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Degree of Doctor of Philosophy in Biochemistry

ABSTRACT

The process by which large RNA molecules fold into complex higher order structures is a
basic question in nucleic acid biochemistry. The Tetrahymena ribozyme has been used as a
model system to study RNA folding, and a minimal kinetic folding pathway elucidated for
this group I intron. A kinetic oligonucleotide hybridization assay was developed which
exploits the differential accessibility of the RNA to binding by short, complementary
oligodeoxynucleotides in the presence and absence of Mg ' , and allows following the
timecourse of folding in a sequence specific way. Folding of the ribozyme was shown to
be a complex process involving multiple intermediates and both Mg2+-dependent and Mg2+'-
independent steps. A model for the kinetic folding pathway is proposed where the two
main structural subdomains, called P4-P6 and P3-P7, form in a hierarchical manner, with
P4-P6 forming first. The rate limiting step is a Mg2+-independent rearrangement leading to
the formation of the P3-P7 subdomain, and takes place on the minute timescale. Probing
the molecular details of the observed kinetic steps by site directed mutagenesis revealed that
the observed slow step involves the formation of specific tertiary interactions, including a
triple helical scaffold connecting the two subdomains. The integrity of the fast folding P4-
P6 subdomain is required for formation of P3-P7, confirming the hierarchical nature of the
folding pathway. The P3-P7 subdomain forms in an interdependent manner, indicating
that this structural subunit also represents a kinetic folding unit. The proposed folding
mechanism reveals parallels between RNA and protein folding. In both classes of
molecules, short range secondary structure forms fast and early, structural subdomains
corresponding to kinetic folding units fold in a hierarchical manner, and tertiary interactions
between subdomains form late during folding. An initial investigation of the folding
properties of RNase P RNA revealed that the slow folding rate and the Mg2

+-independence

of the slow step are conserved, and suggests that the folding pathway of the group I intron
may be relevant to RNA folding in general. These studies provide a conceptual framework
for RNA folding, and constitute a foundation for more detailed investigations.

Thesis Supervisor: James R. Williamson

Title: Associate Professor of Chemistry
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The RNA Folding Problem

The functional versatility of RNA

The discovery that RNA can actively catalyze reactions in the absence of proteins

(Cech et al., 1981; Kruger et al., 1982; Guerrier-Takada et al., 1983; Guerrier-Takada and

Altman, 1984) initiated a major shift in the understanding of RNA function. Where

previously RNA was mainly viewed as a passive participant in processes related to

information transfer from DNA to proteins, it is by now recognized to play a central and

vital role in almost every step of gene expression and genome replication (Gesteland and

Atkins, 1993) (Fig. 1). Although today RNA is neither the medium for storage of cellular

genetic information nor its main final product, it does mediate all functions related to

managing that information.

Gene Expression

To produce functional proteins, coding information must be extracted from the raw

data stored in the genome and then translated into the amino acid code of proteins. This is

accomplished by transcription of DNA genes into RNA and processing of the resulting

primary transcripts to produce mature translatable messages. In recent years, evidence has

been accumulating that two key steps involved in this process, splicing of non-coding

introns from primary transcripts and translation, are at heart RNA catalyzed.

Indeed, it was the investigation of splicing that led to the discovery of RNA

catalysis in the form of self-splicing group I introns. For both group I and group II intron

splicing, it is the intron itself that serves as the catalyst (Cech et al., 1981; Kruger et al.,

1982; Peebles et al., 1986; van der Veen et al., 1986). In contrast, spliceosomal splicing,
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The RNA Folding Problem

which accounts for most splicing activity in contemporary organisms, is accomplished

through the action of an external catalyst, the spliceosome, on the intron substrate (Moore

et al., 1993; Madhani and Guthrie, 1994). The spliceosome consists of five small nuclear

RNAs (U1, U2, U4, U5 and U6 snRNAs) and an extensive and as yet incompletely

defined set of proteins. It was the similar mechanisms of group II and spliceosomal

splicing that first suggested that the RNA may be the catalytic component of the

spliceosome (Cech, 1986; Peebles et al., 1986; Schmelzer and Schweyen, 1986; van der

Veen et al., 1986; Sontheimer and Steitz, 1993; Padgett et al., 1994). In addition to

mechanistic parallels, it is now known that there must also be structural similarities between

group II introns and spliceosomal RNAs, further supporting the hypothesis that

spliceosomal splicing is RNA catalyzed (Madhani and Guthrie, 1994; Yu et al., 1995).

The ribosome, like the spliceosome, is a large catalytic complex composed of RNA

and proteins (Moore, 1993). It had long been assumed that the RNA merely forms a

scaffold to organize the ribosomal proteins, and that peptidyl transfer, which is at the heart

of the translational process, is a protein catalyzed reaction (Noller, 1991; Moore, 1993).

Only once the concept of RNA catalysis was well established became the possibility

apparent that it might in fact be the RNA that is the active component, and proteins the

organizing scaffold (Noller, 1991; Moore, 1993; Noller, 1993). Experiments to test this

hypothesis directly provided strong evidence that peptidyl transfer is RNA catalyzed

(Noller et al., 1992).

In addition to peptidyl transfer, RNA plays a key role in a number of other aspects

of translation. The function of tRNA as an adapter molecule to connect the four base code

of nucleic acids to the twenty amino acid code of proteins has long been recognized, and

tRNA structure and function have been intensely investigated for over twenty years

(Schimmel and Redfield, 1980; Gieg6 et al., 1993; Sill, 1993). To produce mature tRNA
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The RNA Folding Problem

from primary pre-tRNA transcripts, a 5' leader sequence must be removed. This is

accomplished by the ribonucleoprotein enzyme RNase P, another catalyst composed of

RNA and protein (Cech, 1993; Altman et al., 1995). In this case, it is well established that

the reaction is RNA catalyzed, since for many prokaryotes the RNA alone, in the absence

of protein, is active (Darr et al., 1992; Cech, 1993; Altman et al., 1995).

The primary RNA transcript itself, in addition to serving as substrate for processing

and translation, can directly participate in the regulation of these processes. There is

evidence for an interaction between the 5' and 3' terminal regions of mRNAs (Caponigro

and Parker, 1995; Decker and Parker, 1995; Kuge and Richter, 1995), and this interaction

is likely to play a role in regulating translation, often mediated by proteins bound to

sequences in the 3' or 5' untranslated region of mRNAs (Decker and Parker, 1995;

McCarthy and Kollmus, 1995), and mRNA degradation (Decker and Parker, 1995). Pre-

mRNA structure has been implicated in the regulation of spliceosomal splicing (Goguel and

Rosbash, 1993; Parker and Siliciano, 1993; Libri et al., 1995), and translational events

such as frameshifting (Brierley et al., 1989) and selenocysteine incorporation (Ringquist et

al., 1993), as well, require structured regions in mRNAs.

While transcription is definitely protein catalyzed, and largely regulated by a

complex network of protein:protein interactions, some regulatory events do involve the

participation of RNA. In HIV, for example, interaction of the TAR RNA element and the

Tat protein, mediated by the structure of the RNA, allows processive transcription of the

viral RNA (Frankel, 1992). A similar mechanism of antitermination functions in the

regulation of transcription during the infectious cycle of bacteriophage lambda (Greenblatt

et al., 1993).

Genome replication

-11-



The RNA Folding Problem

In addition to the numerous roles played by RNA during gene expression, it is also

actively involved in the replication of the genomes of eukaryotes and many viruses. To

accurately replicate the ends of linear chromosomes in eukaryotes, the cell employs the

ribonucleoprotein enzyme telomerase (Zakian, 1995). Telomerase is a specialized reverse

transcriptase whose RNA component contains a sequence serving as template for the

addition of telomeric sequences to the ends of chromosomes to prevent their progressive

shortening through successive rounds of replication. Moreover, recent results provide

evidence that the RNA can also directly modulate the activity of the enzyme (Gilley et al.,

1995).

Many plant viruses, viroids and virusoids and at least one human virus replicate

their RNA genomes by a rolling circle mechanism. This involves the production of

multiple, covalently linked copies of the genome which must be cleaved into single length

units. Cleavage is accomplished by small, catalytic RNA motifs that are a part of the

sequence. These motifs, each of which has been studied extensively in vitro, include the

hammerhead, hairpin and hepatitis delta virus ribozymes (Symons, 1992; Lazinski and

Taylor, 1995). Finally, retroviruses rely on structured tRNAs to prime the reverse

transcription of genomic RNA into DNA, required for incorporation of viral sequences into

the host genome (Litvak et al., 1994).

Additional functions

The development of in vitro selection technology has allowed the isolation of RNAs

with a wide range of ligand binding and catalytic capabilities (Gold et al., 1993; Szostak

and Ellington, 1993; Joyce, 1994). Most striking is the realization that RNAs with

functions unlike those of natural RNAs can be produced. RNA sequences can be selected

which bind many types of proteins, both those which do normally bind nucleic acids and

those which do not, with very high affinity and specificity (Gold et al., 1993; Eaton et al.,
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The RNA Folding Problem

1995; Gold et al., 1995). RNAs able to specifically bind nucleotides, several amino acids,

including the aliphatic valine, and numerous other small molecules and cofactors have been

reported (Gold et al., 1995). Derivatives of the Tetrahymena ribozyme (see below) that can

catalyze phosphodiester bond cleavage in the presence of Ca2" instead of Mg2̀ (Lehman

and Joyce, 1993), or cleave DNA and RNA substrates with similar efficiencies (Beaudry

and Joyce, 1992), have been isolated. The DNA cleaving variants have also been

demonstrated to cleave amide bonds effectively (Dai et al., 1995), while the wild type

ribozyme can catalyze aminoacyl ester bond cleavage at a low level (Piccirilli et al., 1992).

Finally, RNAs that have aminoacyl RNA synthetase (Illangasekare et al., 1995), RNA

ligase (Bartel and Szostak, 1993), kinase (Lorsch and Szostak, 1994) and alkylase (Wilson

and Szostak, 1995) activity have been obtained from completely random sequences.

While the relevance of these activities to contemporary cellular functions may not be

immediately obvious, there is at least one instance where the selection of an RNA with an

'unnatural' function foreshadowed the discovery of a cellular RNA that carried out an

analogous reaction. Very recently it was demonstrated that incorporation of a specific

group II intron into the DNA genome, a reaction that is responsible for the observed

mobility of some group II introns, is in part RNA catalyzed (Zimmerly et al., 1995). The

intron cleaves one strand of the double stranded DNA, while a protein associated with the

intron cleaves the second strand. DNA cleavage activity of RNA is therefore not a

laboratory curiosity, as might have been initially thought, but forms part of the natural

range of RNA functions. It may not be unreasonable to expect that other RNA functions

identified by in vitro selection techniques may eventually be recognized as occurring in

contemporary organisms.

In summary, the past fifteen years have shown that RNA, far from being a passive

bystander in the cell, is in fact a driving force at the heart of almost every process connected
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with information management. It has long been speculated that early in evolution life was

based on RNA, and that in this 'RNA world' RNA acted both as catalyst and carrier of

genetic information (Gesteland and Atkins, 1993). The demonstration that RNA can

possess catalytic activity provided a strong boost in this theory. The most convincing

evidence for this crucial role of RNA in evolution, however, is probably the very

involvement even today of RNA in every step of processing genetic information. While the

in vivo functions of RNA outlined above are almost always accomplished in conjunction

with proteins, the RNA is in many cases the 'active ingredient' and in all cases required for

proper function. It is unlikely that the full repertoire of RNA functions has yet been

uncovered. Continued investigation of cellular processes will almost certainly reveal

important new roles of RNA, and in vitro selection technology will continue to generate

RNAs with interesting, and potentially useful, abilities.

RNA folding: product and process

RNA can fulfill the wide variety of functions described above because it has the

ability to fold up into complex three dimensional structures that form active sites for

catalysis and recognition sites for ligands. A thorough understanding of RNA function can

only be gained by answering two questions. First, what are the active structures of RNA,

and how do important ligands bind to these structures? Answers to this question will

provide insight into the mechanisms of action of RNA and reveal how it interacts with other

cellular components. Second, what is the process by which these structures are formed?

The cell is a complex environment and proper formation of the active structure has to

compete with formation of inactive structures, or misfolding, degradation of the RNA and

formation of nonspecific complexes with cellular proteins. How does RNA circumvent

these competing processes and what drives formation of the final structure? Together,
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these two questions constitute an RNA folding problem that is analogous to the much

studied protein folding problem (Herschlag, 1995; Pyle and Green, 1995).

Structure

Although structural information for RNA is still relatively scarce, significant

progress has been made in recent years in the application of X-ray crystallography, nuclear

magnetic resonance and biochemical techniques, and the library of known RNA structures

is increasing slowly but steadily (Valegird et al., 1994; Marino et al., 1995; Nagai et al.,

1995; Pyle and Green, 1995; Shen et al., 1995). Most of the high resolution structural

information currently available has been obtained by studying functionally important

fragments of larger RNAs either in their free form, or bound to domains or subdomains of

protein ligands. Exceptions to this are the crystal structures of tRNAs and their complexes

with aminoacyl-tRNA synthetases (Rould et al., 1989; Rould et al., 1991; Cavarelli et al.,

1993; Gieg6 et al., 1993; Biou et al., 1994) and elongation factor Tu (Nissen et al., 1995),

and the hammerhead ribozyme (Pley et al., 1994; Scott et al., 1995). It has become

apparent that RNA plays a very active role in binding proteins and other ligands and, far

from being passively recognized, generally undergoes significant conformational changes

upon binding. Similarly, the structure of the hammerhead ribozyme revealed that the RNA

must undergo a conformational change in going from the ground state to the transition state

for catalysis.

Less is known about the structures of larger RNAs, such as group I and group II

introns, RNase P, and ribosomal RNAs. While no high resolution structural information is

available for these molecules to date, information obtained by a combination of

phylogenetic comparisons and biochemical experiments has allowed the construction of

models for the three dimensional architecture of group I introns (Michel and Westhof,

1990), RNase P RNA (Harris et al., 1994; Westhof and Altman, 1994) and ribosomal

-15-



The RNA Folding Problem

RNA (Stem et al., 1988; Stern et al., 1989; Malhotra and Harvey, 1994). While of

relatively low resolution, these models do give a good indication of the relative positions of

structural elements. A complementary strategy is the use of NMR and crystallography to

obtain high resolution information about key parts of the overall structure (Chastain and

Tinoco, 1992; Chastain and Tinoco, 1993; Wimberly et al., 1993; Allain and Varani, 1995;

Shen et al., 1995; Szewczak and Moore, 1995; Varani, 1995). Large RNAs appear to be

composed of distinct structural subdomains and in some cases, such as group I introns and

RNase P, subdomains have been shown to be independently stable outside of the context

of the entire molecule (Murphy and Cech, 1993; Pan, 1995). In at least one case it is also

possible to assemble a functional molecule from separately synthesized subdomains

(Murphy and Cech, 1993; Doudna and Cech, 1995; Pan, 1995). The details of how the

subdomains interact with each other to form the final structure are still unclear.

Understanding these details of the higher order architecture, both in compact globular RNA

structures like the large ribozymes and in more complex ribonucleoprotein complexes like

the ribosome and the spliceosome, as well as in the interaction of distant parts of a long,

presumably not as tightly structured, mRNA, presents one of the greatest challenges in

achieving a complete appreciation of the role of RNA.

The folding process

The second question that must be asked to address the RNA folding problem is

how a linear, polyanionic chain of nucleotides can fold into a compact, globular structure.

What is the pathway by which large RNAs achieve their final, active conformation? The

first step in learning how this is accomplished in the complex cellular environment is to

decipher the basic rules of the folding process in a simplified, defined in vitro environment.

To define a folding pathway, three issues must be addressed. First, are there any

intermediates, and what is their relevance to productive folding? Second, if there are
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intermediates, what is their structure? Third, what are the kinetics of folding? These issues

are not easily addressed experimentally, and even less is known about RNA folding

pathways than about RNA structure.

Prior to the work described in this thesis, the most extensive studies on RNA

folding and dynamics were conducted on tRNA over twenty years ago. Optical

spectroscopic techniques were used to follow changes in the structure in response to raising

the temperature or altering ionic conditions. In some cases, these optically detected

changes were correlated with alterations in NMR spectra to determine which regions of the

RNA were involved (Crothers et al., 1974). Consistent with observations of hairpin and

duplex formation (Poirschke and Eigen, 1971; Gralla and Crothers, 1973), secondary

structure was found to form very rapidly (in milliseconds or faster) and at moderate

monovalent ion concentrations. At least some of the tertiary structure in tRNA apparently

can form in high concentrations of Na' (> 100-200 mM) in the absence of Mg2+ (Cole et

al., 1972). Mg2+ does, however, greatly stabilize tertiary interactions, and may do so by

binding to several specific, high affinity sites (with dissociation constants in the micromolar

range) which are only present when the tertiary structure is formed (Stein and Crothers,

1976a; Stein and Crothers, 1976b). Optical changes observed upon the addition of Mg 2
+ to

a high salt form of the RNA also indicate that in the absence of Mg2', tRNA is not in a fully

native conformation (Cole et al., 1972). The tertiary structure can only form if the

secondary structure is already present, and kinetic studies showed that formation of the

native structure occurs in several discrete steps (Cole et al., 1972; Yang and Crothers,

1972; Stein and Crothers, 1976a). The rate limiting step when folding is induced by

addition of Mg2+ at intermediate monovalent ion concentrations (170 mM Na') is formation

of tertiary structure (Cole et al., 1972; Stein and Crothers, 1976a), and takes place in

milliseconds. If native structure formation was initiated by addition of Mg 2+ to a low salt
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form of tRNA (in 12 mM Na'), the rate of folding was observed to be quite slow, with a

timeconstant of 80 to 1900 seconds (Cole et al., 1972). This slow step has a large

activation energy, which led to the conclusion that the low salt form may include non-native

interactions which must be disrupted to form the native structure. Similar results were

obtained in a fluorescence study of Mg2+-induced tRNA folding at low Na' concentration

(10-15 mM) (Lynch and Schimmel, 1974). A sequential folding pathway including several

intermediates and both Mg 2
+-dependent and Mg2

+-independent steps was proposed.

Folding occurred on the second timescale at 370C, and the rate limiting step had a large

activation energy (30 kcal/mol) (Lynch and Schimmel, 1974).

The importance of Mg2
+ for the formation of higher order tertiary structure in RNA

was confirmed by more recent studies of Mg 2
+-induced folding of group I introns (Latham

and Cech, 1989; Celander and Cech, 1991; Heuer et al., 1991; Weeks and Cech, 1995),

RNase P RNA (Pan, 1995) and the hammerhead ribozyme (Bassi et al., 1995). In all

cases significant conformational changes were observed that could not be effected by

monovalent ions alone. In the large group I intron and RNase P RNAs regions of

phylogenetically conserved core segments became protected from Fe(II)-EDTA cleavage in

the presence of Mg 2
+, suggesting formation of a globular conformation with a defined

'inside' and 'outside', similar to that found in globular proteins (Latham and Cech, 1989;

Celander and Cech, 1991; Heuer et al., 1991; Pan, 1995; Weeks and Cech, 1995).

Although these studies were all performed at equilibrium, and did not examine the kinetics

of the observed changes, they did produce evidence for folding intermediates at

intermediate Mg2
+ concentrations. In both the Tetrahymena group I intron (Celander and

Cech, 1991) and a group I intron from yeast (Weeks and Cech, 1996) higher order

structure forms in only a defined subdomain at Mg2
+ concentrations below those required

for full native structure formation.
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The RNA Folding Problem

The results from these studies allow the construction of a minimal model for the

folding pathway of highly structured RNAs (Fig. 2) (Westhof and Michel, 1992). Folding

appears to be a multistep process where simple secondary structure elements, such as

hairpin stems, form rapidly and early, and do not require the presence of divalent metals.

Formation of higher order tertiary structure is likely to require Mg2+, and to take place on

slower timescales. It would not be unexpected if all tertiary structure, particularly in larger

RNAs, did not form in a single transition, but in several discrete steps. Folding may also

be hierarchical, where formation of secondary structure and early forming tertiary

interactions is required for later folding steps. The work described in this thesis addresses

the kinetics and the possible involvement of intermediates in the Mg2'-induced formation of

higher order structure.

An issue that has received increasing attention recently is the role of proteins during

RNA folding. There are two ways in which proteins can influence folding (Herschlag,

1995). One way is by binding to and stabilizing the active structure of the RNA. Most

functional RNAs in vivo act in the form of ribonucleoprotein complexes, and the RNA

alone may not be able to fold into its active conformation under physiological conditions.

This has been demonstrated, for example, for ribosomal RNA (Moazed et al., 1986), some

group I introns (Weeks and Cech, 1995), and RNase P RNA (Tranguch et al., 1994; Pan,

1995). In these cases, folding is really an assembly process to produce the RNP. RNP

formation, as evidenced by ribosome assembly, can be a complex, stepwise hierarchical

process (Traub and Nomura, 1969; Held and Nomura, 1973; Sieber and Nierhaus, 1978;

Powers et al., 1993). Rearrangements induced by the association of primary binding

proteins with rRNA create recognition sites for secondary binding proteins, and, in vitro,

some of these rearrangements can be very slow. The exact roles of RNA and protein

during this process remain to be defined. Studies of simple model systems where the
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active structure of a group I intron requires the presence of one specific protein, have given

conflicting results. For the group I intron b15, the fifth intron in cytochrome b pre-mRNA

in yeast mitochondria, which requires the CBP-2 protein for full activity, assembly kinetics

were found to be governed by folding of the RNA alone, with the rate limiting step being

formation of the RNA core (Weeks and Cech, 1996). The protein could only bind to the

RNA once the core structure was formed. For a group I intron in mitochondrial large

rRNA in Neurospora, which requires a tyrosyl-tRNA synthetase (the CYT- 18 protein) for

activity, the rate limiting step was reported to be protein binding itself, suggesting a more

direct involvement of the protein in RNA folding (Saldanha et al., 1995). It may be that

different RNPs assemble by fundamentally different mechanisms, or, alternatively, these

observations may only reflect differences of degree, with the underlying mechanism being

largely conserved. In some instances, the protein of an RNP can, at least in part, be

substituted by high Mg2" concentrations (Weeks and Cech, 1995), suggesting that in these

cases the protein acts largely in shielding the negatively charged backbone to allow the

close apposition of structural elements.

The second way in which proteins can influence RNA folding is by facilitating

folding without remaining bound to the RNA in the final structure. Several proteins,

including the ribosomal protein S12 (Coetzee et al., 1994) and the E. coli protein stpA

(Zhang et al., 1995a), have been identified which can promote formation of the active

structure of RNAs, but can be removed after folding without loss of RNA activity. These

proteins have been shown to possess helicase activity, and it has been speculated that they

promote formation of the active structure by preventing misfolding (Coetzee et al., 1994;

Herschlag, 1995; Zhang et al., 1995a). Furthermore, the HIV nucleocapsid protein NC17

and hnRNP proteins can stimulate hammerhead ribozyme activity (Tsuchihashi et al., 1993;

Bertrand and Rossi, 1994; Herschlag et al., 1994), and are proposed to do so by
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promoting the association and dissociation of substrate. This observation is consistent with

the RNA annealing activity of hnRNP proteins (Portman and Dreyfuss, 1994). While it

seems reasonable that in vivo folding even of RNAs which do not require protein cofactors

for activity in vitro may involve proteins, the in vivo relevance of any of these observations

remains to be established.

The Tetrahymena ribozyme as a model system

The Tetrahymena ribozyme is derived from a group I intron found in pre-rRNA of

the ciliated protozoan Tetrahymena thermophila (Cech and Rio, 1979). It was the first

catalytic RNA to be identified (Cech et al., 1981; Kruger et al., 1982), and since its

discovery has remained a paradigm system for the study of RNA structure and catalysis

(Cech, 1993). The wealth of information available make it the best defined large RNA

molecule, and an ideal model system in which to investigate the folding mechanism of

large, highly structured RNAs.

Function

As a group I intron, the Tetrahymena ribozyme catalyzes its own excision from pre-

rRNA in two successive transesterification reactions (Fig. 3A) (Cech et al., 1981;

McSwiggen and Cech, 1989). During the first step, the phosphate backbone is cleaved at

the 5' splice site by attack of the 3' hydroxyl of a guanosine cofactor, resulting in

attachment of the cofactor to the 5' end of the intron, and the liberation of the 3' end of the

5' exon (Zaug and Cech, 1982). Before the second step, the RNA undergoes a

conformational change which leads to the last nucleotide of the intron, also a guanosine,

being bound in the G-binding site previously occupied by the cofactor (Davies et al., 1982;

Michel et al., 1989a; Burke et al., 1990). The 3' hydroxyl of the 5' exon then attacks the

phosphate at the 3' splice site, resulting in ligation of the two exons and release of the free
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intron. This cis-splicing reaction takes place efficiently in vitro in the absence of any

proteins (Kruger et al., 1982). The only requirement is the presence of moderate

concentrations of Mg2" (full activity is observed in 2 mM MgC12) (Cech et al., 1981;

Celander and Cech, 1991). The 5' splice site is defined by a base pairing interaction

between nucleotides immediately preceding the splice site and a short recognition sequence,

termed the internal guide sequence (IGS) near the 5' end of the intron (Been and Cech,

1986; Waring et al., 1986; Murphy and Cech, 1989). To convert this RNA into a true

enzyme able to act on a substrate in trans with multiple turnover the intron was shortened at

both the 5' and 3' ends (Zaug et al., 1986; Zaug et al., 1988). The deletion of five

nucleotides from the 3' end removes the 3' splice site and prevents the G at the 3' splice

site from participating in the reaction. Deletion of 21 nucleotides from the 5' end removes

unnecessary sequences preceding the internal guide sequence. The resulting ribozyme

(also called the L-21 Sca I Tetrahymena ribozyme due to its missing 21 nucleotides from

the 5' end, and being transcribed from a plasmid template linearized with the restriction

enzyme Sca I) can bind an RNA containing a sequence complementary to the IGS and,

with the aid of a guanosine cofactor, cleave it at the site corresponding to the 5' splice site

in a reaction analogous to the first step of self-splicing (Fig. 3B). The two products are

released and the enzyme can undergo another round of catalysis. In the absence of the

cofactor, hydroxide ion can act as the nucleophile, and efficient reaction is still observed

(Herschlag and Cech, 1990a). The sequence of the IGS can be varied so that virtually any

RNA can be targeted for cleavage (Murphy and Cech, 1989). The only real sequence

requirement for efficient reaction is the presence of a U immediately preceding the cleavage

site which can form a G*U wobble pair with the first nucleotide of the IGS, defining the

site of cleavage (Barfod and Cech, 1989; Knitt et al., 1994; Pyle et al., 1994; Strobel and

Cech, 1995).
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The application of enzymological techniques has led to the elucidation of a detailed

kinetic mechanism for the endonuclease reaction, which has provided a conceptual

framework for the design and interpretation of additional studies (Fig. 4) (Herschlag and

Cech, 1990a). Under multiple turnover conditions, the rate limiting step in the reaction

cycle is release of the product bound to the guide sequence (see Fig. 3B), explaining why

substrates that form mismatches with the guide sequence, and therefore bind less tightly,

react faster under these conditions (Zaug et al., 1988; Herschlag and Cech, 1990b). The

slow rate of product release is consistent with the natural function of the intron where,

between the two steps of self-splicing, the 5' exon, corresponding to the slowly released

product, must be held in place until exon ligation can be completed (Waring et al., 1986).

Under single turnover conditions with subsaturating concentrations of ribozyme, cleavage

is at least in part limited by substrate binding (Herschlag and Cech, 1990a). At saturating

concentrations of ribozyme the chemical step or a conformational change following

substrate binding, depending on pH, become rate limiting (McConnell et al., 1993;

Herschlag and Khosla, 1994). At low concentrations of guanosine cofactor, the chemical

step also becomes rate limiting (Herschlag and Cech, 1990a). Different steps in the

reaction cycle can therefore be assayed by varying the concentrations of ribozyme,

substrate and cofactor, and the pH of the reaction buffer.

The ribozyme is most active in Mg2' (Grosshans and Cech, 1989). In the absence

of Mg2+, activity is only observed with Mn2+. The requirement for Mg2' can in part be

relieved by Ca2÷, Sr2' and Ba 2', but not by other divalent or any monovalent metal ions

(Grosshans and Cech, 1989; Celander and Cech, 1991). Two types of specifically bound

Mg2+ ions have been proposed (Grosshans and Cech, 1989). First, a small number

(probably one or two) directly participating in catalysis, which can only be substituted by

Mn2+ (Grosshans and Cech, 1989; Pyle, 1993; Steitz and Steitz, 1993). Second, a slightly
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larger number (3-8) that stabilize the active structure of the RNA, but do not participate in

catalysis (Grosshans and Cech, 1989; Celander and Cech, 1991; Wang and Cech, 1994).

These can be substituted by Ca2', Sr'~ or Ba2' as well as Mn 2
+, but not by monovalent ions

(Grosshans and Cech, 1989; Celander and Cech, 1991). Direct interactions of one oxygen

near the scissile phosphodiester bond with Mg2" have been identified (Piccirilli et al.,

1993), and a catalytic mechanism involving two Mg2' ions has been proposed (Steitz and

Steitz, 1993). While the exact catalytic mechanism is still unclear, substrate destabilization

is one of the strategies used by the ribozyme to induce bond cleavage (Narlikar et al.,

1995).

By determining the steady state concentrations of spliced and unspliced precursor

RNA, it was deduced that in vivo splicing proceeds significantly faster than in vitro (Brehm

and Cech, 1983). This has prompted speculation that additional factors, most likely

proteins, promote splicing in vivo. Any such proteins cannot be specific to Tetrahymena,

since an equivalent increase in splicing rate is observed when the intron is introduced into

E. coli (Zhang et al., 1995b). It remains to be established what limits the rate of splicing in

vivo: folding of the intron into its active global structure, productive binding of the

substrate sequence in the active site, or catalysis.

Structure

A combination of phylogenetic comparisons, chemical and enzymatic mapping and

site directed mutagenesis studies was used to define the secondary structure of the intron

(Burke et al., 1987). The representation shown in Fig. 5A shows the RNA as a

continuous sequence, and highlights the existence of several long range base pairing

interactions (such as P3 and P7). Base pairing interactions are numbered from the 5' end

as P (for pairing) 1 through P9. A set of core helices is conserved in all group I introns,

and these include P3, P4, P6 and P7. In addition to these highly conserved interactions,
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most group I introns contain additional helices peripheral to the core that are less conserved

and define subclasses of related introns (such as the P9.1, P9.2 and P5abc interactions in

the Tetrahymena intron) (Michel and Westhof, 1990). P1 is the interaction between the

internal guide sequence and the substrate, and is not present in the L-21 ribozyme in the

absence of substrate.

Similar techniques used to derive the secondary structure were employed to obtain a

model for the three dimensional architecture of the core of the group I intron (Fig. 5B)

(Michel and Westhof, 1990). This model is of low resolution, and does not include

peripheral elements, but so far has been supported by experimental results (Downs and

Cech, 1990; Michel et al., 1990; Christian and Yarus, 1992; Wang and Cech, 1992; Chen

et al., 1993; Christian and Yarus, 1993; Murphy et al., 1994). It is likely that the actual

structure of the core region closely resembles this model. In the model it is apparent that

there are two main structural subdomains which together form the core of the ribozyme

(Michel and Westhof, 1990). One subdomain includes the interactions P4, P5 and P6 (the

P4-P6 subdomain), and the second includes P3, P7 and P8 (the P3-P7 subdomain).

Electron micrographs have shown that the entire RNA forms a globular structure in the

presence of Mg2' (Wang et aL, 1994; Nakamura et al., 1995). While the two structural

subunits have so far mostly been referred to as domains, the term subdomains is more

analogous to the terminology used in the protein field, where a domain is a globular

structure, and they will therefore be referred to as subdomains here. The formation of a

globular structure is also indicated by the observation that in the presence of Mg2', regions

in the core of the RNA are protected from cleavage by hydroxyl radicals produced by

Fe(II)-EDTA (Latham and Cech, 1989). Similar protection is not observed even at high

concentrations of Nat, demonstrating that, unlike in tRNA, Mg2+ is required for higher

order folding (Celander and Cech, 1991). This role of Mg 2+ is supported by the
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localization of Mg2' binding sites to regions where the backbones of the two subdomains

approach each other in the three dimensional model (Christian and Yarus, 1993).

Consistent with the notion that secondary structure can form in the absence of Mg2',

probing base pairing with small chemical probes showed that high concentrations of Na÷

(up to 1 M) do allow formation of most of the helical elements (Jaeger et al., 1990).

Each of the subdomains is formed by stacking of a set of helical elements, and the

active site is formed in a cleft between the two subdomains (Michel and Westhof, 1990;

Murphy et al., 1994). The guanosine cofactor binding site, which had previously been

identified as being in the P7 helix, is positioned close to the active site and the scissile bond

in the structural model (Michel et al., 1989a; Yarus et al., 1991). Its position with respect

to other parts of the structure was confirmed by chemical cleavage studies using guanosine

linked to Fe(II)-EDTA (Wang and Cech, 1992). A more recent, alternative representation

of the secondary structure (Fig. 5C) more closely reflects the accumulated knowledge of

the three dimensional structure, and more clearly outlines the modular organization of the

intron (Cech et al., 1994).

Phylogenetic and mutational studies have suggested the existence of a triple helical

scaffold formed by interactions between base pairs in P4 and P6 and nucleotides in adjacent

single stranded regions (Flor et al., 1989; Michel et al., 1990). P4 and P6 are believed to

stack upon each other (Murphy et al., 1994), and triple interactions are thought to involve

two base pairs in P4 and two base pairs in P6, forming four contiguous levels of triples

(Michel et al., 1990; Green and Szostak, 1994). It is this triple helical scaffold which

connects the two subdomains and most likely defines their orientation with respect to each

other. Mutagenesis experiments suggested that the interactions consist of conventional

base triples (Michel et al., 1990). NMR studies of model compounds, however, revealed

the alternative possibility that they may involve interactions between bases and the
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backbone as well (Chastain and Tinoco, 1992; Chastain and Tinoco, 1993). These studies,

along with in vitro selection experiments (Green and Szostak, 1994), also suggest that the

triples may form cooperatively, so that disruption of one level will lead to destabilization of

at least one additional level. The importance of the triple helical scaffold was underscored

recently by the demonstration that it is required for the formation of an active complex if the

two subdomains are synthesized as separate molecules and allowed to associate through

tertiary interactions only (Doudna and Cech, 1995). If the subdomains were designed such

that the scaffold was unable to form, they could still associate, but much more weakly than

in the presence of the scaffold, and the resulting complex was inactive.

The three dimensional model does not include a number of peripheral helical

elements that are phylogenetically less conserved, and little is known about their structure.

Deletion experiments have established that none of the extensions are absolutely required

for catalytic activity (Doudna and Szostak, 1989; Beaudry and Joyce, 1990; van der Horst

et al., 1991; Jaeger et al., 1993; Laggerbauer et al., 1994). In their absence, however, the

structure of the intron core can be greatly weakened, and increased concentrations of Mg2+

are required to preserve some activity.

The most well defined extension is the P5abc extension that is part of the P4-P6

subdomain. A bend has been identified in the internal loop between P5 and P5a which

allows an interaction between the loop capping P5b and a base pair in P6a, stabilizing the

P4-P6 subdomain (Murphy and Cech, 1993; Murphy and Cech, 1994). It has also been

demonstrated that the entire P5abc extension can be replaced by the CYT-18 protein (Mohr

et al., 1994). This protein is a tyrosyl-tRNA synthetase and is required for activity in a

group I intron from Neurospora. In its cognate intron, which does not possess a P5abc

extension, the protein binds to the RNA core, stabilizing it (Guo and Lambowitz, 1992;

Mohr et al., 1992). Completely unrelated RNA sequences have also been identified which
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can substitute for the wild type sequence of P5abc, reinforcing the modular organization of

the intron (Williams et al., 1994). Together, these data indicate that one primary role of the

P5abc extension is to stabilize the core of the ribozyme.

A second extension at the 3' end of the Tetrahymena intron which includes the P9.1

and P9.2 helices (the P9.1-P9.2 extension) has also been investigated more specifically

(Banerjee et al., 1993; Laggerbauer et al., 1994). While deletion of this extension

increases the Mg2' requirement for stable formation of the core structure, at saturating Mg2+

concentrations the catalytic activity of the ribozyme appears undiminished compared to wild

type (Laggerbauer et al., 1994).

Binding of the oligoribonucleotide substrate to the ribozyme occurs in two steps.

The substrate first base pairs to the internal guide sequence, resulting in an 'open' complex,

before the resulting P1 helix then docks into the active site to form a 'closed' complex

(Young et al., 1991; Bevilacqua et al., 1992; Herschlag, 1992; Wang et al., 1993). A

significant fraction of the binding energy in the closed complex is not derived from base

pairing, but from tertiary interactions between the P1 helix and the core of the ribozyme

(Pyle et al., 1990). Interactions occur between phosphates on both strands of the helix and

bases in the core (Bevilacqua and Turner, 1991; Pyle and Cech, 1991; Pyle et al., 1992;

Herschlag et al., 1993; Strobel and Cech, 1993; Strobel and Cech, 1994), and also involve

the exocyclic amine of the G in the G*U wobble pair preceding the cleavage site (Knitt et

al., 1994; Pyle et al., 1994; Strobel and Cech, 1995; Strobel and Cech, 1996). It is this

exocyclic amine that defines the cleavage site. A stopped flow fluorescence study of

substrate binding showed that the two binding steps proceed rapidly (in milliseconds), and

can be kinetically resolved (Bevilacqua et al., 1992). In Tetrahymena pre-rRNA, base

pairing of nucleotides preceding the 5' splice site to the IGS to form P1 competes with an
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alternative interaction of these nucleotides with upstream sequences (Woodson and Cech,

1991). The need to disrupt this interaction can slow the rate of splicing.

The tertiary interactions between P1 and the core in part explain the slow rates of

product release and substrate dissociation, which are much slower than expected for

dissociation of a six base-pair interaction (Herschlag and Cech, 1990a). As a result,

substrate cleavage is much faster than dissociation so that even substrates that form

mismatches with the guide sequence, resulting in weaker binding and faster dissociation,

are still cleaved very efficiently (Zaug et al., 1988; Herschlag and Cech, 1990b). Sequence

specificity of substrate cleavage can be increased by shifting the equilibrium between the

open and closed complexes of substrate and ribozyme in favor of the open complex,

allowing substrates to dissociate more rapidly (Herschlag, 1991). This can be

accomplished by changing the length of the single stranded region between the IGS and P2

(Young et al., 1991), which serves as a tether between the P1 helix and the core, or directly

by eliminating tertiary interactions between P1 and the core (Pyle and Cech, 1991; Pyle et

al., 1992). Weakening the docking of the P1 helix into the active site cleft does, however,

result in a decrease of the fidelity of substrate cleavage, reflecting the importance of

interactions between P1 and the core not only in stabilizing the closed complex, but also in

defining the register in which P1 docks (Young et al., 1991; Herschlag, 1992; Strobel and

Cech, 1994).

Folding

The Mg2" requirement for higher order structure formation in the Tetrahymena

ribozyme has allowed the examination of its equilibrium folding pathway by probing the

structure of the RNA at different concentrations of Mg2+ (Celander and Cech, 1991).

Protection from Fe(II)-EDTA cleavage was observed in the P5abc extension at slightly

lower concentrations than in other regions of the molecule, leading to the proposal of an
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equilibrium folding intermediate in which only the P5abc extension is properly folded

(Celander and Cech, 1991). The existence of such an intermediate was further confirmed

when Mg2'-induced folding of the P4-P6 subdomain was examined in isolation (Murphy

and Cech, 1993; Murphy and Cech, 1994). This study showed first, that this subdomain

can fold into a higher order structure in the absence of the rest of the molecule, and that this

structure appears similar to that formed in the context of the whole intron and second, that

folding of the P5abc extension into a discrete higher order conformation appears to be

required for structure formation in the rest of the P4-P6 subdomain. This hierarchical

relationship was confirmed and extended by mutational studies in the context of the entire

intron which revealed that here also, the P5abc extension must form before the P4-P6

subdomain can fold, and further that the P4-P6 subdomain must fold before the remainder

of the core, including the P3-P7 subdomain (Laggerbauer et al., 1994). These

observations define an equilibrium folding pathway of the ribozyme at different Mg2"

concentrations that parallels very closely the kinetic pathway outlined in the following

chapters.

When melting of the structure of the ribozyme is monitored by following changes in

UV absorbance, a minor low temperature transition is followed by a major transition at

higher temperature (Banerjee et al., 1993). In combination with chemical modification

experiments it was established that the low temperature transition represents loss of tertiary

structure, while the high temperature transition is the concerted loss of secondary structure.

Similar to what had been observed in tRNA, tertiary structure is therefore less stable than

secondary structure. In particular, it was shown that an interaction between the 3' terminal

P9.1-P9.2 extension and nucleotides in the loop of P2 or P2.1 is lost during the low

temperature transition (Banerjee et al., 1993). Equivalent studies on another group I intron

gave similar results, with the low temperature transition again being due to interactions
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between a 3' terminal element of the intron with nucleotides close to the core (Jaeger et al.,

1993). More recently, chemical modification agents were also used to follow kinetic

folding of the RNA (Banerjee and Turner, 1995). Folding rates were deduced from

changes in the rate of modification of the RNA upon folding. While these experiments

were performed at low temperatures where the intron is not very active, and give only an

indirect measure of folding itself, they did suggest that different parts of the RNA fold at

different rates, and that folding of some regions can be very slow. Slow folding was

found to be consistent with measures of the rate of gain of full catalytic activity of the

ribozyme.

Together, these studies suggest that folding of the Tetrahymena ribozyme may be a

complex process including one or more intermediates, but provide only very little

information about kinetic folding. The early observation that, to obtain fully active

ribozyme at 500C, the RNA must be preincubated in Mg2+ for several minutes before the

reaction is initiated by adding substrate suggested that even at functionally relevant

temperatures formation of the active structure of the ribozyme might be rather slow

(Herschlag and Cech, 1990a). More explicit kinetic investigations were required,

however, to begin to define a kinetic folding pathway for this RNA, and gain an

understanding of the rules governing the process of higher order RNA folding.
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Concept

Measuring folding rates

The stability of the native conformation of large, highly structured RNA molecules

generally depends on divalent metal ions, usually Mg2' (Pan et al., 1993; Pyle, 1993) (see

chapter 1). In the absence of divalent metals, many RNAs exist in a partially denatured

state where some local secondary structure elements, such as hairpins, are stable, but many

tertiary interactions are not. The addition of Mg2' can thus be used as a means to initiate

higher order folding and formation of the native structure.

At equilibrium, Mg2+-induced conformational changes in the structure of group I

introns and other RNAs can readily be detected using conventional chemical probes such as

dimethyl sulfate, diethyl pyrocarbonate (Jaeger et al., 1990; Jaeger et al., 1993), and

Fe(II)-EDTA mediated hydroxyl radical cleavage (Latham and Cech, 1989; Celander and

Cech, 1991; Heuer et al., 1991), as well as by ultraviolet crosslinking (Wang and Cech,

1994). Following the timecourse at which these changes take place, however, is less easily

accomplished. To measure folding rates directly, the time required to probe the RNA

conformation must be short compared to the time it takes the RNA to fold. Current

protocols for all the above techniques require that the RNA is exposed to the probe or to

UV light for relatively long periods, making them ill-suited for kinetic experiments.
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Spectroscopic techniques to follow higher order folding are also not readily

available. The size of RNAs of interest and the absence of protons with the appropriate

exchange properties preclude NMR analysis by hydrogen/deuterium exchange similar to

that successfully used to study protein folding. Changes in UV absorbance report mainly

the formation of secondary structure, and are not very sensitive to higher order folding.

There are no intrinsic fluorescent moieties in RNA, and the application of fluorescence

spectroscopy would require the introduction of chemical groups that can act as fluorescent

probes. Therefore, none of the standard techniques used to study RNA structure and

conformation are readily amenable to following the kinetics of higher order folding.

The base pairing potential of RNA suggested an alternative strategy to circumvent

these difficulties. It was reasoned that if Mg2" induced significant changes in the

accessibility of the RNA to small chemical probes, hybridization of complementary

oligodeoxynucleotides should also be affected. Upon Mg2+-induced folding, parts of the

RNA sequence previously accessible should become inaccessible to binding by short DNA

oligonucleotides. In earlier studies, the hybridization of such probes to structured RNAs

under various equilibrium conditions had been examined (Uhlenbeck et al., 1970; Weller

and Hill, 1992; Cload et al., 1993; LeCuyer and Crothers, 1994), and significant changes

in accessibility were detected. Hybridization of two complementary strands of nucleic

acids is known to be very rapid, and potentially faster than tertiary structure formation,

suggesting that this technique might allow a kinetic analysis of higher order folding. RNA

bound by oligonucleotide probes can be detected by making use of the enzyme RNase H,

which selectively cleaves the RNA strand of a RNA:DNA helix, and will therefore cleave

the RNA at the site of probe hybridization.
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Kinetic oligonucleotide hybridization assay

Experimental approach

An experimental protocol was designed which allows measurement of the time

dependence of changes in the accessibility of the RNA to specific oligonucleotide probes

(Fig. 6). Folding is initiated by the addition of Mg2' to 32P-labeled RNA equilibrated in the

absence of Mg2". Samples from the folding reaction are taken after increasing times t1, and

added to an excess of oligonucleotide probe and RNase H, setting up a kinetic competition

between continued folding and probe binding. Under the appropriate conditions the

fraction of the RNA that remains unfolded (U) is rapidly bound by the probe (D) and

cleaved by RNase H at the site of hybridization (resulting in fragments S and L). RNA that

has already folded (F) is inaccessible, and remains uncleaved. Electrophoretic separation

of cleaved and uncleaved RNA allows quantitation of the fraction cleaved, and thus the

fraction unfolded, as a function of time.

The most revealing application of oligonucleotide hybridization and subsequent

RNase H cleavage is a rapid quench experiment to measure the fraction of RNA that

remains unfolded at any given time after addition of Mg2'. The rate of decrease of this

fraction, manifested by the amount of RNA cleaved by RNase H, directly corresponds to

the folding rate of the RNA (Fig. 7). For the fraction of RNA cleaved in the assay to be

equal to the fraction still unfolded at the time oligonucleotide and RNase H are added, and

thus to obtain a snapshot of progress toward the folded state, four kinetic conditions must

be met. First, the rates of probe hybridization and RNase H cleavage must be rapid

compared to the folding rate. Second, sufficiently high probe concentrations must be used

so that all accessible RNA is bound. Third, RNase H cleavage must be much faster than

dissociation of the RNA*probe hybrid. Fourth, unfolding under native conditions must be

slow compared to folding.
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Kinetic oligonucleotide hybridization assay

Limitations

In principle, if oligonucleotides complementary to different regions are used, it

should be possible to probe folding of each part of a large RNA specifically and

independently. In practice, only those sequences can be studied which are accessible to

DNA probe hybridization and RNase H cleavage in the absence, but not in the presence, of

Mg2 +, and where binding of the probe can compete successfully with structure formation

when probe and Mg2' are added at the same time. Therefore, the entire folding process

cannot be followed from the denatured (D) to the native (F) state, but only the progression

from the Mg2+-free form of the RNA (I,) to the first folding intermediate in which binding

of the DNA probe or cleavage by RNase H, or both, are blocked (I,) (Fig. 8). There

certainly are steps preceding the addition/binding of Mg2+, including the formation of most

short range secondary structure, and there may be further rearrangements after the

formation of the first inaccessible intermediate. Furthermore, only those folding events

accompanied by a change in accessibility can be detected. Thus, only a part of the folding

pathway can be explored by following Mg2'-induced changes in the accessibility of RNA to

external probes.

Feasibility

To determine whether there are regions of the Tetrahymena ribozyme suitable for

kinetic analysis by the oligonucleotide hybridization assay, 21 oligonucleotides

complementary to different sequences within the ribozyme were screened to survey most of

the conserved core (Fig. 9). Each oligonucleotide was tested for its ability to hybridize, in

competition with structure formation, when added at high concentration simultaneously

with Mg2+. A second experiment tested each probe for binding after the RNA had been
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Figure 9. Initial screening of oligodeoxynucleotide probes complementary
to the Tetrahymena ribozyme. The target sequence for each probe is outlined
in bold. Probes were numbered according to their target sequence, starting
from the 5' end of the RNA.
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Kinetic oligonucleotide hybridization assay

equilibrated in Mg2' for ten minutes. These two extremes represent the initial and final

points of a folding time course.

The probes can be grouped into three classes (Fig. 10). The first class gave no

observable RNase H cleavage when added with, or after, Mg2'. Members of this class

generally target secondary structures that would be expected to form in the absence of Mg2'

(such as probes 10, 11 and 17), and the lack of cleavage was therefore not surprising.

Although the failure to elicit cleavage likely is due to the target site being unavailable for

probe binding in the absence of Mg2', it may also be due to Mg2+-induced structure

formation in these regions being much faster than oligonucleotide hybridization, or to the

RNA*DNA complex being sterically inaccessible to RNase H. The second class competed

successfully with structure formation when added simultaneously with Mg2+, resulting in

almost complete cleavage of the RNA, but gave almost no cleavage after equilibration in

Mg2+. This class includes probes targeting sequences involved in long-range interactions,

such as the P3 and P7 helices (probes 1, 14, 15 and 19; see Fig. 9), that might be

expected to require Mg2' for their stabilization, if not their formation. The third class of

probes gave incomplete cleavage at the zero time point, and significant remaining cleavage

at the ten minute time point (for example probes 6, 9, 12 and 18). The observation of

these three different classes of probe behavior suggested that there are distinguishable

folding events that can be addressed by oligonucleotide hybridization.

Controls

A series of control experiments were performed to determine whether the kinetic

conditions outlined above were met for the probes exhibiting the most significant changes

in accessibility. To ensure that probe binding was fast and that all the accessible RNA was

bound by probe, a series of concentrations of oligonucleotide was tested in experiments

equivalent to the zero time point described above to determine the minimal concentration
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Kinetic oligonucleotide hybridization assay

necessary for maximal cleavage. At 20 to 70 jiM oligonucleotide more than 90 percent of

the RNA was cleaved for probes targeting P3 and P7 (Fig. 11, probes 15 and 19).

Similar oligonucleotide concentrations for P4 and P6a probes (probes 8 and 12) produced

lower, but still saturated, cleavage. To ensure that RNase H cleavage was fast, reactions

equivalent to the zero time point described above were performed in larger volumes using

varying concentrations of RNase H, and aliquots removed and quenched after different

times to determine the RNase H concentration necessary to produce maximal cleavage

rapidly. At 0.1 units/ll RNase H (corresponding to a large stoichiometric excess of

enzyme over RNA) the reaction was always complete in less than 30 seconds. Under these

conditions, therefore, hybridization and cleavage were rapid compared to the measured

folding rates (see chapter 3). To confirm that RNase H cleavage was faster than probe

dissociation, the rate of decrease in the extent of cleavage after incubation of pre-formed

probe*RNA complex under folding conditions, corresponding to the rate of probe

dissociation, was measured. For probes ten nucleotides long, cleavage decreased less than

10 percent after one minute when P3, P4, or P7 were targeted (Fig. 12), and less than 20

percent after 30 seconds when P6a was targeted. Dissociation rates varied from probe to

probe, and were considerably faster than expected for ten base-pair helices, suggesting that

the RNA can actively displace the oligonucleotides. Even the accelerated dissociation rates,

however, are slower than RNase H cleavage (see above). A probe length of ten

nucleotides was chosen because shorter probes did not form sufficiently stable complexes,

while longer probes anneal to target sequences that contribute to more than one structural

feature in the RNA. To determine whether significant unfolding of the RNA occurred

under native conditions, fully folded ribozyme was incubated in the presence of excess

probe and RNase H. Less than 20 percent cleavage was observed after two minutes (using

probe 15), indicating that the RNA remains in the folded, inaccessible conformation
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Figure 12. Oligonucleotide probe dissociation under native conditions.
(A) Probe 15, targeting P3.
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Kinetic oligonucleotide hybridization assay

(Fig. 13). These results show that if probe binding and RNase H cleavage are performed

for 30 seconds at high concentrations of oligonucleotide and RNase H, all the kinetic

conditions outlined above are met, and the fraction of RNA cleaved corresponds directly to

the fraction that remains unfolded at the time of probe addition. Rapid quench experiments

performed under these conditions with probes targeting P3, P7, P4 or P6a therefore yield

accurate information on ribozyme folding rates.
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Kinetic intermediates

Identification of intermediates

In the initial screening (see chapter 2), oligonucleotides complementary to both

strands of the P3 helix (probes 1, 15) showed the second class of behavior (Fig. 10), with

accessibility to probe binding being Mg2'-dependent. P3 is part of a pseudoknot

constituting one subdomain of the core of the intron and is essential for ribozyme activity

(Burke et al., 1986; Williamson et al., 1987; Couture et al., 1990). It is a long-range base-

pairing interaction, with its two strands far apart in the linear sequence of the RNA (see

Fig. 5A), and it was therefore anticipated that it might exhibit interesting folding behavior.

To begin to explore the kinetics of folding, a detailed analysis of formation of the P3 helix

was undertaken.

Slow Folding of P3

After Mg2
+ was added to RNA equilibrated in Tris*HCI buffer, the accessibility of

P3 to probe 15 decreased with time (Fig. 14). The observed decay fits well to a single

exponential (Fig. 15A) and is dependent on the presence of Mg2'. When folding buffer

containing Nae only was added, no decrease in cleavage was observed. Folding could also

be initiated by adding Mg2' to RNA that had already been equilibrated in Na+. The

measured rate is independent of the concentrations of RNA, oligonucleotide probe and

RNase H, and the time allowed for RNase H cleavage. Between 10 and -400 mM Na' the

extent and rate of decrease of cleavage were constant. At higher Na' concentrations, the
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Figure 14. Folding kinetics of P3 measured by the oligonucleotide
hybridization assay. Bands L, S1 and S2 are the products of RNase H
cleavage at the site of hybridization of probe 15. Band F is the full
length ribozyme.
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Kinetic intermediates

fraction of RNA competent for cleavage decreased in a gradual way, even in the absence of

Mg2
+. This was not due to the inability of RNase H to function at such high salt

concentrations (before cleavage, Na' was diluted to 100 mM, where RNase H still cleaves

rapidly). The decreased accessibility under these high salt conditions is most likely due to

Nae-induced stabilization of secondary structure, since Fe(II)-EDTA mapping has shown

that the native tertiary structure does not form in the presence of monovalent ions only

(Celander and Cech, 1991). To confirm the identity of the cleavage products, RNA was 5'

or 3' end-labeled and subjected to probe binding and RNase H cleavage. The products

were compared directly with an RNA sequencing ladder generated by 12-cleavage of

phosphorothioate containing ribozyme (Rudinger et al., 1992). S2 (Fig. 14) is due to

cleavage at sequences in P7 that have partial homology to the target sequence in P3. Since

no intermediate resulting from cleavage at the P7 site only was ever detected, it is assumed

that S2 can only derive from Sp, after the initial cleavage event in P3. Therefore, the

presence of S2 does not alter the quantitation of the fraction cleaved, which is obtained from

the ratio of L/(L + F) only (Fig. 14). Together, these results suggest that the observed rate

reflects the rate limiting step for P3 folding and becoming inaccessible to probe binding

and/or RNase H cleavage. Therefore, there is at least one slow step on the folding pathway

of the Tetrahymena ribozyme which occurs on the minute time scale (kob. = 0.72 ± 0.14

min-'; the value shown is derived from 17 independent experiments performed over a

period of 10 months with several preparations of each component). While the most

straightforward interpretation is that the observed decrease in cleavage is due to actual helix

formation or stabilization, other structural rearrangements may also indirectly result in the

target sequence becoming inaccessible.
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Requirement for a transient intermediate

The simplest mechanism that could account for the Mg2e requirement is a two state

transition involving the binding of Mg2' upon folding. If such a one-step mechanism is

correct, then the observed rate of folding will be dependent on the Mg2" concentration. To

test this possibility, the rate at which P3 becomes inaccessible was measured at different

Mg2
+ concentrations (Fig. 15A). At lower [Mg 2+] the extent of cleavage once equilibrium

had been reached increased, consistent with a shift in the equilibrium from the folded to the

unfolded conformation. The midpoint of this transition ([Mg 2'],, 2) occurred when the Mg 2
+

concentration was 0.97 mM (Fig. 15B). A similar transition is seen when the Mg2 -+

dependence of ribozyme activity, global structure formation or active site formation is

examined (Celander and Cech, 1991; Wang and Cech, 1994), indicating that these

observations correlate closely with results obtained by independent methods. The rate of

approach to equilibrium, however, was found to be independent of Mg2+ concentration

(Fig. 15A). Probes to both strands of P3 (probes 1, 15) gave identical results, supporting

the interpretation that the decrease in cleavage is due directly to formation or stabilization of

the P3 helix. The only difference was that a threefold higher concentration of probe 1 was

required compared to probe 15 to achieve the same extent of cleavage, and fulfill all the

kinetic conditions outlined above. Apparently, the formation of P3 occurs via a more

complex mechanism where rapid Mg2' binding follows a slow, Mg2'-independent step

(Fig. 16). Thus, there is a transient intermediate on the folding pathway, and the rate

limiting step is Mg2'-independent.

Activity assay for folding

To compare the rate of formation of P3 with the rate at which the active structure is

formed the well characterized endonuclease activity of this RNA was exploited (Herschlag

and Cech, 1990a). The amount of active ribozyme can be determined from the magnitude
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of the kinetic burst corresponding to the first turnover in a multiple turnover reaction

(Herschlag and Cech, 1990a). The relative amount of active ribozyme present was

measured after increasing folding times following the addition of Mg2+ (Fig. 17). Full

activity was obtained at a rate (kobs. = 0.61 min-' ) comparable to that of P3 becoming

inaccessible to probe binding as determined by oligonucleotide hybridization. It was

therefore concluded that P3 formation is the rate limiting step in formation of the active

structure.

Folding of P7

To obtain information about the folding kinetics of different regions of the RNA,

probes targeting other sequences were examined. P7 is the second stem of the central

pseudoknot in the conserved core of group I introns. Together with P3, P7 forms part of

one of two stacked helical subdomains in the model of the three-dimensional structure of

the Tetrahymena ribozyme (Fig. 5C) (Michel and Westhof, 1990). In the initial screen,

probes complementary to both strands of P7 (probes 14, 19) fell into the second class

(Fig. 10), with accessibility to probe binding and/or RNase H cleavage being Mg2÷-

dependent. In all experiments defining the kinetic mechanism of P3 formation, the probes

for P7 gave results similar to those obtained with probes targeting P3. In 10 mM Mg 2
+, the

rate constant of P7 becoming inaccessible to oligonucleotide probe and/or RNase H

cleavage was 0.74 min-', and this rate constant remained constant, within experimental

error, at lower Mg2+ concentrations (Fig. 18A). The midpoint of the transition in the

equilibrium Mg2
+ concentration dependence was 1.4 mM, close to that found for P3

formation (0.97 mM, see above) (Fig. 18B). P3 and P7 are thus indistinguishable both

kinetically and at equilibrium. Although these experiments so far could not yet determine

whether they form cooperatively, sequentially, or independently, the P3 and P7 helices
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clearly become inaccessible to probe binding and RNase H cleavage on the same time scale

and at similar Mg2' concentrations.

Two further tests of the kinetic mechanism of rapid Mg'z-binding following the rate

limiting, Mg2+-independent step were performed with probes targeting P3 and P7. First,

unfolding was monitored after dilution of the Mg 2+-equilibrated sample, and both reverse

steps were fast. Second, in a double-jump experiment, re-folding was initiated

immediately after unfolding by adding back Mg2', and was found to occur at the same rate

as Mg2+-initiated folding. These two observations further support the proposed two-step

mechanism of P3-P7 formation.

Folding of P4-P6

A second helical subdomain in the model of the three-dimensional structure of the

intron is formed by the P4, P5, and P6 stems (see Fig. 5B, C) (Michel and Westhof,

1990). This subdomain has been shown to be independently stable (Murphy and Cech,

1993; Murphy and Cech, 1994). When oligonucleotides complementary to sequences in

P4 (probe 8) and P6a (probe 12) were added to the RNA simultaneously with Mg2', no

more than 40 to 50 percent cleavage was observed. These probes therefore are members of

the third class (Fig. 10). If the limited cleavage were due to similar rates for folding and

probe binding, it should have been possible to increase the extent of cleavage by increasing

the probe concentration. At higher concentrations of either probe, however, the extent of

cleavage remained unchanged. Alternatively, the population of unfolded molecules may be

heterogeneous, with only a subpopulation able to bind oligonucleotides.

When either of the probes for P4 or P6a was added to the RNA before Mg2+,

cleavage increased to almost 80 percent. In a kinetic experiment a slow folding phase

appeared to be preceded by a rapid burst (Fig. 19), providing evidence that an equilibrium

between at least two conformations exists in the absence of Mg2+. One of these is
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inaccessible to binding by probes 8 and 12 or RNase H cleavage and can fold rapidly once

Mg2+ is added, while the second conformation is accessible to the probes and must go

through a slow step in order to fold. In the absence of bound Mg 2+, hybridization of

oligonucleotide can drive the equilibrium toward the accessible conformation to give

increased cleavage. An attempt to improve the resolution of the kinetic phases by folding

the RNA at a lower temperature showed that the kinetic behavior of P4 and P6a at 370C and

270C was indistinguishable by kinetic oligonucleotide hybridization. The apparent

temperature independence of P4 and P6a formation contrasts with P3 and P7, whose rates

of formation were very sensitive to temperature (activation energy - 20 kcal/mol; this value

was obtained from an arrhenius plot of the observed rates of formation of P3 and P7,

measured using probes 15 and 19, respectively, at five temperatures between 250C and

370 C) (compare Figs. 15, 18 and Fig. 19). Thus, these two helical subdomains of the

Tetrahymena intron clearly show different kinetic behavior during Mg2+-induced folding,

with the P4-P6 subdomain apparently forming faster than P3-P7.

A model for the kinetic folding mechanism

These results support a model for the folding pathway of the Tetrahymena ribozyme

that includes several intermediates and involves the sequential formation and stabilization of

helical subdomains (Fig. 20). The first intermediate, I,, consists of short-range secondary

structures, such as hairpins, that form in the absence of Mg 2'. Experiments with probes

targeting P4 and P6a show that Iu is in a slow equilibrium with another conformation (I,).

At present, it is not possible to distinguish whether I, is a productive intermediate, or is on

a nonproductive branch of the folding pathway. Rapid Mg2' binding by either I, or 11 leads

to formation of 12 and is reflected by the rapid burst observed in the kinetic experiments

probing P4 and P6a. 12 corresponds to an intermediate in which P4 and P6 are inaccessible

to the probes, while P3 and P7 are still accessible. 13 is the transient intermediate inferred
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from the Mg2" concentration independence of the rate of P3 and P7 formation (see Figs.

15, 18). Only the presence of such an intermediate in the mechanism of P3-P7 formation

can explain the requirement for Mg2", since the rate limiting step itself does not involve

metal binding. The species 13 may be one in which P3 and P7 are formed, but are not yet

stable or in the correct orientation relative to P4-P6. Binding of Mg2" to 13 may allow the

two helical stacks to come together in a conformation in which P3 and P7, as well as P4

and P6, are protected (IF). Additional fast rearrangements may lead to the final structure

(N), but since the rate at which full activity is gained is the same as the rate at which P3 and

P7 become inaccessible, formation of the P3-P7 subdomain appears to be the overall rate

limiting step on the folding pathway.

Implications

The described folding mechanism (Fig. 20) has three main implications. First,

Mg2+ binding to 13 must in fact be significantly stronger than suggested by the transition

midpoint ([Mg 2
+]1,) observed in the experiments with probes targeting P3 and P7, as well

as in previous studies of the activity and structure of the Tetrahymena ribozyme (Celander

and Cech, 1991; Wang and Cech, 1994). To overcome the unfavorable equilibrium

between 12 and I3, high concentrations of Mg 2+ are required, even though 13 binds Mg 2+

tightly. With probes targeting P3 or P7 more than 90 percent cleavage is observed if they

are added together with Mg2
+, suggesting that the equilibrium between 12 and I3 is at least

tenfold in favor of 12, and thus that the true Kd of magnesium is at least ten times lower than

the observed midpoint of the transition ([Mg 2 ] 2) of about 1 mM. From the experimental

data, an approximate upper limit of 100 pgM for the midpoint of the transition of Mg2+

binding to I3 can therefore be estimated. This value is consistent with the magnitude of

dissociation constants measured for high affinity Mg2" binding sites in tRNA (Schimmel

and Redfield, 1980; Pan et al., 1993). Second, the folding of this RNA involves several
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discrete steps, reflected in the inferred kinetic intermediates. Third, and most fundamental,

the folding pathway includes a slow step taking place on the time scale of minutes, and this

rate limiting step itself does not involve binding of Mg2".

Comparison to previous studies

These results support and expand upon previous investigations of RNA folding.

Studies on tRNA by Crothers and others have demonstrated the existence of folding

intermediates (Cole and Crothers, 1972; Cole et al., 1972; Crothers et al., 1974; Stein and

Crothers, 1976a; Stein and Crothers, 1976b). Lynch and Schimmel, in a fluorescence

study (Lynch and Schimmel, 1974), have shown that the rate limiting step for Mg2
+
-

induced folding of tRNA, as with the Tetrahymena intron, does not involve Mg2' binding.

In contrast to the findings for the ribozyme, however, in tRNA Mg2' binding precedes the

slow, Mg2' independent, steps. For both group I introns and tRNA, secondary structure

generally precedes formation of tertiary interactions, which can be quite slow (Lynch and

Schimmel, 1974; Banerjee et al., 1993; Jaeger et al., 1993; Banerjee and Turner, 1995).

The rate of helix formation in nucleic acids is known to be extremely rapid (k = 10'-109 M-

'min-') (Scheffler et al., 1968; Pirschke and Eigen, 1971). Short range helices, and thus

the formation of Iu from the denatured RNA, are expected to form at such fast rates.

The presence of a slow step on the folding pathway of the Tetrahymena ribozyme is

consistent with the reported observation that prior incubation in Mg2+ is necessary to obtain

fully active ribozyme (Herschlag and Cech, 1990a). Studies on the thermodynamics of

Mg2+-induced folding of this RNA (Celander and Cech, 1991; Laggerbauer et al., 1994)

have provided evidence for two equilibrium folding intermediates; one in which a

substructure involving P5abc is formed, and one in which only the P4-P6 subdomain, but

not P3-P7, is formed. These observations, together with the demonstration that the P4-P6

subdomain is stable independently, but only in the presence of Mg2+ (Murphy and Cech,
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1993; Murphy and Cech, 1994), support the plausibility of the proposed kinetic

intermediate 12. In these studies it was shown that the P5abc substructure facilitates the

formation of the P4-P6 subdomain, and that the P4-P6 subdomain stabilizes the catalytic

core, including P3-P7. It can therefore be inferred that the P5abc intermediate should

precede 12 in the kinetic mechanism. Since, however, only those folding events can be

monitored by the kinetic hybridization assay that are accompanied by a change in

accessibility to the oligonucleotide probes, and formation of the P5abc intermediate does

not appear to cause such a change, it cannot be definitively placed on the kinetic folding

pathway. The localization of Mg2" interactions to sites between the two helical stacks

formed by P4-P6 and P3-P7 (Christian and Yarus, 1993; Murphy and Cech, 1993;

Murphy and Cech, 1994) may explain the Mg2' requirement for association of the

subdomains. The general mechanism of helix formation followed by docking into the

correct orientation follows a precedent set by kinetic and thermodynamic studies of an

oligonucleotide substrate binding to the intron, where hybridization to the internal guide

sequence precedes movement of the resulting P1 helix into the active site (Bevilacqua et al.,

1992; Herschlag, 1992; Wang et al., 1993).

A framework for RNA folding

This model provides a conceptual framework for studying kinetic RNA folding

intermediates. The active structures of large RNA molecules appear to consist of stacks of

helices forming subdomains and to be stabilized by intersubdomain tertiary contacts. It has

been suggested that these structures are formed in a hierarchical process, with individual

helices forming first and providing nucleation sites for formation of the stacked

subdomains, which then come together in the final structure (Westhof and Michel, 1992;

Cech, 1993; Murphy and Cech, 1993). The experiments described above provide direct

kinetic evidence for such a hierarchical folding pathway in the Tetrahymena ribozyme. The
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observed intermediates suggest that subdomain folding generally occurs in two steps.

Base-pairing interactions form first, followed by formation of tertiary contacts and

stabilization through specific binding of Mg 2".

In summary, the studies described so far allowed the presentation of a model for the

folding pathway of the Tetrahymena ribozyme in which folding proceeds via several

intermediates, with the P4-P6 subdomain being formed before, and potentially required

for, formation of the P3-P7 subdomain. The rate limiting step is formation of P3-P7, and

in itself does not involve binding of Mg2". Although only a part of the overall folding

process could be examined, it is clear that folding is not a simple two-state transition, but

takes place via a complicated mechanism involving both Mg2+-dependent and Mg2
+-

independent steps. The rapid transcription rates of RNA polymerases (von Hippel et al.,

1984) would result in the synthesis of an RNA the size of a group I intron in a matter of

seconds. This may affect the formation of higher order structure (Emerick and Woodson,

1993; Lewin et al., 1995), which can be much slower, and probably takes place post-

transcriptionally rather than during transcription.
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The model for the folding mechanism of the Tetrahymena ribozyme presented in

chapter 3 documents the basic order of subdomain assembly, but does not reveal the details

of the molecular rearrangements represented by the observed kinetic folding steps. To

further refine the model, site directed mutagenesis was used to address three important

issues in the folding mechanism. First, does the P3-P7 subdomain in fact constitute a

cooperative kinetic folding unit? Second, what is the nature of the rate limiting step?

Third, is formation of the two subdomains in fact hierarchical? The results presented in

this chapter show that the P3 and P7 helices form in an interdependent manner, that the

slow step in the minimal kinetic folding pathway involves both the formation of a triple

helical scaffold that orients the two subdomains with respect to each other, and the

stabilization of the P3-P7 subdomain by a nonconserved 3' terminal extension of the

intron. The integrity of the P4-P6 subdomain, furthermore, is required for proper

formation of P3-P7, while disruptions in P3-P7 have little effect on P4-P6 formation.

Interdependence of P3 and P7

In the studies described above, the P3 and P7 helices became inaccessible to

oligonucleotide probes at the same rate and at similar Mg2÷ concentrations, suggesting that

the P3-P7 subdomain folds as a unit. It was not possible, however, to determine whether

this subdomain forms cooperatively, or whether individual elements can fold

independently. To test for possible interdependence of formation of the P3 and P7 helices,

equilibrium and kinetic folding was examined for ribozymes containing mutations
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Figure 21. Mutations in the Tetrahymena ribozyme designed to reveal
details of the folding pathway. The probes were adjusted to maintain
complementarity to the targeted sequences. Substitutions present in any
one mutant RNA are boxed in. P3 mutant: G272A/C274G; P7 mutant:
U307G/G309C; triple scaffold mutant: C260G; P4 mutant: G212C. The
site of truncation in the Nhe I deletion mutant is indicated, along with the
P9.1 -P9.2 extension. The two structural subdomains are outlined.
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disrupting two base pairs in either the P3 or the P7 helix (Fig. 21). The particular

mutations were chosen because their effect has previously been studied in the context of a

self-splicing version of the intron to show the importance of the P3 and P7 stems for

catalytic activity (Burke et al., 1986; Williamson et al., 1987). These studies showed that

the mutant introns, while inactive at 2 mM Mg2e (where the wild type is active), still

retained catalytic activity at 10 mM Mg2', suggesting that the mutations do not result in a

global disruption of the structure of the RNA at the higher Mg2+ concentration.

P3 mutant

In the P3 mutant (G272A/C274G), both the extent and the rate of formation of the

P3 helix were found to be indistinguishable from wild type at saturating (10 mM) Mg2+

(Fig. 22A). Examination of the Mg'2 concentration dependence of folding at equilibrium,

however, revealed an increased requirement for Mg2+ to form the P3 helix in the P3 mutant

compared to wild type (Fig. 22B). This observation shows that the P3 helix is destabilized

by these mutations, and is consistent with the reported increased Mg2+ requirement for

catalytic activity in this mutant (Williamson et al., 1987). When formation of the P7 helix

was monitored in the P3 mutant at saturating (10 mM) Mg2
+, both the rate and extent of

folding were again similar to wild type (Fig. 22C). Following formation of the P7 helix in

the P3 mutant at low Mg2+ concentration showed an increased requirement for Mg2+. At

equilibrium at 3.5 mM Mg2e, P7 remained accessible in about half the RNA molecules

(Fig. 22C), suggesting that the apparent midpoint of the equilibrium transition is very close

to that for the formation of the P3 helix in this mutant (compare the plateau levels at 10, 3.5

and 2 mM Mg2' in Fig. 22C with the equilibrium transition for the P3 mutant in Fig. 22B).

Therefore, disruption of base-pairs in the P3 helix affects formation of the P3 and P7

helices equally, and P7 appears unable to form in the absence of P3.
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P7 mutant

A more severe effect was observed in the context of the P7 mutant

(U307G/G309C). Even at 10 mM Mg2+, the P7 helix was partially accessible to the

oligonucleotide probe, suggesting it was unable to form completely or stably (Fig. 22C).

Higher Mg2+ concentrations did not increase the extent of protection, indicating that the

partial accessibility was not due to a simple shift in the transition midpoint. Formation of

the P7 helix is therefore impaired in the P7 mutant, consistent with the decreased catalytic

activity under saturating conditions (see below). Since the mutant is catalytically active, it

was concluded that the inaccessible fraction represents properly folded molecules. The

results do not, however, address the nature of the accessible, presumably misfolded,

fraction. There may be an equilibrium between the two conformations, but the rate of

interconversion must be slow compared to the timescale of RNase H cleavage, or cleavage

would be driven to completion. When P3 helix formation was probed in the P7 mutant, the

equilibrium midpoint of the Mg 2+-dependent transition was shifted to a higher concentration

compared to wild type (Fig. 22B), while at saturating Mg2' concentrations both the rate and

extent of folding were unchanged from wild type (Fig. 22A). Therefore, the mutations in

P7 also destabilize the P3 helix, although not to the same extent as the P7 helix itself.

Together, these results show that disruption of either the P3 or P7 helix has an

effect on both, and that P3 and P7 therefore are interdependent. Their formation is not

truly cooperative, however, since, in the P7 mutant, the P3 helix appears to be stable under

conditions where the P7 helix is partially accessible to oligonucleotide probes.

Nevertheless, it is apparent that the P3 and P7 helices do indeed constitute a kinetic folding

unit of interdependent structural elements, and it is proposed that this folding unit includes

the entire P3-P7 subdomain (see Fig. 21).
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Importance of the triple helical scaffold

From earlier results it was known that the rate limiting folding step precedes stable

formation of the P3-P7 subdomain (see chapter 3). The formation of tertiary interactions

was a likely possibility for the molecular event corresponding to this slow step. A triple

helical scaffold has been shown to form between base pairs in the P4 and P6 helices and

adjacent single stranded regions (see Fig. 5C) (Michel et al., 1990). This scaffold directly

connects the two subdomains in the primary sequence of the RNA and is located at the

subdomain interface in the model of the three dimensional structure (see Fig. 5B) (Michel

and Westhof, 1990). To test whether formation of the triple-scaffold was involved in the

slow folding step, one of the bases proposed to interact with a base pair in P4 was mutated

from a pyrimidine to a purine (triple-scaffold mutant, C260G) (Fig. 21). Examination of

group I intron phylogeny (Michel and Westhof, 1990) and the results of in vitro selection

experiments (Green and Szostak, 1994) showed that if base pair three in P4 is C.G

(C109.G212 in the Tetrahymena ribozyme), the nucleotide which is proposed to form a

triple interaction with this base pair is never G (C260 in the Tetrahymena ribozyme). The

C260G mutation is therefore expected to disrupt at least one triple interaction in the

scaffold, and may destabilize adjacent triples as well (Michel et al., 1990; Michel and

Westhof, 1990; Chastain and Tinoco, 1993; Green and Szostak, 1994).

Decreased folding rate

When the kinetics of formation of the P3 helix were examined in the triple-scaffold

mutant, the observed folding rate constant (kobs. = 0.15 ± 0.02 min-W, where the error

encompasses the range of rates measured in three independent experiments) was decreased

almost fivefold from the wild type (kos. = 0.72 ± 0.14 min-', where the error is the

standard deviation for 17 independent experiments, as shown in chapter 3) (Fig. 23A).

The same decrease in the rate constant was observed when formation of the P7 helix was
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Figure 23. Slow folding of the triple-scaffold mutant compared to wild type.
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probed (Fig. 23A), further confirming the interdependence of the P3 and P7 helices. The

rate decrease may result either from an effect on the slow step itself, or from an effect on a

different step that leads to a change in the rate limiting step. To test whether a

rearrangement preceding the formation of the P3-P7 subdomain had become rate limiting,

the kinetics of folding of the P4-P6 subdomain were examined. No change was observed

compared to the wild type (Fig. 23A), suggesting that P3-P7 formation remained rate

limiting. To test whether the Mg 2̀ binding step following the slow step had become rate

limiting the rate of P3-P7 formation was measured at different Mg2+ concentrations. The

apparent rate constant was found to be independent of the Mg2' concentration, within the

error of the experiments, showing that Mg2̀ binding had also not become rate limiting (Fig.

23B). Therefore, within the previously proposed minimal kinetic scheme, the rate limiting

step has not changed in this mutant. The decrease in the rate of P3-P7 subdomain

formation in the triple-scaffold mutant is thus proposed to be due to a direct effect on the

slow step, which apparently includes formation of the triple helical scaffold.

Slow gain of catalytic activity

The rate at which full catalytic activity is gained was measured to verify that the

slower folding rate of the triple-scaffold mutant is functionally significant. The fraction of

activity present after various folding times was compared to the activity of fully folded

ribozyme. Full activity was obtained with a rate constant (kow. = 0.11 min-') (Fig. 23C)

which is nearly the same as the folding rate constant measured by the oligonucleotide

hybridization assay using probes targeting the P3 or P7 helices (Fig. 23A), and more than

fivefold slower than that measured for the wild type ribozyme (kobs. = 0.61 min1'). This

provides an independent confirmation of the decreased folding rate of the triple-scaffold

mutant, and shows that there are no subsequent steps that are significantly slower than

formation of the P3-P7 subdomain.
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Catalytic activity of mutant ribozymes

The catalytic efficiency of all three mutant ribozymes was determined quantitatively

at 10 mM Mg2' to check for any extreme decrease in activity compared to the wild type

RNA that might suggest severe structural perturbations. While the catalytic competency of

the P3 and P7 mutants has been established previously (Burke et al., 1986; Williamson et

al., 1987), these earlier studies employed a self-splicing version of the intron and were

performed before a detailed kinetic framework for the endonuclease reaction was available

(Herschlag and Cech, 1990a). To determine the relative catalytic activity of the wild type

and mutant ribozymes the kinetic parameter k, was measured, which is the rate of substrate

cleavage under single turnover conditions with saturating ribozyme and GTP,

corresponding to the rate of reaction of the ribozymeosubstrate*GTP complex (McConnell

et al., 1993). This rate reflects steps after substrate binding and before product release, and

as such should be sensitive to changes in the core structure of the RNA. To slow the rate

of the chemical cleavage step, and facilitate measurement of k., assays were performed at

decreased pH (pH 5.5). Values for kc were very close for the wild type (kc = 0.20±0.02

min-') and the P3 mutant (k, = 0.17±0.01 min-'). The P7 mutant had somewhat decreased

activity (kc = 0.034+0.004 min-'). No heterogeneity due to the possible presence of two

conformations suggested by the oligonucleotide accessibility data (see above) was detected

in this mutant. Since activity was determined in ribozyme excess, however, the measured

rate could be due solely to the inaccessible conformation. While the lower activity does

suggest some structural defects, a much greater effect would be expected if the core

structure was substantially altered. The activity of the triple scaffold mutant was essentially

identical to the wild type (k, = 0.23+0.02 min-'), indicating that this mutation results in a

true kinetic folding mutant in which the final, active structure of the RNA is not

significantly perturbed, although the rate of formation of active enzyme is slower than for

-85-



Probing details by site-directed mutagenesis

the wild type (Fig. 23C). None of the three mutants thus showed a severe defect in the

ability to catalyze substrate cleavage at 10 mM Mg'2 , suggesting that the overall structure of

the RNA is likely largely preserved in these molecules.

Role of the P9.1-P9.2 peripheral extension

In the Tetrahymena intron, the 3' end is formed by several helices that constitute the

P9. 1-P9.2 peripheral extension (Fig. 21). A ribozyme truncated at a point corresponding

to a Nhe I site in the plasmid template (L-21 Nhe I) lacks the P9.1-P9.2 extension but,

once folded, has catalytic activity equal to that of the full length L-21 Sca I RNA (which is

produced from a plasmid template linearized with Sca I) (Laggerbauer et al., 1994). At

high Mg2+ concentrations at equilibrium, deletion of the extension introduces no apparent

structural perturbation in the remainder of the molecule (Laggerbauer et al, 1994).

However, an increased concentration of Mg2+ is required to form the P3-P7 subdomain

compared to full length RNA. The P9.1-P9.2 extension therefore appears to specifically

stabilize the P3-P7 subdomain (Laggerbauer et al., 1994).

Slow folding of L-21 Nhe I RNA

To explore the role played by a structural element outside of the catalytic core

during folding, and to determine whether the stabilization of P3-P7 by the extension is

important for the folding process as well as for stability of the final structure, the folding

kinetics of the L-21 Nhe I ribozyme, in which the extension is deleted, were examined

using an oligonucleotide probe targeting the P3 helix (Fig. 21). Since the P3-P7

subdomain forms in an interdependent manner, the probe targeting P3 reports on formation

of the entire subdomain (see above). The folding rate constant in the L-21 Nhe I RNA was

decreased compared to full length L-21 Sca I ribozyme (Fig. 24A) (ka,s. = 0.32 ± 0.04 min-

1 for L-21 Nhe I vs. 0.72 ± 0.14 min-' for L-21 Sca I). Because the rearrangement

-86-



A
-Mw -

a 0.6

O 0.4
8m

- 0.2I m.

0.0

0 5 10 15

Time (minutes)

0'1.0

0.8

0.6

$0.44)

c 0.2E-0.0.4
0.2

[Mg2+], mM

Figure 24. Formation of P3 in L-21 Sca I (m) and L-21
fj_ .

Nhe I (U) RNA.
(A) Kinetics of P3 formation at 10 mM Mg+" and 370C. Observed rate constants were
0.72±0.14 min'1 for L-21 Sca I and 0.32±0.04 min-' for L-21 Nhe I. The error represents
the standard deviation from 17 independent experiments for L-21 Sca I, as described
in chapter 3, and the range of values obtained from three independent experiments
for L-21 Nhe I. The probe concentration (probe 15) was 20 gM.
(B) Mg2+ concentration dependence of P3 formation at equilibrium. Transition
midpoints are 0.97 mM for L-21 Sca I, as described (chapter 3), and 3.3 mM for
L-21 Nhe I. The data were normalized to allow a direct comparison.

B



Probing details by site-directed mutagenesis

monitored with this probe is a slow step required for the stable formation of the P3-P7

subdomain (the formation of intermediate 13 from 12, see Fig. 20), the decreased rate

constant suggests that the stabilization of the P3-P7 subdomain by the P9. 1-P9.2 extension

may be involved in this slow step. Alternatively, deleting the 3' terminal extension may

have resulted in a change of the rate limiting step.

To determine whether the Mg2+-dependent formation of IF from 13 had become rate

limiting (Fig. 20), the folding rate was measured with the P3 probe at different

concentrations of Mg 2+. No change in the rate constant was observed, within experimental

error, suggesting that Mg2+ binding had not become rate limiting. To determine whether an

earlier step on the folding pathway had become rate limiting, the kinetics of formation of

the P4-P6 subdomain and intermediate 12 were monitored using a probe targeting P6/P6a

(Fig. 21). The rate was found to be fast and unchanged from the L-21 Sca I RNA (Fig.

25), showing that formation of 12 had also not become rate limiting. Together, these results

indicate that within the minimal kinetic folding pathway the rate limiting step remained

unchanged upon deletion of the P9. 1-P9.2 extension.

Significance

The observed decrease in the folding rate constant upon deletion of the P9.1-P9.2

extension is only twofold, and therefore not very dramatic. The folding rate of the wild

type RNA was measured numerous times with separate preparations of each reagent over a

period of almost one year, and in none of these experiments was a rate constant as low as

that observed for the L-21 Nhe I RNA ever measured. Conversely, the folding rate

constant of the L-21 Nhe I ribozyme was independently determined several times using

separate preparations of reagents, and the rate constant was never in the range observed for

the wild type RNA. The effect is therefore highly reproducible, which strongly suggests

that the twofold difference, although small, is real.
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Equilibrium Mg2'-dependence

To compare the oligonucleotide hybridization data with the published equilibrium

Mg2+-dependence of P3-P7 formation in the context of the L-21 Nhe I ribozyme

(Laggerbauer et al., 1994), the fraction of RNA in which P3 is accessible to the

oligonucleotide probe was determined at equilibrium at a series of Mg2+ concentrations

(Fig. 24B). The fraction of ribozyme folded at each Mg2+ concentration was obtained from

the equilibrium endpoint of a kinetic experiment as described above. Each point therefore

represents an independent experiment. The midpoint of the transition ([Mg 2+]1/ 2 = 3.3 mM)

was shifted to a higher Mg 2+ concentration compared to L-21 Sca I ([Mg 2+]l2 = 0.97 mM,

see chapter 3).

Hierarchical relationship between the two subdomains

None of the mutations described so far affected the kinetics of P4-P6 formation.

When the equilibrium Mg2+ concentration dependence of P4-P6 formation was examined in

the P3 and P7 mutants, only a moderate increase in the midpoint of the transition was

observed (Fig. 26), consistent with published observations (Laggerbauer et al., 1994).

Mutations outside of P4-P6 that affect P3-P7 formation therefore have only a small effect

on P4-P6 formation.

To determine the effect of changes in P4-P6, a mutation disrupting one base pair in

P4 (G212C) was introduced into the ribozyme (Fig. 21). At 10 mM Mg2+ the P3-P7

subdomain was unable to form completely or stably in this mutant (identical results were

obtained using probes targeting either P3 or P7) (Fig. 27). Higher Mg2+ concentrations

again did not result in an increase in protection, suggesting the disruption of P3-P7

formation was not merely due to an increased requirement for Mg 2'. When P4-P6

formation was examined in this mutant using a probe targeting P6/P6a, a change in the
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relative amplitudes of the fast and slow kinetic phases observed previously (see Fig. 19)

was detected (Fig. 28). In the P4 mutant the fast phase had almost disappeared, suggesting

a shift in the equilibrium between intermediates I, and I, in favor of IU. These results

confirm the involvement of P4 during early folding events.

A refined model for the folding mechanism

Hierarchy and interdependence

The findings described in this chapter allow a refinement of the model for the

kinetic folding mechanism presented in chapter 3. Together with other observations, the

results confirm and emphasize the hierarchical nature of the folding pathway of the

Tetrahymena ribozyme . There is no effect on the kinetic or equilibrium folding of the P4-

P6 subdomain in the triple-scaffold mutant (Fig. 23A). In the P3 and P7 mutants, while

the Mg2+ requirement for P4-P6 subdomain formation is slightly increased (Fig. 26), the

kinetics of P4-P6 subdomain folding are unaltered compared to wild type. Mutations that

affect the P3-P7 subdomain therefore have little or no effect on folding of the P4-P6

subdomain, while disruption of the P4-P6 subdomain significantly destabilizes the P3-P7

subdomain (Laggerbauer et al., 1994)(Fig. 27). The hierarchical formation of the two

subdomains is thus a central feature of the folding pathway. The interdependence of the P3

and P7 helices also shows that the P3-P7 subdomain can form in a concerted fashion. This

structural subdomain therefore corresponds to a kinetic folding unit, although the exact

boundaries of this folding unit have not yet been determined. Equilibrium folding

experiments have shown that the P4-P6 subdomain consists of two modules that form in a

hierarchical manner (Celander and Cech, 1991; Laggerbauer et al., 1994; Murphy and

Cech, 1994), and it is proposed that each of these modules may also represent a

cooperative kinetic folding unit.
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Identity of 13

The initial observations identified a transient intermediate during the formation of

the P3-P7 subdomain, termed 13, but did not provide any indication of its structural features

(Fig. 20). In intermediate 12, the P4-P6 subdomain but not the P3-P7 subdomain is folded,

and formation of 13 from 12 was identified as the slow step in the minimal kinetic scheme.

The effect of the triple-scaffold mutation on this kinetic step implies that while the scaffold

is not yet present in 12, it is formed in I3 (Fig. 29). Formation of the triple helical scaffold

promotes, and either precedes or is coincident with, the interaction of the two subdomains.

Similarly, the decrease in the rate of the slow step upon deletion of the P9.1-P9.2 extension

at the 3' end of the ribozyme (Fig. 24A) suggests that the interaction between P3-P7 and

the extension takes place during the conversion of 12 to 13. In I3, P3 and P7 are properly

positioned to allow the rapid binding of Mg 2
+, resulting in the stabilization of the P3-P7

subdomain and formation of the active structure.

The slow folding step

The slow step in the proposed minimal mechanism (Fig. 29) may include several

microscopic steps which cannot be resolved using the kinetic oligonucleotide hybridization

assay. In addition to formation of the triple helical scaffold and the interaction between

P9.1-P9.2 and L2/L2.1 (see below), base pairing in P3 and P7 and formation of other

tertiary interactions may also occur during this step. At present it cannot be distinguished

whether formation of the triple-scaffold and the stabilization of the P3-P7 subdomain by the

P9. 1-P9.2 extension are discrete steps, or whether they occur in a concerted

rearrangement. A double mutant ribozyme, in which both the 3' terminal extension was

deleted and the triple-scaffold was disrupted, was too unstable to allow careful analysis of

folding kinetics (data not shown). It is also impossible to determine at this time which

microscopic step occurring during the slow step in the kinetic mechanism is rate limiting.
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Furthermore, it also cannot be ruled out that the mutations resulted in the stabilization of a

non-native interaction, and that the rate limiting step is the slow disruption of such an

interaction.

Role of the triple helical scaffold

The importance of the triple helical scaffold during folding provides further

evidence that it orients the two subdomains with respect to each other to allow their proper

association. A similar conclusion was drawn in a study of the requirements for formation

of a functional complex where the two subdomains were combined as separate molecules

(Doudna and Cech, 1995). In this system, association of the subdomains was weak in the

absence of the triple helical scaffold, and the resulting complex was catalytically inactive.

Inclusion of the scaffold in the complex strengthened the association and restored activity.

The results presented here suggest that in the context of the whole intron disruption of the

triple helical scaffold, in the case of the one mutant studied here, does not preclude the

proper association of the subdomains, but merely slows their docking. The role of the

triple helical scaffold in orienting the two subdomains was also suggested by an NMR

study of model oligonucleotides (Chastain and Tinoco, 1993), in vitro selection

experiments (Green and Szostak, 1994), and by the ability of the CYT-18 protein to

suppress mutations in the scaffold (Mohr et al., 1992).

The P9.1-P9.2 extension guides folding

Chemical modification experiments have provided evidence for a tertiary interaction

between the 3' terminal extension and bases in the loops L2 or L2.1, which may help lock

the P3-P7 subdomain in place (Banerjee et al., 1993) and be responsible for the

stabilization of P3-P7 (Laggerbauer et al., 1994). In the sunY group I intron a similar

stabilization of the core by elements of a 3' terminal domain was observed (Jaeger et al.,

1993). The results described above suggest that the proposed tertiary interaction between
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the P9.1-P9.2 extension and L2 or L2.1 in the Tetrahymena intron is formed during the

slow step of the minimal folding mechanism, and is therefore present in the transient

intermediate I3. The identity of the nucleotides in P9.1-P9.2 and L2/L2.1 participating in

the tertiary interaction has not yet been established, and it was therefore not possible to test

the involvement of this interaction more specifically. It is proposed that the P9.1-P9.2

extension is important not only for the stabilization of the P3-P7 subdomain, but also helps

guide folding of the RNA by limiting the mobility of P3 and P7 and, along with the triple

helical scaffold, promoting the proper association of the P4-P6 and P3-P7 subdomains.

Determination of the Mg2+ dependence of formation of the P3 helix in the L-21 Nhe

I RNA showed a shift of the transition midpoint to a higher Mg2" concentration, and

confirmed published observations (Banerjee et al., 1993; Laggerbauer et al., 1994) that the

P3-P7 subdomain is destabilized in this truncated ribozyme. While the exact value of the

transition midpoint ([Mg2+]l2 = 3.3 mM) differs somewhat from that observed using

Fe(II)-EDTA as a footprinting probe (Laggerbauer et al., 1994)([Mg2+]1l/ = 1.83 mM), the

difference in the apparent midpoints is not surprising given the large difference in size

between the two probes used (small hydroxyl radicals generated in the presence of Fe(II)-

EDTA versus large oligonucleotides). The different temperatures at which the experiments

were performed (420C for the hydroxyl radical footprinting, 370C for the kinetic

oligonucleotide hybridization) may also contribute to this discrepancy. Although the

formation of 13 from 12 itself does not involve binding of Mg2+, the observed increase in the

equilibrium Mg2' requirement for P3-P7 subdomain formation can at least in part be

accounted for by the decreased rate of formation of I3. Since rapid Mg2+ binding to 13

drives the otherwise unfavorable conversion of 12 to 13 (Figs. 16, 29), a decrease in the rate

of this conversion will result in an increase of the Mg2+ concentration required for

formation of IF, even if the dissociation constant of Mg2+ binding to 13 is unaltered. The
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kinetic results described here thus complement previous observations made at equilibrium

(Banerjee et al., 1993; Laggerbauer et al., 1994).

In the cellular environment it may be that production of mature RNA, for transcripts

containing group I introns, is limited by proper folding of the intron, rather than by

catalysis. Partially or completely unfolded RNA may be bound rapidly and nonspecifically

by proteins, which can inhibit formation of the active structure. Even a relatively minor

increase in folding rate afforded by a peripheral extension may therefore confer a selective

advantage by preventing the core of the RNA from becoming kinetically trapped in

unproductive conformations or complexes.

The role of the P9. 1-P9.2 extension during folding of the Tetrahymena ribozyme

may have implications for the folding mechanisms of other large RNAs, many of which

also consist of phylogenetically highly conserved core regions surrounded by less

conserved peripheral extensions. Such an organization can be found in group I (Michel

and Westhof, 1990; Cech, 1993) and group II introns (Michel et al., 1989b), in the RNA

component of RNase P (Darr et al., 1992), and in ribosomal RNAs (Neefs et al., 1993; De

Rijk et al., 1994). In several cases it has been demonstrated that peripheral extensions can

stabilize the core region of a large RNA (Beaudry and Joyce, 1990; Jaeger et al., 1991;

Banerjee et al., 1993; Jaeger et al., 1993; Laggerbauer et al., 1994), suggesting that some

general functions of the extensions may be conserved between different RNAs. The

importance of the P9.1-P9.2 extension during folding of the ribozyme suggests that, in

addition to stabilizing the final conformation, nonconserved peripheral extensions may also

guide the folding process in large, highly structured RNAs.
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5. FOLDING OF RNASE P RNA

The studies described in this chapter were carried out in collaboration with Jing

Wang, an undergraduate student in the Department of Molecular and Cellular Biology at

Harvard University who performed his undergraduate thesis research in Prof. Jamie

Williamson's laboratory.

RNase P as a second model system

The work described in the previous chapters provides considerable insight into the

kinetic folding pathway of the Tetrahymena ribozyme. An unanswered question, however,

was whether the folding properties of this group I intron are exceptional, or whether they

illustrate features of the folding mechanism of large RNAs and even RNPs in general. To

answer this question, folding of other RNAs and RNPs must be investigated, and

compared to that of the Tetrahymena ribozyme. The RNA component of ribonuclease P

(RNase P) is another well defined, relatively large, highly structured RNA and as such

represents a second convenient model system in which to study kinetic RNA folding. A

study of the folding mechanism of this RNA was therefore initiated.

RNase P is a ribonucleoprotein enzyme found in all organisms and plays a crucial

role in the production of mature tRNA by cleaving nucleotides from the 5' end of pre-tRNA

(Altman et al., 1995). The RNA component of RNase P, like the Tetrahymena ribozyme,

is a relatively large, highly structured molecule. While the RNA from many prokaryotes

can catalyze pre-tRNA cleavage alone, in the absence of protein, the protein component of

the enzyme enhances the reaction, and is required for activity in higher organisms (Darr et
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al., 1992; Altman et al., 1995). Like group I introns, RNase P RNAs from different

species contain a core region of highly conserved interactions that is surrounded by

additional structural elements that can vary substantially (Darr et al., 1992; Haas et al.,

1994). The enzymes from E. coli and B. subtilis are among the best studied RNase P

molecules, and for both the RNA alone is an efficient catalyst. They are of similar size as

the Tetrahymena ribozyme (close to 400 nucleotides) and their secondary structure has been

determined from phylogenetic comparison and biochemical studies (Darr et al., 1992; Haas

et al., 1994)(Fig. 30). Models for the three dimensional architecture of the E. coli RNA

have been proposed (Harris et al., 1994; Westhof and Altman, 1994), and a detailed kinetic

framework for the reaction of B. subtilis RNase P RNA with a pre-tRNA substrate is also

available (Beebe and Fierke, 1994), providing a very powerful functional assay.

Furthermore, an equilibrium study of the Mg2" induced folding of the B. subtilis RNA has

provided evidence for the existence of several subdomains of tertiary structure (Pan, 1995).

This study also revealed that although optimal catalytic activity of RNase P RNA requires

the presence of high concentrations of monovalent metal ions or Mg2
+ (Reich et al., 1988;

Darr et al., 1992; Brown et al., 1993), stable higher order structure can be formed at

relatively low concentrations of Mg2
+, even in the absence of additional monovalent metals.

As in the Tetrahymena ribozyme and most other large RNAs, at least two different

classes of base pairing interactions are apparent in the secondary structure of RNase P

RNA (Fig. 30). First, there are short range hairpin stem-loop interactions, which are

expected to form very rapidly and at low salt concentrations, with no requirement for

divalent metals. Second, there are long range interactions, such as the P2, P4 and P7

helices, where regions of the RNA far apart in the linear sequence fold back on each other.

In analogy to the findings in the group I ribozyme, the long range interactions may require

Mg2+ for their stable formation, and may form more slowly than short range interactions.
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Adapting the kinetic oligonucleotide hybridization assay

Oligonucleotide screen

As a first step, the suitability of the kinetic oligonucleotide hybridization assay for

studying folding of RNase P RNA was determined. As in the group I intron, formation of

higher order structure in RNase P requires Mg2e, while much of the secondary structure

can form at very low concentrations of monovalent metal ions. The addition of Mg2
+

together with a relatively high concentration of Nae or NH4
÷, is therefore expected to allow

formation of the native conformation from a partially folded state. To identify regions of

the RNA which undergo changes in accessibility to oligonucleotide probes and/or RNase H

upon addition of metal ions, a series of four probes complementary to sequences in B.

subtilis RNase P RNA was tested (Fig. 30). The targeted nucleotides are involved in long

range base pairing interactions, similar to those successfully studied with this assay in the

Tetrahymena ribozyme (see chapter 3), which may be expected to require Mg2' for their

formation. As in the Tetrahymena intron, pairing regions in RNase P are numbered

starting from the 5' end of the molecule. The probes were complementary to both strands

of the P7 helix, one strand of the P4 helix or one strand of the P2 helix. P7 participates in

a four helix junction and is part of what appears to be an independently folding subdomain

(Pan, 1995). P4 is a long range interaction proposed to be a component of the active site

(Harris and Pace, 1995), and P2 links regions near the 5' and 3' ends of the molecule. For

each of these sequences it was asked whether the target is accessible to oligonucleotide

binding and/or RNase H cleavage if the probe is added simultaneously with Mg2' and a

moderately high concentration of NH,4, corresponding to the zero time point of a kinetic

experiment, and whether it is accessible after the RNA has been equilibrated under folding

conditions for 10 minutes (Fig. 31). Although maximum catalytic activity of RNase P
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RNA requires the presence of high concentrations of monovalent ions, RNase H activity is

inhibited at high salt concentrations. The RNA was therefore folded in 100 mM NH4CI

and 20 mM MgCl 2, where RNase H retains full activity in the hybridization assay. While

not optimal, these conditions still support RNase P catalytic activity (Tallsj6 and Kirsebom,

1993; Kufel and Kirsebom, 1994), and should allow stable formation of the active

structure (Pan, 1995). Both strands of P7 showed metal ion dependent differences in

accessibility, with the effect being much more pronounced for the strand closer to the 5'

end of the RNA (using probe 5'P7), indicating that P7 is not stable in the absence of metal

ions. P2 also displayed differential accessibility with and without preincubation in folding

conditions. P4, however, was completely inaccessible, even when the probe was added

together with Mg 2" and NH4', suggesting that although it is a long range interaction, it is

formed under less stringent conditions than other elements of the secondary structure.

Controls

The observed changes in the accessibility of the RNA upon folding suggested that

RNase P is amenable to analysis by the oligonucleotide hybridization assay. The changes

were substantial for the P2 and 5'P7 probes, and it was therefore decided to use these

probes to investigate the kinetics of folding. As outlined in chapter 2 above, however,

several conditions have to be met for the fraction of RNA cleaved by RNase H after various

folding times to accurately reflect the fraction still unfolded at that time, and thus for the

assay to report the actual folding rate in a kinetic experiment. First, binding of the probe

and RNase H cleavage must be fast compared to folding, so that no additional folding takes

place once probe and RNase H are added. Second, RNase H cleavage must be fast

compared to dissociation of the RNA:probe complex to ensure that all of the RNA bound

by the probe will be cleaved. Third, unfolding of the RNA under native conditions must be

slow compared to folding, to prevent cleavage of RNA that had already folded at the time
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probe and RNase H were added. Finally, high enough probe concentrations must be used

to ensure rapid binding of all accessible RNA. Control experiments to ensure that each of

these conditions was met in the standard assay procedure were performed with each probe

used in kinetic experiments. The controls showed that probe binding and RNase H

cleavage were complete in less than thirty seconds, that less than 10-20 percent of

RNA:probe complex dissociated within 30 seconds after addition of the probe, and that no

significant unfolding took place in the thirty seconds the RNA was exposed to probe and

RNase H. The concentration of each probe necessary to produce maximal cleavage of the

RNA was determined by measuring RNA cleavage at the zero time point, as described

above, at a series of probe concentrations. The kinetic oligonucleotide hybridization assay

therefore does accurately measure the rate of folding under the conditions used in the

experiments reported here.

A complex folding pathway

Slow folding of P7

To measure the rate at which the changes in accessibility of P7 took place, the

fraction of the RNA accessible to the P7 probe after different folding times was determined

(Fig. 32A). Accessibility was found to decrease exponentially with a rate constant of 0.50

± 0.13min ' (the error represents the standard deviation from 5 independent experiments),

suggesting that there is a slow step on the folding pathway of B. subtilis RNase P RNA

and, furthermore, that this slow step is required for the stable formation of the P7 helix.

Next, it was asked whether the folding event monitored by this probe was

dependent on Mg2" by repeating the experiment at different Mg2' concentrations, while

keeping the NH,' concentration constant (Fig. 32A). As the Mg2' concentration was

lowered, the fraction of RNA accessible to probe binding and/or RNase H cleavage at
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equilibrium increased, indicating that the folding transition only took place in the presence

of Mg2" (Fig. 32A). However, the observed rate constant at which folding proceeded was

independent of the Mg2" concentration. Therefore, there must be at least two individual

steps involved in this folding event (see Fig. 16): a slow, Mg2+-independent step, the rate

of which is measured in the hybridization assay, followed by a rapid Mg2' binding step

which drives the Mg2+-independent step. These observations therefore reveal the presence

of at least one kinetic intermediate on the folding pathway. The fraction of RNA cleaved at

equilibrium at different Mg 2+ concentrations was used to construct an equilibrium folding

curve (Fig. 32B). The midpoint of the transition ([Mg 2+]l2 = 3.2 mM) was very close to

that reported by monitoring the protection of the RNA from Fe(II)-EDTA induced hydroxyl

radical cleavage ([Mg 2+]112 = 2-3 mM)(Pan, 1995), suggesting that the two techniques may

report the same folding transition.

Folding of P2

When the folding kinetics of the RNA were measured using a probe targeting the

P2 helix, behavior very different from that of the P7 region was found. At 20 mM Mg2+, a

substantial fraction of the RNA remained accessible to the probe at equilibrium (Fig. 33).

Increasing the Mg2+ concentration to 40 mM did not result in any additional protection.

Conversely, omitting Mg 2+ altogether, and folding the RNA in the presence of NH4+ only,

still resulted in significant protection. Only when the NH4÷ concentration was lowered to

10 mM, in the absence of Mg 2+, did the RNA become almost completely accessible to

probe binding and/or RNase H cleavage (Fig. 33). Sodium was found to be as effective as

NH4' in inducing protection of the RNA, and the effect is therefore not specific for NH4 .

These observations indicate that different subregions of RNase P RNA exhibit distinctly

different folding behavior upon the addition of metal ions.
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Folding of E. coli RNase P

To determine whether the folding behavior of RNase P is conserved between

different species the experiments described above were repeated with the enzyme from E.

coli, again using probes targeting P7 and P2. In E. coli, the secondary structure in the P7

region differs from that in B. subtilis RNA and nucleotides next to P7, targeted by the P7

probe, are directly involved in another long range interaction (Fig. 30). The folding rate

constant measured with the P7 probe in E. coli (Fig. 34) (kobs. = 0.68 ± 0.07min-1, where

the error represents the standard deviation from 4 independent experiments) was

nevertheless very similar to that found for B. subtilis RNA. As in B. subtilis, the apparent

rate constant was independent of the concentration of Mg2', while the extent of folding at

equilibrium declined at lower Mg2" concentrations (Fig. 34A). The midpoint of the

equilibrium transition ([Mg 2'],, = 2.4 mM in E. coli, 3.2 mM in B. subtilis) was also

similar in the two species (Fig. 34B).

The P2 region was again protected by NH4
÷, even in the absence of Mg 2' (Fig. 35).

In E. coli, however, the protection was almost complete, whereas in B. subtilis only partial

protection of this region was observed. Furthermore, there was only a minimal loss of

protection upon lowering the NH4* concentration from 100 mM to 10 mM (Fig. 35). Even

in the absence of any added metal ions, the P2 region was partially protected by the

addition of buffer alone. The rate of the folding event monitored by the P2 probe appeared

to change at different metal ion concentrations, but the changes were not systematic and not

consistent enough to allow accurate quantitation. The data do suggest, however, that this

region behaves qualitatively similar in both species of RNase P RNA examined, and that

this behavior is distinctly different from that of the P7 region.
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RNase P folding pathway

Together, these results show that the kinetic oligonucleotide hybridization assay can

be applied to study RNase P folding. An initial screen of several regions of B. subtilis

RNase P RNA revealed changes in the accessibility of the RNA to binding by short,

complementary oligodeoxynucleotides and/or cleavage of the resulting complexes by

RNase H upon the addition of metal ions. A series of control experiments show that

information about folding kinetics can be gained from measuring the rates of these changes.

The most significant changes were observed with a probe targeting the P7 region of

the RNA. When the rate at which these changes occurred was measured it was found to be

slow, taking place on the timescale of minutes (kobs. = 0.50 ± 0.13 min 1) (Fig. 32A). The

observation of a slow step with a probe targeting P7 and adjacent sequences suggests that

structure formation in this region either is directly involved in the slow step, or that the

rearrangement occurring during the slow step is required for structure to form in this

section of the RNA. The Mg2' concentration independence of the rate of this slow step

shows that the structural rearrangement does not involve binding of Mg2'. The existence of

at least two steps must be invoked to explain the apparent contradiction of the requirement

for Mg2', but Mg2+ independence of the slow step itself, providing evidence for at least one

kinetic intermediate on the folding pathway.

The sequences targeted by the four probes used in the initial screen for changes in

accessibility each exhibited a different pattern of protection (Fig. 31). The 5'P7 target

sequence was almost completely accessible when the probe was added together with metal

ions, but became almost completely inaccessible after incubation of the RNA under folding

conditions. The 3' strand of P7, however, showed less dramatic changes in accessibility.

This asymmetry observed for P7 is probably explained by the two probes targeting adjacent

sequences which are part of different structural elements, in addition to nucleotides forming
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P7 itself. P7 is one of the helices forming a four-way junction, and the 3'P7 probe is

centered on this junction, possibly reporting mainly its formation or stabilization, rather

than that of P7 itself. The results suggest that the four-way junction may be marginally

stable in the absence of added metal ions, and become stabilized upon their addition. The

5'P7 probe, however, does not extend across the junction, but rather also targets

nucleotides in a bulge adjacent to P7, and may therefore report predominantly the formation

of structure involving this bulged region.

The equilibrium Mg2' concentration dependence of folding detected with the 5'P7

probe is consistent with published results using Fe(II)-EDTA generated hydroxyl radicals

as a probe for higher order structure formation (Pan, 1995). The midpoint of the transition

([Mg2+]1/2 = 3.2 mM for oligonucleotide hybridization, 2-3 mM for hydroxyl radical

footprinting), as well as the number of magnesium ions involved (approximately 3-4) was

similar in both studies, suggesting that the two techniques report on the same folding event.

The P4 helix, which is a long range interaction and is proposed to be part of the

active site (Harris and Pace, 1995), is inaccessible even if the probes are added together

with metal ions, suggesting either that it is already stable in the absence of added metal, or

that it forms extremely rapidly, much faster than binding of the DNA probe to its target

sequence. In the Fe(II)-EDTA footprinting study (Pan, 1995), P4 was accessible in the

absence of Mg 2'. This apparent discrepancy with the results shown here may be explained

if base pairing in P4, which would afford protection from binding by the oligonucleotide

probe, is stable early during folding and in the absence of Mg2', but if the higher order

interactions, which afford protection from hydroxyl radical cleavage, do not occur unless

Mg2+ is present. Protection of the P2 helix, which links sequences near the two ends of the

RNA, is not absolutely dependent on Mg2', and occurs in the presence of moderate

concentrations of monovalent ions. This suggests that base pairing in this helix may be
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stabilized sufficiently to exclude the oligonucleotide probes even in the absence of higher

order structure. The current representation of the RNase P secondary structure (Fig. 30)

includes P2, while P4 is only indirectly indicated. The apparent greater stability and/or

more rapid formation of P4 revealed by the results described here suggests that an

alternative representation, which includes P4 and where P2 is indicated indirectly, may be

more appropriate. The variable behavior exhibited by different regions of the RNA in

response to metal ions suggests that folding of RNase P does not occur in a single,

cooperative transition, but that structure is formed under different conditions in different

parts of the RNA, and that the folding mechanism is likely to be complex.

Central features of RNA folding

While the secondary structure of RNase P RNA from E. coli differs in several

places from that of B. subtilis, including the region surrounding the P7 helix (Fig. 30), the

folding behavior of the two regions tested here in both molecules is very similar. There is a

slow step involving structure formation in the P7 region in both RNAs, and this slow step,

while only taking place in the presence of Mg2+, does not involve binding of Mg 2
+. The P2

region of both RNAs becomes at least partially inaccessible in the presence of only

moderate concentrations of monovalent ions. In spite of the differences in degree, these

findings imply at least some conservation of the folding mechanism between these two

species of RNase P. While the extent of conservation remains to be defined, it is consistent

with the hypothesis that the final structure and the process by which the structure is formed

are linked, and do not evolve independently.

A comparison of RNase P folding with the folding mechanism of the Tetrahymena

ribozyme, outlined in the preceding chapters, also reveals that several aspects of group I

intron folding are conserved in RNase P. In both ribozymes, different regions exhibit

distinctly variable patterns of accessibility to complementary oligonucleotide probe binding
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and/or RNase H cleavage. In the Tetrahymena ribozyme, these differences reflect a

complex kinetic folding mechanism with multiple steps and intermediates. It seems likely

that a similarly complex folding pathway will be revealed for RNase P. The second clear

similarity is the existence of a slow step not involving binding of Mg2', and taking place on

the timescale of minutes, on the folding pathway of both RNAs. Both the rate of the slow

step, and the concentration of Mg2e required to allow it to proceed, are very similar in

RNase P and the Tetrahymena group I intron. Furthermore, there are reports that folding

of a group II intron (Griffin et al., 1995) and another group I intron (Lewin et al., 1995;

Weeks and Cech, 1996) also is slow, taking place at timescales similar to those found here

and for the Tetrahymena ribozyme. Results from the Tetrahymena ribozyme and from

RNase P, together with these reports, suggest that slow kinetics and a complex folding

pathway including multiple intermediates may be common features of higher order folding

of large RNAs. The Mg2' independence of the rate of the slow step in both RNase P and

the group I ribozyme may also indicate that the nature of the rate limiting step itself may be

similar in different RNAs. Furthermore, the recent demonstration that the RNA component

of a simple RNP, composed of a group I intron and a specifically bound protein, must

form its core structure before protein binding can occur shows that the kinetics of RNA

folding can govern the kinetics of RNP assembly (Weeks and Cech, 1996). The results

presented in this thesis may therefore be relevant not only to folding of RNAs, but also to

assembly of multicomponent RNPs.
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Parallels to protein folding

Deciphering the processes by which proteins fold into their active conformations

continues to be one of the central problems in biochemistry. Although this protein folding

problem has been intensively investigated for more than twenty years, it is still a topic of

vigorous debate and is far from being solved. New insights continue to emerge and

reshape how protein folding is viewed. While there are obvious chemical differences

between proteins and RNA, the basic problem of how to fold a linear polymer chain into a

specific, globular conformation is shared between these two classes of macromolecules. It

is therefore instructive to compare the insights on RNA folding afforded by the studies

described in the previous chapters with current knowledge of protein folding mechanisms.

The induction of RNA structure formation by the addition of Mg2+ can be viewed as

the 'inverse' of the denaturation of proteins by chemical agents. In the presence of

denaturants such as urea, proteins are in a largely unfolded state. Formation of the folded

structure is induced by reducing the denaturant concentration and can be followed either at

equilibrium at different levels of denaturation, or kinetically by a concentration-jump

experiment. Analogously, many RNAs are in a partially denatured state in the absence of

Mg2 +, and the addition of a divalent metal to RNA is therefore equivalent to dilution of a

denaturant for proteins, allowing application of the same experimental approaches used to

study protein folding. The correlation of kinetic information with sequence by targeted

hybridization obtained by the kinetic oligonucleotide hybridization assay resembles amide

'H- 2H exchange experiments (Woodward, 1994). For both, a snapshot of the folding
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reaction is obtained by a rapid quench experiment. The state of accessibility to external

probes is determined in a sequence specific way, yielding information not only on the rates

of folding events, but also on which regions of the molecule are involved in a particular

step. While large oligonucleotide probes are necessarily far less specific and sensitive than

single protons, conceptually, the two techniques yield similar types of information.

More importantly than these experimental similarities, the folding pathway of the

Tetrahymena ribozyme reveals significant parallels to protein folding mechanisms. For

both RNA and proteins, short range secondary structure appears to form rapidly to yield a

state in which much of the secondary structure is present, but which is still very flexible

and lacks stable tertiary contacts (Lynch and Schimmel, 1974; Stein and Crothers, 1976a;

Westhof and Michel, 1992; Christensen and Pain, 1994; Weeks and Cech, 1995). The

native structure is then formed from this fluid state by the successive formation and

stabilization of larger folding units which generally correspond to identifiable structural

subunits. In proteins these folding units correspond to small sets of ao-helices, turns, and

B-sheets (Serrano et al., 1992; Jennings and Wright, 1993; Dobson et al., 1994; Bai et al.,

1995; Dobson, 1995; Wu et al., 1995), while in RNA they consist of sets of stacked

helices (Celander and Cech, 1991; Westhof and Michel, 1992; Laggerbauer et al., 1994;

Murphy and Cech, 1994; Pan, 1995; Weeks and Cech, 1995; Weeks and Cech, 1996). In

both RNA and proteins, these subdomains seem to form in a hierarchical manner, where

the presence of the fast forming elements may be required for formation of the slower

folding subdomains (Lynch and Schimmel, 1974; Stein and Crothers, 1976a; Serrano et

al., 1992; Jennings and Wright, 1993; Laggerbauer et al., 1994; Bai et al., 1995; Loh et

al., 1995). The formation of specific long range contacts that allow the folding units to

interact then occurs late on the folding pathway (Stein and Crothers, 1976a; Serrano et al.,

1992; Dobson, 1995).
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Although these parallels are striking, the details of how folding is achieved diverge

due to the different nature of the forces responsible for the stability of proteins and RNA.

For proteins the early formation of secondary structure is accompanied or preceded by a

hydrophobic collapse and the resulting state has been termed a molten globule (Christensen

and Pain, 1994). Extensive secondary structure can be detected in this collapsed form in

the absence of rigid tertiary packing, but individual secondary structure elements are rarely

stable in isolation. In RNA the negatively charged backbone prevents such an early

collapse and the compact state is achieved mainly through binding of Mg2' after most of the

secondary structure has already formed (Stein and Crothers, 1976a; Wang et al., 1994;

Nakamura et al., 1995). Short range secondary structure elements, such as simple

hairpins, can generally form in isolation. In spite of these differences, the results outlined

here suggest that in both polymers, short range secondary structure forms fast and early,

structural subdomains fold as kinetic units in a hierarchical fashion, and specific tertiary

interactions between subunits form late during the folding process. These fundamental

parallels in the mechanisms used by proteins and RNA to achieve their native conformation

indicate that at least some of the strategies of macromolecular folding transcend chemical

boundaries.

The intrinsic importance of observed intermediates to productive protein folding is

still unresolved after many years of intensive investigations, and the protein folding field

continues to evolve rapidly (Baldwin, 1996). By comparison, studies of RNA folding,

particularly kinetic studies, are still relatively sparse. It is likely that views of RNA folding

will similarly evolve as more data becomes available. The results presented here give only

a first indication of the parallels between RNA and protein folding, and additional studies

may well extend these similarities. The common folding strategies also suggest that the
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accumulated insights into protein folding mechanisms may be expected to productively

guide future studies of RNA folding.

Future directions

Several issues in the folding mechanism of the Tetrahymena ribozyme remain

unresolved, and are likely to be fruitful areas for future investigations. First, what is the

exact nature of the overall rate limiting step? While several interactions have been identified

here as being formed during the slow step on the folding pathway, there is no direct

evidence to show whether the formation of any of these is rate limiting, or whether there

are additional rearrangements which occur during this step. Second, do any of the

observed intermediates contain non-native interactions, and, if they exist, what, if any, is

the role of such non-native intermediates during folding? Evidence is mounting that, at

least in some cases, the folding rate of proteins is limited by the disruption of non-native

interactions, and that in their absence the intrinsic rate of protein folding is extremely rapid

(Sosnick et al., 1994; Kiefhaber, 1995; Kotik et al., 1995). Results from early studies of

tRNA hinted at the possibility of a similar role for non-native interactions during tRNA

folding under some conditions (Cole et al., 1972; Yang and Crothers, 1972). Third, do the

two structural modules that compose the P4-P6 subdomain (Murphy and Cech, 1993;

Murphy and Cech, 1994) also correspond to kinetic folding units, and what is the temporal

order of their formation? Studies at equilibrium show that the P5abc module is required for

formation of the P4 and P6 helices (Murphy and Cech, 1993; Murphy and Cech, 1994),

but this hierarchy remains to be confirmed kinetically. Fourth, is the intermediate I a

productive intermediate (see Fig. 29), or does it represent a kinetic trap, and thus a

nonproductive branch of the folding pathway? Results with the P4 mutant (see chapter 4)

suggest that the P4 helix contributes to the equilibrium between Iu and I,, but do not show

whether Ii can be bypassed entirely. Fifth, how exactly does the P9.1-P9.2 extension
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accelerate folding of the intron, and do other peripheral extensions play a similar role?

Sixth, what are the sites in which Mg2' binds during the two Mg2'-dependent folding steps

in the model? In addition to these specific issues, many of the molecular details of the

rearrangements occurring during each kinetic step remain to be defined.

To address these questions, additional mutations will have to be introduced into the

ribozyme, and their folding properties investigated. In some cases, specific mutations

likely to be informative can be identified. In other cases, in vitro selection strategies will

have to be applied to search for mutations with the desired properties. For example, the

mutations in P5abc and P6 which allowed the establishment of the hierarchical relationship

between the two structural modules of the P4-P6 subdomain at equilibrium (Murphy and

Cech, 1993; Murphy and Cech, 1994) are also likely to provide insight into the kinetics of

P4-P6 subdomain formation. Similarly, the significance of the proposed interactions

between the P9. 1-P9.2 extension and the loops L2.1 and/or L2.2 (Banerjee et al., 1993)

can be tested by mutating the specific nucleotides thought to be involved. Additional

mutations in P3, P7, and in the triple helical scaffold should also be constructed and tested

to further confirmn the conclusions reached here. To determine the nature of the rate limiting

step, on the other hand, the interactions being formed in the transition state must be

identified. One way to accomplish this is to find mutations which accelerate folding. Such

mutations are expected either to stabilize interactions formed during the rate limiting step,

or, if the breaking of interactions (native or non-native) is rate limiting, destabilize these

interactions. An in vitro selection strategy based on the oligonucleotide hybridization assay

is most likely to identify such mutations.

To thoroughly investigate the folding properties of interesting mutant ribozymes

and to provide additional details about folding of the wild type intron, new techniques, in

addition to the kinetic oligonucleotide hybridization assay, should be developed. One
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drawback to using oligonucleotides as probes is their large size. Small chemical probes are

likely to provide higher resolution information of events occurring during each folding

step. It is likely that standard chemical modification protocols, used to study RNA

structure at equilibrium (Jaeger et al., 1990; Celander and Cech, 1991; Christian and

Yarus, 1992; Rudinger et al., 1992; Banerjee et al., 1993; Christian and Yarus, 1993), can

be adapted to provide kinetic information. In addition to the higher resolution afforded by

such small probes, such techniques may also make it possible to access faster timescales

through use of a rapid quench apparatus. Fluorescence spectroscopy provides a second

means for accessing faster timescales, although significant effort is required to incorporate

fluorescent probes at specific sites and correlation of spectroscopic changes with structural

rearrangements is difficult. The ability to monitor fast folding events will be important to

define the events leading to P4-P6 subdomain formation more clearly.

The identification and characterization of a series of additional mutant ribozymes

using a variety of techniques will reveal more detailed features of Tetrahymena ribozyme

folding, and will significantly refine the current model for the folding mechanism of this

RNA. Additional effort is also required, however, to determine how far this folding

mechanism is conserved in other RNAs and RNPs. The studies described in chapter 5

suggest that RNase P represents a second convenient model system in which to study RNA

folding, and that at least some features of the folding mechanism are conserved between

group I introns and RNase P. To determine the extent of this conservation, the folding

pathway of RNase P should be defined using techniques and strategies similar to those

applied to the Tetrahymena intron. In addition to studying folding of the RNA itself, it also

will be crucial to determine the effect of the RNase P protein on folding. Does the protein

actively participate, or does it merely bind to and stabilize the final structure?
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For any future in vitro studies of RNA folding, it will continue to be useful to

examine the results in the context of protein folding mechanisms. Such comparisons

should help reveal how far the parallels apparent now extend, and may guide the

interpretation and design of additional experiments.

Finally, the in vitro results described in this thesis may make it possible to begin to

examine RNA folding in vivo. There has been much speculation on the role of proteins in

folding and assembly of RNAs and RNPs in vivo. Experiments suggest that nonspecific

RNA binding proteins can accelerate folding in vitro, possibly by preventing misfolding

(Herschlag, 1995). These results, however, are based on functional assays and do not

address folding directly. They also do not show a clear relation between in vitro

observations and the in vivo situation. The availability of kinetic folding mutants,

combined with a strategy that allows measuring the rate of interconversion of different

length RNA species directly in vivo (as, for example, described in (Decker and Parker,

1993)) should make it possible to determine whether folding follows the same basic

mechanism in vitro and in vivo, or whether additional factors are involved.
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APPENDIX: MATERIALS AND METHODS'.

Construction of mutant ribozymes

Plasmid templates for the transcription of mutant ribozymes were constructed using

standard recombinant PCR techniques (Higuchi, 1990). A fragment of the wild type

pT7L-21 plasmid (Zaug et al., 1988) containing most of the coding sequence for the intron

and flanked by an Sph I site in the region coding for P2 and a Hind III site 29 base pairs

downstream from the Sca I site used to linearize the template for transcription was replaced

with a an equivalent fragment containing the desired mutation(s). The mutant fragment was

obtained through two successive PCR steps (Fig. 36). The first step (PCR#1) consisted of

two separate PCR reactions performed with different primers. One reaction included a 5'

primer complementary to the sequence upstream from the Sph I site, terminating within that

site (5' Primer), and a mutagenic 3' primer 20 nucleotides long and complementary to the

sequence surrounding the site of the desired mutation, except for the mutation itself (Mut

3'). The second reaction (PCR#2) included a mutagenic 5' primer (Mut 5') complementary

to the mutagenic 5' primer used in the first reaction, and a 3' primer complementary to the

sequence downstream from the Hind Il site, terminating within that site (3' Primer). For

the first step, 50 ptl reactions were carried out using 200 ng pT7L-21 template, 1.25 units

Pfu DNA polymerase (Stratagene), 0.2 mM of each dNTP and 1 pM of each primer in 1X

Pfu Buffer (Stratagene). The PCR conditions were: 1 minute at 940 C, 2 minutes at 60 0C,

2 minutes at 720 C for 30 cycles followed by incubation for 10 minutes at 720 C. 10 ptl from

each reaction were run on a two percent agarose gel to verify that the main products were of

the expected length. Product bands were excised and transferred to 0.5 mL siliconized

microcentrifuge tubes using extreme caution not to contaminate the samples with wild type
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plasmid. To elute the products from these gel slices, 100 pl H20 was added to each slice,

and the tubes allowed to sit at room temperature with periodic vortexing for two hours or

overnight at 40C. The products from the two PCR reactions in the first step are partially

complementary to each other. When they are added together during the second PCR step,

the separated strands from the two products will anneal to each other, and will be elongated

to form full length fragment, which can then be amplified in the same reaction using the 5'

Primer and 3' Primer from the first step. The second PCR step accordingly consisted of a

single 100 tl reaction containing 15 tl of each of the elution solutions containing products

from the first step, 0.2 mM of each dNTP, 1 ptM each 5' Primer and 3' Primer and 2.5

units Pfu polymerase in 1X Pfu buffer. The temperatures and times were the same as for

the first step reactions. The product from this second step was ethanol precipitated, gel

purified, digested with Sph I and Hind III to produce the desired mutant fragment, and gel

purified again (best results for gel purifications were obtained using Promega Wizard PCR

Preps and two percent low melting point agarose gels). It was then ligated to pT7L-21 that

had been digested with Sph I and Hind MII, gel purified to remove the wild type fragment

and dephosphorylated. Ligation reactions contained 300 ng pure, digested pT7L-21, 60 pg

PCR product from step two and 400 units T4 DNA ligase (New England Biolabs) in 20 pl

lX ligase buffer (New England Biolabs), and were allowed to proceed for 2.5 hours at

160C. The reaction mixtures were used directly in the chemical transformation of JM109 E.

coli and mutant constructs identified by sequencing. Primer sequences were: 5' Primer: 5'-

GGA GGG AAA AGT TAT CAG GC-3'; 3' Primer: 5'-AAA CGA CGG CCA GTG CCA

AG-3'.

All sequencing was performed using Sequenase kits (United States

Biochemical/Amersham) and recommended protocols. Three primers were used to provide

unambiguous information for the region containing the template sequence and the T7
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promoter: 5'-GGA AT' GTG AGC GGA-3' (complementary to the sequence 40 base pairs

upstream from the T7 promoter); 5'-GTC TGT GAA CTG CAT-3' (complementary to the

noncoding strand in the region coding for ribozyme nucleotides 252-266); 5'-GCT GAC

GGA CAT GGT-3' (complementary to the coding strand in the region of ribozyme

nucleotides 188-202).

Once individual transformants containing the desired mutations were identified, a

large amount of the mutant plasmid was prepared using Wizard Megaprep plasmid prep kits

(Promega). Each final plasmid preparation, including those of the wild type, was

sequenced to confirm the absence of undesired and the presence of desired mutations.

Ribozyme preparation

L-21 RNA was transcribed from plasmid pT7L-21, or mutated derivatives of this

plasmid, linearized with Sca I or Nhe I. Reactions (100 p.l) were performed for 3.5 hours

at 370C in 40 mM Tris*HCI (pH 7.5), 2 mM spermidine, 10 mM dithiothreitol, 25 mM

MgC12, 1 mM each GTP, CTP, UTP, 0.1 mM ATP and 250 gpCi of [a- 32P] ATP (New

England Nuclear) (for unlabeled RNA the concentration of each NTP was 4 mM), with 500

units of T7 RNA polymerase (New England Biolabs) and 15 ptg of template. The reaction

was quenched with stop solution (90 mM EDTA and gel running dyes in 82 percent

formamide) and the product purified on a six percent polyacrylamide gel and soaked into

buffer containing 10 mM Tris*HCl (pH 7.5), 1 mM EDTA, and 0.3 M sodium acetate.

After ethanol precipitation and resuspension in 10 mM Tris*HCI (pH 7.5)/0.1 mM EDTA

the RNA was quantitated by Cerenkov counting. Unlabeled RNA was quantitated either by

measuring the OD2, using the published extinction coefficient (Zaug et al., 1988), or

kinetically by measuring the stoichiometric burst of product formation in a multiple

turnover reaction (Herschlag and Cech, 1990a).
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RNase P RNA was prepared similarly from plasmids pDW66 (B. subtilis) and

pDW98 (E. coli), generously provided by Prof. Norman Pace (Indiana University), except

that only 5 mM MgCL, was used, and nucleotide concentrations were changed to 1 mM

each ATP, CTP, UTP, 0.1 mM GTP and 400 gCi of [C- 32P] GTP (New England

Nuclear).

Oligodeoxynucleotide probe preparation

Oligodeoxynucleotide probes were synthesized on a 1 npmol scale on an Applied

Biosystems DNA synthesizer, deprotected overnight at 65*C in 2 ml concentrated

ammonium hydroxide, and purified on 20 percent denaturing polyacrylamide gels. One

full synthesis was run on each gel, using a single well across the width of the gel (9-10

inches). Full length bands were excised and eluted from the gel overnight into 40 ml water

at 4"C, followed by desalting on C18 Sep-Paks® (Waters). The Sep-Paks® (two for each

synthesis) were pre-equilibrated with 6 mL acetonitrile and 9 mL H20, before the soaking

solution was loaded (1-2 ml/min-'). Each pak was washed with 10 ml H20 before the

probes were eluted in 2 mL 50 percent acetonitrile/H20 (per pak). Samples were dried

under vacuum (in a Savant speed-vac) and each synthesis resuspended in 150 ll 10 mM

Tris*HC1 (pH 7.5)/0.1 mM EDTA. Probe concentrations were determined from the

absorbance at 260 nn (extinction coefficients were calculated for each probe from the

extinction coefficients of nucleotides at 260 nm).

Kinetic oligonucleotide hybridization assay

Ribozyme (final concentration 1 nM) in 60 pll of buffer containing 1 mM Tris*HC1

(pH 7.5) and 0.01 mM EDTA was annealed by heating to 95"C for 45 seconds followed by

equilibration at 37"C for 3 minutes. Folding was initiated by addition of an equal volume

of 2X folding buffer (1X: 50 mM Tris*HCl (pH 7.5), 10 mM NaCl, 1 mM dithiothreitol;
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for RNase P folding experiments, 100 mM NH4Cl was substituted for the NaC1) which

also contained MgC12 to give the desired concentration. Aliquots (10 pl) were taken at the

times indicated and added to 10 pl of 1X folding buffer containing oligonucleotide probe

and RNase H (United States Biochemical, final concentration 0.1 U/pl) and enough MgC12

to bring the final concentration to 10 mM (20 mM for RNase P). Oligonucleotide binding

and RNase H cleavage were allowed to proceed for 30 seconds before the reaction was

quenched with 14 pl of stop solution. The zero time points were obtained by adding

oligonucleotide probe and RNase H in 2X folding buffer and MgCl 2 (final concentration 10

mM for the group I intron, 20 mM for RNase P) to the RNA immediately after annealing in

a separate reaction. Products were separated on six percent denaturing polyacrylamide gels

and quantitated using a Molecular Dynamics PhosphorImager. The data were fit to single

exponentials [f = f,qu. + (fo - fqu.)exp(-kbs.t)], where f is the fraction cleaved at time t, fequ.

is the fraction cleaved at equilibrium, fo is the fraction cleaved at time t = 0, and kowb. is the

observed rate constant. This fitting procedure allows the endpoints (fo and feq) as well as

the rate (kobs.) to vary, and independent values for the rate constant and equilibrium

endpoint are obtained.

Mg92 concentration dependence offolding

To obtain the Mg2+ concentration dependence of folding at equilibrium for probes

targeting P3 or P7 in the Tetrahymena ribozyme, and for probes targeting P7 in RNase P,

the Mg2' concentration in the folding buffer was varied, and kinetic experiments as

described above were performed at each Mg2+ concentration. During the probe binding/

RNase H cleavage step the Mg2' concentration was always adjusted to 10 mM (20 mM for

RNase P). The equilibrium endpoint from the fit of the data to single exponentials yielded

the fraction of RNA folded at equilibrium for each Mg2' concentration.
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For probes targeting P4 or P6 in the Tetrahymena ribozyme this procedure did not

produce accurate results due to the small amplitude of the change upon addition of Mg2",

and an alternative strategy was applied where oligonucleotide probe was added after

incubation of the RNA in the MgCl2 concentration to be tested, but before the total MgCl2

concentration was brought to 10 mM for RNase H cleavage. For each Mg2* concentration,

RNA was annealed in 10 pl of buffer containing 1 mM Tris*HC1 (pH 7.5)/0.01 mM EDTA

as described, before 10 tl 2X folding buffer containing enough MgC12 to give the desired

concentration was added. The resulting solution was incubated at 370C for 10 minutes, and

then enough oligonucleotide to give the indicated concentrations (usually 60-70 giM) added

in 20 ll 1X folding buffer and MgC 2, to keep the Mg2' concentration constant. After 0.5,

1 and 2 minutes 10 pl aliquots were added to 10 ptl X folding buffer containing RNase H

(final concentration 0.1 U/il) and enough MgCl 2 to bring the final concentration to 10 mM,

and allowed to react for 30 seconds before being quenched with 14 p• stop solution. The

average of the fraction cleaved for the three time points taken at each Mg 2
+ concentration

was taken as the fraction of RNA unfolded at equilibrium at that concentration.

The data from both strategies were fit to an expression of two state binding of n

Mg2+ ions [f = 1/{([Mg2+]/[Mg 2+]12)"+l )], where f is the fraction cleaved at equilibrium, n

the number of Mg 2+ ions bound per RNA molecule, and [Mg 2']1a the midpoint of the

transition, to obtain independent values for n and [Mg 2+]la.

Oligonucleotide screens

The zero time point in the initial oligonucleotide screens (Figs. 10 and 31) for both

the Tetrahymena ribozyme and for RNase P was performed exactly as described above,

except that higher probe concentrations were used (300-400 pM). For the ten minute time

point, the RNA was annealed as described in 5 ptl buffer and equilibrated for ten minutes

after addition of one volume 2X folding buffer containing 10 mM (for the group I intron)
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or 20 mM (for RNase P) MgCl 2 (final concentration), before oligonucleotide probe (final

concentration the same as that in the zero time point) and RNase H (0.1 U/pl final

concentration) were added in 10 pl. of IX folding buffer (maintaining the MgC12

concentration). The reaction was allowed to proceed for 30 seconds and quenched with

0.7 volumes stop solution. Products were separated on six percent polyacrylamide gels.

Ribozyme activity assays

To measure k, for wild type and mutant introns, ribozyme (final concentration 50

nM) in 30 .l 0. 1X TE buffer was annealed as described, added to 30 pl 2X reaction buffer

(1X: 50 mM MES (2-[N-Morpholino]ethanesulfonic acid) (pH 5.5), 10 mM MgC12, 10

mM NaCl, 1 mM dithiothreitol) and allowed to fold at 370C for 10 minutes (wild type, P3

mutant, P7 mutant) or 25 minutes (triple-scaffold mutant) before the reaction was initiated

by adding 5'-32P labeled CCCUCUAAAAA substrate (final concentration 0.25 nM) and

GTP (final concentration 0.5 mM) in 60 p1l 1X reaction buffer. Aliquots (10 ptl) were taken

at increasing times and added to one volume stop solution to quench the reaction. Products

were separated on 20 percent denaturing polyacrylamide gels, quantitated as described, and

the data were fit to single exponentials. Saturating conditions were ensured by

independently increasing the concentrations of ribozyme (to 100 nM) and GTP (to 2 mM)

for each RNA and confirming that this did not result in a change of the observed rate.

To measure the rate of gain of full catalytic activity, ribozyme (final concentration 7

nM) was annealed in 30 pl buffer, as described, and an equal volume of 2X folding buffer

(1X: 50 mM Tris*HC1 (pH 7.5), 10 mM MgCl 2, 10 mM NaCl, 1 mM dithiothreitol) was

added. The RNA was allowed to fold at 370C for the specified amount of time before the

reaction was initiated by addition of 5'-32P-labeled CCCUCUAAAAA substrate (final

concentration 16 nM) in 60 pll 1X folding buffer containing GTP (final concentration 0.5

mM). Samples (10 Wpl) were taken at increasing times and added to 8 pl stop solution. For
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the zero time point, substrate and GTP were added together with folding buffer

immediately after annealing. Products were separated on 20 percent denaturing

polyacrylamide gels, and the results quantitated as above. The folding rate was determined

by plotting the extent of substrate cleavage after 30 seconds as a function of the time

allowed for the ribozyme to fold before substrate was added. Near stoichiometric

concentrations of ribozyme and substrate were used, instead of more standard single or

multiple turnover conditions, in order to be able to follow the time course of gain of full

activity. In large ribozyme excess, fully active ribozyme accumulates too rapidly to

observe changes in initial reaction rate, whereas in large substrate excess the fraction of

product formed in the very early stages of the reaction is too small for accurate quantitation.

RNA sequencing by iodine cleavage

To allow direct sequencing of RNA, ribozymes containing a low level of

phosphorothioates were produced. Transcription conditions were as described above,

except that the concentration of each NTP was 2 mM. Each of four separate reactions was

supplemented with 0.1 mM of a different [oc-S] NTP. RNA was purified as described and

5'- or 3'-32P labeled using standard protocols. To generate sequencing ladders, iodine

cleavage was carried out by adding 1 pl of I2-saturated H20 to 5 p1 labeled RNA, allowing

cleavage to proceed at room temperature for 5 minutes, followed by addition of 5 pl stop

solution. Reactions can also be quenched using thiosulfate. The 12-saturated H20 was

prepared fresh each day by adding one or two 12 crystals to 0.5 mL H20 and vortexing

vigorously every 30 seconds for several minutes. After addition of stop solution reactions

were loaded directly onto sequencing gels.
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