal noise case, a degraded channel is the degenerate
case, that is, G;=0. In this case both receivers are the same, and the
capacity region, with or without feedback is just the time sharing region.
Figure 3.5, therefore, which had the results for P/Gi = P/G§ = 10, with
no common noise, as well as the time sharing line, already contains the
results for the two extreme cases. Figure 3.1l repeats 3.5 with the addi-
tion of the outer bound for g2 = %: For this set of parameters, the

achievable region was virtually indistinguishable from the outer bound, and

could not be plotted separately.
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C1= 1.2 nats
C
2 " = .90 nats

Rq 1

_ r AWGN BC with Feedback.
P=10and o> +c2 =1 and 02 + 02 = 2, Comon Noise Variance
ot=0, .5, 1. T 2
- y oIy .

3.10 Achievable ions and Quter Bounds fo
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C1= l:z: 1.2 nats

: C
Ry 1

3.11 Achlevable Reglons and Outer Bounds for AWGN BC with Feedback.

= 10 and o2 + Gl o? + 02 = 1. Common Noise Variance o2 =
0, .5, 1.
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CHAPTER 4

CONCLUSIONS

We have presented two similar feedback coding schemes for the
discrete-time AWGN multiple access and broadcast channels respectively.
These schemes are extensions of the approach given for the band-limited
single user AWGN channel with feedback by Schalkwijk ;nd Kailath [2],[3].
The.multi-user schemes share with the schemes of {2] and [3] the properties
that they are deterministic and achieve doubly exponential decay of error
probability with block length, although for the MAC this holds only
for rates dominated by those achieved without the use of the super-
position approach described in Section 2.1.2. The sets of achievable
rates afforded by these schemes exceed previously known achievable
regions, except in the case of the physically degraded broadcast channel,
for which the true capacity region was already known.

We have also established outer bounds for the achievable
regions of the MAC and BC with feedback, both for discrete memoryless
channels and for the AWGN case. The outer bound for the AWGN MAC coincides
with the achievable region, yielding the capacity region. For the

WGN broadcast channel the achievable region fails to reach the outer
bound in all cases. This failure is due, to at least some extent, to a
sub-optimality of the achievable region; the coding scheme fails to achieve
even the known capacity region of the physically degraded AWGN BC. It has
not been determined whether the outer bound for the BC is itself too loose.

The results obtained do demonstrate a previously unexpected fact: feedback
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can enlarge the capacity region of broadcast channels as well as multiple

access channels.

results

1)

2)

3)

4)

A number of areas for further research are suggested by the

of this dissertation:

Extensions of the general approach to other two user channels with

feedback.

An achievable region or outer bound for M user channels, where

M > 2, for either the MAC or BC with feedback.

Application to discrete memoryless channels. This work depended

on the existence of an optimal constructive approach for the

single user channel and on the fact that transmitted signals combine lin-
early. A constructive approach for single user erasure channels

is well known [24], and approaches for BSC's ([201,[29]1) and for

general discrete memoryless channels [21] have appeared in the
literature. 1In addition, as mentioned in Section 2.1, a coding

scheme for discrete memoryless MAC's with feedback has appeared

[13]. One question of particular interest is whethexr the outer

bound for MAC's with feedback found in Section 2.2.1 is achievable

in general.

The gaussian broadcast channel. The results of Chapter 3 are
incomplete in that the capacity region has not been found. From
the examples of Section 3.3 it is clear that the achievable region

of Section 3.1 is not the capacity region. It seems doubtful that

PSSP e PSP st e e e e . e e e —— e ——
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the addition of superposition followed by convexification would
be optimal, though the regions so obtained might in general lie
close to the outer bound. Conversely, it is unclear how tight the

outer bound of Section 3.2 really is.

Noisy feedback. In [2] and [3] and subsequently ([22],([23])
attempts were made to analyze and optimizethe basic Schalkwijk-
Kailath approach when additive noise appeared in the feedback
link. Under the reasonable assumption that both forward and feed-
back powers were limited, the results were discouraging: none of
the approaches were able to yield reliable communication at any
positive rate. From a purely Shannon theoretic point of view
this is somewhat beside the point, since the existence of codes
which do not employ feedback is guaranteed by the coding theorem.
Noiseless feedback simplified the coding problem, but did not add
anything in the way of achievable rates. In the multi-user case,
however, feedback generally does enlarge the capacity region, in
addition to allowing a simple coding procedure. Noise in the
feedback links must therefore affect the size of the capacity
region, and as the feedback links become totally noisy, capacity
regions must degenerate to their non-feedback values. Results in
neither the forward nor converse directions exist as yet.

Two classes of problems related to that of noisy feedback are
that where the feedback links are of a different type than the

forward links (e.g. gaussian forward links with noisy or noiseless
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discrete feedback), and the case where only one feedback link
is available. For the MAC this would correspond to allowing the
receiver feed back to only one transmitter. In the BC either
only one receiver could feed back, or perhaps the receivers would

share a single feedback channel in a multiple access mode.
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APPENDIX A: ROOTS OF P(p)

We prove that the quartic polynomial

P(p) = 0% (g%+P +P,+2/P Pp) -

1
(o@+91(1—p2))(oz+p2(1-p2)) (a.1)

has exactly one root in the interval O<p<l.
The following are true:
1. A guartic has at most four real roots.

2. Lim P(p) = - «

prco
3. 2(0) = -p,P, < O.
4. P(1) = <}(¢$1+¢5;)2 > 0.

5. B(-1) = (/B -/F,) 7> o.

3. and 5. imply that there is at least one negative root.

2. and 4. imply that there is at least one root greater than 1.

Hence there are (from 1.) at most two roots in (0,1). But by 3. and 4.
there are an odd number of roots in (0,1l). Hence there is exactly one.

Since Pl' P and o2 are all arbitrary, this result holds also for the

2’
polynomial P(o,p) defined by equation (2.1.36).
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APPENDIX B: CONCAVITY OF MUTUAL INFORMATION FOR THE MAC

In this apéendix we show that the quantities I(Xlxz;Y), I(Xl;YIXZ),
and I(xz;Y[Xl) are concave functions of the joint probability assignment of
Xl and X2.

The first quantity is concave, since it is just the mutual in-
formation between the input and the output_of a channel (see [24]). We
need only show the result for I(Xl;lez), since the same demonstration
holds for I(Xz;lel) with Xl and X2 exchanged.

Consider two input probability assignments pl(xl,xz) and pz(xl,xz).

Define

pB(xl,xz) = Otpl(xl,xz) + (l-d)pz(xl,xz) o €[0,1] (B.1)

Obviously, P,y is also a joint probability assignment on Xl'XZ' Now define
the auxiliary random variable ¢, with probability law Pr[%= 1] = o, and
Pr{d= 2] = 1-0.

Consider the following communication scheme: we wish to communicate
the value of & to the receiver. A sample of ® is drawn, and a corresponding
Xl,x2 are drawn from the joint probability assignment corresponding to the
sample value. That is (Xl,xz) has probability assignment pi(xl,xz) when

® = i. Denoting the mutual information resulting from p; by Ii(xl;YIxj)'

we have that

T(X)5Y[X,0) Pr[@=1]Il(Xl;Y|X2) + Pri9=211, (X ;Y[X,)

0T, (X7 ¥([X,) + (1-) I, (X, 5¥Y(X,)




-121-

The mutual information unconditioned on ¢ is just I(Xl;lez)

.evaluated at p3. In other words,
X.:Y = ey .
(X, lxz) 1,0, rlxz) (B.3)
Subtracting (B.2) from (B.3), we have that
Tx)5Y[X) - 10X :¥[x,0) =1, - ar, - (1-a)I, (B.4)

The left hand side is

H(Y[x,) = H(Y|X X,)1-[H(¥]X,®) - H(¥|x,X,9)]

H(Y|x,) - H(Y|x2<I>)

I(Y;@lxz)

|V

0 (B.5)

where the first equality in (B.5) holds since given X , Y is independent

1'X2
of §. Substituting (B.5) into (B.4), we have

- - - >
I, - oI, - (1-u)I, >0 (B.6)

Therefore I(Xl;lez) is concave in p(xl,xz).
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APPENDIX C:

CODING FOR THE AUGMENTED AWGN BC WITH FEEDBACK

We consider the model of the BC shown in Figure 3.2. This
model is an extension of the canonical broadcast channel, iﬁ that one
receiver is allowed to see both channel outputs. This model may be ap-
propriate in some applications, say in casés where one receiver is located
physically between the transmitter and the other receiver, and received
data is fed back to the transmitter directionally. The example is
interesting theoretically since it allows the exploitation of the super-
position idea, and obtains results which are optimum (i.e. reliable
communication is possible at all rates in the capacity region). The
approach of Section 3.1 does not use superposition, and is suboptimal, at
least for the only case in which it was applied and the capacity region
was known (degraded channel).

Recall from Section 3.2 that the capacity region for the AWGN

version of Figure 3.2 is given by

1
syl @48
e
(C.1)
R2<%-ln (1 + —2E
- AP+02+0%
2
2 2
0?0
where 02 = & + 12
e o2+g2
1 ~2

We now present a coding scheme which achieves reliable communication

at all points satisfying (c.1).
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All definitions are as in Section 3.1, except that after k-1

transmissions receiver 1 has

k-1 _
6 * A0, = 8 + 416, * gy

(c.2)

@
N
I

6 ¥ M1

and receiver 2 has the same estimate of 92. dk—l above is assumed to
be a known constant. Since receiver 1 knows receiver 2's channel data,
there is no problem in his forming the same estimate of 62.

th .. .
Now for the k transmission, the transmitter sends

(C.3)

WF
°!
1
!

where

D

]
H
+

[le

(c.4)

. . . . tai h
Receiver 1 obtains r1k and r2k’ while receiver 2 obtains rzk, where

ik = %%t Vet Vix (c.5)

At this point both receivers upgrade their estimates of 92 as before,

forming

(C.6)
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- = 4«5 g5
TikMe-1” "2k ™1™ V7 9 k-1 (c7)
Since
= - Zkrk:_ r
M = Nk-1 — 2k (c.8)
rs
zk
then 2
- ol k-1
bk = q{_i bk-l -
r2
2k
P P
= 2
D J bk"l o +O§+ 1l+g2
= bk_l == = b -l (C‘.g)
P+ g%+ g2 P+02+c§
To upgrade his estimate of 91' receiver 1 first combines ik and
Lok by forming the maximum likelihood estimate of X
2
o GEtoTyy SV3ct ok ,
r! = ——————=%x + W + — = X + W, + W
+ o2 k k Rt 2 k k
Ci 2 Oy
(c.10)
[P g ,2k-1 ' . .
He then subtracts ‘[g-¢5 (62 ) from ry- The N1 terms cancel, yielding
P Ek—l P g
Lo = 5 - J%—— 92 +Wk+wl~': (€.11)
731 Pr-1

Treating 62 as an unknown (but non-random) parameter, then

+ (€.12)

and

B
iktk-1 T J% Va1 (€.13)
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Receiver 1 now forms

LIPS - _ Ikl
01 ¥ %02 T 0 k-1927 T 3k
r
3k
=06, * dkez + &y (C.14)

By substituting equation (C.11l) above, defining r_, , it is seen that

3k
a g-g
_ k-1 D
dk = dk—l + N 5 (C.15)
k-1 3 *o'y
and p
- 7 ® V-1 ,
B = &1t 3 Y ND o, Mt wg) (C.16)
A 7o
which may be squared and averaged to obtain
- =7 _ e P k-1"e
% < &k ak—1(1>+02)+77(1=+02)2
7 e 7 e
02e
= %-1 (c.17)
7+ o

We can multiply equations (C.8 ) and (C.16) and average to obtain
the following recursive expression for the correlation between the estimate

noises:

_ Dok k-1 T3kbk-1 . _ Takok-1 T3k k-1
= + ¥ T, -
Sk T Sk-1Tk-1T T — = 2k 3k —
Lok 3k T3k
Tok Tk-1T2x5k-1
- (c.18)
—

Tk
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By assumption Ek4lnk-l = 0. This implies that Tgiﬁk—l =0, so

that the first and third terms of (C.18) are zero. From the definition

of T3k above, we see that f;;zk_l = erEk-l’ so that defining T = fiiak'erknk-l

for 1 = 2 and 3, we obtain

h o
__ T oxT 3k
£, = ( 2k 3k _ 4, (C.19)
Kk o= =
2k 3k

But from (C.5) and (C.1ll) we obtain

+ (wk+w]'<)(wk+w )

ToxF3k 2k

02
+ + wklw2k
0?05
+ ———————
2
o] +o%,

+ o-2e (C.20)

+ O

QI D "W |0

[}
o

Substituting into (C.19), then, gknk=0.
To initialize, the messages are sent separately

(amplified up to expected power P), so that

w _+w'

ég +dy6, = 6+ —
/I35
(C.21)
~0 Yot¥2,0
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d =0
°
a = =
0 12p
P+ 0; (€.22)
Py = 175
b = ©
Thus the hypothesis that E;ﬁk = 0 is true by induction, and
2 1k
= -
ak = aO[P ] (C.23a)
=+ 0%
D e
P Lol |k
bk = bO LA (C.23b)
P+02+o;
P g W~
dk = g_ -Z- SJ'_]' (C.23¢c)
7t % 5=V 371

A similar

analysis as in Sections 2.1 and 3.1 yields that

reliable communication is achieved at all Rl and R_ such that

since D = 1+g2, D €[1,*], and % £(0,11. Defining o =

desired result.

2

(C.24)

, we obtain the

I+

o e
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APPENDIX D: AN OQUTER BOUND FOR BROADCAST CHANNELS

D.1 Preliminaries and an Alternate Representation of Prior Results

In Chapter 3 we found it desirable to obtain an outer bound on
the capacity region of the broadcast channel with feedback. In this
appendix, we apply the methods of Section 3.2 to bound the capacity region
of channels without feedback. The best such bound for general broadcast
channels is that found by Sato [31] (also in [1]). For a general BC with
input X and outputs Y and Z, with marginal conditional prqbabilities ﬁ(ylx)
and p'(?lx),let P be the following class of joint channel probability

functions

P = {P(YZ|X): zp(yzlx) = p'(z|x)
y (D.1)
Splyz|x) =-ply[x)}
z
Then for each p € P define
Rip ) = co[qt&f(Rl,Rz): R, i_Iq(X;Y)
R. < I (X:2) (D.2)
2 —q
R R I (X;YZ
1t Ry S I evE)) ]

where ( is the set of all possible input distributions. Sato's outer

bound is then

~ v =M (D.3)
C peP R(p)
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In equation (D.2) and throughout this appendix it is convenient
to express I(X;YZ) as Iq(x;YZ)Ip to denote dependence on p, the channel
probability fuﬁction, and g, the input probability assignment. Similarly
I(X;Y) and I(X;Z) are written as Iq(X;Y) and Iq(x;z) to denote their
dependence on gq. They are independent of p for all p £ P.

The inequalities which define R‘p) in (D.2) follow from stan-
dard information theoretic arguments, and the intersection in (D.3)
holds since a code for the actual channel must be a code for every channel
with the same marginal conditional probabilities.

If we define the followirg quantity:

J (X;Y2) = inf I (X;YZ)I (D.4)
4 peP P

we obtain an alternate representation of (D.2)-(D.3). Defining the

region

C* s col U {(Rl,RZ): R, < Iq(X;Y)

1 =
qeQ
R, < I (X;2) (D.5)
2 — g
R, + R2 5_Jq(X;YZ) 1
we will prove
Theorem D.1 c* = (D.6)

Before proving Theorem D.l we introduce the following lemmata:




=130-
Lemma D.1 Jq(X;YZ) is concave in qg.

This follows from Theorem 5.5 of [26].

Lemma D.2 For R(p) defined as in (D.2), and for any non-negative vector

E_in R3, define

M) = szp_[xqu(x;Y) + Azlq(x;Z) + 'A3Iq(X;YZ) IP] (D.7)

Then a point (R*,R;)is in R(p) if and only if for all X > O,
: * ; L] : * * .
MR+ MRS A, (Rf+R3) < M(}) (D.8)

The above applies to the set (* with Jq subsitituted for Iq(X;YZ)lp in

(D.7).

This lemma follows from an application of the separating hyperplane
theorem (Theorem 11.3 of [26]). We note here that the convexification
in (D.2) and (D.5) is redundant, since both underlying unions are already

convex (since all of the constraints are concave and Q_is convex) .

Lemma D.3 Since Iq(X;YZ)lp is bounded and continuous in p and g, convex

in p and concave in g, and p and Q are convex and compact, then

inf sup I (X;Yzﬁ = sup inf Iq(X;YZﬁ p (D.9)
P q q p

This is Lemma 37.3.2 of [26]. Note that the continuity and compactness

“hypotheses imply that sequential limits of informations are actually achieved.
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We now prove Theorem D.1. If (RI,RE) is in ¢*, then there is some
q for which the three inequalities in (D.5) are satisfied (again, by
continuity and compactness, (R{,RE) is not only approached as a limit, but
actually achieved), but since for all p, Iq(X;YZ)IP 2_Jq(X;YZ), the same
q yields informations which satisfy the three inequalities in (D.2) for all
p. Therefore C*C(C'.

Conversely, assume (R{,R;)'is in C'. From Lemma D.2, it is true
that for all p ¢ P, and for all A>0,
A R*) + A RS + A (RI+RS) < S:p[)\llq(x;Y) + szq(x;Z) +

:YZ .
)\3Iq(x Y )‘P] (D.10)

Since (D.1l0) holds for all pe P, we can take the infimum of the right hand

side over p, and apply Lemma D.3 to obtain

L] %* % * 1 - .
)\lR1 + )\2R2 + )\3(R1+R2) < s:p 1;f [)\llq(x,y) + leq(x,z) +
AL (X;¥2), 1 (D.11)
3°q Ip
Only the last term in (D.1ll) depends on p, and its infimum is Jq.
Therefore

* * * * . .
)‘lRl + }\sz + )\3(R1+R2) < sup [Aqu(x,Y) + Aqu(X,Z) +

q
AT (X;¥2) ] (D.12)
3 g

and by Lemma D.2, (R{,.R;) is in C*. Therefore C'C C*, and Theorem D.1l is
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proved.

D.2 A Néw Outer Bound

We now give a new outer bound on the capacity region of broad-
cast channels, based on the approach of Section 3.2. Consider the aug-
mented channel of Figure 3.2without feedback. The capacity region of this
channel can be no smaller than that of the corresponding BC without the
link between receiver 2 and receiver 1. The augmented channel is

degraded, so that it has capacity region

¢, () =q%ip{(Rl,R2): R,

R, E_Iq(U;Z) }

<I (X;Yz|U)l
= 4 P (D.13)

where
Q' = {alu,x,y,2) = qwqx|u)plyz|x)} (D.14)

The capacity region C of the true channel must lie in Cl(p)

for all p ¢ P, so that

CccCc N Cl(p) (D.15)
PeP

By reversing the direction of the added link, we get
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peP
where
c.p) = U {(Rl'R ): Ry < I (U;Y)
2 qe Q' 2 - 1 (D.17)
R I _(X;YZ|0)
257q | |p?
Therefore, we have the following
Theorem D.2 The capacity region of the general discrete memoryless
BC satisfies
C C [ﬁcl(p)]ﬂ[ N Cz(p)]
peP peP
= NIc, N, ()] (D.18)
pPEP
where P is defined by (D.1).
D.3 Comparison of the Bounds
We will prove the following
Theorem D.3 The bound of Theorem D.2 is tighter than that of Theorem
D.1. That is
FﬂCl(p)fﬁcz(p)] C C* (D.19)

peP
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To show this, wé first find an outer bound for r;cl(p).
peEP

(Rl,RZ) € Cl(p), then there exists a q for which

I (X;Y2
Ry < IgavE [oyy g

R2 f_Iq(U;Z)

For any p, if

(D26)

Since U*X>(Y,2) is a markov chain.(by definition of Q'), then by the

data processing theorem ([24] Theorem 4.3.3)

R. <TI (U:2) < I (X:2)
Also,

R. + R <1I (x;yzlu)l + I_(U;2Z)
—q P q

I~

Iq(x;yzlu)lp+ Iq(U;YZ)IP

= I (UX;YZ
q )lP

Iq(X;YZ)lp

Therefore,

1

N

Cl(p)(: LJ{(Rl,Rz): R, + R f_Iq(X;YZ)IP

qeQ

R2 S_Iq(X;Z)

(D.21)

(D.22)

(D.23)
}

Using an approach similar to that which proved Theorem D.1l, we can show

that
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o
ne,®c ;= U{®RRI: R +R <J (X;Y2)
1 - 1772 1 2 —
peP 1 qeQ 1 (D.24)
R. < I (X;2) }
2 — q
We can define C; analogously, and obtain
(D.25)

NIe NG ccone?
oaeng e

We now show that C;fWC§ = C*, To show this, we use the

fact, equivalent to Lemma D.2, that a convex set is completely specified

by the set of its tangent hyperplanes (i.e. equals the intersection of

the half-spaces determined by the hyperplanes), and show that every tan-

. O~ A0 . .
gent to C* is tangent to le\Cz. We use a geometric argument, similar

to that of Section 2.3. Recall that C* is defined by

* = . .
C qe:LQJ {(Rl'RZ)' Rl in(x,y)
R2 < I (X;2)
- q
‘Rl + R2 qu(X;YZ)}

(D.26)

For every g, the set defined by the inequalities of (D.26) is

of one of the types shown in Figure D.l. A similar situation occurred

in Section 2.3, and there we were able to disregard sets of the type

shown in Figure D.la). Here we can show that type a) does not even occur.

Consider that channel in P for which Y and 2 are independent given X.




a) J(X:YZ)‘ T136-

ﬂ2 J(X;YZ) > I(X;Y) + I(X;Z)

I(x:Y) J(xvz) Ry
b)
JIX:YZ)T
"2 J(X;¥Z) = I(X;Y) + I(X;2)
i(X:2)
1X:Y) ' 3
c)
"2
J(X;YZ)*\ J(X;YZ) < I(X;Y) + I(X:Z)
1(X:2) =7
|
P
:y) - Ry

D.1 Basic Sets for Proof of Theorem D.2.
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This channel is always in P, Call this channel Py- For any q,

J (X;Y¥Z) = inf I (X;Y2 < I (X;YZ 27
q %5 Y2 g g Fi¥E) | S )lpo (0-27)

Since, for Pyr Y and Z are independent given X, it is true that

I (X;YZ = H (YZ - Y| x) - 7| X
( )lpo ()IOH(I) H(I)
< B 4 - - 7
q(Y) + Hq( ) Hq(YlX) Hq(z‘X)

=1 (X; ;2 .2
q( Y) + Iq(X ) (D. 28)

where we have dropped the dependence on po for quantities which depend only
on the marginal conditional probability functions. Combining (D.27) and

(D.28) we have that
J (X;¥2Z) <I (X;¥Y) + I (X;2Z D.2
q - q q ) ( °)

Therefore sets of the type depicted in Figure D.la), which correspond
to the reverse (strict) inequality, do not occur.

Now consider a tangent to C*. From continuity and compactness,
it must be tangent to one of the sets of Figure D.1l. Assume the tangent

has equation R, + ARz = kl(l), where 0 < A <1. The point of tangency

1
must be the point marked P in Figure D.1l, since the line has a slope less
than -1. Now assume that this line is not tangent to C;. The basic sets

of C; are the same as those of Figure D.1l, except that the horizontal

e e e e iy vae mar e e e e P - mm
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line corresponding to the constraint on Rl is absent. If the tangent we

. . . o . .
are considering is not tangent to Cz, assume that there is a tangent with
the same slope and a larger constant, say kz(k) > kl(A). The case of

a smaller constant cannot occur, since C*C:Cg. This new line R, + ARZ =

1
kz(l) is tangent to a basic set of cg for some othe; g at the point cor-
responding to P. We can evaluate the basic set of (* for the new g. The
new line is tangent to this sét at point P, since the imposition of a
constraint on R, will not delete that point, because of inequality (D.29).

2

Therefore, there is a point of (C* lying above the assumed tangent, leading

to a contradiction. Hence, all tangents of the form R, + ARQ k(\), for

1

0 < ) < 1 are tangent to Cg.

In a similar fashion, tangents of the form ARl + R2 k(A) for
0 5_1 f_l can be shown to be tangent to Ci.
From these two facts, it is clear that C* is no smaller than
C;F\CE. Since each of the latter sets includes C*, C* is no larger than
the intersection. Therefore C?WCS = (C*, and Theorem D.3 is proved.
Since C*c:Rz, but is defined by three inequalities, the fact

that it can be generated by intersecting sets formed by pairwise combina~

tions of the constraints is intuitively satisfying.

D.4 Discussion

In this section we evaluate the bounds for two simple cases, the

degraded channel and Blackwell's example.

For a degraded channel, the cascade (physically degraded) channel
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is in p. Since in general Iq(X;YZ) z_Iq(X;Y) with equality for cascade
channels, then the cascade channel achieves the infimum in (D.4) and

Jq(X;YZ) = Iq(X;Y)‘ (D.30)

C* then becomes

C* =q&k:JQ {(Rl,Rz): R < Iq(X;Y)

I ;2 .
R, < I (X;2) (0.31)

Rl + R2 < Iq(X;Y)}

(D.31) describes a four-sided region in Rz, which we have sketched in Figure
D.2 for an AWGN channel with P = 10, ci = 1 and o; = 2. Although much of
the reasoning of the previous sections may not apply to arbitrary continuous
channels, the results are all easy to show for the AWGN case. In particular
all of the previous theorems are easily shown for degraded channels with-
out using any of the convexity theory, which required among other things
compactness for the space of input probabilities and channels,

which does not hold in the continuous case.

The region Cl(p) described by equation (D.1l3) becomes for the

cascade channel

C.t) = U {(Rr,,R,): < I(X;Y]|U)
1 qeq’ REEI I (D.32)
R2 E_I(U;Z) }

which is the true capacity region. This region is also sketched in Figure
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C;=1.2nats
N 1.
1 N Cz .90nats

\ Sato's Bound

Capacity Region (and Bound of Th. D.2)

D.2 Sato'g Bound and Capacity Region of AWGN BC with P = 10, 0]2_ =1
and 05 = 2
2 o
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D.2. Clearly, in this case the bound of Theorem D.2 is strictly tighter

than that of Theorem D.l, and indeed is exact.
Blackwell's example is a channel described by a ternary input
alphabet X = {0,1,2}, two binary output alphabets VY = Z = {0,1}, and

the joint channel probability function given by
p(0,1[0) = p(1,0|1) = p(1,1]2) =1 (D.33)

This channel is noiseless and not degraded. An obvious consegquence of
the noiselessness is that the set P has only one member, the actual
channel. Sato's bound for this channel is shown in Figure D.3. At the
time of the appearance of this result in [l1], it was the smallest known
outer bound for the channel, and it has since been shown (Gel'fand [271])
that the whole region is achievable . Thus while Sato's bound is loose
for degraded channels, it has been shown to be exact for at least one
non-trivial example.

Obviously the bound of Theorem D.2 must also be exact for this

example.

NOTE: As this manuscript was going into final preparation, a paper ap-
peared in which a new outer bound on the capacity region of discrete
memoryless BC's was given (Marton [34]). We have not had time to

compare the bound of [34] and Theorem D.2.
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D.3 Capacity Region of Blackwell's Example.
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