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ABSTRACT

Time Delay Control has been proposed as an effective control method for a class of
systems with unknown dynamics and unpredictable disturbances. The control algo-
rithm uses recent past data to estimate the uncertain dynamics and disturbances in
the system. This Thesis presents a method based on convolutions to attenuate the
noise amplification in the calculation of the estimated functions. This method sug-
gests a delay time to be much larger than the sampling period. Through the accuracy
analysis, an extrapolation scheme is found to be useful to improve the performance
while keeping the delay time at an appropriate level. Stability analysis shows that a
trade-off exists between robustness and performance. For a special class of systems
with slow changing dynamics during the delay time, the convolution method with an
extrapolation scheme is shown to provide a very satisfactory performance.

An application of Time Delay Control to an intelligent automotive cruise control
system is presented to show the performance of Time Delay Controller on actual sys-
tems. In this system, a vehicle is equipped with a ranging sensor which measures
the distance between a preceding car and itself. The relative distance between the
two vehicles is the control output [the state] of the system and the dynamics of the
leading car are treated as a disturbance. The performance of the Time Delay Con-
trol Method in this intelligent longitudinal cruise control system was evaluated using
a one-fifth scale car model. Through simulations and experiments, the Time Delay
Control technique is shown to be well suited for intelligent cruise controls because of
its rapid estimation of system dynamics changes and ease of implementation. If noise
is a significant problem, the method based on convolutions and extrapolations can be
used to attenuate the noise while keeping a good performance. This implementation
and the above analysis show that the flexibility and feasibility of Time Delay Con-
troller are largely increased by the method based on convolutions.
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Title: Associate Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation of Thesis

The demand for high performance systems has introduced an increasingly challenging

controller design problem. These systems include machines with significant dynamic

changes operating in environments where unpredictable disturbances are possible. To

guarantee high performance, a fast adaptation control method which can deal with

unknown dynamics and unpredictable disturbances is necessary.

Several types of control strategies have been developed to deal with this problem.

In Adaptive Control [1,6,7,11] the structure of the controller is selected a priori, usu-

ally PD or PID. The controller gains are then updated using recursively estimated

parameters of the plant. As stated in [3,4], this method considers slowly varying

parameters, linear dynamic equations, and/or bounded uncertainty. This technique

is therefore unacceptable for some applications that need high adaptation rates. One

example is the control of magnetic bearings. In order to guarantee stability and

appropriate disturbance rejection properties, the controller must detect disturbances

within 200 jisec [22]. Sliding mode control [8,13,14] can accommodate nonlinear sys-

tems. Based on Lyapunov's method, the control scheme is characterized by discon-

tinuous function with high frequency chattering. Sliding mode control action involves

a term depending on the system model. Therefore, if uncertainty is small, the error

is small. However, when systems has potentially significant uncertainties, the per-
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formance would not be acceptable. Learning control [2,5,12] is an approach which

is based on trial and error. Each time the system performs the same task, data is

collected and used to update the control action. By repeating the task several times,

performance can be improved. This approach is well suited to repetitive tasks and

may not be appropriate for other types of systems. Control algorithms based on

table look up, such as gain adjustment control, have been used extensively in auto-

motive applications for engine control and anti-skid braking systems. To implement

this control and obtain good performance, a significant amount of experimental data

needs to be taken and stored in the controller. The stored data must also be spe-

cific for each different type of machine. A degradation of performance will occur as

mechanical components wear. For some high performance systems which need fast

adaption rates to cope with significant and fast changing dynamics and disturbances,

the current methods mentioned above might have some problems when implementing

in one way or another.

Time Delay Control [15,16,17,18,19] has been proposed to be a method that can

deal with this problem for a class of systems. Time Delay Control depends on nei-

ther estimation of specific parameters, discontinuous control, nor repetitive actions.

Rather, it depends on the direct estimation of a function representing the effect of un-

certainties. This is accomplished using time delay. The gathered information is used

to cancel the unknown dynamics and the unexpected disturbances simultaneously.

Then the controller inserts the desired dynamics into the plant. In other words, the

Time Delay Controller uses past observation of the system's response and the control

input to directly modify the control actions rather than adjusting the controller gains

or identifying the system parameters, thereby leading to a. model independent and

fast adaption controller. This algorithm can deal with large unpredictable system
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parameter variations and disturbances. Yet the system's performance is very satis-

factory. The successful implementations include : servosystems, robot manipulators

and high speed active magnetic bearing systems for rotors.

However, using the original form of Time Delay Controller, a digital differentia-

tion inevitably amplifies the noise. For some applications, the performances become

unacceptable. Therefore, it is necessary to modify Time Delay Controllers to reduce

this amplification.

1.2 Contents of Thesis

In this thesis, a class of time delay controllers using convolutions to evaluate the net

disturbance consisting of unknown system dynamics and unexpected disturbances

are presented. This method suggests a calculation using the data in a small moving

observation window to reduce the noise amplification caused by the digital differen-

tiation in the original method. Based on this evaluation, an extrapolation method

is proposed to improve the performance. The accuracy of evaluation and the sta-

bility conditions of these controllers are also discussed. An application to a cruise

control system is used to demonstrate the performance of TDC on actual systems.

This thesis is organized as follows. Chapter 2 derives the convolution type of Time

Delay Control law. Chapter 3 discusses the accuracy of the evaluation based on the

convolution methods. Chapter 4 gives the stability conditions of these time delay

controllers. Chapter 5 studies the frequency response of controllers based on convolu-

tions and extrapolations. Chapter 6 presents an example by a two degree of freedom

robot manipulator. Chapter 7 presents an experiment on an intelligent cruise control

system. The conclusions are summarized in Chapter 8.



Chapter 2

A Control Law Based on Convolutions

2.1 System Description

The systems under considerations are described as

5c = F(x, t) + H(x, t) + B(x)u + D(t) (2.1)

where x E 9R is the plant state vector and u E 9R is a control vector. F(x,t) and

H(x, t) E Rn are nonlinear vectors representing respectively the known and unknown

part of the plant dynamics, and D(t) E Rn is an unknown disturbance vector. The

variable t represents time. In this paper we are concerned with the class of systems

satisfy a matching condition described in [25]. These systems can be partitioned as

xq (t) x, (t) 0
x(t) ... F(x,t) ... H(x, (2.2)x I(H) FH(x,)t) Hr(x, t)

0 0
D(t) = ... ; B(x) = ... (2.3)

D,(t) Br(x)

where the partial states are xq(t) E R"-', x,(t) E rý, x,(t) = [x,.+x,Xr+ 1,..., x,]T E

n"-'. The vector functions are F.(x, t) E R", H,(x, t) E Wr and B,(x) E Rrxr.

A reference model that generates the desired tra.jectory is chosen as a linear time

invariant system,

xn = Am,,x, + B,,r (2.4)
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The matrices are also partitioned in the same manner

0 In "
Am Am.

Amr
B Bm

where In_, E •-•n-rn-', Amr E rx", Bmr E ~xr ,B,n' E RnXr and r(t) E Rr. To

transform Eqn( 2.1) to a general form with a known constant control distribution

matrix, we rewrite Eqn( 2.1) as

c = F(x, t) + x(x,u,t) + Bu (2.6)

where the unknown function I(x, u, t) is defined as

S(x, u, t) H(x, t) + D(t) + [B(x) - 13]u (2.7)
0

Xr,(x, u, t)

and B in the form of

(2.8)

is a constant matrix of rank r to be selected by the designer.

2.2 Derivation of Control Law

The purpose of control is to force the states of the system to follow the state trajec-

tories of the reference model. Thus the error vector e E R" is defined as

e = x., - x (2.9)

The time rate of change of the error, e is then

e = xm - x (2.10)

Combining Eqn( 2.6) and Eqn( 2.4), one can obtain

e= A,,xm + Bmr - [F(x, t) + (x, u, t) + Bu]

(2.5)

CHAPTER 2.

0

Br

(2.11)
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To bring about an error term, the term A,,x can be added and subtracted to the

above equation, which leads to

e = Amxm + B,,,r - [F(x, t) + '(x, u, t) + Bu] + Amx - Amx (2.12)

and then Eqn( 2.12) can be rewritten as

e = Ame + [Amx + Bmr - F(x, t) - I(x, u, t) - Bu] (2.13)

Now a control action u can be chosen such that the term between brackets in

Eqn.( 2.13) is zero at any instant of time. This makes the error decay at the rate

dictated by the reference system model Am. Since this decay rate is not practical in

general, a much faster one is desired. So a new control action

v = u + Ke (2.14)

is defined to adjust the error dynamics, where K E RrXn is a feedback gain matrix.

The error dynamics now takes the form

e = [Am + BK]e + p (2.15)

where p vector is

p = Amx + Bmr - F(x, t) - &(x, u, t) - Byv (2.16)

The control law is chosen as

v = tB+[Amx + Bmr - F(x, ) - &(x, u, t)] (2.17)

where IB+ E Rrxn is the pseudo-inverse matrix of B3 defined as (]^BTB)-1B T .

form of Eqn( 2.8), B+ is given by

For the

B+ = [0 |1 (1 2.]

CHAPTER 2.

(2.18)
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and the control law becomes

v = B-' [Amrx + Bnrr - Fr(x, t) - W,.(x, u, t)] (2.19)

The dynamic behavior of the error is governed by Eqn.( 2.15) and its time response

e(t) = e(Am+BK)(t-to)e(to) + e(A"++BK))(t-T)p(r)dT Vt>to (2.20)

involves a state transition matrix b (t, to),

ý (t, to) = e(Am+K)(t- to) - eA (t- to) Vt>to (2.21)

If Am, B, and K are specified along with e(to), the unknown function can be estimated

through rearranging Eqn.( 2.20) by

= -e(t) + "D(t, to)e(to) + b(t, T)Amx(T)dr

+ j (t, 7)Bmr(T)dT - I (t, r)F(T)d7-

- it ,(t, 7-)Bv(T)d7- (2.22)

If Q(t) doesn't change significantly during the interval [to, t], we can approximate it

as Q(t) by the following Equation

[ft (t, -)dr] [(t) = (2.23)

and thus

i(t) = [ (t, T)d-] f-[ (t, T)IA()dr][to, ito J (2.24)

Once the unknown function is obtained, the control action can be calculated by Eqn

( 2.19). This control law, when implemented digitally, suggests a delay time L to be

much larger than the sampling period t, as shown in Fig( 2.1). One of the benefits

CHAPTER 2.

It #(t,-7)I(r)d7-

o (t, r)X(r)dr
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in doing this is to attenuate the high frequency noise effects. However, there are at

least two other problems we should investigate about this control law. One is the

accuracy of the approximation of ' by Q. This accuracy, as one can understand by

intuition, depends on the window size and determines the performance of the whole

system. Another issue is the stability conditions of the closed loop system under

the assumption that the window size is sufficiently small. This condition, as what

will be shown in the following chapters, involves the matrices B, B(x) and the state

transition matrix b.

t

Figure 2.1: A Moving Observation Window

2.3 Digital Implementation

By examining Eqn ( 2.19), Eqn ( 2.22) and Eqn ( 2.24), one ca.n find out that there

exists a causal conflict and therefore an algebraic loop forms. The reason is that in

Eqn ( 2.19), v(t) depends on #(t) and in Eqn ( 2.22), ((t) depends on the integral

fto (t, -r)Bv(T)dr. To avoid this problem, the integral ft' #(t, r)IBv(T)dT has to be

replaced by a delayed integral ft-t, (t, 7)Bv(r)dT, where At is a small time period.
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However, if a digital controller is used to implement this control law, the inherent

time delay caused by digital sampling solves this problem automatically, and the

algebraic loop will no longer exist. In this case, the equations ( 2.19), ( 2.22) and

( 2.24) are approximated as

V(k) = B- 1[AmX(k) + Bmr(k) - F(k) - (k)] (2.25)

q-1 q-1

eAe(q-n)t9 (k-(q-n)) ts- -e(k) + eAqte(k-q) + E eA(q-n)t, [AmX(k-(q-n))
n=O n=O

+Bmr(k-(q-n)) - F(k-(q-n)) - tBV(k-(q-n))]ts (2.27)

where k represents the digital step, t. is the sampling period, q is the number of data

points in the moving window, and thus t - to = qts.

2.4 An Equivalent Form

Eqn( 2.22) can be written in a different form. Using this form, as what will be shown,

when K is chosen as 0, i.e. Ae = A,, the signal e is not included in the evaluation

of the unknown function, therefore the calculation of xm(t) is not necessary.

Since Eqn( 2.4) can be written in the form,

xm = Amxm + B,,r

= (Am + BK)x,m + B,,,r - BKxm (2.28)

the following equation is obtained.

x,,(t) = ()(t, t0 )xm (to) + j 4(t, r)B,ir(T)d- - (~(t, T)BKxm(r)dT (2.29)t
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The simplification form of Eqn( 2.22) then is

4J (t, 7)XP(r)dr x(t) --(t, to)x(to)

tft

+ '(t, 7)(A,, + BK)x(.r)d - ((t, r)F(T)dT

- Ib(t, )Bu(7)d(r (2.30)

The corresponding digital form can be obtained by approximating the integrations

by summations.

q-1 q-1

E AeA(q-n)t, (k-(q-n))s " X(k) - eAqtsX(k-q) + E eAZ(q-n)tZ [AeX(k-(q-n))
n=0 n=O

-F(k-(q-n)) - BU(k-(q-n))]ts (2.31)

In this form, only x and u is used to evaluate the unknown function. If K is chosen

as 0, then v = u is used as the control input, that is, no calculations of xm(t) is

necessary.

2.5 Special Cases

The control law derived above is a general form of Time Delay Controller based on

convolutions. Under some conditions, the control law can be reduced to simpler forms.

Those simpler forms of control law can be derived by other approaches, but in fact

they are special cases of the derived control law.

2.5.1 The Original Form of TDC

When only one past data point is used in the evaluation of the unknown function,

Eqn ( 2.26) and ( 2.31) lead to

-= [eA sts1 X [eAets (k-I)ts A

S [A tst X(k) - 7X(k1) + [A+ flX(k-l-) F- (k-l) - ýV(k.k-l )j (2.32)
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Note that

e(k) = Xm(k) - X(k)

and

v(k) = U(k) + Ke(k)

Through some calculations 1, the following result is obtained.

•(k)- IX ( k ) 
- X(k -

1)] - F(k-1) - BU(k-1)ts

Eqn ( 2.35) is the evaluation used in the original form of TDC, where [X(k) - X(k-1)]

is a digital differentiation of x(t). If the signal x(t) is noisy, - will produce significant

amplification, and the performance will not be acceptable.

2.5.2 TDC Based on Integrations without Weighting Fac-
tors

In Eqn ( 2.26), '(t) can be interpreted as the weighting average of the unknown

function I(t) through a period [to, t]. If the weighting factors are ignored, Eqn

( 2.31) becomes

1 X(k) X(kq)' =(k L Z )- ~ - 1 q-1

+ [F (k-(q-n)) - B(k-(q-n))
n=O

where L = qt, is the delay time t - to. This form can be also obtained by integrating

Eqn ( 2.6) and approximating the integrations by summations.

2.6 Numerical Example

A simple second order system was chosen to performu some numerical calculations,

0.x1 2 + u t + ]
1d(t) (2.37)

1A necessary approximation eA ets - I+ A,t, has to be rnclade.

(2.33)

(2.34)

(2.35)

(2.36)

CIHAPTER 2.

= d x1
t I X2
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where d(t) is an unknown disturbance. The reference model is chosen as a second

order system with a damping ratio ý = 1 and a natural frequency w, = 5 rad/sec.

The reference input is a unit step . Thus the reference model is

xm=d l]] = - 1 XI n + I r (2.38)d= xm2 -25 -10 Xm2 25

The unknown function ~, in this example is

'02 = 0.1(x 2)2 + d(t) + (25 - b)u (2.39)

If the delay time is 0.01 sec, and the sampling period is 0.005 sec, the control action

according to Eqn ( 2.19) and Eqn ( 2.24) is then

U(k) = b-1[-25xl(k) - 10X2(k) + 2 5 r(k) - 02(k)] (2.40)

where

0k2(k) = 19 .3 8 el(k) - 107 .6 9 e2(k) - 6. 2 5 el(k-2) + 9 7 .50e2(k-2)

-1 2 .S811(k-1) - 5.09X2(k-1) + 12 .817t(k-1) - 0.51b'u(k-1)

-1 2 .19Xl(k-2) - 4 .91X2(k-2) + 12 .1 9 r(k-2) - 0.49bu(k- 2) (2.41)

Note that usually more points are used to evaluate the unknown function so that the

control action is nearly continuous and therefore the system response is also smooth.



Chapter 3

Analysis of Accuracy

3.1 Analysis of Accuracy for Continuous Systems

To examine the accuracy of the approximation of Eqn( 2.23), Taylor's expansion is

used to express the estimation error. First, if a vector function f(t) is analytic for all

t > 0 and f(t) = 0 for all t < 0, f(t - L) can be expanded around t for all t > L,

f"(t)L 2 f"'(t)L 3
f(t - L) = f(t)- f'(t)L + 2!+ () (t)

9 3!

Taking the integral of both sides and rearranging the equation, the following form is

obtained.

1
f(t) = LL [f (7) - f (7 - L)]d' +

f'(t)L L f"(t)L 2

(3.2)

Since

r - L)dr =
t-L

J-L
f (s)ds = I f(s)ds (3.3)

if 7 - L is taken as s. Eqn( 3.2) can be written as

1 * f'(t)L
f (t) I t-L f(T)dT +

f"(t)L 2

+ ....
:3! (3.4)

Assume T(t) is analytic for all t > 0, let f(t) = e-AetxI(t) and substitute into

Eqn( 2.24).

e -AIp(t) =
L e-L - -r()dT +

it-t'2L

o0 f(

[e-AtIF()/](t)L32
3

(3.1)
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Calculating the differentiations and rearranging the equation, the following equation

is obtained

S(t) [L eAe(t-)d [- 1 , eAe(t-I r)dr +  "(t) - 2(Ae)' L2 +

(3.6)

Note that the first term is the function which is used to evaluate the unknown function,

and the other terms combine to represent the error of this evaluation. If the Fourier

transform of the signal W(t) is taken, and is denoted as F{W}(w), the signal @(t)

can be considered as the combination of infinite sinusoidal signals with frequency w

from -oo to oo

1 o
W t

7(t) = dF{~._i (w)ew) d (3.7)

Since Eqn( 3.6) is linear, if the evaluation by a scalar sinusoidal unknown function

with frequency w is examined , it is found that when the dimensionless value wL is

small, the value of the right side terms in Eqn( 3.6) is descending term by term. In

this case, the evaluation is reasonable, and the order of accuracy is O(wL). When wL

is large or even greater than 1, this evaluation is very inaccurate. This shows that the

evaluation of Eqn( 2.24) can only evaluate the components in the signal W(t) with

frequency low enough to make wL small.

When a digital controller is used, although the continuous equation ( 3.6) is no

longer valid, if the sampling time is small enough, it still serves as a good approxi-

mation.

3.2 Extrapolation Methods based on Taylor's Ex-
pansion

Since the evaluation of unknown function is a numerical calculation, numerical anal-

ysis methods can be used to obtain a more accurate result. According to Eqn( 3.6),
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an extrapolation similar to Aitken's method [10] can be suggested to improve the

performance. The evaluation is revised as

XJorder2(t) = 2T(-) - T(L) (3.8)

= W(t) + O(L)2  (3.9)

where

T(L) = [i eAe(t-r)dr-1 elAe(t-r) r)d (3.10)

or a more accurate evaluation

8 L L 1
'Jorder3 (t) = T() - 2T( ) + -T(L) (3.11)

= xF(t) + O(L)3  (3.12)

The same procedure can be taken so that the error is reduced to be higher order

of L, and the evaluation can be very accurate. If L is chosen as reasonably small,

this method can improve the tracking error and reduce the settling time. But this

method can only increase the accuracy of evaluation for the components in IF(t) with

relatively low frequencies. The following sections show the simulation performance

for an example, which has an unknown function with low changing rate. The result

is then very satisfactory. HIowever, compare to thle unrevised evaluation, as we will

show, the range of choosing B is reduced, that is, the stability condition is more

strict. This is a reasonable tread-off, since a larger stable region doesn't guarantee

a good performance. This method at least suggests that when the knowledge about

B(x) is good enough, extrapolation methods can be used to improve the controller.
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3.3 Extrapolation Methods for Digital Systems

The digital forms of Eqn ( 3.8), ( 3.11) are obtained by approximating the integrals

as summations.

-1-1

--order2(k) = 2 eAe(-n)t eA(n)ti (k(n)) ts] .
on=O 

n=

q-1 -1 q-1

I+ eAe(q-n)tsts C Ae(q-n)t, (k-(q-n))ts (3.134)
n=O n=0

same order of (L) 2 in Eqn(3.8) or (L)3 in Eqn(3.11) so that the order of accuracy isA simple seorder3(k)d er system as shown in section 2.6 En (2.37) s
n=O n=0

q-1 1q-1
+-3 eAe(q-n)t,ts A,-(q-n)ts 'F(k-(q-n))ts (3.14)

-n=o -n=o

One thing worthy of noting is that, in this case, shouldbechosen as a second order sysbout the

same order of (L)ng i Eqn( 3.8) or (L)3 i En( 3.11) sog.6) that the order of accuracy is

consistent.

3.4 Example
A simple second order system as shown in section 2.6 Eqn ( 2.37) was chosen to

show the performance of the controllers we mentioned above. In this example, d(t)
is chosen as, for case I, a step disturbance with amplitude 1, and for case II, a
sinusoidal signal with frequency 10 rad/sec and amplitude 1. The value b is assume
to be known exactly. We choose the reference model as a second order system with

ý = 1 and w, = 5 rad/sec and unit step reference input. The delay time is 0.1 sec,
and the sampling period is 0.0025 sec. Fig( 3.1) to Fig( 3.6) show the results. Line 1,
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2, 3 shows the simulation curve using Eqn( 2.24), ( 3.8) and ( 3.11) respectively by a

same window size L. From the results, we can see that while choosing a larger window

to reduce the noise, we can use a more accurate evaluation of the unknown function

to improve the performance. Although at the same time, because of the weighting in

extrapolating calculation, the noise can be amplified, the scale of this amplification is

much smaller than if we choose a small L to achieve the same performance. Fig( 3.7)

shows the control actions with noise in each case.

1

0 .5 .. ... ... ... ........ ....

-0r - L:I-

*• II t

II

-1
0 0.2 0.4 0.6 0.8 1

time (sec)

Figure 3.1: Case I: The evaluation errors of unknown function.
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Figure 3.2: Case I: The evaluated unknown functions.
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Figure 3.4: Case II: The evaluated unknown functions.
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Figure 3.5: Case II: The tracking error of xl.
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Figure 3.6: Case II: The tracking error of x2.
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Figure 3.7: Case II: The control actions with 3% noise at the feedback signal. (a) no
noise. (b) control action using 4. (c) control action using 4 order2. (d) control action
using l4 order3.
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Chapter 4

The Stability Conditions

4.1 Stability Conditions for TDC Based on Con-
volutions

In this chapter, a method similar to reference [27] is used to discuss the stability

conditions. First it is necessary to state that the values of B, F, D, H has negligible

variation within the window if L is chosen small enough. This is justified by Lemma

1 in [27]:

Lemma 1: If the system under consideration and its controller are well defined by

Eqn( 2.1) and ( 2.19), ( 2.22) over the interval 0 < t < T, Then B(x), F(x,t), D(t),

H(x, t) are uniformly continuous functions of time for 0 < t < T.

Then the following Lemma results.

Lemma 2: Consider the system described in section 2, under the digital form of

Time Delay Control with the control action as Eqn( 2.19) and Eqn( 2.24). If

(i) The sampling period is very small : t --+ 0

(ii) B, F, H, D in Eqn( 2.1) have small deviation within the window L

(iii) The digital system z(k) = [(I - B(x)B+ )C - '][Z eA(fl-n)ts= k-(q-n))] is expo-

nentially stable. (where C- 1  [=0 eAe(q-n)t ]-1, and q is the number of data points

within the window L.)

then e(k) = (Am + BK)e(k) can be achieved as time goes on, i.e. k -+ co

Proof:
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Recalling the form in section 2.4, the simplification form of Eqn( 2.22) is

J o 4(t, r)4'(r)dr = x(t) - # (t, to)x(to)

+ j (t, 7)(A,m + BK)x(r)d- -

- ( (t, ,r)Bu()dT

S(t, T)F(r)dr
to

If a digital controller is used and let L = qts, the evaluation of unknown function

becomes

q-1 q-1

[(t) e [ eAe(q-n)tt,]-l[x(t) - eAAeqtjx(t - qt,) + E eA.(q-n)t'sAx(t - (q - n)ts)t,
n=O n=O

q--1 q-1

-- C Ae((q-)t"F(t - (q - n)ts)ts - >1 eA(q-n)t"Bu(t - (q - n)ts)ts]
n=O n=O

where the first two of the terms between the big brackets can be written as

(4.2)

x(t) - eAe~qtx(t - qts) x(t) - eAetjx(t - t 8) + eAet"x(t - it,)

-... + eA,(q-1)t"x(t - qt.) - eAeqtsx(t - qt,)

When t, - O0, eAet" r, I + Aets, and x(-x(t-) (t - ts), the above equation

becomes

q-1

SeAe(q-n+l)t5x(t - (q - n)t3 )t, - E eA,(q-n)t'Aex(t - (q - n)ts)t,
n=O n=O

(4.4)

Let [=Io eAe(q-n)ti -1 C-, then

q-1

A (t) a C-1[ eAe(q-n)t5x(t - (q - n)t3 ) - eAe(q-n)t'F(t - (q - n)t , )
n=O

(4.5)

n= o

q-1

- • e(q-n)'tBu(t - (q - n)ts)]
n=O

From Eqn( 2.14) and Eqn( 2.17) the control action is

u = B+[Ax + Bmr - F(x, t) - W(x, u, t)] - K(xm - x)

(4.1)

(4.3)

CHAPTER 4.

q-1

(4.6)
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From Eqn( 2.1)

5 = F(x, t)+ H(x, t)+ D(t)

+B(x)Bt+[Amx + Bmr - F(x, t) - ,(x, u, t)] - BK(xm - x)

Substitute Eqn( 4.5) into the above equation

x = F(x, t) + H(x, t) + D(t) + B(x)B+[Amx + Bmr - F(x, t)
q-1

(4.7)

q-
1

- C-1[ eAe(q-n)t"X(C - (q - ni)t8 ) - eAe(q-n)u - (q - n)t,)
n=O n=O

q-1

- q eAe(q-"n)'F(t - (q - n)t,)]] - BK(x,. - x) (4.8)
n=O

Since u = B+(k - F - H - D), when B,F,H,D has small deviation within the

window with size L, and if the digital form of x(t) is expressed as X(k) (t = kts), the

following equation is obtained

q-1
B(x)B+[AmX(k) + Bmr(k) - C-1- Ae(-)t*(I- BB(x)+)±(k_(q-n,)]

n=o
-BK(Xm(k) - X(k))

Consider the equation at step k - 1,

- B(x)B•[AmX(k-1) + Bmr(k-1)
q-1

- C-1  A(q-n)t, (I_ - B(X)+)x(k-(q-n-1))ts]
n=O

-BK(Xm(k-1_l) - X(k-1)) (

Subtract these two equations and let y(i) = x(i) - X(i-1), since when t, -+ 0, X(k-1) -*

X(k), Xm(k-1) -+ Xm(k), r(k-1) r(k), the result is

q-1

Y(k) = B(x)B+[-C-'E eAe(q-n)t( (I- tB(x)+)y(k-(q-n))] (4.11)
n=O

let z = (I - BB(x)+)y

q-1

z(k) = [(I - B(x)B +)C- ' ][ eAP(q-n)tsz(k-(qn))]
n=O

(4.12)

X(k)

X(k-1)

(4.9)

4.10)

CHAPTER 4.
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If only the above system is stable, that is, z(k) -+ 0, and thus xc(k-1) -+ (k).

closed loop system becomes

B(x)B3+*(k) = B(x)B+[AmX(k)+ Bmr(k)] - BK(Xm(k) - X(k))

32

The

(4.13)

Multiply BB(x)+ to both sides and subtract Eqn( 2.4) from the above equation, we

have

e(k) = (Am + BK)e(k) (4.14)

This completes the proof.

4.2 Stability Conditions for TDC with Extrapo-
lations

Following the same procedure, we can derive the stability conditions for the control

laws which use extrapolations to evaluate the unknown function. The conditions are

similar, except that condition (iii) is revised as

. The digital system

Z(k) = [(I - B(x)B + )
2_

][ 2C1E eAe(q-n)tz(k_(qn))
2 n=0O

(4.15)
q-1

-C-1
n=O

is exponentially stable.

The digital system

Z(k) = [(I - B(x)B~+ )
_-1

4 n=O
eA•(q-n),t, Z(k-(q-n))

I-1

2C
7 n=0

eAe(q-n)ts (k-_(q-_n))]
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1 q-1
+C-1C eA(q-)t, (k-(q-n)) (4.16)

n=O

is exponentially stable.
2- eA"(o - •) ]- 1  and C, r 4 A, - ,n)t,

respectively, where C1 = [=0 Ae()1 and C =eA(-)t - 1
2 4

4.3 SISO systems

4.3.1 Stabilizing Control Input Gain for TDC Based on
Convolutions

When the system under considerations is a SISO system, a range for b(x)b - 1 can

be obtained. By Nyquist stability criteria, using the procedure described in [27], let

[1 - b(x)b-']C-1 = r, and examining the polar plot of the transfer function,

q-1 eA e (q-n)te n

G(z) = zn= q (4.17)

a range -1 _< y < C- 1 is found for system to be stable. Fig( 4.1) and Fig( 4.2) show

the Nyquist plots of G(z) at the two limits when q = 12.

4.3.2 Stabilizing Control Input Gain for TDC with Extrap-
olations

For the control laws which use extrapolations, the range is about -C - 1 < y < aC - 1

where a is a real number between 2 and 3. The value of a depends on q and can

be obtained by Nyquist plots for each q. It is clear that the range of stable - 1' is

reduced in the latter cases.

4.4 MIMO systems

4.4.1 Issues in MIMO Systems

For MIMO systems, the choice of the matrix B that guarantees stability and accept-

able performance can be difficult. Once we have B3, the stability of the system can
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be obtained by examining the equation in Lemma 2, condition (iii).

q-1

Z(k) = [(I - B(x)I+)C-1][ eAe(q-~n)tz(k-(q-n))] (4.18)
n=0

However, the choice of the elements in the matrix B is not straightfoward. One way

to do it is to find a stabilizing range of III- B(x)jll, where I - I1 represents the norm.

This leads to a more conservative result since a norm doesn't include the information

about the directions in matrices. Another issue is that different norms lead to different

choices of B. It is not clear that which definition of norm gives a better result.

4.4.2 Stabilizing Control Input Gain Matrix for TDC Based
on Convolutions

Using norms, a range corresponding to a stable system is dictated by III - B(x)BII.

First, let (I - B(x)tB+) = (. The stability condition Eqn ( 4.18) becomes

Z(k) =- •-1[eAets z(k-1) + eAe2t Z(k-2) + ... + e6etsZ(.(k-q)] (4.19)

Taking the norms, Eqn ( 4.19) becomes

IIZ(k) II III Ic-' [ll [eA st llIZ(k-.) l + j llZ(k-2)11+ * Aeq (k- q) III
< I(jIIIC-l l[IeA)ets I lZet(k_-1)H + lee t 11 IIZ(k-2)11 + ... + lAets lq IIZ(k-q) II

Let IleAetsl = a, jC-111 = f and 'W(k) = llz(k)jl, the above equation becomes

W(k) -< III 3[aW(k-1) + z2 W(k_2) + ... + Ctw(k-q)] (4.20)

Since W(k) = IIZ(k)II 2 0, it is obvious that if the system described by Eqn ( 4.21) is

stable, then Eqn ( 4.20) is guaranteed to be stable.

W(k) = Il•lI[/aW(k-1) + 2 'W(k-2) + ... + a•W(k-q)] (4.21)
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Thus, the stability of Eqn ( 4.21) implies the stability of Eqn ( 4.18), since tw(k) -* 0

as k --+ oo implies z(k) -+ 0 as k -- oo1. By the above derivation, the MIMO stability

condition is reduced to a scalar system, although this is a conservative sufficient

condition. The stabilizing range of 11(11/3 was obtained in the previous section for

SISO systems. Therefore, the stabilizing range is found to be III - B(x)B3l| < 1.

4.4.3 Stabilizing Control Input Gain matrix for TDC with
Extrapolations

For the control laws which use extrapolations, the range can be found by the same

procedure. However, using this method, the stabilizing range is found to be the same

as the cases without using extrapolations. This is because this conservative sufficient

condition does not distinguish the signs of the value [I- B(x)B3], and only the positive

part of the range is considered.

1Because Ilzll - 0 =* z -, 0
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Chapter 5

Frequency Domain Interpretation

5.1 Gain Amplification at Low Frequency

From Eqn( 2.41), it is found that the estimation through digital convolutions is sim-

ilar to a "Moving Average" algorithm, which is a well-known form of digital filters.

However, as shown in Figure 5.1, the signals go through the moving average block

include not only the feedback signals, but also the past control actions. If a linear

TDC controller is considered as a special case ( the case when the possibly nonlin-

ear function F(x) doesn't appear in the control action), the whole controller fits the

"Auto Regressive Moving Average Model" [9]. In this case one can examine the con-

troller frequency response. Note that the extrapolation schemes fit the same model

with different weighting coefficients. Comparing the frequency responses of the con-

trollers using Eqn( 2.24), ( 3.8) and ( 3.11), it was found that the low frequency gains

are further increased by the higher order extrapolations while the high frequency re-

sponse still rolls off due to the filter effects. This also gives another interpretation

for the extrapolation methods that improve the command following and disturbance

rejection performances while not significantly amplifying the high frequency noise.

5.2 The Effect of Digital Filter on Stability

Note that in TDC based on convolutions, the weighting coefficients are decided by the

convolutions , and they are constants if B is chosen as a constant matrix. If the case

where the moving average only apply to feedback signals as in Figure 5.2 is considered,
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then it might be possible to choose a set of weighting coefficients to reach a better

filter effects in comparison to the previously mentioned controllers. Unfortunately,

the system will be unstable by doing this in most of the case even when B(x) is

exactly known. The reason is that the moving average algorithm introduces extra

dynamics which are not counted as part of the plant. Since the relative degree is very

important when designing a Time Delay Controller [26], the system is very likely to

be unstable. Thus we conclude that using convolutions is a better way of introducing

the filter effects while keeping the system stable with a suitably chosen 3.
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Figure 5.1: Time Delay Control schematic with moving average

Figure 5.2: Time Delay Control schematic with moving average only on feedback
signals



Chapter 6

An MIMO Example

A robot manipulator as Fig( 6.1) was chosen as an example to show the effectiveness

of the controllers. This system can be described by the following equations[19],

unit length and
unit mass

Figure 6.1: Two degree of freedom robot manipulator

01

02

021
02

1 2( + cos 02)H = 33 s 2
2 cos 02

. T2

motor 2

+ [
where

0

H-1

01

02

l:1

71
(6.1)

3 + cos 022
3

(6.2)
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h= 1 H- [ -02(201 + 2) sin 02

2 [ 01 sin 02

The reference model is chosen as (1 = 1, 2 = 1 and Cn1 = 5

and unit step reference input for both links. The delay

sampling period is 0.0025 sec. B is chosen as

0 0
0 0

0.75 -0.75
-0.75 3.75

(6.3)

rad/sec, W, 2 = 6 rad/sec

time is 0.1 sec, and the

(6.4)

for simulation case I and

0 0
A 0 06.3750 -15.3750 (6.5)

-15.3750 40.8750
for simulation case II. Fig( 6.2) to Fig( 6.9) shows the results. Line 1, 2, 3 correspond

to the simulation curves using 'Y, 1Jor.der2 and 'order3 respectively with the same

window size 0.1sec. Simulation results of case I show that an appropriately chosen

B matrix can lead to a good tracking performance, while the extrapolation scheme

is used. When the B matrix is poorly chosen as case II, the extrapolation scheme

sometimes makes the system go unstable. Fig( 6.10) to Fig( 6.13) show the control

actions of link 1 and link 2 when noise is added to the feedback signal. From the

above, we can see that a trade-off exists among the noise effect, performance, and

robustness.
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Figure 6.7: Case I: The real (- -) and evaluated (-) unknown functions by ,,order3.
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Chapter 7

Application to a Cruise Control System

In this chapter, an application of Time Delay Control to an intelligent automotive

cruise control system is presented to show the performance of Time Delay Control on

actual systems. In this system, a vehicle is equipped with a ranging sensor which mea-

sures the distance between a preceding car and itself. The relative distance between

the two vehicles is the control output [the state] of the system and the dynamics of the

leading car are treated as a disturbance. The performance of the Time Delay Con-

trol Method in this intelligent longitudinal cruise control system was evaluated using

a one-fifth scale car model. Through simulations and experiments, the Time Delay

Control technique is shown to be well suited for intelligent cruise controls because of

its rapid estimation of system dynamics changes and ease of implementation.

7.1 Introduction to an Intelligent Cruise Control
System

There are several aspects to intelligent vehicle systems. For example, engine control,

anti-skid braking and active suspension systems have been developed to try to auto-

matically optimize fuel consumption, prevent wheel locking and minimize vehicle roll

based on control algorithms. The driver and passengers benefits from these systems

include savings, safety, and comfort.

An intelligent cruise control system may be capable of maintaining a constant

speed or constant distance from a primary vehicle' (longitudinal control) as well as
1A "primary vehicle" is defined as a preceding vehicle while the "secondary vehicle", in this
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directing lateral motions of the vehicle. This paper focuses on the use of Time Delay

Control for longitudinal control and demonstration of its advantages. Attempting

longitudinal control requires that the algorithm guarantees acceptable error dynamics

(disturbance rejection) for large, unexpected disturbances. Such disturbances may be

acceleration or deceleration of the primary car, changes in road conditions, changes

in grade, and changes in wind. All of these disturbances will cause an error in the

distance between the primary and secondary vehicles. Unless the error dynamics of

the controller are guaranteed, collision avoidance could be imminent.

The control strategy considered consists of at least two levels: a high level con-

troller and a low level controller. The high level controller may perform several func-

tions :(1) observes the state of the system,(2) accepts inputs from environment,(3)

performs filtering and estimation, (4) decides whether a task is realizable, etc.... It

then generates commands which are sent to a low level controller. The low level

controller on the other hand has a few other functions: (1) observes the state of the

system, (2) filters and estimates and (3) computes the control action. The control

action is generated in order to execute realizable commands issued by the high level

controller independent of system dynamic variations. These variations may be due

to internal system changes or external disturbances. Internal factors may include

parameter changes and/or function changes. We are interested in designing low level

controllers that guarantee the proper execution of realizable tasks.

7.2 Introduction to the System under Consider-
ation

A one-fifth scale car model shown in Figure 7.1 is used to perform the experiment.

The car model is assumed to posses a ranging sensor which could measure the distance

paper, is defined as the car intended to follow the preceding one.
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between a preceding car and itself. A chassis roller was used to produce unexpected

disturbances such as changes in slopes of road and inertia of the vehicle.

The system is considered as

=C=d ] + u (7.1)dx= d = I b

where d is the longitudinal relative distance (the distance between the primary car

and the secondary car), rI, is defined by Equation ( 2.7) and includes the unknown

dynamics of the secondary vehicle and disturbance introduced by the primary vehicle.

The reference model is defined as

1m dml+ r (7.2)S dmJ -- aml -am 2  m bm (7.2)

The tracking error e between the desired relative distance trajectory dm and the

actual desired relative distance d, and the feedback gain matrix K are given by

e = = dm - d k K= iT (7.3)
e dm - d k2

7.3 Controller Design

The TDC has some unique characteristics which are specially advantageous in this

cruise control system. The experiments presented in this section are intended to

show these effects. One of them is the tracking of a reference model which guar-

antee smooth acceleration and desired velocity, and position curves. The controller

guarantees system robustness without detailed knowledge of the system dynamics.

Consequently, the controller is easy to design and implement. Moreover, the effect

of fast disturbance rejection enables the controller to use the relative distance as a

feedback signal, observing the changing position of the primary vehicle as a distur-

bance, and reject it in several sampling periods. This can be achieved by using the



CHAPTER 7. APPLICATION TO A CRUISE CONTROL SYSTEM

relative values as the states of the system. This effect makes the action of vehicle

following possible, while other controllers may use absolute position, velocity, and

acceleration signals to control the relative distance or velocity.

The control action can be calculated according to Equation ( 2.19) and ( 2.24).

As a first attempt to design the controller for this system, an original TDC controller

(using only one past data point ) is used 2. Since it is implemented digitally, a

difference equation must be used,

u(k) = u(k - 1) + -[amid(k) + am2d(k) + j(k - 1) + bmr(k)
b

+ kie(k) + k2e(k)] (7.4)

where b is the estimate of the control input gain b. 7' is the reference input representing

the desired relative distance which is selected as a step function. To avoid the damage

of equipment, a slow response reference model is chosen (ami = -2 and am2 =

-1) and ki, k2 as error feedback gains are set to zero. These parameters can be

designed based on real car limitation and desired performance. The delay time L

is selected to be equal to the sampling period (8msec). Figure 7.2 shows a block

diagram representation of the control law.

Note that the relative distance is the only feedback signal, which is assumed to

be available in practical implementation. But, in this experiment, it is calculated by

a generated signal xP, which is selected as a ramp (i.e. the primary car is moving at

constant speed) and measured signal x,. cl and d are calculated numerically.

2In this case, since the feedback signal is calculated by the computer, there is no noise at the
signal. Therefore, the convolution methods in previous chapters are not necessary here. If the signal
is noisy, the controller need to be redesigned by the convolution methods
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7.4 Experiment results

The first experiment ( as Case I) involves no external disturbances imposed on the

car wheels and the car starts from zero initial conditions(zero velocity and position).

Figure 7.3 to Figure 7.12 shows the simulation results and the experiment results,

where x, and x, represent respectively the absolute position of primary and the

secondary vehicle. v, and v, are the absolute velocities, and ut is the control action 3

The diagrams show that the performance is as expected despite the motion reversal

which is somewhat unfeasible in a pratical situation. The settling time is about 6 sec.

There is no overshoot as expected by the reference model, and the velocity curve is

smooth. Also,by choosing a suitable reference model, a desired range of acceleration

and jerk value can be guaranteed.

A more practical condition is then considered and the second experiment ( as

Case II ) is performed. In this case, the system inertia is increased by having the

car interact with the chassis roller. Also, in order to eliminate the motion reversal,

the secondary car is kept steady until the desired distance is reached. This simple

algorithm works well and does indeed eliminate the motion reversal as shown in

Figure 7.13 to Figure 7.22. This case, however, is with different initial conditions.

Also, the time rate of change of d is computed only after the first few samples in order

to obtain meaningful data. This calculation procedure eliminates any initial jumps

at the beginning of the response, which are easily seen in the previous experiment.

Note that following a vehicle at any initial condition with limited time and reasonable

acceleration(deceleration) sometimes is impossible, since the initial relative distance

can be too large or too small in comparison with the reference input. This is true

even when a reference model is introduced. Effective planning of the reference input
3 Scale:100=lm,1 = .1176
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r(t) can possibly cope with this situation.

CAR MODEL

Figure 7.1: System Schematic

CHAPTER 7.
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dmdot

Figure 7.2: TDC controller block diagram
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Figure 7.11: Case I: Simulation, dm -d
: the tracking error.

2000

1500

1000

500

0

-:xs -- :xD

0 2 4 6 8 10 12 14

Tima[Pc]J

Figure 7.13: Case II: Simulation, x,
: the absolute position of primary ve-
hicle. x, : the absolute position the
secondary vehicle.

150

100 -...

50 - ------ q·------ --- ·----------- :----- ---:------

0

-50 ..

0 2 4 6 8 10 12 14 16 18

Time(sec]

Figure 7.12: Case I : Experiment,
dm - d : the tracking error.

-:xs -- :xp

2 4 6 8 10 12 14

Time(soc]

Figure 7.14: Case II : Experiment, x,
: the absolute position of primary ve-
hicle. x, : the absolute position the
secondary vehicle.

14U

120

100

80

60

40

20

00
0 4 6 8 10 12 14

Tinm[sccj

Figure 7.15: Case II: Simulation, v,"
the absolute velocity of primary vehi-
cle. vs : the absolute velocity the sec-
ondary vehicle.

:vs -. :v

2 4 6 8 10 12 14

Time[sec]

Figure 7.16: Case II: Experiment, vp
: the absolute velocity of primary vehi-
cle. vs : the absolute velocity the sec-
ondary vehicle.

.....-..... ..... I -··:---- -

-----.----- ---- ·- ---- --- ·- ·----- - --

7 Nu 3

------ '--z --------- -----'

,........ ............

:---- --------- --- ----- --- -- ·- -· -

- - -. . - - -

II-- ------ ---- ----

-:vs -. :vp

-----. . . /- . ....- -

-------------

"--I

_ ---------- - - -
.u

.d

-r



CHAPTER 7. APPLICATION TO A CRUISE CONTROL SYSTEM

---2 4 6 8 10 12 14

2 4 6 8 10 12 14O 2 4 6 8 10 12 14

Tim[scc]

Figure 7.17: Case II: Simulation, ut
the control action.

*:d -- :dm -. :r

-1

~----- -- - -.... -';~~t----------------------

1060

1040

1020

1000

980

0 2 4 6 8 10 12 14

Ti=n[sccj

Figure 7.19: Case II: Simulation, r :
the reference input. dm : the desired
relative position. d : the actual relative
position.

Timr[scc]

Figure 7.18: Case II: Experiment, ut :
the control action.

106-:d -- :dm -. :r

1040 . . . . .

1020

1000

980

60 2 4 6 8 10 12 14

Timc[scc]

Figure 7.20: Case II : Experiment, r
: the reference input, dm : the desired
relative position. d : the actual relative
position.

Tinescec] Time[scc]

Figure 7.21: Case II : Simulation,
dm - d : the tracking error.

Figure 7.22:
d, - d : the

Case II : Experiment,
tracking error.

700

600

500

400

300

200

100̂o

I

I ! i

•I"D
I

.... ........... .......... ......

. I .
VZ



Chapter 8

Conclusion

In this thesis, the convolution type of Time Delay Control law has been derived.

This control law uses a delay time larger than the sampling period to reduce the

noise amplification. The accuracy of evaluation and the stability conditions are also

discussed. An extrapolation method based on Taylor's expansion is suggested to

improve the accuracy of the evaluation. The simulation results show that for a class

of systems with unknown functions with low changing rate during the delay time, the

suggested method can effectively improve the performance. The trade-off is between

performance and noise amplification with reduction in the stability range.

An application of Time Delay Control (TDC) in an intelligent cruise control is

also presented , under the assumption that a ranging signal is available. A car model

is controlled by TDC algorithm to follow a generated position signal, which can

be any reasonable function of time to simulate the primary vehicle action. The

dynamics of the primary vehicle then is looked as a time varying disturbance, and

TDC can reject them effectively. Simulation and experimental results demonstrate

a smoothness tracking action, in both experiments under different conditions. The

response time and range of acceleration can be guaranteed by choosing a suitable

reference model. Some high level controller issues still need to be investigated, such

as, the planning of reference input or the situation where ranging signal is not reliable.

However, the successful implementation of a low level controller using TDC already

affords a useful tool in the whole control structure. If noise is a significant problem,

the method based on convolutions and extrapolations can be used to attenuate the
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noise while keeping a good performance. This implementation and the above analysis

show that the flexibility and feasibility of Time Delay Controller are largely increased

by the method based on convolutions.
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