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ABSTRACT

Tests carried out on the Unmanned Vehicle Laboratory's initial prototypes:
the MITy series; the MITe series; and Companion, revealed that the
traditional architectures normally implemented on mobile robotics platforms
are not practical for design, manufacturing, or system control. The major
drawback of all of these prototypes was that their control systems were
designed using sensor fusion. This required a central controller to assimilate
all the sensor data before it could be acted upon. This was undesirable due to
the limited amount of processing that could be dedicated to higher level
control. A system needed to be designed that possessed: support for
distributed processing; a predefined hardware interface to allow for parallel
development; attributes allowing for upgradability and adaptability; and plug-
and-play capabilities. Research showed that such a system could be built
using smart node technology. With a smart network, each sensor and
actuator possess its own independent processor and signal conditioning
circuitry and acts as a separate node on a local network. By transforming from
a traditional direct wired central controller system to a smart node networked
system, a more efficient robot architecture was obtained.
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Chapter 1: Introduction

INTRODUCTION
CHAPTER 1

1.1. Motivation:

In 1990, the Draper Planetary Rover Baseline Experiment (PROBE)

Laboratory was started to research, design, and manufacture an autonomous

micro-rover for planetary exploration. The initial rovers were designed

around specifications set by NASA for its MESUR Pathfinder mission. The

first rover prototype (MITy-1) was a proof-of-concept platform. It was

equipped with an earthbound sensor suite including three acoustic range

finders and a compass. After analyzing the test data from MITy-1, a second

prototype was built. Where MITy-l's control system was completely reflexive

with no path planning behavior, MITy-2's control system assimilated all of

the sensor data to allow for complete path planning behavior. Only sensors

that could be used for exploration of the Moon or Mars were employed.

These included a laser range finder for long range hazard avoidance,

proximity sensors for cliff detection, a gyro and a sun sensor, inclinometers

for 3-dimensional navigation, and tachometers for speed control. Both were

fully functioning autonomous robot prototypes. Analysis of MITy-2's

mechanical platform led to the design of MITy-3. Though never fully

autonomous, MITy-3 allowed for research into various methods of steering.

To alleviate loading on the processor caused by complex motor control code,

MITy-3 implemented its motor control in hardware.

Due to the success of the PROBE Lab's MITy-series, Draper decided that

more research should be carried out in the area of robotics and autonomous

control systems. The Unmanned Vehicle Laboratory (UVL) was formed in

1994. UVL's task was to investigate possible applications for autonomous and

semi-autonomous robots and determine how best to meet the necessary
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requirements of those applications. The first study dealt with the design of a

sensor fusion package that would allow for the autonomization of almost

any vehicle. The test platform, known as Companion, was an electric

wheelchair. The Companion control system was designed around an 486

Laptop running the higher level path planning control code and a Ampro-386

board to handle the assimilation of all of the sensor data. This was an

improvement over the MITy architecture which only utilized a Zilog-180

microprocessor board for data processing and path planning.

1.2. Objective:

The knowledge gained from working with Companion prompted UVL

to begin researching the possibility of designing a system which would be

easier to build, easier to modify, and able to make use of the best features of

the MITy and Companion prototype series. This thesis is divided into three

different areas of research and development:

* Research of various proposed control architectures for robot
systems. This research also includes studying the current UVL

prototypes to determine their advantages and disadvantages.

* Research into the use of smart nodes to improve upon the
traditional control architectures normally used in robot design.

* Implementation of a simple smart node system.

The objective of this research is to determine a method by which a more

robust and efficient robot platform can be designed and manufactured.
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DRAPER UNMANNED VEHICLE
LABORATORY PROTOTYPES

CHAPTER 2

2.1. The MITy Series -- Robots for Planetary Exploration

In 1990, the newly founded PROBE lab, under the direction of Dr.

David Kang, began a system study to determine what was necessary to design

and build a robot for planetary exploration. This initial study was completed

in June 1992 [1]. It was determined that a successful planetary robot would

have to be small, robust, and most importantly completely autonomous.

Three prototype robots were designed and built based off the findings of this

study: MITy-1, MITy-2, and MITy-3.

The planets considered in the initial study were the Moon and Mars.

Though tele-operation is possible for a lunar robot, the time to communicate

with a robot on Mars, best case 40 minutes, necessitates a high degree of

autonomy for the robots. The robot needs to be able to navigate through an

unknown environment while avoiding obstacles and pitfalls; all the while,

maintaining a sense of where it has been, where it currently is, and where it

wants to go. To accomplish these tasks, the robot requires a complete hazard

avoidance and navigation sensor package. The robot also needs a

microprocessor capable of processing and fusing all the sensor data for use by

the control system. Finally, the robot needs a stable and dependable power

supply that will last the entire mission. The MITy prototypes use

rechargeable nickel-cadmium batteries and solar panels to restore on-board

power.
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2.1.1. Basic MITy Structure:

There were a number of design characteristics that were maintained in

all the prototypes. Each rover was based upon a three-platform frame

interconnected by two flexible steel rods. These rods allowed for flexibility in

pitch and roll but not in yaw. The basic MITy structure is shown in Figure 2.1

[2].

rover platforms

flex

flex in roll

5>
SlIlMUIC ZLCOL I UUZ

Figure 2-1. Basic MITy Structure

Since the rover is meant to move forward and backing up is only done when

necessary to avoid an obstacle, the front platform is dedicated to the hazard

avoidance sensors. The middle platform holds the processor package and all

the navigational sensors. The rear platform is used to hold battery packs,

solar cells, and any mission science packages.

There are two wheels on each platform. Actuation is provided by

motors within each of the wheels. MITy-1 and MITy-2 use an Ackerman

steering system similar to that used on automobiles. MITy-3 makes use of

differential speed control where the wheels are attached to a free pivoting axle

[2]. Assuming that the failure of any two motors does not produce drag on

the robot, any combination of four wheels will be enough to move the robot.
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2.1.2. MITy-1 -- A Proof-of-Concept:

MITy-1 was designed as a proof-of-concept prototype to demonstrate

that the PROBE lab was capable of manufacturing a fully autonomous robot.

A block diagram of MITy-1 can be seen in Figure 2-2. MITy-1 is 26" long, 13.4"

wide, and weighs approximately 8.9 kg.

processor

acou!
senso

bumpers
& feelers

>atteries

drag
wheel

7

batteries

Figure 2-2. MITy-1

To minimize the cost and the development time, only earth-based

sensors were implemented on this prototype. Navigation was performed

using a drag wheel to measure distance traveled and a compass to determine

vehicle heading. Using dead reckoning, these sensors allow the robot to

determine its position relative to where it began. Long range hazard

avoidance was provided by three Polaroid acoustic range-finders while

mechanical feelers and bumpers provided more localized obstacle

information. The sonars where mounted on the front platform of the robot

and were set at angles to allow full coverage of the robot's forward path. The

mechanical feelers were mounted on either side of the front platform and

extended out past the wheels. Bumpers where mounted on the front and rear
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platforms and acted as a last resort if the sonars and feelers failed to detect an

obstacle.

A 68C11 board was used as the central controller. Due to the board's

limited processing capabilities, a relatively simple reflexive control system

was implemented on the robot. The robot also possessed a video and data

transmitter to allow control by a PC-based ground station. Initial tests

demonstrated that the robot was able to perform simple autonomous tasks

without external intervention. When given a destination 100 meters away,

the robot was able to arrive within 10 meters of the designated point. This

was well within the mission criteria set by NASA's Jet Propulsion Laboratory.

2.1.3. MITy-2 - A Working Autonomous Prototype:

Using the knowledge and experience gained from designing, building,

and testing MITy-1, the development of a more advanced prototype, MITy-2,

was initiated. A number of factors were considered during the design of

MITy-2. The sensor suite would have to be geared more towards an

unknown, hostile, planetary environment. Where MITy-1's sensors allowed

only 2-dimensional navigation, MITy-2 would be expected to travel through a

3-dimensional environment. Since the reflexive control implemented on

MITy-1 would not be sufficient for traversing the Martian landscape, a more

powerful processor would have to be used to implement sensor fusion, path

planning, and terrain mapping on board the robot. Also, the MITy-2

prototype would have to be more robust than its predecessor. A picture of

MITy-2 can be seen in Figure 2-3.
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Inclinometers
Sun Sensor

I X /

Figure 2-3. MITy-2

It was decided that hazard avoidance would be performed using laser

range-finders, infrared proximity sensors, and mechanical bumpers. The

most important reason for choosing infrared lasers over acoustical sensors

was because acoustic sonars require an atmosphere to act as a medium for the

transmission of the sound wave. However, laser range-finders can work in

the void of space as well as on Earth. Also, the laser range-finder used for

long distance hazard avoidance gave more accurate data than the acoustical

sonars used on MITy-1 that suffer from false reflections. Infrared proximity

sensors were used for cliff detection to guarantee that the robot did not

damage itself by driving off high embankments. The mechanical bumpers act

as a last line of defense for the robot. If an obstacle was not detected by the

laser range-finder or the control system was unable to maneuver correctly

around the object, then the bumpers will be activated and the robot will

reverse direction.

For navigation, MITy-2 was outfitted with a mechanical rate-gyro,

inclinometers and accelerometers, a sun sensor, and a non-powered drag-
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wheel. The gyro was used to keep track of the heading of the robot.

Unfortunately, the gyro suffers from a large amount of drift that causes errors

in navigation information. This was the reason that a sun sensor was also

used. The sun sensor monitors the angle of the sun in comparison to the

robot. By referencing both the gyro data and the sun sensor data, errors were

usually removed. The control system was also designed to deal with the fact

that either sensor could return totally inaccurate data that should be ignored.

The inclinometers and accelerometers were used to monitor the pitch and

roll of the robot's three platforms.

2.1.4. MITy-3-- A System Redesign:

While testing continued on MITy-2, a new design effort was

undertaken to upgrade the overall MITy mechanical/electrical system. The

third prototype, MITy-3, was never outfitted with any sensors. It was decided

that MITy-2 had proven the labs ability to design and build a completely

autonomous robot. MITy-3 was mainly an improvement on the hardware

structure. Even though MITy-2 had been a step in the right direction for the

design of a planetary micro-rover, there were still a number of system

characteristics that would never allow the MITy system to be spaced qualified.

MITy-3 can be seen in Figure 2-4.
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Two of the greatest flaws that MITy-2 possessed were the methods by

which motor control and steering were performed. On MITy-2, the

microprocessor was responsible for outputting pulse-width modulation

(PWM) signals to drive each of the motors. Steering was performed by servos

normally found on remote control racing cars. These attributes had a

negative affect on both the hardware and the software of the robot. Creation

of the PWM signals placed a significant load on the processor which reduced

the amount of processing that could be directed toward sensor fusion and

higher level control. The trade off between sharing processor time with the

steering and the control system allowed MITy-2 to have only eight possible

motor speeds. The use of "hobby" grade servos led to a number of mechan-

ical failures during testing. It was concluded that a solution needed to be

found that would alleviate both problems.

Instead of a servo for steering, the MITy-3 front and rear wheels were

mounted to axles that could pivoted freely about their center. Steering was

Chapter 2: Draper Unmanned Vehicle Laboratory Prototypes
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performed by using differential speed control. After initial testing of this

concept, an additional motor was added to the rear and front platforms to act

as a clutch for the free pivoting axle. These motors did not aid in the steering

of the robot; however, they locked the axles in place when the correct angle of

turn had been achieved.[2] The amount of control necessary for this method

of steering required precision motor control. The eight speeds offered by the

MITy-2 motor control would not be sufficient to implement differential speed

control. A new circuit was designed to allow better control of the motors.

The final circuit was able to output 256 different PWM signals. Due to the

motors' electrical and mechanical characteristics, these 256 PWM signals

translated into approximately 20 noticeable motor speeds. However, these

were enough to implement the new steering concepts.

2.2. Companion -- Advanced Robotics Platform for Sensor Fusion:

The early nineties saw a decrease in money being spent by Congress on

space research. Consequently, a new source of income needed to be found by

UVL. Market research determined that opportunities existed in the area of

autonomous and semi-autonomous robotics platforms for Earth based

applications. It was decided that the future of UVL lay in researching the area

of sensor fusion. Instead of focusing on one particular application, UVL

would begin designing a generic robotics platform controller that would have

the capability of making any vehicle semi - autonomous to autonomous. A

remote control wheelchair frame was used as the mobile test platform for the

sensor fusion package. There were a number of differences between the MITy

and Companion prototypes. Most importantly, the MITy prototypes had to be

small and inexpensive. Consequently, many of the components had to be

specially designed to fit these constraints. Fortunately, it was determined that



Chapter 2: Draper Unmanned Vehicle Laboratory Prototypes

Companion would not suffer from the same issues. This allowed UVL to

outfit the robot with off-the-shelf components that were not available to the

MITy series.

The entire idea behind the Companion project was that the problems

normally experienced due to sensor fusion could be removed by using

multiple processors. Initially it was decided that Companion would possess

up to three processors running in parallel just to deal with the fusion of the

sensor's data. The higher level control system and path planner were run on

a PC laptop. Communication between the laptop and the fusion-processors

was carried out through ethernet lines. The robot basically become a mobile

LAN. A ground station was also be used to control the robot via a RF modem

link.

Companion was completely outfitted with both navigation and hazard

avoidance sensors. From the knowledge ascertained from the MITy series, a

ring of 24 acoustic sensors was used to allow for obstacle avoidance and

environmental mapping. To increase the accuracy of the map created by the

acoustic sensors, a sophisticated laser range-finder system was also imple-

mented. The laser system scanned 3600 around the robot and had a vertical

range equivalent to the height of the robot. Companion also possessed two

video cameras that had the same scanning ranges as the laser system. These

cameras were used to aid in tele-operation and also for recording necessary

information of the surrounding environment. Additional hazard avoidance

was supported by bumpers and short range proximity sensors to act as a last

line of defense in case an obstacle was not detected by the sonar ring and the

laser system. Navigation was performed using dead reckoning based off data

from an on-board gyro and the encoders on the front wheels. Future plans
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include the addition of a GPS system. Figure 2-5 is a picture of the

Companion Sensor Fusion prototype.

Figure 2-5. Companion Prototype

2.3. MITes -- Nano-Architecture:

Another avenue that UVL began researching was the creation of nano-

robots. These robots would be smaller than the MITy series and would be

designed for tight areas; such as, nuclear reactors. The objective was to design

a simple and inexpensive robot to be used in situations where the robot may

be damaged or destroyed. Working with the MITy and Companion

prototypes had shown the UVL engineers the importance of modularity and

testability for a robot system. It was decided that the MITes would be a bus-

based architecture. By defining the hardware interface between the
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transducers and the central controller, it was hoped that it would become

easier to maintain and upgrade the sub-systems on the robot.

The MITes hazard avoidance system was based off a single rotating

acoustic sensor and bumpers. The acoustic sensor scanned the entire area in

front of the robot to guarantee obstacle avoidance. Since the MITes were

designed to be an Earth-based robot, navigation was carried out through dead-

reckoning using a compass and encoders on the front wheels. Unlike the

MITy series where the robot's platform was specially design, the MITes were

built around off-the-shelf RC model race cars.
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CONTROL ARCHITECTURE THEORIES
CHAPTER 3

3.1. Horizontal and Vertical Decomposition:

The hierarchy of a robot can either be setup in a horizontal or vertical

decomposition. Figure 3-1 shows the traditional horizontal decomposition of

an autonomous robot's control system.
Sensor Data

Actuators

Figure 3-1. Horizontal Decomposition

As can be seen, the sensory data is passed into the Assimilation Stages where

the processed data is put into a usable format. The processed information is

then sent to the Planning Stages where the control system determines what

must be done to achieve the predetermined objectives set by the user. The

Planning Stages then issue a Control Signal to the actuators. There are a

number of disadvantages to using the horizontal approach. Each layer of the

control system requires the assimilated data from the preceding layer. This

causes two problems. First, since all sensory data must pass through each

consecutive layer (or module), the control system has "an unavoidable delay

in the loop between sensing and action." Second, horizontal decomposition

places limitations on the flexibility of the system. If modifications to a
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particular module cause that module's I/O requirements to change, then the

I/O of the adjacent modules may also change. At best, these will be the only

necessary changes. However, altering the I/O of the adjacent modules may

cause a domino affect throughout the control system that requires a

reworking of all the layers' interfaces. These are problems that are not

normally seen when using a vertical decomposition.

With a vertical decomposition approach, the transducers are

connected in parallel. Figure 3-2 shows the traditional vertical

decomposition.

Slevel 3

level 2

level 1

Sensors I

Actuators

Figure 3-2. Control Layout for a Subsumption Architecture

The sensory data is assimilated at varying levels of complexity;

however, unlike the horizontal decomposition, each level of assimilation

and planning can be bypassed by the other levels. Vertical decomposition also

allows for the possibility of using Command Fusion instead of Sensor Fusion.

Command Fusion lacks the generality normally given by Sensor Fusion, but

it does allow the control system to exploit low level sensor data for

immediacy. This ability to quickly access sensory data allows for reflexive

control of the robot. The vertical approach leads to greater flexibility in the

architectural design of the control network. Since each layer is connected in
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parallel, the altering of one assimilation/planning module will have very

little affect on the other modules. Not only does this make the system easier

to modify but it also gives the ability to connect different assimilation/

planning modules without altering the overall system design.

3.2. Brook's Subsumption:

In 1986, Brooks [3] theorized that the control system of a mobile robot

could be divided into different layers of task-achieving behaviors. With each

additional layer, the robot achieves a greater sense of competence. The

interaction between each layer is very important to the control of the robot.

The control system must be responsive to high priority goals, while still

servicing necessary "low-level" goals.

This concept of multiple goals is considered one of the four main

requirements of an autonomous mobile robot's control system. The next

requirement revolves around the use of multiple sensors on the robot. The

control system must be able to make decisions based off the outputs of the

various on-board sensors. Since some of the sensors may overlap in the

physical quantities that they measure, inconsistent readings are possible and

the control system must be able to determine which reading, if any, is correct.

Also, many sensors' outputs do not have a direct correlation to any physical

quantity. The third requirement for the robot's control system is robustness.

The control system should be able to handle the failure of sensor systems

without a complete loss of the control system's integrity. Finally,

extendibility is important for the continued evolution of the robot's control

system. Extendibility defines the ability to add more sensors and capabilities

to the robot without impairing the speed and performance of the control

system. Extendibility can normally be achieved by three basic methods:
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* Utilizing previously unused processor power

* Upgrading the processor to achieve a faster overall system

* Adding more processors to carry increased load

The idea of subsumption bases each layer of control off of a level of

competence. Traditionally the level of competence of a robot has been

divided into five main pieces: sensing, mapping, planning, task execution,

and motor control. This hierarchical method requires that each of these

items exists to some extent before the robot can move. Any change in a single

piece may affect the pieces adjacent to it and require a complete redesign of

the robots control architecture. This is regarded as a decomposition of the

problem into horizontal slices. Brooks theorized that it is better to decompose

the problem vertically where each vertical slice is a different level of

competence. These levels of competence were defined as:

0) Avoid contact with objects

1) Wander aimlessly around given environment
2) Explore the given environment

3) Build a map of environment and path plan

4) Monitor changes to the environment
5) Identify objects and carry out tasks based on these items
6) Plan changes to the state of the given environment

7) Reason about behavior of objects in environment

Layers of the control system would be built to correspond to these levels of

competence. The robot is initially designed to fulfill the requirements of a

zero competence level. The next layer implements a competence level of

one. This layer is able to examine data from the level 0 system and is able to

suppress level O's normal data flow. This process is repeated through all the

levels of competence and each new control layer subsumes the roles of the

lower levels. Hence, the term subsumption architecture. Robustness is

achieved by the fact that all the control layers are setup in parallel with each
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other (see Figure 3-2). The obvious way to handle the problem of

extendibility is by giving each layer its own processor.

Each of these processors acts as a finite state machine that runs

asynchronously from each other. Because there is no handshaking between

the processors, it is possible to lose messages. There is no other form of

communication between processors and there is no shared global memory

within the system. Input to the modules can be suppressed and outputs can

be inhibited which allows for subsumption by higher level layers.

3.3. Payton's Reflexive Control System:

Payton's [4] architecture was designed to take advantage of both the

immediate and assimilated data provided by the robot's sensors. Payton

argues that the data from the sensors is only useful as long as it does not

become obsolete before the control system can use it. This requires that the

sensors' data is processed as quickly as possible. The challenges placed upon a

control system by constantly changing terrain may be to overwhelming for

the processing units unless appropriate tradeoffs between immediacy and

assimilation are made.

Both assimilation and immediacy have a number of advantages and

disadvantages. The assimilation of data allows for the enhancing the

completeness and detail of a constructed world representation with added

processing. This will allow for easier high-level planning by the control

system. However, assimilation requires a great deal of time to obtain the

results. In the time necessary to assimilate the data, the robot may actually

have already collided with a potential obstacle. Immediacy allows for a

quicker access time to the sensory data. The faster the sensor's output can be

used the "more value it has for control." This faster access time to the sensor

arrays and planning system basically allows the environment to act as the



Chapter 3: Control Architecture Theories

feedback signal to the control system. Also, the greater the immediacy a

control system possesses the easier it is for the system to monitor unexpected

changes in the environment. However, in unconstrained environments,

robots that employ control systems based around immediacy tend to suffer

limited operation. This is due to the fact that "immediate data loses value in

loosely constrained environments." It becomes hard to maintain complete

control within an environment where moving objects exist. For example, a

robot is navigating through an environment where there are people walking

in and out of its sensor range. With a reflexive control system, the robot will

try to avoid these moving objects. Unfortunately, the robot will soon become

disoriented. If all the robot is meant to do is wander throughout the

environment and avoid obstacles, then use of immediacy will be fine.

However, if the robot is supposed to achieve a specific goal, such as traveling

to a particular point, the immediacy can lend itself to errors in the control

system. Without extremely sophisticated sensors, it becomes difficult for the

robot to maintain position information when reflexive hazard avoidance is

being implemented.

Payton's reflexive architecture was designed around four major

modules (see Figure 3-3). The Reflexive Planning module requires the

highest degree of immediacy while the Mission Planning module requires

the highest degree of assimilation. Since the modules are setup in a vertical

decomposition approach, the control system is able to perform both

immediate and assimilated tasks.
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cle
Actuators

Figure 3-3. Reflexive Control System

The higher levels of the control system pass "constraints and specialization

commands" downward while failure and status reports are passed upward by

the lower level modules. Payton uses a "common blackboard" approach for

communication between modules. When one module needs to commu-

nicate to another module, it writes its message to a "blackboard" that is

accessible by the entire network. Each command issued to the blackboard is

passed through a command arbitration unit which determines the priority of

the message and issues them to the actuators. In a highly parallel machine

architecture. Due to the vertical decomposition of the architecture, the

addition of new modules will not alter the currently existing system to any

great degree. Unlike Brook's architecture, the vertical layers are based off of

assimilation/ immediacy instead of level of competence. To actually increase

the level of competence of Payton's control system would require the

addition of both reflexive modules as well as high-level planning modules.
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Also, a higher level of competence may require modifications to existing

modules.

3.4. Rosenblatt and Payton's Fine Grained Architecture:

Both Rosenblatt and Payton [5] believed that Brook's subsumption

architecture [3] advocated principles of system design crucial to the creation of

a robot controls system. Like Brooks, they designed their system around the

idea of vertical decomposition. However, they also believed that Brook's

architecture possessed major practical limitations.

Interestingly enough, one of the major flaws that Rosenblatt and

Payton found with the subsumption architecture was the fact that one

command could subsume another command. They argued that whenever

one command totally inhibited another command all of the data contained by

the subsumed command was completely lost. Due to this loss of data, there

was no guarantee that the behaviors will be able to perform the functions that

were expected of its level of competence. Another drawback evolved from

implementing each layer of competence with finite state machines. They

argued that these finite state machines possessed internal states that could not

be accessed by the other layers. With the addition of each new layer of

competence, the demands on the lower layers increased and the need arose to

modify the behaviors of the existing layers. These modifications were made

impossible by the internal state of the finite state machines.

Rosenblatt and Payton's solution to these problems was to create a

system designed around fine-grained behaviors. Each behavior was divided

into a collection of very simple decision-makings units. By making them

fine-grained, no unit possess any internal state that could not be accessed by

the external network and each unit represented a specific concept for the
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behavior of the robot. Instead of inhibiting commands, they decided that a

weight would be applied to each command. Accordingly, no data was ever

lost which allowed the system access to all sensory data to make a decision.

Where Brook's architecture would have subsumed a command from a lower

level of competence, Rosenblatt and Payton's architecture would just attach a

lesser weight of importance on a lower layer command. Figure 3-4 shows a

behavioral network unit.

OyWyj

Oi is output of unit i
Wij is weight on the link from unit i to j
Oj is output of unit j

Figure 3-4. A Network Unit

All of the inputs to unit Aj come from similar units throughout the network.

A weight is placed on the links connecting the units together. As can be seen,

no data is lost from one unit to another. Each unit takes in its weighted

inputs and performs any necessary functions on those inputs. The unit then

outputs the results of its processing and the cycle continues throughout the

network. Payton and Rosenblatt concluded that their system allowed the

selection of commands that best meet the demands of all the system's

behaviors.
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TRADITIONAL CENTRALIZED
CONTROL NETWORKS

CHAPTER 4

4.1. MITy Prototype Series: A Direct-wired Transducer Platform:

The traditional design of a mobile autonomous robot revolves around

a single central control unit (CCU) that has a central processing unit (CPU) to

perform all the sensor fusion, mapping, and planning functions. The CCU

normally possesses multiple digital and analog I/O pins. This was the

architecture used in the design of the Unmanned Vehicle Lab's MITy

prototype series. As Figure 4-1 demonstrates, the architecture resembled a star

formation where the CCU is the center of the star and the various sensors and

actuators are the rays of that star.

Figure 4-1. Traditional Centralized Processing Architecture

Each transducer is wired directly back to the CCU's I/O pins. As previously

mentioned (see Section 2.2), the MITy series used a Zilog Little Giant board as

its CCU board. This board possessed a Z180 microprocessor and multiple

digital and analog I/O ports. The support and signal conditioning circuitry

necessary to allow for more efficient data transmission and easier interfacing
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between the transducers' I/O and the CPU's I/O was placed out at the

transducers.

There are a number of advantages and disadvantages to this archi-

tecture. The use of a single CCU board was an inexpensive alternative to

having multiple control units. Also, since the hardware and low-level

software were geared mainly toward interfacing the transducers to the CCU,

the design was fairly straightforward and uncomplicated. Another advantage

was that since each transducer was a separate ray of the star, a transducer

failure would not cause a catastrophic failure to the electrical system.

However, in many regards the disadvantages outweigh the advantages. The

direct wired architecture of the MITy series was inflexible and consequently

not very modular or expandable.

For example, an acoustic range finder used for hazard avoidance may

require a power rail of 5V, two digital I/O lines and possibly some sophis-

ticated signal conditioning circuitry. If a decision was made to upgrade the

hazard avoidance sensor to the laser range finder found on MITy-2, then a

power rail of 12V would have to be run in addition to the 5V rail, another

digital I/O line would have to run, and the signal conditioning circuitry

would definitely change. All of these changes can create a logistics nightmare

for the layout of the electrical system. First, all the digital I/O lines may

already be committed. This means that circuitry must be designed or bought

to extend the digital I/O of the CCU. Second, since there may be no space left

on the connectors that interconnect the various components of the robot,

mechanical alterations to the robot's frame may become necessary to

accommodate more connectors. These mechanical changes may require

subsequent changes to the electrical system. This domino affect ends up

wasting time and resources and usually brings R&D efforts to a stand still.
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The low-level software used to control the sensor must be completely

rewritten as well since the software-hardware interface for the sonar and laser

is completely different. Altering the low-level software may also require

changes in the robot's higher-level control code and now software begins

experiencing the same problems that were experienced in hardware.

Another drawback of the MITy series architecture was the inability to

carry out parallel development of transducers. The only way to achieve

parallel development was by completely laying out the robot in advance.

This task included: delegating I/O resources to all the transducers;

determining the size, shape, and configuration of each transducer on the

robot; and routing the necessary power lines to each transducer. Once the

robot's layout was finalized, it became difficult to implement any changes.

The limitations experienced with the MITy series permeate all robot

designs that utilize a direct-wired transducer platform. The time and the cost

necessary to change the layout of the system make this architecture non-

versatile and extremely inefficient. The inability to easily upgrade the

transducers on the robot guarantees that the system will quickly become

obsolete.

4.2. MITe Prototype Series: A Bus-based Transducer Platform:

The MITe series was an attempt to improve upon the MITy

architecture. Though the MITes still utilized a single CCU to assimilate the

sensor data and to carryout all the higher level control code, a bus-based

architecture was introduced to minimize the disadvantages experienced by

the MITy series. The signal conditioning circuitry and interface electronics for

each transducer were built onto circuit cards that plug into the robot's 8-bit

data bus. The MITe possessed eight expansion slots that were accessible by a 3-

bit address bus. This allowed access to a minimum of eight different
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transducers. By allowing each circuit card to support multiple transducers,

the MITe could support more than eight transducers. Therefore, unlike the

MITy series where the number of transducers was dependent upon the

number I/O ports on the CCU, the number of transducers on each MITe is

directly related to the size of the support circuitry required by each transducer.

Figure 4-2 is a block diagram of the MITe architecture.

Power
Rails

/

Figure 4-2. MITe Prototype Bus Architecture

Bus architecture gave the MITe series significant advantages over the MITy

series. These advantages were mainly due to the standardization of the

hardware interface guaranteed by the bus. Each transducer has access to the

same digital and analog I/O lines and all the voltage rails. This made the

robot's hardware easier to maintain, re-task, and upgrade. It also permitted

parallel development and off-line testing of transducer circuitry. However,

the bus-based architecture did have some disadvantages that the traditional

direct-wired system did not. The bandwidth of the bus was a major limiting

factor on how often the transducers could be accessed by the CPU. Also,

timing issues became very important to guarantee that the correct
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information was being accessed at any one time. Though the hardware saw

improvements due to the standardized bus, the hardware-software interface

had become extremely complex to deal with the transmission of data across

the bus. The bus architecture was also susceptible to catastrophic failure due

to a transducer failure. For example, if a transducer's bus-card shorted two of

its digital bus lines to ground, then the bus would be corrupted making it

impossible access any of the other transducers. Like the MITy series, the

MITes could suffer from a catastrophic microprocessor failure as well as the

fact that the CPU was still loaded down by sensor fusion.

4.3. Companion Prototype:

As previously mentioned (see section 2.4), the removal of the size

constraints that had been imposed upon the planetary micro-rover and the

inundation of a substantial amount of IR&D funding allowed for the design

of a far more sophisticated robot than the MITy or MITe series. Using the

knowledge gained through testing the MITy prototypes, it was determined

that the Companion should possess some form of distributed processing. The

use of multiple processors would alleviate the problems normally associated

with trying to carryout sensor fusion and path planning on the same CPU. As

Figure 4-3 shows, the Companion prototype had many of the same attributes

as the MITy and MITe prototypes.
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Figure 4-3. Companion Multiple Processor Architecture

Companion's control system was divided between the processing of the

sensors' data and the path planning that was carried out after the data had

been assimilated. All the sensor fusion occurred on the 486 microprocessor

board. This board used a PC-104 bus interface. This allowed for additional

peripheral boards to be stacked onto the microprocessor card. Purchasing off-

the-shelf computer cards gave an added benefit since software drivers were

normally included to handle the interface between the processor and its

resources. With the MITe architecture, a custom interface had to be designed

to allow the processor to access all the transducers. The commercially

supplied drivers greatly simplified the development time for the hardware-

software interface on Companion. Figure 4-3 only shows the more common

peripheral cards that were used with the Companion prototype. The PC-104

based microprocessor board communicated to a 486 laptop via an ethernet

cable. The higher level control code was performed on the laptop. Though

full assimilation of sensor data was necessary for control, the utilization of
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multiple CPUs allowed for more efficient processing. As with the previous

prototype series, the hardware signal conditioning occurred out at the

transducers. The transducers were interfaced to the PC-104 microprocessor

board via the I/O bus provided by the Digital and Analog I/O card. As with

the MITy architecture, parallel development of both hardware and software

was only possible after the I/O resources had been delegated for each

transducer. However, since more than one I/O card can be placed on the PC-

104 stack, the robot's transducer suite can easily be expanded. This expansion

was limited only by the number of peripheral cards that the microprocessor

can support. As additional cards were added to provide GPS and ethernet

capabilities, this limitation became a concern. One method to deal with this

limitation was to add an additional microprocessor to deal with new

transducers. A Zilog Little Giant board was connected to the PC-104 based 486

board via a RS-232 line. The Little Giant was then used to interface a gyro

into the Companion's navigation system. This was UVL's first

implementation of a smart sensor (see Chapter 5).

Though using commercially available components allowed for a more

robust and sophisticated robot, their cost was much higher than the circuits

designed by the UVL graduate students. Also, as with the MITy and MITe

series, the robot could still suffer a catastrophic processor failure. If either the

PC-104 based 486 board or the laptop suffered a failure, the robot would be

unable to recover. The ability to upgrade was limited by the fact that new

transducers required a re-distribution of I/O resources. Not surprisingly, the

fact that most of the electronics were bought commercially and not designed

in-house led to a limited understanding of the overall hardware system.

Consequently, this made the robot harder to maintain and debug.
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4.4. Summary of Advantages/Disadvantages of UVL Systems:

As demonstrated above, all the UVL systems have their own

advantages and disadvantages. All share common problems extending from

the areas of sensor fusion, catastrophic processor failures, and limited

modularity/upgradability. It was important to summarize these points to

allow for a better understanding of the benefits of the proposed smart sensor

system. The following list gives a breakdown of the various UVL systems:

Direct Wired Transducer Platform (MITy Series):

* Single CPU for all transducer processing

* Hardware signal conditioning carried out at transducer

* Transducers directly wired to I/O pins on CPU board

* Full assimilation of sensor data necessary for control

Bus Based Transducer Platform (MITe Series):

* Single CPU for all transducer processing
* Hardware signal conditioning carried out at transducer

* Transducer circuitry built on cards that plug into I/O bus of
CPU

* Full assimilation of sensor data necessary for control

Hierarchical Control Architecture with Multiple Processors
(Companion):

* Independent CPU used for all Sensor Fusion
* Independent CPU used for Path Planning and Mapping
* Hardware signal conditioning carried out at transducers
* Sensor Fusion CPU and Planner CPU connected via ethernet
* Full assimilation of sensor data necessary for control;

however, multiple CPU's allow for more efficient processing
* Independent CPU used for processing of Gyro information

Table 4-1. UVL System Breakdown

Table 4-1 gives a summary of the advantages and disadvantages of each

system.
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UVL SYSTEM ADVANTAGES DISADVANTAGES
MITy Series simple to design non-modular

inexpensive non-upgradable
sensor failure is non-

ic to stem difficult to debugcatastrophic to system
serial development

limited I/O resources
catastrophic processor

failure
processor loaded down by

Sensor Fusion

more modular than MITy catastrophic sensor failure
MITe Series series possible

retaskable/maintainable bus width limitations
catastrophic processor

parallel development failurefailure
processor loaded down byoff-line test/debug Sensor Fusion

modularity still limited

CompanionSerieos efficient use of processing expensive

hierarchical layer of
difficult to debugabstraction

catastrophic microprocessorlimited parallel development failure

sensor failure is non- difficult/expensive to
catastrophic to system maintain

more modular/upgradable limited modularity
than MITy and MITe series

limited upgradability

Table 4-2. Advantages/Disadvantages of UVL Systems

As can be seen from Table 4-1, the disadvantages outweigh the advantages of

each system. The greatest concern revolves around the difficulty of

upgrading the robot's sensor and actuator suite. These limitations make the

robots hard to maintain and therefore hard to market to perspective buyers.

The need to design a more efficient and maintainable robot led to the UVL's

initial research into the area of smart sensor technology.
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SMART MODULES
CHAPTER 5

5.1. Overview of Smart Sensors:

After analyzing the list of the advantages and disadvantages of the

UVL systems (see Section 4.4), it was concluded that a more robust and

efficient system could be designed if it possessed the following attributes:

* distributed processing to allow for better assimilation

of sensor data,
* a predefined hardware interface that would allow for

parallel development of transducers,
* transducers should be connected by a data bus that

would allow for easier modularity and upgradability,
* transducers should have plug-and-play capabilities to

increase system testability and maintainability,
* the failure of any one transducer should not cause a

catastrophic system failure,
* and the overall system should be simple and

inexpensive to design.

It was already known that the robot's control architecture closely resembled

the control systems implemented in test and measurement applications. A

central controller normally directs the actions of instruments, sensors, and

actuators; polls for any results; and manages the resulting data.[6] This

knowledge led to research into how other applications, that utilized a similar

control architecture as the robots, dealt with the drawbacks of traditional

direct-wired centralized control. It was found that the instrumentation and

control system industry had determined that the use of specialized sensor

buses was the necessary solution to obtain a more efficient, low cost, high

quality product.[7] The idea behind these sensor buses was to turn the



Chapter 5: Smart Modules

traditional control system architecture into a network where the transducers

act as nodes.

Accordingly, the nodes need a certain amount of intelligence to allow

interface with the sensor network. Nader Najafi of MRL/Sensors coined the

term 'smart sensor'. Najafi determined that a smart sensor should: possess

all analog and digital signal processing; digitize analog transducer outputs;

have a bi-directional bus for communication; contain a specific network

address to allow user access and identification; and be able to receive and

execute commands over a digital bus.[8] John Eidson and Stan Woods, both

of Hewlett-Packard, designed a research prototype of a networked smart

sensor system. They defined the hardware design of a smart sensor as

including:

* a communication transceiver module for connection to the
physical communication medium,

* a common core module that will configure the node, convert

transducer signals to digital data with standard units, and
manage the flow of data into and out of the node,

* and a transducer interface module that signal conditions the
transducer output.

This hardware design has become the industry standard for a smart sensor.[6]

As Figure 5-1 shows, the three major blocks of the smart sensor

architecture are the Communication Media Access block, the Control and

Configuration block, and the Transducer block.
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Figure 5-1. Smart Node Architecture

The Communication Media Access block is responsible for handling the low-

level protocol between the node and the physical medium. For many of the

sensor networks on the market, this block is designed around a media-

dependent transceiver. The Control and Configuration block acts as the data

path between the application interface with the transducer and commu-

nication interface with the physical media. Unlike the Communication

Media Access block, this data path, which is illustrated in Figure 5-2, is

identical in all smart sensors.

Communication Medium
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Figure 5-2. Data Path

The importance of the Control and Configuration block lies in the fact that it

is responsible for converting the transducer's output to a usable format. The

Physical Transformation converts between the digital representation in SI

units and the transducer's raw digitized data. The Application Transfor-

mation converts between the SI unit representation and the application

representation that appears on the network.[6] The application trans-

formation can be as sophisticated as the designer wants; however, even when

performing the simplest application transformations, the smart node

eliminates much of the processing load normally placed on the central

controller due to data digitization, filtering, and signal processing.

Tom Ormond, Senior Technical Editor of EDN, confirms that a smart

sensor should consist of a transducer combined with signal conditioning and

other circuitry to produce data signals that have been logically operated upon

to increase their value of information.[8] Ormond hypothesizes that the

Sensor 

Actuator

Nodes 

Nodes

Sensor
Nodes

Actuator
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simplest smart sensor is composed of a transducer with signal conditioning

circuitry to filter and scale the output. Using this definition, the transducers

implemented on the UVL prototypes can be considered smart sensors.

However, as was shown by the earlier research of the UVL, an efficient and

cost-effective control system can not be designed using this basic model of a

smart sensor. A higher and more effective level of sensor intelligence can be

achieved by adding communication capabilities. This includes the addition of

A/D and D/A converters at the sensor and actuator nodes respectively, as

well as the addition of transducer addressability to allow user access of

individual nodes. These features allow for the use of a bi-directional digital

bus to interconnect the various transducer nodes and the central controller.

Consequently, the computational load on the central control processor will be

lessened since the incoming data will be in a predefined digital format.

By placing a microcontroller at the sensor or actuator, a more effective

and useful node can be achieved. Varying levels of intelligence can be

attained by simply altering the code running on the microcontroller. At the

simplest level, the microcontroller can be programmed to carryout all the

necessary computations to turn the transducer's raw data into SI units. The

microcontroller can also be programmed to monitor the output of the sensor

and only transmit the data to the central controller after certain criteria have

been met. For example, constantly transmitting the output of a gyro node

being used for navigation would be an ineffective use of the network's

bandwidth. Instead, the node can be programmed to sample the gyro's output

and only transmit data to the central controller periodically. Alternately,

more advanced code could be run on the node's microcontroller to transmit

the gyro's data only when a significant enough change has occurred to
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designate an actual course change. By programming all the nodes in this

manner, the control architecture can make the best use of the bus' bandwidth.

There are a number of properties that should be met when designing a

smart sensor system. As shown in Table 5-1, Eidson and Woods divide these

properties into transducer-related, measurement-related, and application-

related properties.[6]

Transducer-Related Measurement-Related Application-Relate
Changing measurement

Physical variable Timing management properties by accepting
network messages

I/O format Data management Communication Pattern

Computational Managing
Calibration characteristic communicationcharacteristic

properties
Ident ity Identity Synchronizing node

clocks
Operational ranges Location Control Models

Table 5-1. Smart Node Properties

It must be understood that for a node to possess these properties it must have

a microcontroller. Most of these properties are dependent upon the code

running on the microcontroller. Many of the smart sensor networking tools

on the market have prewritten protocols that deal with the time

management, I/O format and network communication properties. The

physical variable: distance, temperature, etc., identity, calibration, and

operational ranges are all properties provided by the application program

written by the user. By adhering to these design rules, a group of smart nodes

can be created and connected into a control system that far exceeds the control

architecture on the various UVL prototypes.

5.2. Smart Modules -- A Flexible Control Architecture:

As mentioned above, the reason that UVL began researching the area

of smart sensors was to find a system that did not suffer from the same
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drawbacks as the traditional central control networks. Many of the

disadvantages experienced by these systems can be removed by using smart

nodes designed around microcontrollers running communication protocol

and user-written application code. By standardizing the hardware interface,

using a bi-directional digital bus, and the transducer's data format, using SI

units, a smart node system becomes modular, expandable, and upgradable.

The same argument used to show the drawbacks of the MITy architecture can

be used to demonstrate the advantages of a smart sensor system. In Section

4.1, the difficulties surrounding the decision to change from an acoustic range

finder to a simple laser range finder were discussed. An entire reworking of

the electrical hardware as well as the high level and low level software was

required. By using smart nodes, these problems can be avoided. First, since

the interface to the bus is the same for all the transducers on the network,

there is no reason to rework any of the system hardware. Second, because

both devices output the distance to an obstacle and both nodes can be

programmed to output their data in meters, the system control code does not

have to be changed. The central controller is only expecting to receive some

type of obstacle avoidance information across the network. It does not matter

that the data comes from an acoustic range finder or a laser range finder.

Also, since the bus is run throughout the robot, the only problems that might

arise from adding or moving a node are spacing issues.

There are also a number of other advantages for using smart nodes

interconnected by an intelligent communication interface. First, the issues

involved with developing an entire control system are simplified by the

ability to carry out the parallel development of all the system's smart nodes.

This is due to the standardization of the nodes' hardware and software

interfaces. The only information required by the individual design teams
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would be the form of the output expected from the node and the input

commands that the node will receive. For example, two separate design

teams might be responsible for the gyro and laser range finder nodes. The

development of the gyro node will not depend at all upon the design

decisions of the range finder design team. All the gyro design team needs to

know is that their node will output the relative direction of the robot in

radians and that the node will receive commands from the central controller

dealing with gyro self-calibration, power cycling, and requests for gyro data.

The use of smart nodes adds a level of abstraction between the control

code running on the central processor and the transducers. With the

traditional architecture, the control code running on the central processor

makes calls to device drivers that control the interface with the transducers.

These device drivers are an integral part of the hardware/software interface of

the overall system. The code that makes up these device drivers is dependent

upon the transducer being controlled. The device drivers must change when

the transducers are upgraded. These changes to the device drivers usually

require a change in the control code running on the central processor.[9] The

additional level of abstraction offered by the smart nodes allows for the

transducers to be upgraded or modified without any major change to the

control system. For example, to determine the distance to a given object, the

central controller could send out the request Distance_to_Object onto the

network. The control system is not concerned with whether or not the range

finding device is designed around a laser or a sonar. In many ways, smart

sensor technology can be considered the hardware networking equivalent of

object-oriented programming.[10] By abstracting away from the transducer

interface, the control architecture is able to achieve a level of modularity

unattainable by the traditional architectures investigated by UVL.
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It is important to summarize the various advantages and

disadvantages of the smart sensor systems. Table 7-1 lists these various

advantages and the single known disadvantage of the smart sensor network.

ADVANTAGES DISADVANTAGES

easy to design bandwidth limitations

parallel development

easy to maintain

nearly unlimited upgradability

distributed/local/efficient
microprocessors

fault tolerant/decentralized processing

retaskable

true peer-to-peer control network
possible

different communication mediums possible
(i.e. twisted pair, fiber optic, RF, IR)

application program is media independent

Table 5-2. Advantages/Disadvantages of Smart Sensor System

Many of the advantages have already been mentioned; however there

are a number of important points that have been overlooked so far. The first

point is that fault tolerance can be achieved by use of smart nodes. Two ways

by which fault tolerance can be implemented in a smart sensor network are

by.

1. connecting the nodes in a ring topology to offer alternate paths
among the modules in case of a physical break in the bus,

2. redundancy of smart nodes to guarantee that a single failure will not
affect the system performance.
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This level of fault tolerance is not readily achievable with a traditional direct-

wired architecture where redundant modules would either require additional

I/O resources or additional hardware to allow access to the redundant nodes.

Another important point revolves around the advantage of

distributed/local/efficient processing. The previous discussions concerning

the attributes of a smart module system have dealt mainly with easing the

processing load on the central controller by conditioning the transducers' data

into a more usable format. However, the fact that each node contains a

microcontroller can be exploited to design a completely distributed control

network where a central controller is unnecessary. Networking protocols can

be purchased the support true peer-to-peer communication (see Chapter 7).

The only significant drawback of using a smart sensor network

originates from the limitations on the network's bandwidth. To allow

successful control of the robot, all of the nodes need to be able to inter-

communicate without bogging down the network. To effectively implement

a distributed control system, the networking protocol needs be optimized for

the transfer of the small packets that control information normally

consists.[11] Once again, specialized communication protocols come to the

rescue. Support of both acknowledged and unacknowledged transport

mechanisms can be used to avoid saturating the network.[6] As will be

shown in Chapter 6, a number of corporations have begun developing

network protocols especially designed with distributed control in mind.
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OPERATING NETWORK PROTOCOL
CHAPTER 6

6.1. Sensor/Actuator Buses and Communication Protocols:

One of the most important aspects of a Smart Module System is the

network used to interconnect the various modules. A control network

replaces the complex wiring from device to device, and a network

management tool defines how the devices in the network interoperate. The

necessary components for a distributed control system are the commu-

nication protocol and the hardware support set. Normally, each distributed

control network is viewed as a unique problem that requires a custom

communication protocol and custom hardware. This is neither practical nor

economic when discussing robotics systems.

Local Area Networks (LANs) have allowed for the design of distributed

control networks that are not application dependent. However, LAN based

systems can be very expensive. Since each LAN node requires a computer to

run the LAN software the minimum cost would be approximately $1000.

Most robotics systems are required to be small and inexpensive. Neither

criteria would be achievable through the use of a LAN. Also, LAN protocols

are optimized for transferring large amounts of data and have no guaranteed

maximum delay time for successful transmission of data [11]. The control

information sent across the network will consist of small packets. A control

system also should be reliable, repeatable, and predictable. Consequently,

LAN based systems are not optimized to be used for distributed control

networks.

Approximately a decade ago, the industrial measurement and control

market began looking for alternatives to centralized control strategies. Design
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engineers began studying the possibility of creating inexpensive standardized

I/O networks that would allow for the quick and easy interconnection of

sensors and actuators in the manufacturing environment. There are now a

number of different sensor bus protocols used on the market today, including

Seriplex, LonWorks, DeviceNet and SDS. Seriplex, which was designed by

Automated Process Control, Inc. (APC), makes use of a specialized ASIC chip

and does not require any additional controllers to run the protocol. Seriplex

requires simple tools to implement a network. The ASIC can be programmed

by a specialized hand-held device provided by APC. Both Honeywell

Microswitch's Smart Distributed System (SDS) [13] and Allen Bradley's

DeviceNet are based off Controller Area Networks (CANs).[14] The CAN

architecture was initially designed by Bosch GmbH as a control system for

Mercedes-Benz's vehicles. DeviceNet and SDS both require emulators,

evaluation boards, and compilers to create the nodes and setup the network.

Though the CAN market is maturing, it currently has not achieved a state

where the tools are efficient, user-friendly, or abundant. Echelon's LonWorks

system is a multi-industry, multi-media, peer-to-peer control network. It is

supported by a number of user-friendly Window's based software tools that

allow for the creation and simulation of smart nodes and the setup of an

entire network. Though currently under development, SDS and DeviceNet

have not yet achieved peer-to-peer capability. This makes LonWorks the only

commercially available peer-to-peer technology. The ability to implement a

peer-to-peer network greatly enhances the idea of a distributed control

architecture. This is the main reason that UVL chose the Echelon protocol

over SDS and DeviceNet.
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6.2. LonWorks Architecture:

6.2.1. Smart Networks:

Echelon proposed creating a local operating network (LON) that would

interconnect intelligent devices known as nodes. The network

communication is supported by the LonTalk protocol (see Section 6.2). Figure

6-1 shows a generic configuration for a LonWorks Network. The network

supports up to 32,385 nodes.
Lonworks Node Lonworks Node Lonworks Node Lonworks Node

1 2 3 4

Network Transmission Medium

Network Transmission Medium

Figure 6-1. LonWorks Network

Routers and gateways are used to create sub-networks to allow for more

efficient use of the bus bandwidth. Communication between the nodes is

carried out using Network Variables or explicit messages.

6.2.2. Network Variables and Explicit Messages:

Echelon introduced a derivative of ANSI C known as Neuron C. The

major modification is that Neuron C supports network variables. Network
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variables may be specified as either Input or Output objects. When a node

assigns a value to a network variable defined as an Output object, the value is

propagated across the entire network and any node specifying that network

variable as an Input object reads the new value off the bus. For example, in

an autonomous submarine, one of the smart sensors might be a pressure

sensor to determine if the submarine has a leak. This node would have an

output network variable, sub_pressure that contained the pressure sensed by

the node. Every time the node measures the pressure the value is updated

and propagated across the network. An emergency inflation device may be

another node on the submarine. One of its input network variables would be

the current pressure within the submarine, current_pressure. Sub_pressure

and current_pressure are bound together by the network manager. If a leak

occurs, then the pressure within the submarine would begin to drastically

change. The pressure sensor would measure this change and send out

Sub_pressure across the network. The emergency inflation device would

read in current_pressure and activate.

The use of network variables vastly simplifies the creation of the

network. Once the input and output network variables are bound by the

network manager, the user does not need to worry about low-level details

such as node addressing or request/response/retry processing. All of these

issues are handled by the LonTalk protocol. An array of up to 31 bytes of

information may be sent as a network variable. If an object larger than 31

bytes needs to be transmitted, then explicit messages may be used.

Application programs can create messages of up to 229 bytes of data. To use

explicit messages, implicit address connections called message tags must be

attached to the data by the user. Consequently, explicit message passing is

more difficult to implement than network variables.
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6.2.3. LonWorks Smart Nodes:

The LonWorks nodes support local processing and possess I/O

hardware to allow for monitoring and control of sensors and actuators. Each

node contains the LonTalk protocol in firmware that allows communication

between devices on the network. A LonWorks node has three main

components: the microcontroller, the transceiver, and the user electronics.

The Motorola/Toshiba Neuron Chip is the microcontroller that supports

communication, control, scheduling, and the I/O interface. The transceiver

provides the interface between the node and the communication medium.

The user electronics depends upon the application and the transducers being

interfaced with the Neuron Chip's I/O.

Since the LonTalk protocol running on the Neuron Chip is media-

independent, the network has been designed to support a variety of

communication media. Table 6-1 lists transceiver types and their data

communication rates. The wide range of transceiver types gives an added

Transciever Type Data Rate

EIA-232 39 kbps
Twisted Pair 78 kbps
Twisted Pair 1.25 Mbps
Power-Line 5 kbps
Power-Line 10 kbps

RF (300 MHz) 1200 bps
RF (450 MHz) 4800 bps
RF (900 MHz) 9600 bps

IR 78 kbps
Fiber Optic 1.25 Mbps

Coaxial 1.25 Mbps

Table 6-1. Echelon Transceiver Types

flexibility to the LonWorks plug-and-play capabilities. It also allows for easier

test and development of a network. For example, a network can initially be

designed using Twisted Pair (78 kbps) as the medium and can then be refit
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with IR (78 kbps) transceivers without any change to the network's software.

The only limitation on changing the network's communication medium lies

with the data rate. A control system designed to run with Twisted Pair (1.25

Mbps) as the medium could become ineffective if the medium was changed

to RF.

As was previously mentioned, the size and characteristics of the user's

application electronics are dependent upon the transducer being interfaced

with the network. The application processor on the Neuron Chip (see

Section 6.3.1) is normally capable of handling the user's application software;

however, for transducers that require computationally intensive processing, a

more powerful processor can be used. Though the Neuron Chip still

controls the LonTalk protocol, all the application software is run on the new

host processor. Figure 6-2 shows a block diagram of two possible

configurations for a LonWorks node. The Host-Based configuration would be

Application Electronics

Neuron Chip

Transciever

LonWorks Network LonWorks Network
Neuron-Based Node Host-Based Node

Figure 6-2. Block Diagram of LonWorks Node

one possible method for implementing a Mapper/Planner node on the robot.
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6.3. LonTalk Protocol:

6.3.1. Open System Interconnection Standard:

The LonTalk protocol is designed to adhere to the International

Standard Organization's (ISO) 7-layer open systems interconnection standard

(OSI). Table 6-2 shows the mapping of the LonTalk protocol onto the OSI

model. The OSI model defines the criteria for a standard data network.

OSI Layer Purpose Services Provided
7 Application

7 Application Compatibility Standard network variable typesCompatibilitV
Presentation Network variables, foreign frame6 Presentation Data interpretation transmissiontransmission

5 Session Remote actions Request/response, authentication,
network management

Acknowledge and unacknowledged,
End-to-end unicast and multicast,4 Transport reliability authentication, common ordering,

duplicate detection
Destination3 Network Destination Addressing, routers, gatewaysaddressing

Framing, data encoding, CRC error
2 Link Media access and checking, predictive CSMA,

framing collision avoidance, priority,
collision detection

Electrical Media-specific interfaces and
Physical interconnect modulation schemes

Table 6-2. LonTalk Protocol Mapping onto OSI Model

6.3.2. LonTalk Addressing and Routing:

An address will have a domain address component, a subnet address

component, and a node address component. The domain of the network is a

collection of nodes on one or more transport mediums, called channels.

Multiple channels are connected through routers.

The LonTalk protocol supports the following four types of routers: a

repeater, a bridge, a learning router, and a configured router. A repeater

simply forwards all packets between the two channels. A bridge only
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forwards packets that match its domain addressing component. A learning

router is able to learn the network topology at a domain/subnet level by

monitoring the network traffic. A learning router is always updating its

internal routing table. A configured router has a user-programmed internal

routing table that will selectively route packets between channels. The

throughput of the channel is dependent upon the transceiver's data rate.

Typical channel throughputs for 12-byte packets are listed in Table 6-3.

Peak Number of Sustained NumbeBit Rate
Packets/sec of Packets/sec

9.766 kbps 45 35
78.125 kbps 400 320

1.25 Mbps 700 560

Table 6-3. Channel Throughput

Communication may only take place between nodes on the same

domain. The domain component of the address can be 0, 1, 3, or 6 bytes long;

however, the domain component adds overhead to every packet sent over

the network. Therefore, use of a 6 byte domain component is not

recommended. Each domain may contain up to 255 subnets with each subnet

containing up to 127 nodes. Accordingly, the subnet number is 8 bits long and

the node number is 7 bits long. Figure 6-3 shows the addressing hierarchy for

the LonTalk Protocol. A node's physical location determines which subnet it

is assigned.
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Figure 6-3. LonTalk Addressing Hierarchy

However, the location of a node often has little to do with the function of the

node. It is for this reason that the LonTalk protocol supports group

addressing. A node may be a member of up to 15 different groups. Group

addressing allows efficient use of the network bandwidth through the use of

one-to-many network variable connections. For example, a house may have

50 lights that are members of the same group. A single network variable

called dim_lights can be sent out across the network using group addressing.

Though all 50 lights have been dimmed, the network only experienced

overhead due to the transmission of a single network variable instead of 50

separate network variables. The group address component is 1 byte long, so a

domain may contain up to 256 groups.

6.3.3. LonTalk Communication Services:

The LonTalk protocol supports the following types of message services:

acknowledged, request/response, unacknowledged-repeated, and

unacknowledged. For acknowledged service, a message can be sent to either a

single node or a group of nodes. Upon receipt of the message, all the

receiving nodes send an acknowledgment across the network. If one of the

nodes does not acknowledge receipt of the message, the sending node times

out and re-tries the transaction to that node. The request/response service is
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just as reliable as the acknowledged service. With this service, a message is

sent to a node or group of nodes and a response is expected from each

receiver. The difference between acknowledged messages and

request/response messages is that the responses may include data. With

repeated-unacknowledged service, a message is sent to a node or group of

nodes multiple times. The sending node does not expect any response from

the receiving the nodes. The disadvantage of this method is the fact that if

the message is not received then it is lost and the control system will have no

way of knowing about it. However, this service is affective when the number

of responses or acknowledgments may overload the network.

Unacknowledged messages are the least reliable. They are sent only once and

no response is expected from the receiving nodes. This service should only

be used when the message that is being sent is not critical to the application.

The protocol supports a collision avoidance algorithm that allows the

network to carry close to its maximum capacity under overload conditions.

Accordingly, network throughput does not suffer degradation due to excess

collisions. When a collision is detected, the protocol cancels the transmission

of the damaged packet and then re-transmits it. Though the collision avoid-

ance algorithm is transceiver dependent, all of the transceivers mentioned in

this chapter support the collision algorithm.

LonTalk supports priority message passing. Only nodes that have been

assigned a priority time slot by the network management device can transmit

prioritized packets. When a node generates a priority packet, it is placed

ahead of any non-priority packets in the transmission queue. Upon reaching

a router, the priority packet will be moved to the head of the router's

transmission queue. 126 levels of priority are supported by the protocol with

priority 2 being the highest priority and priority 127 being the lowest. The
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protocols support of priority packets and collision detection permits bounded

response time within the system.

Another feature of the LonTalk protocol guarantees security access to

individual nodes. By supporting authenticated messages, nodes can prevent

unauthorized access. 48-bit keys are distributed to the nodes on a network

during installation. The sender and receiver of an authenticated message

both must posses the same key. Upon receiving an authenticated message, a

node generates a random challenge to the sender to provide authentication.

The sender then carries out a transformation on the challenge by using its

internal authentication key and the data from the original packet. The

receiver carries out its own transformation on the challenge it generated and

compares it to the sender's reply. Even if the challenge and response are

intercepted, the transformation carried out on the challenge makes it difficult

to determine the authentication key.

6.4. Motorola/Toshiba Neuron Chip:

Motorola has currently designed two VLSI devices to support the

LonWorks operating network. These are the MC143150 and the MC143120.

Both chips contain a limited amount of internal EEPROM and RAM. The

main differences between these two chips is that the MC143150 does not have

internal ROM but is instead able to access 64 Kbytes of external memory,

while the MC143120 possesses 10 Kbytes of internal ROM but is unable to

access external memory.

The Neuron Chip contains three 8-bit pipelined processors: one for

Media Access Control, one for Network Protocol Control, and one for

Application Device Control. Figure 6-4 is a block diagram of the MC143150.
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Figure 6-4. Block Diagram of MC143150

The MC143150 possesses control lines to access external memory. The block

diagram for the MC143120 is identical except for the external memory control

lines and an additional block to represent the on-chip 10 Kbytes of ROM.

The Neuron Chip also has selectable input clock rates ranging from 625

kHz to 10 MHz. The average on-chip RAM and EEPROM size is 2 Kbytes and

512 bytes respectively. As Figure 6-4 shows, the Neuron Chip also have 11

programmable I/O pins (100-1010). Table 6-4 is a partial lists of the various

I/O objects supported by the Neuron Chip. The frequency and timer I/O are

supported by two 16-bit timer/counters.
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MODE I/O Object

Direct Modes Bit I/O
SByte 1/0

Leveldetect Input
Nibble I/O

Parallel Modes Muxbus I/O
Master/Slave A

Slave B

Serial Modes Bitshift I/O
Serial I/O

NeuroWire I/O

Timer/Counter input
Modes Dualsiope Input

Infrared inPut
Period input

Pulsecount Input
Quad rature Input
Totalcount Input

Timer/Counter Output
Modes Edgedivide Output

Frequency O utput
Oneshot Output

Pulsecount Output
Pulsewidth Outp

Triac Output

Table 6-4. Neuron Chip I/O Objects

The main programming language used to write applications is a

derivative of ANSI C known as Neuron C which supports network variables.

Fifteen timers can be declared in software by the user's application program.

The programs running on the application processor are totally event driven.

Therefore, when statements are used to execute the application code running

on the Neuron Chip. All of these features make the Neuron Chip an

effective microcontroller for the LonWorks architecture.
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PROPOSED SYSTEM ARCHITECTURE
CHAPTER 7

7.1. Distributed Intelligence:

As discussed in Chapter 3, there currently exists a number of different

theories on how a robot's control system should be designed. Brooks [3]

theorized that the control system of a mobile robot could be divided into

different layers of task-achieving behaviors. With each additional layer, the

robot achieves a greater sense of competence. The interaction between each

layer is very important to the control of the robot. The control system must

be responsive to high priority goals, while still servicing necessary "low-

level" goals. These higher levels would become responsible for subsuming

the tasks of the lower layers. Brook's control system experienced problems

originating from inadequate command fusion and the fact his control layers

had internal state variables that the network could not access. These system

characteristics made it very difficult to modify the existing system. Payton

and Rosenblatt [5] endeavored to improve upon Brook's subsumption

architecture. They proposed an architecture possessing modules that were so

fine-grained they did not have internal state. Another improvement upon

Brook's architecture was that new modules did not completely subsume the

function of existing modules, but instead biased the decisions toward different

alternatives. Payton [4] also proposed a method to create a reflexive control

architecture. The architecture takes advantage of both the immediate and

assimilated data provided by the robot's sensors. Payton argues that the data

from the sensors is only useful as long as it does not become obsolete before

the control system can use it. This requires that the sensors' data is processed

quickly. The challenges placed upon a control system by constantly changing
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terrain may be overwhelming for the processing units unless appropriate

tradeoffs between immediacy and assimilation are made.

Though these control methodologies were researched during the

development of the MITy and MITe prototypes, their use of a single central

processor did not allow for the implementation of the advanced control

systems suggested by Brooks and Payton. The use of multiple processors on

Companion to divide the tasks of sensor fusion and higher level control and

path planning was a step towards realizing the proposed control systems.

Unfortunately, the need for sensor fusion still limited the speed at which the

sensor data could be processed. It was decided that the only way to achieve

the necessary speed in processing was to design a distributed control network.

One way to do this was the use of smart sensors coupled with a central

processor for higher level control.

As previously discussed, smart sensor technology allows all the

processing to occur at the sensor and actuator nodes. By processing the data at

the transducers and only passing formatted data across the network, a level of

abstraction is added that allows the implementation of command fusion, or

data fusion, instead of sensor fusion. With the traditional control

architectures, command fusion is only implemented after all the sensor's data

has been assimilated and normally the same processor is responsible for both

functions. If the data from the sensors is being processed at the sensor and the

central processor is only responsible for fusing the commands being

transmitted by the sensors, then the control system can conceivably have

access to the all the sensors' information before it becomes obsolete.

The attributes of a distributed control system designed using smart

sensors coupled with a central processor to implement command fusion are

many. As discussed in Chapters 5 and 6, a LonWorks smart sensor
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architecture decreases the overall complexity of the system. From a hardware

perspective, the wiring harness is simplified to a two wire bus. Also, the

hardware interface between the transducer nodes and the wiring harness as

well as between the transducers and the neuron node has been universally

defined and maintained throughout the robot. Another advantage derives

from the fact that each transducer module can be made self-sufficient by

supplying each with its on power supply. From the software side, the added

abstraction provided by the network variables allows for the design of a

higher level control system without knowing what code is actually running

at the nodes. Accordingly, application software is written at the node level

without affecting the overall control system. Consequently, a total parallel

design effort can be carried out on the entire system in both hardware and

software -- something inconceivable for the traditional robot architectures

first implemented by UVL.

7.2. Sensor-Actuator Communication Control:

Up to this point, the overall suggestion has been to utilize smart nodes

to increase the central controller's efficiency and reduce many of negative

aspects of initial system design and manufacturing. However, the theory of

smart nodes can be taken to a higher level. If the smart nodes can

communicate to the central processor via network variables, then why can't

they be designed to communicate to each other instead? The basic distributed

control system discussed in section 7.1 is setup as a master-slave network

where the central processor interfaces with each smart node but no peer-to-

peer interaction occurs between the nodes. Use of the Echelon LonWorks

protocol (see Chapter 6) allows for the implementation of a peer-to-peer

control system. In his article 'Autonomous Control with Peer-to-Peer I/O
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Networks', Lawrence Gibson stated that "LonWorks is currently the only

commercial implementation of peer-to-peer technology."[15]

Peer-to-peer networking was one of the main reasons for using the

LonWorks protocol. UVL began researching the area of smart nodes to

determine a way to reduce the amount of processing time being spent by the

central controller on data manipulation and low level control. In a master-

slave arrangement, the use of smart nodes decreases the amount of data

manipulation being performed on the central controller. Unfortunately, the

central controller is still responsible for carrying out all the low level control

that determines what each sensor and actuator will do. However, by using

the smart nodes in a peer-to-peer configuration, it is possible to relieve the

central controller of the task of performing low level control. The central

controller can be delegated to a supervisory role over the transducers. This

allows the central controller to spend most of its processing power on high

level control.

Consider a very simple example where a robot has been designed to

navigate through a given environment without hitting any obstacles. This

was the same example used by Brook's in his discussion of subsumption. In a

master-slave configuration, the central controller would receive a network

variable, obstacle_detected, from the hazard avoidance sensor. Obstacle

detected contains information about whether an obstacle lays in the path of

the robot. The controller would then use this information to determine what

the appropriate action should be to avoid the obstacle. Once this decision is

made, the controller sends out the network variable turn_robot. This

prompts the steering node to alter the course of the robot.

In a peer-to-peer configuration, the central controller does not play a

role in the above scenario. The controller is responsible for sending out the
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command for the robot to start roving. When an obstacle is detected, the

hazard avoidance node sends out the network variable obstacle_detected;

however, instead of the controller acting upon this data, the steering actuator

node would deal with it directly. This is achieved by increasing the

complexity of the application code on the respective nodes. The hazard

avoidance algorithm is now programmed either on the hazard avoidance

sensor node or the steering actuator node. It is totally up to the system

designers to decide which node the algorithm should be programmed onto.

Because every node on the network receives the network variables

being transmitted, it is possible to have all the low level navigation and

hazard avoidance carried out by sensor-actuator communication. The central

controller, or even a separate ground station, can be responsible for setting

way-points for the robot. Once the way-point is set, the robot traverses its way

to the designated point using only sensor-actuator communication. For

example, the higher level control system may decide that the robot should

travel to a location exactly 100 feet in front of the robot's current position. As

in the previous example, if an obstacle is detected then the hazard avoidance

node will inform the steering actuator node to steer around the obstacle. The

steering actuator node will output a network variable, steerangle, that tells

the system what angle the robot should turn. The compass node on the robot

receives steer_angle and monitors how far the robot has turned. Once the

robot has achieved the heading that it needs to steer around the obstacle, the

compass node will output a network variable stop_turn. Once around the

obstacle, the robot returns to its normal course. All of this is done without

any interference by the central controller.

In many ways, this can be compared to the way that a human being

interfaces with the environment. When the brain, the human's central
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controller, makes a decision, the body begins to respond to the higher level

commands from the brain. For example, you just printed out a copy of your

thesis from the computer on your desk and you must now go and retrieve it

from the printer down the hall. Your brain will make the decision to get up

and go down the hall to the printer. Once you are in motion, your brain may

begin thinking about totally different things. You are still able to navigate

through the cluttered lab, the narrow lab door, and down the twisting hallway

to the printer. You are able to avoid obstacles and navigate without any

conscious thought. It is not an uncommon situation to arrive at that printer

and not remember the trip there. This is because your sensory system has

taken over the low level control of your body. Your eyes are still taking in

information and your actuators, arms and legs, react correctly to what is

perceived to be an obstacle. If the obstacle is too large to get around easily,

then your brain may "come back on line" and take over with higher level

control.

7.3. Competence through Sensor Priority (future work):

Brook's [3] proposed adding different layers of task-achieving behaviors

to obtain greater levels of robot competence. A similar idea can be

implemented through smart sensor technology. As described in detail in the

preceding chapters, each node can be programmed to receive network

variables, as well as output network variables. Up to this point, these

network variables have not been assigned any priority in regards to each

other. However, if these network variables were assigned a specific priority,

then a system could be designed that had varying levels of competence

dependent upon the sensors and actuators it possessed. Such a system can be

seen in Figure 7-1.
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HAL8 HAL2

Router QueueHAL8
HAL5
HAL2

NL2
NL2
NL8

NL9Router QueueRouter Queue

NL2

Figure 7-1. Priority-Level based Smart Network

As discussed in Section 6.3.3, the Echelon protocol supports the use of

routers and priority level network variables. The network variables can be

assigned priorities from 2 to 127 with 2 being the highest priority. When a

high priority variable reaches a router, it is immediately moved to the front

of the queue. In the system portrayed in Figure 7-1, the various types of

sensors and actuators are grouped together under Hazard Avoidance (HA)

Sensors, Navigation (N) Sensors, and Motor (DM or SM) Actuators. The

network variables passing to and from the nodes have been labeled HAL#,

NL#, DML#, and SML# respectively. The numbers attached as a suffix to

these variables represent the priority levels. Even if HAL8 and HAL5 arrive

before HAL2, HAL2 will move to the top of the queue and will be transmitted

first across the network.
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By utilizing the priority capability of the Echelon protocol, a varying

level of competence can be ascertained. The more important a sensor is to the

robot's control system, the higher priority its network variables should be

given. Consider a robot that possesses both an acoustic and a laser range

finder. The laser range finder will return more accurate data than the

acoustic sensor. Consequently, the network variables from the laser node

should have a higher priority than the variables from the acoustic sensor

node. The robot can work without the laser range finder. However, with the

laser node, the robot achieves a higher level of competence. Without the

protocols support of priority variables, there would be no guarantee that the

laser's data would be transmitted ahead of the sonar's data.

By creating network variables that represent either hazard avoidance,

navigation, or motor control, another level of abstraction has been added.

The code running on the nodes can be written to take advantage of this

abstraction and the various priorities attached to each variable. The nodes

that require heading information can be programmed to ignore lower priority

heading variables if a high priority heading variable had been acted upon

within a finite amount of time. The same idea can be used for any category of

network variables. The use of priority level network variables at the protocol

level as well as the application code level has not been implemented for this

thesis. These characteristics fall outside the scope of this thesis, the

programming capability of this author, and the financial resources of this

project.

7.4. Multiple Robot-Node Network (future work):

There is an additional feature of smart sensor networks that has not yet

been discussed. This feature is currently only supported by the Echelon

protocol and hardware. In Section 6.2.3. LonWorks Smart Nodes, it was
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noted that a number of different transceivers could be used with the Echelon

network. What is important for a multiple robot-node network is the ability

to make use of RF transceivers. Figure 7-2 represents a block diagram of a two

robot network.

Robot 2

Node5

Modem

Figure 7-2. Two Robot Network

Each robot is designed around a smart network. Until this point, the

discussion has revolved around individual networks where each robot

would be acting independently. However, the use of RF modems now allows

the possibility of inter-robot communication. By using RF modems, both

robots now become sub-networks within a larger overall network. It is totally

up to the designer whether any or all the robot's network variables are

transmitted to another robot or even a stationary ground station. Consider a

situation where multiple robots are being used to search for radioactive

materials. A sophisticated ground station is being used to monitor where

each of the robots are in relation to some fixed origin. Robot 3 discovers

radioactive material in one quadrant of the search area. It transmits to the

other robots that it has found radioactive material and where this material is

located in reference to itself. The other robots are able to determine where

Robot 1

Node 5
RF

Modem
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they are in relation to robot 3 via information from the ground station. They

can now all converge on the quadrant where the material has been detected

and carry out a more thorough search.

RF modems also open up another interesting feature of the smart

network systems. System failure is a common concern of all robot designers.

With a traditional centralized control architecture, if the main controller

suffers a hard-fault then a catastrophic failure occurs. By using RF modems

with smart networks, failure of the central controller no longer means failure

of the entire robot. Since the RF modem node acts exactly as any other node

on the network, it is possible to transmit commands from a ground station to

emulate the central controller. This ability can also lead to the removal of the

central controller from the robot all together and allowing the ground station

to carry out all the higher level control of the system. The RF modem would

allow the ground station to monitor the I/O of all the transducers on the

robot and consequently knowing the state of the robot at all times. Multiple

RF modems could be used for each robot to reduce any bandwidth problems

that may be experienced by trying to transmit all the network variables to the

ground station. Multiple RF modems would also add a level of fault

tolerance in case one of the modems failed. Once again, this issue has not yet

been tested; however, it is a major point of interest for UVL and research will

be undertaken to study the viability of a multiple robot-node network.
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IMPLEMENTATION OF SMART SENSOR
ARCHITECTURE

CHAPTER 8

8.1. Smart Module Demonstration:

8.1.1. Explanation of Demonstration Control System:

The intention of this thesis was to research the possibility of

implementing a distributed control network on an autonomous robot using

smart sensor technology. Accordingly, a working demonstration was

designed to simulate an autonomous mobile robot. Early on it was decided

that an actual robot would not be designed using smart sensors until this

thesis was concluded. For the demonstration to be considered successful

certain criteria needed to be met. This criteria called for:

* The design of nodes to support sensors and actuators normally used
on UVL prototypes (Includes application code and node-transducer
interface)

* The setup of an Echelon LonWorks network. (Includes the system
protocol and node-network interface)

* The interconnection of transducer nodes to create a simple control
system. (Includes the intercommunication between application code
running on each node)

As has been explained in the preceding chapters, smart sensors are a viable

option for the creation of a distributed control network and consequently

UVL has begun researching into the design of a number of future robots with

this technology.

Due to the limited amount of time and resources, only three smart

nodes were designed and built by the completion of this thesis. It was decided

that for the demonstration to be worthwhile, a hazard avoidance node, a

navigational node, and an actuator node should be designed and

manufactured. Hazard avoidance is performed using an acoustic sensor
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range-finder. The on-board navigation sensor is a three axis rate-gyro. The

actuator node is designed to control up to four submarine thrusters. These

three nodes are connected together into a working distributed control

network to simulate a very simple autonomous mobile robot. Figure 8-1

shows a diagram of the demonstration system.

Acoustic
Sensor

Sonar
Node

Gyro
NodE

Thruster
Node

Actuators
Motors/Thrusters

Figure 8-1. Demonstration Network
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A central controller acting in a supervisory mode is being emulated by a PC

computer running the LonWorks' software. This allows for the

manipulation of network variables by the user.

As previously mentioned, the demonstration network emulates a

mobile robot with a simple control system. The control code running on the

demonstration simulates what Brooks [3] referred to as the lowest level of

competence for a robot. The objective of the control system would be to allow

a robot to wander through a 2D environment without hitting any obstacles.

The acoustic sensor scans the entire region in front of the robot.

The algorithm running on the sonar node divides this front area into the

following quadrants.

Quadrant 1: 90° to 450
Quadrant 2: 450 to 0*
Quadrant 3: 0" to -45"
Quadrant 4: -45" to -90"

It then finds the closest object in each quadrant. Figure 8-2 shows how the

two imaginary hemispheres exist in front of the robot. The center of each

hemisphere is the sonar.
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--T-
304.8mm

45deg Odeg

609.6mm

90deg

304.8mm

Figure 8-2. Obstacle Avoidance Hemispheres

The inner sphere has a radius of 304.8mm while the outer sphere has a radius

of 609.6mm. An object is only considered to be an obstacle if it falls within the

outer sphere. Therefore, if no objects are detected within the outer sphere,

then the sonar node will not transmit any obstacle data. However, if objects

do fall within the outer sphere then the quadrant data will be transmitted

across the network. This was done to conserve the bandwidth of the network.

The only component of the hazard avoidance algorithm that actually occurs

on the sonar node is the safety-stop feature. If an object is detected within the

inner sphere (as shown in Figure 8-3), it is considered to be unavoidable.

1. i
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Figure 8-3. Obstacle within Safety-Radius

The safety-stop algorithm sends out a command to stop the robot from

preceding forward. This portion of the algorithm is executed as soon as an

object is detected. The sonar then continues the scan and outputs the

quadrant data.

The main hazard avoidance algorithm resides on the thruster node.

The thruster node also allows direct control of each individual thruster by the

central controller, external ground station, or other nodes. The thruster node

reads the quadrant data off the network whenever they are updated by the

sonar node. If an obstacle is determined to be within the inner sphere but the

sonar node has not successfully performed the safety-stop algorithm, it will be

executed on the thruster node instead (see Figure 8-4(a)). This was added to

deal with the possibility of the stop command being lost from the sonar node.

A very simple algorithm is used for obstacle avoidance. The quadrant data is

first checked to see if more than three obstacles had been detected. As can be

seen in Figure 8-4(b), if more than two of the quadrants contain obstacles then

there is no way that the robot can proceed safely.
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(a) Obstacle within Inner Sphere (b) Obstacles in Quadrants 1,2 and 3

(c) Obstale in Quadrant 2 (d) Obstacle in Quadrant 1

(e) Obstacles in Quadrants 0 and 2 (f) Obstacles in Quadrants 0 and 3

Figure 8-4. Possible Hazards Encountered by Robot

For the situations when the robot can not avoid the obstacles

successfully, a special avoidance routine is called that backs the robot up along

a straight path for 1219mm. The distance-traveled information will be input

by the user through the PC computer. The routine then commands the robot

to precede forward at either an angle of -45" or 45". The routine alternates

between these two angles (i.e. if the last time the routine was called the robot

turned to 45" then the robot will turn to -45" the next time the routine is

called). There are four situations that can occur to force this special avoidance

routine to be called. The first two have already been discussed: an obstacle

within the safety radius and three or more obstacles in front of the robot. The

next two situations require obstacles to occur in alternating quadrants. An

example of this can be seen in Figure 8-4(e). The reason for these last two
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cases originates from the assumption that the robot does not possess a turning

radius that allows it to avoid both obstacles.

Only three other hazard situations exist. If an obstacle is detected in

quadrant 1, then the robot will turn counterclockwise 90". Similarly, if an

obstacle is detected in quadrant 2, then the robot will turn clockwise 90".

These are shown in Figure 8-4 (d) and (c) respectively. The final situation is

does not require any avoidance routine to be executed. This can be seen in

Figure 8-4(f). Since the robot has been modeled as being 304.8mm, any

obstacles occurring in quadrants 0 and 3 will not impede the forward motion

of the robot.

The gyro node is responsible for making sure that the robot turns to the

correct angles when commanded by the hazard avoidance algorithm. The

gyro's algorithm is relatively simple. It takes in the commanded heading

change and compares the current heading of the robot to the desired heading.

When the heading of the robot is within 30 ° of the desired heading, the gyro

will output a slow-turn command that will inform the turning-thrusters to

slow to their minimum speed. This allows the robot to initially turn quickly

for large angles and to slow the turn as the robot approaches the correct

heading. The thruster node also possesses a slow-turn routine that

guarantees that if the magnitude of the initial turn angle is less than 30', then

it will turn at its slowest speed.

8.1.2. Smart Nodes and Network Variables:

As mentioned above, the demonstration revolves around three smart

nodes: a sonar node; a gyro node; and a thruster node, along with a PC

computer running the LonWorks software. The user-code on each node can

be divided into two categories. The first is the code necessary for interfacing

with the transducer. These device drivers deal with the signals occurring at
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the neuron chips I/O pins. The second category is the code that makes up the

control system. Most of this code depends upon the transfer of network

variables between the various nodes. When the smart network is being set

up as a distributed control architecture, it becomes important to understand

what control code is running on each node. The actual in-and-outs do not

need to be known but the information that will be passed throughout the

network should be predefined. This allows for the parallel development of

individual nodes. It also allows for the modification of code running on each

node without affecting the overall control system. Consequently, Pehr

Anderson, a MIT CS. student, was able to modify and improve the author's

code without changing the demonstration control system. The code running

on each node can be seen in Appendix A.

To better understand the demonstration control code, it is important to

see what the various network variables are and how they are bounded with

each node. Table 8-1 lists each nodes network variables and the network

variables to which they are connected.

NODE NETWORK VARIABLE BOUND TO

SONAR
INPUT VARIABLES nviSonarPower Central Controller

nviMotorStop THRUSTER: nvoThruster Stop
nviSTEP_NUM Central Controller

OUTPUT VARIABLES nvolnQuadrants[O1 THRUSTER: nviObstacles[O]
nvolnQuadrants(1] THRUSTER: nviObstacles[1]
nvolnQuadrants[2] THRUSTER: nviObstacles[2]
nvolnQuadrants[3] THRUSTER: nviObstacles[3 ]

nvoSafety_Stop THRUSTER: nviSafety_Stop

Table 8-1. Demonstration Network Variables
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NODE NETWORK VARIABL BOUND TO

THRUSTER
INPUT VARIABLES nvi00Thruster Central Controller

nvi01lThruster Central Controller
nvi02Thruster Central Controller
nvi03Thruster Central Controller

nviObstacles[0o SONAR: nvolnQuadrants[0
nviObstacles[1] SONAR: nvolnQuadrants[1]
nviObstacles[2] SONAR: nvolnQuadrants[2]
nviObstacles[3] SONAR: nvolnQuadrants[3]
nviSlow Turn GYRO: nvoSlow Turn

nviStop Turn GYRO: nvoStop Turn
nviSteer Angle Central Controller

nviSafetyStop SONAR: nvoSafetyStop
..- nviRobot Speed Central Controller

. .. . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - - --- - ----,-.. . . .. .. . . . .. . .- -... . . . . . .--.. .

nviStop_ BckUp_-  Central Controller

OUTPUT VARIABLES nvoTurn Angle GYRO: nviHeadinChange
nvoBackUp ------ Central Contoller

nvoThrusterStop SONAR: nviMotorStop

GYRO
INPUT VARIABLES nviHeadingChange THRUSTER: nvoTurnAngle

nviRecalibrate Central Controller
-nviClipping Central Controller

OUTPUT VARIABLES nvoSlow Turn THRUSTER: nviSlow .Turn
nvoStopTurn THRUSTER: nviStop Turn
nvoAnglej0] Central Controller

nvoAngle[1] Central Controller
nvoAng le[2].... Central Controller

Table 8-1. Demonstration Network Variables (Cont.)

As can be seen from Table 8-1, there are a number of network variables that

directly interface to the central controller. Some of these are due to the lack of

an actual node to give distance data. In a real system, this node would exist

and there would be no reason for the central controller to interfere with the

control system. Even though in this demonstration each network variable is

only bound to one other network variable, a real system would possess

network variables that are bound to multiple sources. This is a helpful
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feature of the LonWorks architecture, since it allows the central controller to

have direct access to all the system's network variables.

8.2. Poseidon - A Smart Sensor Surf-Zone Vehicle (Future Work):

The first practical implementation of a smart node architecture will be

Poseidon prototype. Poseidon will be an autonomous submarine meant to

perform reconnaissance missions in the surf-zone region. The nodes used in

the demonstration network will be used on Poseidon. Initially, a traditional

hierarchical control system with a central controller carrying out all of the

mission and path planning will be implemented. The nodes will only be

responsible for conditioning the transducers' I/O into a more useful form.

The system will have no reflexive control and will implement sensor fusion.

However, once the smart network is fully operational a transition will begin

to a semi-distributed control network with the central controller carrying out

only higher level control and supervising node interaction. This will allow

for reflexive control and the implementation of command fusion instead of

sensor fusion.

There are a number of reasons for following this plan. First, the UVL

engineers are still far more familiar with the traditional control architectures

implemented on the previous prototypes. Second, an evaluation of each

system can be made to determine whether the advantages theorized in this

paper are actually practical. The Poseidon prototype should be complete by

July, 1996. The rapid design and manufacturing stage can be contributed to

the ease of laying out the 2-wire bus for the Echelon architecture. The

Poseidon will also possess a smart RF modem which will allow a ground

station to monitor all of the robot's systems and provide an additional level

of fault tolerance in case the central controller fails.
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CONCLUSIONS AND RECOMMENDATIONS
CHAPTER 9

9.1 Smart Sensor Technology:

The original motivation for this thesis was to determine a more

efficient way to design and manufacture a mobile robotics platform. Research

on the past UVL prototypes revealed major drawbacks in the traditional

system architectures that they were designed around. The thesis' objective

evolved to include the finding of an architecture to provide a robust control

system and a more practical final product. Practicality was defined as support

for future upgradability, modularity, and system adaptability. As this thesis

has shown, a system designed using smart nodes possesses the necessary

attributes to achieve the system described above.

Three different implementations of smart node networks have been

discussed in this paper. The first and simplest system is designed using smart

nodes to condition the transducers' data into a more usable format. Sensor

fusion is performed by a central controller responsible for path planning,

mapping, and system control. The advantages of this system over the

traditional architectures are:

1. a 2-wire bus interconnecting each of the transducers on the robot,

2. a predefined hardware interface between the node and the

communication medium,

3. a predefined hardware interface between the transducer and the

node,
4. and the transmission of pre-formatted data to the central controller

from each sensor.

Item 1 allows for easier manufacturing of the robot since the only wiring

necessary for the robot would be the running of the 2-wire bus and power

lines. Items 2 and 3 allow for the parallel development of individual nodes.
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Item 4 decreases the amount of processing carried out by the central controller

to assimilate the sensors' data. This is a definite win over the traditional

architectures. The next implementation has the smart nodes performing low

level control through peer-to-peer interaction. The central controller is now

performing command fusion instead of sensor fusion. By relieving the

central controller of the responsibility of carrying out data assimilation and

low level control, it is now able to dedicate its processing time to higher level

control, such as path planning and mapping. This opens up the possibility to

implement the control theories of Brooks, Payton, and Rosenblatt which

require some form of distributed processing to achieve varying levels on

robot intelligence.[3, 4, 5] The final and most advanced configuration does

not possess a central controller. Control is performed through peer-to-peer

communication between the system nodes.

Research shows that the first two implementations are achievable in

the near term. As discussed in Chapter 8, a number of nodes have been built

and tested. A simple test system has been designed and studied. Initial tests

reveal that smart nodes are a viable solution to the alleviate the drawbacks

experienced by traditional control systems. It is recommended that research

continue in this area. Further research should be carried out to determine the

correct balance between control by the central processing unit and peer-to-peer

communication.

9.2 Echelon LonWorks Networking Protocol:

In Chapter 6, a number of different networking tools were discussed to

allow for the implementation of a smart node system. After investigating

each of these protocols, it was decided to use the Echelon LonWorks Protocol.

There were a number of reasons for this choice. From a technical and

theoretical standpoint, the most important reason was due to LonWorks
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support of peer-to-peer interaction between the nodes. From a practical

standpoint, the reason was due to Echelon's reputation as being the most

user-friendly protocol on the market.

Working with the Echelon networking tools revealed that they are not

as user-friendly as was first believed. The protocol possesses a number of

kinks that caused UVL to waist a large amount of time and money to work

around. Echelon's documentation, as well as the user-interface leaves a lot to

be desired. Unfortunately, Echelon's normal response to technical problems

required a transfer of funds to obtain a correct answer. It took months for the

UVL staff to figure out how to setup a working smart node network and even

that process is not totally understood at this moment. If this is the most user-

friendly protocol on the market, then this author does not want to see what it

would take to get one of the other protocols working.

This author's conclusion about the Echelon system is that you should

only use it if you have the money to support it. Once all of the various pieces

have been purchased and setup correctly, the system should work without

any problems. Basically, it must be looked at as an investment of money that

will pay off in the long term. It would certainly have taken UVL far longer to

try and develop their own networking protocol and in the end the same

amount of money would have been wasted to obtain the same result. It is

recommended that further research be carried out in the areas of smart sensor

protocols to determine if a better supplier can be found. Otherwise, a closer

relationship should be made with the Echelon support engineers so that the

LonWorks protocol can evolve into a more user-friendly system.

9.3 Future Research:

Draper has begun researching other areas where smart sensor

technology can be used. These areas include both military and industrial
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applications. The Unmanned Vehicle Laboratory will possess a working

smart sensor prototype by July 1996. This will be the Poseidon surf-zone

vehicle. Design of a smart sensor based micro-rover will begin by June 1996

and should be completed by January 1997. Upon completion of this vehicle,

tests can be carried out to compare the performance of the traditional control

architecture with the distributed control architecture theorized in this paper.
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Appendix A:

APPENDIX A

A.1 Demonstration Sonar Code:

// Sean P. Adam
//3/21/96
// Final Radar Code for Demonstration Network

// This code completely controls the stepper motor and sonar
// system.

// Special Features:
// 1. Only scans hemisphere in front of robot.
// 2. Has a 25ms timeout timer to handle
// missed return from acoustic sensor

#pragma setnode_sdstring "@0,1,3.Sonar transducer and stepper motor."

#include <snvt_rq.h>
#include <snvt_lev.h>

mtimer repeating tmECHOLATE;
const unsigned long int TIME = 25;
const unsigned long int ONE_FOOT = 3D0
const unsigned long int TWO_FOOT = 6C
const unsigned long int SAFETY_FACTC
const unsigned long int CONV_FACTOR
const unsigned long int OFFSET_FACTO
const unsigned long int SCALE_FACTOF

int servo_index;
int STEP_DIR = 1;
int temp;
unsigned long int Sum_Quadrants;
unsigned long int SonarMap [40];
unsigned long int InQuadrants[4];
unsigned int Obstacles[4];

// timeout if no Echo from Sonar

// Ift -> 304.8mm
// 2ft -> 609.6mm
// 0 objects within 609.6mm

// corresponds to delay of 40

// index for servo direction
/ 1-> counterclockwise 0-> clockwise

// array of sonar points
/ array of closest object in each quadrant
/ quadrant obstacle marker array

network input sd_string("@0 I1.") SNVT_objrequest nvi00Request;
network output sd_string("@0 12.") SNVTobj_status nvo00Status;

network input sd_string("@21 1.") SNVT_1ev_disc nviSonarPower;
network output sd_string("@3 I 1.") SNVT_Jength_mil nvoInQuadrants[4];
network output sd_string("@4 I 1.") SNVT_1lev_disc nvoSafety_Stop;

network input sd_string("@5 11.") SNVT_lev_disc nviThrusterStop;

network input sd_string("@611.") SNVT_count nviSTEP_NUM = 10;

//On/Off
/ Obstacle info

// Emergency
s/ Stop

// Thrusters are
// stopped
// #servo steps

void send_click(void); // fire sonar
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void move_stepper(void);
void find_sonarvectors(void);

// move stepper
// find closest obstacles

// Written by Charles Tung

IQ_1 output pulsecount invert clock(6) ioStep-Pulse;
10_4 output bit ioStepDir;
10_5 input ontime mux invert clock(l) ioEcho;
10_6 output bit ioInit;
10_7 output bit ioBinh;

// pulse # of steps
// direction of travel
// measure ECHO time
// send pulse
/ start listening

when (reset)

io_out (ioStep_Pulse, 0);
io_out (ioStep_Dir, STEP_DIR);
send_click();

// stop motor
// set direction
// clear first measurement

when (wink)

move_stepper();
send_click();

when (nv_updateoccurs(nvi00Request))

if (nvi00Request.objectjid > 3)
nvo00Status.invalid_id = TRUE;

else {
nvo00Status.invalid_id = FALSE;
nvo00Status.invalid_request = FALSE;
nvo00Status.object_id = nvi00Request.object_id;

// TODO: Replace the following with your own application code

switch (nvi00Request.object_request) {
case RQNORMAL:
case RQUPDATE_STATUS:

break;
case RQREPORT_MASK:

nvo00Status.invalid_id = TRUE;
nvo00Status.invalid_request = TRUE;

break;
default:

nvo00Status.invalidrequest = TRUE;
break;

}

//just update status

// report possible error bits

/ /reject all other requests
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// Code assumes that nviStepNum will be set
// when servo is in starting position
when (nv_update_occurs(nviSTEP_NUM))
{

servo_index = 0;

when
{

(nvupdate_occurs(nviSonarPower))

if (nviSonarPower == ST_ON)

else
{

io_out (ioStep_Dir, STEP_DIR);
tmECHOLATE = TIME;
servo_index = 0;
nvoSafety_Stop = ST_OFF;
move_stepper();
send_click();

tmECHOLATE = 0;

// set direction
//set timer
/ initialize servo position
// turn off Safety stop
// step servo
// fire sonar

//turn off timer

/ / if thrusters are stopped then reset safety_stop
when (nv_updateoccurs(nviThrusterStop))
{

if (nviThrusterStop == ST_ON)

nvoSafety_Stop = ST_OFF;

when (io_update_occurs (ioEcho))

// input sonar returns into array
SonarMap[servo_index] = ((input_value - OFFSET_FACTOR) / SCALE_FACTOR) *

CONV_FACTOR;
if (nviSonarPower == ST_ON)

// check safety radius
if ((SonarMap[servo_index] < ONE_FOOT) && (nviThrusterStop ==

ST_OFF))

nvoSafetyStop = STON;

if(STEP_DIR)
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// increment servo if endpoint not reached
if (servo_index < (200/nviSTEP_NUM)) servo_index++;
else

find_sonar_vectors();
servoindex = (200/nviSTEPNUM);
STEPDIR = !STEPDIR;
io_out(ioStep_Dir, STEP_DIR);

// call obstacle function
// reset servo position
// change StepDir
// set servo direction

// decrement servo if endpoint not reached
if (servo_index > 0) servo_index-;
else

find_sonar_vectors();
servoindex = 0;
STEP_DIR = !STEPDIR;
io_out(ioStep_Dir, STEPDIR)

move_stepper();
send_click();
tmECHOLATE = TIME;

// call function to find closest
// call function to find closest

// change Step_Dir
// set servo direction

// move stepper
// fire sonar
// reset timer

when(timerexpires(tmECHOLATE))

send_click(); // fire sonar

/ Written by Charles Tung

/ / Function to fire sonar
void send_click()
{

io_out (ioInit, 0);
io_out (ioBinh, 0);
delay (1000);
io_out (ioInit, 1);
delay (40);
io_out (ioBinh, 1);

// reset Init
// reset Binh

// send pulse

/ start listening

/ / Function to more stepper
void move_stepper()

io_out (ioStep_Pulse, nviSTEPNUM);

else
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void find_sonar_vectors(void)
{

int step;
int i;
Sum_Quadrants = 0; / initialize sum of closest obstacles

// Search each quadrant. 200 steps for servo to go from 0 degrees to 180 degrees
// Divide hemisphere into quadrants based off of STEP_NUM

// Quadrant 0
temp = 0;
for(step = 1; step < ((200/nviSTEP_NUM)/4)-1; step++)
{

if(SonarMap[step] < SonarMap[temp])
{

temp = step;
)
InQuadrants[O] = SonarMap[temp];

// Quadrant 1
temp = ((200/nviSTEP_NUM)/4)-1;
for(step=((200/nviSTEP NUM)/4); step < ((200/nviSTEP NUM)/2)-1; step++)

if(SonarMap[step] < SonarMap[temp])
{

temp = step;
}
InQuadrants[1] = SonarMap[temp];

// Quadrant 2
temp = ((200/nviSTEP_NUM)/2)-1;
for(step=((200/nviSTEP_NUM)/2); step < (3*(200/nviSTEP_NUM)/4)-1; step++)
{

if(SonarMap[step] < SonarMap[temp])
{

temp = step;

InQuadrants[2] = SonarMap[temp];

// Quadrant 3
temp = (3*(200/nviSTEP_NUM)/4)-1;
for(step=(3*(200/nviSTEP_NUM)/4); step < (200/nviSTEP_NUM)+1; step++)
{

if(SonarMap[step] < SonarMap[temp])
{

temp = step;
}
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InQuadrants[3] = SonarMap[temp];
}
for(i=0; i < 4; i++)
{

// if obstacle within two feet then set flag
if(InQuadrants[i] < TWO_FOOT)

Obstacles[i] = 1;

else

Obstacles[i] = 0;
}
SumQuadrants += Obstacles[i];

// if there are any obstacles then output data
if(Sum_Quadrants > SAFETY_FACTOR)

for(i=0; i < 4; i++)

nvoInQuadrants[i) = InQuadrants[i];
Obstacles[i] = 0;

I

/ / End of file rdrl0.nc
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A.2 Demonstration Thruster Code:

//Sean P. Adam
/ Modified by Pehr Anderson
// 3/21/%
/ Thruster Code for Demonstration Network

#pragma setnode_sd_string "@0,3,3,3,3.Thruster Node: -10 to 10 volt output"
#pragma enableiopullups

#include <snvt_rq.h>
#include <snvt_lev.h>

const long //////////////////////t HALFPI= 157;
const long int THREEHALFPI= -157;

const unsigned long int ONE_FOOT = 3048;
const unsigned long int TWO_FOOT = 6096;

// Thruster Speed Settings
const int STOP_SPEED = 128;
const int POS_MAX_SPEED = 255;
const int POS_HALF_SPEED = 224;
const int POS_MIN_SPEED = 192;
const int NEG_MIN_SPEED = 64;
const int NEG_HALF_SPEED = 32;
const int NEG_MAX_SPEED = 0;

/ / Thruster Numbering
const int FOR_THRUST_ONE = 0;
const int FOR_THRUST_TWO = 1;
const int TURN_THRUST_ONE = 2;
const int TURN_THRUST_TWO = 3;

network input sdstring("@0 I 1.") SNVT_objrequest nvi00Request;
network output sd_string("@0 12.") SNVT_objstatus nvo00Status;

network input sdstring("@1 I 1.") int nvi00Thruster; // for external control
network input sd_string("@21 1.") int nvi01lThruster; // for external control
network input sdstring("@3 I 1.") int nvi02Thruster; // for external control
network input sd_string("@4 I 1.") int nvi03Thruster; // for external control

network input sd_string("@5 11.") SNVT_Jength_mil nviObstacles[4] = (10000, 10000, 10000,
10000);

/ / input from InQuadrants on sonar
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network output sd_string("@6 I 1.") SNVT_anglevel nvoTurn_Angle; // output to Gyro
network input sd_string("@7 1.") SNVT_1ev_disc nviSlow_Tum; // input from Gyro
network input sd_string("@8 I 1.") SNVT_lev_disc nviStop_Turn; // input from Gyro
network input sd_string("@9 I1.") SNVTangle_vel nviSteerAngle; // input from Planner
network output sd_string("@1011.") SNVTjev_disc nvoBackUp; // output to distance

// sensor
network input sdstring("@11 I 1.") SNVT_1lev_disc nviStopBckUp; // input from distance

// sensor
network input sd_string("@12 I 1.") SNVT_1ev_disc nviSafety_Stop; // input from sonar
network input sd string("@131 1.") int nviRobotSpeed; // set forward speed

network output sd_string("&141 1.") SNVT_1ev_disc nvoThruster_Stop = ST_OFF;
// output thrusters are stopped

////////////////////////////////////////////////////

void stop_thruster(int thruster);
void setthruster(int thruster, int voltage);
void turn_robot(long int turn.angle);
void all_stop(void);

int i;
int num_obstacles = 0;
unsigned long int Obstacles[4];
long int AngleOfTurn;
long AFTER_BCKUP_ANGLE = 78;
int safety_breached = 0;

// set thruster speed
//turn robot
// stop all thrusters

// number of obstacles
/ obstacle array

// Equivalent to PI/4
// Safety flag

/ Written by Charles Tung and Pehr Anderson

IO_0 output byte ioVoltage = 128;
10_8 output bit ioWR = 1;
10_9 output bit ioLo = 0;
IO_10 output bit ioHi = 0;

//100-7 Voltage on thruster
// Write enable
// Lo address bit
// Hi address bit

when (reset)

all_stop();

when (wink)

set_thruster(FOR_THRUST_ONE,NEG_MAX_SPEED);
setthruster(FOR_THRUSTTWO,NEG_MIN_SPEED);
set_thruster(TURN_THRUSTONE,POS_MIN_SPEED);
set_thruster(TURN_THRUST TWO,POS_MAXSPEED);
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when(nv_update_occurs(nvi00Request))
{

if (nvi00Request.object_id > 5)
nvo00Status.invalid_id = TRUE;

else {
nvo00Status.invalid_id = FALSE;
nvo00Status.invalid_request = FALSE;
nvo00Status.object_id = nvi00Request.object_id;

switch (nviOORequest.objectrequest) {
case RQNORMAL:
case RQUPDATE_STATUS:

break;
case RQREPORT_MASK:

nvo00Status.invalid_id = TRUE;
nvo00Status.invalid_request = TRUE;

break;
default:

nvo00Status.invalid_request = TRUE;
break;

/ just update status

// report possible error bits

/ reject all other requests

// Written by Charles Tung

//Set Thruster 0
when(nv_update_occurs(nvi00Thruster))

set_thruster(FOR_THRUST_ONE, nvi00Thruster);

// Set Thruster 1
when(nvupdateoccurs(nvi0lThruster))
I

set_thruster(FOR_THRUST_TWO, nvi01Thruster);

// Set Thruster 2
when(nv_updateoccurs(nvi02Thruster))

set_thruster(TURN_THRUST_ONE, nvi02Thruster);

// Set Thruster 3
when(nv_updateoccurs(nvi03Thruster))
I

set_thruster(TURN_THRUSTTWO, nvi03Thruster);
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// Set robot speed
when (nv_update_occurs(nviRobotSpeed))
I

set_thruster(FOR_THRUST_ONE, nviRobotSpeed);
set.thruster(FOR_THRUSTTWO, nviRobotSpeed);
nvoThruster_Stop = ST_OFF;

/ / if sonar detects obstacle within one foot then stop robot
when (nv_updateoccurs(nviSafetyStop))
{

if(nviSafetyStop == ST_ON)
{

set_thruster(FOR_THRUSTONE, STOPSPEED);
set_thruster(FOR_THRUST_TWO, STOPSPEED);
nvoThruster__Stop = ST_ON;
safetyjbreached = 1;

else
{

safety_breached = 0;

/ When obstacle information is sent
when(nvupdate occurs(nviObstacles))
{

num_obstacles = 0;
for(i=0; i<4; i++)
{

// input obstacle information
Obstacles[i] = nviObstacles[i];

/ if obstacle within safety radius but safety flag
// not set then stop robot
if((Obstacles[i] < ONE_FOOT) && (safetybreached == 0))
{

set_thruster(FOR_THRUST_ONE, STOP_SPEED);
setthruster(FOR_THRUST_TWO, STOPSPEED);
nvoThruster_Stop = STON;
safetybreached = 1; // set safety flag
Obstacles[i] = 3; // force robot to backup

else
{

if(Obstacles[i] < TWO_FOOT)
{

Obstacles[i] = 1; // mark quadrant as having obstacle

else
{

Obstacles[i] = 0; // mark quadrant as empty
I
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numobstacles += Obstacles[i]; // count number of obstacles

/ / if more than two obstacles then stop robot
/ and invoke back up routine

if(num_obstacles > 2)
{

for(i=0; i<4; i++)

stopthruster(i);
)
nvoBack_Up = STON; / / initiate back up routine

set_thruster(FOR_THRUST_ONE, NEG_MIN_SPEED);
set_thruster(FOR_THRUST_TWO, NEGMIN_SPEED);

/ if obstacles are unavoidable then stop robot and invoke
// back up routine
if((Obstacles[1]&&Obstacles[2]) I I (Obstacles[0]&&Obstacles[2]) I I

(Obstacles[1]&&Obstacles[3]))

for(i=0; i<4; i++)

stopthruster(i);

nvoBack_Up = ST_ON;
set_thruster(FOR_THRUST_ONE,
set_thruster(FOR_THRUST_TWO,

NEG_MIN_SPEED);
NEGMIN_SPEED);

// if obstacle in quadrant 1 turn clockwise 90 degrees
else if(Obstacles[1])

turnrobot(THREEHALFPI);

// if obstacle in quadrant 2 turn counterclockwise 90 degrees
else if(Obstacles[2])

tumrn_robot(HALFPI);

when(nv_update_occurs(nviSlow_Turn))

if(nviSlow_Turn == STON)

set_thruster(FOR_THRUST_ONE, POS_MIN_SPEED);
set_thruster(FOR_THRUST_TWO, POS_MIN_SPEED);
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/ / turn slowly counterclockwise
if(Angle_Of_Turn > 0)

set_thruster(TURN_THRUST_ONE, POS_MIN_SPEED);
set_thruster(TURN_THRUST_TWO, POSMIN_SPEED);

/ / turn slowly clockwise
else

set_thruster(TURN_THRUST_ONE, NEG_MIN_SPEED);
set_thruster(TURN_THRUST_TWO, NEG_MIN_SPEED);

I

when(nv_updateoccurs(nviStopTurn))
{

if(nviStop_Turn == ST_ON)

/ / stop turning
stop_thruster(TURNTHRUST_ONE);
stopthruster(TURNTHRUSTTWO);
nvoThrusterStop = STOFF; // output thrusters are stopped

when(nv updateoccurs(nviSteer_Angle))

turn_robot(nviSteeroAngle);

// stop backing up
when(nvupdateoccurs(nviStopBckUp))

// start forward slowly
set_thruster(FOR_THRUSTONE, POS_MIN_SPEED);
set_thruster(FOR_THRUSTTWO, POS_MIN_SPEED);
safetybreached = 0; // reset safety flay
nvoBackUp = ST_OFF; // turn off backup command
turn_robot(AFTER_BCKUP_ANGLE);
AFTER_BCKUP_ANGLE = -AFTER_BCKUP_ANGLE;

/ / alternate between 45deg and -45deg

/ Written by Charles Tung
// Edited by Sean P. Adam

/ stop all thrusters
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void allstop()
{

set_thruster(FOR_THRUST_ONE, STOP_SPEED);
set_thruster(FOR_THRUST_TWO, STOP_SPEED);
set thruster(TURN_THRUST_ONE, STOPSPEED);
setthruster(TURNTHRUSTTWO, STOP SPEED);
nvoThrusterStop = ST_ON;

void set_thruster(int thruster, int voltage)
{

if (nvoThruster_Stop == ST_ON)
nvoThrusterStop = ST_OFF;

// Announce the stoppage

// Clear the Stopped signal

ioout(ioVoltage, voltage);
switch(thruster)

case 0:

case 1:

case 2:

case 3:

io_out(ioWR,O
delay(1000);
io_out(ioWR,1
delay(1000);

io_out(ioHi,0);
io_out(ioLo,1);
break;

ioout(ioHi,1);
io_out(ioLo,1);
break;

ioout(ioHi,1);
io_out(ioLo,0);
break;

io_out(ioHi,0);
ioout(ioLo,0);
break;

// pulse WR low

void stop_thruster(int thruster)
i
io out(ioVoltage, 128);

switch(thruster)

case 0:

case 1:

io_out(ioHi,0);
io_out(ioLo,l);
break;

io_out(ioHi,l);
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io out(ioLo,1);
break;

case 2:
ioout(ioHi,1);
io_out(ioLo,0);
break;

case 3:
io_out(ioHi,0);
ioout(ioLo,0);
break;

}
io_out(ioWR,O); / pulse WR low
delay(1000);
io_out(ioWR,1);
delay(1000);

void turn_robot(long int turn_angle)
{

nvoTurnAngle = turn-angle; // output turn angle
Angle_Of_Turn = turnangle;

// if new heading == current heading
if(turn_angle == 0)
{

setthruster(FOR_THRUSTONE,POSMIN_SPEED);
set_thruster(FOR_THRUST_TWO, POS_MIN_SPEED);
stop_thruster(TURN_THRUSTONE);
stop_thruster(TURN_THRUSTTWO);

}
else
{

// if angle within 30deg then turn slowly and proceed slowly
if(abs(tumrn_angle) < 52)

setthruster(FO{THRUST_ONE, POSAIN_SPEED);
set_thruster(FOR_THRUST_TWO , POS_MIN_SPEED);
if(turn_angle > 0)

setthruster(TURNTHRUSTONE, POSMINSPEED);
set_thruster(TURN_THRUST_TWO, POS_MIN_SPEED);

else

setthruster(TURNTHRUSTONE, NEGINSPEED);
set_thruster(TURN_THRUST_TWO, NEG_MIN_SPEED);

// else travel at half-speed
else
I

set_thruster(FOR_THRUST_ONE, POS_HALF_SPEED);
set_thruster(FORTHRUSTTWO, POS_HALF_SPEED);
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if(tumrn_angle > 0)
{

set_thruster(TURN_THRUST_ONE,
set_thruster(TURN_THRUST_TWO,

POS_HALF_SPEED);
POS_HALF_SPEED);

else

set_thruster(TURNTHRUST_ONE, NEG_HALF_SPEED);
set_thruster(TURN_THRUST_TWO, NEG_HALF_SPEED);

if(safetybreached == 1)

stop_thruster(FOR_THRUST_ONE);
stop_thruster(FOR_THRUST_TWO);
safetybreached = 0;

// End of file thruster.nc
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A.3 Demonstration Gyro Code:

// Pehr Anderson
/ Modified by Sean P. Adam
// 3/21/%
/ / Gyro Code for Demonstration Network

// This code polls a LTC1294 (12 bit, 8 channel A/D converter).
/ The first three channels are the X,Y, and Z gyro rotation
// channels.

#pragma setnode_sd_string "@0,1,1,1,1,1,1,1,1,5 Gyro Integration Node"

#pragma enablejiopullups

#include <snvt_rq.h>
#include <snvt_lev.h>

#define GYRO_ POLL 10
#define INTEGRAL_DIVISOR 10
#define DRIFT_THRESHHOLD 4
#define ANGLE_TOL 9

// Poll gyro every 10ms
// dt
/ threshold for maximum drift
// Angle tolerance -= 5 degrees

// Scale the output to radians (180 degrees -= 3.14 rad)
#define PI 314
#define XSCALE(x) (x/(14800/PI)) // 1480 average for 180 degrees
#define YSCALE(y) (y/(20384/PI)) // 2038.4 average for 180 degrees
#define ZSCALE(z) (z/(12000/PI)) // 1200 average for 180 degrees

/ /Define constants to access LTC1294
#define LTC_START 0x80 // Always include this bit
#define LTC_UNIPOLAR 0x04 // Unipolar Samples from OV to +5V
#define LTC_ACTIVE 0x01 // -Power Shutdown
#define LTC_MSBF 0x02 // Most Significant Bit First
#define LTC_SGL 0x40 // Single-Ended Channel

// Selection
#define LTCPOWERDOWN LTC_START // For Power Shutdown send

/ this byte only

/ Single ended channels are out of order, this fixes that...
// 0x01 0x02 & 0x04

/ / Define macro to access LTC1294
#define LTC_ADDR(x) (((0x01 & x) << 5) 1 ((0x06 & x) << 2) I LTC_START I LTC_ACTIVE)
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network input sdstring("@0 11.") SNVTobj_request nvi00Request;
network output sdstring("@0 12.") SNVT_obj status nvo00Status;

network output sdstring("@11 1.Angle") SNVT_angle_vel nvoAngle[3]; // XYZ Angle Data
network input sd_string("@21 1.Recalibrate") SNVT_1ev_disc nviRecalibrate; // Recal Gyro
network input sdstring("@3 I1.Heading") SNVTangle_vel nviHdCng_y; // TurnAngle
network output sd_string("@41 1.Turn") SNVT_lev_disc nvoSlow_Turn = ST_OFF;
network output sd_string("@512.Turn") SNVT_lev_disc nvoStop_Turn = ST_OFF;

void update(void);
void recalibrate(void);
long int analog_to_digital(short int addr);

long int Integral[3];
long int Offset[3];
long int caLavg;
long int new_headingy;
short int slow_turn_flag = 0;
short int turnoccurflag = 0;
mtimer repeating GyroPoll;
mtimer repeating GyroUpdate;
mtimer repeating AnalogPoll;

IO_0 output bit ADC_cs = 1;
IO_4 input bit ioSwitch;
IO_8 neurowire master select (IO_0) se
10_8 output bitshift numbits (8) clocked

/ function recalculates drift offset
// function recals Gyro
// function reads A/D

// variable to hold integral of gyro rate
// variable to hold offset drift
// variable to hold avgerage offset
// variable for new robot heading_y dir
// slow_turn command given
// turn occurring
// period of gyro polling
// Period of network variable updates
// period of analog channel polling

/ Initialize the Chip Select to off
/ / I04 Switch on LTM-10 Eval Board

3rialio;
Ige (+) ADC_group_control;

when (reset)

recalibrate ();
GyroPoll = GYRO_POLL;
GyroUpdate = 300;
AnalogPoll = 1000;

/ Reset the Integrator & recalibrate
/ Set Gyro Polling Period
/ Set Period of network variable updates
/ Set Gyro Polling Period (NV not updated)

when (wink)

update();

108

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII111111111



Appendix A:

when (nvupdate_occurs(nvi00Request))

if (nvi00Request.object_id > 10)
nvo00Status.invalid_id = TRUE;

else {
nvo00Status.invalid_id = FALSE;
nvo00Status.invalid_request = FALSE;
nvo00Status.objectid = nvi00Request.object_id;

/ /TODO: Replace the following with your own application code

switch (nvi00Request.object_request) {
case RQNORMAL:
case RQUPDATE_STATUS: // just update status

break;
case RQ.REPORT_MASKI // report possible error bits

nvo00Status.invalid_id = TRUE;
nvoo0Status.invalid_request = TRUE;

break;
default: // reject all other requests

nvo00Status.invalid_request = TRUE;
break;

/ This task is called when the IO_4 switch state is changed
// It causes the integrating gyro to reset and re-calibrate
when (io_changes(ioSwitch))
{

recalibrate ();

// Recalibrate gyro
when (nv_update_occurs(nviRecalibrate))
{

switch (nviRecalibrate)
{

case ST_ON:
recalibrate();
break;

case ST_HIGH:
//TODO
/ Calibrate Divisors for each channel

// Prompt the user to rotate the X, Y, & Z channels
/ by flashing the LED once, twice, and three times

// in rapid succession
nviRecalibrate = ST_OFF;
break;

case STLOW:
case ST_OFF:
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break;

// When heading data is updated
when (nv_update_occurs(nviHd_Cng_y))

new_heading_y = nviHd_Cng_y;
slow_turn_flag = 0;
turn_occurflag = 1;
nvoSlow_Turn = ST_OFF;
nvoStopTurn = ST_OFF;

// set new heading
// reset slow turn flag
// set turn occurring flag
// set Slow_Turn off
// set Stop_Tum off

/ if angle between current heading and new heading
/ is less than 30 degrees set slow_turn_flag

if(abs(new_heading_y - YSCALE(Integral[l])) < 52)
{

slowturnflag = 1;

/ Perform the integration
when (timer_expires(GyroPoll))

static short i;
static long instant;
for (i=0;i<3;++i)

instant = (analog_todigital(i) - Offset[i]) / INTEGRAL_DIVISOR;
if (abs (instant) > DRIFT_THRESHHOLD)

Integral[i] += instant;

// Update the network varibles (this is slower than sampling)
when (timer_expires(GyroUpdate))

nvoAngle[0] = XSCALE(Integral[O]);

nvoAngle[ll] = YSCALE(Integral[1]);
nvoAngle[2] = ZSCALE(Integral[2]);

// output x displacement

/ output y displacement
/ output z displacement

/ / if robot is turning
if(turnoccurflag)

//if slow turn flag not set and difference angle
/ less than 30 degrees then output Slow_Turn

if(!slow_turn_flag && abs(new_heading_y - YSCALE(Integral[1])) <
52)

nvoSlow_Turn = ST_ON;
slow_turn_flag = 1;

110

/ 

/ 

if robot is turning

if(turnoccurflag)



Appendix A:

I

// if difference angle within tolerance stop turn
if(abs(new_heading_y - YSCALE(Integral[1])) < ANGLE_TOL)

nvoStop_Turn = ST_ON;
turnmoccur_flag = 0;

long int analogto_digital(short int addr)

static long adc_data;
io_out(ADC_cs, 0);
addr = LTC_SGL I LTC_ADDR(addr);
io_out(ADC_group_control, addr);
ioin(serial_io, &adc_data, 16);

// Activate ADC

// send addr to ADC
// get converted data

/ If the LTC1294 chip select is not deactivated,
//further inputs on the serial channel will be ignored

io__out(ADC_cs, 1);

/ / right justify and account for negative inputs
adc_data = adc_data >> 3;
if (adc_data & 0x0800)

return ((0x07ff & adc_data) - 0x0800);
return (adc_data & Ox07ff);

// De-activate ADC

// Handle negative data

void recalibrate(void)

short i, j;
for (i=0;i<3;++i)

// Reset
calavg = 0;
Integral[i] = 0;

// Re-Calibrate (this may need to be more robust)
/ todo: fix to wait for signal to settle out
// read drift and average
for(j=0; j<100,j++)

calavg += analogJtodigital(i);
O
Offset[i] = cal avg/100;
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Appendix A:

/ / Function just reads drift, averages, and resets offset
void update(void)
{

short i;
cal_avg = 0;

for(i=O; i<100; i++)
cal_avg += analogto_digital(i);

Offset[i] = cal_avg/100;

// End of file gyro2.nc
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