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Abstract

This study uses a computer model to examine one of the jet fuel spills which occurred at the
Massachusetts Military Reservation, in Cape Cod, Massachusetts. The spill studied is fuel spill
12 which contains JP-4 fuel and aviation gasoline. The main concern behind this study was the
effects that the spill could have on Snake Pond, a kettle pond near the source area, used for
recreational purposes. First, the natural flow of the groundwater was simulated. It was decided
that benzene, because of its chemical characteristics, poses the greatest threat so the migration of
benzene particles was then simulated. The benzene plume was at a higher elevation in the aquifer
than measurements have shown. However, despite this unrealistic proximity to the surface, and
to the pond, the pond was not significantly affected by the plume. The risk from the resulting
concentration of benzene in the pond was below EPA's standards. It is believed that the
uncertainty about the exact location of the groundwater divide of Cape Cod, as well as limited
hydraulic conductivity data, are the reasons for the high vertical position of the plume.
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1. Introduction

The Massachusetts Military Reservation (MMR), located in Cape Cod,

Massachusetts, has housed numerous branches of the military since 1911. Military activities on

the reservation have been extensive, impacting the natural resources of Cape Cod. Because of the

significant contamination, the MMR has been included in the Superfund sites' list. The site

cleanup is being handled by the Installation Restoration Program (IRP) with offices located on

the reservation. The current action to remediate the plumes on the reservation is deemed

"interim"; only the source and leading edge of the plumes will be controlled. Remediation of the

main portion of the plumes are not included within this plan.

Fuel Spill 12 (FS-12) is one of the plumes emanating from the MMR. It is

located in the northeast section of the reservation. This plume is the result of a leak in a pipeline

which carried JP-4 fuel to the MMR. It is estimated that 70,000 gallons was spilled. Two

contaminants within the fuel which pose health hazards are EDB, a fuel additive, and benzene, a

fuel component. These contaminants are known carcinogens. Currently, the FS-12 source is

being controlled through air sparging and soil vapor extraction. However, the remainder of the

plume continues to migrate off base. The nearby Snake Pond, which is used for recreational

purposes, is potentially in the pathway of the plume. However, predictions say the plume will not

affect the pond.

This thesis has been developed as part of group project which uses FS-12 as a

case study to assess various remediation techniques and their applicability to a fuel-contaminated

groundwater site. The project also examines water supply issues for the entire region.

Specifically, the objectives are:



* To determine the movement of FS-12 and its potential effects on Snake Pond;

* To compare the "do nothing" alternative to treatment with three types of remediation

schemes: extraction well fence, air sparging & soil vapor extraction, and permeable

reactive wall technologies;

* To identify the water supply issues surrounding groundwater contamination

including alternatives for water supply replacement and the public perception

surrounding use of treated groundwater;

* To evaluate the decision to remediate at the MMR through a cost-benefit analysis.

This thesis will address the first of the above objectives; the movement of the plume and the

pond's safety.



2. Study Area Characterization

This section provides background information on the Massachusetts Military

Reservation (MMR), as well as details on Fuel Spill 12 (FS-12). It covers physical and

sociological features of the local region.

2.1 The Massachusetts Military Reservation Superfund Site

2.1.1 Physical Characteristics

2.1.1.1 Location

The MMR is located in western Cape Cod, bordering the townships of Bourne,

Falmouth, Mashpee, and Sandwich. The expanse of the MMR includes 22,000 acres located in

Barnstable County (Figure 2-1).

2.1.1.2 Topography and Geology

The MMR is located on two distinct types of terrain on the Cape Cod Peninsula.

The main Cantonment Area lies on a broad, southward-sloping glacial outwash plain. Elevation

in the area ranges from 100 to 140 feet above sea level. To the north and west of the MMR, the

terrain becomes hummocky with irregular hills and greater topographic relief, and lies in the



southward extent of Wisconsin Age terminal moraines. The highest elevation is 306 feet (Stone

& Webster, 1995). The entire site is dotted with numerous kettle holes and depressions forming

ponds and lakes.

To Bosrtn

Approximate Scale

[Stone & Webster, 1995]

Figure 2-1 Location of the MMR



2.1.1.3 Geology and Hydrogeology

Geology

The area is categorized as a glacial outwash plain. Typically, the plain consists

of highly permeable sand and gravel, as well as distinctly stratified layers of lower permeability

silty sands and clays.

Hydrogeology

A single groundwater flow system underlies western Cape Cod, including the

MMR. The aquifer system is described as unconfined and is recharged by infiltration from

precipitation.

[Department of Environmental Management, 1994]

Figure 2-2 - Hydrogeolozy of the MMR



The aquifer has been characterized by the US Environmental Protection Agency (EPA) as a sole-

source aquifer. The high point of the water table is located beneath the northern portion of the

MMR [Figure 2-2]. Flow is generally radially outward from this mound. The ocean forms the

lateral boundary of the aquifer on three sides.

2.1.1.4 Climate

Cape Cod has a temperate climate with precipitation distributed year round. The

annual average precipitation is about 47 inches [Department of Environmental Management,

1994]. The highly permeable nature of the sands and gravel underlying the area allow for rapid

infiltration of rainfall.

2.1.1.5 Ecosystems

The Massachusetts Division of Fisheries and Wildlife considers coastal plain

ponds as unique, sensitive natural communities in the state. These ponds, found primarily in

Cape Cod, occur in glacial kettles lacking surface water inlets. The specialized and rare

ecosystem that develops on the shores of these ponds is highly sensitive to water level changes

[Department of Environmental Management, 1994].

2.1.2 Socio-Economic Characteristics

The Upper Cape area consists of the townships of Falmouth, Sandwich, Mashpee

and Bourne. This section discusses demographics, water use, and local economics pertaining to

the MMR.

2.1.2.1 Demographics

The MMR has a year round population of approximately 2,000 people with an

additional 800 nonresident employees. Both year round and seasonal residents live in the towns

adjacent to the MMR - Falmouth, Mashpee, Sandwich, and Bourne. The populations of these

towns fluctuate significantly between winter (29,000) and summer (70,000) due to the influx of

vacationers. Between 1980 and 1990, the Upper Cape population grew 35%. However Mashpee



registered a 113% increase. During the same period, population growth throughout

Massachusetts amounted to only 5% [Cape Cod Commission, 1996]. Due to the fact that the

Upper Cape is sparsely inhabited, the population directly affected by the plumes is relatively

small - 4,000 (current situation) to 6,500.

2.1.2.2 Water Use

Public water supply customers are the primary water users on Cape Cod, with a

base off-season average demand of 8 million gallons per day (mgd) and 16 mgd in-season. In the

Upper Cape, 80% of the population is on a central supply system; the remaining 20% of the

population relies entirely on individual private wells [Department of Environmental

Management, 1994].

2.1.2.3 Economy

The Upper Cape economy was valued at $600 million in 1992; more than 60%

was derived from tourists, seasonal residents, and retirement-based income. Hence, the economic

base is believed to be highly sensitive to environmental contamination and associated perceived

risk. The Upper Cape's overall valuation of real and personal property increased by 3 times in the

past 10 years to $8 billion in 1994 [Cape Cod Commission, 1996].

2.1.3 History

2.1.3.1 Activity History

Operational units over the MMR's history include the U.S. Air Force, U.S. Navy,
U.S. Army, U.S. Marine Corps, U.S. Air National Guard, U.S. Army National Guard, and U.S.

Coast Guard. The MMR has housed and served the U.S. military forces since 1911. Within the

reservation, military activities included troop training and development, ordinance development,
vehicle operation and maintenance, fire fighting, and fuel storage and transport. The MMR was

particularly active during World War II (1940-1946). Between 1955-1970, the MMR operated a



number of surveillance missions and aircraft operations through the Air National Guard. Since

1970, the military activities have been scaled down [Advanced Sciences, Inc., 1993].

2.1.3.2 Regulatory History

On November 21, 1989, the MMR was listed on the National Priorities List as a

Superfund site. As a result, the National Guard Bureau (NGB) and the U.S. Coast Guard entered

into an Interagency Agreement (IAG) with the EPA in July 1991. As a result, the site

investigations and remedial actions are subject to the requirements and regulations of the

Comprehensive Environmental Response and Emergency and Liability Act (CERCLA). The

Department of Defense (DOD) formulated and organized the Installation Restoration Program

(IRP) to address investigations and remediation efforts as a result of hazardous waste sites at

DOD facilities [Air National Guard, 1994]. Through the Air Force Engineering Services Center,

the NGB entered into an lAG with the U.S. Department of Energy (DOE). The NGB, with the

support of DOE, analyzed the extent of contamination and potential site contamination at the

MMR facility [Air National Guard, 1994].

2.1.3.3 Contamination History

Past releases of hazardous materials at the MMR have resulted in groundwater

contamination in a number of areas. Documented sources of contamination include former motor

pools, landfills, fire training areas and drainage structures such as dry wells. Nine major plumes

of groundwater contamination [Figure 2-3] have been found to be migrating from these sources

areas and have been defined during extensive groundwater investigations. Seven of the nine

plumes have migrated beyond the MMR facility boundary. Extraction and treatment of

groundwater have already been initiated for the purpose of containing one plume, the CS-4

plume, to manage the migration of contaminants and prevent further pollution of downgradient

areas. The interim action planned by the IRP proposes to extend plume containment schemes to

six other plumes [Stone & Webster, 1995].





2.2 The Fuel Spill 12

2.2.1 Physical Site Data

The FS-12 area is located within the Mashpee pitted plain, with a substrata

consisting of outwash sands and gravel. The subsurface contains discontinuous lenses of low and

high permeability that extend down to 130 feet below the water table. On average, the

unconfined Cape Cod aquifer lies 90 feet below ground level on average. It surfaces at Snake

Pond which is located south-southwest of the source. The velocity of the plume is less than

characteristic rates for other plumes on the MMR. This area is located near the crest of the water

table mound where the hydraulic gradient is small. Horizontal hydraulic conductivities range

from 150 to 400 feet/day.

The topography consists of low relief and rolling hills. Elevations range from

approximately 200 feet mean sea level (MSL) to 50 feet MSL. Generally, the north-northwestern

portion is characterized by higher relief. Topographical elevation decreases in a southeastern

direction. Several water bodies are present in the area surrounding the zone of contamination.

The case study site area, FS-12, is sparsely populated, although a summer camp

is located off-base directly south of the source. Most of the contamination flows beneath Camp

Good News, as can be seen on Figure 2-4.

2.2.1.1 Geology of FS-12

FS-12 is located within the Mashpee pitted plain. The Mashpee pitted plain is

characterized by coarse grained materials, mostly sands and gravel. The sand and gravel grains

become finer with depth. Throughout the entire depth of the outwash there exists discontinuous

lenses of fine sands, clays and silts left from ice and glacial sediments. The sand and gravel

materials are underlain by the bedrock. In the FS-12 area, the bedrock elevation ranges between

82 to 328 feet below MSL. Observations suggest the existence of fine sands and clay deposits at

depths of 130 to 215 feet below MSL [Advanced Sciences, Inc., 1993]. It is possible that these

sediments are part of a continuous layer of finer materials within the sandy aquifer. However,



there is not enough data to verify the existence of a continuous layer of finer sediments

[HydroGeoLogic, Inc., 1994].

[Stone & Webster, 1995]

Figure 2-4 FS-12 Area Map

2.2.1.2 Hydrology

FS-12 is located above the Cape Cod aquifer. The aquifer is unconfined and its

water table is located on average 80 feet below ground surface. The water table intersects the

ground surface creating the following ponds in the area: Snake Pond, Peter's Pond, Mashpee

Pond, and Wakeby pond. The groundwater flows in the south-southeastern direction. From the

Feasibility Study [Advanced Sciences, Inc., 1993], it was determined that the horizontal

Scale 1:25 000 "0
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hydraulic gradient varies between 0.0003 and 0.00067. The aquifer test indicates the horizontal

conductivity to vary between 237 and 368 feet/day [HydroGeoLogic, Inc., 1994]. From the

aquifer test other properties were found as shown by Table 2-1.

Table 2-1 Aquifer properties

Kr Kz / Kr Ss Sy
horizontal conductivity vertical/horizontal Specific Storage Specific Yield

(ft/day) conductivity ratio

237 - 368 0.05 - 0.55 0.000001 - 0.00058 0.008 - 0.184

[HydroGeoLogic, Inc., 1994]

The runoff from the site can be assumed to be insignificant due to the high permeability of the

soils. The only significant form of recharge to the aquifer is rainfall. Recharge averages

approximately 23 inches/year [Masterson and Barlow, 1994].

2.2.2 Site History

The current FS-12 contamination area is the result of an extended leak in a fuel

line discovered in 1972. The location of the leak is at the intersection of Greenway Road and the

western entrance to the L-firing range. The pipeline was constructed in the early 1960's. Its main

purpose was to transport aviation fuel from Cape Cod Canal to the Air National Guard flight line

area. Both aviation gasoline and JP-4 jet fuel were carried in the pipeline. In order to stop the

leak, it underwent repairs in 1972. Part of the repairs included the use of contaminated soil as

backfill for the excavation. Thus, even after the 1972 repairs, JP-4 fuel entered the subsurface

soil and groundwater. The line was later closed in 1973. The IRP has estimated a spill volume of

approximately 70,000 gallons, which currently contaminates 11 acres of soil. The plume

originating from the FS-12 source area extends 5400 feet in length south-southeast from the spill;

1,100 feet wide; 50 feet thick.



2.2.3 Extent of Contamination

As estimated from evaluations of organic soil vapor concentrations, benzene and

ethylene dibromide (EDB) are the primary contaminants of concern at FS-12. [Figure 2-4] maps

out the extent of soil contamination from an areal view. EDB, a significant organic contaminant

at this site, is not a component of jet fuel and was added to the aviation gas as a lead gas

scavenger. It is present throughout the dissolved plume, though the free product does not

constitute a continual source, as with benzene. When contaminants are not absorbed by soil

particles or dissolved into the groundwater, they remain in the free phase form, also known as

free product. Being less dense than water, the free product tends to float on top of the

groundwater. The free product 'source' of the plume covers five acres ranging in thickness up to

0.7 feet. Near the spill, higher concentrations of benzene and EDB were measured at 1600 ppb

and 600 ppb, respectively. The plume extends in an elliptical shape, approximately 5000 feet

downgradient [Advanced Sciences, Inc., 1993].

During the remedial investigation of FS-12, it was determined that EDB and

benzene posed the largest threat to human health. Their distributions are similar, with the EDB

plume located at a slightly deeper depth in the aquifer than the benzene plume [HAZWRAP,

1994]. Risk values were determined for the contaminants of concern based on groundwater

exposure and future land use. Most probable carcinogenic risks far exceeded the EPA's upper

limit for cleanup guidelines. Therefore, cleanup processes were promptly initiated [Advanced

Sciences, Inc., 1993].

2.2.4 Current Situation

After surveying applicable treatment schemes, the IRP selected a combined Air

Sparging/Soil Vapor Extraction system to control the source and a well fence to contain the

plume movement. The air sparging pilot study was deemed a success for two reasons: (1) the

pressure differentials were conclusive enough to predict an adequate extraction well radius of

influence and (2) field measurements are indicative of productive vapor extraction in the outwash

sands and gravel [HAZWRAP, 1994].

Consequently, an air sparging/soil vapor extraction system was designed and

quickly implemented to control the source area at FS-12. The air stripping action of the sparging

will transfer contamination from the aqueous phase into the vapor phase and carry it to the



unsaturated zone. There it can be captured by the soil vapor extraction wells, and treated with

catalytic oxidation and activated carbon in a vapor control unit. The combined system has been

running since November 1995, though the first 100 days utilized only the vapor extraction wells.

At the March 1996 FS-12 Sandwich Subcommittee Meeting, Ed Pesce of the IRP reported that

clean-up of the source area is expected to take two years (HAZWRAP, 1994).

The Plume Containment committee meets regularly, and is involved in design

analysis for site remediation. Preliminary designs indicate proposed locations for the five pump

and treat wells that will capture and extract a total of 300-330 gallons/minute of contaminated

groundwater. This will be treated and reinjected nearby. With an estimated start-up in September

1996, this process is not a final solution, but meets the immediate goals of the MMR in "source

control and plume containment." The MMR is not currently planning to reuse any of the treated

water, which means that 100% of it will be reinjected. Public perception of water reuse issues

indicate a current unwillingness to drink any treated water [Installation Restoration Program,

July 1995].



3. Contamination Assessment

Two major types of fuel were released at the FS-12 source area: aviation

gasoline (also referred to as AVGAS in the literature,) and JP-4 Jet Fuel. The compositions of the

two types of fuel are similar [Hutchings, 1995]. Table 3-1 lists the most important components of

a JP-4 sample. The addition of tetraethyl lead distinguishes AVGAS from JP-4 [Hutchings,

1995]. It will be assumed that the composition of the mixture of the two fuels is the same as the

composition of JP-4. Each one of the components listed in Table 3-1 exists in concentration of

0.1% by weight, or more [Hutchings, 1995].

The 75 compounds listed in Table 3-1 are affected differently by various

processes such as volatilization, sorption, degradation, and solubility [Hutchings, 1995]. As these

compounds move from their source down to the groundwater table, and then follow the

groundwater flow, their relative concentrations change. This happens due to the four

aforementioned processes which are spatially variable. For example, volatilization is much more

effective in the vadose zone (where an air phase exists in the pores) than in the saturated zone.

The primary concern, for this study, is the solubility of chemicals in the groundwater, and the

subsequent transport of the contaminated water. As Snake Pond is a surface representation of the

groundwater table, chemicals transported with the groundwater could possibly discharge in the

pond. Snake Pond is used for recreational activities by the occupants of Camp Good News, a

local Christian youth camp. Chemicals such as benzene, when in dermal contact (or ingested) in

critical quantities, could pose serious threat to human health.

Partitioning in the liquid phase, therefore, is the most important process in terms

of human health hazard, and the chemicals with highest solubilities, as can be seen in Table 3-1,
are: benzene, toluene, ethylbenzene, and xylene [Hutchings, 1995]. These chemicals are



therefore most likely to be encountered in relatively high concentrations. Furthermore, by

looking at the octanol-water partition coefficients, (which are a way of estimating the retardation,

due to sorption, of a chemical) we can deduce that isobutane and benzene are the least retarded

of the compounds found in JP-4 and AVGAS. Low retardation translates to higher relative

mobility, and as a result the most mobile chemicals could reach Snake Pond (if the flow field

directs them to it) faster than the other compounds. Isobutane, though, has a high volatilization

rate so it is not as threatening as benzene [Hutchings, 1995]. Finally, biodegradation is a factor

which needs to be considered. Aromatic hydrocarbons display a variety of biodegradation rates

with benzene having one of the lowest values [Hutchings, 1995]. Low biodegradation translates

to higher relative concentrations. Finally, benzene is a compound of average abundance. It

constitutes 0.5% of the mass of JP-4, so there was 350 gallons (0.5% of 70,000 gallons) of

benzene spilled.

The combination of the above information, for the different compounds found in

JP-4, shows that benzene, because of its high solubility, persistence against biodegradation, and

abundance, is the chemical of greatest concern [Hutchings, 1995]. Hence, this study will

concentrate on the modeling of benzene.



Table 3-1 Major Components of JP-4
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Table 3-1 (cont'd)
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4. Modeling of the FS-12 Plume

4.1 CONCEPTUAL MODEL

4.1.1 Introduction

An essential step prior to the actual implementation of a model, is the

development of a conceptual model of the area and the compounds to be modeled. Consideration

of all the available information, such as the history of the spill, the hydrogeologic characteristics

of the aquifer, and the topography of the area, is needed for the conceptualization of the model.

The modeling consists of two major parts: the simulation of the natural flow field and the

simulation of the contaminant transport. It is, therefore, logical to implement a two-part

conceptual model.

4.1.2 The natural flow field

The whole of Cape Cod receives its recharge from precipitation, and the

groundwater flows radially outward from the groundwater divide. This is the point with the

highest value of hydraulic head on the Cape, and it is located to the north of the contamination

source of FS-12. Its exact position, however, has not been precisely defined. Two major mapping

projects, have addressed the groundwater flow field [LeBlanc et al., 1986; Savoie, 1995]. Neither

of the two provides conclusive information on the position of the groundwater divide. As will be



shown in a subsequent section, this could be crucial in determining the transport rate of the

contaminants, and the potential threat to Snake Pond.

Both of the above maps as well as the one in Figure 4-1 (from the Remedial

Investigation) show the north-to-south decrease in hydraulic head in the vicinity of FS-12 and

thus necessitate a more detailed study of the flow (such as a modeling effort) to determine the

proximity of the plume to Snake Pond. The presence of the divide (north of the source area) and

of Mashpee and Wakeby Ponds (to the southeast,) immediately gave a general idea for the

boundaries of the study area; all flowlines start from the divide, and the hydraulic heads at the

Ponds can be considered constant.

By looking at the geologic cross-sections constructed during the RI/FS [Figures

4-2 to 4-6] one can get an idea of the stratigraphy of the area between the source and Snake Pond.

It is obvious from these sections that sand and gravel is the predominant soil type at FS-12.

Groundwater 'prefers' to travel horizontally in the areas of higher hydraulic conductivity

[Domenico and Schwartz, 1990], therefore, we could also have an initial estimate of the travel

time of groundwater. Using the map by Savoie, the distance between the source and the area just

to the east of the northern tip of Snake Pond is approximately 3200 ft. The hydraulic gradient

(estimated from the same map,) is 0.0005 and the porosity of the area has been estimated to be

0.39 [Garabedian et al., 1988]. The horizontal hydraulic conductivity, as mentioned in Section

2.2.1.2, is approximately 330 ft/day. From this information, a quick calculation using Darcy's

Law gives a velocity of 0.42 ft/day. The time required to travel 3200 ft, would be approximately

20 years. It has been a little over 20 years since the spill occurred, and measurements show that

the plume is near the Pond, which is consistent with these calculations.

All the above information was useful in conceptualizing the model and having a

general idea of the expected outcome of the model. Moreover it was useful in defining the area to

be modeled and its boundaries.

4.1.3 Contaminant Transport

As explained previously, the model will focus on the transport and dispersion of

benzene, as it is one of the most hazardous chemicals (in terms of human health effects) and it

has high solubility and low retardation.

The process by which benzene reached the groundwater needs consideration.

The fuel spill occurred through a hole in a transfer pipe. The pipe was a few feet below the



ground surface. The fuel is, consequently, released in the unsaturated zone. In order to reach the

groundwater, it has to travel vertically (gravity-driven movement) in the unsaturated zone until it

reaches the groundwater table. The travel time in the unsaturated zone could potentially affect

our estimates of the total time needed for benzene to travel from the pipe hole, to the area of

concern (near or in Snake Pond.) Another study of a similar spill at the Massachusetts Military

Reservation (JP-4 and AVGAS were, again, the fuels spilled) showed that the scale of the travel

time of benzene from the ground surface to the water table, is much smaller than that of the travel

time in the groundwater. In the first case, the travel time is in the order of days, whereas we are

interested in the movement of benzene over several years [Hutchings, 1995]. It is, therefore,
logical to ignore the effects of the unsaturated zone travel.

Another characteristic of the FS-12 spill, which is important in terms of

modeling, is the shape of the contaminants once they reach the groundwater table. During the

Remedial Investigation phase it was discovered that the source of the contamination (at the water

table surface) was pancake-shaped, with a thickness of a few inches [Advanced Sciences, vol. I,
1993]. It is suspected that the various components of the fuels traveled through the unsaturated

zone, then stopped at the water table, where they accumulated, thus creating the free product

volume. The estimate of the area of the free product is depicted in Figure 4-7. These fuels

constitute a separate phase (a NAPL or nonaqueous phase liquid) which is in contact with the

water phase. As water moves through the soil, in contact with the NAPL, the compounds of the

fuel slowly dissolve in the water phase and thus get carried away. Because of the abundance of

the compounds, it was assumed that the compounds' concentrations right at the water interface

are equal to the compounds' solubilities. Consequently, the free product can be thought of as a

constant concentration source (the concentration being equal to the solubility of the modeled

compound, benzene in our case.) It is believed that this is a conservative estimation for the

concentration of compounds right at the source. Fluctuations of the elevation of the water table

may result in the distancing of the free product from the flowing groundwater which will

decrease the contact between the water and the fuel.



4.2 THE DYN SYSTEM

The modeling system used in this study, the DYN system, consists of three

programs: Dynflow, Dyntrack, and Dynplot. Dynflow simulates the natural groundwater flow

field of the area, Dyntrack is used for the tracking of contaminant particles and Dynplot is a

plotting program used for the visualization of the results from the other two programs. The DYN

System was developed by Camp, Dresser & McKee, Inc. [Camp, Dresser & McKee, 1984a,

1984b, 1992].

Dynflow discretizes the area of study by dividing it into many smaller discrete

triangular areas, called elements. The size of these elements is variable. All the elements form a

grid over the study area. The grid is usually much denser in the region where detailed

information is needed and sparse in the remaining region. A dense grid implies a high number of

elements per unit of modeled area. The grid also has a vertical dimension and can be divided to

several horizontal layers. The corners of the triangular elements are called nodes. A value of

hydraulic head is defined at each node. Dynflow solves numerically the groundwater flow

equation and the advection-dispersion-reaction equation using a finite element method. Hydraulic

head is the variable for which Dynflow solves these equations. Linear variation in head, between

adjacent nodes, is assumed. Furthermore, after solving for the values of hydraulic head, Dynflow

assigns a velocity vector at the center of each element. Once the area of study has been divided to

its layers, and hydraulic properties have been assigned to them, Dynflow solves for the heads,

assigns the velocity vectors, and thus the flow field is fully represented.

Once the flow field has been established with Dynflow, the next step is the

simulation of the path followed by individual particles containing a chemical of concern. A

number of particles is chosen, as well as a source of contamination, from which the particles

begin their path. Each particle carries a specified mass of contaminant. The transport of the

contaminants is governed by the flow field obtained from Dynflow. Dyntrack tracks the path of

each particle by following two processes, advection and dispersion. Furthermore, again at each

time step, Dyntrack changes the amount of mass carried by each particle according to the decay

rate input. The concentration values are stored in each node. However, since the area

corresponding to each node is not known, in order to compute the concentration in a larger area

(such as Snake Pond) the mass of all the particles in the area's elements is added, and then

divided by its volume (which can be calculated since the area of each element is known).



4.3 FS-12 MODEL DEVELOPMENT

The following paragraphs describe the essential 'building blocks' of the

developed model for the FS-12 plume. The combination of choices for the boundary locations

and conditions, stratigraphy, and input parameters (such as conductivities, porosities, etc.) is

significant in interpreting the final results of the flow and transport simulations.

4.3.1 Discretization

First of all, the area of concern was identified from the information compiled in

the Remedial Investigation/Feasibility Study [Advanced Sciences, vol. I, 1993.] A map of the

area was digitized and incorporated into the Dynplot program [Figure 4-8]. In order to be more

effective in the study of the FS-12 plume, the modeling area was chosen to be much larger than

that defined by the observed distribution of data near the source and Snake Pond. This way, the

boundaries were more easily defined, as the next section will show.

As mentioned earlier, Dynflow is a finite element modeling program. A

horizontal grid, consisting of triangular elements, is generated over the specified area. Dynflow

program solves the groundwater flow equations (as described in previous section) assuming a

linear variation in hydraulic head between adjacent nodes. The area of concern, located at the

center of the grid bounded to the north by the source of the contamination, and to the east by

Snake Pond, needs a much finer grid (more elements per area) because we need more detailed

information on the movement of the contaminant plume. Figure 4-9 depicts the grid and an

outline of the three ponds in the general study area. Near Snake Pond, because of the fine

resolution, velocities are calculated between points which are very close to each other, thus

providing a finer resolution of the groundwater flow. The grid was also divided vertically, into

nine layers. The description of the materials assigned in these layers can be found in Section

4.3.3

4.3.2 Boundaries

The boundaries of the study area were selected to match (as much as possible)

observed [Savoie, 1995] constant head lines. Fixed head conditions were considered on the south



and the southeast boundary of the study area [Figure 4-10]. The greatest part of the southern

boundary matches an observed constant head line from Savoie, 1995. Most of the nodes on it

were fixed at a hydraulic head value of 45m. However, since the line defining the south boundary

of the grid does not exactly follow the constant 45m head line, some of the nodes were set at

different values, depending on their position with respect to the 45m line. The area near the

ponds in the southeast part of the study area, Mashpee and Wakeby, also had fixed head

boundaries. These values were the observed water elevations of the ponds. The remaining

boundaries were chosen so as to represent flow lines (by following lines perpendicular to the

isopotentials) [Figure 4-10].

4.3.3 Geology-Stratigraphy

The geologic data input to the model were based on the well information (boring

logs) from the drilling and sampling during the Remedial Investigation and Feasibility Study

[Advanced Sciences, vols. II & III, 1993]. As was mentioned, the horizontal grid can have a

number of layers. Nine layers were input to the grid of the modeled area. Although less than nine

types of geologic materials were input, the division of the vertical dimension in nine layers was

done in order to describe discontinuities (such as clay/silty-sand layers) or special features such

as the ponds. The following types of geologic material were input: three types of sand and gravel,

labeled Upper Sand, Medium Sand, and Lower Sand [Figures 4-7 and 4-8].The distinction was

made because it has been determined [Advanced Sciences, vol. I, 1993] that hydrologic

characteristics such as hydraulic conductivity change with depth. The boring logs from the

Remedial Investigation, proved the existence of some localized clay and/or silty sand layers.

These layers are characterized by low values of hydraulic conductivity, and could, potentially,

affect the groundwater flow. These are labeled as clay [Figure 4-8]. Another type of geologic

material is the pond sediment which is located beneath every pond. Finally the water in the ponds

was represented as a distinct type of material (with very high hydraulic conductivity) [Figure 4-

9].

The elevations of each layer were taken from the same boring logs [Advanced

Sciences, vols. II & III, 1993]. Finally, the elevations of the bedrock were interpolated from

seismic investigations done in the area by Oldale [1969].



4.3.4 Hydraulic parameters

The development of the first phase (the natural flow simulation) of the modeling

required the input of certain hydraulic properties, such as hydraulic conductivity and porosity, to

each of the elements described above. There was a significant lack of such data. Although most

of the area of the Massachusetts Military Reservation has had a lot of slug and aquifer tests, the

FS-12 area has been relatively neglected. Only one aquifer test (conducted at the area just east of

Snake Pond) was available [HydroGeoLogic, 1994]. A general idea of the values of the hydraulic

conductivity was gained, but some educated guessing was required to successfully represent the

flow field. Apart from the information given in the one pumping test, other information more

information was gained from general geologic data found in groundwater hydrology textbooks

[Freeze and Cherry, 1979; Domenico and Schwartz, 1990]. Generally, because of the lack of data

on these parameters, during the calibration of the model, the hydraulic conductivities were

changed many times until the natural flow field was successfully calibrated. The final values

used are given in the following table:

Table 4-1 Hydraulic Parameters Of Different Materials

Hydraulic

Conductivities Specific

(ft/day) Yield

Material Kx Ky Kz

Water 10000 10000 100 1

Pond Sediment 355 355 118 0.2

Upper Sand 355 355 118 0.2

Medium Sand 275 275 92 0.2

ClaylSilty-Sand 19 19 6 0.1

Lower Sand 50 50 17 0.2

As Table 4-1 illustrates, the hydraulic conductivity of the water was assigned an

arbitrary high value of 10,000 ft/day. The sediments below the pond were represented as a

distinct geologic layer. It is suspected that the conductivity of the sediments is generally low

(lower than that of sand and gravel). Due to lack of data, though, it was assumed that the



conductivities were equal. This way, a conservative case was represented. Thus, the horizontal

and transverse conductivities were set at 355 ft/day and the vertical was set at 118 ft/day. The

vertical conductivities, for all the layers, were calculated by assuming a horizontal to vertical

ratio of 3:1 as shown in Section 2.2.1.2. Table 4-1 also shows the decreasing-with-depth trend for

the sand's conductivity. Finally, the values for the clay material were based on general geologic

data [Freeze & Cherry, 1979]. The specific yield values were also a combination of data from the

aquifer test and general reference books. As is described in the next chapter, these values

produced a good calibration.

During the particle tracking phase, another set of input parameters was compiled.

It included the longitudinal, transverse, and vertical dispersivities of the aquifer, the effective

porosities of the different materials, and the retardation coefficient and half-life of benzene.

These parameters were used by Dyntrack for the simulation of the benzene plume movement.

The following table shows these values:

Table 4-2 Particle Tracking Input Parameters

Vertical

Dispersion

Material Dispersivities (ft) Anisotropy Effective Half-life Retarda-

longitudinal transverse Ratio Porosity (days) tion

Water 40 10 0.06 0.39 13 1.0

Pond Sed. 40 10 0.06 0.39 720 1.0

Upper Sand 40 10 0.06 0.39 720 1.0

Medium Sand 40 10 0.06 0.39 720 1.0

CI./Silt.-Sand 40 10 0.06 0.39 720 1.0

Lower Sand 40 10 0.06 0.39 720 1.0

The values for the longitudinal dispersivities were estimated considering that

dispersivities have been shown to be dependent to the scale of the plume [Gelhar et al., 1992]. A

tracer test conducted in Ashumet Valley was of similar scale. Dispersivity values of the same

magnitude , as documented in Gelhar et al., 1992, were used. The vertical dispersion anisotropy

ratio shown in Table 4-2, is the square root of the vertical over the longitudinal dispersivity. The

value for the porosity came from the same source [Gelhar et al., 1992]. Although benzene is

believed to be retarded, even though very little, it was decided to model its transport using a



conservative estimate of no retardation. Finally, from the range of values found in the literature

[MacKay et al., 1992] for the half-life of benzene, both the one used for the groundwater (720

days) and the one used for surface waters (13 days) were among the highest values, again aiming

for a conservative simulation. The associated decay rates are 9.6*10 -" days"' (for groundwater)

and 5.33*10-2 days"' (for surface waters).

What's more, since the half-life of 13 years was measured in a pond different

from Snake Pond, an estimate for the volatilization rate of benzene, was also done, for more

accuracy, using the film theory for reaeration in lakes [Harleman, 1990]. An average wind speed

was assumed to be 5 m/sec. Yu & Hamrick, 1984, give a value of approximately 10-5 m/sec for

KL, the overall liquid film coefficient. Assuming that the behavior of benzene is not very

different from that of oxygen, the volatilization rate (another assumption is that decay in surface

waters is caused entirely by volatilization) is equal to KL divided by the depth. The average depth

of the pond is assumed to be 25ft (since the maximum depth is 35 ft [Advanced Sciences, 1993]).

The resulting volatilization rate, therefore, is 0.113 days1'. This rate correspond to a half-life of

6.1 days. Although this is probably a more accurate calculation because it takes into account the

depth of the pond, a half-life of 13 days will be used in order to be conservative.

4.3.5 Contaminant Source

The source of the contamination is a pancake-shaped volume of free product on

top of the water table. The area of the extent of the free product is shown in Figure 4-7. Because

of the abundance of the free product, 70,000 gallons [Advanced Sciences, Inc., vol. I, 1993], the

source was modeled as a 'fixed concentration source'. This means that at every time step, at the

specified nodes (the nodes in the area of the free product), particles are added, so that the

resulting concentration in the elements of the area equals the specified (fixed) concentration.

When, at the next time step, particles are carried away due to advection, Dyntrack 'replenishes'

the nodes at the source area. The fixed concentration was set at benzene's solubility, 1780 mg/L

[MacKay et al., 1992]. This assumption is also based on the abundance of free product and it also

gives a conservative estimate. Dissolution occurs as the water table surface moves in contact

with the free product surface. A relatively small amount of water, therefore, comes to contact

with the fuel. Moreover, the water table elevation fluctuates throughout the year, so it is not

always in contact with the free product. That is why the assumption of 1780 mg/L is

conservative.



Figure 4-1 Head Contours at the FS-12 Area
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Figure 4-2 FS-12 Study Area Cross-Sections
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Figure 4-3 Cross Section AA'

C 500 1000 500 2000 2500CC "00 500 40C 45CC0 5000 50CC

M;W-29O GMW- M -4 1 3-34 ;-2 s3-: 3-

..:.• ::.::.~I . ... :...:.•.. •:
i:i . r_ _

-::~: : li:1": ] : :i• ....." '.. .. . " ;

I- r Fi r:
• : " : : :::.: ..: " :. J::" :.:" • : .: :" : : : :. : :::, : .: : -: .-: .-F : .. : .: : - .-,

ri...... . . ::...L
---------------.-:-.-.-'.- .-------------- -. . .. :-. .'":. -: .:.' .' .I-..: -.. .•

500 250 0 500

SCALE IN FEET
HORIZONTAL

SC 7

IO-

-5 -1

SAO. POORLY GRACE:. WITH MINOR GRAVEL -Y., SILTY .,,,

SAND. SILTY -- LT. CLAYEY SCALE: AS NOTED

SAND, CLAYEY wATER TABLE 2/93 DATE: 09-10-93KLV ~ F- ATER TFL.ILENAME: R"25. OGN

i
·:- -,. ·1.~-.-

7

5000 250 0 500

1
: 

SCALE IN FEET

HORIZONTAL



FiEure 4-4 Cross Section BB'
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Figure 4-5 Cross Section CC'
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Figure 4-6 Cross Section DD'
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Fi2ure 4-7 Source Area
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FiEure 4-8 Di2itized Map of the FS-12 Area

- I I I I- I

i I I I . I

ci~~ ~ ~ cic ic ci c
i ci ci c42

42

O

O

O

c

ri

CI

c

4m

I.



Figure 4-9 Generated Grid With Outline of Ponds
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Figure 4-10 Grid and Boundary Conditions
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Figure 4-11 Location of Cross Sections



Figure 4-12 Modeled Stratigraphy (AA')
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Figure 4-13 Modeled Stratigraphy (BB')
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5. Model Results And Assessment

The development of the model provided a lot of information regarding the FS-12

area and the migration of the contaminants. It also identified certain questions which need to be

answered, or studies which need to be conducted, in order to get a more accurate representation

of the subsurface and its groundwater flow. In the following paragraphs, the model results are

described and analyzed.

5.1 Groundwater Flow Field

5.1.1 Calibration

The final values of the input parameters shown in Table 4-1, were chosen so as

to produce a groundwater flow field which matches observed data. The data used for the

calibration, was the observations in Savoie, 1995. The head distribution simulated by Dynflow

was compared to the data from the observation wells in Savoie, 1995 and the results are shown in

Figure 5-1. The average difference between observed and calculated head values was 0.348 ft

with a standard deviation of 1.687 ft. Considering that the overall head difference in the area of

concern is approximately 20 ft, the calibration was successful. The equipotentials from Savoie,

1995 are also shown in Figure 4-14. It should be noted that these are interpolations from the well

observations as well. The equipotentials from the calibration and Savoie, 1995 are in satisfactory

agreement.



5.1.2 Calibration Uncertainties

As was pointed out in Section 4.3.4 one of the obstacles in the development of

the model was the lack of data about the hydraulic conductivity of the geologic layers of the area.

The values of the hydraulic conductivities were based on just one aquifer test [HydroGeoLogic,

1994] which is not adequate information. Therefore despite the agreement between observation

and simulation, the simulation is uncertain because the conductivities are uncertain.

What's more, a second critical uncertainty concerns the location of the

groundwater divide, which is the point with the highest hydraulic conductivity. It is located to the

north of the FS-12 source. However, that area lacks observation wells and, consequently,

hydraulic head data. Two groundwater resources maps used as a reference during this study

[LeBlanc et al., 1986; Savoie, 1995] showed the locations of different observation wells and in

both of them, the lack of data from the area where the groundwater divide seems to be was

apparent. Since the grid was constructed so that its northernmost tip is at the groundwater divide

[Figure 5-2] this results to one more source uncertainty about the flow calibration.

5.2 Benzene Transport

The second part of the modeling, consisted of particle tracking. Despite the well-

calibrated flow field, two kinds of inconsistencies with observed measurements were indicated.

The travel time of the modeled plume was higher than that observed, for same distances, and

more important, the vertical position of the plume was higher than the concentration data

distribution showed. These two inconsistencies are illustrated below.

The results from the benzene particle tracking are shown in Figures 5-3, 5-4, and

5-5. Figure 5-3 displays a particle tracking run conducted for a period of ten years. In the

simulation the plume is shown to have traveled a distance of approximately 3000 ft (the center of

mass has traveled a little less, approximately 2500 ft [see the cross-section in Figure 5-5]). The

observed horizontal extent of the plume [Figure 5-6] is similar; however, the real travel time of

the contaminants has been approximately twenty years, which means that there is a difference of

a factor of two between observation and simulation.

The second -and more important- difference between observation and simulation

is the vertical position of the contaminant plume. Figure 5-7 displays a vertical cross-section of

the subsurface along the longitudinal axis of the plume. The vertical position of the simulated



plume is displayed as well as observed benzene concentrations. It is obvious that the observed

data are lower than the modeled data by approximately 25 feet. It should also be mentioned that

the modeled concentrations were greater than the observed ones by one to two orders of

magnitude.

The above deviation from the real situation is attributed to the uncertainty of the

position of the groundwater divide. As was mentioned, the position of the modeled divide was

estimated from the groundwater contours in Savoie, 1995. It is believed (as a result of the model-

data difference) that the modeled position is inaccurate. It is suspected that the location of the

divide is closer to the source of the FS-12 spill, thus located further south than the topmost tip of

the grid shows [Figure 5-2]. Closer proximity of the divide to the source would result in more

pronounced vertical movement of the plume which would align the modeled plume with the

observed data. The difference in travel time is attributed to the lack of hydraulic conductivity

data. A difference of a factor of two between the input and the real values is possible, and it

would explain the travel time difference.

5.3 Surface Water Impacts

One of the primary intentions of this study is to predict potential impacts on

Snake Pond from the migration of contaminants from the fuel spill. Despite the departures from

the actual plume characteristics described above, the modeled plume provides significant

information about the safety of Snake Pond. First of all, it is assumed that the higher velocity of

the contaminants, as shown in the modeled plume, does not alter the path they follow. A change

in the position of the groundwater divide would possibly alter the vertical velocity and a lower

value of hydraulic conductivity would alter the horizontal velocity, but the horizontal path would

not change since the hydrogeologic characteristics would stay the same. The horizontal extent of

the plume is believed to be an accurate representation of the contaminants' path.

The vertical location, although not accurate, can be considered a 'worst case

scenario' for the pond. The plume's high vertical position can only be a greater threat to the

pond, as the contaminant particles' likelihood of being discharged in the pond is increased.

The simulation in Figure 5-3 (and the blown-up in Figure 5-4) depicts a ten year

run with the input parameters shown in Table 4-2. It is obvious that there exists a small number

of particles (therefore a certain mass of benzene) which are discharged into Snake Pond [Figure

5-8]. The estimate of the concentration resulting from adding the mass of the particles in the



pond was suspected to be inaccurate because Dyntrack deletes particles which contain mass

below a threshold. It was, therefore, decided to estimate the resulting concentration in the pond

by using a box model approach.

The pond was considered to have the following inflows and outflows:

Qim, the groundwater flow entering Snake Pond,

Qout, water coming out of the pond and entering the groundwater.

The following concentrations are associated with these flows:

Ci,, benzene concentration of water entering the pond,

Cpond, the steady-state concentration in the pond.

Finally, volatilization was also considered as a process of removal of benzene from the pond. The

surface water decay rate of 0.0533 (half-life of 13 days), mentioned in Section 4.3.4, was

assumed to be attributed to volatilization.

A steady-state mass balance was conducted:

Qin * Cin = Qout * Cpond + k * Cpond * V

where Q's are the flows expressed in ft3/day, C's are the concentrations expressed in mg/L, k is

the decay/volatilization rate expressed in days-1, and V is the volume of the pond (ft3). (The

necessary unit adjustments were done during calculations).

The decay rate is 5.33*10 -2 days-'.

The discharge in the pond was calculated by programming Dynflow to compute

the hydraulic head gradients at the horizontal and vertical boundaries of the pond, and then

applying Darcy's law. Since there is no accumulation or depletion of water from the pond, the

outflow was equated to the inflow. The value obtained by Dynflow was 262,000 ft3/day.

However, since the modeled travel velocity was double the observed velocity, a flow of 131,000

ft3/day was considered.

The concentration of benzene going into the pond was considered to be equal to

the modeled benzene concentration of the groundwater at the location right before it enters the

pond. This concentration was shown to be 10 mg/L. It should be mentioned that this

concentration is a conservative estimate. The modeled concentrations were significantly higher

than the observed ones (probably because of the conservative assumption of benzene solubility

being the source concentration).

The volume of the pond was estimated by superimposing a square grid over the

pond, thus calculating its area and then multiplying with the average depth of 25 ft. Thus, the

volume is modeled to be 89,000,000 ft3.



Solving the above equation for Cpond, the resulting concentration is 0.27 mg/L.

Before analyzing the risk associated with such a concentration in a water body like Snake Pond,
it should be restated that the above concentration is a very conservative estimate. This is due to

the following factors: 1) the modeled plume is higher than what the observed concentration

distribution shows, therefore closer to the pond 2) the concentration at the source is assumed to

be equal to benzene's solubility, which in turn increases the concentration entering the pond (by

one to two orders of magnitude), 3) lowest observed decay rates for benzene in water were used

(for groundwater and surface waters).

Even with the above assumptions which, probably, give a high prediction for the

concentration in the pond, the resulting concentration does not pose significant risk. The

associated carcinogenic risk, assuming that the exposure pathway is dermal contact, was

calculated with the equation shown in Table 5-1. It is the standard equation used by the

Environmental Protection Agency [Automated Sciences Group, Inc., 1994].

The resulting risk for a 0.27 mg/L concentration is 1.26*10-6. The target risk

level according to the Massachusetts Contingency Plan is 1* 10-5 [Automated Sciences Group,
Inc., 1994]. The calculated risk is, therefore, well below the legislated standard. Actually, the

concentration which would result in the threshold risk is 2.136 mg/L, 8 times higher than the

expected one.

The above calculations show that the risk associated with the possible discharge

of chemicals to Snake Pond is low and there is no threat to humans.



Table 5-1 Risk Assessment Parameters and Methods
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Figure 5-1 Modeled Hydraulic Head Contours
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Figure 5-2 Groundwater Divide Position

Of GW Divide



Figure 5-3 Plan View of the Plume



Figure 5-4 Plan View of the Plume (Blow-Up)
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Figure 5-5 Cross Section Across Plume
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Figure 5-6 Observed Benzene Concentrations
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Figure 5-7 Vertical Location of Observed Benzene Concentrations

aJ
a.

a.

F4
f;F

o

cEl~l

0 

1

0- O 3M CQ -0 .00? O
I,, -

,·. •l•' , •,',,,,

IJi I I

h 00000000000000

r1 II



Figure 5-8 Cross Section Across Snake Pond
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6. Summary, Conclusions, and Future Work

6.1 Summary and Conclusions

The transport and fate of the spilled jet fuel at FS-12 were examined using a

finite element computer model, in order to assess the potential danger of contamination for Snake

Pond, the closest surface water body used by humans. Benzene was simulated because it was

determined to pose the greatest threat to humans.

Although the modeled plume did not match the observed data perfectly, it gave a

'worst-case scenario' as far as discharge into Snake Pond is concerned. The results show that

even in this 'worst-case scenario,' the concentration of benzene in the pond was negligible,

showing a very conservative estimate of 0.3 mg/L. The risk associated with such a concentration

was below State standards. Furthermore, it should be noted that the modeling did not take into

account any of the current efforts to control the source or the leading edge of the plume. Since

these efforts are also decreasing the amount of contaminants in the subsurface, the safety of the

pond is certain.

6.2 Future Work

Although this study reached a conclusion in regard to the safety of the pond, it

did not accurately depict the movement of the plume. As was discussed, a probable cause to the

encountered difficulties was the uncertainty of the groundwater divide location. Therefore a

future modeling effort should concentrate on this issue.

Concurrent with this study, were two other modeling efforts for two other

plumes at the Massachusetts Military Reservation. It is the belief of the author as well as of the

authors of the other two reports (Personal Communication with Kishan Amarasekera and Enrique



Lopez-Calva) that a complete modeling effort at Cape Cod should include all the Cape, and not

just sections of it. Because the aquifer in Cape Cod is a sole source aquifer, many local

characteristics, such as the location of the divide, possibly affect the flow of the water on a

regional scale. By dividing the Cape in smaller modeling areas, it may be impossible to account

for such effects which, in turn, result in uncertain predictions. Data are especially limited in the

north part of the Cape, which is a substantial part of the area's flow system. As far modeling with

the intention to assess remediation schemes for the MMR is concerned, then, a model including

all the contaminated sites (even though not the entire Cape) would be more efficient.

Hence, although in this case a local model answered questions regarding the

safety of the pond, a regional model will be better suited for simulating Cape Cod's groundwater

resources.
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