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ABSTRACT

The proposed StreamObjects system provides a method of distributing dynamically-
segmented, scalable multimedia over the Internet using the conventional client/server technologies
used on the World Wide Web.

The system is designed to integrate directly with a standard Web server to provide new
delivery modes and greater encoding flexibility. Servers could now encode a video or audio
program in its entirety and create segments of the show on demand, lowering labor and resource
requirements. A server could also provide multiple qualities and formats from a single source file,
adapting to the diverse bandwidth and platform constraints of the Internet.

By providing low latency access to only the desired part of a media clip, tremendous gains
are achieved in the area of network and server efficiency. The success of the StreamObjects system
will continue to grow with future projects, potentially impacting the way multimedia is delivered
over the Internet.
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Title: Professor of Civil and Environmental Engineering; Director of the Center for Educational

Computing Initiatives
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CHAPTER 1: INTRODUCTION

1.1 OBJECTIVES

The StreamObjects system provides a method of distributing dynamically-segmented,

scalable multimedia over the Internet using the conventional client / server technologies of the

World Wide Web (WWW). With the StreamObjects system, standard Web servers can allow

greater flexibility and control in determining what kinds of content can be delivered over the

Internet. With the StreamObjects system in place, a client can download a dynamically created

media stream containing only the precise segment of video and/or audio desired, without creating

another (potentially large) file on the server, and without requiring expensive specialized media

servers.

With the StreamObjects system, clients can choose which tracks to download among the

available audio or video tracks stored within a single master media file. This dynamic approach

greatly benefits both client and server, reducing the load on both sides over more traditional

techniques.

The StreamObjects system, designed and implemented by the author, is based on a simple,

portable, and extensible design. This enables the system to be deployed on platforms previously

unforeseen, and to utilize and interact with protocols and interfaces beyond that of the World Wide

Web and the Internet. This master's thesis outlines the StreamObjects project, its applications,

how it was designed and implemented by the author, its performance, and its future in a world of

ever changing information technologies.
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1.2 MOTIVATION

There are several motivations for creating the StreamObjects system. Currently, there is

no standard method of streaming multimedia files2. Without such a standard, the World Wide Web

and its associated Hypertext Transfer Protocol (HTTP) is commonly used. Because HTTP is a

stateless protocol, interactive media delivery is not done - the more traditional method of

"download, store, and playback" is used.

This method has several disadvantages. First, it has high latency, since one must wait for

the entire file to download. Second, it requires vast amounts of temporary storage on the client

side, even if the file will only be viewed once, or if only a portion of the file will be viewed. Third,

there is also the potential for significant wasted bandwidth, especially in the case where only a

small portion of the downloaded media file is actually needed for viewing or archiving.

The Netplay streamer, developed by Jonathan Soo and later enhanced by the author, both

of the Network Multimedia Information Services (NMIS) project, overcame some of the

inadequacies of the HTTP download-and-playback model, by providing a method for streaming

media files directly to certain MPEG decoders in parallel with the download phase. This solves the

latency and storage issues, but does not eliminate the wasted bandwidth concerns. In addition, the

Netplay streaming solution provides no method of streaming from a particular time within a media

file. As described below, the StreamObjects system provides a solution that, in conjunction with

the Netplay streamer or without, provides a more general media delivery strategy (see Figure 1).

Another motivation for the StreamObjects system originated from another major part of

the NMIS group - the Internet CNN Newsroom project. This project, formerly coordinated by Kip

Compton, and currently by Douglas Schreiber, automatically encodes CNN Newsroom, a

educational program broadcast on CNN as part of the "Cable In the Classroom" initiative.

-12-



CNN Newsroom each weekday consists of several news stories in current events that

Internet CNN Newsroom digitally encodes automatically each day. Time codes marking the

beginning of each segment of the show are sent via electronic mail to NMIS each day by Turner

Educational Services Incorporated (TESI), hours before broadcast of the show on CNN.

.... ... .... ... .. . .. . .

Internet CNN Newsroom i w kURL with link
You can also visit the Internet CNN Newsroom Library. :-:

While you're there, check out our new search engine!!

* Thursday. May 16, 1996
* Wednesday, May 15, 1996
* Tuesday, May 14, 1996
* Monday, May 13. 1996

:4.: ..: ....::... -.- '.. .: : : ..... .• .. .. .: : : : . : .: : .•.. ....:. .. ..: .. ....:• ...: :• .. : ... .

1
E1e r-onteois Lelp:ý

31 Kits ISe 51X).0

(1 15826 Bytes 2111

. Netplay streams
from Web server,
optionally caches

Media device
displays content
on client side

Figure 1: Netplay Streaming Paradigm for the World Wide Web

A professional quality Beta3 deck is set to record the show at its broadcast time in the early

hours of the morning. An automated script controls both the VCR and the MPEG encoding

station, running a set of programs digitally encodes and stores each segment of the show

2 Several potential standards have been proposed at the time of this writing, including ActiveMovie
by Microsoft Corporation, and Live Video by Netscape.
3 The high-quality Beta analog video format, developed by the Sony Corporation, is widely used
commercially for video production and editing.
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separately, using the time codes given for that day4. This is necessary because there is no in-band

indicator when a segment begins or ends. Each file (segl, seg2, etc.) is transferred from the

encoding station to our web server, where the web pages are automatically generated for each

day's content using a guide created by Teachable Text, for TESI. This guide contains story

descriptions and questions for use by the students who use CNN Newsroom, or our Internet

equivalent.

With some frequency, the time codes for a show will be incorrect, often with each

segment's time code off by a fixed constant. This requires our group to re-encode the video for the

day since the existing video files would all be incorrect because the borders between segments

would be incorrect.

This is a time-consuming and taxing operation, requiring an operator to reacquire the

correct time codes, regenerate a script for encoding the video, and start the encoding process again,

which takes over an hour to complete. In a professional, commercial-grade production systems,

these problems would be costly, as well as time-consuming.

The StreamObjects system offers a quicker, cheaper, simpler solution to this problem.

Since the StreamObjects system can automatically generate a sub-section of a large media file

dynamically, the need to encode each segment of the show separately is eliminated. The complex

encoding script could be simplified to encode the show in its entirety, leaving slack in the start and

stop times to handle any small variations in the broadcast time.

Once the show is taped and digitally encoded (which could now be combined into one

pass), the single file could be dynamically segmented whenever a user requests a segment within

the show. The StreamObjects system would move the segmentation from the encoding station's

script to the Hypertext Markup Language (HTML) pages that contain the links to each segment.

4 Time codes are received daily from TESI and indicate when a segment ends and another begins.
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Adjusting the time codes would simply mean adjusting links on the web pages, which could be

done by hand, or automatically by a script in seconds. Re-encoding would become a rare

occurrence, only for the most egregious of errors in the encoding process, which may not be

recoverable at all.

In addition to simplifying the encoding process, the StreamObjects system allows the

Internet CNN Newsroom program, or any other content provider using the system, the ability to

provide newer, more flexible qualities of service, without re-encoding the existing video. With the

StreamObjects system, each segment could be provided with video only, audio only, or the

standard synchronized video/audio delivery. Support for "teaser" files could also be provided

containing only a few seconds of content to determine if the user wishes to download the larger,

actual segment.

Lower bandwidth streaming could be provided for clients with slower network connections

via low bandwidth channels multiplexed and synchronized into the source stream, or by streaming

audio only. In the Internet CNN Newsroom project, audio streaming delivery could be provided to

clients with ISDN bandwidth connections, where before no streaming would be possible. This

enhancement alone would provide significant flexibility in deploying Internet CNN Newsroom on a

large scale.

Another significant motivation for the StreamObjects system is the ability to provide

advanced playback functionality, described later in this document. Advanced playback gives the

user the ability to skip to any point within the stream while viewing it. This gives a user

capabilities similar to rewind and fast-forward, except that the user does not see the video as it

scrolls by.

-15-
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Another motivation for creating the StreamObjects system is to provide more editing

capabilities to the teachers that use Internet CNN Newsroom. Users can apply the StreamObjects

system to take selected excerpts from several news stories and make a new story. Students could

conceivably work with this new, more editable media stream. This parallels some of the Digital

Video Library research done on the Informedia project at Carnegie Mellon University.

Another project which hopes to utilize the StreamObjects system would be the

Shakespeare Project, directed by Professor Peter Donaldson, at the Massachusetts Institute of

Technology. The project currently archives various versions of some of the works of William

Shakespeare. The StreamObjects system could be used to allow users to choose certain phrases

out of Shakespearean plays, choosing the video and/or audio that corresponds to the section desired

by the user. To produce this kind of resolution, all that is required is a index table listing each

critical section's time offset. It is conceivable that by using technologies developed at places such

as MIT's Media Laboratory one could automatically generate such index tables. However, such

projects are beyond the scope of the author's Masters research.

1.3 DIGITAL MEDIA: STORAGE AND DELIVERY

The following section describes several of the topics that revolve around digital media and

its storage and delivery. An analysis is given to some of the issues surrounding digital media, an

analysis of the MPEG standard, and a look at some of the existing architectures that can be used

for digital media delivery.

1.3.1 Issues

Digital media storage and delivery issues are at the core of the StreamObjects system.

Digital media is defined herein to be all video or audio signals encoded in digital form and stored

on digital media (such as hard disks, CD-ROM, etc.). Digital media, like all forms of data, can be
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transported over networks for dissemination or broadcast. Some of the issues that effect the

quality, speed, and flexibility of digital media delivery are covered below.

1.3.1.1 Delivery

When delivering video or sound, it is clear to see that the amount of transmission capacity

required to transmit video may vary with respect to time. For this reason, it is possible for an

encoding scheme to be designed to have a varying bit rate to encode a given source. This encoding

strategy however has the potential to increase the complexity of the encoder, and makes estimating

network load induced by streaming digital media more difficult, since the bandwidth has the

potential to vary with time. The types of media files handled by the StreamObjects system are

assumed to be of a fixed bit rate, while extending the system to handle variable bit rate streams is

well within the realm of possibility.

When video and audio are encoded together from a common source, it is important for the

separate signals to be integrated and synchronized in some fashion. Without such integration the

video and audio may drift with respect to each other, and assuring synchronization becomes

difficult. On the other hand, because video and audio differ greatly in the style and format of the

data, it is important to keep the video data separate from the audio data. Such a separation allows

differing kinds and qualities of audio to be synchronized with several kinds and qualities of video.

For this reason, a solution that provides easy integration, synchronization, and separation is

desirable.

1.3.1.2 Compression

The nature of audio and video is such that efficient, compression strategies are possible.

These compression strategies can take advantage of the nature of human perception of sound and

moving images, and the redundancy of successive frames of video that is derived from motion
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correlation. An efficient scheme will capitalize on this. With such efficiency, the representation of

data becomes more complex, making access into a random point within a video stream more

complex. The same is true for audio.

Another significant issue revolves around the decoder complexity/bandwidth tradeoffs.

The more complex an encoding strategy, the more bandwidth requirements are reduced. This

however, increases the cost of the software and hardware required for proper, efficient decoding of

the more complex signal. For this reason, an encoding strategy must be chosen that provides high

quality at a reasonable encoding complexity, bearing in mind the increasing power of computers as

time passes.

1.3.2 The MPEG Standard

Currently, the computing industry has several formats for transmitting digital media,

among them Quicktime, Video for Windows, etc. These formats, while popular, are proprietary,

and do not provide the proper performance tradeoffs described above. These formats do not work

as aggressively to capitalize on motion correlation, and therefore require much higher data rates to

achieve the same quality output. Another series of formats, developed by the Moving Picture

Expert Group, or MPEG, has become accepted by the International Standard bodies ISO and IEC.

Since one of the main goals of the author is to develop technologies with non-proprietary

standard technologies, MPEG-1, the format most commonly used to date for video and audio

delivery, became the obvious choice for the StreamObjects project. MPEG6 is also the format for

the existing video libraries of many current research projects, including NMIS and its Internet

CNN Newsroom.

6 All further references to the MPEG standard throughout this document refer to MPEG-1.
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1.3.2.1 Overview

The MPEG standard is defined within International Standards Organization documents

ISO 11172-1 through ISO 11172-3. Each document defines the syntax, encoding and decoding

strategies of each of the three kinds of MPEG streams: the video stream, the audio stream, and the

system stream. The MPEG standard produces highly compressed video and audio streams

utilizing several complex algorithms defined by each of the layers, resulting in extremely complex

encoders, and relatively simpler decoders. This asymmetric strategy is fine for a broadcast model

of distribution, where there will be many decoders, owned by content consumers, and only a few

encoders, owned by the producers of media content.

1.3.2.2 The Video Stream

The MPEG video stream standard defines a coded representation of video for digital

storage. This representation takes great advantage of motion compensation in encoding video to

attain high compression ratios, often exceeding 100 to 1 over raw digitized video. This highly

compact form requires both a complex decoder and a significantly more complex encoder. An

MPEG video stream often defines pictures in the stream relative to other temporally near picture

frames to achieve this high compression ratio. Greater detail into the format of the video stream

will be given in Chapter 3.

1.3.2.3 The Audio Stream

The MPEG audio stream provides a coded representation of high quality audio for digital

storage. This representation takes advantage of sophisticated psycho-acoustic models to attain

high compression ratios, typically near 14 to 1. Like MPEG video, the audio encoding strategy is

asymmetric. An MPEG audio stream time slices audio data and encodes each small section of time
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separately and independently from all other time slices. Greater detail into the format of the video

stream will be given in Chapter 3.

1.3.2.4 The System Stream

The MPEG system stream serves to synchronize and integrate many video and audio

streams into a single multiplexed stream, while providing continuous buffer management. An

MPEG system stream is capable of multiplexing together 16 video and 32 audio streams.

Encoders capable of producing system streams must be capable of interleaving all the component

streams into a single stream while preventing any of the buffers to the component streams from

overflowing, while assuring that the playback of the given streams will be synchronized. For

random access into a system stream, time stamp information is encoded throughout the system

stream facilitating random access by decoders. For these reasons, the system stream is of critical

importance to the StreamObjects system's architecture, as we shall see in Chapter 3.

1.3.2.5 Editing Streams

One of the chief deciding factors as to whether the StreamObjects system is feasible hinges

on whether one can easily and efficiently edit MPEG streams. Throughout this document, editing

refers to the process of soft-segmentation, the generation of an MPEG video segment from an

existing larger one. This is in contrast to hard-segmentation, which creates segments of video at

the time of encoding. Editing herein does not refer to rearranging or reordering video or audio,

which is significantly more complex and to which the MPEG format is poorly suited for7. If it

were impossible to edit an MPEG stream efficiently for whatever reason, the StreamObjects

system would become impractical at best, inducing severe loads on the servers on which it would

run. The entire performance model for the system assumes that one can easily edit MPEG streams.

7 Section D.8.1 of ISO 11172-2 states most editing is best done before encoding is begun.
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But is this assumption true? The answer is not so clear-cut. At each level of the MPEG

syntax there are some regularities than enable editing to a certain extent, but there exist several

restrictions that make ISO strictness hard to adhere to. Buffering issues are of primary concern,

but because encoders are pretty relaxed in their conformance to the standard, a strategy can be

created which should work for the vast majority of MPEG files. This issue will be covered in

greater detail in Chapter 3.

1.3.3 Existin2 Architectures

One of the major goals of the StreamObjects project is to create technologies that will

work hand in hand with the Internet as it exists today, to the largest extent possible. Since the goal

of the StreamObjects system is to provide dynamically scalable media over the Internet, it is

natural to look at the World Wide Web, and related architectures such as the Common Gateway

Interface which aided in the creating of the StreamObjects system.

1.3.3.1 The World Wide Web

The World Wide Web has become such a huge part of the hype surrounding the Internet

that it is not uncommon for semi-knowledgeable people to confuse the Web with the Internet itself.

The World Wide Web provides a uniform method of access to the millions of data items that exist

on the Internet. Because of the power and flexibility of Web browsers, it is possible to use the

protocols for transferring documents on the web, the Hypertext Transfer Protocol, to deliver digital

media.

The Hypertext Transfer Protocol, or HTTP, is a stateless protocol. HTTP is stateless

because each request can be handled in an isolated fashion. A Universal Resource Locator (URL)

serves to identify each individual document or data item, and thus a consistent deterministic,

stateless way exists for referring to each item of data. Most Web servers implement the HTTP
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protocol by mapping the path in the URL to a file system path located within the server, and the

file corresponding to that path is transmitted. Thus, such a protocol is satisfactory for static

information retrieval, but since the StreamObjects system is dynamic, some form of extension to

this model must exist to handle dynamic media retrieval.

1.3.3.2 The Common Gateway Interface

The Common Gateway Interface, or CGI, gives the Web greater flexibility in serving data

items and documents. By placing a program in the pipeline between an input file and request and

the client, the middle script or program, or gateway provides the ability to generate dynamic files

upon request. This model proves ideal for the StreamObjects system. With CGI, a user may

incorporate query information into the URL, allowing the computer to dynamically generate

information.

The Common Gateway Interface provides the perfect method for handling dynamic data

retrieval. Because traditional Web servers such as the one used for Internet CNN Newsroom are

already used to deliver media clips to clients, adding CGI support is trivial with the StreamObjects

system. Virtually all standard Web servers, such as the one created by the National Center for

Supercomputing Applications (NCSA) contain CGI support. The difficulty would simply to create

binaries of the StreamObjects system for each platform. This problem turns out to be a simple

one, as will be discussed later.

1.3.3.3 Media Delivery and the Web

Using the Common Gateway Interface over the World Wide Web is not the only methods

for implementing media servers. Many proprietary protocols and strategies exist to provide media

delivery. Many of these methods require proprietary servers and clients, which reduce the number

of potential clients and restrict the extensibility of the server itself.
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Proprietary protocols make portability a greater issue, since proprietary clients must be

implemented for the entire range of client platforms. If special client software exist only for

Windows or UNIX for example, Macintosh clients would be excluded. The StreamObjects

solution avoids this concern entirely. Though some form of proprietary client program is required

in the special case of advanced playback (in order to create appropriate StreamObjects queries),

specialized client software remains optional.

Proprietary protocols however, do have uses, some of which are beyond the scope of this

project. For example, the Common Gateway Interface is primarily a query-response protocol, and

thus more interactive two-way issues such as dynamic bandwidth adjustment and frame-dropping

become difficult or impossible to implement without proprietary protocols over agreed ports.

However, the design of the StreamObjects system is modular enough to work with these protocols

with minimal changes to the architecture.

It should be understood, however that since the Common Gateway Interface can satisfy

most media database queries in a dynamic yet deterministic manner, CGI remains the central

delivery interface for the StreamObjects system. Further analysis into the limitations of the

CGI/WWW combination is provided later in this document.

1.4 THE STREAMOBJECTS SYSTEM

This section gives an introduction into the constraints, components, syntax, and potential

applications of the StreamObjects system. Some of the topics covered in this section will be

covered in greater detail in later chapters of this document.

1.4.1 Constraints

In designing the StreamObjects, there were several constraints and assumptions that were

chosen to restrict the scope of the StreamObjects project. This does not imply that the author
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dismissed the other architectures or systems, and future research may explore some or all of the

issues raised throughout this project.

1.4.1.1 Ease of Deployment

One key constraint made in designing the StreamObjects system concerned the deployment

of the system into academia or the corporate environment. It was clear that the StreamObjects

system should be easily installed across many platforms and environments, regardless of Web

server, operating system, file system, etc. This was achieved by using the CGI interface on a

"vanilla" WWW server. While more advanced or specialized servers could be used, restricting the

interface to CGI ensured easy deployment.

Realizing that newer interfaces to the Internet are continually being improved and

redefined, care was taken to abstract the delivery and file interface from the internals of the

StreamObjects system. The StreamObjects system was designed in such a manner that

implementing a new delivery and query interface would be quick.

1.4.1.2 Portability

A second key constraint considered during the preliminary design phase was to keep the

system as portable as possible. Towards this end, the popular object-oriented language, C++, was

chosen. This decision reflects the language's power, acceptance and support within the software

development community, its suitability to the task, and the familiarity of the author with the

language.

Throughout the initial design and implementation cycles, more and more advantages were

taken by the author of the advanced features of C++, such as virtual functions. However, realizing

C++ is a language that is still evolving, advanced and inconsistently supported and implemented

features such as exception handling (throw, try, catch, etc.) and Runtime Type Identification
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(RTTI) were avoided. It is possible to utilize these newer technologies to potentially simplify a few

parts of the project, but doing so would be ill-advised until these new features are more globally

accepted and implemented.

Toward this same end, only the standard C and C++ libraries and functions were used in

implementing the project. Wherever possible, the iostream and related C++ libraries were used for

string manipulation, stream handling, and input / output (I/O) concerns. Only standard POSIX

function of the C runtime libraries were used in implementing the StreamObjects system. This

simple coding style virtually ensured that the StreamObjects system works across several UNIX

platforms, as well as 32-bit Windows (Windows NT and Windows 95)

As will be demonstrated in Chapter 2, user-level multithreading support becomes essential

for the proper operation of the StreamObjects system. The choice of such a threading system

specification was simple, yet finding proper implementations proved to be difficult and the hardest

aspect of maintaining cross-platform compatibility. The StreamObjects system supports two

major multithreading specifications: The Win32 multithreading specification and the POSIX

multithreading specification (pthreads) which covers most multithreaded UNIX platforms, as well

as Windows 95 and Windows NT.

1.4.2 Components

The StreamObjects system, in its final design, is composed of three primary subsystems:

the ThreadObjects subsystem, the Packet / Agent subsystem, and the Adaptive Interface

subsystem.

1.4.2.1 ThreadObjects subsystem

The ThreadObjects system provides simple primitive objects for threads. Since the

ThreadObjects system needs to be implemented for at least two specific thread libraries: POSIX
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and Win32 (see Figure 2 below), reducing the number of threading primitives is a clear and

obvious objective. In order to implement the StreamObjects system, only three specific object

classes were necessary: threads, blocking flags, and mutexes.

StreamObjects system I
S Adaptive Interface subsystem:

inLterac ve Com n and L i oinn Gateway :
Interface Interface Interfe

Figure 2: StreamObjects Architecture and API

The CThreadableObject class encapsulates the notion of agent-like objects running in their

own separate threads. The CBlockingFlag class allows for individual threads to block, or wait, on

a particular condition. This primitive is useful for flow control. The CMutex class describes a

simple method for marking critical sections and controlling access to shared resources such as

queues.

Together the components of the ThreadObjects subsystem provide all the tools necessary

for orchestrating complex parallel processes. The ThreadObjects subsystem abstracts away the

specifics of an operating system's thread implementation, and makes all other code modules that

use the ThreadObjects system platform independent. A threading system, however pivotal, is but

one part of the StreamObjects project.

1.4.2.2 Packet/Agent subsystem

The Packet / Agent subsystem provides a method for modeling parallel dataflow

architectures in C++, building upon the multithreading primitives established with the
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ThreadObjects subsystem (see Figure 2 above). A network of agents that pass packets (containing

multimedia data, for example) to each other could be build to model the various behaviors of the

StreamObjects system as a whole.

The architectures developed with this system can be applied to solving other problems.

Packets can be subclassed to provide new kinds of data types that would enhance the functionality

of the subsystem. The agent architecture is designed in such a manner so that rearranging agents

to provide new functionality is both simple and straightforward.

1.4.2.3 Adaptive Interface subsystem

The adaptive interface subsystem, the third major component of the StreamObjects

architecture allows a single StreamObjects executable to adapt to several different interfaces

automatically. Currently, StreamObjects supports a command line interface, an interactive

interface, and a CGI interface (see Figure 2 above).

The command line interface allows the user to specify the source and destination files as

well as the query parameters through command line switches. This interface is consistent across

the many UNIX and Win32 platforms for which the system runs. Some switches, such as the

output filename, may be omitted, with the system thereby choosing appropriate default values.

The interactive interface allows the user to run the StreamObjects system without

specifying any options - the StreamObjects system detects this and queries the user interactively,

choosing the source and destination file, as well as the query used to process the file. The

interactive interface also uses appropriate default values when certain settings are left blank.

The Common Gateway Interface, is perhaps the most useful interface, and the one the

StreamObjects system was originally intended to support. When the StreamObjects system is

called as a CGI binary file from any Web server, the StreamObjects system automatically detects

this, and adapts to using the default output stream and input filename specified by the given
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Universal Resource Locator. The StreamObjects system uses the query information of the URL, if

given, to process the stream. The CGI interface cannot output to a specific file - only to the

requesting client, to prevent the client from having the ability to write files on the server's file

system, which could pose a security risk.

1.4.3 Ouery Syntax

The query syntax used in the StreamObjects system was chosen very carefully. The

StreamObjects system is complex, and because of its power, major extensions to the system are to

be expected. In order to handle this, the interface was designed to be both simple and extensible.

1.4.3.1 Simplicity

The interface to the StreamObjects system was based on a list of key-value pairs, perfect

for the CGI interface which uses the same. This interface is also used in Windows setting files

(.INI files), and since all the command parameters are human readable, debugging and manually

adjusting these parameters is straightforward. This CGI-style interface also allows defaults to be

overridden from a calling web page or application, without cumbersome initialization files.

1.4.3.2 Extensibility

The StreamObjects system's query syntax can easily be extended and upgraded. To do so,

new key-value pairs can be introduced, or old pairs can extend the syntax of the value to handle

new cases. Such a design prevents complications when new behaviors are added to the

StreamObjects system.

1.4.4 Other Applications

The objects and classes created for the StreamObjects system have applications beyond

that of server-resident, dynamically segmented media delivery. The StreamObjects system required
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many subsystems which can work harmoniously in other projects - whether related to media

streaming, or not. Below are some other potential applications of the StreamObjects system.

1.4.4.1 Client-side Stream Interfacing

The StreamObjects system can be used for client-side stream interfaces as well. As de

facto standards such as Open MPEG-1 (OM-1) stabilize, streaming files from a standard Web

server would become simple. Such a client could be written as a helper application (such as

NMIS's Netplay) or as a Netscape (a popular Web browser) plug-in or an OCX plug-in (for

Microsoft's Web browser, Internet Explorer). Since client-side streaming is also best modeled

using a pipeline of agents, the application of the StreamObjects system is self-obvious.

Using the StreamObjects system on both the client and server sides provides a uniform

API for extending the media pipeline used in streaming. Possible extensions to this pipeline include

adding encryption and decryption modules on both the client and server side, as well as

applications for billing and caching. Using the StreamObjects architectures for billing is of great

interest to Carnegie Mellon University's NetBill project, and coordination with CMU is expected in

the coming months.

In addition, the StreamObjects system will be used in the current enhancements being made

to NMIS's Netplay by Jeffrey Burstein, an undergraduate researcher working on the NMIS

project. This will greatly enhance the flexibility of the client streamer, as well as add the ability to

provide advanced playback features where they were impossible before.

1.4.4.2 Network Modeling

The StreamObjects system can also be used for network modeling. At the NMIS project,

research is often done into what constraints exist in the distribution of video, audio, and other high-

bandwidth multimedia applications over varying network architectures. The Packet / Agent

-29-



subsystem and the ThreadObjects subsystem could easily be adapted to model these networks.

This could be used to create accurate simulations of network load induced by various demand

situations.

1.4.4.3 Computinz Architecture Simulation

Another potential application of the technologies developed in creating the StreamObjects

system would be for testing, debugging, comparing, and simulating computing architectures.

Comparisons could be made between parallel dataflow architectures and traditional Von Neumann

computing machines. The architectures developed here would also be useful for simulating control

structure systems and other real-time systems.

1.5 CONCLUSIONS

Throughout this chapter we have been introduced to the background and motivations for

the StreamObjects system, and what such a system can provide for server side scalable media

delivery. A hint towards future usage of the StreamObjects system has been discussed, with more

to follow in later chapters. We now examine the architectural evolution of the StreamObjects

system.
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CHAPTER 2: ARCHITECTURAL EVOLUTION

2.1 INTRODUCTION

The StreamObjects system described in the first chapter did not simply "become." The

StreamObjects system underwent several design-test cycles before reaching a stable architecture.

Throughout the many design-test cycles, there was an overall trend towards more generality and

increased power and flexibility. Since the final architecture can be used for many purposes beyond

the intended purpose of the system, this chapter describes the architecturally relevant changes.

Details of the MPEG-specific analysis will be discussed in Chapter 3.

2.2 BUFFER CHAIN MODEL

In the earliest stages of design, it was unknown whether the MPEG data stream could be

processed efficiently and simply in a single thread. Since single threaded code is the easiest to

implement and port, such a solution was tried first. It was observed by the author that an MPEG

stream could be modeled as a long, doubly-linked chain of memory buffers, each containing the

given MPEG source file, in order, in its entirety. The entire stream need not reside in memory -

the only buffers in primary storage (RAM) would be the section of the file that is being processed.

This model was known as the buffer chain model, shown below in Figure 3.

Figure 3: Buffer Chain Model

Editing the MPEG stream resulted in moving processing pointers from the beginning of the

file to the end. These pointers are labeled S, A, B, and T in the diagram above, with S representing
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the source, T representing the sink, and A and B representing intermediary filters8. When a section

of the MPEG file should be absent in the resultant file, that buffer area was skipped. When data

should be inserted at the processing point within the MPEG file, a new buffer would be created and

inserted into the buffer chain. A series of primitives were defined for deleting bytes, inserting

bytes, passing along bytes, and peeking bytes. These primitives are similar to those found in any

stream or buffer manipulation library.

2.2.1 Efficiency and Complexity

The primitives defined by this architecture are efficient in dealing with MPEG data. They

avoid unnecessary copying of buffers if used properly. It is always possible to efficiently (i.e. in

constant time) remove a section of the stream, even if the endpoints that denote the removal region

do not align with a buffer boundary.

However, once it became clear that MPEG editing is too complex to describe with a single

processing pointer, it became clear that the multiple processing pointers would have to maintain

their own state, and would have to be synchronized by a central controller. It became difficult to

think of a way of describing such a controller efficiently.

Since each of these processing pointers performed distinct tasks and needed to track their

own state, the complexity of any controller became enormous. Attempting to control each of these

individual processing pointers with a single thread would be inordinately complex. An issue arose

regarding when pointers would overlap, and tracking which one was "in front" of the other, would

be difficult and hard to debug.

8 The convention of labeling source as S and sink as T and labeling all others A, B, C, etc. is used
throughout this document.
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2.3 DATA / AGENT CHAIN MODEL

To solve the problem of distinctly marking the place of each of the pointers, the notion of

an agent object was created, for insertion into the pipeline. The architecture became a long chain

of data and agents, with data being inserted in front of, removed behind or passed through the

agents in the chain. A generic StreamObjects class was created, with special DataObjects and

AgentObjects classes in between (see Figure 4 below).

Figure 4: Data / Agent Chain Model

The ThreadObjects subsystem was developed at this stage of development. For the first

time, the capacity to handle multithreading was necessary, and the ability to encapsulate threading

into an agent object was desired.

2.3.1 Efficiency and Complexity

This model was the first model to introduce an agent architecture. The agent architecture

proved to be an efficient way to partition the dynamic segmentation of the project into specialized

individual agents. The classifying of the data into discrete objects of various classes was

introduced at this stage, which encapsulated the behavior of data in an efficient manner.

The difficulty encountered with the data / agent chain model was predominantly related to

synchronization issues. Two adjacent agents would have a doubly-linked list of data packets in

between them. The first agent, or source, would be inserting data into the chain in front of itself

while the second agent, or sink, would be removing data from the chain behind it.

To coordinate synchronization required some form of encapsulating all the data in between

the agents. In addition, each agent needed individual pointers to pointing to the agent before it and
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in front of it, in addition to the inherited pointers to the object before it or after it, which could be a

data packet or an agent.

It was quickly concluded by the author that data and agents need not share a common

parent class - in fact, data should be completely separated from the agents that act on it. All

agents could be encapsulated into a queue structure that would exist in between agents for

transmitting data packets. This prevented exposing data in transit between agents. This resulted in

the next step in the architectural evolution, the pipeline / packet-queue model.

2.4 PIPELINE / PACKET-OUEUE MODEL

The architectural evolution began to stabilize with the introduction of the pipeline / packet-

queue model. Instead of viewing the system as a chain of data and agents, the architecture evolved

to a pipeline of agents, with queues in between for passing packets (see Figure 5 below).

Figure 5: Simple Media Pipeline Design

Two distinct virtual parent classes evolved - the CAgent class and the CPacket class.

Packet subclasses could be derived that would be tailored toward solving the given problem, such

as media stream delivery. In the StreamObjects system, the key packet subclasses were the

CToken class and the CMemPacket class. The CToken class provided a way of passing special

symbols, tokens, or scalar values between the agents of the pipeline. The CMemPacket class

provided a convenient method of passing chunks of media data between the agents of the pipeline.

With this architecture, agents subclasses could be derived for handling specialized, simple,

well-defined tasks that when connected together in the proper order achieve a more complex goal.

Common subclasses such as sources and sinks for various data types could easily be defined. All
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agents would have functions for receiving packets from their input queue and for sending packets

to their output queue.

2.4.1 Efficiency and Complexity

The pipeline / packet-queue architecture provided for the most efficient and simple way of

representing data while keeping it separate from the method of transport between agents to date.

With the pipeline / packet-queue model the distinction between data and agents became enforced by

making the two classes distinct, with no common parent class.

In addition, the introduction of the queue protected data in transit from being accessed by

traversal from an incorrectly implemented agent. Packets in a sense are "locked" within the

packet-queue, only accessible by pushing or popping packets from the queue. This architectural

change encapsulates transmission control efficiently between the agents and queues.

Synchronization issues were resolved with the introduction of the packet-queue. Previous

attempts at efficiently synchronizing data between individual agents were simplified because a

single queues contained the synchronization primitives, no longer the agents surrounding the data.

With the control mutexes and blocking flags residing within the queue, individual agents no longer

needed to explicitly coordinate flow control - proper synchronization was implied by the access

methods of the queue.

Queues were defined as an abstract class - they stored objects of the CPacket class, in an

unspecified underlying structure. A particularly useful implementation of the CQueue class

interface was the CArrayQueue, using a fixed-sized array to handle the storage of the packets.

The CArrayQueue class became the default implementation of the CQueue class used in the

StreamObjects system's architecture.
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2.4.2 Flow control

With the queue providing a simple architecture for transmitting packets between agents,

flow control between agents was still left unresolved. The StreamObjects system could

conceivably use lots of memory resources in transporting MPEG data between the various agents.

While queues provided a way of synchronizing data-flow between the agents, a method is still

required for limiting the amount of resources used between agents.

In the StreamObjects system, the source is connected to the server's file system, while the

sink is connected to the network. Since the network bandwidth is almost always the performance

constraint and not the file system bandwidth, sink-based flow control is desirable. The amount of

packets used in this model is only constrained by the size of the queues between the agents. If a

linked-list queue is used, then the queue size is unconstrained - resulting in an unbounded number

of packets in the system at any given instant.

To shift flow control from the source to the sink, a coupon-based ring architecture was

design in which the sink is connected back around to the source (see Figure 6 below). The source

would only be allowed to send packets along the pipeline when it receives a coupon from the sink.

The sink would begin the cycle by introducing a fixed number of coupons into the system.

Figure 6: Coupon-Based Flow Control with Token-Ring

This method of flow control works well when the pipeline agents conserve the amount of

packets flowing from the source to the sink. However, analysis of MPEG segmentation clearly

shows that there no such conservation of resources exists. Agents at any place within the pipeline
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may choose to remove potentially large sections of data which contradict any notion of

conservation. For this reason, a more global method of controlling the number of resources

becomes necessary, as described in a later section this chapter.

2.5 PACKET AGENTS: DIRECTED GRAPH NETWORK

One of the last major changes to the StreamObjects system arose from a desire to model

the StreamObjects system more simply with greater granularity. The pipeline architecture assumes

that all agents acts as filters - passing packets from input to output, occasionally removing,

inserting or modifying packets along the way.

This structure, however, is unsuitable for describing agents that sort or merge packets.

Such agents are inherently multiported, and would require multiple queues between agents - one

for each connection between agents. Such an architecture is desirable for the StreamObjects

system since the source file is usually multiplexed, and it is easy to conceive of an architecture

where it would be important to handle, sort out, and process each stream separately.

In this new architecture, two new classes were defined to handle communication: the

Clnport class and the COutport class. Each CAgent object would have methods to allow access to

each CInport or COutport. The CInport class had methods for connecting to the COutport class,

and vice-versa. When an CInport object is connected to a COutport object, a CQueue is shared.

Both port classes are responsible for managing the shared queue. The COutport class has a

method for sending packets, and the CInport class has methods for receiving packets. These

functions enforce directed usage of the queues - it becomes impossible for a receiver to send or

vice-versa, unless a new pair of ports in the reverse direction are created.

The change of the StreamObjects system architecture from a linear pipeline to a directed

graph (see Figure 7 below) was a drastic and complex one. The class of problems that could be
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handled increased greatly, and many changes in the complexity and efficiency of the system

occurred.

2.5.1 Efficiency and Complexity

With the new architecture, transmission of packets is no longer handled directly by the

CAgent class. Communication functions have been relegated to the CInport and COutport objects.

This makes the definition of the agent more complex and more simple at the same time. The agent

becomes more complex since it can potentially receive and send packets over multiple ports. At the

same time, agents become more simple because the agent no longer is responsible for sending or

receiving packets directly. These architectural changes allow for the creation of multiplexers

(muxes) and demultiplexers (demuxes), which become critical to the efficient design of the

StreamObjects system, as covered in the following chapter.

I

Figure 7: Packet / Agent Directed Graph Network

The pipeline of filters of the previous architecture was replaced with a directed graph of

multiported agents. While this greatly enhanced the flexibility of the StreamObjects system, the

vast majority of agents would still be linear, having only one CInport and COutport. For this

reason, a simpler agent subclass was created, the functional agent.
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This CFnAgent class implemented the protocol developed in the CAgent class but

simplified the process of sending and receiving packets. The send and receive functions, in

addition to residing within the CInport and COutport classes, were copied to the CFnAgent class.

In the current StreamObjects system all agents but the multiplexer and demultiplexer were derived

from the simpler CFnAgent subclass. Since the CFnAgent class inherits and uses the protocol of

the CAgent abstract class, they can interact directly with any multiported agents with ease.

This final major architectural change provided the efficiency and simplicity of earlier

architectures, while adding greater extensibility and flexibility needed to handle far more complex

agent networks. Only this final architecture provides the ability to demultiplex an MPEG stream

into its component streams, enabling each component stream to be filtered separately. Flow

control nevertheless remains a major architectural concern.

2.5.1 Flow Control

In the final directed graph architecture, the number of packets in transit is only limited by

the operating patterns of the agents that produce them, and the queues that connect them. Packets

can always be sent as long as the queue is not full, and packets can always be received, presuming

the queue is not empty. This enables the packets between all stages to be distributed optimally,

without unnecessary constraints.

Nevertheless, the memory used by the StreamObjects system must be constrained, beyond

the CArrayQueue size constraint. To achieve this, the notion of a global memory pool, which

would distribute memory resources among agents, was introduced. Since the memory could be

constrained globally, the StreamObjects system would operate in the most efficient way it can

within the global memory constraint.
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2.6 RESOURCE CONTROL: PACKETS, POOLS, AND BLOCKS

Global resource control is handled in the StreamObjects system by three interrelated

objects: memory blocks, memory packets, and memory pools. With this architecture, the

StreamObjects system can manage packets of data which can be dynamically split and reallocated

(recycled). Memory is dispensed whenever needed; if not enough memory is available, the agent

requesting memory is automatically blocked until its request can be granted. The following

describes the individual component classes of the StreamObjects resource control system.

2.6.1 Memory Blocks

Memory blocks objects are defined by the CMemBlock class. Each CMemBlock object

contains a character buffer of a size determined at initialization. When a CMemBlock is destroyed,

its memory buffer is destroyed with it. A memory block differs from a traditional character buffers

in the fact that it tracks the number of memory packets (defined below) that refer to it. Memory

packets may refer to a section of memory, but the memory is actually allocated and deallocated by

the memory block itself.

Whenever a memory packet wishes to use a memory block, the CMemBlock object

automatically increases its usage counter. It is the job of a memory packet to call a member

function of the memory block to indicate that it no longer is using it. This behavior proves to be

critical in allowing several memory packets to share portions of the same memory block.

2.6.2 Memory Packets

The CMemPacket class is a derivative of the packet class, used for transporting chunks of

media between agents. Though the major resource of the CMemPacket class is a character buffer,

the StreamObjects system provides much more functionality than a simple buffer.
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The memory packet internally handles memory block management. This is of critical

importance when memory packets are split. In that case, two packets will share the same block.

As described above, the memory block will have its usage counter increase with each new packet

pointing to it, and when all the packets are recycled or deleted, the memory block is recycled or

deleted as well.

The dynamic allocation and deallocation of blocks can be rather expensive operations since

both involve heap manipulations. Many allocations and deallocations also result in potential

fragmentation of the heap. To solve this problem, all allocations and deallocations for each

memory pool are done at once.

2.6.3 Memory Pools

The CMemPool class is defined to distribute memory packets and blocks to all the agents

of the StreamObjects system. The memory pool allocates a predetermined number of memory

packets and another set of fixed-sized memory blocks. These packets and blocks are kept in two

separate queues which act as dispensers.

The choice of a uniform block size is appropriate considering the media processing

application at hand. The choice of block size does not prevent the existence of small packets. In

addition to not utilizing the full size of the block, one can use the split feature to separate off a

small packet from a much larger block containing two packets. This is in fact how the

StreamObjects system utilizes the memory blocks, resulting in very low memory waste and

overhead.

Despite the choice to use uniform block sizes for distributing memory, it is still possible to

have variable block sizes by having multiple memory pools, each of a different size. Such

flexibility is unnecessary, however, for efficient implementation of the StreamObjects system.
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A key aspect of the CMemPool class is the "when available" distribution strategy. The

same blocking CArrayQueue class used in agent to agent communication are used to dispense the

memory blocks and packets. These queues automatically block when empty. Thus when the

memory supply runs out due to an aggressive source (for example), the source will be blocked, and

therefore forced to stop producing until an agent down the pipeline recycles the memory back into

the pool. This strategy for resource control maximizes both performance and resource allocation,

as described in Chapter 4.

2.7 STARVATION AND DEADLOCKS

Proper resource management must not only be efficient, but also be correct. In the current

version of the StreamObjects system, it is possible to reduce the number of resources allocated

such that the queues will empty such that no agent may continue. When this occurs, the

StreamObjects system starves, and each of the agents are deadlocked. The occurrence of

deadlocks in the StreamObjects system are fatal, and thus the system must be designed so that this

becomes impossible.

Though reducing resources to intolerable levels result in deadlocks, a simple and

straightforward design of the system can guarantee what level of resources should be required so

that deadlocks cannot happen. In early tests, resources were set comfortably above this minimum

resource level and deadlocks were avoided.

2.8 CONCLUSIONS

As this chapter concludes, it is important to reiterate the fact that the StreamObjects

architecture was not arrived at instantly, but evolved through several architectural models that

become increasingly more capable of handling the tasks of the StreamObjects system. Several of

the improvements to the architecture of the system were influenced strongly by analysis into the
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format of MPEG system streams. The following chapter details this MPEG analysis, with special

attention given to its effect on the ability to soft-segment MPEG streams in a efficient, low

overhead manner.
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CHAPTER 3: MPEG ANALYSIS

3.1 INTRODUCTION

The StreamObjects system provides dynamically segmented scalable multimedia over

networks such as the Internet. As discussed in the first chapter, the StreamObjects system uses the

digital video and audio standard agreed upon by the Motion Pictures Expert Group. This chapter

analyzes the MPEG standard and its syntax, with emphasis given toward aspects crucial to editing

such streams. Details regarding the representation of video or audio that are below the level

necessary for editing are ignored for conciseness.

3.2 CONSTRAINTS

The StreamObjects system operates under several constraints. One constraints involve the

level of detail in which an MPEG stream must be viewed, here referred to as depth. Another

constraint requires that the amount of byte manipulation performed on the stream be kept to a

minimum, in order to minimize server load.

The syntax of MPEG streams allow for great flexibility, making the job of decoders or

editors very difficult. However, because existing encoders code MPEG streams with greater

regularity than a technically legal stream that could be contrived, certain assumptions can be made

about the size and frequency of packets by taking a few experimental measurement on the given

MPEG stream before actually processing the stream.

Thus, the StreamObjects system processes MPEG streams in two distinct phases, the

preprocessing phase and the transmission phase. The assumptions made about the MPEG stream

do not necessarily restrict the format of MPEG streams. However, StreamObjects relies on the

assumption that the encoder is a "reasonable" one, to ensure the efficiency of the system.
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3.2.1 Preprocessing Phase

The first phase, the preprocessing phase, collects statistics and other relevant information

about the MPEG stream. This collection of statistics is done by sampling the stream, paying close

attention to the beginning and the end of the MPEG stream, allowing the preprocessing to be a

constant time operation.

It is essential that preprocessing be a constant time operation with respect to the length of

the source file. The amount of time spent preprocessing a stream adds directly to the latency

before streaming starts. As mentioned in the first chapter, the StreamObjects system can be

coordinated with a properly designed client to provide advanced playback functionality. Whenever

a user wishes to fast-forward or rewind to a different place within the source file, the client must

cancel the existing stream and open a new stream. If this latency between choosing a starting point

and actual streaming of video to the client is too large, advanced playback becomes impractical.

Several steps were taken to assure that preprocessing can be done in constant time with the

lowest latency possible. Firstly, preprocessing is only be done once for each request, by the source

agent. Since each arrangement of agents includes a source, it is logical to place the preprocessing

responsibilities with the source. The source agent is then dedicated to keeping and storing the

results of the preprocessing, and making the results accessible to other agents via public methods.

Since MPEG streams generated by different encoders vary in the size, frequency and

grouping of packets, it is important to make the preprocessing algorithm as general as possible so

that variations between streams become irrelevant. The preprocessor was tested with MPEG files

generated from several different encoders to satisfactorily demonstrate its compatibility and

flexibility.
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3.2.2 Transmission Phase

The second phase, the transmission phase, serves to process, strip, and adjust the source

MPEG file into a dynamically generated MPEG output stream. For obvious reasons, the

transmission phase must run in linear time with respect to the length of the input video segment.

This is absolutely essential so that video files of any length can be processed by the StreamObjects

system without inducing extra server load or delay.

In addition to requiring linear time operation, the transmission phase must process the

video in a single-pass, with buffering as necessary. This single-pass operation may be achieved

through many agents arranged as a several stage multiported pipeline. If multiple passes would be

required through the stream, the latency would vary with the length of the file, which as mentioned

above, should not be the case.

In addition to single-pass operation, the StreamObjects system has the advantage of

buffering to simplify operation and relax the difficulty of implementing the system so that it runs in

a single pass. The degree of this buffering should be minimized, however, for several reasons.

Increasing buffering has the potential to contribute directly to the latency of the system.

As buffering increases, more of the stream can be fed into the system before being forced through

the pipeline and directed toward the sink. This is because the source can process more information

before overflowing the queues of the system, and the latency suffers accordingly.

Increasing buffering capacity increases memory requirements as well as increasing latency,

and this therefore reduces the number of instances of the StreamObjects system that can effectively

be run on a server. However, reducing buffering too much will cause the StreamObjects system to

starve and deadlock.
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3.3 EDITING SYSTEM STREAMS

The StreamObjects system is efficient because it performs the majority of manipulations at

the system stream level. The system stream level serves to multiplex streams, and thus makes

filtering particular channels out of the source stream relatively easy. The system stream also

provides time codes called system clock references (SCR) with enough accuracy to be efficient for

rough temporal segmentation. With the ability to simply perform temporal and channel-wise

segmentation, understanding the system stream syntax is intricately linked to the design of the

StreamObjects system.

The MPEG system stream syntax is defined in the International Standards Organization

document ISO 11172-1. The system stream is composed of a sequence of packs, terminated by an

ISO-11172 end code. Each pack consists of a one or more packets. Each packet contains data for

a particular channel, except for the special system header packets, which contain information

about the sub-streams that make up the system stream. The first packet of the first pack must

contain such a system header (see Figure 8 below).

3.3.1 System Headers

System headers occur infrequently throughout a system stream. In the typical case, they

occur only once, at the beginning, as required by ISO 11172-1. System headers contain

information about the data rate of the system stream, the number and kind of component streams

that make up the multiplexed stream, and other information useful for describing the format of the

source stream. Unfortunately, not all the header information is present within the system header,

so the StreamObjects must capture header information and statistics at various different depths of

the source stream.
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Figure 8: MPEG System Stream

The data rate (in bits per second) of the MPEG stream is present in both system headers

and pack headers, and is referred to as the mux-rate. This rate may need to be adjusted to match

the rate of the streams selected for output. To compute this rate requires information calculated

from other parts of the stream. For this reason, buffering and multitasking are necessary in order

for the StreamObjects system to be implemented in a coherent manner.

3.3.2 System Packets

All component streams, whether audio or video, are multiplexed together into a system

stream. Each system packet, roughly two kilobytes in size, corresponds to a particular channel of

data, or contains padding or system header information (described above). One of the purposes of

the StreamObjects system is to filter unwanted channels out of a multiplexed stream, generating a

new "narrower" MPEG system stream at a lower bit rate.

The removal of these channels is easy accomplished at the system layer. Each system

packet is begun by an channel identifying pack header. Thus, the MPEG system stream may easily

be sorted by individual component streams, and unwanted channels may be skipped and removed in

their entirety, without costly analysis to determine the necessity of the contents of a particular

packet. Since most packets require no complex modifications, removing unnecessary packets early

help keep server load induced by the StreamObjects system as low as possible. The following

sections describe the important aspects of the system stream syntax.
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3.3.3 Pack Headers

Pack headers occur frequently throughout the data stream, and serve to both mark the data

rate of the ensuing packets and the approximate display time of the enclosed packets. This data

rate, the same as the mux-rate defined in the system header, is repeated in each pack header

throughout the stream. This allows the MPEG syntax to handle the special case where the

multiplexed stream changes bandwidth during delivery. Due to the added complexity of this

situation, the StreamObjects system does not necessarily handle this special case.

The time codes included in pack headers are system clock references (SCR). The SCR

time codes measure the passage of time throughout the system stream in terms of the system clock

frequency, which is 90,000 Hz (for example, an SCR of 495,000 means 5.5 seconds).

Since MPEG system streams have fixed bit rates, the SCR corresponds linearly with the

position with the multiplexed stream. For this reason, the SCR is approximately a time reference,

since it does not refer to the time position within a particular video or audio stream. The precision

is guaranteed to within 0.7 seconds to guarantee ISO 11172-1 compliance, which is generally

suitable for random access within a stream.

To seek to a particular SCR time code, a Newton's method approximation algorithm is

used. Since byte position within the stream is linear with regard to SCR, a particular SCR can be

found usually within two or three iterations of the approximation algorithm.

Time codes need not start from zero for MPEG ISO-11172 compliance. For this reason,

time codes are not linearly shifted when the StreamObjects system cuts from within the middle of

an MPEG stream. This reduces the amount of byte manipulations necessary, keeping the

StreamObjects system simple. The mux-rate may require modification for every pack header to

comply with any change in bandwidth caused by stream selection. These are simple, one-pass

modifications, linear in the length of the MPEG file - consistent with the transmission phase.
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3.3.4 Packet Headers

One to several packets are found within each pack. Each packet is begun by a packet

header. Since packet headers occur at least as frequently as pack headers, any packet header

modifications must be simple, one-pass, modifications.

Packet headers are usually small (less than 16 bytes) and contain stream identification

information, and sometimes channel specific time stamp information. These time stamps provide a

more accurate indication of what time code corresponds to a particular packet of a particular

channel (a particular display frame or an audio segment.) These presentation time stamps (PTS)

and decoding time stamps (DTS) are not currently used in the StreamObjects system. The SCR

time codes, while less accurate, are easier to seek with, and provide enough resolution for

reasonable, easy operation of the StreamObjects software.

The stream identification code that begins each packet header makes it easy to sort packets

by their corresponding stream. This enables each stream channel to be handled by its own agent.

Potentially many agents could be chained to handle and process each individual channel

independent of the behavior of other channels.

Packet headers can also contain buffer size information essential for proper buffering of

both video and audio streams by a decoding unit. This information must be present in the first

packet of any particular channel in order for an MPEG decoder to consider the stream valid. For

this reason, agents that handle individual streams copy this buffer information from the first packet

so that it can be spliced into what will eventually become the new first packet after temporal

editing. Some streams repeat this buffer information with each packet header, but the presence of

such buffer information cannot be guaranteed. Thus, copying buffer size information from the first

packet header is essential for all component streams.
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3.3.5 Packet Data

Packet data composes the vast majority of the bytes of the system stream layer. This is

logical since all other bytes are overhead, which should be kept to a minimum while still providing

the ability to have random access throughout the file.

The system layer only provides a method for multiplexing several heterogeneous channel

types. The breakpoints between packets have no significance when viewed from within the syntax

of each individual channel. Data is broken into packets of roughly uniform size (usually around

two kilobytes in size). For this reason, important stream-specific information could be broken up

across two or more packets. This means that stream-specific agents must either reconnect data

across packet borders or otherwise take the fragmentation into account.

Any byte manipulations to packet data are stream-specific, and should be kept to the

beginning point and the end point of temporal editing wherever possible. The two major stream

types that are multiplexed by system streams are video streams and audio streams. The following

sections describe the functionality of video and audio editing agents.

3.4 EDITING VIDEO STREAMS

The MPEG video stream syntax is defined within ISO 11172-2, the second volume of the

MPEG standard specification. The video stream itself is a valid stream format supported by many

MPEG hardware and software decoder solutions. The video stream itself contains its own

temporal guides and marker codes which are independent of any headers in the system stream.

The video stream consists of a sequence of picture groups. Each picture group consists of

several picture frames, usually 12 to 15, (one half a second) which can be decoded independently

of any other picture group. There are three primary ways of encoding a frame, each with a

different degree of compressibility and degree of dependence on other frames.
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3.4.1 Sequence Headers

Sequence headers commence each sequence of picture groups. Sequence headers often

occur before each picture group in some encoding strategies, but are only guaranteed to occur at

the beginning of the stream. For this reason, any process which edits MPEG streams for editing

must store the sequence header information when it first occurs. Due to the size of sequence

headers (several bytes) and the size of packet data (approximately two kilobytes), sequence headers

are guaranteed to be in the first packet of any video classified stream.

Sequence headers contain the information necessary for describing the bit rate, resolution

and frame rate of the video stream. The StreamObjects system does not currently interpret or

analyze this information, as it is never necessary to edit it. Nevertheless is it essential for this

information to be copied before the first picture group at the beginning point of temporal editing.

This usually alters the size of the packet that commences the editing point, since there is no way to

guarantee that the first packet will remain the same size. Because any growth in packet size will

not be larger than the size of the sequence header, which is only several bytes in size, this does not

interfere with proper decoding of the StreamObjects system presuming the packets are manipulated

to properly indicate the changes in size.

3.4.2 Picture Groups

Video streams are highly compressible because they capitalize on the fact that moving

images are often temporally redundant and involve little or no change from frame to frame. For

this reason, not all picture frames are encoded in their entirety - often frames are encoded based

on preceding or ensuing frames. This technique is referred to as motion compensation prediction.

This strategy produces highly compressed video, but causes a chain of dependencies from

one frame to the next that limit random access to any point within the stream. To solve this the

MPEG video standard limits the length of the dependency chain by forcing non-interpolated frames
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at least once a second. These intra-coded pictures, or I pictures, must begin each picture group,

and guarantee a minimum resolution (usually to within a half-second) for easy random access.

The StreamObjects system capitalizes on the random-access nature of I pictures to form

easily targeted starting points for video streams. Picture groups, however, are not necessarily

perfect random-access points. Picture groups may be open or closed. Open picture groups use

information from the last frame of the prior picture group to decode the first one or two frames of

the picture group. This improves the compressibility of the video stream, but causes a problem

when editing. To solve this problem, the MPEG syntax allows the setting of a broken link bit

within the sequence header which properly handles the missing frames caused by editing. Not all

decoder boards fully support this bit, as covered in Chapters 4 and 5.

I BI
frame frame

Figure 9: MPEG Video Temporal Frame Pattern

As mentioned above, there are three types of pictures: intra-coded pictures, predictive-

coded pictures, and bidirectionally predictive-coded pictures. These three are referred to as I-

frames, P-frames, or B-frames, respectively. In a picture group, the order in which pictures are

displayed is almost always different from the order in which the pictures are accessed. This is

because certain frame images are needed first in order to generate the other dependent frames.

Thus, a decoder must use a reordering buffer to keep the display order - such a buffer is

unnecessary in the StreamObjects system since the system does not tamper with the contents of

individual picture groups. Nevertheless, a brief description of the frame encoding strategies is

given below for completeness.
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3.4.3 Intra-coded Pictures (I-frame)

Intra-coded pictures, or I-frames, contain the most information of all encoding strategies.

An I-frame contains enough information to generate an image using information only from itself -

I-frames do not have any temporal dependencies. For this reason, each picture group must contain

at least one I-frame, occurring first, in access order. Picture groups could conceivably contain

more than one I-frame, but in practice rarely do since they do not capitalize on motion

compensated prediction and thus are the largest of the frame types in size.

3.4.4 Predictive-coded Pictures (P-frame)

Predictive-coded pictures, or P-frames, contain less information than I-frames. P-frames

use motion compensated prediction from a prior I-frame or P-frame to achieve higher compression

A typical picture group consists of several P-frames, each based on the prior P-frame, except for

the first, which is based on the beginning I-frame.

3.4.5 Bidirectionally predictive-coded pictures (B-frame)

Bidirectionally predictive-coded pictures, or B-frames, contain less information than both

I-frames and P-frames. B-frames utilize motion compensated prediction from the previous and/or

the next I-frame or P-frame to generate their image. B-frames make up the majority of the frames

of a typical picture group, and have the greatest temporal dependence and thus achieve the highest

compression.

3.4.6 Complexity

Editing video streams in theory is easier than editing video streams in practice. Open

picture groups are the most problematic. It is often that encoders do not properly detect and use

the broken-link bit and attempt to decode the first B-frames which are based on the last P-frame of
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the prior (now removed) picture group. This usually results in the first 1/15 of a second of video to

be partially garbled on some decoders9.

3.5 EDITING AUDIO STREAMS

The MPEG audio stream syntax is defined within ISO 11172-3, the third volume of the

MPEG standard specification. The audio stream, like the video stream, is itself a valid stream

format supported by many MPEG decoder hardware and software solutions. The audio stream

syntax itself is extremely simple to interpret from a high-level decoder or editor. The audio stream

consists of a sequence of presentation units, each begun by a syncword.

3.5.1 Presentation Units

In an audio stream, unlike a video stream, access and presentation (display) order are the

same. There are no temporal dependencies between individual presentation units. Each PU can be

decoded into a short duration audio clip. When decoded in succession, the presentation units

assemble into an audio stream.

Presentation units need header information to describe the format and layer of the audio

information they represent. Formats include monophonic, left channel, right channel and joint-

represented stereo (two correlated stereo channels encoded together). The different layers of

MPEG audio, represent different encoding strategies with different targets.

The most common layers tested with the StreamObjects system would be what the ISO

specification calls layers I and II. The StreamObjects system will work, however with all formats

and layers of MPEG data since this formatting information is unused and unmodified by the

9 Attempts were made to modify the initial B-frames so that they no-longer referred to the previous
P-frame (and could be then labeled as a closed picture-group). Such efforts were fruitless, and only
serve to solve a problem that only occurs in some implementations, not a problem with the
StreamObjects design or the MPEG video stream syntax specification.
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system. Such header information exists at the beginning of all presentation units, so no header

copying need exist from the first presentation unit in an audio stream.

3.5.2 Syncwords

All presentation units are roughly the same size, to within an error of one byte. The

beginning of a presentation unit is marked by the presence of a syncword, a 12-bit pattern

(0xFFF), always commencing at a word-alignment barrier. The typical syncword spacing interval,

is roughly 500-700 bytes. Since packet sizes at the system layer are approximately three to four

times as large, it is guaranteed that at least one syncword will be present in each packet, and thus

each system packet will be marked by a PTS, or presentation time stamp. Such time stamps

provide accurate timing and synchronization information to an MPEG decoder, but are unused by

the StreamObjects system.

In addition, because a syncword is guaranteed to occur in each system packet, the

detection of a safe editing point within an audio stream is quick, and guaranteed to be found within

the first audio packet searched.

3.5.3 Complexity

Editing audio streams, as clearly shown above, is a relatively simple task. An editor's

understanding of the MPEG audio stream syntax revolves primarily around the easy prediction and

detection of syncwords within an audio stream. Since all presentation units are begun by regularly-

spaced syncwords and each presentation unit can be decoded independently of any other, the task

of editing MPEG audio is simpler than that of MPEG video. Decoders often capitalize on this by

centering synchronizing decoders around the audio stream, and not the video stream.
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3.6 THE EDITING ARCHITECTURE

The evolution of the parallel dataflow architecture described in Chapter 2, was tailored for

editing MPEG streams, though the architecture is suitable for several other applications, some with

no relation to multimedia. The StreamObjects system is composed of several dedicated,

multipurpose agents which when integrated form a powerful editing architecture.

The architecture can be adapted to accomplish several editing goals. Each request to the

StreamObjects system includes a key-value pair identifying the task of the system. The three tasks

currently supported by the StreamObjects system are integration, info, and selection.

3.6.1 Assumptions

The editing architecture makes a few assumptions about the nature of the input to keep the

StreamObjects system running efficiently. The system assumes that the MPEG video and audio

streams were produced by a "regular" encoder. By that, we mean that the packet sizes are

relatively uniform and consistent. The system samples the first several packets to determine the

maximum packet size; it is assumed that no unusually large packet will occur further into the

MPEG stream and that the size of packets will not suddenly shift. Such assumptions are

reasonable considering that MPEG video is encoded using high-speed, real-time hardware, and

irregularly encoded video would introduce unnecessary complexity into the decoding and encoding

process.

The MPEG syntax provides no way of guaranteeing bounds on the size of MPEG packets,

but the assumption that the first several packets (at least five to ten) are representative of the entire

data stream is a valid one for all tested encoders. It is also important to note that if a single MPEG

stream produced by a certain encoder with certain parameters, all other MPEG streams produced

by that encoder are guaranteed to work with this architecture. This again, capitalizes on the

necessary regularity and predictability of MPEG encoders. Care was taken to test the
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StreamObjects system against several encoders before finalizing the editing architecture and editing

algorithms.

Though the StreamObjects system can handle MPEG files with many component streams

(as many as ISO 11172-1 allows, which is 16 video and 32 audio), it is assumed that the number

of streams present does not vary throughout the entire file. This assumption reduces the flexibility

of the StreamObjects system, but MPEG files that violate this rule are extremely rare (none have

been encountered by the author across various searches for test MPEG system streams).

3.6.2 Stream Integration

Stream integration, the first task intended to be solved by the StreamObjects system,

involves synchronizing at least one selected stream (most commonly one video and one audio

stream) together into a potentially lower bandwidth stream. In addition to such channel-wise

selection, a temporal beginning point and end point may optionally be specified, the default being

the beginning and end of the file.

This task takes advantage of the fact that the component streams were already to some

extent synchronized and multiplexed - usually all that is required is manipulating the denoted

bandwidth within the file, and paring away streams that have been not been selected for integration.

This task is significantly less complex than integrating several streams that have never been

synchronized. In that case, the size of system packets need to be determined, as well as the pattern

of interleaving between the streams to ensure that video and audio buffers never starve.

Since the audio and video encoder has already synchronized the several streams, it

becomes unnecessary to re-interleave the video and audio streams. Because of such complexities,

the StreamObjects system does not currently support the ability to integrate two or more audio or

video streams that come from two different source files.
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Web Client

Memory Pool

Figure 10: StreamObjects Integration Architecture

The StreamObjects system performs stream integration using a multiported pipeline (see

Figure 10 above). The integration system consists of many agents. First is a source agent, which

feeds the file from secondary storage to a demultiplexer agent, which separates each of the packets

by their channel. Each channel has its own processing agent pipeline, which all feed into a

remultiplexer agent which merges the component streams into a new output stream. This output

stream is fed into a sink agent which routes the new stream to an output file or to a CGI-client.

3.6.2.1 Source Preprocessor

The first agent, the source agent, serves two functions. The first function is to preprocess

the given input MPEG file. Since the source has direct access to the input stream, it has the ability

to randomly access any point in the source file whereas other agents must accept data in sequential

order.

The source preprocessor first parses the command syntax and stores it in a hash table

mapping keys to values for quick and easy lookup. The hash table class used a simple modulus

hashing function and handles collisions by double hashing as opposed to chaining. This is because

the number of key-value pairs is usually small enough so that collisions are rare, and double or

triple collisions virtually non-existent.
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Once the key-value table has been constructed, the beginning of the MPEG file is

examined, marking such things as the number of channels from the opening header, the spacing of

packs and packets, as well as the packet to pack ratio. The number of packets per pack is used in

turn to estimate number and size of blocks used for the memory pool, as well as the number of

packets needed. The end of the MPEG file is also examined, so that the temporal range (beginning

and ending SCR) of the MPEG file is accurately measured. All these statistics are accessible by

public access functions of the source agent. Once the memory pool is initialized and all statistics

are generated, the stream pointer returns to the beginning so the transmission phase of the source

agent may commence.

3.6.2.2 Source Transmission

The transmission phase of the source serves to transmit the desired contents of the MPEG

file in discrete manageable units. For this reason, the source transmits each system packet or pack

header separately in its own memory packet. Since pack headers are small, they share a memory

block with the first packet of each pack. The packet splitting function is used to separate the

memory block along the border between the pack header and the first packet.

The source, through the preprocessing phase, learns which streams are to be kept and

which streams are to be skipped. In addition, since the source agent is the only agent with random

access capabilities, the source skips the file packets that are unnecessary, and only transmits

essential packets.

To allow the source to only read the packets necessary, the source retrieves only the first

few bytes of each pack header or system packet. The packet type is first identified and then the

agent extracts the packet size, located within the first 18 bytes. The agent determines with that

value the number of bytes to read or skip, and acts accordingly.

-60-



This editing algorithm not only efficiently transmits the packets, but labels each packet

with a sequence number and the SCR from the nearest prior pack header. Since the output stream

often begins at an SCR far from the beginning of the input file, it is important for the

StreamObjects source to skip past the potentially vast number of packets before the starting SCR,

described below.

3.6.2.3 Source Skip

The source skip feature of the transmission mode takes advantage of the random access

capabilities of the source agent. Once the source transmits the first packet of each selected stream,

the agent can then skip to the nearest SCR before the target starting SCR.

A Newton's method style approximation algorithm mapping byte interval to SCR interval

is used to find the location of the packet nearest the target SCR. Such an algorithm usually

converges on the appropriate SCR within one or two iterations. To prevent poorly formatted

streams from keeping the algorithm from terminating, a limit on the number of iterations is

imposed. Since most streams terminate well before the limit, this safety catch is only necessary for

malformed or unusual MPEG files.

Once the target SCR is found, the source agents streams packets until the stopping SCR is

found, which could be the final SCR recorded in the preprocessing phase.

3.6.2.4 Stream Demultiplexer

The stream demultiplexer agent routes system packets and pack headers to agents

particularly suited to handling individual component streams. All streams are routed according to

their channel ID, with all pack headers and non-component packets sent to channel N, the channel

after the N component stream channels, numbered 0 to N-1.
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The demultiplexer function is kept simple for several reasons. For one, it can be reused for

other tasks, as shown in the next section. In addition, the simplicity and greater modularity kept

the code simple and reduced efficiency analysis to the analysis of the performance of the packet

queue subsystem.

3.6.2.5 Stream Remultiplexer

The stream remultiplexer agent serves to reassemble several component streams into a

new, reintegrated stream. The reassembly of such packets would normally be problematic, since

many channels must be merged in a defined order between several incoming channels, but the

specific nature of stream integration defined above makes it simple.

It is important to note that the packets from the input stream were already multiplexed and

in proper order. Since each packet is stamped and ordered uniquely, the remultiplexer can use a

simple merge sort algorithm to create the newly ordered output stream.

One issue that arises in the remultiplexer involves the removal of packets such that two

pack headers arise in sequence. This indicates that the packets between consecutive pack headers

were completely removed, making the prior pack header unnecessary. To implement this properly

the merge sort algorithm can be modified by adding a one memory packet delay when sending out

buffers. The rule is simple - if the current memory packet about to be sent is a pack header and

the new packet is also a pack header, do not send the old pack header.

It is possible to separate the functionality of removing consecutive pack headers into a

separate agent attached to the remultiplexer, but such an architecture increases the number of

agents without simplifying the code significantly. Introducing more agents has the potential of

slowing down the StreamObjects system while requiring additional system resource.
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In between the demultiplexer and remultiplexer, agents can be inserted to properly pare

down individual component streams so that the resulting file is valid and usable by a wide range of

MPEG decoders.

3.6.2.6 Video Stream Splicer

One such agent is the video stream splicer. This splicer serves to combine the first packet

of a particular stream with the first packets after the starting SCR to produce a new valid stream

commencing at the appropriate time reference. In order to accomplish this task, the splicer uses the

following algorithm:

1. The video splicer keeps the first packet it receives.

2. It then waits for packets with system clock references higher than the starting SCR.

3. It determine if the output stream begins from the start of the input stream.

4. If so, it performs no modifications, and transmits the packets unaltered.

5. If not, the video splicer searches for the beginning of a picture group.

6. When found, the stream header information from the first packet is inserted before the

start code, forming an appropriate start to the stream.

7. Any remaining buffered packets are recycled or transmitted.

8. The agent behaves like a straight through agent, passing all incoming packets on until

the end of stream (EOS) is reached.

3.6.2.7 Audio Stream Splicer

The audio stream splicer performs a similar function to that of the video splicer. The

syntax for MPEG audio is simpler to edit than video, so the audio stream splicer is in turn simpler

as well. The algorithm for the audio stream splicer is as follows:

1. The audio splicer copies the buffer size information from the first system packet.
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2. It then deletes all packets until the starting system clock reference is reached.

3. As with the video splicer, if the audio stream need not be edited from the beginning,

the stream is passed through unaltered.

4. Once the target system clock reference is reached, all bytes before the first syncword

of the packet are removed. ' o

5. Finally, the audio stream splicer passes on all incoming packets until an end of stream

token is reached.

3.6.2.8 System Layer Splicer

The last splicer currently used in the StreamObjects architecture is the system layer

splicer. The system splicer performs a simple task when compared to the tasks of the other agent

splicers, yet the system splicer often must manipulate the majority of the packets it receives.

The system layer splicer is designed to connect to the miscellaneous N channel of the

demultiplexer and remultiplexer. The only memory packets that may require modification are

system headers and pack headers. System headers may require the alteration of the list of channels

given, and both system headers and pack headers require the mux-rate modified to correspond to

the new rate with streams removed.

Since system headers typically occur only once or twice throughout the stream, such

modifications are simple and can be executed in constant time. Pack headers, however, occur

throughout the stream and thus require modifications that, in total, require linear time.

Nevertheless, the total computational load induced by the system layer splicer is relatively small.

10 This is guaranteed to work since at least one syncword is guaranteed to occur within a system
packet produced by a normal encoder.
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3.6.2.9 Stream Sink

The last agent of the StreamObjects architecture is also the simplest. The stream sink

serves as a gateway between the memory packet streaming architecture to the standard output

streams used by the operating system.

The stream sink accepts all incoming data, writes its content to a file system stream, and

then recycles the memory packet used to transport the data. This allows the StreamObjects system

to be reused for several tasks, and can serve to integrate the StreamObjects system with other

stream architectures, with input and output file system streams acting as gateways between the two

systems.

3.6.3 Stream Selection

Stream selection is one of the most commonly performed and practical tasks of the

StreamObjects system. The purpose of this task is to select a particular audio or video channel

from an ISO 11172-1 compliant system stream and produce the appropriate video or audio stream,

compliant with ISO 11172-2 or 11172-3, respectively.

F

Figure 11: StreamObjects Selection Architecture
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The arrangement of agents for the stream selection task is very similar to integration. The

demultiplexer still serves to separate the component channels from the miscellaneous system

packets, yet header stripper agents and null sink agents must be introduced to produce valid MPEG

video and MPEG audio streams (see Figure 11 above).

3.6.3.1 Header Striopper

The header stripper agent is designed to be inserted after an audio or video splicer agent to

extract the packet data from the header. This agent simply takes each system packet and modifies

the memory packet so that is begins after the header. Such changes can occur easily with a

constant number of operations per packet since the memory packet representation allows such

changes by moving a character pointer and lowering a size member variable. Since all component

streams use the same format for system packets, the same agent may be used interchangeably for

both audio and video packets. The output of the header stripper may be connected directly to the

same stream sink object used for stream integration.

3.6.3.2 Null Sink

The demultiplexer outputs a miscellaneous channel that is unnecessary for proper stream

selection. For this reason, all packets routed to such a port must be absorbed and recycled. To

accomplish this, a simple null sink agent was defined. All packets sent to a null sink are

summarily deleted, until an end of stream token is reached.

This null sink can also be used to discard any data sent to unused component streams. In

the selection operation, only one stream can be routed to the user at one time, thus all channels

other than the primary channel (channel zero) are connected to a null sink.
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3.6.4 Stream Information

The task of gathering stream information can simply be achieved by the source alone.

Once a source is created, the preprocessor is automatically invoked, collecting valuable statistics

useful for a client hoping to gain information about a particular stream.

Such stream information is formatted by the function that handles issuing the task. Once

the information is properly formatted, it is routed as a plain text file (MIME type text/plain when

using the CGI interface) to the client. Once the source is created, it can immediately be deleted

since no transmission phase is necessary. This preserves the desired constant time operation of the

stream information task.

3.6.5 Other Tasks and Architectures

The agents described above can be arranged to form different architectures that solve

different problems. The stream selection task, for example, could be modified to have several

header stripper / stream sink pairs so multiple streams could be routed to several files

simultaneously. Such an architecture would be useful if one wished to design a program which

demultiplexes a video and audio MPEG system file into its two component streams in parallel.

It is also possible to adapt the existing architectures to handle more specialized projects.

Carnegie Mellon University's NetBill project could be incorporated into the StreamObjects

architecture as an agent connected somewhere in the media pipeline.

In addition, specialized encryption agents could be introduced for producing secure,

scrambled media delivery. Caching agents could be introduced to prevent recalculation of requests

that occur frequently. Since a given URL always produces a deterministic MPEG output stream

(assuming the input stream remains constant), it is possible to save common requests and bypass

the above architectures altogether on common requests.
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3.7 CONCLUSIONS

As shown above, the StreamObjects system provides a useful, simple tool for providing

dynamically segmented scalable multimedia over networks such as the Internet. The above shows

that it is clearly possible to modify an MPEG file with minimal modifications in the general case

for usage across multiple MPEG standard decoders. The arguments for such efficiency of the

StreamObjects system have been given, but real performance statistics need to be shown to fully

prove the above arguments. In the following chapter we cover such efficiency arguments and

performance analysis in greater detail.
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CHAPTER 4: IMPLEMENTATION AND PERFORMANCE

4.1 INTRODUCTION

After building the system and assuring cross-platform capability, the question remained

whether the system does indeed perform as expected. The system must be demonstrated to be

practical by meeting the performance criteria proposed in earlier chapters.

This chapter details the implementation, testing and performance analysis completed by the

author. Once the proper performance of the system is demonstrated, more questions about the

future role of the StreamObjects system in media delivery can be asked.

4.2 IMPLEMENTATION AND TESTING

The implementation and testing of the StreamObjects system was performed over many

design cycles which helped set the architectural course of the system. A development strategy was

established early in the history of the project, with emphasis given to unit testing that would lead

toward a common application programming interface. The StreamObjects API was developed in

parallel with efforts to assure the compliance of the system to the MPEG standard regardless of the

encoding method.

4.2.1 Development Strategyv

In the creation of the StreamObjects system, a development strategy was chosen that

capitalized upon the tools and platforms available to the author. Early on in the project it was

noted that the system would be multithreaded, requiring a development platform that had such

features.

Such a platform would also need to support the POSIX standard libraries and the iostream

C++ libraries that would become part of the StreamObjects API. An integrated development
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environment, or IDE, would also be desirable since it would reduce development time and facilitate

debugging especially for tight "test-and-change" cycles. The IDE chosen was Visual C++ 4.0 for

the Microsoft Windows 95/NT platform.

The Win32 API (common to both Windows 95 and Windows NT) supports multithreading

and POSIX compliant standard libraries for C and C++, making porting to UNIX extremely

straightforward. The Visual C++ and the Win32 API provided methods for discovering memory

leaks and other hard to track bugs. With this ability, almost all debugging can be performed in

Windows 95 and NT, with reasonable assurance that the code can be transparently ported across

various UNIX platforms.

4.2.2 Unit Testin2

Unit testing throughout the development phase assured the proper functionality of the

StreamObjects system regardless of platform. The first units to be tested were elemental non-

threaded objects. This discovered some of the iostream incompatibilities that exist between UNIX

and Win3211. After such tests, a broad class of functions can be used across several platforms in

the StreamObjects system without fear of incompatibility.

The next class of functions to be tested were the threading objects. These objects were

first developed and tested for the Win32 platform. The number of primitives tested were small, to

prevent unnecessary, exhaustive testing. Late in the development phase, these routines were ported

to UNIX.

The emerging POSIX standard for threading on the UNIX platform extends the DCE

(Distributed Computing Environment) threading libraries in existence for some time. The

1 For example, the iostream manipulators binary and text exist only on the Win32 platforms,
because such a distinction exists regarding carriage returns and line feeds. In UNIX, no such
distinction exists, so dummy manipulators were created in the main include file to mask the
differences between binary and text mode.
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implementation the POSIX threading API chosen was developed by Christopher Provenzano at

MIT. This implementation was chosen because it is both highly tested and freely available for

several popular UNIX platforms12

The test functions that were being built into the StreamObjects source code proved

extremely useful in debugging the POSIX equivalent. The ThreadObjects provided a uniform API

to keep variances between Win32 and POSIX hidden. Implementation strategies such as these

helped StreamObjects develop towards an important objective: a common StreamObjects API.

4.2.3 Towards a Common API

The standard POSIX libraries that cross between 32-bit Windows and UNIX form part of

the StreamObjects API as it exists. The iostream libraries for C++ provide powerful functionality

for manipulating character buffers and parsing data. Threading functionality was encapsulated

through the ThreadObjects API, making threading issues transparent and platform independent.

Building upon the ThreadObjects and POSIX foundation, the StreamObjects classes for

implementing parallel dataflow architectures simplify cross-platform development of enhancements

and add-ons for the StreamObjects media pipeline. The future of the StreamObjects system will be

covered in greater detail in Chapter 5.

With the common StreamObjects API firmly in place, it became increasingly unnecessary

to test modifications across platforms. In the current development configuration, all changes and

improvements to source code are made exclusively from the central, Windows 95 development

stationl3

12 MIT Pthreads implementations exist for SunOS 4.1.3, Solaris 2.3, DEC Ultrix 4.2, SGI IRIX
5.3, Linux 1.2, FreeBSD, NetBSD, and several other popular UNIX platforms.
13 All changes to the source code are processed from the author's personal computer, running
Windows 95.
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Once the new system is fully tested from the Windows platform, the files may be

transferred in their entirety with the click of a mouse to one of several UNIX servers where they

can be compiled and ran, without error, without testing through a UNIX debugger. As it is clearly

shown here, the StreamObjects API vastly enhances developer productivity.

4.2.4 Compliance Testin2

Another important test of the proper functionality of the StreamObjects system involves

the variations in encoding styles that exists across many different MPEG encoders. Packet

interleaving patterns vary across several encoders, often requiring the source code to be adjusted to

fully assure the compliance of the StreamObjects system regardless of encoding variations.

The current StreamObjects code functions properly across a diverse sample space of

MPEG system streams, gathered from all corners of the Internet. Though some changes to the

source code have occurred during the development phase of the project to assure full ISO 11172

compliance, the source code has essentially stabilized after detailed analyses into the formats of

several MPEG encoders. With a stable source tree designed for extension and expansion, focus

was shifted to assuring the performance criteria of the StreamObjects system.

4.3 PERFORMANCE ANALYSIS

The success of the StreamObjects system is inextricably linked to its performance in the

tasks that it does. The StreamObjects system serves to process MPEG system files in real-time,

requiring an efficient, powerful server that can provide the throughput necessary to handle several

clients simultaneously, streaming data at the requisite bit rate.

For this reason, the many specific performance issues must be addressed. The

preprocessing phase must be established as a constant time operation with regard to the length of

the input file. Transmission time must be demonstrated to work in linear time with regard to the
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input as well. In addition, transmission throughput must always match or exceed the bit rate of the

incoming stream. The effect of output bottlenecks on the performance of the system must also be

analyzed. The choice of buffer sizes must be justified as well.

4.3.1 Benchmark Platform and Strategy

In order to address these issues, a benchmark platform was chosen to test the

StreamObjects system. The StreamObjects system has been tested on various platforms, with each

platform yielding throughputs that demonstrate the effectiveness and efficiency of the project in its

current implementation. However, for official performance analysis, the SPARCStation 10

running SunOS 4.1.3 named sunny.nmis.org that serves as our test WWW server was chosen.

The choice of Sunny for testing was simple. This server/workstation was currently being

used only to demonstrate the StreamObjects system, so the server had virtually no load or other

factors that could interfere adversely with statistical analysis. Though a test web server is running

on the NMIS system, the URL to the server is not published, and is thus primarily used for internal

use and the occasional demonstration.

One of the major hypotheses of the StreamObjects system is that the primary inhibitor of

performance of the system is not the system itself but the rate at which data can be retrieved from

secondary storage (disk I/O bandwidth) and the rate at which data can be sent to the client through

the network. For this reason, a performance testing strategy was chosen that involved transferring

large MPEG system files to both the null device 14 and to local storage for output.

The files used for testing were placed in a large (over 150 MB) empty partition of a local

fixed disk of the SPARCStation 10. When the output device is local storage, the output file is

placed on the same partition as the input file. Variance in local storage is mostly irrelevant to the

14 On the UNIX platform, the null device is referred to by the filename /dev/null. On the 32-bit
Windows platform, also used for testing the filename NUL corresponds to the null device.
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analysis of the StreamObjects system - the purpose of the fixed disk as an output device is to

represent an external bottleneck that could slow the functioning of the system. Such a behavior

was observed, as we shall see below.

To handle caching issues between test runs in a consistent manner, the same test case

would be run several times in succession, timed using the UNIX time command which could

provide timing estimates accurate to the hundredth of a second. Caching issues usually made the

first timing somewhat high or somewhat low compared to all other timings. For this reason, the

first timing of each case is dropped in calculating the average time. Any minimal effects that

caching would cause on the performance are thus distributed evenly across all data points, and

reflect common "real world" usage patterns for the StreamObjects system

A relatively large (404 MBit) standard test file is used for all tests (except for the size

variance test, which uses files of various sizes) so that caches would be ineffective in significantly

altering the timing results. Erratic timings were uncommon, with deviations for a single test

limited to only a few hundredths of a second.

4.3.2 Stream Preprocessin2 Performance

The StreamObjects preprocessor, as described in Chapter 3, must quickly collect statistics

about the nature and format of the given MPEG file. If such information was tedious to collect, or

if the time to collect such information would vary with the length of the input file, alternative

techniques would have to be introduced to achieve the same goal.

One such option would be to produce information files for each given MPEG system

stream that would be utilized for each subsequent access to the same stream. While such an

approach is simple and is easy implemented, the performance analysis makes such attempts

useless. The StreamObjects system was given several MPEG files generated by the same Optibase

MPEGLab encoder, the same files used for the Internet CNN Newsroom project. File sizes ranged
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from 24 MBits to 404 MBits, with each producing pre-processing latencies of less than 70

milliseconds (see Table 1 below). Such access time delays would easily be dwarfed by the delays

introduced by the HTTP protocol over the Internet. No variance in pre-processing performance

was detected among the various file sizes.

Informal tests with other MPEG encoders demonstrated similar pre-processing latencies,

each producing latencies no greater that 70 milliseconds, regardless of file size. One difficulty of

cross-encoder testing was the difficulty in finding MPEG system files produced by different

encoders through the Internet and the World Wide Web. Nevertheless, all MPEG encoders tested

produced strikingly similar results, validating the results gained with the Optibase MPEGLab

encoder system.

File Size Transmission Preprocessing Throughput
(MBits) Time (s) Latency (s) (MBits/s)

24.58 1.86 0.07 13.22
61.87 4.56 0.07 13.57
74.88 5.83 0.07 12.84

133.08 10.51 0.07 12.66
175.25 13.96 0.07 12.55
283.84 22.71 0.07 12.50
404.15 29.40 0.07 13.75

Table 1: StreamObjects Throughput and Latency for Various File Sizes

4.3.3 Stream Transmission Performance

Another performance issue involved the linearity of transmission time with regard to the

input length. As discussed above, the StreamObjects system must process MPEG files of any

length at a relatively predictable rate that allows for streaming to network clients and local storage.

To test such performance issues, a selection of MPEG files of various sizes were streamed

using default parameters (integrate both channels, for the entire length of the stream) to the null

device. The results were tabulated (see Table 1 above) and then graphed. As the graph clearly

shows, processing time to the null device is clearly linear in the length of the input file (see Figure
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12 below). The SPARCStation had a null throughput of approximately 13.44 MBits/s. Such a

high bandwidth clearly demonstrates that the limiting factor in the performance of the

StreamObjects system on a typical modem server is the disk bandwidth.
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Figure 12: StreamObjects Processing Time vs. File Size

It is interesting to compare the performance of the StreamObjects system to other high-

speed, low-load disk manipulation functions. To do so, the 404 MBit standard test file was copied

to local store using both the UNIX cp command, the UNIX cat command, and the StreamObjects

system. The StreamObjects system was configured so that by processing the file it would keep all

present streams, thus producing an exact duplicate of the input file.

The three different test functions were timed both to local store and to the null device (see

Table 2 below). The results were surprising - the StreamObjects system outperformed these

standard commands (see Figure 13). The bandwidth measured when output was directed to local

store was almost exactly half of the bandwidth when output was directed to the null device.
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Copying Time Copying Time Throughput to Throughput
to Local Store to Null Device Local Store to Null Device

(s) (s) (MBits/s) (MBits/s)
UNIX cp command 82.46 0.10 4.90 0015

UNIX cat command 78.11 0.10 5.17 oo

StreamObjects 59.72 29.40 6.77 13.75
system"16

Table 2: StreamObjects Performance Relative to UNIX File Commands

Such a performance would indicate that the system is almost always stalled by starvation

external to the StreamObjects system. In the case of the null device, the secondary storage is used

only for input, where when output is directed to the fixed disk, the storage device is used both for

input and output. For this reason, it is expected that a performance degradation of at least 2 to 1 is

to be expected. The fact that such performance degradation is almost exactly 2 to 1 demonstrates

the efficiency (calculated to be 98.4%) of the system.

1.0

0.0
UNIX cp UNIX cat StreamObjects
command command system

Figure 13: Throughput to Local Storage Performance Comparison

'5 The actual throughput is approximately 4000 MBits/s, which is assumed to be "infinite" since
the delay is close to zero, irrespective of the length of the file.
16 The StreamObjects system integrates the given file from beginning to end (the default
parameters), which produces the same output as copying the file with commands like cat or cp.
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The efficiency of the StreamObjects system is over 25% higher than the UNIX commands

when measured on the SPARCStation. This performance difference could be accounted for by the

efficiency of the standard libraries used by MIT's pthreads package, or by the sophisticated use of

blocking and buffering within the StreamObjects system. Nevertheless, this performance test

clearly demonstrates the suitability of the StreamObjects system to streaming applications.

4.3.4 Dynamic Segmentation Performance

The StreamObjects system does not always stream media files from the beginning.

Dynamic segmentation performance ideally should be able to stream any part of any file with the

same latency in a time proportional to the length of the segment desired. While this ideal is not

completely attainable because of disk seeking issues, the StreamObjects system comes close to

such a performance ideal.

The StreamObjects system was used to dynamically segment the standard test file in

twenty different ways. The stream was segmented by channel in five different ways: by

integration of audio and video, each separately or together, and by selection of video and audio.

Temporally, the file was segmented four different ways, taking the entire file, either half of the file,

and the second and third quarters (referred to as the middle half).

Temporal Integration Time (s) Selection Time (s)
Range Video & Video Audio Video Audio

Audio Only Only Only Only
Entire File 29.40 23.89 10.80 22.87 10.51
First Half 14.74 11.92 5.53 11.36 5.29
Last Half 15.00 12.01 5.49 11.46 5.39

Middle Half 14.78 12.10 5.45 11.53 5.38

Table 3: StreamObjects Performance Timings to the Null Device By Task

The results of such tests confirm performance expectations. When an MPEG file is

streamed to the null device, the transmission time is almost exactly proportional to the size of the

temporal segment desired (see Table 3 above) .
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Performance is not, however, proportional to the ratio of bandwidth desired to bandwidth

present. This is inescapable because the input MPEG file must be traversed linearly (by skipping

past undesired parts and reading to memory the sections desired) regardless of what percentage of

the bandwidth is actually kept. In addition, when the StreamObjects system asks for a block of the

file to be skipped, it may have actually been read into memory anyway because of the nature of

block sizes in a modern file system. Ideal channel-segmenting performance would require a file

system with no seek time, and of course such a file system does not exist.

Temporal Integration Time (s) Selection Time (s)
Range Video & Video Audio Video Audio

Audio Only Only Only Only
Entire File 59.72 48.75 14.47 52.40 14.19
First Half 28.28 21.98 6.18 21.05 6.05
Last Half 26.34 21.13 6.34 20.07 6.08

Middle Half 27.00 21.26 6.18 19.88 6.14

Table 4: StreamObjects Performance Timings to Local Store By Task

The same battery of tests was performed by routing the output to local storage, producing

similar performance results (see Table 4 above). As expected, the transmission time of each

segment is directly proportional to the percentage of the file requested. These results were

compiled into a table comparing throughput for each task (see Table 5 below).

Task Output Stream Throughput Throughput
---

Size Bit Rate to Null Device to Local Store
(MBits) (MBits/s) ((MBits/s)

Integrate Video & Audio 404.15 1.219 13.75 6.77
Integrate Video Only 339.52 1.024 14.21 6.96
Integrate Audio Only 64.65 0.195 5.99 4.47

Select Video Only 334.28 1.008 14.62 6.38
Select Audio Only 63.64 0.192 6.05 4.48

Table 5: StreamObjects Throughput By Task and Output Device

Analysis shows that throughput to the null device exceeds the bit rate of the output stream

by at least a 10 to 1 margin. When routed to local store, the bandwidth is reduced roughly by a

factor of two, as shown in the graph below (see Figure 14). The bandwidth required to read the
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stream from local store dominates the transmission performance of the system. This shows that the

StreamObjects system can support roughly as many output streams as the file system can support.
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Figure 14: StreamObjects Performance By Task and Output Device

4.3.5 Platform Performance

Other performance issues revolve around the differences between platforms. Making such

platform comparisons are beyond the scope and control of this project. The system has been

designed in such a modular fashion that it should function on any standard C++ machine with a

threading package. If a particular threading package is more efficient than another, it may affect

the performance of the system, but other factors such as CPU processing power, I/O bus

bandwidth, and operating system issues prevent the author from performing comparative tests

across multiple platforms.

What has been confirmed is that the StreamObjects system can provide low latency

preprocessing performance and high throughput transmission performance across all platforms to
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allow the streaming of MPEG data exceeding the 1.5 MBit/s second encoding rate at which ISO

11172 encoded streams are intended to operate.

4.4 CONCLUSIONS

In conclusion, we have satisfactorily demonstrated the performance of the StreamObjects

system to provide dynamically-segmented scalable media delivery over the Internet. Whether

within the confines of the CGI interface or without, the architecture provides a level of

performance on all tested platforms that makes the StreamObjects API useful for high bandwidth

media delivery.

Experimentation with memory packet issues and buffering demonstrated that the system

could perform adequately even with as little as 64 kilobytes per stream. A content provider could

choose a memory configuration appropriate for the bandwidth of the MPEG files it provides.

Nevertheless, a content provider would rarely if ever have to increase the memory requirements of

the system beyond their default settings.

The StreamObjects system was able to produce at least five 1.2 MBit/s streams

simultaneous to clients, matching the performance of a server without the StreamObjects system.

With the performance of the system assured, one can look toward the future of the project and its

potential role in media delivery.
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CHAPTER 5: FUTURE DIRECTIONS

5.1 INTRODUCTION

The StreamObjects project has succeeded in developing technologies for dynamic delivery

of multimedia content in new and innovative ways. The software can be used to give content

providers distribution options previously unavailable for this medium. With such potential, many

other projects at MIT and beyond look to utilize the system and incorporate it in their delivery

models.

5.2 USAGE

The StreamObjects system can be deployed across many servers throughout the Internet

community. The StreamObjects source code has been cross-compiled from the same source files

for several UNIX and PC platform, and this will aid developers in mobilizing the project beyond

NMIS. Any site on the Internet that currently distributes MPEG files through a Web server17 can

benefit by using the StreamObjects system to give their clients greater flexibility without increased

storage costs.

5.2.1 NMIS StreamObjects Demo Pame

Currently, the StreamObjects system is used in a demonstrative setting within the

Networked Multimedia Information Services project. The system is being used on sunny.nmis.org,

a SPARCStation 10 running SunOS 4.1.3 running a "plain vanilla" Web server created by CERN.

A StreamObjects system home page has been created on the World Wide Web (see Figure

15 below) to both demonstrate the StreamObjects system and to serve as a centralized base for the

"7 Currently, versions of the StreamObjects system exist for virtually all flavors of UNIX, as well
as Windows 95 and Windows NT.

-82-



latest information on the StreamObjects API and related technologies18 . Binaries and source code

will eventually be housed and maintained from the Sunny demo server as well as interactive pages

which bring the innovative aspects of the system to light.

* - z! .. ....... ... ... ........... ........ .. ... ... .... ......... ... .... .. ... ........ .. ... ... .. ........ .. .... .. .... ......... ......... .. ........... ....... ......... .. ..... ..... ...... ...... ..... .. ..... .... ....... ..... .... .. .

M The Stream~bjects 6ystem, by Steve Niemezyk (steve4rgnis org) is a Master-level
thesis project done for the NiIES group at MIT, which provides dynamically scaleable
multimedia over the Internet.

With the StreamObjects system, an information provider can deliver advanced playback
and streamg with a tradiional vanilla" web server. A eb server could provide differen
grades of quality and mix and match channels on-the-fly, without requiring special software,
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Figure 15: StreamObjects System Demo Page

Currently the StreamObjects demo page contains several sample links (see Figure 16

below) that demonstrate the dynamic segmentation capabilities of the StreamObjects system. The

demo page provides support for more clients of all platforms than the original MPEG files it

demonstrates could.

Some common MPEG decoder solutions, such as UC Berkeley's MPEGplay for many

UNIX platforms and the Sparkle decoder for the Macintosh do not support system streams

currently. For this reason, all MPEG files encoded by the Internet CNN Newsroom project would

18 Eventually, when DCE threads are available for NMIS's main server, running AIX 3.2.5, the
StreamObjects demo page will be moved to www.nmis.org.
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be unusable for most Macintosh and UNIX users. However with a query as simple as

"audio=none&task=select" the StreamObjects system can dynamically convert an MPEG system

stream into a video only stream so that the Macintosh and UNIX base can currently be supported.

,...

Figure 16: StreamObjects Sample Video and Audio Links

5.2.2 Internet CNN Newsroom

StreamObjects is currently being adapted for full deployment within the Internet CNN

Newsroom project. The AIX 3.2.5 server being used by the project does not currently support

threads, preventing direct support for the StreamObjects system, but plans have been set to add

such POSIX multithreaded capabilities to the central server in the coming months.

-84-



Once incorporated directly onto the NMIS server, new delivery modes will be enabled for

media distribution. All segments can be delivered as video streams, audio streams or synchronized

system streams, on demand, without expensive storage redundancy. This allows any single MPEG

system stream with a video and audio channel to provide three media formats instead of one. This

not only allows a greater support for encoders that do not support system streams, but also provide

support for streaming to computers with slower connections, such as 28.8 Kbit/s modems.

Currently a 5 minute video and audio clip encoded at 1.2 MBits/s would require over three

and a half hours to download with a 28.8 Kbit/s modem. With the StreamObjects system the audio

channel (encoded at 0.192 MBits/s) could be downloaded in just over a half an hour. With today's

technology, such flexibility is in great demand for most content providers.

Future plans for Internet CNN Newsroom also include encoding the entire show as a single

MPEG file, possibly in two passes each at different qualities. These files could be merged into a

single four channel (two audio, two video) MPEG file that would allow a "mix-and-match"

paradigm that would allow a user to choose the qualities and bit rate settings most suitable for her

own computer system. Such a four channel file could provide two audio-only modes, two video-

only modes, as well as four dual-channel delivery modes for a total of 8 useful delivery modes.

With such a system, the number of delivery modes rise exponentially with the number of channels

multiplexed together by the system stream. Another advantage of encoding an entire show as a

single MPEG file, as discussed earlier, is that it eliminates the need to re-encode shows that were

given poor segment time codes or shows that start too early or too late. In addition, links to short

"teaser" video and audio files could be added to Web pages to give preview capabilities to users.

5.2.3 Client Side Development

Several applications of the StreamObjects system in the arena of client-side development

are under consideration. The StreamObjects API provides technologies that can easily be adapted
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to client-side development, and because the architectures can be used across several platforms,

streaming MPEG clients with advanced playback features can be developed for both 32-bit

Windows as well as UNIX.

Currently the Netplay network streamer developed at NMIS will be adapted to use the

StreamObjects architecture. The current MediaObjects architecture, developed by Jonathan Soo

for the Netplay streamer, provides a simple pipeline model but does not support multithreading and

is therefore limited in how it can be adapted for other projects.

5.2.4 Other Future Projects

One such project that wishes to be "plugged-in" to the StreamObjects system is the NetBill

project at Carnegie Mellon University. The NetBill project introduces modules into the pipeline at

both the server and client end that encode and decode the MPEG video and allow content providers

to implement a "pay-per-view" streaming operation, similar to the delivery mode used over cable

lines today. The multithreaded nature of the StreamObjects system makes dropping encryption and

decryption agents into the pipeline trivial.

Another project with potential use for the StreamObjects system is the Shakespeare

Project at MIT's Center for Educational Computing Initiative. By cataloging and indexing the

entire works of Shakespeare, the StreamObjects system provides a perfect way to jump into the

middle of a long video-file dynamically without breaking such a file into many segments. The

author hopes to coordinate efforts with members of the Shakespeare project in the coming months.

5.3 OBSERVATIONS

In creating the StreamObjects system I have made several observations about the state-of-

the-art in multimedia encoding, decoding, and editing. It has become clear that MPEG encoders
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and decoders need to adhere as strictly as possible to the MPEG specification, especially as

changes are being made to make the specification more and more diverse and complex.

5.3.1 The Broken-Link Bit

One such issue that is poorly implemented by some decoders is the broken-link bit,

described in Chapter 3 that allows for editors such as the StreamObjects system to break up an

MPEG video stream at the border of an open picture group. With some decoders improperly

ignoring such bits, video files encoded with open picture groups appear blotchy for the first two

frames. Several decoders do however handle this properly, and greater steps must be taken in the

future to ensure full compliance with the ISO 11172-2 specification as editing becomes more and

more prevalent.

The issue also highlights some of the inconsistencies that can develop when a committee

meets to design a portable standard. Original attempts at the MPEG specification wanted picture

groups to remain entirely independent of each other. Such an encoding strategy would greatly

simplify editing, and would preserve the notion of a picture group as an independent presentation

unit. But pressures to improve the compression of video data came at the expense of easy editing

and caused several MPEG decoding chip manufacturers to not support the broken-link bit (which

arrived late in the specification). It is the author's hope that such miscommunications are avoided

with future revisions of the MPEG specification.

5.3.2 Multithreading and UNIX

One issue that slowed the porting of the StreamObjects system was the difficulty of finding

platforms that natively support user threads. The emerging multithreading standard, POSIX

threads 1003 and beyond, is unsupported for many platforms, especially when being integrated

with C++, or other relatively new languages.
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Indeed, finding a platform that supported threads and C++ simultaneously proved to be a

difficult task. Many current platforms have no publicly available implementation of POSIX

threads, such as AIX 3.2.5. This made cross-platform development difficult, but the convergence

of the standard and its appearance on several current platforms gives hope that future cross-

platform software development will be smoother and less awkward.

5.3.3 Editing. Streamin,. and the MPEG Specification

The ISO 11172 specification for the MPEG standard was designed to provide efficient

encoding of digital video and audio, but was not designed with extensive editing in mind. While

this is understandable, it is important to realize that the future success of MPEG as a standard will

revolve around its ease to be edited and used across all platforms.

As of today, the MPEG system stream layer is only beginning to be gain popularity in the

Internet community. As more companies such as Microsoft and Netscape provide greater support

for streaming multimedia to the client, the demand for dynamic segmenting software such as the

StreamObjects system will undoubtedly increase. Within just one year, it is expected by the author

that several competing standards will exist for streaming MPEG content directly to a user's

machine.

5.4 CONCLUSIONS

The StreamObjects solution to media delivery issues is a different one from many other

solutions present in the Internet community". The StreamObjects solution uses standard, non-

proprietary techniques to achieve the goal of dynamically segmented scalable media delivery. As a

non-proprietary solution, the StreamObjects system can permeate the Internet community just as

the World Wide Web has these last several years.

19 Such as XingTech's StreamWorks solution requiring specially designed servers and clients.

-88-



History has shown that proprietary solutions may provide excellent functionality, but only

to a limited customer base. The trend in the Internet today towards open, multi-platform

technologies such as Sun's Java clearly shows promise for the future of the StreamObjects system.

In the coming years many changes will come to the way we are delivered media and the

way we access information content. As these changes occur, the StreamObjects system and its

successors will pave the way for the changes to come and bring greater flexibility and stronger ties

between multimedia and the ubiquitous Internet.
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