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Abstract

Image contours in calibrated 2-D views are used to recover the outline of a curved

object. This outline, projected as a cone from the center of projection, constrains the

volume of the shape in 3-D. Higher-level symmetries specified by the user allow the

generation of a 3-D mesh onto which image pixels are sampled to form a textured form.

A graphical user interface is also presented that facilitates the input of user-supplied

information.
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1. Introduction

Recently, the demand for quick, inexpensive ways of generating 3-D models for

computer graphics has been growing at a rapid pace. As the use of virtual environments

and computer-rendered visuals in news and entertainment proliferates, the creation of

these models is becoming the bottleneck in the production pipeline. This is especially true

on the World Wide Web, where sites featuring navigable environments described in

Virtual Reality Modeling Language (VRML) are beginning to grow in popularity.

Traditionally, computer graphics models have been created manually through the

use of CAD-like software tools. This method, analogous to the creation of 2-D

"drawings", suits the problem well when the model is not required to accurately represent

a physical object. On the other hand, when what is desired is a 3-D "photograph" of a

real-world object, CAD approaches can be expensive in terms of time and human labor.

The direct capture of 3-D data (i.e. laser scanners) is a viable alternative when economics

permit, such as in Hollywood special effects applications, but such brute-force

approaches are not yet within the reach of more moderate budgets.

The capture of 2-D images, on the other hand, is by now a trivial task.

Photography in all its forms has been around long enough that one can obtain an image of

just about any scene with a minimal outlay of equipment and effort. It would be desirable,

then, to be able to recover a 3-D model directly from ordinary 2-D images. If the

incremental effort to transform a set of 2-D images to a 3-D model is small enough, such

a system would make 3-D "snapshots" as accessible as 2-D photos are now.



This thesis describes a series of experiments into recovering the shape of certain

3-D curved objects from calibrated images. It presents the design, implementation, and

use of a semi-automatic modeling system that can recover the 3-D shape of solids of

rotation. The system takes advantage of high-level symmetry information specified

apriori by the user. Also presented is a user-interface tool that allows a user to provide the

information necessary for shape recovery from a set of uncalibrated images. The user

interface was originally designed for use with the vision-assisted modeling process

developed by Shawn Becker. This modeling process allows estimation of camera

parameters from uncalibrated views and hence, is a good companion to the 3-D shape

recovery methods presented here.

The remaining chapters are organized as follows:

Section 2 discusses some topics necessary for the understanding of this thesis. It

describes the camera model used for the projection from 3-D into 2-D and summarizes

the vision-assisted modeling process that generates the input for this system. It also goes

over in moderate detail the ModelMaker program, which is a user-interface tool that has

been extended for use with this system. Finally, the section presents some definitions of

contours and generalized cylinders, and sites some previous works in the area of shape-

from-contour that are of relevance to this thesis. Section 3.1 presents an algorithm for

recovering the shape of a solid of revolution from two manually specified extremal

contours and describes the process of annotating a 2-D/3-D scene for analysis. Section 3.2

describes a shape-from-contour algorithm for recovering the shape of a solid of

revolution from detected edge pixels. Section 3.3 improves on the algorithm in 3.2 using

the same input data. Section 3.4 describes a generalization of the algorithm in 3.4 to



handle non-cylindrical objects. Sections 4 and 5 present some recovered models and

discuss some of the limitations of the system, as well as speculate on future work.



2. Background

2.1 Camera parameters

To accurately extract 3D information from 2D images, information about the

cameras that produced the images needs to be available. Measuring the position and

orientation of the camera directly is a cumbersome process that requires special

equipment and also precludes the use of images that were taken for reasons other than the

experiment in question. The focal length of the camera, as well, needs to be known to

invert the projection onto image space. This, too, places limits on the images that can be

used for shape extraction. It is desirable to be able to obtain this camera information

indirectly, by analyzing the 2D images alone. The 3-D geometry extraction system

introduced in this paper requires pre-calibrated cameras. However, there are other

computer vision systems that can estimate the required cameras from uncalibrated views.

Becker and Bove's method 1 of semi-automatic model extraction, which is used

extensively in this project, is one such system. It has the added capability of negating the

affect of lens distortion, to produce distortion-free images regardless of the lenses used to

create the original photographs. For the remainder of this paper, I will assume that the

effects of lens distortion have been nullified in any images used as input.

2.2 Camera model

The camera model used in this project is the virtual framework used in a number

of computer vision experiments. The camera is represented as a center of projection

(COP) with a 3D world position, and a pyramidal view volume with its zenith at the



View direction
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Figure 1: Camera model

COP. The film plane is located within the view volume, with a normal vector pointing

toward the COP. The principal point is located at the center of the film plane. This latter

restriction only approximates the behavior of physical cameras, but is accepted to allow

the use of Open Inventor for 3D rendering'.

2.3 Open Inventor

Open Inventor 2 is an object-oriented 3-D toolkit for the development of

interactive 3-D graphics applications. This thesis makes heavy use of Open Inventor and

the tools it provides. The Inventor toolkit is based on OpenGL, and currently runs on

IRIX with X 1l/Motif and Microsoft Windows. It provides a set of classes for

SOpen Inventor uses a camera model that fixes the principal point at the center of

the film plane.



representing interactive 3-D scenes as a collection of objects. It also provides viewing

widgets and camera abstractions for rendering 2-D views of Inventor scenes.

2.4 Vision-assisted modeling

To obtain the calibrated cameras necessary for shape extraction, I used a system

developed by Shawn Becker and V. Michael Bove Jr. that can, given a set of uncalibrated

2-D images, estimate the internal and external parameters of the respective cameras that

produced them. It introduces a shape-and-texture-from-wireframe algorithm to generate a

textured 3-D model of the scene from a 2-D scene description. This description contains a

set of digitized images and annotated lines and points that are bound to high-level

geometric constraints, describing parallel constraints, an arbitrary world frame and scale,

coplanar constraints, and optional additional line correspondences.

In the first phase of the model extraction process, these constraints are specified

by the user through the use of an interface tool, two variations of which are discussed

later in this paper. My choice to use this modeling process for camera calibration is based

largely on the fact that it too, is a semi-automatic process, relying on the user to provide

some of the high-level constraints in the 2-D scene description. This user-interface

portion of the process has been extended by the author to provide the additional data

needed for curved shape extraction. The second and third phases consist of structure-and-

motion recovery, and multi-view texture recovery, respectively. These two final phases

together make up the new shape-and-texture-from-wireframe algorithm. Analysis of a

scene using this vision-assisted modeler produces a textured model consisting of planar

surfaces, 3-D edges, and 3-D point features. The algorithms described in this paper



continue the shape recovery process, extracting cylinders and other non-planar shapes

from the combined 2-D and 3-D scene description.

The following subsections outline the 2-D information required by the vision-

assisted modeler. This information will be augmented later to satisfy the input constraints

of the curved-shape extraction process.

2.4.1 Images and lines

The first step in generating a 3-D model of a scene is to add to the 2-D description

one or more digitized images of any size, orientation, focal length, distortion, or

exposure. Next, lines are detected on each image using the Canny 3 edge detection

algorithm and a line detection algorithm.

2.4.2 Parallel constraints

Lines which are projections of parallel 3-D edges in the scene need to be assigned

to the same direction attribute. A direction is a class that describes the 3-D world-relative

direction of a set of parallel edges in the scene after structure-and-motion recovery. In

some cases, lines with a common vanishing point can be automatically be grouped into

the same direction, but user intervention is required to correspond entire direction sets

between views. To establish a coordinate frame for the scene, at least three non-coplanar

directions must be assigned arbitrary world-relative vectors. To recover camera position

for each image, one line of at least two known directions in each image must be given an

arrow, indicating the heading of the line's direction vector as viewed in its respective

image.



2.4.3 Coplanarity constraints

All 2-D lines which are views of coplanar 3-D edges must be manually assigned

to the same surface attribute. A surface is an infinite 3-D plane which after structure-and-

motion analysis has a fixed 3-D position and orientation. This user-specified assignment

between images to the same surface provides some correspondence between lines in

different images. Lines which are assigned to two surfaces mark the hinge, or intersection

between two planes. Scenes such as this are sometimes called origami scenes. These

hinges are used in the structure-and-motion recovery stage to fix surfaces in the 3-D

scene.

2.4.4 SceneAnalyze

The batch analysis portion of the vision-assisted modeling algorithm has been

implemented by Shawn Becker in the sceneAnalyze program. It takes as its input an

element file containing 2-D scene information created from a user-interface tool. Its

output is an element file containing the same 2-D information as well as 3-D descriptions

of textured planar surfaces.

2.5 SceneBuild

Shawn Becker has developed an X11 interface for creating 2-D origami scenes

from one or more digitized images. It uses a GNU-ReadLine 5 shell to receive and

interpret commands, which are sent to a server portion of the program that maintains the

model database as well as multiple view windows.



2.6 ModelMaker

ModelMaker is an interface tool developed by the author for the purpose of

creating the origami scenes necessary for the vision-assisted modeling system described

in section 2.3. It is based on Open Inventor and Motif, and makes heavy use of the 3-D

object manipulation tools included with Inventor. For the purposes of this project,

ModelMaker has been extended to allow the user to input the additional information

needed (beyond that required for vision-assisted modeling) for curved shape extraction.

The details of these extensions to ModelMaker are described in sections 3.3.1 and 3.4.1,

each accompanying a description of the respective curved shape recovery algorithm that

uses the new information. The following subsections describe the basics of the

ModelMaker interface for vision-assisted modeling. Section 2.6.1 outlines the basic

layout of the GUI presented to the user. Sections 2.6.2 through 2.6.6 outline the tools

provided by ModelMaker for the major tasks involved in the vision-assisted modeling

process: line detection, line editing, direction assignment, feature placement, and surface

assignment.



Figure 2: ModelMaker user interface

2.6.1 Basics

There are four main parts to the ModelMaker user interface: the menu bar, the

status window, the view windows, and the choosers. All four are floating windows that

can be individually placed and sized on the screen.

The menu bar makes available all commands relating to the model database as a

whole, including loading/saving models, setting global options, setting vision-assisted

modeling analysis parameters, and running phases two and three of the vision-assisted

modeling process.

The status window provides information to the user about the current controls and

feedback on actions performed. It is divided horizontally into two panes. The top pane

(the help window) displays help on what commands are available at the time through the

mouse and/or keyboard. As the user moves the mouse over scene structures or makes



other GUI selections, the help window tells the user exactly what each future action will

do. The bottom pane (the message window) provides feedback on the most recently

performed action. For example, after line detection, it displays the number of new lines

that were detected.

The view windows display the 2-D images used as input to the vision-assisted

modeler, along with scene information in the form of points and lines. The view controls

located on the border of the window allow the user to zoom and pan the images within

their views, as well as toggle the image display on or off (making points and lines more

visible).

The choosers consist of the direction chooser, the feature chooser, the surface

chooser, and the image chooser. All four choosers display a list of element names.

Clicking the left button on a name either makes the element of that name the current one.

Clicking the right button brings up a menu of options for the current element. Individual

element parameters can be adjusted in pop-up properties dialogs, accessible from the

pop-up menus in the choosers. In the case of the image chooser, clicking on an image's

name toggles its view visible/invisible.

2.6.2 Line detection

The only part of the line detection process that involves the user is the setting of

parameters for the Canny edge detector and the line detector. These are adjusted through a

set of sliders in the line detection dialog. Because the line detection process can be time-

consuming. The user has the option of highlighting a rectangular region of the image for

feedback during parameter adjustment. If a region is selected, the line detector will be



executed on only the pixels in the region while parameters are adjusted. Once the

parameters have been set to the user's satisfaction, the line detector can be executed on

the entire image.

2.6.3 Line editing

Line detection may not always produce the desired results. Therefore,

ModelMaker includes the ability to manually edit the resulting lines. By using the mouse,

the user can add/move/delete lines in any image. While editing the endpoint of a line,

ModelMaker will optionally "snap" the endpoint position to nearby lines, facilitating the

creation of precise corners.

2.6.4 Direction assignment

In direction mode, ModelMaker displays the direction chooser, which allows the

user to create/edit/delete directions and select the current direction. Directions are edited

via a pop-up direction properties dialog, which gives access to parameters such as the

direction's 3-D world vector and the color in which its lines are displayed. In the view

windows, the user can highlight an arbitrarily shaped region to select lines to add/remove

from the current direction.

2.6.5 Feature placement

In feature mode, ModelMaker allows the user to create/edit/delete views of a

feature across images. Feature positions "snap" to line endpoints to facilitate clean

corners.



2.6.6 Surface assignment

In surface mode, ModelMaker lets the user select lines to add to or remove from a

surface. Surfaces are managed in the surface chooser in a manner consistent with

directions and features. The program also provides a mechanism through which the user

can manually indicate which images or portions of an image should be used for sampling

textures for any given surface.

2.7 Contours

The recovery algorithms described in this paper use image contours as the basis

for geometry extraction. A contour is a discontinuity in the image data, as defined by a

particular detection mechanism (in this case, the Canny edge detection algorithm). The

biggest advantage of using contours is that object silhouettes are usually easy to detect

automatically, and that they are relatively independent of lighting conditions. A

disadvantage is that contours of an object can originate from a number of physical

properties. Following is a summary of the discontinuities that can create a contour and

their usefulness in modeling the object(s) on which they appear:

* Extremal contours (also called occluding contours or extreme boundaries), where the

viewing direction is tangential to the surface, provide an indication of the surface's

extent within a certain view volume. At points along these contours, we know not

only the position of the surface, but the surface normal as well.

* Surface intersections provide constraints on surface orientation. One example is the

curved shared-boundary constraint9. It states that for every point along a curve C that



forms the boundary between two curved surfaces A and B, the tangent to C is

orthogonal to the normal of A and orthogonal to the normal of B at that point.

* Surface markings can be useful with some apriori information about them. For

example, stripes on a waving flag indicate the lines of maximum curvature for the

surface.

* Shading can be used with shape-from-shading algorithms, given information about

the light source and surface albedo.

* Noise is just not useful.

The algorithms presented in this paper use only extremal contours for geometry

recovery. The primary reason is that it is difficult to classify any contours falling into the

remaining categories without additional information about the shape or lighting. My goal

in this project is to model objects encountered in the real world. In this regard, it is not

reasonable to require the object to be evenly colored, or to be lit in a particular manner.

Modeling objects of this type may be easier by using traditional CAD methods.

2.8 Generalized cylinders

Generalized Cylinders (GC) were first proposed by Binford6 as a class of

parametric shapes that can be used to represent a wide variety of objects in the real world.

A GC is defined as the solid generated by a planar cross-section curve as it is moved and

deformed along an axis. Various subclasses of GCs have been studied for purposes of

modeling, since the GC class itself encompasses such a large domain. These subclasses

are defined by placing constraints on one or more of the following properties:

* the axis



* the cross-section curve

* the deformation of the curve

One such subclass that has received much attention in the research community is

the Straight Homogeneous Generalized Cylinder (SHGC). A SHGC is a GC in which:

* the axis is straight;

* the cross-section curve is a simple, smooth C2 curve orthogonal to the axis;

* the cross-sections are scaled only

* the scaling factor is a C2 function of position on the axis

A surface of revolution (SOR, also known as solid of revolution) is an SHGC with

the additional restriction that the cross-section must be circular. SORs, although more

restrictive than GCs or SHGCs, can nonetheless be used as a satisfactory representation

for many man-made objects. In an average scene, the number of objects that can be

modeled as SHGCs, but not as SORs, is usually quite small.

2.9 Previous work

Nevatia and Zerroug discuss some methods for extracting the shape of a curved

object from a single image. Since the problem is underconstrained, these methods use

various heuristics that attempt to mimic the human visual system to estimate the unsolved

parameters. Two examples are shape compactness 7 and shape smoothness 8. More

effective on a global scale are constraint-based methods that attempt to capture regularity

relationships between contours. These assume certain symmetries are present in the

object that allow them to prefer one solution over another. As such, they are limited to

specific classes of shapes. For the recovery of straight homogeneous generalized cylinders



(SHGCs), Ulupinar and Nevatia9 use three such constraints: the curved shared-boundary

constraint, the inner surface constraint, and the orthogonality constraint. All of these

methods, however, assume that perfect curves have already been segmented in the image.

In practical applications, this is rarely the case.

Sato and Binford'o and Zerroug and Nevatia" have independently developed

methods of extracting 3D shape of SHGCs from imperfect contours. The latter also

addresses problems of occlusion and discontinuities in image features. All of the above

methods, though, were presented within the framework of an orthogonal projection.

Orthogonal projection simplifies the vision process, but it is not representative of images

taken with physical cameras.

Gross 12presents an algorithm for the recovery of 3-D shape of SHGCs from a

single orthographic view using both contour and intensity information. As with any

method involving intensity analysis, it is limited to objects with relatively homogenous

surfaces.

Zheng 13 has explored methods of extracting 3-D shape using sequences of

contours of a rotating object. He has successfully demonstrated the modeling of a human

head by rotating the person in a swivel chair. In addition, his method allows the detection

of regions in the final model that are unexposed to contour, thus providing a starting point

for further analyses (e.g. shape-from-shading approaches). On the other hand, his

approach places strong constraints on the image capture process. The rotation of the

object must be precisely known, or a calibration object must be used for feature tracking

when the rotation is not known. Since the number of images required is large, and the

nature of the object/camera motion is so limited, one would be unlikely to find any pre-



existing source data outside of his lab. However, as a modeling method, it demonstrates

the advantages of quickly and inexpensively obtaining 3-D data directly from 2-D images.



3. Experiments

This section describes in detail the progress I have made in modeling curved

objects. It can best be divided into four subsections - three on modeling solids of

revolution, and one on modeling more irregular shapes. All four portions of my project

share one implementation. It may be better to view the separate parts as evolving from

one to the next instead of as separate experiments altogether.

The user interface portion of the project is embodied in the ModelMaker program,

described in Section 2.6. It has been extended in various ways to facilitate the different

forms of user input required for each step.

The batch analysis portion of the project consists of the EugeAnalyze program,

which is a stand-alone implementation of the algorithms described in this section. It takes

as its input an element file output by Shawn Becker's sceneAnalyze containing 2-D

images and annotation information, estimated camera parameters, and a 3-D scene

consisting of textured planar surfaces. Its output is an element file containing, in addition

to the elements produced by sceneAnalyze, textured models of cylinders and, in the case

of the last experiment, textured non-cylindrical solids.

3.1 Experiment 1: SOR from two image contours

The first phase of this project involved extracting a 3D model of an SOR from

user-selected image contours. The user would indicate the locations of the left and right

extremal contours of the SOR in each image, along with an axis direction and feature. By

forcing the user to identify the contours separately from the cross-section silhouettes, the



system made the computer's task much simpler in exchange for demanding more work

from the human.

3.1.1 User interface

For this flavor of user assistance, ModelMaker was extended to permit the user to

identify left and right (image-relative) contours in each image for each SOR. The contour

in this case was a series of connected line segments that indicated an extremal boundary

of the cylinder. The user would click-and-drag the line segments to place them in each

image. A contour had to be marked as being either the "left" or the "right" contour,

relative to the image. The user would also need to bind the SOR to a fixed direction that

represented the axis direction. Finally, a feature had to be bound to the SOR to indicate

both the surface that held its base and a point at which it contacted the surface. The

feature was required to lie on the end of one of the contours that contacted the base

surface. The analysis would heuristically determine which contour to associate with it by

examining its relative distance to the contour endpoints.

3.1.2 Batch analysis

The EugeAnalyze program started the geometry extraction process with the

feature that was bound to the SOR. This feature, hereon referred to as the base feature,

had already been fixed by sceneAnalyze. From this 3-D feature and two contours in the

same image, the center of the base of the SOR could be found.

Since the feature was not explicitly assigned to a particular contour, the program

would determine this by projecting the contour endpoints to the base surface and

choosing the one whose projection fell closest to the base feature. The analogous
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endpoint on the other contour would then be projected onto the base surface as well. The

center of the SOR was the midpoint of the line segment joining the two fixed contour

endpoints.

With the center of the SOR base fixed, and the axis direction already specified,

fixing the remaining contour points was a matter of projecting them to the plane formed

by the SOR center and the axis that faced their respective cameras. The 3-D geometry of

the cylinder was formed by converting each 3-D contour point to a radius from the axis

and a height off the base surface. This became the cross-section curve of the resulting

model.

3.2 Experiment 2: SOR from image contours

The next portion of my thesis involved recovering the shape of an SOR from only

image edge pixels and a base surface. Requiring the user to manually mark image

contours was a step that I wanted to eliminate from the modeling procedure. In lieu of

user interaction, an automatic edge detection process was used to create contour points,

and the user was only required to assign a surface to the SOR before batch analysis could

begin. Given a set of images containing SOR points and a fixed surface, EugeAnalyze

would then generate a textured 3D model of the SOR.

3.2.1 User interface

3.2.1.1 2-D scene description

ModelMaker required the user to perform two simple steps to annotate an SOR

for 3D geometry extraction:



1. Highlight the region in which the projected SOR image appears and run the edge

detector.

2. Assign the SOR to surface.

3.2.1.1.1 Detect edges

ModelMaker uses a Canny edge detector to create image points representing SOR

contours. For each SOR, the user selects an arbitrarily-shaped region on the image that

contains the projected image of the shape by clicking and dragging the mouse. He then

interactively adjusts parameters for the edge detector in a floating palette containing a

slider for each parameter (Figure 3). ModelMaker invokes the edge detector on the sub-

image defined by the bounding box of the selection region. The program then adds all

detected points inside the selected region to the model database. Detected points can be

added and removed at any time from any defined SOR by selecting an image region and

either detecting more points or deleting all points in the region.

Figure 3: ModelMaker edge detector interface



This screen capture illustrates the parts of the ModelMaker edge detection interface. The
Edge Detect palette provides access to parameters for the Canny edge detector. In the
view window, the user has selected a portion of the image for edge detection. The
resulting points can be seen inside the selection region.

3.2.1.1.2 Bind surface

Each SOR must have a surface associated with it, which contains a cross-section

of the SOR.

3.2.1.2 3-D SOR display

The ModelMaker program was also modified in order to display 3D SORs in fully

analyzed models.

3.2.1.2.1 Geometry representation

SOR geometry is represented as a quadrilateral mesh. The element file describes

the SOR as a 3-D center point in world coordinates, a 3-D axis direction vector in world

coordinates, a fixed 3-D surface, and a list of 2D profile points. The profile points are

given in the coordinate system of the plane formed by the center, the axis direction, and

the (1, 0) vector in surface space. ModelMaker, at load time, generates the quadrilateral

mesh by rotating the 2D profile about the direction axis. The number of revolutions

created is a parameter that can be changed by the user.

3.2.1.2.2 Texture mapping

Textures that are generated by EugeAnalyze can be displayed in ModelMaker.

ModelMaker uses Open Inventor to map the texture onto the quadrilateral mesh. For the

side of the cylinder, the s axis on the texture maps to its circumference, and the t axis



maps to its height. For the top and bottom, the texture is square in s-t space. An inscribed

circle on the texture maps onto the cylinder geometry.

3.2.2 Batch analysis

In this experiment, EugeAnalyze has a more difficult task to perform than in the

previous one. It has to separate the extremal contours on the sides of the cylinder from the

contours created by the cross-sections.

3.2.2.1 Bind axis direction

After analysis, each SOR has a fixed direction associated with it. This direction

represents the world-relative direction vector of the axis of the SOR. EugeAnalyze uses

the normal of the base surface as the axis direction for the SOR.

3.2.2.2 Find image outlines

Detected edges can represent extremal contours, surface intersections, texture,

lighting changes, or noise. For this form of geometry extraction, only points that fall into

the first category are used. Although

P
contours formed by surface

intersections can be used to assist in

finding the cross-section of the SOR

in cases in which the cross-section

intersection and surface are visible,

they are too difficult to separate

from other detected contours formed
Figure 4: Outline recovery



by shading and texture. Thus, for this project, those contours are not considered. It is

important, then, that the edge-detector-generated points located on the interior of the SOR

not be assumed to be extremal contour points. We are only interested in the outline of the

shape, as viewed from a particular camera. To find the image outline of the detected

points, the center c of the image points is first found by taking the center of the bounding

box enclosing all the points. Then, for each ray r from c to any SOR image point, all

points along the ray except for the one p at the greatest distance from c are removed, as

illustrated in Figure 4. The figure depicts one of these rays. All points (marked with small

arrows) within distance t of ray r will be removed from the set of points on the outline.

Point p will be kept in the outline set because it is farthest from c, the image point set

center. The rays are generated for image points in decreasing order by distance from the

estimated center. This prevents already-found outline points from being pruned by rays

passing through neighboring points.

Define t as the maximum distance from r at which a point may lie and still be

considered "on" r. By adjusting t, we can control the number of outline points found.

Large t may prune too many points for accurate geometry extraction. Small t may leave

interior points, which creates noise in the resulting 3D form. Given a "detectable" edge,

an edge detector will find some set s of points along that edge. The distance d between

adjacent points in s is dependent on image quality and edge detector parameters. We want

to use for t a value no smaller than the largest d in the image. In order to determine a

satisfactory t, EugeAnalyze bases its choice of t on the average of the distance between

each point and its nearest neighbor. This is grounded on the heuristic that a point's

nearest neighbor is derived from the same detectable edge.



Note that this approach to recovering the outline from a set of detected points

requires that the extents of the object are visible in each image that is used for geometry

extraction. When an object is occluded in an image, that image cannot be used for

geometry extraction. However, it will still be used in the texture sampling stage. Figure 5

and Figure 6 show photographs of the "Cans" scene, taken with a Kodak digital camera.

Figure 7 and Figure 8 show the results of running a Canny edge detector on the portions

of the images containing the flux remover canister. Note the large number of interior

points generated by the texture on its surface. Figure 9 and Figure 10 illustrate the

outlines recovered by EugeAnalyze. These are the points which will be used for 3-D

geometry extraction.



Figure 5: "Cans" original image 1I

giF ure 7: Cans detected edge point

canister 

canister

Figure 9: "Cans" recovered outline 1 for flux
canister

Figure 10: "Cans" recovered outline 2 for flux
canister

Figure 6: "Cans" original image 2

1. 6 7



3.2.2.3 Find base

EugeAnalyze uses the knowledge that the cross-section of the cylinder is circular

to find the base, even when only a single image is available. Since the base surface has

presumably been fixed, the outline points of the SOR can be projected onto it. These

projected points should form two approximate half-circles, one at each end of the cylinder

(see Figure 11). Assuming a non-transparent base surface, only one of these circles can

represent its base. In the figure, cylinder A results from using the correct circle as the

base. Cylinder B results from the incorrect circle. To ensure that the correct base is found,

the program ignores any point whose projection onto the base surface lies farther from the

camera than the projection of the center of the points. In the figure, the pruning line

marks the this boundary. This effectively eliminates the half of the points that were

generated by the half of the SOR that is farther from the surface. Then, EugeAnalyze

finds the circle that best fits the remaining outline points. To prevent it from fitting a too-

large circle to the extremal contours of the SOR, EugeAnalyze limits the circles that can

be considered to have a diameter no larger than the bounding box of the pruned projected

outline points.



View direction

I
Image poi
as seen in
estimated
camera

Figure 11: Fitting circles to projected outline points

To further prune candidate points for finding the base, we clip them in we project

them onto the base surface. They are then clipped to the extent of the texture that has

been mapped onto the surface. This heuristic makes the assumption that the base of the

SOR does not overhang the edges of the surface it lies on. Finally, for each image, the

bounding box of its projected outline points in surface space is generated. The

intersection of all these boxes is then used to further prune the projected hull points. This

heuristic can fail in cases where the base of the SOR is occluded in one or more images

containing SOR image points.

Now that the size of the outline point set has been significantly reduced,

EugeAnalyze fits the best circle to the points as projected onto the base surface. Given a

set of projected outline points, the program iterates through all subsets of three. For each

combination, a circle is generated by using the intersection of the perpendicular bisectors



of any two line segments connecting the three lines as its center. To determine how well

the circle "fits" the points, we use as an error measure the number of points whose

distance from the estimated center falls outside of a certain threshold of the estimated

radius. This provides us with a good starting point for further refinement.

To speed the process of checking all combinations when the number of points is

large, we can mark each point that fits some estimated circle. Once a point has been

marked, it will not be used again to generate another circle. This method is based on the

observation that any points that fit an already estimated circle will generate a similar

estimate.

3.2.2.4 Find other cross section

The next step in extracting the 3D geometry of the cylinder is to find the elevation

of the other cross section from the base surface. This is done by projecting image points

to candidate planes that may contain the other cross section and fitting circles to them.

The plane containing the matched circle whose center best matches the estimated cylinder

axis is chosen as the plane for the second cross section.

3.2.2.4.1 Prune points on other half of SOR

With a first approximation of the base already determined, the image points can

be pruned before entering the cross-section finding stage. Each point is projected onto the

axis of the SOR as determined by the base center and axis direction. The range of

projected positions along the axis is found for all image points, and the midpoint is taken.

Any points projecting on the side of the midpoint containing the projected center of the



SOR are removed from the cross-section candidate set. This reduces the size of the search

space and prevents false matches from the image projections of the SOR base.

3.2.2.4.2 Project to offset planes and fit circle

After pruning the SOR points, we project them to candidate planes and fit circles

to them. Each candidate plane is parallel to the base surface. Each plane is generated from

an image point's projection to the SOR axis. For each plane, we project the set of image

points that project to the axis on the opposite side of the plane from the SOR base. We

then find the circle that best fits the projected points and note the distance of the circle's

center from the axis. The plane containing the circle with the closest center is chosen as

the other cross-section plane.

3.2.2.5 Refine center

Once the center and cross-section have been found, the remaining contour points

are used to re-estimate a new center. The contour points are the image points representing

the extremal contours of the cylinder side (i.e. the visible edges of the SOR that are not

formed by either cross-section). To find the new center, the contour points are projected

to the base surface and their bounding box is found. The center of the bounding box is

used as the new center of the SOR. From this new center and the axis direction, a new

axis is computed.

The 3D SOR geometry is stored as a 2D profile to be rotated about an axis. The

point coordinates in the profile are defined as radius-height pairs. The radius is computed

by projecting the image contour points to the plane p containing the axis and facing the

camera. The distance from a contour point's projection onto p and its projection onto the



axis is the point's radius. The height is the position of the point's projection onto the axis

in axis coordinates.

3.2.2.6 Sample textures

Once the geometry has been fixed, texture information from all images is used to

generate textures for each cylinder. Three merged texture maps are created for each SOR:

one each for the top, bottom, and side. The texture sampling method is described in the

following paragraphs.

3.2.2.6.1 Texture coordinate system

Throughout this paper, textures will be described in s-t coordinates, with s being

the horizontal axis and t being the vertical axis in texture space. For the side of a cylinder,

the s axis spans the circumference of the cross-sections, and the t axis runs from the top

to the bottom of the SOR.

3.2.2.6.2 Texture resolution determination

Since texture data is obtained from the original images, the amount of useful data

is limited by the number of cylinder pixels that appear in all images. It is important that

the texture resolution be fine enough to capture as much of this image information as

possible without wasting resources with interpolated pixels.

The s axis of the texture runs around the circumference of the SOR. We find the

radius of the cylinder as seen in the film plane and compute the s length from that. To

find the radius, in each image we find the maximum distance on the film plane from a



contour point to the SOR axis. The maximum of these distances is the radius r of the

SOR, and the s length is 2tr.

To determine the length of the texture in the t direction, we compute for each

camera the distance between the cross-section centers as projected onto the film plane.

The maximum of these distances is used as an estimate of the s length of the texture. It is

multiplied by a constant factor to further ensure the capture of all image data.

The textures for the top and bottom of the SOR are squares of identical size. The

length of the edges of the squares are determined from the estimated maximum diameter

of the cylinder as viewed from the original cameras. For this diameter, we simply double

the radius r found in the previous section for the s dimension of the side texture.

3.2.2.6.3 Multi-view texture sampling (partial implementation)

The geometry of an object modeled using one of the algorithms in this thesis is

obtained by using contour information alone. In order to create a model that faithfully

resembles the object in the original images, we need to generate the texture to be applied

to the recovered geometry. Since the 2-D scene description contains only a few images of

the original object, the computer only has information about the object's appearance as

seen from the original cameras. We wish to use this information to generate the "best"

texturing for the shape. The recovered geometry with the "best" texturing will, when

rendered from the estimated cameras, match the original images as closely as possible.

The texture is generated by mapping x-y image coordinates into s-t texture space

and sampling image pixels directly into the texture map of the object. This mapping is

achieved by rendering from the original cameras the recovered geometry of the object



with a special calibration texture mapped onto its surface. Each pixel p of the calibration

texture contains:

* the s coordinate of p in texture space,

* the t coordinate of p in texture space, and

* an identifier that is unique to object or object part.

Once the rendered calibration image has been produced, we can read s-t texture

coordinates directly from x-y image coordinates. Likewise, the identifier tells us which

texture to project the image pixel toward. Figure 12 illustrates the pixel-to-pixel

relationship between the original image and the calibration image. A pixel on the original

image tells us what color to map onto the texture. The pixel on the calibration image at

the same location tells us the ID of the texture that is visible at that location as well as the

s-t coordinates of the exact texture element.

Figure 12: "Cans" original image with calibration image



In this partial implementation, EugeAnalyze maps each image pixel onto one

texture pixel. This allowed me to see how well the geometry matched the original images

without unnecessarily slowing execution of the program. In the next experiment, I

completed the texture sampling system to deal with one-to-many mapping of image

pixels. For this particular test, I instead had the program perform what I thought would be

a faster, but less correct texture interpolation process.

3.2.2.6.4 Sparse-texture interpolation

Due to the fact that the actual transformation from image pixels to texture pixels

is usually not a one-to-one mapping, the resulting sampled textures will contain some

pixels without color values assigned from any image. To rectify this, the color values of

the empty pixels in the sparsely filled texture are interpolated from filled pixels. The

algorithm is simple:

1. Define a neighbor of pixel at (s, t) as any pixel with coordinates ([s-1, s+1], [t-1,

t+1]). For every empty pixel in a sampled texture with at least one filled neighbor,

sets its value to the average of the filled values.

2. Repeat from step 1 until no new pixels are filled.

The only caveat is that the s axis needs to "wrap around" from one end of the

texture to the other to eliminate any synthetic seam from appearing in the texture. This is

necessary because the rectangular side texture of an SOR must be wrapped onto a

cylindrical surface. To accomplish wraparound, I define (0, n) and (s•-1, n) to be

neighbors, where sm is the horizontal resolution of the texture and n is any integer in the

range [0, t•.), where tm, is the vertical resolution.



3.2.2.6.5 Advantages

This method of texture sampling offers a number of benefitsi:

* It is independent of the intricacies of the rendering pipeline. Any unusual treatment of

the projection onto the film plane of 3D geometry will affect both the calibration

images and the rendered images of the extracted model.

* It is independent of the texture-mapping implementation (i.e. no matter how the

texture is applied to the geometry, it will perform correctly).

* It handles occlusion without any extra computation or user intervention.

* It ensures that the final model, when rendered from the original cameras, will most

closely match the original images.

" This assumes that the same rendering equipment will be used for texture

sampling and viewing the extracted model.



3.3 Experiment 3: SOR from image contours

The most complete portion of my thesis involved a revised approach to recovering

the shape of an SOR from image edge pixels and a base surface. The algorithm has been

completely implemented in EugeAnalyze. The program takes as its input the output of the

vision-assisted modeler described in Section 2.3. This input contains a partially recovered

3-D scene (planar surfaces and textures only) as well as 2-D annotation information,

including cylinder definitions and detected cylinder points, generated by the user through

ModelMaker.

3.3.1 User interface

The user interface to this experiment is identical to that of Experiment 2. The

changes I made were in the analysis portion.

3.3.2 Batch analysis

The EugeAnalyze program takes as its input an element file containing a

recovered model with properly annotated SOR images. It will take the image points of

defined SORs and generate 3D geometry and textures for them whenever possible.

3.3.2.1 Fix axis

The third experiment is similar to the second in many respects. It begins to

diverge starting with the method used to fix a 3-D position for the axis of symmetry. An

initial estimate of the axis is found first using triangulation where possible, then it is

refined based on the image contours. Depending on the number of images in which the



SOR appears, EugeAnalyze takes one of two different approaches to finding an initial

estimate.

3.3.2.1.1 Estimate center from multiple images

In the case where multiple images are available with detected SOR contour points,

triangulation is used to fix an approximation of the SOR's center. In each image, the

center of the points in the SOR is found and assumed to be a 2-D view of the SOR center.

The average triangulated 3-D position from all pairs of images is used as the initial

estimate of the center.

3.3.2.1.2 Estimate center from single image

When only one view of a scene is available, triangulation cannot be used to fix the

center of the cylinder. Instead, the circle-fitting method of Section 3.2.2.3 is used to find

the center of the SOR base. Then with the center of the base fixed, EugeAnalyze finds the

center of the SOR shape by projecting the center of the points in the image onto the plane

that contains the axis and faces the camera. Figure 13 displays the 3-D planar surfaces for

the "Cans" scene as generated by vision-assisted modeling. This scene is part of the input

to EugeAnalyze. The recovered camera positions are also shown.

Figure 13: Planar surfaces in "Cans" scene with estimated cameras



3.3.2.1.3 Refine axis position

Once an estimate of the center of the SOR has been fixed, EugeAnalyze refines

the axis position based on the image contour points. The image points are projected onto

the plane passing through the center that faces the camera. Using the lines that connect

the camera COP with the projected points, EugeAnalyze generates a 3-D cone for each

camera, representing the possible enclosing volume of the object as seen from that

camera. Rays are fired along the positive and negative axis direction from the SOR center

until they hit a part of the rendered 3-D cones. These points are used as the upper and

lower bounds of the SOR along the axis. At each axis position, then, rays are fired in a

disc oriented orthogonal to the axis. The shortest diameter is used as the diameter for that

cross-section. Once diameters have been found along the length of the cylinder, the center

of the SOR is set to be the average center of all the diameters. This process is repeated

until the change in the center (in the plane parallel to the base surface) is below a pre-set

threshold.

cc

Figure 14: Projected contour points and object volume



Figure 15: "Cans" -- projected contour points for flux canister

3.3.2.2 Generate mesh geometry

After the axis has been fixed to within the desired tolerance, the geometry of the

SOR is "sampled" using the same ray-firing technique in the previous subsection. This

results in 3-D points on the surface of the cylinder arranged in a grid, allowing a

quadrilateral mesh to be wrapped around the shape.

3.3.2.3 Multi-view texture sampling

In this experiment, I completed the implementation of the texture-sampling

method used in Section 3.2.2.6.3. EugeAnalyze still uses special textures to render

calibration images to use for image-) texture space mapping. It is the mapping itself that

was improved.

Since a single pixel in image space doesn't necessarily map onto a single pixel in

texture space, each image pixel is projected as a quadrilateral onto texture space and

filled with a single color. To find the s-t coordinates of the corners of the pixel, the

calibration image is rendered at a larger scale than the original image. Each pixel in the

original image maps onto a square of pixels in the calibration image. The s-t coordinates

of the corners of that square represent the corners of the quadrilateral in texture space.



The textures in Figure 16 were sampled view direction
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number of factors, including specular lighting,

Figure 17: Mapping image pixels to texture
different exposure levels in the images, and elements

errors in camera parameters. Correction for exposure can be done on the images before

shape recovery. The error in the camera parameters can be a result of the restrictions of

Open Inventor cameras. Since the principal point of a real camera is usually not in the

center of the film plane, the estimated cameras used by EugeAnalyze will invariably

contain some error, no matter how accurate the camera calibration algorithm.

To account for small errors in geometry recovery, the texture mapping portion of

EugeAnalyze prunes pixels whose projection is larger in area than a threshold size. The

threshold is based on the median size of all texture elements derived from the same image

for the same object. This prevents inaccurate texture elements from being created when

the projection angle 0 is small (Figure 17).

Figure 16: Sampled textures for "Cans" scene: coke can and flux canister



3.4 Experiment 4: Curved objects from multiple edge images

The final phase of my work was to explore the possibility of recovering the shape

of arbitrarily shaped 3-D objects from multiple edge images. Since the projected contours

in Section 3.3.2.1.3 represented the largest possible volume of the object, I thought it

would make a good starting point for modeling non-cylinders. Using this method, of

course, meant I had to make several assumptions about the object being modeled and the

views used. Because the center of the image points were assumed to be near the object

center, the object must be somewhat symmetric. The outline recovery algorithm, too,

limits the outline of the object to being star-convex in each view. While not all objects fit

these parameters, the class of objects that can be modeled by this method encompasses a

broader range than generalized cylinders.

3.4.1 User interface

For this experiment, I used the same user interface as in the previous two sections.

However, the object does not need to be assigned to a surface. Only image edge points are

needed, and at least two images are required.

3.4.2 Batch analysis

The analysis portion of this experiment is very much a generalization of the

technique of projecting image contour points used in Experiment 3. First, a 3-D object

center position is estimated using the triangulation method of Section 3.3.2.1.1. Then,

contour points are projected from the COP through the film plane to form enclosing cones

that constrain the volume of the object. The intersection of the volumes created by cones

from multiple images is the volume of the object being modeled. To generate the mesh
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necessary for viewing, the interior of the volume created by the intersection of the cones

is sampled using a similar method to that of Experiment 2 and 3. The difference here is

that instead of taking the smallest diameter only for each cross-section, all points are

added to the mesh. Since the solid is not assumed to be cylindrical, the axis used for

geometry sampling is set to be the longest axis in the 3-D volume.



4. Results

4.1 Solids of revolution

Presented in this section are rendered images of the recovered geometry of some

cylinders, using the system developed in Experiment 3.

4.1.1 Cans (one view)

Figure 18 is a single digital image

of the "Cans" scene. The original camera

was estimated using the vision-assisted

modeling process, and the book and table

top were modeled as planar surfaces in 3-

D. The partially completed scene was then

passed to EugeAnalyze for curved shape

recovery. Figure 19 shows three views of a

wireframe model of the recovered cylinder

geometry, generated using the system

implemented in Experiment 3.

Figure 19: Recovered geometryFigure 18: Original image



Figure 21: Texture for flux canister

Figure 22: Texture for Coke can pixel
boundaries (zoomed)

Figure 23: Texture for Flux canister pixel
boundaries (zoomed)

The unwarped textures for the Coke can and Flux canister objects are shown in

Figure 20 and Figure 21. Closer inspection of each texture reveals the individual

projected image pixels, which appear as quadrilaterals in texture space (Figure 22 and

Figure 23). Each quadrilateral represents the area of one pixel from the original

photograph as projected on the recovered geometry through the estimated camera.

Figure 20: Texture for Coke can



Figure 24: Recovered scene from one image

The illustrations above show rendered images of the recovered 3-D "Cans" scene

from one original photograph. The positioning of the cylinders can be verified by the

"shadows" left on the planar surfaces of the table and the book face in the vision-assisted

modeling process. The "shadows", or dark areas, on the table surface and book cover are

not due to lighting. They result from a lack of texture information in the vision-assisted

modeling stage of shape recovery. Likewise, the black areas on the two cylinders

represent areas of known geometry but unknown texture.



4.1.2 Cans (two views)

This model was extracted from the images shown in Figure 5 and Figure 6. It

demonstrates the effect of merging textures from multiple images. The error in camera

estimation can best be seen in the upper orange stripe on the flux container.

Corresponding more point features between images during vision-assisted modeling helps

alleviate this problem.

Figure 25: Recovered scene from two images



4.1.3 Kendall (one view)

Figure 27 depicts the original image

for the "Kendall" scene. The three images

in the figure show the same photograph,

with outlines for the three traffic cones to

be modeled. The farthest cone cannot be

modeled from this image because it is

partially obscured by the striped cone. For

labelling purposes, the cones will each be

referred to by number, starting with cone 1

in the top image. Figure 26 (below) shows

the geometry recovered by vision-assisted

modeling from the single image.

Figure 27: Original image with cone outlines
Figure 26: Recovered planar geometry

The outlines in Figure 27 were generated manually using ModelMaker, because

the edge detector was not able to extract a satisfactory edge image from the original

photograph. Images in which the objects being modeled appear at low resolution all had

this problem. The geometry recovery system, however, can deal with outlines at a higher

resolution than the source image.



Figure 28: Cone 1 geometry Figure 29: Cone 2 geometry

Figure 31: Recovered textured "Kendall" scene

Figure 30: Cone 3 geometry



5. Conclusions

This thesis presented some experiments on the recovery of 3-D shape of curved

objects from calibrated 2-D images. The first three experiments concentrated on solids of

revolution, while the fourth attempted to generalize it to other forms.

The recovery algorithm in Experiment 1 required too much user input to claim to

be a quick and effective method of recovering shape. However, it was a good starting

point for further work. Experiment 2 successfully recovered some cylinders, but caused

problems when the cross-section or base were viewed from a direction parallel to the

cross-section. Experiment 3 improved on this by eliminating the need for visible cross-

sectional outlines except in the case of one image. Some recovered scenes were

presented, both using multiple views and a single views. Additionally, a texture-sampling

algorithm for preserving appearance from the original cameras was described and

demonstrated, with visible success.

The final experiment presented a more general scheme for modeling 3-D shapes

from outlines alone. Its results were less than spectacular, but show some promise. A

suggestion for future work is to allow 2-D feature correspondences between images to be

used to augment the object volumes when contour alone does not constrain the shape

satisfactorily. Since planar surfaces are also used to constrain the shape, 3-D surfaces (i.e.

bounded plane segments) could be placed within the object volume by other means, such

as vision-assisted modeling, to compress the volume further. If we limit ourselves to

smooth objects, we can use surface curvature or other means to interpolate values

between contour boundaries and known interior features.



As a whole, the algorithms presented in this thesis are an effective way of

modeling specific shape classes directly from 2-D images. With a modicum of user input,

one can quickly recover the 3-D shape of solids of revolution and create models for use in

computer graphics.



Appendix A: Example scene

This section presents a step-by-step walkthrough of the model recovery process,

from digitized images to recovered textured model. The screenshots are of the

ModelMaker program running on a Silicon Graphics workstation.

Step 1: Open image(s)

Shown:

* The File Open dialog, used to select an

image file to load.

Step 2: Detect lines

Shown:

* The menu bar, which is the top level

command interface.

* The line detect dialog, which provides

access to edge detection and line

detection parameters.

* The status bar, which notifies the user

of actions performed, and commands

* Image 1 from the "Cans" scene, with

m

m



detected lines.

* available in the current context.

Step 3: Group lines into directions.

Shown (top):

* The directions chooser, which allows

the user to select the current direction,

create/edit/delete directions, and

automatically select lines with a

common vanishing point.

* Image with lines in the X direction

highlighted.

Shown (second from top thru bottom):

* Image with lines in the Y direction

highlighted.

* Image with lines in the Z direction

highlighted.

* Image with lines in the Bogus direction

highlighted. Lines in the bogus

direction are not used for camera

calibration in the vision-assisted

modeling process.



Step 4: Place features in images

Shown (top):

* Feature chooser.

* Image with features marked as large

squares.

Shown (bottom):

* Feature properties dialog. The color

editor allows the user to change the

display color of the feature. The size of

displayed features and the feature name

can be changed in this dialog. The X,

Y, Z fields can be filled with numerical

values, or with question marks. In the

latter case, the feature position will be

fixed by the batch analysis of the

vision-assisted modeling program.

Step 5: Classify lines and features into

coplanar sets (surfaces).

Shown (top):

* Surface chooser.

* Image with surface table highlighted.

The polygon was placed by the user and





Step 6: Detect edges for solids of

revolution and curved shapes.

Shown (top):

* Edge detect dialog. Allows user to

adjust Canny edge detector parameters

to add/remove points from the current

object.

* SOR Chooser. Allows user to

create/edit/delete objects (both solids of

revolution and other curved objects).

Because the required user inputs for

Experiment 4 have not been solidified,

the interface remains incomplete.

Therefore, for now, both solids of

revolution and arbitrarily shaped curved

objects share one interface.

* Image with detected edge points for

Coke can shown.

Shown (middle):

* Image with detected edge points for

Flux canister shown.

Shown (bottom):



* SOR Properties dialog. Allows user to

change name of object and assign a

surface (needed for analysis). If a

surface is supplied, the object will be

analyzed as a solid of revolution,

otherwise, the object will be analyzed

as an arbitrarily shaped curved object

(see Experiment 4). This interface

needs to be improved.

Step 7: Vision-assisted modeling batch

analysis.

Shown (top):

* Analysis setup dialog. Provides access

to batch analysis parameters for vision-

assisted modeling.

Shown (bottom):

* Recovered scene with planar surfaces

only (from vision-assisted modeling).



Step 8: Recovery of curved objects.

Because the requirements for curved object

analysis changed over time during this

project, ModelMaker does not yet provide

access to EugeAnalyze.

Shown:

* Recovered scene, with textured

cylinders.
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