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Abstract

The issue of AC losses in full-size superconducting cables has been explored both
theoretically and computationally in this thesis. A substantially accurate model is
presented which captures the dominant physical behavior of a composite supercon-
ductor, whether it be a single multifilamentary strand or a large cable.

A set of analytic solutions, the first of its kind available, has been derived for a wide
range of geometries. In the process, there is a formal proof that twisting filaments
or strands reduce losses. The effect of cable terminations on current distribution and
loss has been outlined and a criterion is given for determining the regions of validity
for the infinite cable assumption. This assumption, in turn, lays the foundation for
the implementation of the computational part of the thesis.

A nonlinear 2D computer program, which takes into the effect of superconducting
saturation, has been developed and implemented. As a result, current distribution
and loss profiles of a multifilamentary strand can be solved with great accuracy and
efficiency, thereby adding new capabilities in the analysis of losses in multifilamentary
strands.

A 3D code, tailored to the geometry of the proposed ITER cable-in-conduit con-
ductor (CICC), is the final contribution of this thesis. The need to accurately describe
the geometry of the CICC lead to the cable winder algorithm. From the derived strand
trajectories, the 3D code produces current distributions and losses for transverse mag-
netic fields. Loss characteristics were compared against available experimental data.
A new set of results and design recommendations emerged from the analysis.

Thesis Supervisor: Jeffrey P. Freidberg
Title: Professor
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Chapter 1

Introduction to AC losses

Since the discovery of the phenomenon of superconductivity in 1911 [1], there has been

ongoing research to develop applications to utilize superconducting properties. As a

result, there have been many types of materials and engineering products developed.

This thesis is concerned with applications which utilize superconductors as large scale

conductors.

Naturally occuring elements such as mercury fall into what are termed type I

superconductors. These conductors, when cooled below a critical temperature and

subjected to a magnetic field less than the critical field, expel flux by means of a very

0000>(
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Figure 1-1: (a) A uniform array of vortex currents produces no net current density
but (b) a gradient in the density of vortex currents produces a net current
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CHAPTER 1. INTRODUCTION TO AC LOSSES

Figure 1-2: Several composite conductors: (a) Nb 3Sn multifilamentary conductor

(b) NbTi monofilament conductor (c) Classical NbTi conductor (574 fil.) (d) AC

conductor(i5k fil.)

thin surface current. This phenomenon is termed the "Meissner" effect. Another class

of bulk superconductors called type II superconductors operate in a "mixed state" by

allowing a much larger magnetic field to penetrate before it becomes normal. This

is made possible by the presence of flux pinning vortices. These "fluxoids" produce

vortex currents as shown in Fig. 1-1. A gradient on the density of these currents

produce a net current inside the conductor, not just on the surface. This is what

allows the external magnetic field to penetrate the conductor and result in a much

higher critical field. The composite conductors mentioned in this thesis use type II

bulk superconductors.

The first application of superconductors involved magnets which were made of



Nb 3Sn thin tapes in 1957. In 1963, the first NbTi monofilament strands were pro-

duced. For stability reasons, these monofilament strands became multifilaments em-

bedded in a normal conducting metal base (see Fig. 1-2). To reduce losses, the

multiple filaments were also twisted.

For large systems, high-current cables were developed. These cables are manu-

factured from many multifilamentary strands. The following two types of cables are

often used:

a

C-

Figure 1-3: (a) 11-strand Rutherford-type cable (b) Cable-in-conduit conductor (c)
Cable without a jacket.

* Rutherford cables (see Fig. 1-3(a)) are flat multi-strand cables. Because Lorentz

forces can displace strands which in turn can cause quenches, these cables are

packed tightly (90% fill fraction).
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Application

Solenoids

NMR
Fusion

High-energy physics

MRI
SMES

MAGLEV
DC motors
AC generators
Magnetic separation
MHD

Small bore
Large bore

Toroidal coil
Transformer coil
Beam-guiding
Detectors

Pulsed
Low frequency

Conductor

W
C
W
CIC
CIC
RC
C
W
C,RC
C,RC
W
RC
RC
C
RC

Table 1.1: The main characteristics of superconducting magnets. W=wire,
RC=Rutherford-type cable, CIC=cable-in-conduit, C=cable without jacket.

* The cable-in-conduit conductor (CICC) as shown in fig. 1-3(b) is manufactured

in several stages, each stage with its own sub-bundles twisted together. An

incoloy jacket supports the conductor and contains the liquid helium. The

forced flow cooling gives additional heat transfer inside the cable.

The main applications for superconducting magnets are outlined in Table 1.1.

In this thesis the emphasis is on the electromagnetic properties of circular multi-

strand cables such as the CIC conductor used in fusion machines and on proposed

magnetically-levitated (MAGLEV) trains.

1.1 Loss mechanisms in superconductors

When the transport current inside a superconductor and/or the magnetic field it

experiences do not vary with time, there is no power loss. This is a primary reason

for using superconductors. With a time-varying magnetic field and/or transport

Max. field on
conductor [T]
20
15
20
13
13
12
6
0.5-2
5-10
5-10
5
2-5
2-6
8
8

Field-sweep rate
[T/s]
10-

small
small
0.1-10
0.1-10
10.2
small
1073

103-104

small
0-10
small
10
small
small
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current, electric fields are induced and joule heating ensues. These losses demand

more refrigeration or in worse cases, they may be the culprit to quenches in the

system. There are three major types of losses - loss due to magnetization in the bulk

superconductor, resistive loss due to coupling currents flowing in the normal metal

region of the composite conductor (across the copper matrix inside a strand or strand-

strand current via contact conductance), and loss incurred by transport current when

it experiences a finite resistance.

Magnetization or hysteretic loss is well-understood and predictable [29][11]. Since

these losses occur in the filaments, their magnetization effect is small. The maximum

magnetization Mp of a round filament is ~LpoJa where Ja is the critical current

density and a the filament radius. Typical values of J, =1 x 109A/m 3 and a = lpm

give MP = 5.33 x 10-4T, which is negligible.

Therefore, the objective of this thesis is to develop and analyze models which

predict the AC losses caused by electric fields and currents flowing macroscopically

in and between strands in multistrand CICC. The losses predicted by this model

can aid in the design of the refrigeration system, in future cables, or in predicting

possible quench mechanisms. The current distributions and time dependence behavior

obtained from the model can shed light on ramp-rate limitations of magnets which

require fast ramp rates (for instance, the central solenoid of a fusion reactor like

ITER).

1.2 Literature Survey

Current redistribution in full-size cables, as applicable to the calculation of AC losses

and stability, has not as yet been adequately treated in the literature. Methods vary

in sophistication, from one as simple as that used in the ITER coil design guidelines [7]



CHAPTER 1. INTRODUCTION TO AC LOSSES

to a full-scale electromagnetic treatment of the problem as presented in a paper from

the University of Twente [10].

It has been experimentally observed that the rate of decay of induced currents

inside these superconducting cable is orders of magnitude longer than that of a single

strand. It is thus safe to say that the behavior of a cable is a far departure from that

of a strand. There are two major differences. First of all, the geometry of a cable is

more complicated. The strands not only twist helically but transpose on each other

radially. A wire that is skirting the perimeter of the cable at some position along

the cable may find itself somewhere near the center or even on the other side further

down the length of the cable.

The other major difference is in the ratio of the parallel conductivity to the per-

pendicular conductivity. In a strand, when a filament saturates, the current flows at

critical current density and any excess current will spill into the next filament or into

the copper matrix surrounding it. The perpendicular conductivity is simply equal to

some fraction of the conductivity of copper. In other words, in the saturated region(s)

of a strand, due to competing conductivities in the parallel and perpendicular direc-

tion, large transverse fields and currents are induced. In the case of a cable, when

a strand saturates, the remaining current will spill into the normal metal region of

the strand or transfer to a neighboring strand via the interstrand conductivity. How-

ever, unlike filaments in a strand, the transverse interstrand conductivity is orders of

magnitude smaller than for copper. Even in saturation, it is much smaller than the

parallel conductivity of the strand. Under these conditions, parallel fields will remain

small compared to their transverse counterpart. Even more importantly, because the

transverse currents are also small, one sees a much smaller shielding effect than in

the single strand. The following section briefly outlines the existing literature which

attempt to solve for losses in a complex cable.
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For the proposed ITER coil, the formulae most commonly used to calculate cou-

pling loss due to strand-to-strand contact are the same as those used for a single

strand. They are simple and fully analytic, and use an experimentally derived time

constant and unknown geometric factor, nT, of the cable. Because it is essentially

only an equation for power dissipation, no insight into the current distribution of the

cable can be gleaned from this calculation.

Turck [8] and Ciazynski [2] evaluate the current distribution of two twisted strands.

Their model consists entirely of discrete circuit elements. They calculate the self-

inductance of the wires, the mutual inductance between them, and model the contact

resistance with resistors periodically placed along the length of the twisted strands.

From the behavior of two twisted strands, they extrapolate an estimate of the current

transfer behavior within the ITER cable.

Several papers from Japan [5] [6] and one by Egorov [3], use the same approach

in solving for AC losses caused by interstrand coupling. They all obtain analytical

solutions for the voltage induced in each of these strands by a uniform transverse

magnetic field. From these voltages, one can find the voltage drop across two adjacent

strands to calculate the amount of interstrand coupling current. In [5], they examine

three and seven strands twisted together. Egorov treats the interstrand currents for

the entire cable with the same method. Similarly in [6], the voltage induced in the

strands are used to calculate interstrand current distibutions. They find, via the finite

element method, the current distribution in the normal metal region of the strand

which surrounds the filament region.

They were able to obtain an analytical solution for the induced voltages by assum-

ing that the electric field along these strands is zero. The magnetic field distribution

is assumed to be constant across the cross-section and along the length of the braided

strands, i.e. no induced magnetic fields are included in these analyses. Because any
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shielding effects are neglected, the field in the structure is equal to the applied field.

These assumptions are valid for relatively small or slow field variations. In addition,

the limited number of wires in their model makes the assumption of negligible in-

duced magnetic fields reasonable. Finally, the complex effect of transport current on

current distribution was not fully discussed in either of these papers.

The work from the University of Twente is the first to attempt to solve the com-

plete AC loss and stability problem in full-sized cables [91 [13]. Discrete circuit equa-

tions are used to model the cable. A simple relationship between V and I for a single

strand is used to capture the nonlinear behavior of the superconducting strands. This

V vs. I relationship is crucial to modelling if and when wires in the cable saturate.

L.J.M. van de Klundert reports that due to the wires' non-linear behavior and strong

dependence on !%B, the solutions are difficult to obtain [9]. A. Verweij [18] recently

published a Ph.D thesis on the analysis of Rutherford cables used in accelerator mag-

nets. No definitive electromagnetic model of full-size three dimensional cables have

as yet been reported.

The estimates on the AC losses in CICC are contingent on an experimentally

derived parameter, the time constant. In order to predict the behavior of a system,

one should rely solely on physical parameters to make an estimation. The time

constant should be part of a set of results, not the means to a result. In other words,

at the present time, there in no direct way to reliably estimate AC losses given the

available analytical and numerical tools. This is the prime motivation for the thesis.

1.3 Scope of the thesis

Our model is philosophically most similar to the work done at the University of

Twente. The major difference is that our model is spatially continuous and thus
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uses E's and J's versus V's and I's. Another difference in modelling arises from the

fact that during manufacturing of cables, the substages are compressed to fit through

specified die sizes. This results in strands that do not necessarily rotate around fixed

radii. Our model can trace through the current paths of each strand in the cable.

From the strand trajectories, one can then solve for the field distribution inside the

cable.

The next chapter describes the model we use. It lists the assumptions and or-

dering system for which the model is based. The ordering is based on a long, thin

approximation where the geometry and the excitation source vary slowly in z, the ax-

ial coordinate of the conductor. The result is a general set of two coupled differential

equations derived from Maxwell's equations with two unknowns: Ell, the magnitude

of the electric field parallel to the superconducting portion of the geometry, and 4,

the transverse potential. The nonlinear constitutive relationship between all and Ell

found in Carr [12] and Rem [4] is used in the governing equations. Boundary condi-

tions along the rim and ends of a cylindrical geometry are derived. The model can be

applied to a composite conductor of arbitrary geometry, as long as the inner geometry

is not too tightly twisted.

In chapter 3, the governing equations and boundary conditions are used to derive

analytic results for geometries containing one twist pitch. The tractable solutions are

summarized here:

* Infinite length conductor (twisted)

* Infinite length conductor in a closed-loop (twisted)

* Finite length conductor with open ends (untwisted)

* Finite length conductor with open ends (twisted)
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* Finite length conductor with shorted ends (twisted)

The analytic results when taken to the appropriate limit match those found in lit-

erature. In addition, a constraint on the regime of validity for the infinite cable has

been derived. This is important for conducting experiments and for understanding

the applicability of theories which use the infinite cable assumption.

Chapter 4 marks the beginning of the computational section of the thesis. With

the differential equations, constitutive relations, and boundary conditions derived, a

"2D" code was developed and implemented. The purpose of creating this code is to

benchmark the model. The code solves for problems in polar coordinates r and q

and can be applied to long cables. The numerical strategy for solving the differential

equations and for treating the nonlinearity in all is outlined. A number of cases with

various geometries have been used for comparison against both analytic solutions

from chapter 3 and well-established literature results.

The problem of the CICC cannot be solved simply by the code described in chapter

4 because the inherent geometry of the cable is three-dimensional. Chapter 5 describes

a "3D" code which solves for the current distributions and AC losses given the strand

trajectories produced by the cable winder program. The results presented in this

chapter are quite surprising. Due to the relationship between the last and the second

to last stage twist pitch, a "zero-crossing" phenomenon corresponding to an effective

untwisting of the cable appears which results in increased and highly localized joule

heating. In addition, a new time constant, T7 was discovered and it is much larger

than the nT value extrapolated from experimental energy loss data. This implies that

the geometric factor n is much smaller than that for a helically twisted cable. A long

time constant can actually be seen in some preliminary AC loss data for a 192-strand

cable which is 1/6th the size of the ITER design cable.

An analytic expression was derived to approximate the azimuthal strand trajectory
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coefficients. These aided in the conceptual design of a new cable which can potentially

yield better performance from an AC loss point of view. The loss results of the

recommended design closes the final section of the thesis.
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Chapter 2

The Model

A cable is usually built of several stages, each stage consisting of several substages

of wires twisted together with its corresponding twist pitch. For most large scale

applications, these full-size cables contain on the order of a thousand strands. With

such a large number of wires, one is motivated to use a macroscopic continuum ap-

proach to solve this structure. Instead of treating each wire discretely, one can model

the cross-section as a continuous medium, with "locally averaged" parameters and

characteristics. This avoids the gruesome task of finding self and mutual inductances

and specifying differential equations for each and every one of the one thousand plus

strands in the cable.

The continuum model is coupled with an ordering system which implies all pa-

rameters and fields vary slowly with z. This long, thin approximation is applied to

Maxwell's equations. A set of coupled differential equations emerge. These equations

need to be solved in the two variables Ell and D. The geometry of the problem is

encapsulated in the unit vector I1." The conductivity of the superconductor, all , is the

nonlinear portion of the problem and is explained in section 2.4. Finally, boundary

conditions for a circularly shaped cable are derived along with end conditions which
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arise from cable-joint interface.

2.1 Field Distribution in Magnet Windings

There are several types of superconducting magnets. Each have their unique field

profile which is pertinent to the calculation of AC losses. Whole books have been

written on the subject of field calculation so here, only the essentials are outlined.

There are two important characteristics of the B-fields inside the magnet windings. In

most windings, both the static and the pulsed field are perpendicular to the cylindrical

conductor. In addition, if the cross-section of the conductor is small enough compared

to the total cross-section of the magnet, it is safe to assume the B-field is uniform

across the conductor.

2.1.1 Solenoids

The simplest solenoid is that of the infinitely long one. The field everywhere is in

the axial direction, is perfectly uniform across the bore, and falls to zero at the outer

edge of the winding. Each section will contribute a field within its own bore of

AB = 0 JAr where Ar is the radial thickness of the conductor section. For the nth

layer of conductors in the solenoid, the self-field would be B 0 = pronJAr. If n >> 1,

then AB << B 0.

In coils of finite length, (pancake-wound or racetrack coils would be the extreme

cases), the situation becomes much more complicated because of the way in which

field lines curve around the ends of the coil. Fig. 2-1 shows the flux line pattern for a

short solenoid, together with contours of constant-field amplitude, normalized to the

central field.
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Figure 2-1: Flux lines in short solenoid magnet.

2.1.2 Toroids

Toroidal windings are frequently used in thermonuclear fusion research. Numerical

methods must be used when high accuracy is required, when the field must be cal-

culated inside the coils. Again, the fields are predominantly perpendicular to the

coils and for thick coils, the B-field across one layer can be to first order considered

uniform.

2.2 Ordering system

The current of a strand is written as

= oILEl
Ul _PL

(2.1)

(2.2)
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Converting to the Eulerian x-y-z coordinate system of the cable, we define a unit

vector in the parallel direction to a given strand as shown in fig. 2-2.

=X(x, y, z) + Y(x, y, z)ý + (
1)= (2.3)

(1 + 2 + 2)-

where X and Y are the x and y component of the directional derivatives of the strand

path as it winds down the length of the cable. As mentioned before, these are not

constants but functions of x, y, and z. A three-dimensional cable winder program has

been developed that traces the position of each strand down the length of the cable

for a given set of cable specifications and will be covered in chapter 5. A significant

simplification occurs if we make the following assumptions: the twist pitch of any

given strand is long compared to its diameter and that the conductivity along the

direction of the strand is large compared to the conductivity perpendicular to the

strand, as mentioned earlier. If we introduce a small ordering parameter e << 1,

then we can define a maximal asymptotic expansion which contains the maximum

amount of physics described by these equations.

x,/V ~ E

9z
S~ E2 (2.4)

a

Here the subscript T denotes the transverse (x, y) plane. The ordering implies slow

variation along z with most of the current in the z direction. The small perpendicular
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conductivity implies that the largest component of the electric field is in the transverse

direction. For practical situations, only the diffusion time associated with all may

be comparable to the time scale of field variation. The transverse diffusion time

associated with au is always very short and can be neglected (assume instantaneous

equilibration on the a time scale).

2.3 Governing equations

Using the expansion, the fields and vectors can now be expressed as

S+ Y + (2.5)

El =(E - 11) 1 = E

(Ez + XEx + Ey)&l (2.6)

Ex. + Ey (2.7)

Neglecting the higher order terms in each current component, we have

J X_ xjEij + uEx (2.8)

J, allEll + aiEy (2.9)

Jz uE aoEll (2.10)

Since the conductivity of the cable is highly anisotropic, one must be careful when

solving Maxwell's equations. The quasistatic equations for Ampere's and Faraday's
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laws are

VxE9 a a
atB

VxfH = J

Taking the curl of the first equation, we have

V x V x = -o•--J

In rectangular coordinates, the above equation is broken down into three equations,

two corresponding to the transverse components (x and y) and one corresponding to

the longitudinal component z.

V 2ET- VTV - E

V2Ez z(V -E)az

I- o JT

- IPo Jz

Introducing the asymptotic expansion and neglecting all second order terms re-

duces the above equations to

V.T - VTVT . ET

VTEz VT ET

0

-oat

(2.16)

(2.17)

Rewriting the two components of the transverse equation gives

a (ax

8- Ey) = 0

- -Ey) = 0
diz

(2.18)ay

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

CHAPTER 2.
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These two equations yield the single piece of information that -E, - -E = f(z,t).

We assume that no zeroth order parallel Bz is present, which is usually a good ap-

proximation when only a purely transverse field is applied. Hence, the free integration

function f (z, t) = 0.

We can thus define a pseudo potential function 4 to reduce the number of un-

knowns.

ET(X, y, z, t) = -VT1)(x, y, z, t) (2.19)

At this point, we have two unknowns (Ez and 4) and one unsatisfied equation (the

V2Ez equation). The remaining equation results from annihilating the redundancy

in the two components of the V ET equations. This is accomplished by forming the

operation V J = 0 to obtain the second equation. We have

0x (Xa IEll + aLEx) + -(YulIEII + a.Ey) + ~- 1 Ell = 0 (2.20)

where Ell = Ez + XEx + YEy replaces Ez as one of the dependent variables.

Substituting the potential function into the two differential equations 2.17 and 2.20

yields

a aV2 (Ell + + Y + - ) = o -allEll (2.21)
ax ay az at

VT a-VT : = V -(oa. E 1) (2.22)

These two equations will in general have to be solved numerically for 4 and Ell. Keep

in mind that a can also be variant in space. The solution of the electric field gives

rise to the current distribution. The power dissipated per unit volume is simply the
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sum of the two components of E - J.

Pd = uiE 2 u1 E2

= + oi(VTD)2  (2.23)

2.4 Constitutive relations

Much like W. Carr's [12] continuum model for the single strand, fields, currents and

physical properties are averaged over a representative local cross-section of the cable.

For well-defined boundary conditions, Maxwell's equations can be solved for the fields

and currents. The V vs. I constitutive relation for a single strand has been explored

in-depth by L.J.M. van der Klundert [9] and a variation of it will be used in our

model. The derivation is not explained in depth here but can be found in [4].

Under normal operating conditions, a superconducting strand has very low loss

and a very high conductivity associated with it. In some analysis, the conductivity

is assumed to be infinite. However, there is a dynamic resistivity associated with

superconductors under AC conditions that gives these strands an effective finite con-

ductivity. Once the entire strand reaches its critical current density, it saturates. Any

current above the critical current flows into the normal metal region surrounding the

saturated filaments. Therefore, the longitudinal or parallel conductivity is piecewise

linear and is expressed as follows

(ý- + (1 - A)am)E I  if JII < Aj + (1 -A)amA o
JI=(I - Av)  o -(2.24)

Ajesign(El ) + (1 - A)UmEII if JII > Ajc + (1 - A) UmEo

where
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o = _BRf
B - time-varying magnetic field

Rf - filament radius

am - conductivity of strand matrix

jc(B, T) _ critical current density dependent on B-field and temperature

A - fraction of superconductor volume in strands

A, = void fraction of cable

If one looks at a typical cross-section of a cable, one can see that the current

in each strand is flowing predominantly in the z-direction. However the transverse

component of these currents (although small) is almost haphazard. Unlike filaments

in the strand, there are several twist pitches involved and therefore, the current di-

rections are not constant throughout the cross-section of the cable. This implies that

the anisotropy in the conductivity is non-uniform in space. There are thus two dif-

ferent coordinate systems to keep in mind - the local coordinate system following the

strand (Lagrangian) and the global coordinate system of the cable (Eulerian). The

conductivity of the cable is naturally defined in terms of the local coordinate system,

with two components - parallel to the strand and perpendicular to the strand. Here,

the conductivities are denoted by all and aU respectively. Ultimately, it must be

expressed in terms of the global coordinates in order to obtain a solution to the prob-

lem. It is assumed that the individual components of the conductivity are constant

over a local cross-sectional area representing the fractional area of each strand. From

eqn. 2.24, all is given by

S(1- ) (1 - A)am if E1 l o60

S=(1-A){ if ElA (2.25)
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aI is deduced from measured transverse resistances of the cable. In general aL << am

because of strand coatings, contact resistance, and only partial contact between adja-

cent strands. The complexity of the problem is partially associated with the nonlin-

earities and anisotropy of the conductivity matrix, although perhaps more important

is the complicated and convoluted geometry associated with variation of the local

parallel and perpendicular geometry.

2.5 Formulation of Boundary Conditions

2.5.1 Magnet connected to a current source

Boundary condition on perimeter of cable

For treatment of a circularly shaped cable, all of the parameters are converted to

polar coordinates. The coefficients are now defined as (see fig. 2-2)

(x, y, z) = Xcos + Y sinq (2.26)

p(x, y, z) = -X sin + coso (2.27)

where p and p4 are the ý and 0 components of a strand path as it traverses down the

length of the cable. The reason for the different notation is to keep the coordinates

of the cable separate from the local coordinate system of each strand.

The governing equations are now

V2(El + p r ( + a + • z ) = po aallEll (2.28)
r (p +  E  (2.29)

VT -QLVT4D a r(/ujjEj) + 1--9(p'a jEjj) + 9a 1Ell (2.29)
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cable cross-section strand's coordinate system

Figure 2-2: Definition of coordinate system and vector components.

So far we have the differential equations to solve for the electric field. We need

boundary conditions to complete the formulation.

Boundary conditions for a range of magnet operations must be accurately speci-

fied in order to achieve solutions that make physical sense. Modes of operation vary

from current loops running in persistent mode (MAGLEV) with a highly conducting

switch to a cable connected to a source with finite impedance (e.g. fusion application

magnets) to a completely open-circuited section of cable often used in AC loss exper-

iments. At first glance, it seems that a new set of boundary conditions is required for

each specific case. Fortunately, this is not necessary. In fact, with some realistic as-

sumptions, a general set of radial boundary conditions can be derived for the electric

fields at the perimeter of the cable. It is only the boundary conditions at the ends

that need to be specified for each separate case.

The total magnetic field is the combination of the applied and the induced field.

The applied field can come from an external source or it can be self-generated by

means of an applied current. For the general case of externally applied field and a
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transport current I, the total field outside a straight cable is

Htot HA + - V

2rr
(2.30)

where I = IA + find . If one is looking at the cross-section of just one turn in a multi-

turn coil, that particular turn will experience fields from two different sources. The

applied field term is actually a combination of an external field coming from some

other source (perhaps another magnet) and by the magnet's own current but from

other turns in the same coil.

The scalar magnetic potential T, which corresponds to any induced multipole

fields, satisfies Laplace's equation in free space. In our ordering system,

V2X _ V2X = 0 (2.31)

Therefore, T can be expressed as a summation of harmonics in ¢ only.

:J }{ si q
r-n  an sinnJ

E= bn r
n=1 Ibn cos no

(2.32)

The magnetic field at the cable surface r = R is then

a
Hind Oar

0 -n-Rn an sin
= nR"-

n=1 bn cos

I ind 1 a
2 7r RR a •

lind 00 b, n
= 2 +  nR--1

n=1 
--ann

n¢
n¢'q10riq$

sin no
cos no

(2.33)

(2.34)
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If we assume that the dimensions of the cable are smaller than the gradient length

of any external field it experiences, then the task of matching boundary conditions

is much simplified. Otherwise, one would have to calculate the exact field at the

perimeter of the cable due to outside sources and from neighboring turns and Fourier

decompose them in ¢. However, let us assume that these magnets are usually fairly

large compared to just one cable dimension. Therefore, it is a good approximation to

assume that the applied field across the cable is uniform and predominantly transverse

to the winding.

For a transverse field in the +9 direction of magnitude HA, we have

fIA = HA

= HA sin 5 + HA cos 0 q (2.35)

The total field can be rewritten as

S= (HA sin - 9) f + (HA cos - + ) (2.36)9Or r 0- 2-rR

Next consider each separate harmonic in q. This will allow us to determine the

boundary conditions in terms of the Fourier harmonics. For the total field, we find,

at r = R

zeroth harmonic:

H(0) = 0 (2.37)

H(0) -I (2.38)
= 2rR
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nth harmonic 
sin no

cos nJ

Hn) = HAn-l + a R -n-1 (2.39)
b1

H n) bn R-a-1 (2.40)
HA n- 1 - an

where 6S is the Kronecker delta. These expressions contain the as yet unknown

diamagnetic responses an and b,. If we combine some of these expressions, we can

eliminate the unknown coefficients an and bn as follows.

H (n ) sin nri + H cos no = 2HAnI + n (2.41)r,sn Cos C(2.41)

H n)s cos n - H,,n sin nq = 0 (2.42)

To express these boundary conditions in terms of Ell and 4, we start by introduc-

ing a Fourier series similar to that of the scalar magnetic potential.

En (r, z) sin no
n Enc (r, z) cos nJ

E 5 s (r, z) ssin n4 (2.43)
n - Dnc(r, z) cos ni

From Faraday's Law,

18 a
Ez - -E,6 = -,r (2.44)

r 84 az
0 a

Er - -Ez = -B (2.45)19Z ir
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At the perimeter of the cable, all current must flow

= 0 and Jr oc Er = 0. EzlR is then simply equal to Ell

r = R,

tangential to the surface so

- pE =- Ell + (ID. At

+ 4 + P) = -B11(r = R)
R 8o 9z
a - a

(Ell + 4) = (r R)
Or r 8

(2.46)

(2.47)

In an actual cable, the

Substituting (2.43) into the

geometry is axisymmetric so pb has no € dependence.

above two equations and applying (2.41) yields

-( + )Ens + na r + (n - 1) Qne -ar R R ar RR R

S n n iR p( -+ )Enc + n p + (n - 1) ] P,, +Br R R R arR R

nO
R z

nO
I nc

R Oz

= 0 (2.48)

= o i6n + 2bAsn-1
27rR

(2.49)

The second boundary condition comes from restricting any currents from flowing

in or out of the boundary. Since Er = 0 at r = R,

(2.50)arar

Eqn. 2.49 and 2.50 are the desired general radial boundary conditions.

End Conditions

The fashion which cable ends are terminated must be modeled in order to satisfy

the required number of boundary conditions. The most straightforward method is

to assume no ends, i.e. the cables are so long that it can be assumed to be infinite.

However, in an actual cable, the ends are terminated with low-resistance "joints"

1 81 (EllR aO
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which electrically and mechanically connect cable sections together or to a power

supply. Often times with experimental samples, the ends of a cable are open.

Figure 2-3 shows a cross-sectional view of a joint design for the ITER magnet

which connects the ends of a cable to the power supply. The end of a cable is stripped

of it's outer metal jacket and the strands within are straightened out, and soldered

together. It is then wrapped with a metal sheath and soldered to the current bus

line. This configuration, where the contact between the current bus and the end of

the cable is long, ensures that the current distribution flowing to the cable is more or

less uniform. We can model this joint interface in three parts. Figure 2-4 shows the

three regions. The leftmost region (2) models the metal-to-metal contact between the

bus and the joint. Region 1 is the joint itself where we will assume that the diffusion

time of the currents are negligible thus capturing the uniform current behavior of a

real joint.

The governing equation is

V x V x E = -o (2.51)

In the joint region (1), the conductivities are anisotropic. The same set of equations

that are used to solve the cable region are also needed for the joint region. The

difference is that aL here is homogenous since the solder that fills the void between

strands makes a uniform conductivity close to the conductivity of copper. Therefore,

0"1= -cu.

In region 2, the conductivity is simply that of copper - homogeneous and isotropic.

The differential equation is

V2E = 0o ta R (2.52)

Since current is only in the longitudinal direction at the entrance to the structure,
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J-J: UPPER JOINT

0.16 0.325 0.125

j'4O1.30 - 1.906 -0.005
No 1.937 -o.oo005s
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Sn FOIL INSERT CONTACT SURFACE OF U
SHAPE COPPER BLOCK

TITLE: US PREPROTOTYPE JOINT SAMPLE IVER.: 4.50 IDATE: 19950316 ICYGI P. u21
UNITS: INCHES ITOLERANCE: UNLESS OTHERWISE SPECIFIED, .XX±.01,. XXXi.005 ISCALE: 1

Figure 2-3: Schematic of joint design for ITER coil.
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joint (1)

metal contact (2) cable

I I
-I 0

Figure 2-4: Model of joint at source.

the boundary conditions are at z -1,

E(2) =
Scu7 7 R

2

Er 2) = 0

E ( 2) = 0

at z = 0,

E ( 1 )
- E 2)

E(1) = E(2)

aloE 1 ) = aOcuE!2)

E1) = E•2) = o0
at r = R,

(2.54)

(2.55)

The superscripts (1) and (2) indicate the regions.

CHAPTER 2.

(2.53)
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Region (2)

If we were to assume small enough changes in B such that V x E = - B ° 0

coupled with a divergence-free current density which yields V - J = V -E = 0, these

two conditions imply that the scalar potential can be used.

S= -V(I (2.56)

(I in turn would satisfy Laplace's equation.

V24( = 0 (2.57)

To be consistent with the boundary conditions at r = R and z = -1, the general

solution for (P should be

I sin m 1(D(2) (r, , z)= - Z + mnJm(knr) cosh k,(z + 1) (2.58)
cR n m cos m J

Therefore

Or

= Jm(k - sin m cosh k,z (2.59)n m k Ik cos mO

1 4m { sin m }
E0 = - Jm(knr) cosh knz (2.60)

Er o n m r 1- cosmO

& I sin m 1
Ez = = a R 2 +•• knJm(knr) ssmO sinh knz (2.61)Oz crirR n m cos mO
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k, has to satisfy the condition that

mJm(kR) - knrJm-l(kR) = 0 (2.62)

Region (1)

The last equation of (2.54) dictates the continuity of current. The summation term

in E,2 ) is scaled by both acu/all and sinh k,l. Therefore, neglecting the c terms and

assuming I << 1/k,, we obtain

E(1) = acuE(2)

I (2.63)
all-R 2

We have arrived at a simple and straightforward boundary condition at z = 0. The

joint will just be an extension of the cable with a different perpendicular conductivity

and can be solved numerically. The boundary condition at the end of the joint,

at the joint-metal contact interface, will be that of a uniform field distribution, it's

magnitude determined by the current source. The fields and thereby the loss in the

metal contact region can be found by equating the transverse fields at the boundary

z = 0 to find the coefficients E(2) and E(2)

As mentioned before, the above derivation is only for one joint design. The con-

dition on dipole fields and therefore currents at z = 0 is identical to that of an

open-ended cable. There is a range of conditions on the ends, each dictated by the

type of joint design.

For the US-DPS coil, ribbon joints were built. These are manufactured by taking

strands at the end of the cable, straightening them out and flattening the cable

geometry from a circular to a flat rectangular cross-section. The strands are then
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soldered together and placed in a metal sheath. Because the strands were soldered

together such that there is no void space, the transverse contact resistivity approaches

that of the solder metal resistivity and is much higher than the rest of the cable.

However, a, is still much smaller than all. This becomes a true multi-regional and

anisotropic problem.

It has been proposed, but not implemented, that the strands are stripped of their

normal metal and compacted together. This would represent the opposite extreme to

the ITER joint. Now, ai = all and the boundary condition at z = 0 becomes Er = 0

or 4 = 0. This is equivalent to the short-circuited end condition.

2.5.2 Magnet in persistent mode

In applications where magnets are not connected to any external source, the magnet

is said to be operating in persistent mode. It is one of the great advantages of having

superconducting cables - the decay time is so large that any flux or current trapped

in the magnet will stay trapped for a long time. This mode of operation can be found

in NMR machines and can be used for such applications as MAGLEV where the cost

of having an onboard power supply for each electromagnetic magnet is impractical.

Boundary Conditions

The major difference between this problem and that of a magnet with a current source

is that here, the transport current is no longer a source term. In fact, the current is

an unknown variable, a combination of an applied and an induced current. Unlike

the previous case where any induced back EMF is absorbed by the power supply (i.e.

any induced voltage appears across the source), the induced current produced by the
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Figure 2-5: Sketch of magnet in an electrically closed loop.

EMF can determine a significant portion of the total transport current. Thus,

I = IA + Iind (2.64)

Consider one single loop of radius Ro as shown in figure 2-5. The specifications

for boundary conditions are a bit tricky due to the implicit curvature of the problem.

However, one can show that if all terms of order R/Ro or higher are neglected, the

formulation for a straight wire case can be used here. This is saying that the size of

the magnet is so large compared to the radius of the cable, the curvature effect can

be neglected.

Faraday's law dictates that for a time-varying magnetic field, the electric field

along the cable must satisfy

Ed-= ata
c B

(2.65)

where A is the total flux linked.

The flux linkage term consists of an external field, field due to current in the

-- :4-1- 1. -4-
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cable, and any multipole fields. Since multipole fields die away as r n and since the

magnitude of these fields are already small, the contribution to the flux linkage due

to these induced terms will be neglected.

The externally applied magnetic field is uniform. The induced field is a function

of the transport current.

J-?~ Ezdz = -BA rR2 _ -9 # Bind(I, r, €, z)da (2.66)

This can be rewritten as

r (rRo d AJ (Ez + O Az)dz = -AirR2

7r- o t 
0 (2.67)

where Az corresponds to the vector potential of the loop

This saves us some time in calculating the field due to a

having to integrate it over the internal area of the loop.

for Az(r, €) can be found in Jackson's book[12]. However

effect of the curvature of the loop, A, is dependent only on

r = R,

AZ = ol C
27r

current at the boundary.

loop of current and then

The complete expression

since we are ignoring the

I. At the cable boundary

(2.68)

where C is a constant calculated from the average value of Az around the cable

perimeter and is dependent on the size of the cable. As an example, for R = 1.9cm

and Ro = 19cm, C P 4.9.

Therefore, we have an additional boundary condition that links the current to the

applied magnetic field.

c(E (r= R) + LoIC) dz = -A Ro
2= 2 (2.69)
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joint-joint
-metal contact

joint
cable'

Figure 2-6: Model of persistent switch (joint that closes the loop).

End conditions

Since the ends are wrapped on itself, the term "end" conditions is a bit misleading

but we will use this terminology since the specifications are fairly similar to that of a

magnet connected to a source. More commonly, this joint interface is referred to as

a "persistent switch".

Figure 2-6 shows the model of the joint between the two ends of the coil. Again, we

assume that the current is uniform in the metal contact region. Here is the boundary

condition at z = 1 and 27rRo - 1.

I
Ez (2.70)

This also means that there is a resistive voltage drop across the metal region. Since

This also means that there is a resistive voltage drop across the metal region. Since

LUIEV

I I0 1

2nRo -I 0 1

-~



2.6. CONCLUSION

we know that the current is uniform, the voltage is simply

Vres = - I (2.71)

The boundary condition is now refined to

(Ez + C)dz - I = -A o (2.72)27 acurR 2  2

2.6 Conclusion

An elegant yet powerful electromagnetic model has been developed for the study of

current distribution and AC loss in composite superconductors. An ordering system,

which captures most of the physics of the problem, has been instrumental in reducing

the governing equations to a tractable form. Two equations for two unknowns, Ell

(the electric field along the direction of a superconducting filament or strand) and

1(the transverse potential), describe the entire system.

To complete the formulation of the model, a general set of boundary conditions

were derived for circulary shaped cables with joints at both ends. These cable ends

can be connected to a source or with each other in "persistent mode".
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Chapter 3

Analytic Results of Limiting Cases

The objective of this chapter is to derive several analytic solutions from the governing

equations in special limits. It is always desirable to be able to rely on closed-form

solutions for any problem if they are available. Numerics are useful when analytic

results cannot be obtained. Some simple geometries have analytic solutions thereby

allowing certain physical laws describing the behavior of these strands and cables to

be ascertained.

This chapter outlines the derivations to the solutions of untwisted or single twist

pitch composite conductors with various end conditions. The conductivity all will be

treated as a constant. Results of interesting limits to these solutions will be analyzed

and, when possible, compared to existing literature.

3.1 Open-circuited straight cable

The first limiting case is that of a straight, finite section of cable of length 2L which is

open-circuited at both ends. The wires inside are untwisted and no saturation occurs.
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________________iI[

p
I z

-L L

Figure 3-1: Untwisted finite length cable.

Since there is no twisting, p = 0 and p4 = 0 so that 6ii = 6,z. The differential

equations are reduced to simply

V I(Ell + ) = I-o allEll (3.1)

u1V4 = ,l El (3.2)

Taking - of (3.2) and substituting into (3.1) yields one equation for Ell. For

simplicity, we assume = 0, i.e. we are solving for stationary solutions.

SVT + 2  El i +o ao 0 llE ll 0- (3.3)(a a a2 ) at
These solutions can be applied with a decent amount of accuracy for slow field

variations. For sinusoidal field variations, the time derivative does not complicate

the analysis. For this example, we will examine a ramped field to illustrate how the

losses scale. In addition, no saturation of the wires and uniform conductivities are

also assumed.

The boundary conditions are

I

1
1
1
1
1
1
1
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The boundary conditions are

1. At the ends (z = +L), J, r~ = 0 or since Ell = J11/all

El I = 0

2. Since there is no path for any net transport current to loop back on itself, I = 0

everywhere.

3. The boundary conditions on the perimeter r = R are taken directly from (2.49)

and (2.50). Since we are solving for the stationary solution (induced fields due to

shielding currents neglected), and t the problem is symmetric around E = ), we can

throw away all sin q terms.

8 n [
SEnc(rnz) + - [Enc(R, z) + )nc (R,z)] = 2BA6n 1

R L

4. At r = R,

=0ar

Boundary condition #1 dictates that the longitudinal fields have to go to zero at

the ends. This forces automatic z-dependence on the field. Also, the dc component

(zero q harmonic) which is needed to satisfy the other boundary conditions, will have

to come from averaging over the harmonics in z. In other words, there is no purely

z-independent term. The appropriate waveforms that go to zero at the ends and

have a dc component are odd harmonics of cos kpz where kp = (p + ) . Since the

magnetic field has only one q harmonic and we have already assumed that the time-

derivative of Maxwell's equation is zero, we can safely assume that there is only one

¢ harmonic for the electric field or En, = Ej1 . Therefore, the longitudinal electric
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field is expressed as

El (r, ¢, z) = Elc(r, z) cos
00

= Ep(r)cos coskpz
p=O

(3.4)

Substituting into (3.3) yields for each harmonic in z,

[V2Elp(r) - _lk2 Elp(r)] cos q cos kpz = 001 (3.5)

The solution for this differential equation is in the form of modified Bessel func-

tions. Since fields are regular at the origin, we pick modified Bessel functions of the

first kind.

Elp(r) = EipIi(krpr) (3.6)

where krp = •k.

From (3.1), the differential equation relating ElI and D without the time derivative

a9Z T =

This gives two possible relationships - a homogeneous and particular one.

V2ib = 0

z = Ellao

The solution that satisfies both equataions is in the form

(3.7)

(3.8)

(3.9)

1 EIpI1 (kpr)] cos q sin kpz
00

D = _[bipr -
p=O

(3.10)

CHAPTER 3.



3.1. OPEN-CIRCUITED STRAIGHT CABLE

where b1p and Elp are constants to be determined.

Now we are ready to substitute the equations for Ell and 4P into the remaining

boundary conditions to solve for the unknown coefficients El, and bl. From b.c. #3,

Z[Elp3lp + kpblp] cos kpz = 2B A  (3.11)
p

where fip = •RI (krpr).

Integrating both sides by f L cos kqz dz, we get when q = p

4 BA even
3lpE 1p + kpblp = k L (3.12)

p BA odd p

or
4BA - k 2Lb,E = - k LbP (3.13)

1p = k pLlp

From b.c.#4, we have another relationship between El, and bp,,

Elp 0= (3.14)
E P ip

which yields

21 A
EIL = (3.15)

kpL3,lp
2BA

bi, = 2 (3.16)

Therefore, the solutions for the fields are

Ep = 2b A  (--1) I ( k r p r ) cos coS (3.17)
k kpLop
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Er = -2BA (-1)p [
p p[1

E0 = 2BA Z(1)p 1 [1
p kp

rp- o(k, r) + I Il(k rpr

Ii(krpr)] sin sin kpz
/3P

cos ¢ sin kpz (3.18)

(3.19)

where 3p = Pip = krpIo(kR) - -I (krpR).

To find the power dissipated, we need to integrate aE 2 over the volume of the

cable.

P = f1 +P± (3.20)

-= L jo j(aEI + _aE2 + ±E,)r dr do dz (3.21)

After some messy algebra, we have the solution for power dissipated as a summa-

tion over the z harmonics.

P1I = (2L)(rR 2 )arI(BA) 2 E
p=O

P± = (2L)(wR2) ±(BA) 2
p=o

12 (krpR) - Io(krpR)I 2 (krpR) (3.22)

( [22(krpR) + (krpR)2 [I2 (krpR) - I0(krpR)]] } /k L2

If the cable is really long, i.e. when J/6R/L << 1, then

krp

1 oo

PI -+ (r2 )aji(2L)(7rR2)(BAR)2 Z0
p=O

_ ILR2 (rR2BA2 )2

PI - O0

1
(p + 1)2

(3.24)

(3.25)

(3.23)

CHAPTER 3.

4
_I, (kIpR)PýR



3.2. SHORT-CIRCUITED CURRENT LOOP

This is the case of the infinite cable.

We see that the power dissipated in the longitudinal direction goes as R4 L and

that cross-current dissipation becomes negligible with a long cable.

In the other extreme, if the conductor is very good, i.e. if R/IL >> 1,

op -+ krpIn(large argument) (3.26)

P1 -+ 0
212 00 1P -+ (4 )a±(2L)(R)(BR2 ~  14

irP0= (p + )4

-+ 12oaL 3(irR 2BA 2) (3.27)

In this case, most of the power is dissipated in circulating cross-currents. Since

P scales as R 2L3 in this case, it seems like the better the conductor is, the more

sensitive the loss is to the length of the cable. This illustrates clearly how the power

dissipated can become very large with long superconducting cables and the motivation

for twisting the wires in such cables becomes evident. The advantage of twisting will

become apparent in the next section.

3.2 Short-circuited current loop

3.2.1 Untwisted wires

Let's solve a simple case. Assume the wires inside are straight and the ends short-

circuited to each other; in other words, the joint that connects them is perfect. For

untwisted wires, Ez = Ell and since the problem is z-independent (ll - V = = 0):

fc Elidz = 27RoE ll (3.28)
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Eqn. 2.69 reduces to

Ell(r= R) = -BARo/2 - (3.29)2oi
27r

We again need to solve the following equation

a
V2Ell = po a ullEll (3.30)

In this case, the time derivative cannot be neglected because the "steady-state" solu-

tion is time-dependent. This differential equation can be solved analytically by using

Laplace transforms.

V2E(s) = ooaljs[E(s, r) - Ell(t = 0)] (3.31)

Assuming Ell = 0 at t = 0, we have a second order differential equation for E(s, r).

v•E(s) - poI11sE(s, r) = 0 (3.32)

for which the corresponding solution is

E = AIo(kr) (3.33)

where A is a coefficient yet to be determined, k = yi0sll , and Io(kr) is the zeroth

order modified Bessel function of the first kind.

Substituting the above solution for E into eqn. 3.29 yields for the field at r = R,

= Alo(kR)

2
Po Csi(s)
27

E(r=R)

CHAPTER 3.
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3.2. SHORT-CIRCUITED CURRENT LOOP

Eqn. 2.21 yields the other relation between E and I.

- = si
Or R 2iR

Substituting (3.34) into (3.35) gives

kAI 1 (kR) = "Lo sI
27rR

Combining (3.33), (3.34), and (3.36) yields

E(r, ) = -•2I { } R2
Io(kr)

Io(kR) + kRCIlkR

As an example, take a sinusoidal field with a vanishing time derivative at t = 0.

BA = B 0(1 - coswt) (3.38)

The Laplace transform is

LtJB = Bo2s2 + w2

and
-w 2BoRo

(3.39)

Io(kr)
(3.40)

2(s2 + w2) 1o(kR) + kRCI1 (kR)

The expression for E must be inverse transformed to obtain the solution in the time

domain.

EII(r,t) = £-'{E(r, s) =
fioo .

E(r, s)eatdstioo (3.41)

We can apply the Residue Theorem and integrate from ioo to -ioo with a contour

that encloses the left hand s-plane. The poles are at sl = iw, s2 = -iw and where s

(3.35)

(3.36)

(3.37)

A ·;d
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satisfies the transcendental equation

Io(kR) + kRCI1 (kR) = 0 (3.42)

There are an infinite number of roots but only a few that dominate the solution.

However upon numerically solving this equation, it becomes clear that there exists

one dominant s value, corresponding to the smallest root. Physically, this would

correlate to the characteristic time constant of the system. sl and s2 are the driving

terms. From this relation, one can find the time constant(s) of the system given the

conductivity and the geometry.

Recognizing the fact that k2 = vps2 = k* and that I,(k*r) = I,(kr), the total

electric field is

Ell(rt)= wBoRRo Io(kir) eiwt
2 Io(klR) + kiRCIi(kiR)

- BoRo2 SqI(kqr) e (3.43)w(s + w2) [kRI(k,R) + ( ,kR)2CI (k+R)]

where sq are the poles and kq = V#oaiisq . The first term has a sin wt dependence

and a phase lag. The second term in the above equation is a transient term. For the

values of

B o = 1T

R = 1.9cm

Ro = 19cm

C = 4.9 (3.44)

all = 1 x 1014mho/m

w = 27r/60sec (3.45)



3.2. SHORT-CIRCUITED CURRENT LOOP

the dominant time constant of the system is 7 = 1.17 x 105sec. The parallel steady

state power dissipation, which corresponds to the loss incurred by an oscillating trans-

port current, is plotted in figure 3-2.

If we take the realistic limit of IkiRI and Ik2RI >> 1 and substitute -1 as the

leading order Sq value, we can rewrite the complex amplitude of Ell (from (3.43)) as

kIlRl>>l -wBORO Io(kir)
2 kiRCI,(kiR)

+BoRo(W7)2  (3.46)
r [1 + (Wr)2][kqRIi (kqR) + (kqR) 2CIo(kqR)]

The ratio of the second term to the first term in the above equation is approximately

lk r kqR. kqR is of order unity but wr is generally very large due to the large

value of T. Therefore, the second transient term is negligible. This simplifies the task

of finding the power loss. The sinusoidal steady-state rms power loss density is simply

< Pd >= 2 I allEE*}  (3.47)

Therefore, the power loss is

27rR
< Pd > = L < Pd > rdrdo

= L 2RC )L k121 (k R)12  Io(kir)Io(kr)r dr

/ (f BoL ) 2  1 "{(kirlo(kir)l (kir)} R

RC jk2L 12 Io(kjR)j2  {k}

27rallL RC (f2o ()ao2llw)2

SC2 ()R2 f2B ) (3.48)
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where 6 = 2 is the skin depth associated with the cable. Additionally, 2L =

21rRo and f = -. The next section will show the difference in amplitude between

loss due to the induced transport current and loss due to cross-coupling currents.

3.2.2 Twisted wires

We can add a helical twist to the short circuit loop problem. Assume now that the

wires are helically twisted with a twist pitch Lp. This is equivalent to a cable with

only one stage. To recap, the boundary conditions are

E) (r = R)

I E(z0)
R0r R

arR

r E(1) (r, t)

R ()OrR

bARo poi
2 27rC

oloi
27rR

= 0

+ 1E(l)(r= R, t) + () (r = R,t) = 2BA

= 0

where the (0) and (1) superscripts depict the zeroth and first harmonics in 0.

The path of each strand has the direction i + 2"r. The path components are
Lp

thus

= 0 (3.54)

27r
pý -- r

2pr DLP
Ell = Ez - 4

L= 8

(3.55)

(3.56)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
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The differential equations reduce to

27r a
V,(El L-• - ) = ••allEll (3.57)

27 a
aU-V = all Ell (3.58)

Separating into zeroth and first harmonics in q and assuming that uojallEi (r, q, t) ;

0 yields (we can make this assumption if BA is large compared to any induced terms),

zeroth harmonic:

aV(E o (r, t) = ,Po-oa lEo(r, t) (3.59)

a 4 ±V•o)0(r, t) = 0 (3.60)

first harmonic:

V (El (r, , t) + --- 1(r, , t)) = 0 (3.61)
TL2 aqo

V2 1(r, q, t) = -7 El (r, E , t) (3.62)

There is no solution for Io (r, t) that would give regular field at the origin except

for 4o(r, t) = 0. Since 40 = 0 and thus Eo(r, t) = E,() (r, t), the differential equations

and the boundary conditions for the zeroth harmonic fields are the same as for the

untwisted cable. This zero harmonic corresponds to the transport current loss. Now

all we have left are the first harmonic fields to solve.

Combining (3.61) and (3.62), we obtain

VE(r, t) cos q + ( )22t 2 El(r, t) cos 0 = 0 (3.63)(t +LP a02
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The solution to this equation takes the form

El (r, b, t) = AIl (kr) cos

where

k 27
L a±

and A is a coefficient to be evaluated.

Plugging (3.64) back into (3.62) yields for ýj1,

VTý 1l (r , ¢, t) = a 27 AI 1 (kr) sin ¢
uj LP

(I (r, q, t) has a homogeneous and a particular solution.

Il (r, ¢, t) = (pl (kr) sin k + (lhr sin ¢

Substituting this solution into (3.66), we have

L A
27r

Applying boundary condition (3.52), we obtain

2A r
A3 + - l1h = 2BAL,

where

S= Ii(kr)

kIo(kR) 1I (kR)
R

= k1o(kR) - R

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

CHAPTER 3.
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To find A, we need boundary condition (3.53).

9 i(r, t)

ýlh

L,
= AP + Qlh27

=0

BA
A =

27r

The electric field components are thus

BA
= Ii (kr) cos ¢

10

r 09
II (kr)

fir
- 1) cos

- (Or , 0,t)
19r

krlo(kr) - Ii (kr)
'r

The power dissipated for the first harmonic is

27rR
P = 21R o j (j LE + ,E + a±E2)r dr do

The integrations are basically the same as those for the straight open-circuited

Therefore,

Ell(r, €, t)

E0(r, ¢, t)

(3.71)

LP
27r

Er(r, ¢, t)

L2
2w

(3.72)

(3.73)- 1) sin
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case. The power dissipated for the parallel and perpendicular components are

[1R) - lo(kR)I2(kR)]P11 = aI(27rRo)(rR2)(A)2 (kR) - Io(kRI2(kR (3.74)
2/32

P, = a±(27rRo)(7rR2)(b A)2(L))2 {1--2Rlh(kR)

2 R)[2I(kR) + (kR)2 [I,2(kR) - I0(kR)] } (3.75)

As L -+ oo or kR - 0,

P1 A0 T11V (3.76)

P 1 -+ 0 (3.77)

where

R2

TI = P0o• all (3.78)

V = (2rxRo)(irR 2) (3.79)

This result matches that of the untwisted open-circuit infinite case discussed in sec-

tion 3.1. The time constant is labeled the parallel time constant because it is associ-

ated with the diffusion time of the superconducting currents (current flowing parallel

the superconductors). The time constant here is similar to the expression for the

transport current time constant found in [22].

In the other, more realistic limit, when kR -4 oc,

E • B cosL (3.80)
21r

Er (r, 0, t) = "bAsin (3.81)27r
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• - +  0 (3.82)

P oal (27Ro) (rR 2) (BAR) 2

2k (R)2
2 )7 T V (3.83)

where

T± = () 2 a (3.84)2 27r
This time constant is the familiar time constant of a single multifilamentary strand

with helically twisted filaments of twist pitch Lp. This expression can be found in

both [11] and [12]. Notice that the transverse fields E0 and E, simply add to a

uniform negatively y-directed electric field of amplitude BALp/21r. A sketch of the

cross-coupling currents due to this fields is shown in Fig. 3-7.

For a twist pitch Lp = 2 m, ao = 1 x 107 mho/m and the same parameter values

as in (3.45), the power dissipated is shown in figure 3-3. Surprisingly enough, the

transport current loss is actually bigger than the usual "AC loss" due to the dipole

currents. Notice a phase difference between graphs 3-2 and 3-3. This is due to the fact

that there is considerable skin effect with the transport current because the potll a

term is significant.

One can see that the twist pitch is an important factor in reducing losses of a

good conductor. Comparing this to the open circuited untwisted straight cable in

eqn. 3.27, we obtain

Puntwisted . 2wL 2(385)c (3.85)
Ptwisted Lp

Because the twist pitch and not the length of the cable limits the ac losses, it is

advantageous to twist the wires.
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3.3 Finite length twisted cable

Given a length of cable 2L and internal strands twisted with a pitch length Lp, the

fields and power dissipation can be found for both shorted and open-circuited end

conditions. The goal of this section is to derive analytic solutions for these conditions

and to show under what conditions the assumption of an infinite cable may be used.

In steady-state, the governing equations are now

(3.86)

(3.87)

V72 
a )2Ial

VTEII + a + - Ell = 0( )2
V2 = al oi + Ell

T -T- o zz a E l

where a = 2,

3.3.1 Short-circuited ends

The end conditions are, at z = ±L,

(r, €) = 0 (3.88)

The solutions for a varying B-field that satisfy boundary conditions at r = R and the

above end condition are

E1(r, , z) =

El (r,¢,z) =

2B j:5 [,pr - I1(kr)] sin kpz cos(q - az)

- E 2 [f'r - I (k'r)] cos k;,z sin(q - az)

L Z {E, ll(kr) cosk,z cos(0 - az)
p=O

(3.89)
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+Ep2I1 (kr) sin k',z sin(¢ - az) }

where

pk
L

, 1k, = (p+2
2

k= 0 kp

k'= lVllk'

, = klo(kr) - Ii(kr)
r

Ii(k'r)p = k'Io(k'r) - r

Epi = sin aL cos kL
S2-k)

Ep2 = ) cos aL cos kpL
The corresponding components of power dissipation are, for shorted ends,

The corresponding components of power dissipation are, for shorted ends,

PI = (2wR) (R)

P = (2R) ()

P= (2rR) ()

oilB: E {EP,2f, + E+f;2 f
p

aLB2 Q kpR fr + _ ( f•
f+p=O 2

where the functions are

fll = I12(kR) - Io(kR)I 2(kR)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)
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fr = I0(kR)[(kR)2 - 1]- I(kR)[(kR)2 + 1] - 40pR

+(fOR) 2 + 1

fk = I0(kR) - I2(kR) - 4 [Io(kR) - 1] + (3R)2 -
kc

(kR) (kR)
(kR) - kR

(3.96)

(3.97)

For fl', fr, and f4, replace the k's with k' in the above set of expressions.

3.3.2 Open-circuited ends

Here the end condition dictates no current to flow in or out at z = ±L.

Jz= allEll = 0

Therefore,

(3.98)

The corresponding solutions for fields and power loss are

Ell = z ==

+E (

, z) = -2
p=0

I, (kr) sin kpz sin(¢ - az)

P) Ii(k'r) sin kpz sin( - az)

{ EP1 [I, (kr) - 3pr] cos kpz sin(¢ - az)

Ep2

a!
[I (kr) - pr] sin k' z cos(¢ - az) }

P11 =(21rR)(R) alB2 1{L
1==

a 2 (p0aR 2

kpEpl
a! fil +

p=0

f+r (P2)

(kpEp 2

2

2 ffr

(3.100)

i (3.101)

(3.102)

4(r, ¢

(3.99)
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3.3. FINITE LENGTH TWISTED CABLE

~(EP,)2 foPO = (27rR) aL - f_ aR
p=O

(3.103)

A simple code was written that performs the summations in the field and power

expressions. A cable with the following physical parameter values was used to generate

field and power loss profiles:

BA

LP

= 1T/s

= 200mm

Ua = 1 x 107(Q-m) - 1

rll = 1 x 10"1 (Q-m)- 1 (close to saturation)

R = 10mm

Fig. 3-5(a) shows a plot of J11 at r = R near one of the ends for an open-circuit

case. The flat part of the graph, which occupies the majority of the cable, has the

same current density value as if it were treated as an infinite cable. Some oscillations

near the end, at z = 20m, contribute to additional losses not otherwise predicted by

an infinite cable model.

Fig. 3-5(b) shows the current density profile for short-circuited ends. Here, one

can see that the behavior of the fields and current are strongly dependent on the

relationship between L, the length of the cable, and L,, the twist pitch. It seems the

largest oscillations are induced when L is a multiple of L,.
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3.3.3 Short length limit

For cable lengths of the order of a twist pitch, the assumption that 1 >> 1

holds true. The functions (3.96) and (3.97) reduce as follows. For kR = 0,

fr = fi = 0

fii = R2

(3.104)

(3.105)

For kR >> 1, (all other terms)

fr = fo = (l,,R) 2

fl -
1

k3R

(3.106)

(3.107)

Shorted ends are an attempt to model the very low resistant joints used to join

cable sections to each other or to the power supply. Substituting the above expressions

into the solutions for power loss, we obtain for shorted ends

Pl = (2R2)(2L) agB 2 {
1all /R 2+ 1 sin2 aL
2 = _ aL+ ,

PiL = Pr + Po

sin 2 aL a cos 2 aL

(a2 - k2) 2kR P= L (a2 - k2)2k'R

(3.108)

__( '• 2 Si n 2 tL  COS2L
2('R 2) (2L) -_ b 2  sin2 _ a +  oa .109)

=1 kL (2 - k) 2 p=0 kL (2 - k 2

For the following nominal values,

BA = 1T/s

R= 10mm
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all = lX 1 012-m - 1

a 1 x 107Q-m -

L, = 200mm

a plot of the total power loss normalized to the infinite cable result is shown in Fig. 3-

6. One can see that the loss is highly sensitive to the length and its relation to the

twist pitch. In fact, most of the contribution to the loss comes from the last term in

P11 which yields

PIl2 2• R2,(rR2B2)  (3.110)

It can be deduced that it is more favorable to have the length of the cable a multiple

of the twist pitch.

For cables left open on both ends (as is often done in AC loss experiments),

2) sin2 L + COS2 aLP1 = 2(xR 2)(2L)'B 2  _ L +  s ( 2  k) 2L2  (3.111)
p=1 (a2 - k2)2L2 p=0 (a2 - k2)2L2I

P, = (7R 2 )(2L) B 2 E sin2 aL + E cos 2 aL (3.112)
S)p= 1 (a2 - k )2L2kR p=o (a2 - k;2) 2L2k'R R

It is immediately obvious that the contribution to loss from P11 is small. It lacks the

extra term that the shorted ends have. Therefore, it is a factor of 1/kR smaller than

PL.

Hartmann's thesis [13] (from the U. of Twente) treated the open ended cable where

he assumed a current sheet. The expression derived in the thesis for the normalized

power is

Ptot/Poo = 1 - (•L) sin2 ( 27rL) (3.113)

The cable problem he solved has no radial fields or currents and all of the transverse
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fields were lumped into the 5 component. Nevertheless, it seems to have yielded very

similar results as the loss given in (3.111)-(3.112). A plot of Ptot normalized to the

P, is shown in Fig. 3-7.

3.3.4 Long length limit

If a cable is very long such that

k R oc «R <<1 (3.114)

the fields and power loss expressions can be drastically simplified.

On inspection of the terms in the summations for P11 for both shorted and open

ends, it is clear that the most dominant term is when a e kp due to the Q2
1

dependence in E 1p. If L >> Lp, which is consistent with the long cable criterion, the

peak of Ep1 around ac kp become sharper with increasing L/L, ratio. Therefore, it

is safe to estimate that the kpc, a term is the major term in the power summations

and that the other terms may be neglected. Therefore,

ca L
Epi = sin aL cos kpL - (3.115)

op (a2 - kP) k

Since p is always even for a = kp, cos kpL = 1.

Taking the asymptotic limit of the Bessel functions, we have

e k R  1

Io(kR) (1 + )

ekR 3
I, (kR) - kR(1 - )

ekR 15
Io(kR) = kR(1 - )

____r___ 8kR
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For both shorted and open ends, the results converge.

ril 1 ( R2) (2L) F b2 2 (3.11I all

P,  e (iR 2)(2L)B 2a± (~ (3.117)

Do the results for P- look familiar? They are the same as the ones derived in sec-

tion 3.2.2 where the cable is assumed to be infinite! When L is much greater than

L, and satisfies (3.114), losses for all 3 cases (the short, open, and infinite cable)

converge.

Therefore, in order to justify the formulation of an infinite cable problem, the

criterion is that ffJ1 ( << 1. As an example of how this affects a real magnet,

let's examine the dimensions of an ITER cable. For all = 1 x 1012 (_-m) - 1 (a number

between superconducting and saturated state), al = 1 x 106 (-m) - 1, and R=19mm,

L >> 19m (3.118)

This is a reasonably short length, considering that a section of cable (from one joint

region to the next) is several meters long. Even if one takes the unsaturated value,

all = 1 x 1014( - m)-1, this still only requires L >> 190m, which is well satisfied.

Therefore, using an infinite cable model is a valid assumption.

3.4 Conclusion

What resulted is a set of solutions comprised of old familiar expressions and new

ones. The table at the end of the chapter lists the results for different geometries and

end conditions assuming aO good conductor. The following is a brief synopsis of the
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major discoveries of this chapter:

* The difference between a non-twisted cable of length L and one twisted with

a pitch length of LP is that the power density loss is proportional to L 2 for

straight wires whereas the power density loss is proportional to L' for twisted

wires. Therefore, twisting the filaments (as in the case of a strand) or wires

limits the loss to the pitch length rather than the length of the entire cable.

* For shorted ends, an approximation to joints in a real magnet, the condition

where l (A) << 1, must be satisfied in order for the assumptions of an

infinite cable to be valid. R is the radius and 2L is the length of the cable. For

open ends, which are often the case with loss experiments, the less stringent

criterion that ( )2 < 1 must hold true for the infinite cable model to

apply.

* For a helically twisted cable, there is a perpendicular time constant associated

with the diffusion time of cross-coupling currents, Tj -= L- (_)2, which can

be found in most literature on losses in multifilamentary strands. There is a

parallel time constant associated with diffusion time of superconducting dipole

or transport current,T11 = oall- . This expression for the time constant is very

similar to the one in [221.

* For magnets in persistent mode, i.e. in a closed loop formation, the nature of

flux conservancy of these current loops dictate large amounts of transport cur-

rent induced due to time-varying fields. These in turn produce large transport

current loss and is the only time one would expect transport current loss to

exceed cross-coupling current loss (the more traditional AC loss source).
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Case Coupling current power loss Transport current power
loss

Untwisted open-ckt. 12L3a1 (rR 2B2 ) negligible
of length 2L __

Short-ckt. loop ( 2(2 2R 2.) 3 2Sz% 2 ,2)2
of radius Ro  (2R°o) L a (rRB 2) _ a11 (7rR2f2Bo2)

(rms value for sin. excitation of

freqf and amplitude B0.

S is skin depth.)

Infinite cable "L,- 2  negligible
(Long length limit) 2  a (R 2 )

(per unit length)

Twisted short-ckt. R) 2  2  negligible
(short lengths - LL l( ·I (7R 2B2  ) L)
of length 2L) L 2;r L

t+2L L 2 a/(R2 2

Twisted open-ckt. negligible
(short lengths 2 L 2
of length 2L) 2L aL 2  (TR2B L[ si2 2L

27_ 27 2/_L LP

Table 3.1: This
VfcY >> .V -L TP

table lists the analytic expressions for power loss in the limit where
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time (sec.)

Figure 3-2: Transport current loss for a persistent loop.

V0 10 20 30 40 50
time (sec.)

60

Figure 3-3: Dipole current loss for a persistent loop.



3.4. CONCLUSION

Figure 3-4: Coupling currents inside the conductor
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Figure 3-5: Current density profiles at rim of cable near (a) shorted and (b) open-
circuited ends
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Figure 3-6: Power loss for shorted ends normalized to infinite cable
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Figure 3-7: Power loss for open ends normalized to infinite cable as compared to
analytically-derived expression from [13].



Chapter 4

2D code

A class of problems exist where the geometry is z-invariant. These can be solved by a

"2D code" which we have developed. In most cases, the radial motion (p) of a strand

is usually the parameter that contributes to the three-dimensionality of the geometry.

In addition, boundary conditions that are z-dependent can make a problem three-

dimensional as well. A long cable which is either straight or has a single twist pitch

is accurately described by a 2D model.

Another interesting 2D problem concerns the single strand itself. Multifilamentary

strands of infinite length, with embedded superconducting filaments twisted such

that each of them trace out a helical path of fixed radius, can also be solved in two

dimensions - r and ¢. At present, a compact, efficient code for solving for currents

and losses is still lacking in the study of AC losses in 2 and 3 dimensions. However,

simple analytical expressions exist for losses that are adequate for some cases. It is

the intention of this section to make a comparison among closed form solutions found

in literature, those derived in chapter 3, and results from the 2D code.

The following strand geometries and conditions are considered (see fig. 4-1):
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1. MFZ only (no shell or core); linear all, constant jc, ramped field

2. MFZ + outer shell; ramped field

3. MFZ + inner core + outer shell; ripple field

4. MFZ only - ramped field and dc transport current

Each of these cases are compared against existing formulations.

4.1 Numerics

For an infinitely long helically twisted strand or cable, the physical parameters , = 0

and o = 0. The governing equations (2.21) and (2.22) then reduce to

V2 El +p P(r, ) a•T r

TVl = r 8

po t a Ell (4.1)

(4.2)

Expanding both equations and substituting the second into the first, we obtain

V2 Ell +
T r

p 0a20¢a~2

+ V[( ) + 2(T p r

+2(
& o p 0 1

( ) a+
1r r 1r r

+ (WŽ r aEl

8 pll 8
2( a r ) 'ao8 r ao) aao a

Bt (4.3)

(4.4)V -- =(O -1 ) a E llE r II - (allEI)T a_ Ir (a r r i4

With a single helicity cable or a multifilamentary strand, the filaments are twisted

with one twist pitch of length Lp. This yields p' = !-r which reduces the equationsLp

2D CODE
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even further to

(2'\)2 02 0
VEll + ( t5(iEll) = po-(allEll)  (4.5)

1 2a a
V2 = (allEll) (4.6)

The basic approach is to Fourier decompose the equations and solve for each

harmonic of Eli and 4. Assuming both to be summations of their Fourier components

in q, we can define the two variables as

Ell(r,¢,t) = ZE,(r,t)cos¢ (4.7)

( (r, 0, t) = E (r,t) sin (4.8)

to fit the boundary conditions. The time derivative on the right hand side of (4.5) can

be treated with a second order forward differencing scheme. The time-differencing

scheme, carried to the second order is given by

dJ(t) 1
dt [AJ(t) - BJ(t - At 1) + J(t - At - At 2)] (4.9)dt C

where

A = (At1 + At) 2  (4.10)
A =- 1 (4.10)

At 2B = A+I (4.11)C = (At1 + At 2 ) (4.12)
At,

Thus, (4.5) and (4.6) transform into a set of 2xn number of coupled 1D ODE's.

To extract the differential equations for the nth harmonic, we must integrate (4.5)
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through by
(2)7r cos ned4(2) 7r fo

and (4.6) by
1 27r sin nqdq

(2)7r foJ

After Fourier decomposition, the sets of equations are

(1 0 n2  ( )27 02 92 EE2
r1 r a rn Ei(r) + a272  -• Z (r)cosm) cos nod =

ILO 2 r (A i a gi1 +- i-2- E '-2'• ned(4.13)

oj0 2  E (A~E - Bo + Co 1E-2) cos mq cos nqdo (4.13)

iar 1 ra r 2 (r) = all(Ell) E (r) cos m sin ned (4.14)

where the subscripts i, i - 1, and i - 2 denote the present, previous, and second

previous time step, respectively. These equations are fed into a general ODE solver

named COLSYS [19]. Remember that all is dependent on the magnitude of Ell and

B.

For simplicity, we will make the assumption that B - BA for the calculation of

all. Since these are non-linear equations, the most straightforward and robust method

was to solve them fully-implicitly since COLSYS has the capability to solve nonlinear

equations. Unfortunately, not only did COLSYS take a long time to search for the

solution, often times a solution was not even found.

The second approach was to feed these as linear equations into COLSYS and

iterate to the correct solution. Since all is a function of Ell, one can do a linear

projection of Ell based on the previous time steps for the purpose of finding all. For

the initial guess,

Ezi = 2Ei-1 - Ei - 2 (4.15)



4.1. NUMERICS

The predicted all value is plugged into the equations and a new set of Ell values are

calculated. These are then used to find all again and the whole process is iterated

until some error tolerance is achieved. The code then increments to the next time

step.

In the original version of the code, the Fourier integrals were evaluated using the

Romberg integration method. This turned out to be very time consuming. To save

computation time, a mesh was set up whereby the integrals in (4.13) and (4.14) were

evaluated at fixed points in r and then given to COLSYS. The values of the integrals

were then interpolated from the mesh as needed.

This strategy, albeit a time saver, introduced new numerical difficulties. Because

the Fourier integral coefficients have sharp gradients (they are directly proportional

to the ratio all/a±), small errors introduced by the interpolation scheme could lead

to instabilities and error in the results. Therefore, a new approach was devised.

The general derivative of JI1, i.e. I((lEII), can be rewritten as

a a a
(IllEii) = all-Ell + Ell-all

(4.16)

It was discovered that a has a very simple form where

SA.L if Ell < Eo
a O if E(4.17)

(1 - A)ac if IE11l > 60

This allows one to integrate the Fourier integrals analytically!
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The Fourier integrals in (4.13) and (4.14) reduce to

n 2 En
T2

7r 2

LP) E mEm(r) 7(a sin mo) cos no d =
m o 8

C (AE -BEi- + E-2)
m

2 a cos mq cos ned€ (4.18)

(4.19)

Unfortunately, the integrand in the first Fourier integral

a (a sin me) cos no

contains delta functions due to the step-function transition of a at IEI =I o. In order

to avoid this particular numerical anomaly, one can convert this Fourier integral into

something more user-friendly.

mEm (a sin mq) cos nbdq
n 0a

-= ZmEm [(a sin m4 cos n)120 +
m

= n mEm a sin m sin ned
m

Sna sin me sin nqd¢]
0

(4.20)

The first term is zero since a is a periodic function. Therefore, the equations now

look, in the form to be used by COLSYS,

092

Or 2 E
10
r Or

(2 )2
En+ LP

n mSS(m, n)Em
n

S CC(m, n) (AEm - BEi- 1 + Eim2)'
n

a2

Or2 n

r 1
r Or

(4.21)

(4.22)2,r) E mSS(m, n)Em'

rr rr Br 87

(19 0 r Orr ar rT 7 E EE (r) a sin msin m sin ned
LP m o

2D CODE

n2 n 2 4) (r) =
r2

n2)2 •
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where

SS(m, n) = sin mq sin nqd (4.23)

CC(m, n) = a cos m cos nd (4.24)

The code is also capable of solving for a strand with a normal metal shell and/or

core. Fpr copper, a1 transitions from a,. to +iai,} at the boundary between the

copper region and the superconducting matrix. This gives equation 4.4 an extra term.

The left hand side now looks

VT * (a VT4) = a - p + aUV D (4.25)
Or Or

At the boundary between the normal conducting region and the superconducting

matrix, a1 goes through a sharp transition. At either side of the boundary, oa 1 = 0.

One can actually cirumvent this transition numerically. There is an input to COLSYS

named FIXPNT which are points other than the boundaries that are "fixed points" in

the meshes COLSYS creates. It is actually between mesh points that the equations are

evaluated. Thus, specifying the radius of the boundary as a fixed point will prevent

COLSYS from evaluating the equations at that point where the conductivities are

discontinuous.

For either a pure transport current or external field excitation, the number of ¢

harmonics needed is small. In fact, one could get away with using the same harmonics

as the excitation. The zeroth harmonic is needed for transport current and the 1st

harmonic is neede for an external B-field (see chapter 2). When both sources are

excited, there is strong coupling between the zeroth and first harmonic which leads

to appearance of higher harmonics.
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The initial temporal step size used is 1/100th the estimated time constant of the

geometry. For a strand, the perpendicular time constant is typically of the order of a

millisecond which means that At is of the order of 10psec. The other restraint on At

is the level of saturation. At must be small enough so that the first two time steps

are not in the saturation regime. The code automatically adjusts At for efficiency as

it progresses in time.

Once saturation occurs, the code iterates to produce the "correct" solution, or at

least to converge to the specified tolerance at each time step. For an error tolerance of

le-4, the typical number of iterations at each time step is under 10, with 1 iteration for

below saturation. This, of course, depends on the level of saturation. On a DEC Alpha

machine, an iteration averages .15sec for 2 harmonics(0th and 1st) or 8 equations and

.3sec for 4 harmonics(0th-3rd) or 16 equations. Above saturation, 2 harmonics yield

a CPU time of 1.19sec/iteration and 4 harmonics yield 1.5sec/iteration. When the

strand/cable is saturated, the CPU time goes up a factor 5 to 8 times(per iteration).

This is mainly due to the evaluation of the a Fourier integrals in (4.23) and (4.24)

and the evaluation of the Pl integral. A typical run with saturation will take about

2 hours.

4.2 Benchmark cases

Four sets of cases are presented to verify results from the code. The first wire geometry

has only a multifilamentary region (no inner or outer stabilizers) and is for illustration

purposes only. all is set to a constant and the external B-field is ramped until steady

state is reached. The numerical results for field profiles and losses are matched against

analytic solutions derived in chapter 2.

The second set of results are for a wire with the same dimensions as the first
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case except that there is a thin outer normal conducting shell of varying thickness

as shown in fig. 4-1. Loss results generated by the code are compared against loss

expressions for thin outer shell geometries found in Wilson [11] and those derived by

Turck [24] without the thin shell approximation.

The third cluster of data aims to show the effect of a sinusoidal field on an actual

wire geometry. These cases are important to such applications as superconducting

generators and motors, and MAGLEV where sinusoidal fields are the mode of opera-

tion. The loss values for varying frequencies are compared against existing expressions

found in Wilson, Turck, and Ito [26].

Finally, the tricky condition where transport current and B-field changes occur

simultaneously is examined. The physical parameters are taken from Sumiyoshi [22].

A wire with an initially uniform transport current density is subjected to an exter-

nally ramped B-field and the transport current distribution is analyzed and compared

against existing hypotheses.

These sets of results are used to validate the code. They are in no way an exclusive

nor exhaustive set.

4.2.1 Case 1: Linear conductivity

The purpose of this run is to compare fields and loss values generated by the code

against equations 2.21 and 2.22 where oal is assumed to be linear.

The agreement between analytical solutions and that produced by the code is

exact. The code was executed to ten times the perpendicular time constant Ti (see

eqn. 3.84). Figures 4-2 to 4-4 show a comparison of Ell, E0, and Er as generated by

the code and analytic solutions for the following values:
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AA = 1T/sec

rf = 8pm

R1 = Rf = .405mm

L, = 4.05mm

je = 1 x 109A/m 2

A =.5

ac = 2 x 109(Q-m) - 1

For all of the runs, a7 = (1 - A)/(1 + A)aUc.

4.2.2 Case 2: Wire with thin normalconducting shell

Expression of losses for multifilamentary strands with a thin normal conducting

shell/sheath can be found in Wilson. An effective time constant was found for this

geometry assuming a thin shell approximation (R 1 - R1 << R1 ). (A more in-depth

derivation of multilayer geometry can be found in the next section.)

T = 0 ffL 2  (4.26)
2Peff 2(

where
Pef- a +a -R +acuR(R1 - R)f) 2)2] (4.27)

The last term is associated with what literature coins as 'eddy current loss'. A dis-

tinction is made between axial currents flowing in the shell as a result of normal eddy

currents due to a time-varying B-field and 'coupling' losses due to transverse currents

caused by induced voltages in the multifilamentary region. The first two terms in the

above equation contribute to the coupling loss and the last term contributes to the

eddy current loss.
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For a ramped field, the steady state power loss per unit volume is simply

Pd = 2-' r (4.28)
[o

where Bi is the internal electric field.

Fig. 4-5 shows the comparison between numerical results and the above expression

given the following parameter values.

BA - 1T/sec

rf = 8ym

R1= .405mm

L, = 4.05mm

j= 1x108A/m 2

A=.5

a, 2 x 109(Q-m) - 1

One can see that the thin shell approximation deviates from code results with in-

creasing shell thickness.

4.2.3 Case 3: Multilayer wire - SSC NbTi strand

The physical parameters for the NbTi multifilamentary strand proposed for the SSC

project is used in the third set of runs. The strand, schematically drawn in 4-1 and

pictured in 4-6, has a central copper core, a multifilamentary zone (MFZ), and a

surrounding copper sheath. A bias field of 3T with a 10% peak-to-peak ripple is used

as the excitation. It is also to show the capability of the code in solving multimedia

conductors and in handling excitations of various waveforms. The dimensions are
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Bdc = 3.OT

rf = 7.2tpm

R 1 = .404mm

Rf = .324mm

Ro = .112mm

L, = 12.7mm

j,(B) = critical current density as a function of B

A = .3775

acU 1/PCe

where

PcU = Pa/Pb + PcBdc

Pa = 2.0 x 10-8 (Q-m)

Pb = 40.0

Pc = 4.8 x 10-1 1(Q-m)/T

Ito and Turck have derived analytic expressions for multizone conductors which

have also been experimentally verified. Their derivations (with a slight modification

to include eddy current loss in the core) will be used to benchmark the code results.

Turck's formulation

Expressions for steady-state field and potential distributions were derived for multiple

layers of normal conductors surrounding a multifilamentary zone region. Here we will

review his derivations specifically for our NbTi wire.

Any shielding effect of the outer layer on the multifilamentary region was ne-

glected. This is a fairly valid assumption since skin depth for copper or any other

normal metal is much larger compared to that of a superconductor. Therefore, the
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solution for the potential distribution at Rf is the same with or without the normal

metal sheath(s). The familiar equation for the steady-state electric potential is

V = (L)BAr sin (4.29)

This dictates the boundary condition for the inner rim of the sheath (r = RI).

At the outer rim of the wire, the boundary condition is

J,(r = R1) = 0

a
E,(r = R1) = -- V = 01r

(4.30)

(4.31)

In steady state, the potential satisfies Laplace's equation

V•V = 0 (4.32)

A solution to V is of the form

b
V(r, ) = (ar + -) sin q

r (4.33)

where a and b are constants determined by boundary conditions given in (4.29) and

(4.31). At r = Rf,

b
V = (aRf + b) sin ¢

Rf
= LPAR, sin €

2r

At r = R1,
S:) sin 0Ri -.-r V = (aOr

(4.34)

(4.35)
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These two equations give

L. R2

a LP B f27 (R + Rf)
b Lpb (RiRf)2
b = (RB+R)

(4.36)

(4.37)

Therefore the solution for the electric potential for Rf < r < R 1 is

L R2 (r+V(r, )= R (r +27r Rf + R
R2
-1 sin q)r

(4.38)

For the inner core, 0 < r < R 0, V has the boundary condition that it is non-

singular in the middle. Therefore,

L
V(r < Ro,) = "-Brsinq

27

which is the same solution as that in the multifilamentary region.

To summarize, the solution for the electric potential in all three regions is

SBr sin ¢

2- R•(r + -sinr"

if 0 < r < R1

if Rf < r < R 1

The fields are then

-!B sin q
2 R2- B (1 - ) sin

-b B cosf 1
4

if 0 < r < R1

if Rf < r < R 1

if 0 < r < Rf

ifRf r < R

Ez is neglected in this set of derivations. It will come into play when "eddy current

(4.39)

(4.40)

Er(r, ( )

Eo(r, ¢)

S V

10r
= r

(4.41)

(4.42)

2D CODE

V(r, €) =
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losses" are considered.

Power loss per unit volume is defined as (remember that Ez is neglected),

1 2r Ro Rf Ri
Pd acU + iLa + Ucu (E 2+ E )r dr do (4.43)

where Ac, is the cross-sectional area. After substituting in (4.41) and (4.42) into the

above equation, we obtain for the total coupling power loss per unit volume

Pd \2 2  [k + (1 + m)c,] (4.44)

where

R 2 -R2
k = (4.45)

R2
R = (4.46)

m - R= (4.47)
R + R2

(4.44) has one less 'coupling' term which has been neglected from ignoring Ez. This

is the normal eddy current that is induced in the copper regions, independent of the

voltages induced in the MFZ.

Ito gives the expression for eddy current loss in the outer sheath as

Pe = C(R4 R2) (4.48)

He has not, however, mentioned the eddy current loss in the core. To solve the

complete problem, once again, we can make the assumption that one can take the

solution in the multifilamentary region and use it as a boundary condition for the
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copper core region. Here, we have to refer back to chapter 3 for the solutions to Ell

and 4) to extract the expression for Ez in the multifilamentary region.

Ez (r, ) = Ell (r, €)
L, ao

(4.49)

(3.71) and (3.72) give

E, inside the copper region should satisfy Laplace's equation

V2Ez = 0

The solution

E, = Br cos ¢

is a solution that satisfies the equation and the boundary condition.

Therefore, the additional eddy current loss in the core is simply

B2R 4
pe,core = c uace4 Ri1

Ell(r = Ro)

S(r = Ro, ¢) SLPRo sin ¢27

so that the boundary condition on E, is then

(4.50)

(4.51)

Eý(r = Ro, ¢) = BRo cos € (4.52)

(4.53)

(4.54)

(4.55)

2D CODE
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Therefore, the total coupling/eddy current loss is

Pc = Pd +Pe 2Ri Z7FL
R)(kua + (1 + m)acu) + - (Rf - R + R

If we define ptot = Tef f, an effective time constant extracted from the above equation

gives

ef21 [= 2r R 2(k +Ocu) RRf(kL + (1 + m)uu) + 4(R

The total coupling energy loss Q, is dependent on the shape of the excitation field.

Here we will examine the effect of a ripple field on the total coupling loss. Loss per

unit volume per cycle is defined as

QC = f pcdt0 (4.58)

where T = 27r/w. The internal magnetic field is approximately [11]

Bi = BA - BiTeff (4.59)

For an excitation field of BA =Bmeiwt, the solution for the above time-differential

equation yields

(4.60)Bi = Bm eiwt_1

2(W :ff + 1)2

where 6 is a phase lag satisfying tan 6 = wTe/ff. The loss per unit volume per cycle is

Qc = L- 2B dt
Uj i-r d t

7rwTeff

(W2T ff + 1)
(4.61)

(4.56)

(4.57)- R) + R )4
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Code results

Due to the multiple layers in a conductor, the boundaries between layers must be

treated with care. Both al and all in the governing equations are discontinuous

across the boundaries. Eli is also discontinuous since a is non-zero only in the mul-

tifilamentary region. 1) however is continuous. In order to circumvent the numerical

difficulties of a discontinuous solution for Ell, we can still define a as if it were twisted

such that it is continuous across boundaries and assign appropriate conductivities to

the isotropic regions. Since the inner and outer regions are homogeneous, it does not

matter what the value of a is as long as it is << 1.

In the copper regions,

Jz = alElI = orcuEz

Jr = LEr -= acuE,

Jg = a-Ep + aullEll = acuE¢ (4.62)

If we keep a the same in the copper region as in the MFZ, i.e. a is continuous across

the boundary, then we can also keep Ell continuous as well. We can replace the

conductivities as

UoL - 0-cu

and according to our ordering system, the current density equations of (4.62) can be

achieved.

A dc bias field of 3T with a peak-to-peak ripple amplitude of .3T (10%) is applied

at a range of frequencies from 5Hz to 75Hz. Jc is allowed to vary as a function of BA.
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The time constant for this wire is about T = 1.34msec. and the results from Ito's

expression's and the code are plotted against f in fig. 4-7.

The graph shows that the discrepancy between the two methods grow with in-

creasing frequency. This trend is actually consistent with experimental results found

in Kwasnitza [32]. A possible explanation for the overestimation of the loss from

eqn. 4.61 can be attributed to the fact that there is a combination of high coupling

loss and thicker penetration of dipole currents at these frequencies which the analyti-

cal model does not treat well. In fact, high levels of saturation tend to decrese losses

- both hysteresis and coupling losses. Experimental data tend to fit (4.61) at very

high frequencies (w- >> 1) because coupling losses are so low that errors are less

pronounced.

4.2.4 Case 4: Field ramp with transport current

The interaction between transport current and dipole currents induced by an exter-

nally changing field has been of great interest and debate in the ac loss community.

Turck [25] claims that time-varying external fields tends to even out transport cur-

rent. Sumiyoshi [22] claims the same 'uniforming' effect but on a much longer time

scale than previously expected. Our formulation agrees with Sumiyoshi's prediction.

Because the transport current does not have to cross the copper matrix, the time

constant for the rate of diffusion of transport current is dictated by all and not aj

as with dipole currents. Although all is highly dependent on B, it is nevertheless a

large value, one much bigger than a_.

The parallel time constant is (as given in Sumiyoshi),

I = Tll,o(1 - 2) (4.63)
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where
2 Aj,

?II,0 = o kL BiR (4.64)

kl is the first zero in the first order Bessel function (Ji(ki) = 0) and

-= 71TBIHpw (4.65)

T = (gL,) (4.66)

2
Hp, = 2 AjRf (4.67)

Hpw is the amount of transverse field needed to penetrate the wire to its center.

Basically P is the thickness of the saturation region occupied by the dipole current.

The parallel time constant in chapter 3 is similar to eqn. 4.63. The major difference

is in the (1- _2) term which takes into account the reduced radius due to penetration

of dipole currents. The /32 factor is actually quite small. For instance, given BA =

10T/sec, T7 = lmsec, Ajc = 6.5x108 A/m 2 , and Rf = .5mm, we have /2 = .043. Even

at a high field rate of 10T/sec., the reduction in radius is still small.

The geometrical factor between the present derivation and Sumiyoshi's is slightly

different as well. The parallel time constant from 3.78 is

S= all f (4.68)

37r Ajlt0 4 B R (4.69)
64 jBjrf

Sumiyoshi's geometrical factor is 2/kr , .138 (where k, e 3.8) and the present

geometrical factor is 31r/64 - .147. The discrepancy is less than 10%.

The idea is that if, initially, there exists a uniform transport current distribution

and a field is ramped, there will be a "bunching up" of transport current as it gets
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pushed inward due to the dipole current. This phenomena is due to the fact that the

dipole current reaches steady state much faster than the transport current. Thus,

before the transport current reaches steady state, it is concentrated in an outer rim

of current and diffuses it's way towards a new uniform current density with the time

constant rII. In fact, in fig. 4-8, we do confirm this trend, as produced by the code.

The transport current density is plotted against radius (r) and one can see initially,

at t = To, there is a layer of concentrated current and at t = 10 x T11, the current

density has become uniform.

4.3 Conclusion

A computer program designed to solve the nonlinear differential equations in 2 di-

mensions, r and 0, have been put to use to solve AC losses in strands and cable

manufactured with only one twist pitch.

Code results were compared against analytic solutions from chapter 3 and deriva-

tions found in literature. Field profiles were shown for a simple filament matrix

geometry. Loss values were plotted for multilayered media, external ramped and rip-

ple fields, and a combination of transport current and ramped field excitation. The

ability to solve the problem with a B-field dependence of ji is a feature of the code

one could not find anywhere else. Such results were shown to benchmark as well as

to demonstrate the versatility of the code.

The numerical results agree quite well with literature. In fact, for a ripple field

excitation, the code is more accurate for mid-frequency range where the expressions

found in literature are the least accurate. In addition, for strands with a thick outer

copper shell, the code is also more accurate than existing work.
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Figure 4-1: Cross-section of multilayer strand
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108



20 30

Figure 4-7: Comparison of
fields of various frequencies

40
freq (Hz)

50 60 70

steady-state power loss of SSC NbTi strand for ripple

109

4.3. CONCLUSION

x 104

5

4

3
a)

0

a

1

80

- i -- ·

= m I I I I I

6

E

H



CHAPTER 4.

2 4 6
r(m)

X 10- 4

Figure 4-8: Evolution of transport current density in a ramped field.
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Chapter 5

3D code

This chapter is devoted to the study of AC losses in the ITER cable. To find the

behavior of such a large scale cable, one must find an accurate method for finding the

trajectory of the strands. A new approach, which takes into account compaction dur-

ing the manufacturing process, tracks the winding path of individual strands within

the cable. Such effort has culminated into what is known as the cable winder code.

The strand trajectories derived from the cable winder, although time consuming, is

a one-time simulation. They are then applied to the governing set of equations and

a new set of equations in 3D emerge.

There is a brief description of the numerics developed for this code. A set of results

are shown for ramped fields - field profiles and loss comparison with experimental data.

A surprising phenomenon emerges from the code runs - a behavior that may have

significant impact on the loss and quench properties of the cable.
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Figure 5-1: Cross-sectional view of ITER cable.

5.1 The Cable Winder

5.1.1 The algorithm

In most cables, the final product is manufactured through several stages. For the

proposed ITER CICC, a cable with 5 stages holds 1152 strands. Fig. 5-1 shows the

cross-section of the cable. A cable winder program has been developed that traces

the path of each of the 1152 strands and can easily be extended to analyze other cable

patterns. An outline of the algorithm is described here.

The specifications for this particular geometry is shown in Table 5.1. For the

first four stages, the strands/subsections are twisted together with the specified twist

pitch of that stage. It is then extruded through a circular die of increasing size with

increasing stage. After extrusion at the fourth stage, it is compacted into a leaflet

shape. Six of these are then fitted and twisted around the core of the cable to form

the final stage. The process is shown schematically in fig. 5-2.
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Stage Cable Desired Pitch (Lp)
1 3 x 0.8 1mm strand 50mm

2 4x3x1 100rmm

3 4x4x3x1 150mm

4 4x4x4x3x1 250mm
* At this stage the cable is wrapped and compacted.

5 6x4x4x4x3x1 390mm
* This cable will include a center hole 13mm in diameter.

Estimated Die Size
1.7mm

3.53mm

7.1mm

15.2mm

38.0mm

Table 5.1: Provisional specifications for ITER cable design.

The position of the ith strand for a given cross-section can be written as

xi = E rn cos(knz - Oin)
n=1

5

Yi = E rn sin(knz - €in)
n=1

(5.1)

where i,, represents the initial position of the ith strand at the nth stage. kn corre-

sponds to the pitch number of each stage and is equal to 27r/LP,. If rn, the radius

of rotation, is either constant or can be written analytically, our problem is already

solved. Unfortunately, the actual geometry is much more complicated due to ex-

trusion through fixed die sizes and compaction at the end of the fourth stage. The

winding laws become distorted - the radius of rotation is almost haphazardous be-

cause of the compaction. How then do these strands rotate and still keep the leaflet

shape?

The solution lies in the concept that strands/substages rotate about a center of

mass/inertia. Simultaneously, they must obey the winding laws of (5.1). A step-by-

step schematic of the algorithm is shown in fig. 5-3. The first step is to take the leaflet

shape and find the center of mass. This can easily be done if one assumes a constant
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5.1. THE CABLE WINDER

void fraction throughout the cable. The coordinate of the center of mass is

fA x dx dy
c &fA dx dy

yA y dx dy
Yc - fA dx dy (5.2)A dx dy

Next draw a line from (xc, yc) to one of the edges. This will be the reference line.

Because each leaflet contains 4 substages, one then draws three other lines such that

four equal area subsections are created. These correspond to the four sections that

comprise the fourth stage.

Then find the center of mass for each of the four subsections. Draw the reference

lines and divide each subsection into four equal area sub-subsections. Repeat this

process until you have reached the level of a single strand. The centers of mass found

at this stage correspond to the centers of each strand and there should be 4x4x4x3 =

192 strands.

The final step is to move apart any strands which may be overlapping. Since the

desired void fraction is quite high (40%), this last step is straightforward. The output

of the program is shown in fig. 5-4 with the dividing lines and strands shown to scale.

For the strands in the other 5 leaflets in the cable, one can simply rotate all of

the coordinates of the strands 2 m times for the mth leaflet (counting the reference

one as the Oth leaflet).

Xi+192m = ri cos(i + -m)3

Yi+192m = ri sin(¢i + -m) (5.3)
3

To get the strand distribution somewhere Az away, one has to use the winding

laws. Take the reference lines used to divide up the leaflet and rotate them by an
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angle of A0. A0 is determined by the amount of rotation affecting each substage.

The strands rotate about their own center of mass and they also translate due to the

rotations of the larger stages. In other words, the total angle of rotation for stage N

is

A0 =2rAz 1 (5.4)
n=N pn

Then redivide the sections with the new reference lines starting from the fourth

stage. Remember that the leaflets themselves also rotate so the new positions for the

final stage are

2r
xi = rio cos(qio + - Az)

Lp5
2w

Y, = rio sin(eio + Az) (5.5)
Lp5

where rio and qio are the initial coordinates of the strands generated for the fourth

stage.

If we follow the path of a particular strand as it travels down the length of the

cable, we can calculate the direction coefficients in polar coordinates, Pi and p2i where

Pi = ii cos Oi + Y sin Oi

pi = -xi sin Oi + Y cos Oi (5.6)

and xi and yi are z derivatives of xi and yi at zi. The path of a typical strand is

shown in fig. 5-5.

A plot of p and pb taken at every Az = 10mm for an arbitrary strand are shown

in fig. 5-6(a) and 5-7(a). It's difficult to extract much information out of these plots

but looking at the Fourier transform of them in fig. 5-6(b) and 5-7(b) show distinct

harmonics which correspond to the twist pitch of each stage. In fact, the zeroth-
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Figure 5-3: Steps to cable winder algorithm: (a)Cross-section of cable (stage 5).
(b)Cross-section of leaflet (stage 4). (c)Center of mass and division of stage 4 into
stage 3 subsections. (d)Center of mass and division of stage 3 into stage 2 subsections.
(e)Rotation of reference line corresponding to Az
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frequency value of p0 should be -r5 where r5 is some "effective" radius of rotation

of the 5th stage. Here, p'i(f = 0) f .25 which yields an effective radius of rotation

of r5 = 15.3mm.

So far, we have all of the information in Lagrangian or local coordinates of the

strand. However, the field equations are solved in the Eulerian coordinate system of

the cable. This means that p and po have to be converted from (xi, yi, zi) to (x, y, z).

As one traverses axially through the cable, for a fixed (x, y), one would encounter

many different strands, all travelling in their own directions. One even encounters

empty space; after all, the void fraction is over 40%. If we assume a truly continuous

medium, we can assume that p and p' also behave continuously. Therefore, where

there is empty space, the values for p and p/ are interpolated from neighboring

strands. At each cross-section (constant z), there is a mesh of points corresponding

to the location of the center of each strand with the values of p and pý associated

with each point. The coefficients for locations in between the points are interpolated

via a simple linear two-dimensional interpolation method.

5.1.2 Results of cable winder

The results are quite surprising. The direction coefficients behave very well. In fact,

as seen from fig. 5-8(b) and 5-9(b), the fourier coefficients of / are relatively small

and pI has a very strong dc component. A radial profile of pk in the next graph

shows that it behaves relatively linearly across the radius of the cable. This means

that we can write p4 simply as

p4 = air - ao (5.7)

For a better fit, pC can be expressed as a polynomial. Fig. 5-10 shows a linear
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Figure 5-5: Typical strand path as it winds through the cable.
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Figure 5-6: (a) radial trajectory j for ith strand vs. z and (b) the magnitude of it's
Fourier transform.
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Figure 5-8:

0.01 0.02 0.03 0.04 0.05

(a) radial trajectory at x=0mm,y=llmm plotted vs. z and (b) the
magnitude of it's Fourier transform.
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Figure 5-9: (a) azimuthal trajectory at x=Omm,y=llmm plotted vs. z and (b) the
magnitude of it's Fourier transform.
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and a 5th degree polynomial curvefit. For a linear fit,

a1 = 45

ao = -. 373 (5.8)

For a polynomial fit where a = asr5 + a4r4 + &3 r 3 + &2 r 2 + air + ao, the coefficients

are

a5 = 2.75e10

a4 =-1.74e9

as = 4.38e7

a2 = -5.50e5

al = 3.46e3

ao = -8.705 (5.9)

For a simple helically wound system such as filaments in a strand, a0o = 0 and

al = 27r/LP.

Fig. 5-11 shows a horizontal cut-away view of the cable. One is looking down on

the cable. Notice that the cross-section of the strands become increasingly large as

one travels from the outer to the inner radius. This is due to pC having the opposite

trend. The angle of rotation is less sharp on the inside, i.e. the strand are "straighter",

and so yields a bigger cross-section.

For p, the harmonics mainly correspond to multiples of the twist pitch of the

final stage (400mm) divided by 6 which corresponds to the number of leaflets. This

is because the strands cannot stray outside each of the leaflets and therefore p = 0

at the perimeter of the leaflets in the same way it is zero at the inner and outer
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Figure 5-10: Radial profile of p4 (a)
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Figure 5-11: Horizontal cross-section of cable showing effect of a

126

_ _s_ ~_

_V"r



5.1. THE CABLE WINDER

perimeters of the cable itself.

p(r, q, z) can be expressed simply as

1 = Z En(r) sin 6n(O - kz) (5.10)
n

en is the radial dependence of p and the first two (largest) harmonics are plotted in

fig. 5-12.

5.1.3 Analytic model of p4

The cable winder program, albeit versatile and accurate, is not the perfect tool for

designing or analyzing a large number of cable configurations. There is a need for an

analytical model of the coefficients from a design point of view.

Presently, a fairly accurate closed-form expression for the azimuthal strand tra-

jectory has been derived and verified. The first step is to assume that the last two

stages dominate the behavior of the strand paths. Therefore the winding law for a

strand can be expressed as

x = ro cos o + r1 cos 1  (5.11)

y = ro sin 00 + rl sin 01  (5.12)

where

0o = koz (5.13)

01 = (ki + ko)z (5.14)

where ko corresponds to the wave number of the last twist pitch and kl is the second
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to last twist pitch. The position of a strand is

P r= + r, + 2ror cos (0o - q1)

tan 0b
ro sin 0o + ri sin 0 1

ro cos 0o + ri cos 01

Taking the z derivative of 0 and multiplying by p gives

a
1-Z

= [kop + krl~ + kiror• cos (ooP

Converting to Eulerian coordinates, we make the following substitutions.

p=r

which yields

p~M(r, , z) =

(5.17)

(5.18)

Figure 5-13 shows a plot of the comparison between (5.18) and the data from the

cable winder. The radius of rotations are ri = 3mm and ro = 13mm. kl = 2' and

ko = . The curvature is somewhat different but otherwise, it is a very good fit.

5.2 Governing equations for the ITER cable

To recap, the coefficients of the parallel directional vector are

p = E-E,(r)sin6n(- kz) (5.19)

(5.20)p/) = a(r)
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Figure 5-13: Comparison between result from analytic expression and data from cable
winder for p4.
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where k = 6 x (.4m being the pitch length of the final stage) and the a values

can be found in the last section. Introducing the Lagrangian derivative defined as

d .
dz Or

+ 0 z
+0q p+

84 8z
(5.21)

and substituting in (5.20), we can rewrite the governing equations as

V2(Ell + dz

UaV2 4

0

S10
= r-rr(aEll

Introducing the variable a from chapter 4 such that

0 0a8El
= tE

where
0

a = all + Ell aall

and substituting it into (5.23) gives

, p 10= (Pi El) +- -aEll + r-(alIEll) +
r" r 0q

S + (' P a,

UV D d
a--zEll + (•

0azallEll
19

+ z)EllI+x

+ P)allEllr

The primes denote partial derivatives in r and are used for ease of notation.

Expanding the second term in equation 5.22 yields

d 2 D ,= T-Vi + 2(VT') (VA"') + 2(V ) - (V
dz r 89
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+ - (aal Eil)

r 0-
0

+ allEll19Z

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

2d
dz

2a)
+ (V2)T
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+ 2p')V T +
+ /p +

IT2 -r+ *

+ (V 'a) (Dr T

Plugging (5.26) into the above equation for V~4 yields

1d
V2 EI + 1 d

uT dz

+ r2
[r2

. I
P
r

= V2El + EllIT dz2

+ 2') [a dElldz
,," 1 02 .

+p + p
12 2

+ ('+ )allEl]

+ 2 +

+1 d + (3' +
au dz r

",, 1 2

+p + p0¢2P+2
T2 a02

10.
7( p+ (-) y 1r / 0bJ

+ .

I r2  r

= Lou Ell(9ta

5.3 Numerical strategy

We now need to choose the form of the solutions for Ell and 0. The source gives

the q dependence and /5 gives both the z and q dependence. From inspection, the

following series expansion would make sense.

El (r, ¢, z, t)

4(r, , z, t)

E= E Emn(r, t) cos[6n(o - kz) ± mq]
n=O m=O

-= 1 4 Omn(r, t) sin[6n(q - kz) ± mq]
n=O m=O

This set of solutions follows the behavior of p (thus satisfying the differential equa-

tions) and would satisfy boundary conditions in an infinitely long cable.
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(5.27)

a

r )

d
•zzEll Jr

902
- /5')0--1

-1 dz d
p) + 2/'(/' + I lE

(5.28)

(5.29)

(5.30)
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5.3. NUMERICAL STRATEGY

For ease of notation, we introduce a new set of coordinate variables.

= 6( - kz)

After a Jacobian transformation, the partial derivatives are now

_9a0qa aý a
a9 ao' a • ao

=-+-••

o€ 04' o€8 o¢ a' a
az 0€'

az aO
az d

a a- +6a q' •-
= -6k

The series for p, Ell, and ( in these new variables are

>= e, (r) sin n
n

= E Emn(r,t)
n=O m=O

n=O m=Om (rt)
n=O m=O

cos(n ±+ me)

sin(nC + mq)

This change of variable actually saves computation time as well because the harmonics

are no longer multiples of 6. This cuts the number of sample points for the FFT

operations by 6(as will be described later).

Making the variable transformation on the most common derivative term yields

• + = 6
r a¢ • z r i9 (5.38)

where ae = a - kr.

The singularity in the C and 0' derivatives of a can be treated similarly to sec-

tion 4.1. Here the Fourier decomposition involves double integrals - one in ' and one
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(5.36)
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in C. The problematic term in (5.28) is

(5.39)

because of the derivative of a. Again, as in section 4.1, we can try to circumvent this

problem by absorbing the derivatives into the Fourier integrals.

We can write the cosine Fourier integrals in more general terms.

d j2j 2?• (•zz-o)(}= 1 )( d( d  '
( a)( EE)= ( d El ) f (( ' ,)d¢'d(dz dz fo dz (5.40)

where f (0', ý) = cos(pC' + qý). Now,

-=Jzf, d Ell d' d + fJJ(6ae-a + a a) +Ell do' d<

,d
= = Fja -Elldz
+ 6a [ (f a Ell) 2 r d' - a (fE - d- dE ll ) d'

+- (fa-Eli) d - fJa (f +E) d' d (5.41)
r dz 01 =0 dz

F denotes the Fourier cosine transformation. Unlike the 2D code, the Fourier integrals

are evaluated by an FFT routine rather than numerical integration. This is chosen

because there are multiple harmonics that need to be extracted and one would have

to integrate n times for n number of harmonics.

The above manipulations avoid the problem of having to evaluate the ( and ¢'

derivatives of a. However, the first term in the above equation contains an r derivative

of a. This term is computationally costly. As yet, there has been no alternative

method in evaluating it. Summarizing, since a,f, and Ell are all periodic functions,
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5.3. NUMERICAL STRATEGY

the single integral terms in the above equation simply go to zero so that

+ 6ae, (
1 d

+ -(ap + 6aq)(F7 {ad-EI})
r dz

dE)}
d(5.42)

(5.42)

Q stands for the imaginary part of the Fourier transform which corresponds to the

sine transformation. A couple of the terms in (5.28) combine to become for the pqth

harmonic,

+ dz)( dzE)}
d dz

= {pa ' ( dzEi )} + F{padzEl}

F p2 E [.+(2 (a
=r 89

1
+ -(ap

r

1 d
+ -(ap + 6aq)(.u{a dzEl})

r dz

+ 6a, )
.' 1 0Ell + P-- (b-
a r 8

+ 6aq)(.TF{a dEii})dz

(5.43)

+ 6ae)E,

(5.44)

We rewrite the differential equations in (5.28) as

L2EIl + L1ElI + LoEll + PI) ' + Po) = poat El

V2@ = J1E'I + JoEll

(5.45)

(5.46)

where the operators are

L2 1 + 2
o'.1

1
{IL1} = rr

(5.47)

1+
as

+ 6ae) + 4ý' +
r

+ p2]

1 1
+ -- (ap + 6a&eq) (.{pa})

a± r
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F{Lo}
1 a + 2

= •( +

r a + 6
+ r ( 8•'(1 1(

+ -- + 6aeq)!
oaI r

,, 36 a2 .
+P + -p

r2 2

<F - 0aj 12p

1 1 .,+
6 )1 + r(3P +

(a p+

6a
+z(2a

+6 )2 +

+pp +3 2
r r

+ p-)(a,
6ae

a
(-)')(- + 6

(V2 )( a + 6 )

J1 = -P

+ a a+ -(6ae- + aW )]r a8 1'

O !e 0
+6r (pr d Pr+ r

a 'V)+ 6ae )Ofa'l

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

For the constant all case, the equations become linear and computation time can

be drastically reduced if some of the FFT operations are performed outside of the

ODE solver COLSYS. Since it has been determined that the ratio of _ is very large,

any interpolation scheme is out of the question. Rewriting the operators for a constant

all, we have, for the pqth equation,

1 + ý E±,F n 2 COs(mo' + ný)}
al m,n

(5.54)

1
j{LIEIl) = -Ep

+ % "E'y.F {
07 m,n

+ -- 1 (ap + 6aq
a1 r

--(am + 6aen) sin(mq'r

) Em• (Y{ pcos(mq'

+ ný) + (4~' +

+ ný)})

)

2

r
cos(mq' + ný)}

(5.55)

- [(p+ 6q) 2 + (f11)(ap
ar_

+ 6aeq)2] Epq

- ,EmnF I
a m,n~ L

I-I (m + 6n) + -(3p' + P)(am + 6aen)] sin(me' + ný)
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5.3. NUMERICAL STRATEGY

__ 3p' p2 6e0]
.12 r2 r+ 6+ r) cos(m' + ný) (5.56)

{P }= + - 7 p" -+ sin(mq' + n6)

+2 ( a+ ()')) s( + 6n)cos(m' + n)} (5.57)

It

F•{Po} = mrnF (V2 a)(m + 6n) cos(mk + nC)
m,n r

2- (r - p')(m + 6n) 2 sin(m' +n) (5.58)
rr

.F{J1iEii} EmT1cos(mq'+ nC)} (5.59)
0"-L m,n

.F{JoEjjl} = Emny (p' + ) cos(mq' + nC) - 1 n()a (5.60)
0'L lmnm+ 6r r n) sin(m' + nC) (5.60)

U.L- m,n 
T

An alternative approach, assuming a small number of harmonics for p, would be to

isolate the terms that contain C and 0' and integrate before feeding it into COLSYS.

There are only a limited number of combinations.

As an improvement to the present equations, one can add an additional constraint.

One can assure that the cable is incompressible, that there are no extra compaction

or expansion solely due to an incomplete model of the geometry. This can be done

mathematically by enforcing

V- 11 = 0 (5.61)

which translates to a relationship between a and 1.

a = -p (5.62)

The additional C dependent term in a is small. Substituting the above relation into
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the governing equations yield a new set of operators as listed below.

1
{LIE } = rEpq +

+ (3ýp

al E' -2 (am + 6aen) sin(m¢' + ný)
aL m,n r

+ ) cos(m' + ný)r 08ý
FLoE [(p+ 6q) 2 + (-)(ap+ 6aeq)2]~7~(L~lra 1

Epq - Emn
a1 m,n

-e V +r rj
(m + 6n) + L(am

r
+ 6aen)] sin(me' + n) }

= ~~mnT
m,n

(P P + +-- sin(r2 r r2 aý2P)

+ ()') (m + 6n)cos(m' +

(V2a)(m + 6n) cos(me' + ný)
r

- p (m + 6n)2 sin(me' + np)

F{JiEll) = al- , "Enn{- cos(mM' + nr)}
0-L m,n

-a m,n
= Imn

Emn- { (am+ 6aen) sin(me' + ný) }

The terms in the equations are expanded into the possible combinations of har-

monics. This is, of course, impractical for a large number of harmonics. We decided

to take the largest two harmonics of p, thereby making this approach feasible. For

instance, the first term in operator Po (eqn. 5.51) is

- ) arr
+6 )2 )19ý (5.69)
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Integration of this term to obtain the pqth equation yields

- (m + 6n)2mn ( -' fsin sinn(m' + n) cos(p' + q) d~' d

+ ( - '2) sin 2 sin(mq' + ný) cos(pC' + q) do' d<

The integrals can be easily evaluated. The values of these integrals for each

pqmnth combination are evaluated and stored in arrays that are fed into COLSYS.

The array of equations has the form

L2,pqmn E"nEmn = L1

P1

1
r

J1,;

,pqmn

,pqmn

pqmn

iqmn

÷4
+

Lo,pqmn

PO,pqmn

6q) 2 
O pqm

i- Jo,pqmn

Emn

mn

Emn (5.70)

However, COLSYS does not allow a matrix to preface the highest derivative term.

In other words, the program does not allow [L2] in it's original form.

One easy way to cast the equations into an acceptable form is to divide (5.45)

through by L2 = 1 + I 2. One soon discovers that the Fourier transformation of
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these coefficients after the division is a numerical nightmare. The functions have

sharp gradients and vary over a large range due to the ' ýA 2 term.

Another method that saved a lot of computation time is to convert the equations

into their Fourier components first before dividing by L2 . This casts L2 into a matrix

form of size dependent on the number of Fourier harmonics one chooses. The matrix

is then inverted and multiplied to the right-hand side of the equation. The reason

why this saves time is because the Fourier series for L2 has been truncated first before

bringing it over to the right side of the equation. The first equation now becomes

Ep = L2,pqmn L,pqmn E + L,pqmn + Emn +

Pipqmn mn + Po,pqmn mn 5.71)

5.4 Results

The decision was made to keep this code linear. As is, it is already computationally

costly. Running some 2D cases with and without the nonlinearity in all convinced us

that using a linear all is effective for calculating AC losses. At 1T/s, the discrepancy

as shown in fig. 5-14 is small. Even at 10T/s, the discrepancy in loss calculations for

a single strand is only 25% as shown in fig. 5-15. Saturation effects for a cable-size

geometry is even less important because it takes a higher B rate to saturate the same

percentage area as for something as small as a strand.

Since ý is assumed to have 2 harmonics, then p2 (or some derivative combination),

which is the highest order of 1 that appears in the equations, has 4 harmonics. The-

140



5.4. RESULTS

0.5
t (sec.)

1.5

Figure 5-14: Saturated vs. non-saturated power loss for B= 1T/s

0 0.2 0.4 0.6 0.8 1
t (sec.)

Figure 5-15: Saturated vs. non-saturated power loss for B= 10T/s
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oretically, there should be an infinite number of Epq since lower harmonics couple to

form higher harmonics and this process can go on indefinitely.

The number of coupled ODE's that need to be solved is dependent on the number

of harmonics picked for the variables

Ell(r,¢', ,t) =E E Emn(r,t)cos(n +m¢') (5.72)
n=O m=-M

N M

S(r, ',0 , t) = E mn(r,t)sin(n + me') (5.73)
n=O m=-M

For the outer summation, for n $ 0, there are 2 x M+ 1 terms in the inner summation

for each n. For n = 0, since the negative m terms are the same as the positive m's,

there are only M + 1 distinct harmonics. Lastly, there are two equations for each

harmonic. Therefore, the total number of equations is 2 x [N x (2 x M + 1) + M + 1].

Since all is taken to be constant, the 0' harmonics will come from the source terms.

Since the field is uniform and transverse to the cable, BA has only one harmonic (see

section 2.5.1). Thus, M = 1. This leaves the choice for N open. The limit on N is

determined by the amount of computation time needed to solve 2 x N x (3N + 2)

number of equations.

For instance, for the case N = 4, this translates to 28 coupled equations and 56

variables for COLSYS! Curiously, the losses for different N values are quite different,

specifically, the loss increases with increasing number of harmonics and the answer

does not converge as one goes to higher harmonics. This, in itself, shows an incon-

sistency in the results. As one goes to higher harmonics, the difference in the losses

should be of second order, to be consistent with the higher harmonic fields being sec-

ond order. However this is not the case. It turns out that solving for more harmonics

actually changes the leading order term!

To circumvent this strange, unphysical behaviour, we need to examine more closely
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why there seems to be positive feedback between the leading order harmonics and

the higher order ones. Fig. 5-16 shows the profile along the x-axis of Ell and Er at

z = 0. It is even clearer here that there is a concentration of current around ±8mm.

This is a very curious effect unique to this cable configuration.

The peaking of the current coincides with the zero crossing of a as shown in fig. 5-

10. Physically this corresponds to a cylindrical sheet around r x 8mm where there

is no helical twist. For radii less than the zero crossing, the strands are winding in

one direction and for radii larger than the zero-crossing, the strands are winding in

the other direction. The result is that currents are trapped around this area. The

problem becomes inherently without bound. The only saving grace is p which allows

for some transverse flow of currents. The coefficients of j are also what contributes

to the ( harmonics.

The question to be asked here is: does it make any physical sense to have this

zero-crossing in the pC coefficient? Does having this cylindrical sheath that traps

current represent a physical reality or a numerical anomaly due to the smoothing of

the trajectory components?

To answer this question, a noise factor is introduced. Since a is never uniformly

zero in any cross-section (see fig. 5-17), a noise term actually seems more realistic.

This new a is expressed as

a = a(r) + n,(r, q, z) (5.74)

One can see the frequency spectrum of p4 to have a small background noise and

a dominant dc harmonic. ns, on its own, has a neglible effect and does not couple

to the fields. However, due to the fact that the governing equations have an a2 term

and that the dc component of a goes to zero somewhere, n, can be significant in the
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Figure 5-16:
Er profile.

(a) Ell profile showing peaks around zero-crossing of a and similary (b)

144

CHAPTER 5.

x 10 - 6

0

-2

-
6

r (mm)
20

-
6

· r · · I I

·

3D CODE

-

L

f Y /ml~\
r (mmu)

20



5.4. RESULTS

0.2

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

0n O5
0 1000 2000 3000 4000 5000 6000

z (mm)

Figure 5-17: p/ vs. z at x=0 and y=8mm. Illustration of noise at r=8mm which is
the zero-crossing of a.
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zero-crossing region. Part of the first term in equation 5.56 is

all l(ap + 6aeq)2

o - r

Only the squared terms of a contain contributions from n, since n' has a dc

component. Therefore, the additional terms are

< ns >2 (p + 6q)2  (5.75)

where < nr > is the average or dc value of nr.

Because 2 harmonics were picked for p (( and 2(), the same harmonics were picked

for n, to be consistent. Fig. 5-18 shows the value of < n > ranging from 7mm to

18mm. The fitted quadratic curve is what is used in the code.

A set of cases with varying number of harmonics using this new a is examined.

Table 5.2 shows the steady-state power loss for different harmonics in (. In this

case, it is clear that the results converge. COLSYS is set to allow a maximum of

40 equations and 80 unknowns, the equivalent of N = 6 as the highest value of N

allowed. COLSYS can be expanded to accomodate even more harmonics but the

computation time is already costly for N = 4. Originally, COLSYS could only take

20 equations or N = 2. The computation time between the N = 2 and the N = 4

cases is almost 5 times. This leads one to believe that COLSYS is optimized for a

maximum of 20 equations.

A typical case takes approximately one hour to run with N = 4. This is a

reasonable amount of time and the discrepancy in results between N = 4 and N = 6

is quite small. Thus, N = 4 will be used for all future cases.
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Figure 5-18: Mean-squared noise of a vs. radius of cable.

(M=I) Steady-state power loss (W/m3) Error
N=2 1560.8 14.4%
N=4 1378.1 1%
N=6 1364.6 0%

Table 5.2: List of code results using different number of harmonics to describe Ell
and D
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5.4.1 Field and Loss Profiles

Figures 5-19 to 5-21 show the 3D mesh plots of the steady-state electric fields in

ramped B-field conditions. The radial and azimuthal currents have a large peak of

opposite sign near either side of the inner rim. A plot of the magnitude of E, vs. r

at q = 7r/2 is shown in fig. 5-22. One can see that the concentration of transverse

currents is in the proximity of the zero-crossing. In fact, the spatial distribution of

power density as shown in fig. 5-23 is added evidence of the concentration of loss and

currents in the vicinity of the zero-crossing. Therefore, the added noise in (5.74) did

not change the qualitative behavior of the system although it stabilized the numerics.

Losses

The loss expression for a cable most often found in literature is similar to that of a

single strand but with a different geometric factor.

b2
Pd = -n7 (5.76)

!Lo

where nr is a function of a±.

Fig. 5-24 shows a plot of normalized steady-state power density loss vs. a±. It is

reassuring to see that power loss is still a linear function of the transverse conductivity

similar to a single strand. Fig. 5-25 shows a plot of normalized power loss vs. B. It

is a squared dependence of the ramp rate which is also consistent with eqn. 5.76.

The value for the transverse conductivity a± is a topic of much debate. No one is

certain as to how to go about obtaining it experimentally. There have been estimates

ranging anywhere as low as 104 to as high as 107. Since there is no reliable number

available for ua, this can be used as a parameter to be determined by fitting code

results with experimental loss data. The code can be used in this way to find the

148



5.4. RESULTS
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Figure 5-19: Profile of E11 at z = 0.
petals.

One can see 6 peaks corresponding to the 6
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Figure 5-20: Profile of EO at z = 0. The azimuthal field reverses signs at the zero-
crossing.
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Figure 5-21: Profile of E, at z = 0.
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Figure 5-22: Profile of Er at z = 0, 7 = ir/2. There are large peaks in the vicinity of
the zero-crossing(8mm).
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Figure 5-23: Profile of Pd at z = 0. One can see that the loss due to Er dominate.
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Figure 5-24: A plot of power
is linearly dependent on or.
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Figure 5-25:
is dependent

A plot of power density Pd normalized to B2 to show that the power loss
on B 2.
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Figure 5-26: A plot of power density Pd vs. time. The first curve shows a very short
time constant (-r) close to t = 0 and a much longer one (rT) past 5msec. The second
curve is a magnification of the curve around t = 0 to show -T. Third graph is a plot
of power loss between 5msec and .5sec to show long time constant.
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"effective transconductance" of the cable.

Fig. 5-26 shows the time evolution of the power loss density for a cable with

al = 1 x 106 ( (-m) - 1 . On close examination, the curve looks like it has more than

one major time constant. In fact it seems to have two distinct ones - a short one (-r)

and a long one (Tl). Fig. 5-26 shows a blow-up view of Pd in the two different regimes.

The effective time constant, if one uses Pd A (1 - e -2) where po=1.74kWatts/m 3 ,

and choosing the 1/e roll-off point, yields a value of rT 130msec.

Substituting into the equation for steady-state Pd, we have

B2

Pd = -nT
Io

Pd
n = P0OT2

= .067 (5.77)

This is a far departure from the n = 2 value used for a strand. This is due to the

additional TI as mentioned before. A closer examination of the electric fields show

relatively smooth, low gradient profiles for 0 < t < r•. However, the peaks around

the zero-crossing start to grow after 7, with a longer time constant associated with

it. Because peak losses occur within the zero-crossing zone and not over the whole

cable, it contributes only to a fraction of the loss. This explains the reason why n, the

geometric factor, is so small. This leads us to believe that without the zero-crossing,

we may achieve lower losses and shorter time constants. This aspect will be addressed

under "Design Recommendations".

The effective twist pitch is then

Lp,eff = 21r nT (5.78)

= .523m (5.79)
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The effective twist pitch is a bit more than the length of the last twist pitch which is

.4m.

5.4.2 Loss data

In the scope of the ITER Task Agreement for AC losses, a benchmark action was

agreed in May 1993 to solve the discrepancies frequently observed between coupling

loss results measured on similar samples at different labs and to provide a common

basis for the assessment of the coupling losses of the ITER conductor.

The geometry of the test cable was not the full-size design. The 192-strand sub-

bundle (one of the 6 substages that comprise the final stage) was tested instead. The

specimen was manufactured similarly to the actual cable but as the final step, was

compacted into a circular rather than a petal shape. The complete final report was

not made available until Feb. 1996.

Although the experimental cable resembles nothing like the actual cable, there is

one crucial similarity. The 192-strand small cable, according to the analytic expression

derived for a, has a zero-crossing for this coefficient.

According to the results from our analysis of the full-size design, this zero-crossing

should lead to a time constant that is very long and a resulting n that is much

smaller than 2. It is the intent of this section to show that this phenomenon can be

extrapolated from the measured loss data.

Fig. 5-28 and 5-29 show experimental loss data for different excitation waveforms.

The first graph resulted from a sawtooth waveform with AB=.4T, the second a

sinusoidal waveform with AB = ±.2T.

From Wilson, the energy loss per cycle per volume for a B-field of ABeiwt is

AB2 wnrT
e = o (1 + (5.80)

4po (1 + W272-
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where Pd = B-i2nT and Bi satisfies the relation

Bi = B - Bi (5.81)

For a sawtooth waveform, the derivation is fairly straightforward and the results

are presented here. The waveform and variables are defined in figure 5-27. The energy

loss per cycle per unit volume is

2
qe = -nT(ABB - B 2T) (5.82)

Po

The first term is the familiar linear portion of the loss. This part of the data was

used to derive nT. When 7 becomes a significant portion of Tm, the quadratic term

also contributes. This explains why the experimental data starts to curve for higher

B values.

If the theory of the zero-crossing of a holds true, then n should be small and the

experimental data should show this. Figures 5-28 and 5-29 show the fit of eqns. 5.80

and 5.82. For both waveforms, it yielded a value of n • .18. These results are about

3 times bigger than the n value derived from the code. This discrepancy may be

due to the fact that it is a different geometry. It may also be because loss is highly

sensitive to any error in the strand trajectories and a small error in the trajectories

may give a substantial error in the loss. However, the data still gives a sufficiently

small n. Therefore, there is strong evidence that indeed the zero-crossing leads to a

very long time constant and a small n.
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AB = .4T

AB = .2T

AB = -.2T

(b)

Figure 5-27: The plots show the waveforms of the excitation B-field for the 192-strand
benchmark experiment and how AB is defined. (a) sawtooth and (b) sinusoid.
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0.2 0.3 0.4 0.5 0.6 0.7 0.8
dB/dt(T/sec)

0.9

Figure 5-28: Experimental loss data of 192-strand sub-bundle for AB=.4T sawtooth
wave form. It shows a good fit with analytic results for n , .18 and -r 217msec.
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0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
freqency(cycles/sec)

Figure 5-29: Experimental loss data for 192-strand sub-bundle for AB = +.2T
sinewave. It shows a good fit with analytic results for n • .18 and 7T 244msec.
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5.5 Design Recommendations

From the previous section, it is quite clear that the zero-crossing in a is an undesirable

trait for a cable geometry. Let us examine the physical mechanism that leads to the

zero-crossing.

We know that the direction of the twisting reverses somewhere in the cable. This

is most likely due to the interaction of the rates of twist between the fourth stage

(second to last) and the last stage. As pictured in fig. 5-30, the rotational motion

of the two stages add to each other towards the outer rim and subtract from each

other towards the inner rim. The relationship in magnitude between the two twisting

motions determines the location of the zero-crossing.

To shift the zero-crossing to outside the strand area requires either increasing the

twist of the final stage or decreasing the twist of the fourth stage. This is equivalent

to either decreasing the fifth twist pitch (Lp5) or increasing the fourth twist pitch

(Lp4 ). Ultimately, the choice would be made according to manufacturing constraints.

For illustrative purposes, we decided to decrease Lp5. The analytic expression for

a was used to pick the maximum value of Lp5 such that there is no zero-crossing in

the strand region. Eqn. (5.18) yielded Lps=200mm. This new twist pitch was then

inputted to the cable winder program and a new a and ý profile were extracted. The

a and 3 values are plotted in figures 5-31 and 5-32.

Fig. 5-33 shows a comparison between the power density for the old and new

design for an estimated oa = 1 x 106(Q-m) - 1. The exact steady-state power density

values are

pd(present design) = 1.69mJ/cc/sec. (5.83)

pd(present design) = .103mJ/cc/sec. (5.84)
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Figure 5-30: Schematic depiction of the constructive and destructive interference
between the fourth and fifth stage on the rotational motion of the strands.
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Figure 5-31: p data from cable winder for improved design.
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Figure 5-32: Both a data from cable winder and from analytic expression for improved
design.

164

0o o

0o

0 0

0

0

0

0

0O

O

O

0

0

1

m Coilwinder data
- analytic

m

m )K
rI(

IK
Mw

.

n

·

rl

E

0

E

I

E



5.5. DESIGN RECOMMENDATIONS

A r* f~
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Figure 5-33: Power loss of ITER cable as a function of time for the present and
recommended design. Since the recommended design has only half the twist pitch
(final stage) as the present design, it should have, given no other improvements, only
1/4th the loss. Therefore the loss has been "normalized" to 1/4th the actual value to
show the added improvement.
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Although the reduction of the power loss is substantial, the discrepancy in the loss

values are a bit misleading. The final twist pitch, Lp5 , of the recommended design

is only half that of the present design. A crude approximation to the effect of the

reducing the twist pitch would be to hypothesize that the power density goes as L' 5.

Therefore, the present design should yield a loss of 4 times the recommended design

exclusively based upon the recution of the twist pitch. Therefore, the loss of the

present cable is divided by 4 for a more accurate assessment of the advantage of the

new design. The ratio of the steady-state power density for the new design over the

old one is approximately 1:16 or 1:4 after the "normalization".

The difference in time constants is even more drastic. The time constant for the

recommended design is in the vicinity of 1.5msec. The present design yielded an

approximate 7 of 130msec, which is the same order of magnitude of the derived time

constant of the 192-strand cable data in the last section. The ratio of time constants

is 1:87 or 1:22 after the nomalization. The reduction of the time constant is an even

larger improvement over the savings in loss.

A general diagram which makes possible, at a glance, the regions where there is

or is not a zero-crossing in a is shown in fig. 5-34. The ratios of the twist pitch

(Lp5/Lp 4 ) is plotted against the ratio of the two sub-radii(rl/ro). The location of the

ITER cable is indicated by an 'X'. The diagram was based on the analytic expression

in (5.18) and assumed that in general, ro - 2rl < r < ro + 2rl.

5.6 Conclusion

A powerful algorithm which tracks the path of each individual strand in the 1152-

strand ITER cable has been developed and implemented (the "cable-winder"). The

winding laws, cast in the coordinate system of the cable, were extracted from the
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0.1 0.15 0.2 0.25
rl / ro

0.3 0.35

Figure 5-34: This diagram shows the set of values for the fourth and fifth twist pitch
and the sub-radii that yield a zero-crossing in a. The 'X' marks the point where the
ITER cable lies.
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cable-winder code and utilized in the governing equations.

From the trajectory coefficients derived from the cable-winder, a 3D linear code

which solves for current distributions and losses due to time-varying fields in an ITER

cable has been developed, tested, and implemented. The following discoveries were

made about the cable:

* Large transverse current densities are induced close to the inner rim of the cable

which may create "hot spots".

* These "hot spots" are believed to be caused by the trajectory coefficient po

having a zero-value.

* A future cable design was proposed where there was no zero-crossings in pv

yielding improved performance both in terms of loss and time constant.

* The loss curves vs. time show at least two distinct time constants.

* The dominant (long) time constant (an order of magnitude longer than the small

time constant) is associated with the thin layer in the cable about the zero-

crossing. It is much longer than the nT value derived from power dissipation

which implies that n << 1. Simulation of the full-size cable yielded n = .067

and data from the 192-strand experimental cable yielded n = .18.
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Chapter 6

Conclusion

6.1 Summary

In the preceding chapters, we focussed on the modeling (chapter 2) and numerical

analysis of frequently used composite superconductors. Some of these conductors are

made of pure superconducting material (chapter 1) while others contain a mixture

of superconductor and normalconducting material. Although the problems concern-

ing various conductors may be geometrically different, the mathematical analysis is

similar. The basic assumption of Carr's model, described in chapter 2, which was

originally formulated for the multifilamentary strand, is to view the strand as a con-

tinuous media and derive averaged parameters and fields. The general problem is then

extended to the applications of large cables. Our model takes advantage of the fact

that these cables contain many strands and can thereby be modelled as a continuous

media. Coupled with Maxwell's equations, the anisotropic and sometimes nonlin-

ear constitutive relationship between o and E, as derived by Carr and expanded by

Rem, yield solutions for field and current distribution within the composite super-

conductor. With a strategic set of assumptions, an ordering system emerges, which
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simplifies the mathematical analysis and yet includes most of the physics. This leads

to an elegant set of governing equations which completely captures the geometry and

the electromagnetic behavior of the system as pertinent to AC losses.

In chapter 4, the general set of equations, as well as the relevant boundary condi-

tions, are applied to the development of a two-dimensional computer program. This

code solves for problems that are naturally two-dimensional - in r and q. Such ge-

ometries include multifilamentary strands and circular cables twisted with one twist

pitch. The purpose of this code is to confirm the validity of the model and, at the

same time, to contribute to the understanding of single strand AC losses. The form

of the solutions for field and potential are written as infinite fourier series with har-

monics in q. This strategy decomposes the governing equations into a set of coupled

one-dimensional ODE's in r. A software package named COLSYS, which uses the

method of collocation, is used to solve the two-point boundary value problem. The

nonlinear portion of the equations is dealt with by iterating solutions that were de-

rived from a constant conductivity value based on the previous iteration. Results

from the code are benchmarked against analytic solutions derived in chapter 3 as well

as solutions found in firmly-established literature.

The full three-dimensional geometry of the ITER cable is treated in chapter 5.

An innovative algorithm, which models the winding path of each of the 1152 strands

in the cable, is used to extract exact strand trajectories required in the governing

equations. An analytic approach to capturing the behavior of the windings is still in

progress. However, an analytic expression for the azimuthal motion of the strands in

the cable (pý) has been derived and verified against the cable winder code results:

S(r, , z) (ko + )r _ (6.1)
2 2 r
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where k0o and kl correspond to the pitch number of the last and second to last stages.

ro and rl are the radii of rotation of the two stages. This implies that the electro-

magnetic behavior of the cable is dominated by the two last stages of a cable.

The cable is assumed to be infinitely long, which is a fairly good assumption as

explained in chapter 3, and the cable is assumed to never saturate. The decision

to keep the conductivity linear is based on results from the 2D code and it resolves

the issue of whether a nonlinear conductivity is worth the price of computational

inefficiency. In addition, the transverse conductivity is used as a fitting parameter

since the experimental value is still a controversial subject.

In the attempt to compare AC loss calculations against preliminary data for an

ITER subcable have yielded some surprising results. It turns out that the combina-

tions of the twist pitches of the last two stages yields a zero-crossing in pC. This

zero-crossing leads to increased peaking of fields and loss around the region.

The other surprising bit of information comes from examining the time evolution

of the power loss. It has been discovered that there are at least two dominant time

constants in the system. There is a short time constant and a much longer one that

dominates the behavior of the system. If the steady-state power loss is expressed as

B2
Pd = -nT (6.2)

This yields a very low value for n. For the 192-strand cable used in experiments, the

data yielded n = .18. For the full-size cable, the code yielded n = .07. Both these

values are much smaller than for a helically twisted cable or strand where n = 2.

The hypothesis for such a small n value gives credit to the zero-crossing in a.

Current is channeled into that region with a time constant inversely proportional to

p32. This leads to a long T since p2 is small. Although the currents are large there,
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it occupies only a small portion of the total volume of the conductor. Therefore, in

general,

ncable << nstrand = 2 (6.3)

6.2 Concluding remarks

The behavior of transport current in the ITER cable should be studied further. The

numerics for this particular excitation have yet to be fully understood and, although

not an important factor in the study of AC losses, should be a priority where ramp-

rate limitations and stability are concerned.

Research on current redistribution in these large cables can take advantage of

the work that has been done here. For instance, study of the effects of a nonlinear

conductivity on current redistribution, which allows for saturation, can utilize the

model formulated for this thesis. In addition, end conditions which account for joint

effects, can be added to the existing 3D code. The current distributions generated

from the code can be used for thermal and quench analysis.

Finally, there is progress on the development of an analytic model for the AC loss

inside these large cables. With the assumption of weak shielding, there is hope that a

closed-form solution for loss that is dependent on geometric factors will be achieved

in the near future.
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