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ABSTRACT

THE CONTINUUM HYPOTHESIS: INDEPENDENCE AND
TRUTH-VALUE Submitted to the Department of
Philosophy, M.I.T., in partial fulfillment of
the requirements for the degree of Doctor of
Philosophy.

In the Introduction, Cantor's continuum hypothesis (CH) is stated, and
the history of attempts to prove it is reviewed. The major problems of the
thesis are stated: Does the CH have a truth-value, and if so, how could
we discover what it is, given the proofs of its independence from the most
widely accepts set theories? By way of a prima facie case that CH has no
truth-value, several versions of formalist accounts of truth in mathematics
are described.

Chapter I examines the claim that the independence proofs for CH
are only possible because of inadequacies in first-order formalized set
theory. Various strategies for repairing or generalizing formal systems
are examined and it is shown that no so far proposed strategy based on
the usual axioms of set theory excapes independence proofs. The latter part
of the chapter discusses G. Kreisel's claim that the CH is "decided" in second -
order formulations of Zermelo-Fraenkel set theory. It is argued that (a)
second-order logic is of no heuristic value in discovering a proof or refutation
of CH, and that (b) Kreisel's semantic arguments that CH is "decided" are
sound only if a much simpler argument that does not used second-order logic
is also sound. This simpler argument is investigated in the second chapter.

In Chapter II, the question of the truth-value of CH is examined from
the point of view of various sorts of realism. A notion of "minimal realism"
is formulated which forms the basis of subsequent discussion. It is argued
that this form of realism is plausible, but that it cannot be sufficiently
clarified at present to exclude the possibility that there may be alternative
equally natural interpretations of set theory, some according to which the
CH is true, and others according to which it is false. Various historical
cases are examined to show that the possibility of multiple natural
interpretations has been a major difficulty in other problems in mathematics.
The model construction techniques of Godel and Cohen and their generalizations
are examined to see if they provide equally plausible interpretations of
set theory, and it is concluded that they do not. In the final section, it is
argued that although we cannot conclusively rule out multiple interpretations
of set theory, it is very implausible that the portion of "the universe"
of sets which concerns the CH has multiple interpretations, and that the
fact of independence results does not increase the plausibility of this view.

In Appendix A, various types of plausibility arguments in mathematics
are sketched, and the controversies over the plausibility of the CH and the
axiom of choice are reviewed and compared. It is concluded that the axiom
of choice should be regarded as well established, but no existing arguments
show that CH or its negation are plausible.

Three technical appendices prove results used in the text and summarize
axiomatic theories discussed there.

The author gratefully acknowledges the patient help of his committee,
Professors Richard Cartwright and George Boolos. Invaluable advice and moral
support were also provided by Professors Richard Boyd and Hillary Putnam.

Thesis Committee: Professor Richard Cartwright, Chairman
Professor George Boolos
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IN TR ODUC TION

What is the Continuum Hypothesis ?

(CH) "Every infinite set of real numbers can be put into one-to-one

correspondence either with the set of natural numbers or with the set

of all real numbers."

This is, in essence, the continuum hypothesis, first proposed by

Georg Cantor in 1878.1 In the presence of the axiom of choice,

which will be assumed throughout most of this thesis, CH is

equivalent to the Aleph Hypothesis: (AH) 2 =

That is, the cardinal of the continuum is the first uncountable

cardinal.

Cantor himself accepted the AC, or rather its equivalent,

the statement that every set can be well-ordered,2 so this

distinction was unnecessary for him. In the sequel, we shall

distinguish CH from AH only in Appendix A, where the status

of AC is discussed.

Since we will be discussing the CH in the context of set

theory, we will always mean by 'the continuum' the set of all

sets of finite ordinals, IP(w), to which the real numbers are

isomorphic in a natural and familiar way.

The History of the Continuum Question

At the time when he proposed CH, Cantor promised that

"an exact solution to this question" closed by his "theorem"

would come later.3 There followed a long series of unsuccessful

attempts to deliver on this promise, but none of his attempts

at proof succeeded. 4



In 1904 and again in 1905, Konig claimed to have shown that

CH is false, but these arguments were faulty and were withdrawn. 5

In 1900, Hilbert had listed the continuum problem first on

his famous list of outstanding unsolved mathematical problems. 6

In 1925, he announced a proof of CH which also proved faulty.

The only correct partial result from this collection of faulty

proofs in Konig's "lemma" that 2 is not the limit of countably

many smaller cardinals. 8

In 1938, Kurt Godel was able to prove that if Zermelo-

Frankel set theory (ZF) 9 is consistent, then it remains so on

addition of AC and CH. Godel accomplished this by showing that

the sets satisfying the apparently restrictive condition of con-

structibility10 form an interpretation satisfying ZF and AC

and CH.11 The relative consistency of NCH with the axioms

of ZF cannot be shown by an analogous method,12 however,

and this result was only obtained 25 years later by Paul Cohen.13

His completion of the proof that CH is independent of the axioms

of ZF, even if the axiom of choice is assumed, confirmed a

conjecture of Skolem made in 1922. 14 Both Godel's and Cohen's

results extend to the generalized continuum hypothesis (GCH)

2f 15
that 2 ý = + for all c 5. CH has since proved to be

independent of ZF even when any of "'large cardinal" axioms

are added to it. 16

Present Status

It is evident that CH is a "simple" question, in the sense

that it can be simply stated in familiar terms. It represents



a proposed solution to a natural problem, that of the position

of the cardinal of the continuum in the series of N 's, the

infinite cardinal numbers. It has proved sufficiently interesting

to attract some of the most talented mathermrticians of this

and the last generation. In addition to its independence of ZF

and most other set theories and unlike the axiom of choice,

which is also independent of ZF, there are no compelling

plausibility considerations which favor either CH or its

negation.17 This suggests that its solution, if indeed this

will be possible, will require quite new principles of a type

which can not now be envisioned.

This unsettling situation has provoked a variety of alarmed

responses among set theorists and philosophers of mathematics.

It is asserted by some that CH lacks a truth value at all,

or that the independence results have instituted a state of

crisis in set theory comparable to that in geometry provoked

by the proof of independence of the fifth postulate, which may

result in set theory dividing into mutually exclusive types,

some accepting CH and some its negation.

None of these assertions is accepting by the present

writer, but they deserve answers, and giving those answers

is the subject of this thesis. Specifically, we hope to answer

the following questions:

(1) Do the independence results give any reason to

believe that CH is neither true nor false?



(2) If so, are these reasons compelling?

(3) If not, is it reasonable to expect that CH or

its negation will actually be shown to be true?

In the sequel, we will say that a sentence is determined

if it has a truth-value, and that it is decided (w. r.t. some

contextually-definite theory) if it is either provable or

refutable (in the theory).

CH is not determined: A prima facie case.

By way of motivation for the study of questions (1) through

(3), it is useful to state a prima facie case that CH is not

determined, that is, arguments which pretend to establish

this claim, but which may be either faulty or answerable.

Since some of the queasy feeling aroused by the

independence proofs is undoubtedly due to sympathy with

formalist views, discussion will here be confined to that

general kind of view. Later, in Chapter II, we will agree

to reject formalism and give a prima facie case from a

realist position.

We consider two variations of formalist doctrine.

According to the first, we can construe formalism as a

stingy theory of truth, or at least of having a truth value.

That is, a sentence concerning some area of mathematics

will be determined if and only if it is decided in the formal

system which is most preferable on grounds of utility or

elegance ana wicn encompasses tne given area or matnematics.
,__~_____ _.__~ __r_. r_ _ II · r·l



Since ZF or a ZF-based theory would undoubtedly be the

most preferable theory in this sense and since no presently

available or foreseeable considerations lead us to prefer such

a theory in which CH is decided, CH is not determined.

The second version of formalism differs from the first in

refusing to speak of truth in mathematics at all, but only of the

most preferable or acceptable theory. This view accords better

with the statements of most of those who have titled themselves

formalists, particularly with such characteristic statements as:

"any mention or purported mention of infinite totalities is,

literally, meaningless. ,,19 It is, of course, difficult to see

how meaningless sentences can be determined. It may still

be possible to select from among these meaningless sentences

some which have truth-like properties, such as being incorporable

into a preferred formal theory, but this seems to be excluded

for CH and its negation just as on the previous view.

On either view of formalism, then, CH is not determined,

and on the latter, not even "determined" as to acceptability for

incorporation into the preferred theory. This is so provided that

it is really the case that no formulation of set theory like those

presently entertained decides CH. It has, however, been

doubted whether every reasonable formulation does fail to

decide the CH. Clearly refuting or establishing this is the

first order of business before more subtle considerations are

taken up. This is the subject of the first chapter. There I hope
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to establish that there is no escape from independence results

via reformulations based on presently accepted axioms.

In the second chapter, I explore the three questions (1) through

(3) from a realist point of view. Plausibility arguments for CH

and AC are taken up in Appendix A, and Appendix B cummarizes

the formal theories discussed in the text.



Chapter I

Introduction

Godel and Cohen stated their independence results for ZF, but

their methods extend to virtually every formal set theory so far

developed. (We shall have more to say about this infra). Thus,

in the logician' s sense of 'theory', that is, a set of sentences of

a given--usually artificial--language which is closed under specified

inference rules, the CH is independent of virtually all set theories.

If it happens however, that some existing theory is not subject to the

independence methods, or even if it seems likely that such a theory

may yet be developed, even the formalist may hope for a solution

to the continuum problem.

If some system in which CH is decided were to be developed,

and we were able to find good reasons to believe this theory true

(formalists may substitute 'good reasons to accept it'), then this

would surely count as solving CH. But the development of such

a system seems not only sufficient but necessary--for, the continuum

problem cannot be counted solved unless there is a clear and

disciplined presentation of a proof from principles whose truth is

at least probable. It has been the case up to now that any single

correct mathematical proof can be incorporated--by a natural

translation--into some formalized system, and it is extremely

difficult to see how an argument which was incapable of such

incorporation could be counted as reliable. Thus the question of



whether an actual solution of the continuum question is

presently foreseeable reduces to the question of whether

we have or are close to having a formal system of set theory

(satisfying the stated conditions) which decides CH.

In this chapter, we will consider two kinds of claims:

(1) There actually exist acceptable formal theories which

decide CH, and

(2) Although we do not now have the kind of theory in (1),

there are sufficient resources in present mathematical prac-

tice beyond its formal theories that is reasonable to hope for

a solution to the continuum question on the basis of what we

already know--even if we do not know that we know it.

It is the contention of this writer that both these claims

are false. A modified version of (2), which holds that we have

reason, based on the current state of mathematical practice, to

believe that CH is determined will be defended in Chapter II.

Claim (1) is, in effect, made by Professor Kreisel and perhaps

others. These views will be discussed later in this chapter.

For the present, we will concern ourselves with (2). An

advocate of (2) must maintain that ZF and the other formal theo-

ries to which Godel-Cohen independence techniques for CH apply

do not fully represent "set theory", where 'theory' is taken

not in the logician's sense, but as an human institution with

its accompanying beliefs, practices and techniques. If we are

correct in maintaining that a condition on clarity of a proof of

CH or its negation is the possibility of incorporation into an ac-

ceptable formal system, then the advocate of (2) must maintain that



some formal system can more adequately represent at least a

portion of set theory which deals with cardinals. Mostowski,

for example, has held that

... the identification of the Godel-Bernays system with the
intuitive set theory is not justified. This at any rate is my
point of view. We need new axioms to codify the intuitive
set theory. The disquieting fact is that we do not know
where to look for them. 1

Adherents of most philosophical positions about set theory would

agree with Mostowski that new axioms are to be sought, but what

makes his position a version of ( 2 ) is his claim that these new

axioms are already present (implicitly? ) in "intuitive set theory".

It is not an easy matter to make a case that such axioms exist

which decide CH if "intuitive set theory" is identified with the

present institution of set theory, since axioms so far proposed,

e. g., "large cardinals", do not decided CH when added to ZF.

We will, however, be concerned first with a more radical

version of ( 2 ) and its accompanying "diagnosis" of the

independence results. This version, held by Paul Bernays and

others, maintains that presently accepted axioms decide CH

if properly understood, but that these principles are incompletely

captured in formal systems of set theory. For example,

Bernays claims that

... the results of Paul J. Cohen on the independence of the
continuum hypothesis do not directly concern set theory
itself, but rather the axiomatization of set theory; and not
even Zermelo's original axiomatization, but a sharper
axiomatization which allows of strict formalization.... in
model theory one might argue that the original question has
not been answered, as Cohen's proof applies only to a
formalized axiomatization of set theory.



Bernays also states that the inadequacies which appear in formal

systems of set theory are quite general and apply to other

theories:

From our experiences with non-standard models, it appears
that a mathematical theory like number theory cannot be
fully represented by a formal system: and this is the case
not only with regard to derivability, as Godel's incomplete-
ness theorem has shown, but already with regard to the
means of expression. For a full representation, we need
an open succession of formal systems. 3

These views, and some related ones of other authors, 4

will be discussed in the next few sections; we give them the

descriptive title 'informalist'. In what follows, we will consider

informalists to fault formalized theories for failing to represent

adequately mathematical theories, and to maintain that this

accounts for the independence results. We do not want to

include in the characterization of informalism the related notion

that formal theories cannot adequately represent some

mathematical structure such as the universe of sets or the series

of natural numbers. This position will be alluded to in what

follows, but will receive a fuller discussion in Chapter II.

Our characterization of informalism is still incomplete on

one crucial point: if formal theories do not adequately represent

set theory, does any thing else do better? Bernays suggests,

in a passage quoted above, that Zermelo's '"original

axiomatization" is better, and other authors are more explicit:

... Zermelo's system, despite its nonformal character,
comes far closer to the true Cantorian set theory. 4

This suggests that the notion that some theories expressed in a

natural language--in Zermelo's case, German--are better than



formal systems of set theory. Thi s interpretation is born out

by an examination of Bernays list of specific defects of formal systems,

which have already quoted. He claims that ( a ) the "means

of expression" of formal systems are inadequate; that ('b )

"derivability" relations are not faithfully represented in formal

systems; and that ( c ) the defects in ( a ) and ( b ) can be

remedied by "an open succession of formal systems". The

context suggests that remedy ( c ) is only intended to apply to

arithmetic. For ZF, he suggests that if "strictly formal

methods ... are transgressed" by restating axioms with an

"unrestricted concept of predicate", then the means of expression

of the resulting theory are no longer inadequate. 5 We will take

up this specific suggestion in due course, but it is clear that

Bernays regards this as a case where natural language descrip-

tion of principles of set theory is superior to "strictly" formal-

ized ones.

Bernays' ground for ( a ) is the existence of non-standard

models for formal theories. He argues for (b ) on grounds

of Godel's Incompleteness theorem. As a preliminary to discus-

sion of specific suggestions of informalists for improvements on

ZF, we will examine Bernay's claims ( a ) - ( c ). We will

accept ( b ) with reservations and, in part, ( c ), while

demurring to ( a ).

Fixing Up Formal Theories:

Up to now, we have used the term 'formal system' without

explanation, meaning by it first-order systems of the usual sort



and perhaps others. It is useful at this point, however, to be

a little more precise. Until further notice, we will take a formal

system to be have a specified syntax, rules of inference and axioms,

and to satisfy the condition that we can effectively tell whether a

given formula is well-formed and whether a given sequence of

formulas is a proof of the system. In practice, we shall always

substitute 'recursively' for 'effectively' ; that is, we assume

Church' s thesis.

If this notion of formal system is adopted, it follows from

well-known results of Godel, as strengthened by Rosser, that

any formal system which is consistent and sufficiently strong to

express and prove the usual properties of "plus" and "times" in

arithmetic has an undecided sentence. 5a For the case of first-

order arithmetic, this sentence can be taken to be of the form (x) Fx

where 'x' is a number variable and 'F' is a recursive--i.e.,

a relatively "simple"--predicate. Furthermore, Godel's proof

clearly shows that, if arithmetic is consistent, this sentence

is true -- that is, it is true of the natural numbers. Since we

can prove, in a way which is satisfactory according to usual

mathematical practice, that arithmetic is consistent, we can

prove, in mathematical practice, that the Godel sentence of any

of the usual first-order formulations of arithmetic is true, al-

though it cannot be proved in that system. Presumably, this is

Bernay's point (b ), that "derivability" relations in arithmetic

are not adequately represented in formalized arithmetic. Doubtful

points remain, however, for the mathematical practice proofs



alluded to, for example Gentzen's 6 , are conducted in a vocabulary

richer than that of the usual first-order systems of arithmetic. It

is less than evident that Godel's results could form the basis of an

argument that proof resources in mathematical practice which

use the same vocabulary as first-order formal arithmetic are

more potent than the resources of the formal theory, especially

since the only known proofs of some arithmetic sentences use

notions from complex-variable theory. On the other hand, if

we consider formal theories with a richer vocabulary, we will

still be able to obtain Godel's result, but it is less than obvious

that we will be able to prove the consistency of this theory in

mathematical practice.

The salvagable point here is that we do know that "sufficiently

strong" formal theories are incomplete, but we do not know that

any true mathematical sentences are unprovable by all mathematical

practice methods. If we did know that this was the case at present,

we would surely attempt to develop new methods to remedy this

defect. So formal theories are faulty in a way which we hope

mathematical methods generally are not, and which we would

attempt to remedy if it should turn out that way.

It is plain that there is a superficial analogy between the

Godel-Rosser incompleteness results for arithmetic and stronger

systems, and the Godel-Cohen independence theorms for formal

set theories, in that both are incompleteness results. Evidently

Bernays feels that the analogy is more than superficial, and

Cohen hints at this as well. 7 Since it is possible to remedy the

incompleteness of formal arithmetic by introducing what Bernays



calls "an open succession of formal systems", it is worth while

to examine briefly how this works and to see if the same or similar

devices may remedy the "defect" of the independence results for

formal set theory. If this were possible, it would be a strong point

in favor of the informalist position, but in fact the prospects for a

"remedy" along this line are poor. For definiteness, we will

concern ourselves in the discussion which follows with the system of

first-order arithmetic S described in Mendelson's book. 8

Two Devices for "Completing" Arithmetic

The first device to be discussed in the so-called "1 -rule". By

way of motivation, we look more closely at the undecided sentence

of S given by Godel's proof. Godel' s basic device is to assign

every formula and finite sequence of formulas a code number in a

systematic way, so that the various metamathematical notions such

as "is a well-formed formula", "is an axiom", "is a proof of",

etc, can be represented by numerical predicates and relations. For

example, let Prf(x, y) be the number-theoretic relation which holds

when x is the code number of a proof of the formula with code number

y. Let m be a code number for ( x )-Prf(x,y). Then Godel's

result is that ( x )-Prf(x, m) , a formula which says "I am not provable",

is true, hence unprovable in S , provided S is consistent. It

happens, however, that each of the instances of this formula,

-Prf (0, m), -Prf (1, m), ... are theorms of the system. This suggests

that if we add a new rule of inference to S which would allow us to

infer ( x ) F (x ) from F( ), F (), F (), ... , then we could

prove the recalcitrant sentence, and hopefully render our system



complete. This does happen, in fact, and our new rule is called

the w -rule. 9

Our reason for considering such devices in the first place,

however, was the alledged inadequate representation of a mathematical

theory by its formal counterpart. On this criterion, the w-rule fails

for reasons other than incompleteness of the resulting quasi-formal

system, for it requires that some proofs be infinitely long, and this is

surely a non-trivial idealization of the actual activities of mathematicians.

There is, however, another device for completeing formal arithmetic

which obviates this particular difficulty.

This new device relies on the fact that provability in S can be

represented by Prf (x, y). It is possible to make use of this relation

to prove that every instance of some single free-valiable formula

F , F ( 0 ), F (1), etc., is provable in S, and then, by analogy

with the w-rule, permit the inference to ( x ) F ( x ). That is, one

adds the rule that:

(*) From (x) ( y) Prf (y,I (f, x), infer (x)F (x)

where f is the code number of F, and I (f,x) represents a

function whose value is the code number of the xth numerical in-

stance of the formula whose code number is f.

If (*) is added to S, the Godel sentence ( x )-Prf (x,m)

becomes provable. However, the resulting system has another

undecided sentence which can be decided in turn by an analogue (**)

of (*) with the predicate Prf* which describes provability in the

system with rule ('). This system is, in turn, incomplete, and

so on. In this way, one can generate an "open succession of

formal systems" with the property that every true sentence and no



false one can eventually be proved in a system of the sequence. 10

The theorems of the sequence thus correspond to the so-called

"true arithmetic", the set of sentences of S true in the standard

interpretation. These same results may be obtained if instead

of the rule (*) and its counterparts, a schema of axioms:

(*') (x) ( y ) Prf (y, I(T, x) ) D ( x ) F ( x)

is added to S and similarly for succeeding stages. Since (*')

"says" that a sentence ( x ) F ( x ) of number theory holds if

all its numerical instances are proved in S, it is evidently true

(i.e. all instances are true) if S is consistent, and similarly

for succeeding stages.

Difficulties still remain, however, about representing number-

theoretic proofs in this fashion. In order to formulated the Prf-like

predicates far out in the sequence of theories, one must be able to

represent certain characteristics of the progression of theories

either by the apparatus of ordinal numbers, or by some system of

notations for ordinals, such as Kleene's system O. But either

choice requires information either not expressible in S (ordinals)

or not provable in S (facts about notations in O).11 So provability

in formal number theory cannot be fixed up by this device to

correspond to truth in number theory without using more powerful

theory for which a "correspondence problem" arises all over

again. As before, we are entitled to make use of this fact to show

a lack of correspondence between provability in formal theories

and mathematical practice only by making the attractive but incom-

pletely warranted assumption that all true sentences of arithmetic

are provable in mathematical practice.



Despite the stated defects of the second sort of remedy for

incompleteness of S, however, it does yield completeness, and

it is evident that the added axioms are true (or the added rules

sound), so this gives some justification for Bernays' claim ( c )

that derivability defects of formal systems are not present in an

"open succession" of them. But unfortunately, these devices do not

decide CH when applied to formal set theory. This application

can be accomplished by translating sentences of arithmetic into set

theory in the usual way and then adding either an w -rule or

"succession" rules applied to these arithmetic translations. 12

The sad fact is that, on the reasonable hypothesis that there are

well-founded models for, say, ZF, there are models for ZF in

which the arithmetic portion is the same but which give different truth-

values to CH. Hence neither CH nor its negation can be a con-

sequence of any of the newly provable arithmetic sentences.

Other ways to "fix" ZF:

Even though the devices which complete arithmetic fail for ZF,

it is worth asking whether some analogous devices may work. We

cannot, of course, cover all "analogous devices", but some

partial negative results are available.

The pecular feature of arithmetic which makes a sound w-rule

possible is the existence, for each element of the intended model,

of a term--a numeral--which denotes it. Hence we can say that if

F ( t ) holds for every term in a certain class, then ( x ) F ( x ).

Since no formal system which satisfies our effectivity requirements

can have more than countably many terms, and there are uncountably

many sets, we cannot construct a sound analogue to the w-rule for ZF.lZa



If there are any well-founded models for ZF, however, there is

a model for ZF which satisfies the following requirement:

There is a sequence of formulas with one free variable fAn(X) I new

such that every element of the model satisfies exactly one of the

An(x). Using the definite description operator (ix), we can

construct the required class of terms T = f (ix)An(x) I new

It may be that an "W -rulef" based on this class of terms would

decide CH, since it is in fact true in the model, but this would

tie us to a model which is certainly unnatural, since it is countable.

A more promising idea is to attempt to construct a succession

of systems based on ZF using notions more powerful than

arithmetic ones. Takeutil 3 has had partial success in such a

project. The technical details for this system are formidable,

so we confine ourselves to a somewhat impressionistic description

of the main result. Takeuti begins with ZF plus the so-called

axiom of constructibility (treated in the next chapter). He then

constructs a transfinite hierarchy of "types" with the sets as

the lowest type. In turn, this type theory serves as the basis

for a sequence of theories, where each theory is obtained from

its predecessor by the addition certain new axioms. These axioms

make use of formula 'ProvT(x)' which say that the formula with

code number x is provable in the system T. If T is a theory

in the sequence, the succeeding theory T' is obtained by adding

ProvT(m) for each code number m of a formula provable in

T and -ProvT(m) for each m which codes a formula unprovable in T.



Unlike the succession of theories based on arithmetic, this

sequence begins with a theory including enough resources to

prove all the required information about the succession

characteristics of the sequence of theories. Takeuti is able

to obtain a completeness result for an important class of sentences

of ZF, viz., the class of first-order formulas of ZF with

quantifiers relativized to constructible sets. Takeuti shows that

a formula in this class is provable if and only if it true. He also

seems hopeful that this result may be extended to all first-order

sentences of ZF, but it is evident that this cannot be done by

any straightforward method, since Takeuti's argument makes

strong use of features of the constructible sets very probably

not shared by the entire universe of sets, such as the existence

of a definable well-ordering of all sets. Takeuti's partial result

is of no help on the CH, however, since it was already known

that CH is true when relativized to the constructible sets.

Our conclusion must be that the devices which "repair" the

incompleteness of arithmetic, and their analogues, fail to perform

the same service for ZF, at least as far as is presently known

or seems likely to be. If we are to continue an informalist program

of seeking liberalizations of formal systems which will not

suffer from the defect of incompleteness, we must follow out

another suggestion of Bernays', involving the "unrestricted notion

of predicate" in set theory. Before proceeding to this however,

we still must deal with Bernays' claim (a) that formal theories are

deficient in their "means of expression" because they must allow

of non-standard interpretations.



Non-Standard Models and Expressibility

It is the conventional wisdom in mathematical ontology

that there are few if any contexts in which it makes any

mathematical difference which of a class of isomorphic structures

we take to be the subject matter of a mathematical theory.

In accordance with this usual line of thinking, we shall speak

somewhat inaccurately and mean by 'standard model of theory

T' either some one isomorph of the class or the class itself,

depending on the context.

Incomplete theories are guaranteed to have models other

than the standard one(s), because there must be non-isomorphic

models of each of its incompatible completions. When we are

dealing with complete quasi-theories of the sort described

in previous sections, whose theorems constitute, say, true

arithmetic, we must use other methods to show the existence

of non-standard models. Standard theorems of model theory, such

as the so-called Upward Lbwenheim-Skolem Theorem, guarantee

that true arithmetic has uncountable, hence non-standard, models.

It turns out, however, that it also has countable ones.14 If as

Bernays seems to maintain in the passage quoted above, the

existence of non-standard models of sentences of formal languages

shows that they fail to express adequately the sense of their natural

language counterparts, then the "open succession" of systems would

fail on the same grounds as the incomplete theory S. So if Bernays

claim (a) that the "means of expression" of S are inadequate were

supported by the existence of non-standard models, the "open

succession of systems" would fare no better. This writter, however,



sees no reason to grant this.

No doubt any set of sentence of an artificial or natural

language which are true under some standard interpretation

can be reinterpreted so that they are also true according to

completely unintended ones as well. It is possible to lay it

down that 'Quine is a philosopher' is to be interpreted in such

a way that 'Quine' refers to Nixon and 'is a philosopher' has

the usual sense of 'is a politician'. But the fact that such a

reinterpretation is possible does not show that 'Quine is a

philosopher' does not say that Quine is a philosopher. It

merely shows that these words might have been understood in

a way in which they are not. The simple structure of the usual

first-order languages and the existence of a model theory

for them makes the existence of a large variety of possible

interpretations which preserve grammatical categories of

"predicate", "individual constant", etc., stick out like a

sore thumb. But there is no philosophically significant reason

and likely no reason at all why such a model theory should not

eventually be available for natural languages as well.

Logicians sometimes study theories with no intended

interpretation, but it is far more common to study a theory

because of the interest of its intended interpretation. For

theories of this latter type, the intended interpretation of the

constants, function symbols, etc., is invariably explained in

the same way as the natural language technical terms of any

part of mathematics or natural science, by explaining the

intended sense or "pointing to" the intended reference in some



natural language the speaker and his audience both understand.

If these explanations and supplimentary examples and audience

guesses are inadequate for determination of meaning or reference

in one case, they are also defective in the other.

Such explanations may, in fact, be vague or otherwise

incomplete, and further investigation may show that several

incompatible refinements of them lead to different interpretations,

none obviously more correct than the others. (We give some

examples of this in Chapter II). But for at least one of the

formal theories which Bernays alledges to be defective in the

"means of expression", that is, S, possible ambiguities in

the standard interpretations of '0', '+', 'x', etc., have not

been detected and we have not the slightest reason to believe

that any will come to light.

This writer believes that the existence of "the" standard

interpretation of the 'e' of set theory is a little less clear cut,

a matter which we look into further in Chapter II. It is clear,

however that the existence of undisputedly unintended interpretations

of ZF goes no farther in showing that the "means of expression"

of that theory are inadequate than in the case of S.

In summary, we have found that one of the alledged defects

of formal languages--the "means of expression"--is non-existent.

The other defect, incompleteness, is real enough, but the evidence

is not conclusive that mathematical practice fares any better.

The devices which remedy this defect for arithmetic fail to do so

for ZF, so our diagnosis of incompleteness must be somewhat



different for the two cases. We have yet to follow out Bernays'

suggestion that enriching formal set theory to permit an

"unrestricted" concept of predicate would decide CH. This

topic, examined from several sides, will concern us for

the rest of this chapter.

"Unrestricted Concept of Predicate": Background

Historically, the notion of predicate enters set theory

with the comprehension principle, that the extension of every

predicate is a set. This principle was proved inconsistent

by Russell, but all modern set theories preserve it in some

less general form.

In Zermelo's set theory of 190815, the principal ancestor of

ZF and the cluster of related theories with which we will be

almost exclusively concerned, the comprehension principle

is replaced by a short list of its instances--the powerset, infinity,

pairing, nullset, union, and choise axioms--and by a modified

comprehension principle called the axiom of separation

[Aussonderungsaxiom]. In its earliest version, this axiom

states that

Whenever the propositional function G(x) is definite
for all elements of a set M, M possesses a subset
MG containing as elements precisely those elements

x of M for which G(x) is true. 17

Zermelo' s explanation of the key term 'definite' in this definition is:

A question or assertion is said to be definite if the
fundamental relations of the domain [i. e., membership],
by means of the axioms and the universally valid laws
of logic, determine without arbitrariness whether it
holds or not. Likewise, a "propositional function"



[Klassenaussage] G(x), in which the variable term x
ranges over all individuals is said to be definite
if it is definite for each single individual x of the
class R. Thus the question of whether aeb or not
is always defi i e, as is the question of whether
M cN or not.

The new feature of the separation axiom which distinguishes

it from the comprehension principle is the limitation to subsets

of some set. Other than the limitation as the definiteness, the

'"propositional function'' G(x) is unrestricted in the sense in

which Bernays uses that term. As we shall see, Bernays

(and others) allege that (a) later formulations of the separation

axiom have introduced restrictions on G(x) and that (b) these

restrictions are responsible for the independence results.

It will be our aim to take on this (two-part) claim by reviewing

the history of the notion of definiteness since Zermelo in order

to see what restrictions, if any, have been introduced and

what affects they may have had.

Zermelo later admitted that the explanation of definiteness

which we have quoted leaves much to be desired: it was just

for this reason that the 'more restrictive" accounts of definiteness

were proposed. From his own original account, about all one

can conclude is that his intention was to exclude "propositional

functions" with borderline cases among the members of the

set M. That is, he excludes cases in which it is impossible

to determine "without arbitrariness" whether G(x) holds,

not because our knowledge is inadequate, but because no answer

is correct.



In his original paper--from which the earlier quotations

are taken--Zermelo gives examples of definite propositional

functions but none of non-definite ones. These he supplied,

however, in a much later paper, lisiting "green colored set"

and "smallest irrational number which can be defined in a

finite number of words of an arbitrary European language",

and, in general, "every sentence which includes extrasystematic

[systemfremde] relations. "20 These examples suggest that

a reasonable way of avoiding non-definite propositional

functions is to restrict the language in which set theoretic

proofs may be carried out so as to exclude the "extra-systematic"

terms. This has proved to be the basic technique of later set

theorists in their accounts of definiteness.

Skolem' s Approach

Of the two main strategies for incorporating a more precise

account of definiteness into set theory, the work of Skolem

is representative of the treatment which eventually resulted in ZF.

On his account, a proposition is definite if it is a "finite

expression constructed from elementary propositions of the form

aeb or a = b" by means of negation, conjuction, disjunction, and

universal and existential quantification. 21 A similar proposal

was made independently by A. Fraenkel, which he used to

proved the independence of the axiom of choice from a version

of ZF. 22



Skolem regarded his notion as "completely clear, and

"sufficiently comprehensive to carry out all ordinary set

theoretic proofs", and it is clear that each of the applications

of separation in Zermelo's 1908 paper is justified in Skolem's

version of definitenes s. 2 4

Skolem' s idea is preserved in the moderm formulation

of the Replacement (and Foundation) axiom schema(ta) of ZF:

Replacement: (zl) ... (Zn)(X)((u)(uex D(9!v)F(u, v, z I . . zn )) D

(2y)(v)(vey = (u)(uex &F(u,v, zl,..., zn))

where F is a well-formed formula of the
language of ZF, and the free variables of
F are among u, v, z, . ., z n

The axiom of separation is a easy consequence of replacement,

so it need not be listed separately among the axioms of ZF.

That is, for any formula G(v, z l , ... , zn) with the free variables

shown, one need only consider the instance of replacement with

u = v & G(v, zl, ... , Zn)

in place of F. The separation axiom,

Separation: (zl) ... (zn) (x)(2y) (v)(ve y- ve x & G(v, zl,..., z))

is then a consequence by quantifier logic.

Evidently, the conditions imposed on G which are inherited

from those in the replacement schema are exactly equivalent to

those in Skolem's proposal. Few would argue that experience

with ZF has not substantiated his claim that his account is "adequate

for all ordinary set theoretic reasoning."



Zermelo's Reaction to Skolem and Fraenkel

In 1929, Zermelo wrote a short paper on definiteness,25 which

attacked Frankel's approach and presented a new account of his own.

He seems to have been unaware of Skolem's related work.2 6

Zermelo was critical of the Skolem-Fraenkel account on two

grounds. First, he held that Fraenkel's "constructive" procedure

of " admitting only special forms of propositional functions"

"fundamentally contradicts the purposed and essence of the

axiomatic method. "Z7 He offers almost nothing by way of explanation

for this indictment of constructive methods. He says only that

Fraenkel' s "genetic" procedure concerns only the "origin or

generation [Erzengung] of the sentence, rather than the sentence

itself, and yields no certain decision in involved cases".

Whatever is at stake in this objection, and I do not pretend to be

clear about it , exactly similar arguments could be raised against

Zermelo' s own proposal, which we will consider shortly.

Zermelo's second objection is far clearer but no more

decisive. Fraenkel states that definite functions to be used in

the separation axiom are those which can be formed "by a prescribed

application (repeated only a finite number of times, of course, . ..)"

28
of the five fundamental operations, as in Skolem' s proposal.

Zermelo objects that this version "depends on the concept finite

2Z8a
number, whose clarification is still a principle task of set theory."

Zermelo offers no argument for the claim that the notion of finite

number is in need of clarification or needed it in 1929, nor can

I see any reason to believe that this is so. In any case, it is



not strictly true that the Fraenkel-Skolem formulation makes

use of finiteness, even though Fraenkel did include the word

'finite' in a parenthetical remark. In fact, both writers are

simply giving recursive definitions, and the clauses of such

definitions, as for example

"If F, G are definite, so is their conjunction, "

say nothing about numbers at all.29

It is true, of course, that the expressions which result

are all finite. This is an important fact because languages with

expressions of infinite length will fail to meet our effectivity

requirement for formal systems except is the quite special

case where well-formedness and axiomhood can be determined

from some finite initial portion of each expression. But we

still need not say anything about finiteness when describing

the language when it contains only the usual sort of syntax.

A further noteworthy point is that, like the first, this

objection also applies to Zermelo's own new account of definiteness,

which we have yet to describe.

Restriction on Definite predicates and Independence

Despite the inconclusiveness of Zermelo's attack on the

Fraenkel-Skolem proposal, his opinion that it was too restrictive,

admitting only "certain special forms of propositional functions"30

anticipates the objections of Bernays and other writers.

As an example of Bernays' view, consider the following remarks

which he made in reply to criticism of the paper we cited at the

beginning of this chapter:



For the applicability of Cohen's result it does not,
of course, matter . . . whether axiomatic set theory
is presented as a formal system or not, and even
less in what particular system it is formalized.
What the applicability does depend on is the
mentioned sharper axiomatization by which strict
formalization becomes possible, that is, the
Fraenkel-Skolem delimitation of Zermelo' s
concept 'definit Eigenschaft' [definite property].

In a similar vein, R. Smullyan states that

Zermelo's system, despite its nonformal character,
comes far closer to the true Cantorian set theory.
Of course, there is no harm in laying down formal
axiom which force at least the first-order properties
into the picture, but there is no reason to identify
all properties with those3 roperties whose existence

is forced by the axioms.

Smullyan calls attention to the system VBI, which we shall

shortly consider. He regards this system as having axioms

for "second-order properties", but believes that it too is

over- restrictive:

[VBI] should not be thought of as the whole Cantorian
set theory, since there is no reason to identify properties
with second-order properties either. 3 3

As previsouly announced, our aim is to examine attempts

to lift the supposed restrictions introduced by Fraenkel and

Skolem, and to see if any of these attempts produce a system

in which it is possible to decide the CH. We will survey six

proposals. The first three are von Neumann's and two which

derive from it, Zermelo's later proposal and VBI. The fourth,

J. Friedman' s STC is an extension of von Neumann' s system

in a richer language. Next, we will treat takeuti's NTT which

is based on ZF in a richer language. Finally, we will consider

Kreisel's proposal to reformulate ZF with a second-order



underlying logic. All of these systems are described in some

detail in Appendix B; the text will concern only basic ideas.

We will begin by describing the modern version of von Neumann's

system, VBG (for von Neumann-Bernays-Godel set theory).

Before proceeding, however, it is in order to ask why we

should have to consider additional technical proposals, rather than

sticking to Zermelo's system as Smullyan suggests. The

reason is that because of the vagueness of Zermelo's account of

definiteness, we simply cannot tell whether independence results

can be carried out or not. We have Zermelo's word for it that

the Frankel-Skolem account departs from his intentions, but it

is far from clear just which features of their account are deficient

or what definite properties they exclude. Plainly we must have

some of this sort of information if we are to be able to evaluate

the informalist explanation of the independence of CH. As I see

it, the cash value of the informalist position must be some reason

to believe that theories with a richer supply of definite properties

would decide CH. The conclusion which I will draw is that a

survey of existing proposals provides no such reasons. We will

return to this question after the specific proposals have been

examined.

Von Neumann' s System

Von Neumann' s system was the first of a long series of attempts

to clarify the separation priciple by providing axioms for definite

properties rather than treating the predicates which express them.
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In his original system, Von Neumann left unspecified the

relation between the definite properties, which he called

"type II objects", and the sets of his systems. Bernays

subsequenctly proposed a system in which no "type II object"

is a set, but every set has a corresponding "type II object"

which represents it; the converse, however, does not hold. 3 5

A tidier system is VBG, in which every set is a "type

II object"-- now called a class--but some classes are not sets.

Classes cannot be thought of as definite properties, however,

but only as surrogates for them. Classes are "surrogates"

because they are extensional w. r. t. the "exemplification"

relation. That is, classes which are "exemplified" by the

same objects are identical, and it is a commonplace that

this is, in general, false of properties. It might be maintained

that definite properties are extensional, and hence that classes

need not be regarded as surrogates, but as definite properties

themselves. If the non-extensionality of properties generally

is as important as the conventional wisdom would have it,

however, it is implausible that it should apply only to indefinite

ones, since these are simply properties without border-line

cases or such as are (perhaps) expressed by nonsense predicates

such as 'green-colored set'. Since classes are extensional,

it is perhaps most reasonable to regard them as the extensions

of definite properties.

In VBG, the "set" axioms are the same as those for ZF,

except that the two schemata of replacement and foundation are



each replaced by a single axiom involving quantification over classes:

Repl: (F)(x)(Func(F) D(H2y)(v)(ve y E (Su)(<u, v> e F &ue x)))

Found: (X)(X 0 3D(3u)(ue X &unX = 0 )

In these formulas, upper-case Roman letters are class variables;

'Func' is a formula which says that F is a functional class of

ordered pairs. In addition to these two axioms, an axiom schema

of class existence is added which assures the "definite property

representing" function of classes:

Comp: (X1) ... (Xn) ('Y) (x) (xe Y _ G(x,X1, . . ., X n ) )

This "comprehension" schema says, in essence, that the extension

of a well-formed formula with one free set variable is a class.

This bald statement of the class comprehension principle needs

the following important qualification for VBG, that the formula

G may contain no bound class variables. If this restriction is

lifted so that classes may be defined by quantifying over classes,

the system which results is the so-called Kelley-Morse system, 36

which we will call VBI (for VonNeumann-Bernays-Impredicative).

Smullyan's remarks about VBI give us reason to be particularly

interested in this system, and we will return to it shortly.

As for VBG, the exclusion of bound class variables in Comp

has the consequence that VBG is equivalent in strength to ZF

in the sense that a formula of VBG without class variables is a

theorem of VBG iff it is a theorem of ZF. On the other hand,

the apparatus of class quantification in VBG permits a slightly

greater expressive power. For example, we will shortly define



a function defined on all sets--the so-called rank function--which

can be proved to exist in VBG, but not in ZF. In ZF, it is possible

to prove the existence of each portion of this function which is a set,

so each application of the rank function to sets can be expressed

in ZF in a rather less convenient way. The price of this greater

technical convenience of VBG is, however, the philosophical

difficulty of interpreting class quantification; we will treat this

problem in the next chapter.

As one would expect, lifting the restriction on Comp to yield

VBI results in a somewhat greater proof-theoretic strength of

that theory. In particular, we can formulate a truth definition

for VBG in VBG, but it cannot be proved in VBG that all the theorems

of VBG are true unless VBG is actually inconsistent. In VBI,

on the other hand, we can prove this fact about VBG. The proof

uses a formula (2X)C(X,y), where C contains no bound class

variables, to define a class A:

37a
A = (iY)(x) (xe Y E (HX)C(X, x)).

If this class could be defined in VBG, the proof would go thru

within that system; so if VBG is consistent, A is a class which

can be defined in VBI but in VBG. There are, in fact, many more

of these, but in order to look into the matter of the additional

definite properties required by VBI, we need a short digression.

Natural Models for ZF, VBG &VBI

There is a class of "natural" models of the theories which we

have been dealing with which informalist writers and others are



particularly and rightly concerned to study and characterize.

Although we will reserve most model-theoretic questions for

the next chapter, it is useful to describe them here. For the

time being, we forget any possible doubts about whether

there is must one "universe" of sets and simple speak about

the sets, distinguishing them occasionally form other structures

which may be models of the theories we discuss.

It is a theorem of VBG that there is a function defined on

all ordinals which has the universe of sets as its range, and

decomposes this universe into levels or ranks, each containing

the previous ones. This rank function R may be defined by

transfinite induction as follows:

R(O) = 0

R(a') = P(R(v)), where P is the operation "powerset of"

R( ) = jU R(ca), where X is a limit ordinal.
c< X

When we are thinking of "the" universe of sets with the structure

imposed by R, we will speak of the "cumulative type structure"

(CTS). If x is a set, we call the least ordinal N such that

x e R(at+ 1) the rank of x.

It is natural to ask whether some initial portion of the CTS,

the sets of rank less than some ordinal x, form a model for VBG.

The answer to this question is "yes" if there exist ordinals of a

certain "large" size, called inaccessible ordinals. An ordinal x

is said to be (strongly) inaccessible if it is a regular cardinal



and if, for all c!< , 2 < x, where regular ordinals a! are

those which are not the sum of fewer than a ordinals less than a.

By this definition, w is inaccessible. For reasons which we

will briefly indicate in the next chapter, it is plausible that there

are inaccessibles > w, but this cannot be proved in VBG or VBI.

Since we will be interested only in such inaccessibles, we include

the condition "> Im" in the definition of inaccessibility.

The fact which makes inaccessibles in this sense interesting

for the present discussion is that if x is inaccessible, the sets

in R (K + I) form a model M for VBG and VBI, with the 'I' symbol

interpreted as the "real" e relation restricted to R(Nx+1).38 In this

model, the "sets" are the elements of R(k), and the proper (non-set)

classes are elements of R(x+1) - R(X), the subsets of R(K). It is

plain that M is a natural model from the point of view of the

separation axiom. That is, separation is used to prove the

existence of various subsets, but the construction of M guarantees

that every "actual" subset of any set in the "universe" is (the

extension of) a definite property.

In order to have a "rank model" of the set portion of VBG or VBI,

however, it is not necessary to include all of the subsets of sets

of the model. Instead, we need only include certain subsets which

are definable in a way which parallels the class comprehension axiom.

That is, we call a set S first-order definable over a rank structure

R(t) (or more generally, over any transitive set of sets) if there is

a formula of ZF, F(x, zl, ... , Zn) , which is true in the structure R(X)



of all and only the x's which are in S, where zl, ... , zn are

given some fixed interpretation in R(x). We call the set of

all such sets S:Fodo (R(x)). It then happens that R(,)UFodo(R(n))

is a model for VBG, but not VBI. This shows that not all

of the subsets of R(t) need have been included in M to obtain

a model of VBG, since Fodo(R(x)) is smaller (in the sense of

cardinality) than R(x + 1) - R(h ). It also permits us to gauge the

effect of the restrictions on the Comp axiom of VBG, because

we can show that the axioms of VBI require more of R(x + 1) - R(t)

than Fodo(R(;t)) to be added to R(Nh) to obtain a model. In fact,

it is easy to show that if R(x ) U B is a model for VBI, and

B c R(n+ 1), then B must contain at least as many "classes"

not in Fodo (R(;)) as there are in Fodo R(N) itself. 4 0 On the

41
other hand, B need not contain all of R(x + 1) - R(ht), so VBI

does not have sufficient power to "force" all of the "classes" in

R(h + 1) to "exist".

VBG and VBI Compared:

The preceeding discussing makes clear that with respect to

the natural models given by the function R, VBI can prove the

existence of substantially more definite properties than VBG,

although neither theory can prove the existence of all the "classes"

of a natural model. The additional strength of VBI carries

with it some attendant risks, however, in that the more generous

class comprehension axioms may introduce some inconsistency.
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It is easy to show that VBG is extremely conservative in its

class existence principles, and that it represents a quasi-constructive

approach to class existence in a way in which VBI does not. The

technical fact which justifies this claim is that the predicative

comprehension schema of VBG can be replaced by one purely

existential axiom and six additional axioms which permit constructions

from classes previously shown to exist. The existential axiom

asserts the existence of a class of all ordered pairs <x, y> such that

xe y. The other axioms guarantee the existence of the intersection,

compliment, cross-product, etc., of any classes. Since all these

operations are of a familiar, elementary, and constructive kind,

accepting VBG commits us only to classes which can be proved to

exist by a finite sequence of operations which we have not the

slightest reason to believe would lead to any inconsistency. This

intuitive argument for confidence in the class existence assumptions

of VBG is, or course, born out by the previously cited "equivilence"

of ZF and VBG.

Such a conservative interpretation of class existence assumptions

will plainly not be possible for VBI, since any axiomatization of

that theory must include at least one class existence axiom with

bound class variables. This axiom would exclude the "ordered

generation" scheme just described for VBG because it would define

a class by reference to (that is, quantification over) the whole

totality of classes, not just previously constructed ones. It has not,

in fact, even been shown that VBI is finitely axiomatizable.



On the other hand, it would be a mistake to over-estimate the

risks of VBI, since it is known that if VBG plus the assertion

that there exists an inaccessible ordinal is consistent, so is VBI. 4 2

The prevailing opinion is that the likelihood that such a theory is

inconsistent is small.

Despite its extra "richness" in definite properties, the final

outcome of our discussion of VBI is rather anti-climactic. Despite

the hope of Smullyan and conjectures by others,43 Tharp and

43a
Solovay have (independently) shown that CH(and even GCH)

is independent of VBI, even if AC is added, so that the first step

of our attempt to cash in informalist objections does not succeed.

Zermelo's proposal:

As we noted above, Zermelo was dissatisfied with the Fraenkel-

Skolem proposal because it (allegedly) makes use of finiteness and

"yields no certain decision in involved cases." His own offering

was an axiomatization of definite propositional functions as follows:

Let some class B of objects be given: then the "fundamental

relations" of the theory in question, in our case, the membership

relation, are definite for all "Ivalue combinations" from B. I. e.,

(1) D(xe y) for all arguments x, y from B, where D(p)

is to be read "p is definite".

Next, he states that "definiteness carries over to compound prop-

ositions",44 that is,

(2) If D(p), then D(p), where p is the negation of p,

and



(3) If D(p) and D(q), then D(p.q) and D(p v q), where

p. q, p v q are the conjunction and disjunction of

p and q, respectively.

For quantification, he states that

(4) If D(f(x, y, z, ... )) for all "value combinations" from B,

then D((x)(y)(z) ... f(x,y,z,...) and

D((9x)(ay) (Fz)...f(x,y,z,...)).

Zermelo also lays down an axiom for "second order" quantification

of propositional functions, that is

(5) "If D(F(f)) for all definite functions f = f(x, y,x, ...),

then also D((f)F(f)) and D((2f) F(f))".45

Finally, Zermelo includes a restrictive clause which "concerns

not so much the particular 'definite' propositions p as their

46
totality P". This axiom states that

(6) The collection P of definite propositions must contain

no "proper subsystem [echtes Untersystem] Pl1
4 7 which

satisfies (1) - (5).

Zermelo asserts that this characterization avoids the use of

finiteness, but we have already seen that the Fraenkel-Skolem idea

48
does so as well. In a reply to Zermelo' s paper, Skolem asserted

that the only difference between Zermelo' s new notion and his own

is the second-order quantification clause (5) and the restrictive

clause (6). 4 9 Skolem criticized (5) as unclear, unjustified,
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dangerously close to the paradoxes, and not clearly more extensive

than his own proposal. 50 Against (6), he argued that whether or

not finiteness needs to be clarified by set theory, the notion of

"subsystem" certainly should be. 51

This later objection is certainly well taken, but it we

substitute classes for definite properties (or "propositional

functions") in (1) - (5), the result is the class comprehension

principle of VBI. Even if troublesome points remain inthe

interpretation of classes in VBI, it is clear from our previous

discussion that the risks of antinomies in VBI are small and that

VBI does provide for more definite properties than the Skolem-like

principle in VBG.

VBI does not, of course, contain anything corresponding to

the restriction (6). Indeed, it could not, for (6) is essentially

a metatheoretical statement not expressible in VBI itself. We

must conclude that VBI is at least as rich in definite properties

as Zermelo' s proposal, so that the independence results cannot

be eliminated by adopting his characterization.

"Superclass" Theories:

So far, the accounts of definite properties, propositions,

functions, etc., which we have considered amount to small

modifications of the basic class comprehension principle of VBG.

We now turn to a group of theories which take the axioms of VBG

or ZF as a basis and add a heirarchy of "superclasses" which

can be used in Replacement, Foundation, etc., just as are classes.



In VBG and VBI, proper classes are distinguished from sets

by 'non-elementhood",. That is, a class is proper just in case

it is not a member of any class. This criterion plays a role in the

avoidance of the paradoxes such as Russell's, since there can be

no classes of proper classes at all, much less a class of non-

self-membered classes.

Several authors52 have developed variations of VBG which

counternance new entities which can contain proper classes

as elements, and it is these added entities we will call "superclasses".

The particular proposals which we will discuss are J. I. Freidman's

theory STC, and G. Takeuti's NTT(for Nodal Type Theory), beginning

with the former.

To form STC, Freidman adds a hierarchy of "extended" sets,

indexed by ordinals and "extended ordinals", to the sets and classes

of VBG. Level zero extended sets are simply sets, and level zero

extended proper classes are simply proper classes in the usual sense.

Extended sets of level one contain sets and classes of level zero,

and the collection of level one extended sets is a level one proper

class. In general, for each ordinal (or "extended ordinal") A there

is a level) consisting of extended sets and classes, each level

containing all earlier levels.53

Friedman formulates STC by adding to the language of VBG

a new predicate M(x), interpreted as "x is an extended set", and

he shows that STC can be interpreted 54 in VBG+IO, VBG augmented

by the assertion that there exists an inaccessible ordinal. 55 In fact,
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VBG+IO is equiconsistent with the theory VBG+ "there is a class

M satisfying the hierarchy axioms of STC". 56

In effect, adding "higher type" or "super" classes to VBG

in the manner of STC is equivalent to adding sets farther

out in the rank hierarchy of sets. This should not come as any

great surprise if we recall that in the natural rank models for VBG,

the Oproper classes" are simply the sets of highest rank. This

phenomenon also bears out an observation of Godel (in a slightly

different context) that "the following could be true: Any proof

for a set theoretical theorm in the next higher system above set

theory . . . is replaceable by a proof from . . an axiom of

infinity". 57

STC does just this: it erects a "higher system above set

theory" in the form of extended sets and classes. The fact of the

equivalence of this procedure with the assertion that the CTS

itself is "long", -- that is, an appropriate axiom of infinity such

as IO--gives just the result we would expect about CH. That is,

since virtually all of the axioms of infinity, including IO0, fail

to decide CH or even GCH, 58 these statements are both

independent of STC. 59

Nodal Type Theory:

In formulating NTT, Takeuti makes use of the rough

equivalence between "higher type" classes and higher rank sets

in natural models which we have already noted. In the simplest case,
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the R(%+ 1) model of VBG, the proper classes are members

of R(K + 1) - R(4) . For example, in the formula (X)F(X), where

X is a class variable, and the set variables are regarded as ranging

over R(ao) , (X)F(X) may be rewritten as (x)(xe R(a + 1) DF(x)).

Takeuti considers a generalization of this idea in which the

reinterpretation of (X)F(X) is (x)(x e R(f(a )) D F(x)), where f

is some function of a, perhaps different from ca+ 1. In Takeuti's

treatement, the function f is replaced by a formula A(a ,p ) functional

in its first argument. The variable X which is reinterpreted in this

way is then labeled with the formula A(ca,p ) as a superscript:

(XA)F(X ). Such variables are then classified as to "degree".

The degree of a set variables is zero, and if A(oa,p ) is a formula

in the ordinary (first-order) language of ZF, XA has degree 1.

If A(a , ) involves variables of degree higher than 0, say at

most n, then the degree of XA is n+l. The types or levels

of the "superclasses" of NTT are thus labeled by formulas of

an expanded language based on the language of ZF, as opposed to

STC's indexing of levels by ordinals and "extended ordinals".

Besides this difference in formulation of the hierarchy of

superclasses, NTT has a completely new feature having no

counterpart in STC, the notion of "nodal" class of ordinals.

This notion may be explained as follows. Consider the first-order

language LZF whose only non-logical symbol is ' ' and let

T be the "theory of R(a)", the set of all sentences of ZF true

in R(a). Takeuti reasons that since the number of distinct T 's
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is bounded but the class of ordinals is not, some theory T

must appear infinitely often in the series of T 's. Takeuti

conjectures that there is only one theory which will appear

"overwhelmingly often", and he wishes to "define the absolute

set theory to be this theory" 60

In order to make precise the (quasi-measure-theoretic)

notion of "overwhelmingly often", Takeuti introduces the notion

of a "nodal" class of ordinals. The fundamental property

of nodal classes is intended to be that for any closed sentence

(, ", is true" will be equivalent to "the class of aY's such that

e( ) E T is nodal", where ) is the relativization

of 4 to the rank R (a ).

The explanation of the previous paragraph was confined

to formulas of ZF; in NTT, Takeuti extends the same

idea to the language including typed variables XA , and also

adds a new one-place predicate N(X), read "X is a nodal

class" (or superclass). The result is that NTT is a extremely

powerful theory compared to ZF. This power may be

illustrated in the following way:

We have already noted that the existence of inaccessible

ordinals cannot be proved in ZF. In NTT, however, it is

a theorem that the inaccessibles form a nodal class. In other

words, there are overwhelmingly many inaccessibles according to

NTT. 6 1
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From one point of view, this is an extremely implausible

result, since an inaccessible is an ordinal which is enormously

larger than any of its predecessors, and it is difficult to believe that

"almost all" ordinals have this property. There is, however, as

rationale by which we may justify retaining the nodal notion

despite this feature. This rationale is that the nodal axioms

of NTT may be thought of as very strong axioms of infinity.

Such axioms as that of measurable cardinal (MC) are known to

imply the existence of many inaccessibles. In particular,

ZF + MC implies that there are X inaccessibles less than the least

measurable cardinal .62

This interpretation of the consquences of the nodal axioms

conforms with Takeuti's stated intentions of presenting a theory

in which "the creation of ordinals is endless, and therefore there

is no absolute universe of our set theory". 6 3

The way in which such ,"large infinity" properties are incorporated

into NTT may be seen in this way: A reflection principle is a

principle which states that for any formula gq of some given

language of set theory, there is an R(cz) such that p is true

of all sets just in case R() is true in R(ca). Depending on the

given language and the additional conditions imposed, reflection

principles are equivalent to various strong axioms of infinity.

(Reinhardt has even obtained a principle which is equivalent

to MC. )64 In NTT, one has an extremely strong reflection

principle. This principle is simply the fundamental property



of nodal classes, that if V is a closed sentence of NTT, and R() is p

relativized to R(a,) in a special way given in NTT, then

V *N(f (YI/p (a) .

In other words, c is true just in case it is "reflected" in almost

all R (a)' s.

NTT & CH:

Complete independence investigations for NTT are not yet

available, but the partial ones so far obtained suggest that CH

may well be independent of NTT.

The first result is that if NTT is consistent, so is NTT +

"Every set is constructible'. 65 It is, or course, already known

that this implies the consistency of CH and GCH with NTT. The

second partial result concerns NTT 1 , the restricted version of

NTT which results from excluding variables of degree greater

than 1. Takeuti credits R. Solovay with showing that NTT1

can be interpreted in "a system" in which there are measureable

66
cardinals. It is known, however, that for ZF, there are

non-constructible sets if there is a measurable cardinal. 67f

this result carries over to NTT , "Every set is constructible"

cannot be a theorem of NTT1. Thus, very provisionally we have

some reason to believe (subject to future research) in the independence

of "Every set is constructible" from NTT1. This does not, or

course, settle the independence of CH even from NTT1, but it

represents a first step in independence theorems for NTT.



NTT and Informalism:

We have seen that of all of the proposals about definite

properties which we set out to investigate, only NTT could

possibly decide CH. Our incomplete knowledge about NTT

is not really an obstacle to evaluation of the program we had set out,

however. That program was to determine whether enriching set

theory with definite properties might settle CH. The reason

that NTT has this status is that although it does have an enriched

apparatus for "superclasses", it clearly has new set theoretic

axioms as well. As we saw at the outset, informalism is only

interesting doctrine if it is construed as claiming that the

standard axioms, properly formulated, would decide CH.

But NTT goes beyond standard axioms to such as extent that

we should not regard a proof that NTT implies CH, in the

unlikely event that one should be produced, as a vindication

of the informalist position. Nevertheless, NTT is worthy of

consideration, for it gives some indication of the complexities

of definite property notions which may yet be investigated. 68

Our investigation of axiomatic systems which may be

richer in definite properties than ZF has been confined to

theories with the same fundamental conception of the structure

of the universe of sets as ZF--the CTS. The reason for this is

that almost every one regards this class of theories as the

most plausible ones in the field. There are, however, other



theories, in particular Quine's NF and ML. We will discuss

these theories briefly in the next chapter, but we mention here

that no independence results have been published for these

theories. There are two reasons for this, as I see it. The

first is that although there was considerable interest in ML and

NF twenty years ago, investigators in foundations are no longer

concerned with them. The second reason is that since no clear

notion of the structure of the universe for ML--comparable to the

CTS for ZF--is known, the Godel-Cohen results cannt be carried

over to ML in any obvious way. Godel' s and Cohen' s costructions

make essential use of the idea of the CTS in the construction of

models. Both mimic the rank structure in their models. No

such simple principle about construction of models for ML is yet

known. Finally, we will argue in the next chapter that neither

ML nor NF is plausible, so that a proof or refutation of CH in

either theory would not settle the continuum question.

There remains one important approach to the problem of

definite properties which we must consider, the formulation of

ZF in second-order logic. This is the subject of the concluding

sections of this chapter.

Why Consider Second-Order Logic?

We are about to begin a discussion of second-order logic (SOL)

which will occasionally take us out of set theory altogether, so it

is important to justify this digression at the outset. We will first

provisionally characteriza SOL, and then consider two compelling

reasons for studying it in connection with CH.



As a working definition, we will say that a theory is formulated

in SOL if, in addition to the usual apparatus of a first-order

theory, it contains variables for predicates ( or relations ) and

permits quantification of them. With such a definition, we can

easily show continuity of SOL with our earlier concerns with

definite properties. The connection is simply this: If we thirik

of predicate constants as "standing for" ( we do not attempt to be

precise about what "standing for" means ) properties or relations,

then in binding predicate variables with quantifiers, we are pre-

sumably quantifying over properties. On this rationale, we are

automatically stLudying ( definite? ) properties if we study this

sort of logic.69 This is a conclusion which would have pleased

Zermelo, since he made it clear that he would have preferred to

study definite properties as a general problem of logic, not one

concerning only set theory. 70

Our second and more compelling reason for spending effort on

SOL as applied to set theory is G.Kreisel's repeated claim that

CH is decided in second-order formulations of ZF.71 To be

fair, Kreisel does not mean this in the particular sense of

'decided' which we have adopted, i. e., proved ot refuted. A

characterist ic formulation in his own words is that "CH is

( provably ) not independent of the full ( second-order ) version

of Zermelo's axioms".

It is my contention that these assertions of Kreisel's could

hardly be more misleading, and that his evaluation of the significance

of the mathematical facts on which he bases his claim is incorrect.



It is my intention in the remainder of this chapter to show just

why this is so, and to consider what value, if any, second-order

logic may have for further research on the CH.

The reader should be warned that although I will be attacking

Kreisel's position on this particular point, I am in agreement with

him on important points which will be treated in Chapter II. The

aim of the present discussion is to clear away matters which I

believe obscure those points.

In the sections which follow, we will treat first the question

of a more precise characterization of "second-orderness". We

will then consider a few of the differences between first- and

second- order theories, and see what advantages the latter may

have over the former. Finally we will see in just what sense CH

is "decided" in second-order ZF and consider what importance

would be attached to this result.

Arithmetic: A Second-Order Example:

Following our working definition of second-order theory, we

could formulate arithmetic as follows: Our language contains,

besides logical constants, the constant 'O' , the function symbol

'S' ( "successor" ) and the function symbols '+' and 'x'. We

include one-place predicate variables, and adopt the usual ( first-

order ) axioms except that the induction schema is replaced by a

single axiom with predicate quantification:

( 1 ) (P) ((P(0) & (x) (P(x) D P(S(x) ) ) ) D (x) P(x) ).

We call the resulting theory S . 7 3 A possible model M for S2



can then be defined as the sextuple (N_, C, +, x, S, 0 ) . N

is the first-order universe of "natural numbers'; C is the

second-order universe, consisting of subsets of N ( not neces-

sarily all of them ). We also have 0 e N, S : N -. N, + : N x N -

N. We will deal later with the question of just how much of the

powerset of N is to be in C.

As an alternative formulation of "second-order" arithmetic,

2, 2con-
S , we consider the following theory. The language of S con-

tains only first-order quantification, with non-logical constants

'O', 'S', T+1, 'x' as before, and two new one-polace predicate

symbols 'N', 'C', read "is a number" and "is a set', respectively.

Finally, we add a two-place predicate symbol 'e' , interpreted,

as usual, as membership. The induction axiom for S2 ' may

be stated:

(2) (x)((C(x) & 0 ex &(y)((N(y)&y ex)) DS(y) x D(y)(N(y) Dy ex))

Of course (2), together with the other usual Peano axioms will

not yield a viable formulation of arithmetic. We will need

some axioms of class existence, an extensionality axiom for

s ' , axioms which state that every thing is either a number or a

set but not both, and axioms to settle similar technical matters. 74

A possible model for S21 will be of the form ( U, N, C,+, x, S, 0, 6)

where U = N U C, C c P(N), and the other elements have the

obvious interpr etat ions.



Is S2 ' a second-order system ? If we stick by our

provisional definition, the answer must be "no", for S2 1 does

not permit quantification over predicates. But there is a rationale

for answering "yes", and abandoning the restrictions of the

provisional definition. It is plain that nothing we have said so

far about the possible models for S2 and S2 ' rules out our

taking the possible models for S2 to be exactly those obtained

from S2 ' structures by omittting the first and last elements.

There are clearly other intimate relations between S2

and S2 , most easily summarized as follows: If M is the

standard model for S2, where N is the set of natural numbers,

C is the powerset of N, etc., and M' is the S2 structure

obtained from M by adding the set e = (x,y) I x eN &y eC &x ey}

as the last element of the tuple and U = N UC as its first, then

(3) M J P(x) iff M' ý N(x) &C(y) &x ey, where the

interpretation of the predicate variable P is the same

as that of y.

Of course there are also marked differences between our

two "versions" of arithmetic. The difference between individual

and predicate variables is marked by variable style in S2 and

by the predicates C(x) and N(x) in S2 ' . As we have seen, this

gives rise to a few additional axioms in S2 ' which concern C(x)

and N(x).



Evidently, S2' must also have some axioms guaranteeing

the existence of various sets, but we have listed no comparable

"comprehension" axioms for S2 . This distinction is about

to disappear, however, because as we have formulated S2 ,

there is no way to show that specific (first-order) predicates

may be substituted in (1), the induction axiom for S2

This defect must be remedied by stating further logical axioms

for the second-order portion of S2, as is done, for example

in Church' s book. 75 Such axioms have the form of a schema,

the closure of

(4) (P)F(P) D F( ),

where Y is a formula satisfying certain restrictions we will

mention later. It is plain that transposing (4) and prenexing

the resulting predicate quantifier will yield a schema whose

form is (the closure of )

(5) (HP) (G( ) D G(P)),

which is evidently a kind of comprehension schema for

predicates, but counted among the logical axioms of S2

The point that I wish to extract from this pair of examples

is that there is a strict parallel between theories which are

second-order in our original, provisional sense, and those

which are what we would ordinarily consider first-order

theories with set theoretic notions included. In later sections,



we will show that the parallelism exhibited in these arithmetic

examples also exists between second-order formulations of

ZF and VBI.

For the present, we will confine our discussion of SOL to the

original sense of that term, but the reader is requested to keep

in mind that our remarks could be recast interms of the first-order-

cum-set theory sort of SOL exemplified by S2 . The following

section will be concerned with the model theoretic and metalogical

properties of SOL, as compared with general properties of first-

order logic ( FOL ).

Properties of SOL:

So far, I have been deliberately vague about how much of the

powerset of the first-order universe of a possible model in SOL

must be included in the second-order universe ( that is, the

range of the second-order variables ). There are three commonly

considered conditions for such possible models, and as one would

expect, the properties of the resulting model theory for SOL depends

critically on which one is chosen.

The first condition is that the SO universe should include only

the finite subsets of the FO one. The result is called weak second -

order logic, and we will not consider it here. The second possible

condition is to require that the SO universe be identical with the

powerset of the FO universe. This is the notion which Kreisel has

in mind. We shall call such structures '*-structures', or, where

appropriate, '*-models'.



The third possibility is that one may require the SO universe

to contain sufficient subsets of the FO universe to satisfy the

substitution schema (4). We shall call such structures (models)

general structures (models). Plainly, every *-structure is a distinct

general structure, but the converse does not hold. The properties

of SOL when general structures are considered are not significantly

differently from those of FOL, but striking differences appear when

we restrict our attention to *-structures. We list a few interesting

properties of SOL for possible models of this type--call it '*SOL'.

I. S2 is Categorical

It is well-known that no first-order theory with any infinite

models is categorical--that is, has all of its models isomorphic

2
to one another. But let us consider S2. Let a O , a l , a 2 , ... be

the sequence of (necessarily distince and without other predecessors)

denotations of the numericals of S2 : 'O', 'S(O)', 'S(S(O))', etc.,

w.r.t. some model M = (N,C, ... ) of S. Let A = { a. i }.
Since C = IP (N) and A c N, A e C. So A is within the range

of the universal quantifier (P) in the induction axiom (1). Since

0 E A and x E A D S (x) E A , all numbers are in A, i. e., N =A.

Clearly we can show this for all *-models of S2 , so they are all

isomorphic. 76

II. *SOL is not Semantically Complete

We say that a system consisting of a class of logical axioms,

inference rules and possible models is semantically complete if

any sentence ep ( of an appropriate language ) can be proved from

a given set of sentences F by means of the axioms and rules just



in case the given sentence cp is true in every model of F . It is

well-known that FOL is complete in this sense.77

It is an easy consequence of the result in I. above that 'SOL

cannot be semantically complete. The Godel-Rosser incompleteness

theorem shows how to obtain a sentence ep of S2 which is true in

the standard interpretation of S , but unprovable by the usual rules

and axioms. Since all *-models of S are isomorphic, p is true

in all of them, even though it is unprovable. Hence *SOL is not

semantically complete w. r. t. the usual axioms and rules.

This result may be generalized as follows: Given any effective set

of axioms true in all *-structures ( of some particular language type )

and any effective set of sound and effective rules for SOL, *SOL is

not semantically complete w. r.t. these rules and axioms. This re-

markable result, that no acceptable set of rules and axioms can prove

all the "semantic consequences" of every *SOL theory will be the basis

of my critique of Kreisel's position on CH and SOL. That is, it can

be shown--under "common sense" assumptions--that CH has the same

truth value in all *-models of second-order ZF, and also that CH can be

neither proved nor refuted in SO ZF either by the usual rules or by any

other acceptable set of rules. We will return to this point below.

In addition to semantic incompleteness, other embarrassing proper-

ties of *SOL may be easily proved using the ideas of the previous few

paragraphs. For example, there are extensions of S2 which are con-

sistent (i. e., no contradiction is a theorem) but which have no *-models.

We will mention a few such properties below in connection with SO ZF.



General Structures & SOL

The remarkable properties of -SOL disappear if we do not

confine attention only to *'-structures b it admit all general

structures. The categoricity result I. can no longer be obtained,

for the proof of I. used the fact that A E C , but if C / IP (N),
we have no guarantee of this. Hence, I. cannot be proved by this

method. In fact, one can show that I. is simply false for general

models, because Henkin78 has shown that SOL is complete for

general models, so the result of II. is false for such structures,

and we have shown that I. implies II.

Second-Order Set Theory

Having considered some basic properties of SOL, it is now

appropriate to describe second-order ZF and state the relevant

results about it.

As before, we will consider only one-place quantified predi-

cates, and we will have 'E' as the only non-logical constant.80

We call ZF 2 the theory stated in such a language whose axioms

are the usual first-order axioms of ZF with Replacement and

Foundation replaced by:

Found: (P) ( (ax)Px D (ax) (Px & (y) (yEx D vpy)

and the translation into primitive notation of:

Repl: (P) ( (x)(y)(z)(P (< x, y> ) & P ( < x, z> ) y = z)

(x)( 2y)(z)(z E y (Hu) (ue x & P(<u, z>)))).

For convenience, we may also state the axiom of Separation:



Separation: (P)(x)( y)(z)(z E y = z E x & Pz)

We also have available the logical axioms for SOL, including

the substitution schema (4) given earlier. With the aid of (4),

it is easy to show that all instances of first-order Foundation

and Replacement are theorems of ZF 2

A possible model of ZF2 is a triple M = (U, B, R ), where

B IP ( U ), R C U x U , and M satisfies the logical axioms

of ZF2 . If B = IP(U ), we shall speak of *-structures and

models, as before, and use the term 'AZF 2 when we are

considering only models in this sense.

Comparing VBI and ZF 2

In an earlier section, we suggested that S2 and S2 ' ought

to be regarded as variant formulations of the same theory, despite

the fact that SZ ' is technically a first-order theory. In this section,

-we describe a similar relation which holds between ZF2 and VBI.

Let E be the following formula of ZF2z

(F)(G)((x)(F(x) = G(x)) D F = G).

E is an axiom of extensionality for predicate variables; it is plainly

true in all general or *-structures, so the theory ZF + E is con-

sistent if ZF2 is. The precise relation between VBI and ZF 2

is given by the following proposition, which is proved in appendix

C:

Proposition: If CP is a formula of VBI and (cP is the formula

of ZF2 which results from replacing every atom of Tp of the form

x £ X by the predicate variable X(x), then VBI I- rp iff

ZF 2 + E -Ep*.



Since CH contains no class or predicate variables, CH = CH*.

It is thus an easy corollary of Tharp's and Solovay's independence

results for VBI that CH is not decided in ZF , since it is not

decided in the extension Z F 2 +E.

I know; of no mention of the above proposition in print, but

the proof is simply quantification theory, and it would be surprising

if Kreisel were unaware of it. Clearly, he has another sort of

result in mind, which we describe in the following section.

A "Categoricity" Result for ZF 2

'Categoricity' appears in shudder quotes in the title of this

section because it is unlikely that the '-models of ZF 2 actually

fall into a single isomorphism class. In fact, if there is a

measurable cardinal x, there are at least h non-isomorphic

2 81a*-models of ZF . We can prove, however, that all the

*-models of ZF 2 are closely related in a sense which will be

described below.

First, we note that all '-models are well-founded. The

first-order theory ZF has, or course, an axiom which "says"

that the s -relation is well-founded, but there are models of

that theory--which of course satisfy this axiom--which are not

8Zwell-founded. It is plain, however, that a *-structure satisfies

the SO foundation axiom iff it is actually well-founded. Using

83this fact, and the so-called Isomorphism Theorem for first-

order theories, we may infer that all '-models of ZF 2 are

isomorphic to an e -model, that is, a model of the form <U, B, R>,



where U consists only of sets, and R is the restriction of the

e -relation to U.

By a more involved argument, which we outline in Appendix D,

we can give a much more detailed characterization of the *-models

Before stating this result, we must make a technical reservation.

It is entirely possible that there are no *-models of ZF 2 at all,

even if the axioms of this theory are true under the intended

interpretation, since the collection of all sets cannot itself be

a set, hence not a model of anything. We will argue in the next

chapter that this technical point has more than technical significance,

but for the present, we will ignore this point and refer to the CTS

itself as a model. We can now state the promised result:

Proposition: Every *-model of ZF 2 is isomorphic to the entire

CTS or to a natural model with first-order universe R(I), where

t is inaccessible.

It follows immediately from this proposition that if there are

no inaccessibles, then *ZF 2 is categorical. We may also state

a related result for Z 2 , the theory obtained from ZF 2 by omitting

the replacement axiom.

Proposition: Every *-model of Z2 is isomorphic either to the

entire CTS or to a natural model with first-order universe R(CY),

where ao is a limit ordinal greater than w.

From this second proposition, we obtain an independence proof

of the second-order replacement axiom from Z 2 , since there are

non-inaccessibles which are limit ordinals greater than w, e. g., w + w.



Either proposition illustrates the mathematical facts on

which Kreisel bases his case that CH is "decided" in

ZF2(or Z2), for the CH concerns only sets in R(w+3), the

initial portion of the CTS out to w+3. Since all *-models of either

theory (are isomorphic to models which) contain these sets as

their initial portion, the CH has the same truth value in all of
84

them. Thus, unless we have some cause to challenge the

"categoricity, argument for *ZF 2 , we have proved that CH is

determined, although it is not decided in ZF 2

As with the categoricity proof for S2 , however, the two

propositions stated above fail to hold if we include consideration

of general models. It is not even the case that such models

must be well-founded. Even if well-foundedness could be

quaranteed, the rest of the argument would not succeed, as

the reader may see by examining the proof sketch in Appendix D.

Significance of the "Categoricity" of *ZF 2

At first glance, the results of the previous two sections

provide an inviting solution to the problem of this thesis. That

is, we have been able to show that despite the fact that CH is

undecided in ZF 2 , it is determined provided we accept one

natural sense of 'model' for SOL. In the view of this writer,

however, this "solution" is defective on two counts:

First, I will argue that *ZF is a system of questionable

value as a practical foundation for set theory, in that it conceals

significant features more clearly presented in, say VBI.



Second, I will offer an argument to the same conclusion as Kreisel's

-- that CH is determined--using a proper subset of his premises,

one which I believe to be far less problematic.

In order to deal properly with the first objection, I propose

to consider briefly Kreisel's reasons for profering *SOL, in

general and in set theory. Later, we will return to the second

point.

Claimed Advantages of *SOL

Although Kreisel gives no compact defence of *SOL, he makes

85
three main claims in various articles: (1) *SOL is more

natural to the ordinary mathematician and to earlier writers on

foundations: (2) SO axioms provide the evidence for FO schemata

of accepted theories; (3) second-order formulations are heuristically

fruitful in finding interesting theories which may ultimately

be cast in first-order form. We will deal with these points in order.

As for (1), Kreisel is plainly right in claiming that some earlier

researchers intended to give categorical formulations of their theories.86

Dedekind gives a categoricity proof for his formulation of artithmetic,

which, on account of the Skolem-Lowenheim Theorem, would be

impossible if the underlying logic were first-order. 87 Similarly,

the first-order formulation of Peano's original five axioms, stated

in terms of "zero" and "successor", is not sufficient to prove

88
the existence of "plus" and "times" functions. One must

either include these two notions as primitives, add some simple

set theory--or, employ second-order logic.



Kreisel cites one further, more problematic case,

claiming that Zermelo himself employed SOL for his "categoricity"

results on ZF. 89 While it is not unreasonable to read SOL

into Zermelo's paper, 90 it does need to be read in; Zermelo

himself specifies no underlying logic. Kreisel' s interpretation

of Zermelo's argument has not gone unchallenged. Shepherdson,

in his refinement of Zermelo's results, 91 maintained that

Zermelo was simply mistaken, and set out to correct the

"logical shortcomings" of his proof and produce a related

first-order theorem. 9 2 A reasonable guess as to Kreisel's

reasons for reading Zermelo's proof as second-order is

that otherwise his result is false.

Kreisel's conclusions from such cases as these is that

categoricity is a (necessary) adequacy condition for "set

theoretic foundations as originally intended" by earlier

logicians. 93 Apparently, Kreisel agrees that this "original

intention" was correct, for he regards the fact that no infinite

mathematical structure may be categorically characterized

by a first-order theory as "establishing the inadequacy of

'first-order' foundations". 94

Besides faithfulness to the hopes of earlier investigators,

and the possibility of categoricity, Kreisel suggests one other

sense in which SOL is more natural. He argues that mathematical

practice proofs of the kind given by, say, Bourbaki, are best

understood as having an (implicit) SOL logic. Several other



writers have also expressed the view that SOL is closer to

mathematical practice, 96 but Kreisel's own argument is extremely

tenuous. He cites Bourbaki's practice of extreme care in

stating hypotheses, while making no mention of the set

comprehension axioms needed for the proof. This procedure

would be "extremely unscientific", he claims, unless second-order

logic is intended. 97

Such an argument leaves us free to conclude that even Bourbaki

may be somewhat unscientific, but it is more plausible that they

simply have no interest in the detailed formulation of the intuitive

set theory in which they work. This writer sees no reason to

regard such an attitude as unscientific, but more importantly,

Kreisel himself is concerned to defend "informal rigour"

against "positivisitic" or "doctrinare" challenges. 98 If refinements

do need to be read into even Bourbaki's carful proofs, I see

no reason to read in SOL rather than set theory.

As a final defense of the naturalness of SOL, Kreisel argues

that the notion of validity in the sense of truth in all *-structures

corresponds to "intuitive validity". His argument to this effect

is a rather self-defeating analogy to the first-order case. For

that case, he makes use of the Godel completeness theorem to

argue that first-order sentences are ,intuitively valid" iff they

are valid in the usual model-theoretic sense, and he states that

"one would expect''9 9 such a result for SO sentences as well.

100
Kreisel plainly does expect such a result, but his reasons

are not entirely clear. It may be that he is relying on the fact



that the definition of SO consequence "uses exactly the same basic

notions as that of first order consequence. "101 In any case, his

first-order argument makes use of the completeness theorem,

which is false for *-structures in SOL, and Kreisel gives no

indication of how a second-order argument may be constructed

which avoids this embarassing fact.

The outcome of this series of arguments (of Kreisel's) seems

to this writer to be inconclusive at best. The intentions of the

earlier writers mentioned may not be realizable. Categoricity is

a nice property of theories, but we have seen how categoricity

arguments for theories formulated in SOL lead directly to incom-

pleteness results. Even if we could establish the naturalness of

SOL formulations of mathematical practice proofs, it is not clear

that this is important. Kreisel's remarks about intuitive validity

seem to count against, not for, *SOL. We turn next to evidential

and heuristic arguments for SOL.

Evidential Superiority of *SOL

Kreisel's view on this matter is most clearly put in connection

with the induction axiom (SOL) or schema (FOL) in arithmetic:

"A moments reflection shows that the evidence for the first order
102

axiom schema derives from the second order schema [sic. 1

Kreisel does not elaborate an argument, but his intent here

is plain enough. Ones reason for believing that all instances of

the first-order schema are true is that one believes that induction

works for all properties, hence in particular, the ones defined by

formulas in the schema. This is a sensibl e enough view, and I

am not concerned to dispute it. I only wish to note that whatever



force this argument has for the SO induction axiom of S2 , it also

has for the set theoretic formulation in S 2 , which, we have noted,

is a first-order theory. S2 ' even has the advantage of offering at

least a minimal characterization of the sets (or properties) involved.

The point may be put concisely this way. A SO axiom may be

"evidentially superior" to a schema of its first order instances

without being superior in this respect to other first-order formu-

lations of "the same" axiom with set (or class) variables. In the

particular case of set theory, it is plainly absurd to maintain, say,

that ZF 2 is "evidentially superior" to VBI.

Heuristic Value of SOL

Kreisel offers two specific examples of the heuristic value of

SOL, and one additional one is suggested by his remarks. We will

not consider the first example, because he himself notes that

"quite simple reflection principles" are superior in that case for

the "discovery of new axioms". 10 3

The second example is the argument that CH is "decided" in

*SOL which we have already cited. Presumably, what *SOL aides

us in discovering by this procedure is that CH has a truth value,

but at this point, we are still in the process of evaluating this

"discovery". In another context, 104 Kreisel suggests that the SO

categoricity results suggests that properties other than those de-

finable in the usual (FO) language of set theory should be investi-

gated in new attacks on the continuum problem. As we have seen,

a number of people regard this approach as fruitful, some no doubt

inspired by the SOL categoricity.105



The third case, suggested by Kreisel's comments,1 0 6 concerns

the previously mentioned case of the plus and times functions for

arithmetic. The existence of these functions may be proved in SO

arithmetic formulated in the meager language containing only

"zero" and "successor" as non-logical constants. But the first-

order theory in this language is so weak that it is decidable. 107

As we mentioned in the earlier discussion, a satisfactory FO

theory may be obtained without set theory only by adding plus and

times as primitives. Kreisel seems to believe that such additional

technical complexity of the first-order axioms make it easier to

discover the SO ones first, and then concoct the first-order theory:

The general principle which distinguishes the discovery of
the basic axiomatic systems here considered [ arithmetic,
analysis, and set theory ] from technical ones like the axioms
of group theory is this:

We have a second order (categorical) axiomatization
of a mathematical structure, and then pass to a first order
system either (i) by using a schema or (ii)by using a many
sorted calculus and giving explicit closure conditions for the
"sets". U8

Taken as an historical thesis, this view is not unreasonable, but

the question we must ask is whether following such a scheme may

help solve the continuum problem. If the course we have consider-

109ed in the bulk of this chapter and which Kreisel endorses - -better

characterization of definite properties--is to lead to a solution,

'SOL is unlikely to help. The reason for this is well put by

Mostowski, who maintains that

S. . we obtain no additional information on the status of the
continuum problem if we pass from the first order logic
to the second order one.... We need axioms which will
characterize the notion of an arbitrary predicate. The sol-
ution of the continuum problem depends essentially on the choice
of these axioms. But is the problem of their choice in essence not
the same .as the problem of finding suitable axioms for the notion
of a set? 11



The proof-theoretic equilavence of VBI and ZF 2 gives clear

support to Mostowski's statement that "we obtain no additional

information" about CH in the passage from FOL to SOL.

The second-order logic which interests Kreisel, *SOL, is

worse off than FOL, in the sense that rather than providing

additional information about the CH (or anything else), crucial

restrictive conditions are concealed in the definition of '-models.

As we have noted, the axioms of ZF 2 (or VBI) which concern class

existence, the substitution schema (or class comprehension

schema, respectively)are not sufficient to replace the condition

on *-structures that the SO universe be the powerset of the

FO universe. Without such a condition, the "categoricity"

result for ZF2 evaporates. But if the condition is justifiably

imposed, an exactly parallel one could perfectly well be stated

for VBI or even VBG. That is, one could require that the only

models for VBG to be considered are those isomorphic to an

s -model M in which the "classes" (elements X of M for

which M ) (2Y) (Ye X)) are exactly the actual subclasses of the

universe of M. Such models are called "supercomplete",

and VBG and VBI are "categorical" w. r. t. supercomplete

models in exactly the same sense in which ":ZF is "categorical".2

Mostowski states--and this writer agrees-that what one

needs are principles, axiomatically presented, which better

characterize all--or more of--the actual subclasses of an

e -model. It is absolutely no help in doing this to make "*-ness"



or supercompleteness part of the definition of 'possible model'.

If anything, choosing a SOL formulation, which makes the class

existence schemata part of the logical apparatus of the theory

obscures this effort, because the problem to be solved is, as

Mostowski notes, "in essence" a set-theoretic one. Such

interesting new attempts to characterize classes as Takeuti's

notion of "nodal class of ordinals" could be stated in SOL terms,

but this is plainly less clear than adding to the VBI comprehension

schema. The clearly warranted conclusion is that as far

as heuristic value for the "definite property" problem goes,

SOL (with or without the '*') is inferior to first-order theories.

Further Disadvantages of -ZF 2

The conclusion I wish to draw from the disscussion of the

previous few sections is that the advantages of SOL, if any,

are slight, and in crucial matters related to the continuum

problem, definitely outweighted by disadvantages. Further

disadvantages of *SOL in general were cited in the case of S2 , speci-

fically the lack of a completeness theorem and consequent

undesirable properties. We may cite as an example the existence of
2  112

consistent extensions of S with no *'-odels

Similar examples could be cited for set theory. Several have

113
been collected in a paper by A. Levy, 13 who attributes them

114
to Mostowski. Levy' s examples turn on the non-equivalence

of predicate quantified statements and the schemata of their instances.



For example, he shows that there is a certain schema of theorems

of ZF 2 , -y (o), which, when replaced by the predicate quantified

statement (P) ~Y (P), yields a consistent theory with no *-models.

As one might expect, this result turns on a trick about truth

definitions. AY (P) says that P is not a truth set for ZF 2 , and

by Tarski's Theorem, we have ~ - (N), for all cp. (P) - T(P) is

actually false, however, because the truth set for ZF 2 mus t

actually be contained in any *-model of ZF 2 , even though it is

not defined by any p. A similar construction yields a consistent

2 2 115
extension of ZF with more *-models than ZF

Levy concludes that these examples "show the inadequacy for

general use of the notion of standard model introduced in

S2 [i. e., "--models]".116 One might reply, however, that the

examples simply illustrate the fact, repeatedly noted by Kreisel,117

that SO sentences need not be equivalent to the schemata of their

instances. Rather than showing the unsuitability of the ;-structure

notion for "general use", Levy's examples merely add to our list of

unhappy features of "SOL.118

A Better Argument that CH is Determined

At the outset of our critique of Kreisel's claims for SOL, I

promised a simpler argument that CH is determined. In this

section, we deliver on that promise.

First, we must recall that all our discussion of 'SOL, including

the technical arguments of Appendix D, have rested on a proposition

perhaps too obvious and fundamental to be called a premise.



This proposition is that, contrary to formalist views, the terms

'set', 'is a member of', and the like, have a settled interpretation,

and further that this interpretation is that given by a single

mathematical structure, the CTS. We explicitly noted such

an "assumption" in our earlier discussion of natural models,118a

and Kreisel introduces his discussion of SOL with a similar

statement: "This section takes the precise notion of set (in the

sense of the cumulative type structure of Zermelo) ... as starting

point. . .119 Using this "assumption", we can put our argument

that CH is determined as follows:

Consider the initial portion of the CTS, R(w+3). Since CH

concerns only this portion of the CTS, 119a if we let

M = ( R(w +3), e f R(w+3)) then we have the following:

There is a unique intended interpretation of the terms of set

theory and a structure M such that:

(1) The CH is true under the intended interpretation iff

M P CH, and

(2) The CH is false under the intended interpretation iff

M N CH, and

(3) M CH or M K -CH.

(4) Therefore, there is a unique intended interpretation

of the terms of set theory such that CH is either true

or false under that interpretation
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In the (three part) premise of (A), (1) and (2) simply express (for CH)

the correspondence between truth under the intended interpretation

and the technical notion of satisfaction in M. (3) is a trivial theorem

of model theory. It is plain that the argument (A) is valid, and

given principles Kreisel accepts, it is also sound. Consequently,

Kreisel's long detour thru the morass of *-SOL is simply

mathematical obfuscation of a philosophical triviality.

The Critical "Assumption"

The reader should be warned that by using the term 'assumption',

I do not mean to imply that the proposition in question is doubtful

or unsupported. I do mean to suggest that this proposition deserves

examination. One reason for this is that it has been repeatedly

denied by recent writers on the significance of the independence

proofs (not all of them formalists), and denied on the grounds of

the independence of CH in particular. It is this view which we

will examine in the next chapter. Our final conclusion will be

that (1) - (4) does really settle the question of whether CH is

determined, provided only that a minimal realism is adopted.



CHAPTER II

REALISM AND THE CONTINUUM QUESTION

Setting the Problem

At the end of the last chapter, I outlined an argument to the

effect that CH is determined, which is restated here:

There is a unique intended interpretation of the terms
of set theory and a model M given by this interpretation
such that:

(A) (1) The CH is true under the intended interpretation iff
M r- CH, and

(2) The CH is false under the intended interpretation
iff M ý - CH, and

(3) M k CH or M -N CH.

(4) Therefore, there is a unique intended interpretation
of set theory according to which the CH is either
true or false.

The single premise of the argument (A) has the form of the

existential generalization of the conjunction of the three clauses

( 1 ) - ( 3 ) . In the discussion which follows, we will occasionally

speak loosly and refer to ( 1 ), ( 2 ) and ( 3 ) as premises of (A)

Argument (A) is easily shown to be valid by quantification theory,

and our examination of its soundness will serve to organize the

discussion of this chapter. In a later section, we will consider

another argument that CH is determined whose premises do not

have the explicitly existential character of those of (A), and will

there justify our concentration on (A).

It is plain that (A) will be totally unacceptable from the point

of view of several widely discussed views in the philosophy of

mathematics. In the introduction, we outlined formalist views

which either reject the notion of truth in mathematics altogether,

or identify it with provability in a preferred formal system. For



the first of these two views, all the premises of (A) are nonsense.

For the second, the satisfaction relation "IM ý ' must be replaced

by assertions about provability in some formal system, in which case

( 3 ) will be false.

Likewise, (A) cannot be accepted by the Intuitionists of the

Dutch school, if only for the reason that ( 3 ) would be for them

an unjustified appeal to the principle of the excluded middle.

The fact that our argument is unacceptable on either intuitionist

or formalist views does not, however, oblidge us to give a general

evaluation of these doctrines in order to continue our discussion of

the main question, that of whether CH is determined. We need not

do this because in one way or another, this question is already

settled from the point of view of these two positions.

From a formalist point of view, the question is settled in the

negative by the technical results outlined in the previous chapter.

For intuitionists, moreover, the question does not even arise,

because they reject entirely the greater part of set theory, in

particular that part necessary to state the CH, namely, cardinal

arithmetic beyond0 1

The positions that remain to be considered, and which may be

reasonably be said to be assumed both in Kreisel's argument and

in (A), are those which are generally call "realist", or, perjora-

tively, "platonist". The realism implicit in (A) has two aspects:

first the assertion that there exists a unique intended interpretation

of set theory, and second, that for CH, truth under that interpret-

ation coincides with satisfaction in a certain mathematical structure

(or group of related structures) M.



The project of the present chapter is to investigate the soundness

of the argument (A) , assuming some form of realism. We need

just enough realism to make good sense both of the assertion that

there is a unique intended interpretation of set theory (and the

structure or structures M) and of the notion of satisfaction of CH

in M, but we also need enough leeway in our assumptions about

realism to be able to challenge the assertion that there is indeed

a unique such interpretation. Just why this leeway is needed will

be seen below, when examine the arguments that there may be more

than one candidate for the "intended interpretation" of set theory,

so that the premise of (A) might be false.

There are a number of philosophers of this and recent gene-

rations who have been concerned with mathematical truth and

existence, and who have called themselves realists. The ideal

procedure for our present discussion would be to simply take one

of these announced positions or the common part of several of

them and state it as an assumption on which our examination of

(A) will rest. I believe, however, that the discussion below will

show that this T"ideal" procedure will not work in the present case,

because none of the usual views are both sufficiently clear and

reasonably plausible so as to serve as a basis for our investigation.

Both the advocates and the opponents of such views describe them

in language which is vague, impressionistic, metaphorical, or

down-right paradoxical. As a result, it will be necessary to defer

our discussion of the argument (A) until two subsidiary matters

are taken up. The first is a brief review of realist positions in

mathematics, and the second, which is a natural outgrowth of the



first, is a review of theories of mathematical truth. After these

two digression, I will present my own version of a minimal realist

position which I hope will be both clear and plausible and which will

not beg the questions which we must ask about the premises of (A).

Realist positions in Mathematics:

Several writers whose views are discussed elsewhere in this

thesis are characterized by themselves or by others as realist.

K. Godel, for example, has stated his view that

The set-theoretical concepts and theorems describe some
well-determined reality, in which Cantor's conjecture
must be either true or false. 2

In an earlier statement, Godel expresses a similar idea:

Classes and concepts may, however, also be conceived
as real objects, namely classes as "pluralities of things"
or as structures consisting of a plurality of things and
concepts as the properties and relations of things exist-
ing independently of our definitions and constructions.

It seems to be that the assumption of such objects
is quite as legitimate as the assumption of physical
bodies and there is quite as much reason to believe in
their existence. They are in the same sense necessary
to obtain a satisfactory system of matherratics as physi-
cal bodies are necessary for a satisfactory theory of our
sense perceptions and in both cases it is impossible to
interpret the propositions one wants to assert about
these entities as propositions about the "data", i. e.,
in the latter case the actually occuring sense perceptions.

Other phrases used by Godel to express the same view include

4 5 6'exist objectively'4, 'objective existence' , 'real objects' ,

and 'real content which cannot be explained away'7. Godel

also quotes (one of) Russell's view(s) :

Logic [including set theory--TSW] is concerned with the
real world just as truly as zoology, although in more
abstract and general features. 8

This remark of Russell's recalls a much earlier statement

of a realist view by Joseph Fourier:



The analytical equations ... are not restricted to those
properties of figures, and to those properties which
are the object of rational mechanics; they extend to all
general phenomena. There cannot be a language ...
more worthy to express the invariable relations
of natural things. Considered from this point of
view, mathematical analysis is as extensive as nature
itself. .... It brings together the phenomena the
most diverse and Iiscovers the hidden analogies
which unite them.

R. Smullyan, who styles his own views as realist, closely

follows Godel's language. He states his position in the follow-

ing terms:

We can describe the realist view point as follows: There
is a well-defined mathematical reality of sets, and in this
reality, the continuum hypothesis is definitely either
true or false. 10

As a final example of a clearly realist position, we must

deal briefly with Frege's ontological views. He divides the

entitles within the subject matter of mathematics into two kinds,

objects and functions:

I count as objects everything that is not a function, for
example, numbers, truth-values, and... courses-of-
values [classes]. 11

Clearly, Frege counts sets, the entities which interest us here,

as objects. If we could find in Frege's account (a) a clear

characterization of mathematical entities and (b) a clear dis-

tinction between objects and functions, it might aid us in explain-

ing realism in set theory. Unfortunately, as in the case of the

philosophers discussed earlier, we do not find these features

in Frege's work, but we do find suggestive and conscientiously

pursued attempts.

As for (a) , Frege develops his own views by contrast to



and criticism of two rival positions. One is formalism, the view

which "regards signs as the subject matter of this science

[mathematics] . Frege regards himself as having

"definitely refuted" this view; 11b the subject matter of arithme-

tic, for example, is not numerals, but "what they stand for,,,llc

namely numbers. One reason why this was not obvious to form-

alists was the "very widespread" tendency "not to recognize as

an object anything that cannot be perceived by means of the senses". d

But fhis is simply a mistake; one must distinguish what is "objective"

from what is

handlable or spacial or actual [wirklich]. The axis of the
earth is objective . . . but I should not call [it] actual in the
way the earth itself is so. Ile

The second sort of view which Frege is concerned to refute

is the notion that mathematical entities are ideas:

If number were an idea, then arithmetic would be psychology.
But arithmetic is no more psychology than, say, astronomy
is. Astronomy is concerned, not with the ideas of the planets,
but with the planets themselves, and by the same token the
objects of arithmetic are not ideas either. llf

Frege's own view on the nature of mathematical objects may

best be put negatively, by contrast to the two views that the

subject matter of mathematics consists of signs and that it consists

of the products of "a psychological process".llg Mathematical

objects are not either of these, but they are not physical either.

As he says of "thoughts" (propositions), which are in the same

ontological boat as mathematical objects, "[they] are by no means

unreal [unwirklich], but their reality is quite a different kind from

that of [physical] things. ",15



Most of the above discussion mentions objects only, but it

applies equally to functions. For example, Frege remarks that

although he takes numbers to be objects, he could have taken

them to be concepts (functions whose values are truth values). Ilh

It is clear that the functions in question are, like mathematical

objects, neither physical nor mental, but still "objective".

On Frege's view, neither 'object' nor 'function' can be defined, i

both being simple to "admit of logical analysis". llj The best that

can be done is to give "hints" of what is meant by this distinction.11k

He provides two sorts of hints, one a metaphor, and the second

a clearer grammatical cri terion. The metaphor is given a

typical expression in the following passage:

I am concerned to show that the argument does not belong
with the function, but goes together with the function to
make up a complete whole; for the function by itself must
be called incomplete, in need of supplementation, or
'unsaturated' . And in this respect functions differ funda-
mentally from numbers. 11,

The idea of the metaphor of "unsaturatedness" is that a function

is something such that when it is "completed" with one or more

objects (the arguments), the result is an object (the value of the

function).12 Frege gives some indication that he had the notion

of a function as a set of ordered pairs, but he regarded his own

llm
more arcane notion as "logically prior".

Besides the metaphorical description of a function, Frege

gives a grammatical criterion:

A concept is the reference of a predicate; an object is some-
thing that can never be the whole reference of a predicate,
but can be the reference of a subject. lln

This criterion also has shortcomings, however. It appears to



work only for certain functions (i. e. , concepts), and it admits of

some exceptions.llo Further, since Frege maintains that "the

singular definite article always indicates an object", 11p the

reference of the subject of the sentence 'the concept man is not empty'

is not a concept, but an object which "represents" the concept. 11q

What the relation is between this object and the concept represented

is very obscure. Generally speaking, the obscurity of the object

function distinction is the subject of a great deal of critical complaint

by Frege's commentators. 13

As a summary of the views we have sketched here, we can

list three key characteristics: (a) mathematical truths are "about"

"mathematical objects"; (b) these objects are "real"; and (c) they

are not mental. Frege is particularly explicit about this last clause,

but is clear from passages not quoted that all the other authors cited

also subscribe to it.

Quasi-R ealist Views

Several authors whose views we will be oblidged to discuss bear

some similarity to those reviewed in the previous section, but differ

in one or more important particulars from them.

Kreisel, for example, distinguishes three sorts of "realism",

but he discusses them is a, sufficiently hypothetical tone that it is

unclear which of these he may accept. He says, for example, that

The contact [of the analysis of mathematical experience] with
mathematical realism is, or course, the assumption that there
are basic elements with the properties assumed in the analyeis,
that is, the existential assumptions of set theory are valid.



Kreisel clearly accepts this much "realism"; he later distinguishes

three views, tstrong", I"weak"l, and "strict" forms of realism:

The realist position is here taken in its strong form, namely
as involving the existence of sets of high ordinal, and not
merely as involving the existence of some mathematical
objects [weak realism]. 17

"Strict," realism he takes to be the view that

all mathematical notions are built up from the notion of
set by means of logical definitions in the language of
pure set theory (e) .18

This view he regards as implausible.

The way in which Kreisel's version of realism is clearly

different from those of the previously cited authors is that he

appears uncertain whether mathematical objects may not be mental,

or, as he says, "objects not external to ourselves''. 19 He suggests

that analysis of the nature of "mathematical evidence" may make

the view that mathematical objects are indeed "not external to

ourselves" more plausible. 20 It appears, then that Kreisel rejects

characteristic (c) of realism as listed in the previous section.

In traditional terminology, his view is therefore closer to "concept-

ualism" than to "realism".

Another author with a similar view is P. Bernays. Bernays

claims to detect a "tendency ... which consists in viewing the

objects [of mathematics] as cut off from all links with the reflecting

subject". 21 He endorses this tendency to a limited extent, because

he believes that such a position is necessary to justify the excluded

middle in mathematical reasoning.22 The position he prefers



he calls "restricted platonism"

which does not claim to be more than, so to speak, an ideal
projection of a domain of thought. But the matter has not
rested there. Several mathematicians and philosophers
interpret the methods of platonism in the sense of
conceptual realism, postulating the existence of a world
of ideal objects containing all the objects and relations
of mathematics. It is this absolute platonism which
has been shown untenable by the antinomies, particularly
by those surrounding the Russell-Zermelo paradox. 23

We will have occasion to discuss Bernays' argument in this last

sentence in a later section.

Finally, we must consider Cantor's position, which, paradoxically,

amounts to an argument that conceptualist and realist positions

amount to the same. There are, he says, two senses of 'actuality';

in the first sense,

We may regard the whole numbers as 'actual' in so far as they,
on the ground of definitions, take a perfectly determined place
in our understanding, are clearly distinguished from all other
constituitents of our thought, stand in definite relations to
them, and thus modify, in a definite way, the substance of o ir
mind. 24

In the second sense, we may ascribe "actuality" to our conceptions

insofar as they must be held to be an expression or an image
of processes and rplations in the outer world, as distinguished
from the intellect.

Cantor held, however, that "because of the unity of the All, to which

we ourselves belong" the first kind of actuality always implies the

second. 2 6 It would be pointless, even if it were possible, to clearly

explain Cantor's metaphysical argument here, but the outcome of the

argument is not hard to see: in mathematics, we need only consider

the first sort of "actuality". For example,



in the introduction of new numbers, it is only obligatory to
give such definitions of them as will afford them such a
definiteness, and, under certain circumstances, such a
relation to the older [natural] numbers, as permits them
to be distinguished from one another in given cases. As
soon as a number satisfies all these conditions, it can
and must be considered as existent and real in mathematics.
In this I see the grounds on which we must regard the
rational, irrational, and complex number as just as existent
as the positive integers. 2 6 a

Evaluation of Realist & Quasi-Realist Views

In an earlier section, we introducted our discussion of realist

position, and characterized them as "vague, impressionistic,

metaphorical or paradoxical". I think that our subsequent summaries

of positions, both "realist" and "quasi-realist", bear out this

perjorative description. I do not mean to imply, however, that

any of the characterizations are senseless, that the reader or

this writer has no idea what is meant by them, or that the remarks

have no value as methodological guides for the development of various

strains in mathematics. The philosophical remarks of intuitionist

mathematicians, for example, are notoriously obscure, 27 but

this has not prevented the development of a substantial body of

intuitionist mathematics.

I do wish to claim, as previously announced, that none of the

positions reviewed is both plausible and sufficiently clear to

provide a basis for evaluation of the argument (A). It is simply

not evident what we may infer from the statement that sets are

"real objects" or that there is a "well-defined mathematical reality

of sets". It will be our project in the next few sections to attempt



to give a minimal account of realism which will serve our

purposes in evaluating (A). We will do this by formulating

realism in terms of the notion of truth, and then defending a

notion of truth with properties we can use in evaluating (A).

Minimal Realism

We will formulate our version of realism only for set theory;

we state it as follows:

(a) Most of the statements of set theory (including exist-
ential ones) which secure wide acceptance among mathematicians

(B) acquainted with set theory, in particular most of the axioms
and theorems of ZF, are true under at least one natural
interpretation, and (b) these statements need not be reinter-
preted as facons de parler in order to be regarded as true.

At this point, it may well be unclear why we have chosen to

call position (B) realism; that will be clearer after we have

discussed theories of mathematical truth. It is clear, however,

that (B) is a reasonable assumption on which to base a discussion

of whether CH has a truth value, for (B) simply states that most

of the statements for which we have proofs acceptable by current

standards are true. If this is not taken as a starting point, then

it is idle to consider whether statements which are known to be

unprovable (according to these same standards) are true.

Although (b) is listed separately, I believe that discussion

below of natural interpretations will show that it is already implied

by the "at least one natural interpretation" clause of (a). It will

clarify matters, however, to give an illustration by way of

explanation of (b).
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In a 1905 paper, 28 Russell outlined three methods which might

avoid the paradoxes of set theory, among which is a theory he

called the "no classes theory". This method amounts to a

translation procedure for eliminating any proported reference

to sets, and so, Russell believed, developing a foundation for

29
mathematics without the assumption that sets exist. This is

the sort of position we have sought to rule out by clause (b).

Russell later developed his theory in some detail, but without the

ontological economies he had hoped for. 3 0

We now turn to a discussion of theories of truth in mathematics,

so that we may show the connection between (B) and the views we

have styled t"realist" and then prepare for an evaluation of (A).

Theories of Truth in Mathematics

Loosly speaking, we will be discussing four theories of truth,

although one of them is not an entire account of truth, but deals only

with quantified sentences, and another (conventionalism) is only

a loose collections of slogans. The remaining two theories are

two versions of Tarski's ideas, one that of Tarski himself, and

another based on his work.

Theory I: Conventionalism:

Empiricist writers of this century, especially before the

influence of Tarski's ideas became widespread, maintained that

truths of mathematics are such because they merely record rules

"which govern the use of language". 31 Another formulation puts

is this way:



The validity of mathematics ... derives from the stipulations
which determine the meaning of the mathematical concepts,
and ... the propositions of mathematics are therefore
essentially "true by definition." 32

It is held to be a consequence of such views that the truths of

mathematics need not be regarded as "truths about the world",33

"say nothing about any actual thing", 34 and convey no "factual

information. "35

As to the ontological implications of such a view, various

advocates disagree. The main attraction of conventionalist theories

for empiricists has been that they seem to provide an account of

mathematics which makes it possible to explain how one can come

to know mathematical truths which is consistent with their general

epistomological view. One might suppose that elementary statements,

for example, might be knowable simply by reflection on the meaning

of the terms they contain. This emphasis on the epistomological

aspects of mathematics has tended to overshadow ontological

questions. Does the truth of '2 + 2 = 4' imply that numbers exist?

Some maintained that this is a typical "pseudo-question", while others

answered 'no'. 36 The most sophistocated formulation is Carnap's;

he maintained that one should answer either 'yes' (for trivial reasons),

hold that ,"it is not a theoretical but a practical question, a matter

of decision rather than assertion", 37 or say that it is a pseudo-

question , depending on exactly how the question is meant. 38

Happily, we need not decide just what sort of ontology fits best

with conventionalist accounts of truth because we can simply reject
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those accounts. In doing so, we rely on the arguments of Quine, 39

who convincingly argues that no reasonable construal of conventionalism

can be right even about logic.

Quine's argument may be summarized as follows: While it may

not be necessary to a conventionalist thesis that someone has ever

explicity laid down the conventions in question, we must be able

to imagine that this be done:

In dropping the attributes of deliberateness and explicitness
from the notion of linguistic convention, we risk depriving
the latter of any explanatory force and reducing it to an idle
label. 38a

To see whether the making of deliberate and explicit- conventions

for the truth of logic could be possible, Quine traces out a program

of convention making for the logical truths--those sentences whose

truth depends (in a sense he makes precise) only on the occurences

and arrangement of the basic logical vocabulary: 'not', 'if .. . then',

'every'. The single condition of adequacy to be met by this (imaginary)

process of convention-making is that the results conform to the

present ordinary usage of the logical vocabulary, which we must

temporarily assume we do not understand.

If there were only finitely many sentences about which conventions

were to be made, the process would be simple. We would only

need to run thru an appropriate list and tick off the ones to be made

true so as to conform to ordinary usage. Unfortunately, we need

to make conventions about infinitely many sentences, and since human

beings cannot simply run thru infinite lists, we must do this by



adopting by convention some finite number of principles which

together determine the truth values of all the logical sentences.

The crucial difficulty which arises here is that both in stating the

principles and inferring particular sentences, we must use both

the locial vocabulary whose meaning is to be fixed by the

conventional assignment of truth values to the logical sentences, and

the logical principles we are seeking to make true by convention.

In Quine's words, "The difficulty is that if logic is to proceed

mediately from conventions, logic is needed for inferring logic

from conventions. "38b

Thus, there is no non-vacuous sense of 'convention' according

to which logic is true by convention. To this conclusion, we

need only add two remarks: (a) conventionalists typically regard

mathematics as part of logic;40 and (b) any plausibility

conventionalism may have for mathematics is certainly removed

if it won't work for logic.

It may seem that we have neatly dispensed with conventionalism,

but such is not quite the case, because although the particular

formulations quoted earlier cannot be correct, there are formulations

which make use of Tarski's ideas which are very close in spirit to

the statements cited here. We will examine such a position shortly.

Tarski' s Views

Just about all contemporary philosphical views on truth, as

well as the mathematical theory of models, derive in some manner

from Tarski's work. Several interpretations may be put on Tarski's



ideas, and I will maintain that the version that Tarski himself

accepted is not plausible. In discussing Tarski's views, I will

rely heavily on the arguments of a recent paper by Hartry Field,

41
"Tarski's Theory of Truth", to which the reader is referred

for a more detailed treatment.

As Field shows, Tarski's theory may be regarded as

characterizing truth for a language L (which, for simplification,

we may take to be a first-order one of the usual sort) in terms

of the three additional semantic notions of (1) what an individual constant

c i refers to, (2) what a predicate (i. e., predicate letter) applies to,

and (3) which n+l-tuples of objects fulfill an n-place function symbol. 42

For convenience, we will use the term 'primitive denotation' to

cover all three of these notions. We will call T the Tarskian

theory which explains truth in terms of primitive denotation.

Thus formulated, the interest which T holds for us depends

on what account of primitive denotation we can supply. If we could

produce a clear and explanatory account of primitive denotation for

mathematics such that only things which "really exist" can be

referred to, we would have made progress in giving a clear account

of a realist point of view. We have no such account to offer in general

or for mathematics but (in a later section) we will suggest a line

enquiry which at least deserves to be followed up. First, however,

we review Tarski's own view.



Tarski's Theory of Primitive Denotation

Since it was Tarski's objective to "not make use of any

semantical term if I am now able previously to reduce it to other

[non- semantic] concepts", 43 he offered a further characterization

of referring, fulfillment and application exemplified by the following

treatment of the case of reference:

(C) (e) (a) (e is a constant that refers to a iff (e is 'c 1 ' and

a is cl) or (e is 'c Z ' and a is c2) or ... )

where 'cl', c2 . . . are all the individual constants of L, and

cI , c2 , ... is a list of the translations of these constants into

English (or any other language which we happen to be using).

Field emphasises the triviality of (C) as a "theory" of reference

by comparing it will the following "theory" of valence in chemistry:

(D) (E) (n) (element E has valence n iff (E is potassium

and n = + 1) or (E is sulphur and n= -2) or ... )

where the '...' indicates that (D) is to be filled out with a complete

list of the elements and their valences. Plainly, (D) is not a theory

of valence, any more than (C) is a theory of reference for L.

Both (C) and (D) do perforrn one function, however; they allow us

to eliminate the therms 'refers to ' or 'has valence! from many,

perhaps all, contexts, provided that the lists are correct and complete.

(C) thus answers to Tarski's stated aim of not using a semantic

term "if I am not able to previously reduce it to other concepts".



Field argues that (1) the translation list used in (C) for

eliminating the term 'refers to', and the counterparts of (C) for

'fulfills' and 'applies to' are of no philosophical importance, 4 4

and (2) that such accounts of the notion of primitive denotation

saddle Tarski's account with very considerable practical and

methodological drawbacks.45 To these conclusions, he attaches

only the proviso that some other treatment of primitive denotation

which is compatible with physicalism be possible. 4 6 As will be

seen, I fully agree with this view.

Tarski's addition to T for the case of reference may be put

in a somewhat more general form as follows: Translate the constants

of L into some language you understand, say L'; let the translation

of 'c' be 'glurg', and let 'swarp' be some term of L'. Then 'c'

refers to swarp just in case glurg = swarp, where this identity is

understood as a statement of L'. This may strike one a circular

or at least unhelpful , for we started to define truth for L and ended

with an account which depends on understanding statements of some

other (and richer) language L'. Tarski's procedure is really a

special case of this general method, for his translation is not

a systematic or explanatory account, but simply a list. But is

some truly explanatory account possible for some appropriate

language L'? Certainly many philosophers think not.

Carnap, for example, is easily able to adapt the Tarskian account,

T + (C), to his conventionalist framework. In his view, the choice



of the language L' and the translation into it are just as much a

matter of simple convenience as the choice of the language L of

our initial interest. The evident triviality of (C) as an account of

reference (which Carnap adopts) makes it possible for him to

countenance semantic notions and still maintain that "the

admissibility of entities of a certain type..,. as designata

[i. e., as things referred to -- tsw] is reduced to the question

of the acceptability of the linguistic framework for those entities", 4 7

and this "question of acceptibility" is a purely pragmatic one.48

Field believes that one important reason that Tarski's

translation "theory,, of reference has come to be accepted as that

nontrivial theories of reference with which philosophers are

familiar, such as Russell's business about "logically proper names",

are patently absurd. Field holds out hope for some sort of causal

49theory of reference, such as that sketched by Kripke. Field

summarizes this view as:

According to such [causal] theories, the facts that 'Cicero'
denotes Cicero and that 'muon' applies to muons are to be
explained in terms of certain kinds of causal networks between
Cicero (muons) and our uses of 'Cicero' ('muon'): causal
connections both of a social sort (the passing of the word
' Cicero' down to us from the original users of the name,
or the passing of the work 'muon' to laymen from physicists)
and of other sorts (the evidential causal connections that
gave the original users of the name "access" to Cicero and
gave physicists "access" to muons). I don't think that Kripke
or anyone else thinks that purely causal theories of primitive
denotation can be developed (even for proper names of past
physical objects and for naturalkind predicates), this however
should not blind us to the fact that he has suggested a kind of
factor involved in denotation that gives new hope to the idea of
explaining the connection between language and the things it is
about. 50
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It is just this hope which I share, but there is a special problem

for such a "causal" account of reference for mathematics. In fact,

it is widely maintained that a causal theory of reference for

mathematics is absurd. The argument is roughly that from the

point of view of realism, mathematical objects are objects, but

non-physical ones. (Clearly this the point of view of the realist

writers we have quoted such as Frege and Godel). But, so the

argument runs, it is absurd to hold that non-.physical objects could

enter into causal relations. 51 Similar arguments have been given

against causal theories of mathematical knowledge: one has to

believe in magic to believe that people can stand in causal relations

to mathematical objects. 52

Plainly, there is something right about such arguments. If (a)

mathematical objects are non-physical and (b) we cannot causally

interact with non-physical objects, then (c) we cannot causally

interact with mathematical objects. Realist view such as Frege's

and Godel's are clearly committed to (a), and (b) sounds plausible

in any case, so they are committed to (c) and causal theories of

reference and knowledge are plainly impossible on their views.

But outside of mathematics, we have at least a sketch of a causal

theory of reference, and more than a sketch of a causal theory of

knowledge 53 a which, in this writer's view, are the most promising

accounts of these notions. No such promising accounts of knowledge

and reference are available for the realist positions espoused by

Frege and Godel, and the remarks these authors make on these

53bsubjects are either uninformative or really do sound like magic.



For other realist position of the sort suggested by Russell

and Fourier, that mathematics deals with the most general

properties of the world, the argument (a) - (c) does not clearly

apply, however. For example, suppose that I come to know--by

looking -- that there are three oranges in the bowl on my table.

According to causal accounts of knowledge, I come to know this

by interacting causally with something: the bowl of oranges or a

state of affairs of which it is a part, or the fact that the bowl contains

three oranges. It does not follow, of course, that I interact with

the number three, and I am not sure exactly what should be said

about the relation between the property and the number. If the

Russell-Fourier suggestions can be followed out, it is far from

obvious that we will be committed to (a). It this should seem

far-fetched, I think it can be made to appear less so by comparison

with an example from physics.

Mass is certainly a physical quantity, if we are to come to

know anthing about it or refer to it, then on causal accounts of

these notions, we must causally interact with it. But mass (or

perhaps a measure of mass) is a relation between physical objects

(or systems) and real (or rational) numbers--or so it is

represented in formalizations of mechanics. Such an entity

certainly sounds like an abstract object, but it is also a physical

one. If we can causally interact with such entities, it is certainly

not absurd that we can causally interact with the abstract objects of

mathematics; such at least is the force of the present analogy.



Status of the Theory T:

I would be the first to admit that the remarks about reference

to mathematical objects at the end of the last section suffer from

the same deficiencies as those I pointed out for standard realist

and quasi-realist accounts: vagueness, metaphorical phraseology,

etc. It is not my object to try to convert these remarks into a

clear theory, because I do not see now to do it. I believe, however,

that the treatment we have suggested with prove sufficiently clear

for some applications to be made later in this chapter, and to

indicate that not-trivial theories of primitive denotation for

mathematics within the frameowrk of a Tarskian account of

truth may yet be possible.

For the present, it is enough to indicate what portion of

Tarski's theory we will accept, namely T, the portion without

the "list" accounts of primitive denotation, plus whatever account

of primitive denotation we are able to provide when needed. We

accept T for the following reason: it is the only theory in the

field which is at all plausible. This is important for two reasons.

First, we need to make it clear that truth corresponds to the

technical notion of satisfaction--based on the Tarskian account--

for clauses (1) and (2) of the argument (A). Second, if we are

to show any connection between our statement of minimal realism

(which is cast in terms of truth) and the ontological views of

the previous sections,a Tarskian account of truth, supplemented by
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appropriate accounts of primitive denotation, seems to me to be the

best and perhaps the only way to do this. Conventionalist accounts

of truth seem to provide no clues about the ontological questions

of mathematics: the remaining theory which we will discuss--

substitutional quantification- -seeks to be "ontologically neutral",

even though I doubt that it succeeds.

To establish that T is indeed the most plausible, we appeal to

the general good opinion that philosphers (and model theorists)

have of it and to Field's discussion in particular. It remains to

show that the other theories are unacceptable. We have already

done this for conventionalism, and there remains only one view to

be discussed. This is the so-called theory of substitutional

quantification (SQ). 54 According to SQ, truth for all atomic

sentences is assumed to be taken care of in some fashion. The

peculuar feature of SQ is that it defines truth for quantified sentences

not by means of the Tarskian notion of satisfaction, but as follows:

'(x)F(x)' is true iff 'F(t)' is true for every closed term 't'.

Truth for existential sentences is defined in a similar fashion.

(It is assumed, of course, that the language in question contains

countably many closed terms so that the above definition does not

reduce to the propositional case by finite conjuction of the

F(t)' s).
55

J. Wallace has argued that even for the simple case of truth

in arithmetic, any adequate definition of SQ permits a definition
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of satisfaction to be constructed, so that in some sense SQ

presupposes the Tarskian account. In fact, however, much more

conclusive considerations weigh against SQ. I have shown elsewhere 56

that for any first-order language for ZF which meets the requirements

of SQ and is capable of any reasonable sort of translation into

English, ZF can prove about itself that its own quantification is

not substitutional. The idea of this proof is to formulate ZF

in any of the appropriate languages and add a truth predicate 'True(x)'

with axioms unobjectionable to an advocate of SQ. It is then easy

to show that the resulting theory is consistent if ZF is, and that

it contains a sentence F(x) not containing the truth predicate, such

that " '~(x)F(x)' is true" and "for every closed term t, 'F(t)'

is true" are both theorems.

Reference, fulfillment and application in model theory

Despite our suggestions that other accounts of primitive

denotation than the "list" translation are possible, the usual practice

in the mathematical theory of truth--that is, model theory--may

be described as a translation procedure. One does not, however,

simply pick any language which we understand. The language L'

into which the translations are made is a standard one, and the

essential features are more or less settled. As we have illustrated

in our discussion of natural models in the last chapter, this

language is the language of set theory, either VBG or (what comes to

the same) ZF augmented by class terms. 57
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For example, for the language of number theory S, which

contains '+', 'x', ', and '0' as non-logical constants, we may

characterize, say, reference w. r. t. the standard model as follows:

The referent of '0' = 0 (the empty set)

and for application of the successor function, we have:

The function symbol 'I' applies to (x, y) iff

xew &yew &y=xUfx}

The treatment of '+' and 'x', and for other theories, predicates

and relations, is similarly routine.

The fact that model theory contains a standard, accepted

account of primitive denotation is significant or not depending

on why set theory has the special role it does.

It has been claimed that set theory constitutes the most

fundamental theory in mathematics, to which other theories may

be "reduced" in a sense parallel to the reduction of macrophysics

to quantum mechanics. For the present, this claim is obviously

true: the only other candidate for "most fundamental theory" status

is category theory, 58 and it remains to be seen whether category

theory is an alternative to set theory, an alternate form of set

theory, or reducible to set theory. 59

The fact that set theory is the background theory for model

theory raises some special problems for our enquiry, since we

wish to study the model theory of set theory itself. Using set
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theory to study set theory need not be automatically pointless,

for we are not attempting some sort of epistomological reduction

of set theory to something else more secure. On the contrary,

we are assuming a large body of accepted set theory to be true,

according to our statement (B) of minimal realism. For rather

well-known technical reasons, which we will shortly review, present

set theory will not in fact aid us in giving an account of primitive

denotation for terms of set theory which will be of much help in

settling the question of uniqueness of interpretation which is our

main interest. It will be useful, however, for us to review the

conventional wisdom about truth--i. e., primitive denotation--

characterizations for set theory, before seeing what other account

of primitive denotation for set theory may be possible.

Set-Theoretic Accounts of Primitive Denotation of 't' :

Since the only non-logical symbol of ZF--the theory which is

our central concern--is 'e' , we will consider the possibility of

an account of application for 'e' within ZF.

For statements in the language of ZF, a possible model is an

ordered pair (U, R) of the "universe" U and a subset R of UxU,

which interprets the application of ' e' as follows:

For allx, y eU, (U,R)~x ey iff (x, y) E R.

The usual set theoretic version of order pairs make them out to

be sets of higher rank than their elements, i. e., (x, y)> df {} , f x, y},
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so that if the rank of U is ca, (i. e., if ca is the least ordinal

such that UeR (a + I)), the rank of (U, R ) can be as high as

(Y+5 . A somewhat more involved definition of ordered pair can

be given such that if x, y e R(c ), then (x, y) R (a ) , provided that

60
cY is infinite. Thus, in any case, the rank of any possible model

( U, RR) is at least as high as the rank of U. This fact, which

is hardly interesting for most first-order theories, brings

out a special problem if we attempt to give an account of application

for ' ' which covers all sets. If we are to construe the universe

of sets as a possible model (U, R) in the usual way, then it

must be a set, hence a member of the "universal set" U, and hence

of lower rank than U, which contradicts our previous rank

calculations.

This argument presupposes that there can be a set of all sets,

which raises other problems as well. For instance, such a set

would presumably be a member of itself, which contradicts the

axiom of foundation. Even if this axiom is omitted, which is

sometimes done, difficulties about the existence of such a set

remain, for every set has a powerst of larger cardinality

(Cantor's theorem) but the powerset of the set of all sets is

surely that universal set itself (or at any rate, contained in it),

which contradicts the irreflexiveness of the of the ,greater than"

relation among cardinals, which can be proved in ZF.

To these two familiar arguments, we can add others based

on the traditional paradoxes; each of these can be used to show
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that there can be no set of all sets in any of the ZF-based set

theories discussed in Chapter I. For example, supposed that

there is a set S of just those sets which are not members of

themselves. Then, by Russell's simple argument, S both is

and is not a member of itself, so there is no such set. But by

the axiom of foundation, the universe consists of just those sets

which are not members of themselves, so there is no universal

set. Similarly, if the axiom of foundation is not assumed, we

can still use the axiom of separation to show that if there were a

universal set, then the S defined above would also be a set,

which leads to a contradiction in the same manner as before.

Thus we can give an extraordinarily simple argument based on

Russell's paradox, which use very modest assumptions (either

foundation or separation) to show that there is no set of all sets.

We may conclude that not only is the existence of a universal set

incompatible with ZF, VBG, etc., but that modification of these

systems to obtain a system compatible with the existence of such

a set requires that one give up quite fundamental principles of

those theories.

Application for ' ' in Other S'et Theories

There are several set theories which we have not yet considered

in which it is a theorem that there is a set of all sets. These are

the theories, NF (New Foundations) and ML (Mathematical Logic),

invented by Quine. 61 It would serve no particular purpose to give
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a thorough exposition of these systems; an outline of them appears

in Appendix B. For the sake of completeness in our discussion

of set-theoretic accounts of application, we will briefly examine

the question of whether the difficulties so far treated in defining

application for 'se ' in ZF and its relatives are lessened for

NF or ML.

The first problem, about the rank of the universe (U, R)

is easily settled, for no notion of rank similar to that for ZF is

available in either NF or ML. That is, we cannot arrange the

universe into well-ordered cumulative levels such that the members

of a set which first appear at a level has only members which

first appear at lower levels. This is because the universal set

is a member of itself, hence a member whose "rank" could not

be lower the that of the set itself.

The difficulty about Cantor's theorem is obviated in NF

because that theorem obtains in NF only for the so-called

"cantorian" sets--sets cardinally similar to the set of their

62
unit sets. The set of all sets is, however, not cantorian.

Non-cantorian sets also have other special properties. For

example, the axiom of choice also fails for non-cantorian sets,

as is shown by the fact that the predecessors of the cardinal

of the universal set are not well-ordered, a strikingly counterintuitive

result. 63

The features of NF which we have noted are also reflected in

ML, which bears a relation to NF comparable to that which VBI
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bears to ZF. In ML, all sets--including the universal set--are

cantorian, but the one-one correspondences which guarantee

this are, in some cases, proper classes. The axiom of choice

is probably not inconsistent with ML, but only in a form which

guarantees a choice class for every exclusive set of sets.

The cardinal numbers are well-ordered, but in some cases

the required maps are again proper classes. Cantor's theorem

divides into the two statements that (a) every set is cardinally

less than the set of its subsets and (b) every class is cardinally

less than the class of its subclasses. The latter statement is

a theorem of ML, but the former is not--it fails for the

universal set. Clearly, classes in ML do not play the auxiliary

"formula substitute" role which they do in VBG, but are essential

for natural and important theorems of ML whose counterparts

in ZF, VBG, etc., involve only sets.

As to the model theory of these theories, NF is easily

disposed of, as it has no models in which both the integers and the

ordinals are well-ordered (under their respective order relations)

and in which the equality relation is interpreted as actual identity. 63a

No such dramatic result is known for ML, but it is easily seen

that ML has no advantage over ZF and VBG in the problem of

explaining application of 'e ' . First, since quanitifcation over

proper classes is essential to important theorems of ML, it is

no advantage to have a universal set U--one needs a universal

class containing all classes as its members, but there is no

such class according to ML.
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Second, and more important, our assumption (B) of minimal

realism includes the truth of accepted set theoretic statements

under at least one natural interpretation. We have not yet discussed

naturalness conditions for interpretations of set theory, but it is

plain that the description we have given of the CTS provides at

least a start for ZF. For ML, we lack any useful or natural

picture of an intended interpretation. Even if (B) is a perfectly

reasonable assumption for ZF, the same cannot be said for ML.

This being the case, it is hard to see the point of explaining

application for ML or for ZF within ML.

Further Attempts to Explain Application of 'e ':

Our difficulties have centered on the fact that the intended

interpretation (U, R) cannot be a set. One natural course of

action is to concede this and explore the possibility of treating it as

a proper class. This will not, I contend, lead to any advance in

explanatory clarity, but it is worth looking into, both to cover all

the possibilities, and specifically to provide a basis of some later

discus sion.

We will consider several possible accounts of proper classes,

beginning with the notion that proper classes are collections of

some sort, but ones too large to be sets. This intuitive idea of

proper classes departs from the point of view we took in the last

chapter, where we suggested that classes are definite properties

of sets, or surrogates for them. That interpretation is a bit
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contrived for the classes of VBG, but even there we can regard

classes as obtained (metaphorically) by ignoring differences

between properties with the same extension--perhaps by "weeding

out" all properties but one with a given extension--and ignoring

the distinction between a definite property whose extension is

a set and that extension.

Fortunately, we need not resort of such metaphorical

selecting and ignoring in order to accomodate the property

interpretation to VBG; Bernays has already developed a version

of VBG which does nicely. 64 In his version, identity of classes

is not even expressible, but is replaced by the relation "having

the same extension". A distinction is maintained between a set

and the class having the same "members". If we prefer to hold that

classes or at least proper ones are properties, then Bernays'

version should be counted as more precise, or at least more

revealing in its account of classes, although standard VBG may

still be preferred for its less cumbersome apparatus.

While the class-as-definite-property interpretation has

historical support--we outlined it in the last chapter--it is more

popular today to regard classes as large collections. This idea

is certainly encouraged by features of standard VBG, since it is

a theorem that a class is proper iff it is cardinally similar to the

universal class (class of all sets). So all proper classes are the

same size, and (by the replacement axiom) are all cardinally larger

than any set.
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Cantor's Proper Classes

The view that proper classes are distinguished from sets by

size is an old one--about the same vintage as the property

interpretation. In 1905, Russell suggested that sets may be

distinguished from "non-entities" by size. 65 Cantor had anticipated

such a distinction even earlier (1899) in a letter to Dedekind. 66

Cantor called his proper classes "inconsistent multiplicities. "

These are "multiplicities" which can not "be thought of without

contradiction as 'being together', so that they can be gathered

67
together into one thing' ".

This language contrasts with Cantor's earlier "definition" of

a set as "any collection into a whole M of definite and separate

68
objects m of our intuition or our thought". His examples

of "inconsistent multiplicities" include the multiplicity of all

ordinals, and that of all cardinals. 69

Surely any explanation of the collection of all sets as an

inconsistent multiplicity, if it is to be taken at all seriously,

can only convince us either that there is no such entity, or that

we have no reason to believe there is, for how can something

which Icannot be conceived as 'one thing' " be conceived of

as something at all? That is, if we construe "the universe",

the U in (U, R ) , as an inconsistent multiplicity, how can this

provide an explanation of application according to some unique

interpretation?
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Generally, it is wise not to put too much weight on such

semi-psychological considerations as what may or may not be

conceived. But according to Cantor's peculuar view as explained

in the section on "quasi-realism", these considerations are

important because our conceptions must be "an expression of ...

70processes and relations in the outer world". This invites

us to consider whether the collection of all sets -may actually be

somehow inconsistent in "the outer world". That is, we should

consider whether the assumption that all sets are "gathered together"

into a single collections leads to a contradiction.

Such a claim is suggested by Russell, 71 and actually stated

by Bernays:

The antinomies [he says] bring out the impossibility of
combining the following two things: the idea of the totality
of all mathematical objects and the general concepts of
set and function; for the totality itself would form a domain 72
of elements for sets, and arguments and values for functions.

We must, therefore, give up "absolute platonism", which is the

view that there is a "totality of all mathematical objects". 73

But plainly, giving up absolute platonism is not the only possible

course, even if Bernays' argument is accepted; we could, for example,

give up the idea that every "mathematical object" is eligible for

set membership or function argumenthood. This is the move

suggested by maintaining that not every collection is a set, and only

collections which are sets can be elements or arguments.
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In order to show that some contradiction follows from the

assumption that there is a collection of all sets, we would need

some principles of "collection theory", and it seems reasonable

to suppose that certain principles of set theory would serve.

Indeed, one might reasonably maintain that the only principles

of collection theory for which one can have any good grounds

now ,are those of set theory, since set theory is a kind of

rational reconstruction of the notion of collection, the only one

which has been well investigated.

Assuming we have some principles of collection theory,

adapted from set theory, it is extremely unlikely that the notion

that there exists a collection of all sets leads to a contradiction,

unless we are to assume at the outset that every collection is

a set and thus beg the question. For example, if we attempt

to carry over the version of Russell's argument which we used

previously to the present case, we can easily show that there

can be no collection of all collections; but the situation is more

complicated for sets. For example, if we supposed that there

is a collection of all sets, then, by a separation axiom for

collections, we infer that there must be a collection of all

non-selfmembered sets. If we could assume that this collection

were a set, we could derive the familiar contradiction that it

must be both a member of and not a member of itself. We cannot,

without question begging, make this assumption, so our attempt

to show that proper classes are more than metaphorical "inconsistent

multiplicities" is blocked.
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One further suggestion deserves examination, at least

as an attempted interpretation of Cantor, if not on its own

merits. In VBG, no proper class (and in Bernays' variant,

no class) can be a member of any set. By Cantor's definition,

any "separate and definite objects" can be members of a set,

so presumably a (proper) class ought not to be regarded

as a "separate, definite object". Whatever exactly this means,

"objects" which are not "separate and definite" certainly sound

like the sort of thing which could not be "conceived as one

thing", which is Cantor's description of "inconsistent

multiplicities". Taking "multiplicity which cannot be a member

of any set" as a formal counterpart to "inconsistent multipicity",

however, is unlikely to lead to a suitable argument that the

assumption that such multiplicities exist leads to an actual

contradiction. The reason is that we have shown that if there

are inaccessibles, there are models of ZF in which the "inconsistent

multiplicities" of the model are simply sets of higher rank than

any set in the model. Similarly, we may cite the equi-consistency

result for ZF and VBG, which says that predicatively definable

proper classes can be added to ZF without incurring inconsistency,

provided ZF is consistent. Since the "universal" class is such

a class, efforts to use Cantor's suggestions to show that a universal

class must be somehow inconsistent lead nowhere.
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Proper Classes as Definite Properties (Again)

Having made no notable progress in clarifying application

of ''e by means of the notion of "large collection", it is in

order to see whether we can do any better by construing proper

classes as properties. I think that we cannot, on account of the

familiar difficulties about identity of properties ably put by Quine:

The positing of attributes [i. e., properties] is accompanied
by no clue as to the circumstances under which attributes
may be said to be the same or different. This is perverse,
considering that the very use of terms and the very positing
of objects are unrecognizable to begin with except as keyed
in with idioms of sameness and difference.... The lack
of a proper identity concept for attributes is a lack that
philosophers feel impelled to supply; for, what sense is
there in saying that there are attributes when there is no 74
sense in saying when there is one attribute and when two?

It is not my intention in quoting Quine either to endorse the

doctrine suggested here about when "positing" of objects is

"recognizable" or to grind his axe about properties, viz.,

that talk of them ought to be dispensed with. I do believe, however,

that he is properly skeptical about the philosophical theories so

far advanced to clarify the "circumstances under which attributes

may be said to be the same or different". No doubt some similar

skeptical motive prompted Bernays to develop his variant of VBG

with its inexpressibility of identity of classes and his avoidance

of quantification over them. Virtually all putative explanations

of identity of properties so far offered have made use of notions

at least as much in need of clarification (if indeed this is possible)

as the notion of property identity itself, such as "synonomy of

expressions" or "possible worlds" or "necessary truth".
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One partial exception to this evaluation is the suggestion

that a property is the "sense" of a predicate expression (open

sentence with one free variable). The explanation given by advocates

of this view of what the "sense"of such an expression is ordinarily

makes use of such notions of "possible world", etc., but one

suggested criterion of identity of properties--that is, when

two predicate expressions have the same sense--is clear: Two

predicate expressions have the same property as their sense iff

they are logically equivalent. That is, A(x) and B(x) express

the same property iff '(x)(A(x) - B(x))' is logically valid. This

very narrow criterion is faulted by those who would make use of

some broader notion of necessary equivalence, and by those who

would permit synthetic identity of properties, but in any case,

it will not do for VBG. In that theory, it is a theorem that the

class of sets and the class of all non-self-membered sets are

identical, but '(x)(x=x - -x e x)' is not logically valid. If we were

to expand the language of Bernays' variant to introduce identity

of classes, the same difficulty would appear there.

As stated earlier, I do not wish to conclude from these

difficulties about identity of properties that property talk should

be dispensed with. There are two reasons, however, why the lack

of clarity about identity in this context is a problem for us. First,

we are concerned to determine whether there is a unique universe

of sets, and if "the" universe is a property and we don't know how
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to count properties, we won't be very clear about even how to say

that "the" universe is unique. Second, the separation principle,

used to "count" subsets, uses the notion of property. In fact,

the only way we succeeded in "counting" definite properties

in our discussion in the first chapter was to speak always

of their extensions. So, for the present at least, the property

interpretation of classes provides no clearer explanation of

application of ' ' w. r. t. a unique intended interpretation that

previous attempts. 75

It should be plain from the discussion of this and the previous

section that cavalierly responding to the discovery that there is

no set of all sets by saying "let the universe be a proper class"

leads to no advance whatever in explaining truth or specifying

interpretations for set theory--quite the reverse. At the very

least, some sufficiently strong theory of classes will be needed

for this task, and that theory must have a clear interpretation

in turn. So far, our discussion of proper classes shows them to

be less well understood than sets.

The Universe Described in English

So far, we have failed to give a satisfactory account of primitive

denotation for set theory within either set theory or its extension

by addition of proper classes. The main obstacle to such an account

has proved to be the impossibility of describing an intended inter-

pretation (U, R) within set theory, and the obscurity of considering
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it a proper class. Thus we have failed both to give an adequate

account of truth of set-theoretic sentences required for (B) and

to specify a unique interpretation required for (A).

Nothing of what we have said here is new, and realists have

attempted to deal with these familiar difficulties we have reviewed.

Bernays made use of facts we cited to reject a form of realism,

"absolute platonism", although we were unable to accept his

argument as conclusive. Other philosophers sympathetic to

realist views have had another response. Kreisel argues that

a description of "the" intended interpretation in non- technical

language and the reliance on an intuitive notion of truth under

such an interpretation is adequate to settle the question of

uniqueness of interpretation. We briefly review his account.

Kreisel's view that the intended interpretation of set theory

may be profitably described in English is shown in the following

passage:

In time, the remarkably clear and general cumulative type
structure was isolated, consisting of the objects generated
by iterating the operation: X ->X UP(X), where P(X) denotes
the powerset of X, and taking set theoretic unions at limits....

This structure was the result of analysis: not complicated
formal constructions, but the description (in words:) of the
cumulative type structure constituted the decisive foundational
advance. I, for one, would not claim that this, or any other
general notion is the naive notion of set....

The familiar axioms known as ZERMELO'S, hold for
the cumulative heirarchies obtained from the empty set by
iterating the power set construction to any limit ordinal; ....

.Objectively, at the present stage of knowledge, the
natural problem is to develop the theory and find out more about

the structure.
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Kreisel claims that description "in words" of the CTS, as

in the quoted passage, is adequate "to avoid an endless string of

ambiguities to be resolved by further basic distinctions. "77

Apparently, he believes this because the discription of the CTS

"in words" "provides a coherent source of axioms",78 both for

Zermelo initially and for us at present. The axioms beyond

ZF he has in mind are various strong axioms of infinity. 79

I find this argument from the fruitfulness of non-technical

descriptions of CTS inconclusive , for, as we have noted before,

horribly confused remarks such as Brouwer's can be a fruitful

source of interesting principles. Kreisel, however, plainly

believes that we are in a position to deny the "(alleged) bifurication

or multifurcation of our notion of set of the cumulative hierarchy...

[by] asserting the properties of our intuitive conception of the

cumulative type structure. "80

As for our understanding of truth in such a structure, Kreisel

is perfectly willing to consider models which are proper classes. 81

He also defends the notion of intuitive validity, that is, truth in

an "arbitrary structure", 82 including proper classes. He thinks

that set theoretic accounts of truth have increased our knowledge

about this notion, "but that doesn't mean that [it] was vague before". 83

Plainly, Kreisel is asserting that despite the lack of a completely

satisfactory theory of primitive denotation, set theoretic or otherwise,

we do understand the intended interpretation of set theory and truth

under that interpretation sufficiently well to accept the premises of (A),
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and hence its conclusion. In one passage, however, he introduces

a curious qualification to his claims about the uniqueness of CTS:

... unless one has theoretical or empirical reasons against
naive judgement, in particular against [CTS], the precise 84
notion of set ... is a foundation for [Zermelo's] axioms.

It should be clear to the reader from our repeated use of

the phrase "at least one natural interpretation for set theory"

that I think there m~y well be "reasons against naive judgments"

in this case. Other writers we will discuss--in particular,

Mostowski- -advance "theoretical ... reasons" based on the

independence results for the claim that there actually are several

equally natural interpretations for set theory. I do not find these

reasons conclusive, but I do think that this a serious question.

To show that the question of multiple interpretations is a

serious one, we will follow two lines of enquiry. We will examine

descriptions of the CTS of the sort diven by Kreisel for possible

ambiguities. We will then review several important cases in

the history of mathematics in which ambiguities and unclarity

were responsible--in part--for failure to resolve controversial

questions. Later, we will consider--but reject--arguments that

the ambiguities in the interpretation of set theory are not merely

possible, but actually exist. Before we can go into these questions,

however, we need to digress to provide a basis for questioning

the truth or clarity of any part of set theory.
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Set Theory vs. Number Theory

At the outset, we must deal with a feeling that some readers

must have at this point, that in questioning the uniqueness of the

of the intended interpretation of set theory, we are exhibiting a

sort of skepticism about set theory which is no more justified

about set theory than it would be about number theory.

It is my view that it would indeed be wrong to doubt that

number theory has a unique intended interpretation, but that there

are important differences between set theory and number theory

which bear both on the certainty of our beliefs in their respective

theorems and on the clarity of the interpretation of those theorems.

The argument that there are such differences rests on a

certain methodological rule of thumb, which I think is obvious, but

which deserves a brief discussion. The rule of thumb is this:

(E) A theoretical question of a scientific discipline has not been
settled with certainty if no candidate answer has obtained at
least near unanimous consent of the professional practitioners
of that discipline.

(E) is, or course, only a rule of thumb; for any particular

question, it may be that decisive arguments exist which are known

to some, but have not yet been generally recognized; but if the

question is an important one, it is wort'i determining whether such

arguments do in fact exist.

Persistent disagreement among professional practitioners of a

discipline requires an explanation. Plainly such an explanation must
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make reference to the plausibility of the various views held;

we cannot always explain such disagreements by maintaining

that is just a shortcoming of the advocates of one view that they

fail to perceive its total implausibility. But --- and this is the

point--we are not entitled to be certain of the truth of a proposition

if it is incompatible with another which is plausible.

Our case for differences between number theory and set theory

is thus partly sociological; it depends on which theories actually

secure acceptance and by whom. One question in set theory which

now, by our rule of thumb, has no answer presently deserving confident

belief is that of the nature of, and how to characterize, definite

properties. As we have already suggested--and will argue below--

this question is central to our understanding of other even more

fundamental notions of set theory, such as powerset.

In contrast, we find almost no disagreement in number theory.

The theory may be formulated in various ways: formally or

informally, first or second order, with various primitives, with

or without the w - rule. It is plain, however, that there is a single

intended interpretation which is the subject matter of these various

formulations. This standard model must be isomorphic to the

series of numerals, must be a progression, must have order type

w, all of which conditions are, of course, equivalent.

The only possible difficulty with this rosy picture is the existence

of intuitionistic number theory. If I correctly understand their

position, the intuitionists take themselves to be studying the same
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structure as classical number theorists, but how they could know

this to be the case if numbers are mental constructions is unclear.

Their methods for studying the subject matter of number theory

differ from the usual ones, but to an unknown degree, since their

formulations are vague and they hold a different interpretation of

the basic logical vocabulary.

If we are to abide by our rule of thumb, the existence of

this body of intuitionist theory may render some propositions

of number theory less certain than they would otherwise be.

The effect is certainly slight, however, for despite wide interest

in intuitionist views, few are actually persuaded that their

restrictive standands of proof are correct. Thus the "sociological"

evidence for the plausibility of intuitionist views is very weak.

Alternative Set Theories

In contrast to the virtual unaniminity in number theory, we

find a quite different situation in set theory, which can be traced

historically to the paradoxes discovered at the turn of the century.

Of course, it is not simply that people found some paradoxes

seventy years ago which gives set theory a different character

from arithmetic; this historical fact would not show anything about

the present case. An example which shows this clearly is the

paradoxes of 18th century analysis, which were more closely tied to

fundamental methods and questions than those of set theory. As

Berkeley analyzed a typical differentiation argument:
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herein is a direct fallacy: for, in the first place, it is
supposed that the abscisses z and x are unequal,
without which no one step could have been made; and in
the second place, it is supposed they are equal; which is a

manifest inconsistency. 85

We can now see that Berkeley's charge of inconsistency was correct;

but it would be ludicrous to maintain that since this situation once

obtained in analysis, this discipline is now less secure.

The situation we find in set theory is that the paradoxes86

have had a lasting effect in the form of a large variety of alternative

set theories embodying various incompatible features. Besides

Cantor's and Frege's theories, there are more than a dozen theories

which are still studied and many of them are still defended as

plausible. Four of these theories trace their ancestry to Frege,

simple and ramified type theory, and Quine's NF and ML. A larger

number derive from Zermelo, his own, ZF, VBG (two versions), VBI,

STC, TT, NTT, and Ackermann' s. New theories have recently

been published by H. Friedman, 87 Y. Moschovakis, 88 L. Tharp,89

and P. Hajek. 90

Although ZF and its relatives are the set theories receiving

the most attention--and deserving it--this was not the case, to

judge from the journals, as little as 20 years ago, when one finds

more attention given to Quine's theories.

It should be noted that some of these non-ZF-based theories

are not simply put together out of ad hoc principles thought to

avoid paradoxes, but have a certain intuitive support. (That is,
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intuitive support for someone who is familiar only with "naive"

set theory; whether the principles of alternatives theories are

intuitively natural for someone already trained to work with ZF

is another question). For example, Quine's ML takes the idea

that sets should be arranged in types--this is embodied in the

stratification condition on the definition of sets 9 1 - - and adds the

notion that every set should have a complement, so that "large"

and "small" sets are naturally related. This last principle

is certainly plausible; (again, to the non-initiate of ZF). Naively,

it is very hard to see why no set should have a complement, as is

the case in ZF.

We have already noted an important difference, however,

between the relative intuitive support for ZF and other theories

such as ML. ML is based on principles which are plausible

given the "naive" notion of set and which seem to avoid paradoxes.

ZF, on the other hand, is based on a intuitive idea of how the

entire universe is structured. Once one accepts this intuitive

picture, the particular axioms of ZF seem obviously true. Thus,

it has been possible for several authors to given either an

intuitively convincing argument for each axiom (Shoenfield, 92

Kreisel 93), or to derive the axioms from a few primciples about

ranks (Scott94). This is important because (a) we have some

reason to believe ZF consistent because we have an idea what

a model for it "looks like" and (b) as Kreisel suggests, it helps

to find new axioms.
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One additional competitor to ZF needs to be mentioned:

category theory. Several people have proposed category theory

95as an alternative "working foundation" for mathematics, but that

is not the suggestion I wish to consider here. In particular, such a

notion would not tend to know that there is anything suspect about

ZF; it might just not turn out to be the most general or convenient

working basis for mathematics. The suggestion I wish to consider

is that some of the notions in category theory are alternative

set theoretic ones, in particular the so-called "large categories"

such as the category of all categories. Category theorists treat

such objects not, like the collection of all sets in ZF, as simply

"too big" to exist (i. e., be a set), but as to big to have a cardinality.

Consequently, one talks about these large categories, but does not

make cardinality arguments about them.

It is possible that this situation may be representable in some

ZF based theory such as STC by introducing new objects which are not

sets (extended ordinals) to be the cardinals of the collections

which are not sets, but it should be strongly emphasized that this

strategy represents an important departure from the basic notion

of ZF that all the collections one wishes to make use of are

obtained by iteration of powerset through all the ordinals. 96

The conclusion which I want to draw from these comparisions

of ZF with non-ZF-based theories of current interest is not that

we simply know nothing in the areas in which these theories conflict.
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On the contrary, I believe--as do most working set theorists--that

by far the most plausible account of set theory is represented by

ZF and its relatives. But on some matters it will be useful or

necessary to evaluate in just what respects this group of theories

is superior to alternatives and to elucidate some notions by compar-

ing their treatment in alternative theories. We can then apply our

rule of thumb to specific propositions of set theory. That is, we

can argue that some specific questions are not conclusively settled

simply because we have theories in the field which give different

answers to them.

Natural Interpretations of ZF

I have suggested above that (a) some theorems of ZF are less

certain than those of number theory, and that (b) it is not certain

that there is a single intended or most natural interpretation of ZF.

In the previous section, a case was made for (a), but we have yet

to do the same for (b). The idea of this section is to try to show how

non-isomorphic but equally natural interpretations of ZF might arise.

We will do so by analyzing the sort of description of CTS given by

Kreisel "in words".

We proceed by assuming that there is no ambiguity in the notion

of ordinal number, and discuss the iteration of the powerset operation

only. If our assumption about the ordinals is unjustified, then the

case for possible ambiguities in the notion of set will only be

strengthened. The power set of a set x must consist of all and

only its subsets, i. e.,
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(PS) P(x) = (iw) (y)(y sw y cx) .

One thing to be noted immediately is that the metaphor we have

used, of the universe being "constructed" or "generated" by

iteration of powerset through the ordinals, is seriously

misleading. Such a metaphor suggests a predicative construction,

where elements of one level are defined by quantification only

over elements of earlier levels. Powerset is not, however a

predicative notion, as an examination of the definition (PS) quickly

shows. The powerset of x contains all subsets of x--that is,

sets which are contained in x. This is simply because the

quantifier (y) in (PS) ranges over sets. But the relevant sets

are in general of higher rank than x itself, so it is misleading

to think of the set of higher rank as themselves "constructed"

by the powerset operation. What this powerset will contain depends

on what sets contained in x of higher rank than x "already exist".

The significance of this fact is suggested by the following intuitive

picture: it is conceivable that there should be "subcollections"

of x which are not sets. One fact which shows that this is indeed

conceivable is that in alternative set theories such as ML, there

are "subcollections" of some sets which are not sets. In

particular, the class of all non-self-membered sets is contained

in the set of all sets, but is not itself a set. This shows that in ML,

the separation principle fails even for definite properties expressible

in the language of ML.
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We are, of course, not dealing here with a notion of the structure

of the universe which is appropriate for ML, but merely using the

comparison with that theory to show that it is not crazy to suggest

that some "collections" contained in a set may not be sets. There

is, however, a theory TSS (for Theory of Semi-Sets) recently

developed by the Prague set theorists which is based on ZF and which

has this same feature. 97 TSS was developed to accomodate Vopenka's

formulation 9 8 of Cohen's independence methods, and it is not

clear that the intended interpretation of this theory is the standard

structure of sets. Rather, it is a convenient method for independence proofs

which do not deal explicity with models of set theory. Nevertheless,

one author has given an intuitive justification of TSS not depending

on construction of nonstandard models of ZF. 98a If the axiom

,"every semiset is a set" is added to TSS, the result is ZF minus

Foundation.

ZF and ZF-based theories other than TSS are, of course,

firmly committed to the separation principle, that for every set x

and every definite property G there is a subset of x consisting

of just those elements having G. Because of the importance of

this principle to the theories which have inherited it from Zermelo's,

it is plain that which collections contained in x are subsets of it

depends on what definite properties there are, and this is a

controversial matter receiving radically different treatments

even in theories which take the CTS as motivation.
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The matter comes down to this: In all natural interpretations

of ZF, the powerset of a set x contains all and only the subsets

of x, but which "candidate subsets" (subcollections) are actually

subsets might differ in two interpretations, provided that the ranges

of definite properties associated with the two interpretations are

distinct. Of course, we would want to chose as most natural the

interpretation which arises in this way which has the maximum

number of associated definite properties. But it is entirely

possible that this criterion may not dictate a choice between the two.

With the present chaotic range of treatments of definite properties,

it is possible that there are incompatible ways of choosing

maximum ranges of them.

What we are implicitly appealing to in the argument of the

previous paragraph is a principle about the CTS which might be

called the principle of maximum width:

(PMW) Every subcollection of a set is a subset of it.

PMW certainly seems a natural condition on natural interpretations.

Godel indicates approval of a slightly more general principle:

I am thinking of an axiom which ... would state some
maximum property of the system of all sets . ... Note
that only a maximum property would seem to harmonize
with the notion of set [of the CTS]. 100

The context of Godel' s remarks indicates that he had something

like PMW in mind. 10 1

Given that PMW is a plausible and important intuitive notion,

the question is how to formulate it in a useful way. Our earlier



130

argument about definite properties essentially uses the separation

principle as a formulation of PMW, viz.,

(PMWI) For all definite properties G, fy I y has G & yex} e P(x).

Another way to formulate the intuitive idea of PMW is to simply

assert that there are "many" subsets of any infinite set, in some

appropriate sense of 'many'. The idea of this approach is that

if we can say that there are "many" subsets in a sufficiently strong

sense, this may have the same effect as saying that allcandidate

subsets are actual subsets. The problem is now to talk about

"many"f subsets. A leading principle proposed by G. Takeuti is

to formulate the notion of "many" in terms of cardinality:

(PMW2) "The cardinality of a powerset of an infinite set
is very big with respect to the notion of cardinal. "

There are two difficulties with this approach. The first, noted

103
by Takeuti himself, is that the notion of cardinal of a set x

makes use of quantification over sets of higher rank than x, so it

already presupposes some notion of rank. Some of Takeuti's

refinements of PMW2 do assert that the universe is wide in some

sense, since they contradict the axiom of constructibility, 106 a

"minimum width" principle. 107

The second difficulty is that it is hard to see why principles

derived from PMW2 should be plausible. Takeuti certainly thinks

105 105aso, and others state similar opinions. Their reasons for

this attitude--and the resultant rejection of CH, which is incompatible

with any reasonable version of PMWZ--are hardly clear, however.
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Some strong versions of PMW2 formulated by Takeuti are surely

to be rejected, since they contradict the axiom of choice. 10 8

It is still possible, however, that we may find reasons for

adopting some version of PMWZ, and then we will have another

point of view from which we can see how equally natural

CTS-like structures can arise: they may satisfy different,

incompatible version of PMW2.

Whether it is actually plausible, as opposed to just conceivable,

that different equally natural interpretations of ZF which are not

isomorphic may be arrived at in these or other ways, or whether

the independence of CH adds to this plausibility is quite another

question. I will argue that the CH does not make this situation

more likely, but the sort of argument given here is sufficient

to suggest that such questions are worthy of further investigation.

Historical Cases of Unclarity of Mathematical Notions

The argument of the previous section might be taken as a

kind of cartesian demon, a rationale for challenging what we

think--or at least Kreisel thinks -- we know. But our object is

not merely to raise skeptical objections about mathematical

knowledge, but real ones. To show that it is at least sometimes

reasonable to question whether our notions are clear--that is,

susceptible to only one reasonable interpretation. I will review

several historical cases where unclarity in some fundamental

notions was partly responsible for failure to resolve important
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questions. The special advantage of historical cases is that we

can now look back and use a more developed theory to characterize

views in a clearer way than could the participants in these past

controversies, Since we cannot look into the future, we lack this

advantage in set theory.

The first example is from the history of set theory itself.

Roughly, I claim that about 1900, the notion of set was unclear in

at least the sense that what sorts of reasoning about sets is legiti-

mate and in particular what sorts of putative definitions or descrip-

tions of sets actually define sets was enormously unclear. These

difficulties and a number of incompatible strategies for resolving

them were described in a 1905 paper of Russell. 109 This paper

contains, in outline, most of the devices for avoiding the paradoxes

subsequently incorporated into set theories we have listed in previous

sections. I claim that a survey of set theory up to the time when

Russell wrote, as contained in Van Heijenoort's collection, 110 shows

that Russell was correct in maintaining that the difficulties would

not be resolved "until the fundamental logical notions employed are

111more thoroughly understood". It is clear that Russell included

both the notion of set and that of definite property among these

"notions of logic".112

Russell saw the outstanding problem of set theory as that of deter-

mining which one free variable sentences ("norms") define sets (are

"predicative"), which is roughly the problem of which properties are

definite.113 At the same time that Russell was puzzling over which

set definitions are proper, a group of prominent French mathematicians
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were debating the issue of whether every set must be definable,

a position almost no one would now defend. This controversy was

provoked by Zermelo's announcement of the axiom of choice. The

debate, recorded in the so-called " cinq lettres" correspondence,

is discussed in appendix A. 114

Although I claim that the naive notion of set seventy years ago

is an example of an unclear notion, 115 one which made it impossible

at the time to answer such questions as "is there a set of all ordinals?",

I do not claim that this shows that the notion of set is now unclear.

After all, a lot of progress has been made in seventy years, and

the particular question just cited can now be answered in the negative

with considerable conf idence.

The Vibrating String in the 18th Century

We will go over this famous controversy in outline, focusing on

the part played by the notion of "'arbitrary function". 116

In 1746, Jean D'Alembert published a memoir on the vibration

of a stretched string, whose motion be described by what is essentially

the well-known wave question:

117
829 2 829

(W) = c
8 t 8x

This equation is valid provided the amplitude of vibration cp (x, t) is

vanishingly small, where t is the elapsed time and x is the dis-

tance from one end of the string. Brook Taylor had already shown

in 1713 that, in effect,

(T) cp(x,t) = B sin (Z rt) cos (2Zrx /L)

is a solution to (W), where L is the length of the string and B is
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a constant. D'Alembert sought the general solution to (W), recog-

nizing that (T) is not the only possible one. He argued that this

general solution has the form

(L) p(x, t) = A(ct+x) - A(ct-x)1 18

where A(u) is a function called the "generating curve". D'Alembert

proceeded to calculate A(u) for given initial position of the string

Y(x) and initial velocity V(x). He claimed, however, that the prob-

lem could be solved only for rather special initial V(x) and Y(x):

... one obtains the solution of the problem only for cases
where the different shapes of the vibrating string may be
included in one and the same equation. In all other cases it
seems impossible to give [ Cp (x, t)] a general form. 119

It follows from this restriction that Y and V be given by an

"equation" that they must both be odd periodic functions of period 2L.

The restriction to initial conditions given by "equations" thus has

the astounding consequence that for such simple initial shapes as

triangular ones, the problem cannot be solved.

The term 'equation' occurs here for an important reason.

For D'Alembert, as for virtually all 18th century analysts, 120

functions must be given by an equation, 121 although the operations

to be permitted in forming these equations were not precisely

delimited. Roughly, D'Alembert's notion of function coincides

with the modern notion of analytic function of a real variable,

that is, function which can be expanded in a power series of its

derivatives at every point. Such functions must have continuous

derivatives of all orders. He assumes, without a hint of proof, the key

property of such functions, that if they agree on any finite interval,
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they agree everywhere. The restriction to such functions turns out to

account for the cases of the string problem where D'Alembert

had contended solution was impossible. 122

D'Alembert's memoir prompted an immediate reply by

Leonhard Euler,123 repeating DIAlembert's arguments, but

without his restrictions on the initial shape and velocity.124

These ... curves ... are equally satisfactory, whether
they are expressed by some equation or whether they
are traced in any fashion, in such a way as not to be
subject to an equation. in5

Thus Euler admitted non-analytic functions as solutions to (W),

both as mathematically and physically significant. This

departure from the conventional wisdom of the time has been

called, rather extravagantly, "the greatest advance in scientific

126
methodology in the entire century'. In any case, it was an

important development. D'Alembert refused to the end of his

life to admit "mechanical" (i. e., non-equation-defined) functions,

either as solutions to physical problems or in mathematics

127
generally. He regarded this restriction as entirely obvious,

while never giving any reason for it.128 This question, and not

any intrinsic interest of vibrating strings, was the scientific

basis of the bitter controversy over the string problem which

was to last the rest of the 18th century.

Euler's notion of function may be described in modern

terminiology as "continuous function with piecewise continuous

slope and curvature" 12 9 but it should not be supposed that his

own conception of the matter was clear. His notion of an "arbitrary
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function"f as "any curve..., irregular or traced at will" 13 0 was,

if anything, less clear than D'Alembert's, although more general.

Unlike D'Alembert, however, "no error results from Euler's

131
failure to supply precise definitions"1. While errors on Euler's

part did not result from imprecision, it is clear that the length

and complexity of the controversy was partly due to imprecision

on all sides. The problem of the vibrating string was not finally

laid to rest until the modern notion of function as a many-one

relation finally emerged in the 19th century.

The real extent of the controversy on the nature of "arbitrary

functions" in the string problem is not sufficiently indicated in

the exchange we have described so far. Of the many other

participants, two deserve mention. The first is Daniel Bernoulli,

who had worked on the string problem before D'Alembert.

Bernoulli's memoir replying to Euler and D'Alembert is full of

132
ironic references to their ",abstract calculations". His view

was that Taylor had already proved that the only solutions were

sinusoidal, but he generalized this notion to included sums of sines,

133
i. e., trigonometric series. He held that

All these new curves and new kinds of vibration given by
Messrs. D'ALEMBERT and EULER are absolutely
nothing else than a mixture of several kinds of TAYLOR's
vibrations. 134

Bernoulli's observations can now be seen to be correct in a

certain sense; the functions concerned can be expanded in

trigonometric series, although Bernoulli did not prove this.
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Euler was sure that this was not possible, but his argument was

135
fallacious. Bernoulli's "contribution" to the debate was to

abuse Euler and D'Alembert for their "abstract analysis", which,

"if heeded without any synthetic examination of the question proposed,

is more likely to surprize than enlighten".136 Bernoulli goes so

far as to suggest that the issue between Euler and D'Alembert is

merely a verbal dispute, "an issue ... concerning the meaning

of certain terms".137

The remaining participant of note is Lagrange. His 1759

memoir attacks Euler's integration of non-analytic functions:

"it seems indubitable that conclusions drawn from the rules of

the differential and integral calculus are always illegitimate ...

if this law [of continuity] is not assumed".138 Nevertheless, he

believed Euler's result to be correct, 139 and tried to establish

140
it by other methods, which were grossly defective. D'Alembert

detected the errors, but Lagranage was never able to remove them

completely.141 Later, as D'Alembert's political influence in

the Berlin Academy increased, Lagrange came aroung to his

point of view, D'Alembert meanwhile having made some concessions

142
on the operations to be admitted in equations. The new operations,

such as (sin(wrx)) , give rise to non-analytic functions. D'Alembert

seems in the end to have given up the notion that all derivatives of a

function must exist, allowing some to be infinite.143

Non-Euclidean Geometry

There is a third incident in the history of mathematics which
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we must consider because it is much discussed in connection with

the independence results in set theory. This incident is the

discovery of the independence of Euclid's Fifth postulate of the

144 145 146
other axioms of geometry. Cohen, Mostowski, Kreisel, 146

147
and Suppes, among others, all cite this discovery as an

important historical precedent. Kreisel is anxious to draw distinctions

between that case and the independence of CH; the others urge that

the comparison is most apt. Mostowski, for example, compares the

current situation in set theory with the development of a variety of

notions of "spaces" in modern geometry:

Probably we shall have in the future essentially different
notions of set just as we have different notions of space,
and will base our discussions of sets on axioms which
correspond to the kind of sets which we want to study. 148

Since the fifth postulate is regarded by these authors as an

important parallel to our own case, we cannot avoid discussing it,

but I doubt very much that this example really shows what Mostowski

says it shows. We do now have different notions of "spaces", but

the fact remains that under the intended interpretation as a question

about space, the question has--subject to future developments

in physics--been settled.

Up until the 19th century, almost no one doubted that the

parallels postualte was true, 149 and when it was discovered that

it was independent of the (perhaps more evident) remaining axioms,

Lobachevsky150 and (probably) Gauss,151 two of the co-discovers

of this fact, immediately regarded it as an astronomical question,
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and proposed experiments to settle the question. As Lobachevsky

put it:

The fruitlessness of the attempts made, since Euclid's time,
for the space of 2000 years, aroused in me the suspicion that
the truth, which it was desired to prove, was not contained in
the data themselves [i. e., the other axioms]; that to establish
it the aid of experiment would be needed, for example, of
astronomical observations, as in the case of other laws of
nature. 152

My own view is that Lobachevesky and others who have and do

regard 18th century geometry as about physical space (and the

parallels postulate as false under this intended interpretation) are

152a
entirely correct. There are, however, two main competing

152bviews: (a) geometry is about space, but not physical space,

and (b) geometry is (or may be construed as ) about physical space,

but which geometry physical space has is entirely a matter of convenient

152c
stipulation. Advocates of (b) differ as to which stipulation ought to

be made, and hence on the truth value of the parallels postulate. 152d

This not the place to discuss these rival views, but I do want to

make the following observations on the condition that my view

announced above is correct.

Our two previous historical cases concerned unclarity of key

notions, but I see no reason to regard this as such a case. In

particular, I see no reason to suppose that the notions of "point",

"straight linefF, "parallel", etc, which are central to Euclid's

geometry, were or are unclear, or that any unclarity there may

have been was responsible for the difficulties in determining whether

the parallels postulate is true.



140

The Historical Cases Summed Up

Our announced intention in reviewing examples from the history

of mathematics was to show that unclarity of fundamental notions

not only occurs, but it matters. Have we shown this? One reason

for answering "no" is that each of the questions we have raised has

now been answered with reasonable certainty. There is no set of

all ordinals, there are non-analytic solutions of the wave equation,

and, subject to the view of geometry adopted above, the parallels

postulate is false.

Leaving the matter here, however, ignores the crucial point,

that naturalness of an interpretation can change with time. The

clearest example of this is the notion of function. We have give

Euler credit in the string controversy for his more nearly correct,

although vaguer, notion of function. Euler's notion is shown to

be natural by making possible the solution of a class of physical

problems. But D'Alembert's notion was natural too-it just wouldn't

do for the new problems. In effect, Euler acknowledged the

naturalness of his opponents conception by the definition he gave

in a textbook published two years after his first memoir on the

string problem: a function of a "variable quantity" is "any analytic

expression whatsoever made up from that variable quantity and

from numbers or constant quantities".153 From the point of view

of modern analysis, however, neither Euler nor D'Alembert had what

is now that most natural notion of function.154
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Euler's greater generality counted in favor of his interpretation,

but the case of geometry shows that the most general notion need

not be the most natural interpretation of a given theory. If our

interpretation of geometry is correct, the parallels postulate is

a proposition about space, but there are far more general

notions: differentiable manifold, metric space, topological space,

etc. This point has relevance for set theory because it could well

turn out that there -is a natural interpretation of ZF given by an

extreme "maximum width" principle which contradicts the axiom

of choice. As we argue in Appendix A, AC is a plausible

principle, so a more general (wider) interpretation need not be the

most natural.

The question we must now turn to--at last--is whether any

of the recent discoveries in set theory make it plausible that the

notion of set is now unclear in the specific sense we have been

employing-- equally natural CTS-like structures.

The Independence Results and Multiple Interpretations

A number of writers make definite claims that the notion of set

is vague or imprecise. Mostoswki, for example, maintains that

the "intuitive notion of set is too vague to allow us to decide whether

the axiom of choice and the continuum hypothesis are true or false."155

It is clear from his discussion that he is claiming that the present

notion, not just the naive one, is vague. His example of a more

precise notion is that of constructible set, which we will discuss
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momentarily. Mostowski predicts that set theory will "split"

into a ffmultitude of set theories", 156 and his view is shared by

157 158
a number of others: A. Robinson, L. Kalmar, P. Suppes, 159

and, at one time, Cohen.160 Although some of these defend

"multifurcation", of set theory on formalist grounds--after all,

if set theory doesn't answer to anything, isn't one consistent new

axiom as good as another? -- the interest of Mostowski's position

is that he claims that there are or will be distinct intuitive notions

of set to go with such divergent theories.161 Further, Mostowski

makes it clear that it is the independence results for the CH and

related statements that has lead him to such a position, specifically

the fact that it is relatively consistent with ZF to assume that the

continuum has any one of an enormous variety of cardinalities.162

Mostowski claims that the models of Godel for ZF+AC+GCH and

of Cohen for ZF+AC+ -CH give "various possibilities which are

open to us when we want to make more precise the intuitions

163
underlying the notion of a set". He also makes it clear that

there are incompatible was of doing this "precising" which give

164
different truth values for CH. I will now proceed as follows

in discussing this suggestion: we will examine the models which

Godel and Cohen use in their independence proofs in sufficient detail

to see if there is indeed reason to believe that they represent

essentially different natural notions of set, or at least suggest

how to develop such notions. Since Cohen's work uses Godel' s

ideas, we begin with Godel's notion of constructible set.
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The Constructible Universe

The constructible sets may be defined by a method analogous

to the ranks, where the powerset operation is replaced by the

operation x -4C(x), where C(x) is the set of sets first-order

definable over x. We define a function M by transfinite induction

as follows: M(O) = 0; M(c~ +1) = M(a ) UC(M('a )); M( )= UM (ca).

Let L = UM(Qa) . The proper class L is called the constructible
0/

universe. Godel proved that if ZF is consistent, then L is a

"model" for ZF+AC+GCH, hence this latter theory is consistent

if ZF is. Actually, L is not quite a model for ZF since it is

a proper class. If there are any standard models for ZF, and

there are arguments which make this plausible, 165 then there are

standard models of ZF which consist only of constructible sets,

and which, of course, satisfy AC+GCH. The same proof shows

that it is consistent with ZF to assume that the universe consists

only of constructible sets (written V = L). Cohen showed that

it is also consistent with ZF to assume that not every set or even

every set of integers is constructible, even if the AC and GCH

are added. I. e., if ZF is consistent , then so is ZF+AC+GCH+V L. 166

ZF+V=L is not consistent with some of the "'large cardinal" axioms

(measurable cardinal, Ramsey cardinal). In fact, these axioms

are sufficient to yield a set of integers which is not constructible

and has a relatively simple definition in second-order mmber theory. 167

Since V = L is consistent with ZF, the notion of constructible set is
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one of Mostowski's candidate interpretations for a more precise

notion of set. The great difficulty with this is that most workers

in the field find V=L implausible; I claim it follows that it is not

a plausible way to "make precise the intuitions underlying the

notion of set" either. We review some of the evidence.

There are several common points of view from which it is

natural or imperative to disbelieve V=L. In the first place,

one would expect an informalist of either of the types discussed

in Chapter I to reject V=L. Essentially the axiom says that the

universe consists of just those sets got by taking the ordinals

as given and adding the minimum of sets assuming that the definite

properties are just those expressed by first-order formulas.

That is, L is the common part of all standard "models" (allowing

"models" to be proper classes) which contain all the ordinals.

Also, the common part of all standard models is itself a model

which satisfies V=L. This is the so-called minimal model M;

it is, or course, countable. 69 All the informalist positions we

considered, however, deny that all definite properties are

expressible by first-order formulas of set theory, so they would

presumably also deny that all such properties can be expressed

by a such formulas with constants in some M(a). Interestingly,

we can construct an analogue to L using the notion of "second-

order definable over". This also yields a "model" of ZF, the

class of "hereditarily ordinal definable" sets. Both the CH and



14 5

its negtaion are consistent with ZF+AC+ "every set is hereditarily

ordinal definable",, and it is consistent with ZF that the constructible

170sets are exactly the second-order constructible sets. This

gives another sense in which we do not get any help in deciding

CH by using second-order properties of sets.

A second position closely related to the informalist objections

is that of Godel, the inventor of the axiom. Godel raises two

objections against V=L. The first is that L gives a narrow notion

171of set, and he wishes a wide one, as we have seen. Godel's

second objection is that V=L implies the continuum hypothesis,

which he finds implausible because of a number of its consequences

172
in topology. I dispute this claim in Appendix A.

Thirdly, the advocates of the more ambitious ',large cardinal

axioms" are oblidged to reject V=L, since it is incompatible with

173them. Since a number of people find some of these axioms

plausible, they have conclusive reasons to reject V=L. For my

own part, I see little reason for accepting or rejecting these

axioms--see Appendix A.

The fourth, and perhaps the most common position is simply

that there is no good reason to believe that V=L is true.174 Indeed,

there are practically no defenses of V=L in the literature. The

only one known to me is a UCLA Carnap Prize Essay by R. Van Zuyle. 17 5

He recommends V=L on the grounds that (1) we could never know if it

were false; (2) it "solves" outstanding problems, and (3) it gives a

more predicative structure to the universe of sets.
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As for (1), this is simply false unless we could never have

any reason to believe the large cardinal axioms which contradict

it, a possibility he does not discuss. For (2), we need some

reason to believe that the problems "solved" by assuming V=L

are decided correctly if such solutions are to could in its favor.

In considering (3) we make two points. First, V=L departs from

predicativity in an important respect by making use of ordinals

not previously '"constructed" in the definition of L. That is, we do

not have (ac) (a s M(c)). In thus taking the ordinals as "Igiven",

we in fact take all of L as "given". The precise result is that

the theory of ordinals can be given an axiomatic development in

such a way that a definition of set can be given within that theory

and all the axioms of ZF plus V=L can be proved. The usual

development of the theory of ordinals within set theory gives the

converse result as well. So, in a precise sense, the deductive

strengths of set theory and ordinal theory are the same.176

Secondly, if V=L really did give a predicative notion of set, that

would be reason to believe that it is false, since such basic portions of

mathematics as analysis cannot, as far as we know, be developed

177
on a predicative basis. What we are left with in (3) is the claim

that a notion which is "sort of" predicative is for that reason a

more plausible notion of set, and Van Zuyle provides no argument

for this.

It is fair to conclude that "refining our intuitions" about the

notion of set to conform to V=L can only lead to a less plausible
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notion of set than that which we have at present. It remains to

examine Cohen's models of the negation of CH to see if they

provide a natural notion of set.

Cohen' s Constructions

Let us describe informally the idea of Cohen's construction

178of a model for ZF+AC+2 = 2178 We start with the minimal

standard transitive model M. Since M is countable, and there

are uncountably many sets of integers, there are plenty of sets

of integers not in M. But the cardinal R2 in M (written M 2

M
is actually countable. Cohen's strategy is to add M2 new sets

of integers and a set which is a one-one correspondence between

M M
S2 and the continuum of M, P(w) . We will then have a

structure in which 2 = •Z2 If this structure is to be a model

of ZF, we have to add certain other sets, in particular, all sets

constructible from the "new" sets using ordinals in M. In
0

order to have 2 = N2 in the resulting structure, we have to

check that we do not add enough new sets to change the cardinals

M M
of M, say be adding a one-one correspondence between ? 1 and R 2

Cohen showed that the new structures resulting from IiM in this

way will be models of ZF if the "new" sets are of a special sort,

called generic sets. The structures resulting from adding

generic sets and sets constructible from them to M are called

"Cohen extensions" of M. Cohen's methods for obtaining generic
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sets of integers and proving that the resulting Cohen extensions

form models of ZF with the same cardinals apply to other

models as well as M, provided they satisfy certain conditions

discussed below.

It is plain that the models we have considered so far cannot

be considered natural interpretations of ZF since they are

countable. Cohen' s original techniques for obtaining generic

sets requires that the starting model be countable, a requirement

satisfied by M of the previous paragraph. Since we are interested

in models which also satisfy AC, the Cohen extensions of M are

countable as well. 179 Other writers have developed generalizations

of Cohen's techniques which, together with plausible hypotheses, imply

that there are also uncountable models of ZF+AC+ "CH, in fact, models

of cardinality as large as desired, although this cannot be proved from

180
ZF+"ZF has a standard model" alone. These other techniques,

however, still use facts about the starting model (and hence the Cohen

extensions) which show that they are not natural interpretations of ZF.

These include such characteristics of the starting model and the extension

as having "uncountable cardinals" which are actually countable. Such

hypotheses could be eliminated in general only if it could be shown that

there are uncountable cardinals less than the cardinal of the continuum,

but this is the negation of the continuum hypothesis'.

This last statement needs to be somewhat more delicately put. In

the techniques of Cohen and their generalizations, we need to show (1)

that there exists a Cohen extension containing a one-one correspondence
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between the continuum and some cardinal t greater than NI of

the starting model; (2) that R. is still greater than b1 in the

extension (if the extension has this property, call it a "nice" exten-

sion). It is a consequence of a theorem of Solovay and Martin18 1

that we can't use Cohen's techniques to prove that every model M

has a nice extension unless the Zca of M is actually less than 2H °

Of course, the CH says that such an ~a of M must be actually

countable. 182

So again with the more general techniques of other authors, both

the starting model and the extension have such obviously "unnatural"

properties as that some of their "uncountable" cardinals are actually

countable, and the construction technique depends on our knowing
183

this. This is true unless we know that the CH is actually false or--

to avoid begging the question against Mostowski--that there is a natural

interpretation of "set" according to which the CH is actually false. If

we knew that there were any such interpretation, however, we would

be interested in that, and not the tricky models conjured up with Cohen-

style techniques.

Despite the failure of Cohen constructions to provide natural inter-

pretations of ZF+AC+.CH, there is a natural "width" principle which

has developed out of Cohen techniques. This is the new axiom proposed

by Solovay and Martin.184 This axiom, which they call "A", says that

sets generic w. r. t. the various substructures of the universe which

cardinality less than that of the continuum are already in the universe,

so that the process of "adding" new sets to a model which does not con-

tain them to obtain a pathological extension cannot be carried out. It

thus seeks to counteract the very feature of the starting model of ZF
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which made the construction of the extension possible--that it did

not contain all sets of integers.

Axiom A does not imply, but is implied by CH (since if the CH

is true, all the relevant substructures are countable, and the exis-

tence of generic sets for countable structures is unproblematic).

Axiom A itself implies many of the "interesting" consequences of

CH. Specifically, 48 of the 82 consequences of CH which Sierpinski

proves in Hypothese du Continu 18 5 are also consequences of A and

the remainder become so when "denumerable" is replaced by "having

cardinality less than that of the continuum". 186

This brief discussion should indicate that A has some intuitive

support as a "maximum width" principle, asserting that models of

ZF+A must already contain those sets which would be artificially

added by Cohen techniques. This will not help Mostowski's case,

however, for it is perfectly plausible to construe this axiom as a

suggestion about how to characterize the "actual" universe, not as

representing a distinct notion of set. I think that is is fair to conclude

that Mostowski's suggestion that the models constructed in the indep-

endence proofs give us-- or are likely to give us--essentially different

intuitive conceptions of "set" simply does not stand up under examina-

tion.

Undecided Questions: Do They Show Unclarity?

In the previous section, we showed that the models of Godel and

Cohen do not themselves provide natural interpretations of ZF at all,

much less natural interpretations according to which the truth values

assigned to CH differ. A different but related claim by Mostowski
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must also be examined, that the notion of set is shown to be "vague",

"unclear", or in need of "clarification" 18 7 by the mere fact that a

"multitude of seemingly very simple questions" (including CH) have

not been decided by "two or three generations of mathematicians. ,,188

Analyzing this claim requires us to do two things: (1) to analyze

the claim that the notion of set is unclear, and (2) to see why the

fact the "seemingly very simple" questions resist solution should tend

to show that the notion of set is unclear. For (1), we have bee con-

sidering throughout this chapter the possbility of multiple equally

natural interpretations. Not only is this a reasonably clear formula-

tion of "unclarity", it is also the sort of thing Mostowski himself has

in mind. The conclusion that he wants to draw from the alleged un-

clarity of the notion of set is that set theory can be expected to split

into a multitude of different theories, only the "common part" of which

"could claim a central place in mathematics". This common part, he

worries, may not "contain all the axioms needed for a reduction of math-

ematics to set theory". 1 8 9

Accepting the formulation of unclarity in terms of multiple inter-

pretations, we can now put the question in (2) as: ,'Even if the indepen-

dence proofs themselves do not provide alternative natural interpret-

ations, don't they give us reason to believe there must be such inter-

pretations? "

The method I will follow in attacking Mostowski' s contention is to

draw an analogy with number theory. That theory has its own "apparent-

ly simple" unsolved problems which have resisted solutions for gene-

rations, but no one, to my knowledge, draws the conclusion from this

fact that the notion of natural number is unclear, nor should they.
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The longevity of the outstanding problems of elementary number

theory and the enormous effort expended in attempted solution of

them is quite remarkable. Goldbach's conjecture, Fermat's "Last

Theorem", and other questions in the theory of Diophantine equations 19 0

have been the object of study for centuries, with no reason to believe

that solutions are near. Fermat's "Theorem'", proposed in 1637, states

that the equation: xn + yn = zn has no solutions for positive integral

values of x, y, z if n is greater than 2. This conjecture has been

verified up to fairly large n, but the general case remains unproved.

Goldbach's conjecture, proposed in 1742, is that every even positive

integer is the sum of two primes; it also remains unproved, although

a similar conjecture, that every "sufficiently large" odd integer is the

sum of three primes, was finally proved by Vinogradov in 1937. 191 It

is not known that any of these open questions are actually undecided by

the usual axioms of number theory. The possbility that they may be

independent is suggested by the fact that some of the attempted solu-

tions, and Vinogradov's proof, use methods from the theory of complex

variables which cannot be expressed in elementary number theory and

for which no elementary replacement is known. If either Goldbach's

or Fermat;s conjecture is false, however, it cannot be independent,

since any counter-example would be a true numerical formula without

quantifiers, hence provable in elementary number theory. 192

The fact that the conjectures are not known to be independent of

formal number theory does not destroy the usefulness of the analogy

with set theory. Since all obvious methods and many subtle ones have

already failed, solutions of the outstanding problems of number theory
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will undoubtly require discovery of quite new principles of number

theory--not necessarily principles independent of Peano's axioms,

but still principle entirely novel w. r. t. present number-theoretic

practice. Of course, we can be certain that any novel principles of

set theory which decide CH will be unprovable in ZF (if that theory

is consistent). Thus, we are certain to have some problems about

the justification of any such principles which we might not have for

principles which decide the outstanding problems of arithmetic. In

neither case, however, is the immediate problem one of justification

of available plausible principles which decide the open questions. As

Mostowski puts it:

We need new axioms to codify the intuitive set theory. The 1
disquieting fact is that we do not know where to look for them.

Actually the situation is not quite this bleak. A number of new

principles have been suggested, but they either don't decide CH (the large

194cardinal axioms and other principles we have discussed, such as

"All sets are ordinal definable "195), or they are implausible

(V=L, axiom of determinateness l9) or they are simply suggestions

to be investigated whose plausibility is unknown (Takeuti's width

principles). We are plainly far from a solution to the continuum

question, but it is not the case that we have no ideas.

Of course, once we have a really plausible principle for set

theory which decides CH, we will still have the problem of giving

a real justification for it. Just how hard this will be, we cannot

tell until we have a suggestion whose justification is sought. In

comparison with unsolved problems of past set theory which were
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eventually solved, the longevity of the CH as an open question

is not particularly astounding. Cantor promised a proof that every

set could be well-ordered in 1883,197 but Hilbert still listed the

well-ordering of the continuum as an outstanding problem of math-

ematics in 1900. 198 Zermelo gave a proof of the well-ordering theorem

in 1904, 199 but this proof used the axiom of choice, which was not gene-

200rally accepted for another generaltion. Hence a problem indepen-

dent of principles accepted when it was proposed, took more than

fifty years to solve, but it was solved.

I conclude that set theory and number theory are analogous in this

important respect, that they both have outstanding problems that are

superficially elementary, that is, they can be simply stated in familiar

terms. In number theory, this situation has rightly not led people to

believe that there is some unclarity in the notion of natural number. Of

course, we know that it will take a new idea to decide CH, but that is

the case for number theory as well. We know that any such new idea

for set theory will give rise to problems of justification that we may

not have for number theory, but the case of the axiom of choice shows

that this is not always impossible.

A Final Word on Independence and Multiple Interpretations

As we have noted, open problems resisting solution for centuries

have not in fact raised doubts about clarity of arithmetic notions. It

is interesting to note that the formal independence results for certain

pathological sentences had no such effect either. One reason for this

is that the independent sentences are interesting only because of their

independence, and are obviously true.
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Hypothetically, we may ask what would have happened if some

independently interesting sentence had turned out to be independent?

Would people have been as upset about it as about the independence

of the CH? As it happens, there is a real occurrence which

closely resembles our hypothetical one.

After Dedekind, the actual inventor of "Peano' s" axioms, 201

202
had published his formulation of arithmetic, Hans Keferstein,

an influential German mathematician, published a critique. Keferstein

suggested what amounted to abandoning the induction principle

203
(although this was not obvious). Dedekind wrote to Keferstein

to justify his axioms:

How did my essay come to be written" ... it is a synthesis
constructed after protracted labor, based on a prior analysis
of the sequence of natural numbers just as it presents itself,
in experience... for our consideration. What are the mutually
independent fundamental properties of the sequence N, that is,
those properties that are not derivable from one another, but
from which all others follow? 204

Dedekind answered this question by listing the axioms on which

he and Keferstein agreed: N is a set, every number has a successor,

distinct numbers have distinct successors, and 1 has no predecessors.

He then states that

I have shown in my reply ... , however, that these facts are
far from being adequate for completely characterizing the
nature of the number sequence N. 205

206
Keferstein was finally persuaded by these arguments, and

rightly so. His own axioms were inadequate because they failed

to characterize a well-understood structure, which "presents itself...

for our consideration". Given a bit of set theory, Dedekind's

axioms do charcterize this structure.
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In constrast, we do not find the same confidence on the part

of set theorists that they are studying a given structure. There

are several explanations for this. One is that a good many set

theorists are formalists or are sympathetic to that view. A

second is that, as we have noted, there is a variety of incompatible

set theories, and it is rational to hesitate in choosing among them.

Third, the structure of any theory which hopes to encompass the

whole of mathematics must be enormously more complex than

number theory. Given a small fregment of set theory, the

natural number series and truth in that structure can be characterized

quite easily. We have seen that the same cannot be said for the

CTS. We were unable to give an unexceptionable characterization

of either the CTS itself or truth in the whole structure.

As I have argued, this third point (and indirectly, the second)

give some reason to doubt that there is a unique intended interpretation

of ZF. I have also argued in the previous section that the fact

of the independence results does not itself tend to show this.

There is, however, a way in which the independence results

bear on uniqueness of interpretation. As the Dedekind-Keferstein

controversy suggests, grave methodological worries should not

be provoked by independence proofs if one is confident that a

"given" structure is being studied. Of course, the independence

results for CH would be sensational in any case, because they

are profound technically and deal with interesting questions. But

the considerable disaffection with set theory as a working basis
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for mathematics evidenced by Mostowski, Suppes and others,

and even the conversion to formalism by Cohen, 206 and others,2 0 7

shows that set theorists are not confident of a unique CTS.

As Kreisel says,

... several recent results in logic, particularly the
independence results for set theory, have left logicians
bewildered about what to do next: in other words, these
results do not 'speak for themselves' (to these logicians).
I believe the reasons underlying their reaction necessarily
also make them suspicious of informal rigour. 208

Kreisel takes these "underlying reasons" to be "pragmatic" and

"positivist" objections (including formalism) and the belief that

intuitive notions are unreliable. 209 As I have argued,

methodological queasiness over set theory cannot be put down

entirely to bad philosophy of mathematics, but I do agree with

Kreisel that this is probably the main reason for is prevalence

among working set theorists.

Argument (A) Reconsidered

So far, our attempts to show that the premises of (A) are true,

and consequently, that CH is determined, have not succeeded.

These attempts proceeded by assuming a realist position (B),

formulated in terms of truth, and then trying to develop a

notion of truth sufficient to justify the premises of (A). Having

failed to produce such a notion of truth for all sets, however,

there is another course open: to explain truth only for the portion of

the universe that involves the CH. This represents a major

retreat from (B), for there we assumed the truth of most widely
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accepted theorems of ZF, (under some interpretation) and some of

these concern set of arbitrarily high rank, for example, the

statement "every set has a rank". Of course, the fact that we

were unable to supply the account of truth for all the statement

assumed true in (B) does not make that assumption unwarranted;

it simply doesn't help to explain realism in set theory. In any

case, we now confine our attention to truth in a small initial portion

of the universe.

As CH is usually formulated,i. e., 2 = "1, it concerns sets

of moderately high rank, since N1 = wl, and wl has rank wo l

Since we are assuming AC, we can give an equivalent formulation

using sets of lower rank:

(C) (x)(x c P(w) D(2f) ('"f is a 1-1 correspondence between x and w"

or "f is a 1-1 correspondence between x and P(w) "))

It is easy to compute how much of the CTS this statement need

be taken to quantify over. All members of w are members of

R(c), so w and all its subsets are members of R(w+l). So

P(w) r- R(w+ 1), and P(w) e R(w+2). The correspondences f

are sets of ordered pairs of subsets of w , or of such subsets

and integers. With a suitable definition of ordered pair, all

of these pairs have rank no higher than R(w+ 2). The correspondences

themselves thus have rank R(w+3). A standard model

M = (R(w+3), etR(w+3)) containing all such correspondences

then has rank slightly higher than c +3. Since M is a set,
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we would have no particular problem about explaining primitive

denotation w. r. t. M if we could satisfy ourselves about its

uniqueness. Our strategy for considering this question of

uniqueness will be to analyze the first w +3 iterations of the

powerset operation. Before doing so, however, I want to

digress to consider another natural argument that CH is

determined which seems to avoid dealing specifically with

interpretations and structures, as does argument (A).

An Argument that CH is Determined:

Consider the formulation (C) of CH given in the previous

section. Then we have

(1') The CH is true iff ...

and

(2') The CH is false iff it is not the case that...

where the '...' is replaced by the sentence (C). In addition,

we have

(3') ... or it is not the case that ...

(with the same replacement for '...') is a logical truth. It

follows that

(4') The CH is true or the CH is false.

This seems a simple solution to our problem, but in fact it

will not do. Our assent to (1') and (2') is surely not reasonable

if the terms and quantifiers of (C) are given just any interpretations.

'Wf had better denote w and 'P(w)' the powerset of w; the range
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of the function quantifier had better be all 1-1 correspondences

of the appropriate type, etc. But suppose that there are equally

natural interpretations of any of these notions; then the argument

(1') - (4') will not show that CH is determined, but it can fail

to do so in several different ways, depending on exactly how we

understand the premises.

If we regard 'the CH' in (1'), (2') and (4') as the name of a

particular proposition, (1') and (2') may be true on some

perfectly good interpretations and not on others. If, on the other

hand, we regard 'the CH' as simply a name of the sentence (C),

then (1') - (3') and hence (4') will be true under each interpretation.

But the fact that (4') is true under each natural interpretation

does not show that CH is determined, for we have no guarantee

that the same disjuct of (4')is true under each appropriate

interpretation. So, in one way or another, we cannot avoid talking

about natural interpretations of set theory; considering the fact that

we have not been able to give a clear account of truth for the whole

universe, let us return to the analysis of R(w+3).

Analyzing R (w +3)

The first w iterations pose no problem. All the sets thus

obtained are hereditarily finite: that is, they and all their members,

members of members, etc, are finite. There is a natural

isomorphism of all such sets with the set of natural numbers w,

so we need have no worries about uniqueness this far.
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The situation is more complicated for the next iteration, to

R(w+l), but we can still make a good case for uniqueness. We

have already noted that the continuum P(w) is a subset of R(w +1).

In fact, we can use the natural isomorphism of R(w) and w to

construct a natural isomorphism between P(w) and R(w +1).

The importance of this manuver is that P(w) is, or is naturally

isomorphic to, the continuum of real numbers R. Next to the

natural number series, this is the most studied structure in mathe-

matics and it is of central importance to physics. Both of these

facts give reasons to believe that R (and hence R(w+l)) has been

uniquely identified.

To argue this point, our first consideration is a "sociological"

examination of alternative theories of the continuum of the same

kind we made for set theory and number theory. There are two

main types of alternatives to standard real number theory. The

first is the so-called non-standard analysis.210

In this approach, one adds non-Archimedean field, i. e., a

field with elements x such that x A 0 and for all positive natural

numbers n, xl < . The theory of analysis based on this

formulation of the real numbers is not, or course, exactly that of

standard analysis, but it is plain that non-standard real number

theory still makes use of R, although it adds other elements as

well. In particular, if we consider a language for the theory of

real numbers with a constant to name each real, then the non-

standard models of this theory are exactly the elementary
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extensions of R. In fact the most interesting models of non-standard

analysis are obtained by simply starting with R and using

ultraproduct constructions to obtain non-standard structures with

the same cardinality. Thus non-standard analysis is equivalent

to standard analysis in the sense of elementary equivalence, but

also in the stronger sense of elementary embedding (in our large

cardinality language). Every non-standard model of this sort

contains an isomorphic copy of R. 210a

The second (group of) alternative(s) is the range of "constructive"

treatments of real numbers, including the intuitionist ones. In

standard analysis, one can treat reals as equivalence classes of

convergent sequences of rationals, f xnlne w . Constructive

analysis imposes various restrictions on such sequences, usually

in the form of a recursive function f(m, n) such that (n)(m)(IXn -Xm

1 211< (n, ) The idea of this formulation is thus to study the reals
f(n, m)

by means of sequences of rational approximations, with "constructive"

restrictions on the type of reasoning permitted. Despite these

restrictions, it is easy to see that the same structure is being

studied. It is obvious (speaking as a "classical" mathematician)

that every real number has an infinite decimal expansion. The

finite initial portions of such expansions give a sequence of

rationals satisfying the stated restriction, i. e., I x -x I < 1010-max(m,n).

Constructive analysis based on this theory of the reals does indeed

have somewhat different theorems (even when they sound the same
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212
as classical ones ); whether any such formulation of analysis

is adequate for physics is yet to be seen.

There is a second kind of reason for confidence in the

adequacy of our knowledge of R to guarantee uniqueness. This

is the central role of that structure is physics and, indeed, in

natural science generally. Instants of time, locations in space,

and a host of physical quantities take a continuum of values.

In maintaining this, I am taking a realist interpretation of physics;

I will not defend such a view here--it has been extensively argued

elsewhere. 213

The fact of the physical realization of the continuum does have

a particular significance for us, however, for this reason: We

saw that there are special difficulties with causal theories of

primitive denotation for mathematics. But if causal theories

can be developed for theoretical entities at all, it is surely not

absurd that human beings could causally interact with continuous

214
physical quantities, such as energy, momentum, etc.

Up to the Next Rank, R(W+2)

It is possible to continue our analysis to the next rank, R(w±+2),

but I shall not do this, for two reasons. The first is that we

could only do so by the method used for R(w+1) with some

decrease of confidence in uniqueness. The objects of established

mathematics which appear at this level are the real-valued functions.

Historically, the notion of "arbitrary function" of this type was

only clarified by the development of set theory. The second
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reason is that we can show by Cohen- style methods that there

is a fairly natural proposition about members of R(w + 1) which

is independent of ZF.

L
This proposition is that N1 , the first uncountable cardinal

of the constructible universe, is countable. If V=L, this

proposition is false; if there are measurable cardinals, it is true.

215 L
Addison has shown that " R1 is countable" can be given a

formulations quantifying only over real numbers. The significance

of this fact is that we have an independent question only a few ranks

below that of the continuum question, whose independence cannot

be attributed to multiplicity of natural interpretations. This is

our final reply to Mostowskian arguments against uniqueness.

Conclusion

At the beginning of this chapter, we cited a simple, obviously

valid argument (A) to the effect that CH is determined. I do not

claim to have shown conclusively that the premises of this argu-

ment are true. But I believe that it has been shown that they are

plausible given to the modest realism of (B) , and that none of

the objections to these premises hold water. I conclude that it is

rational to be confident that CH has a truth value. Only future

research can show how hard it will be to find out what it is.



APPENDIX A

Introduction

This appendix will be concerned with the plausibility---that is,

the probable truth---of several principles which are independent

of ZF. The princinal ones which will concern us will be CH

and AC, but others will come up in the course of discussing

these two. Other plausibility arguments, concerning the axiom

of constructibility and Martin' s axiom, will be found in Chapter II.

We will omit any systematic treatment of "large cardinal" axioms,

making a few general remarks at the end.

Plausibility Arguments

It is beyond the scope of this appendix to attempt a systematic

account of plausibility arguments in mathematics, but we must

give an indication of what sort of arguments are to be taken to fall

in this category.

Generally, we will take a plausibility argument to be an

argument for the truth of a mathematical proposition which is not

deductively valid, and therefore falls short of the standards of

mathematical proof. We are, of course, only interested in those

arguments which actually give or may be thought to give some

reason to believe the conclusion. We will consider the following,

general types and some others not easily labeled:

(A) Analogy to or generalization from known cases, for

example, generalizations from theorems about finite sets to

infinite ones. Such generalizations or analogies may be refuitable

165
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or there may be incompatible variants which are equally supported

by analogy. We will find such cases in discussing AC and the

axiom of determinateness.

(B) Arguments based on consequences in the natural

sciences. Such argument have played an important historical role

in the history of analysis , but set theory is sufficiently removed

from physics that such arguments will prove to be of limited

usefulness in discussing AC and CH. It is useful to describe

one hypothetical example of an argument of this sort which actually

gives quite good a posteriori reasons for believing a mathematical

proposition. Suppose that we are unable to determine whether

a system of differential equations S has a solution for any

parameters in some region Q, but we can prove that if S has a

solution for any set of parameters in Q it has one for all of them.

Suppose as well that we know how to build an electrical circuit which,

if it works in the intended way, is described by S. Such an assumption

will no doubt involve our having sufficient reason to believe a

substantial body of current physical theory. If we can build such

a circuit with parameters known to lie in Q---although their exact

values may be unknown---and it works, then we have shown that S

has solutions for all of Q. Such "experimental" verification of

mathematical propositions are not entirely hypothetical, for similar

verifications are in fact performed for engineering problems using

analogue computers.



167

(C) "Geometrical" or "intuitive" arguments. Such

arguments are by far the most difficult to describe or evaluate,

if only because of the substantial volume of conflicting philosophical

views on the epistemic importance of "intuition" in mathematics.

Kant and the Dutch and French intuitionists have maintained

versions of the thesis that one is justified in accepting a mathematical

result only if one has had certain "intuitions. " These authors

suppose "intuitions" to be a type of, or akin to, preceptions.

A number of leading figures in set theory have also supposed that

"intuition" or "intuitions" provide the ultimate basis for accepting

the axioms of set theory. Zermelo, in particular, stated flatly

that set theory is a science " resting ultimately on intuition" .

A general discussion of such issues is too ambituous a project to

take up here, but I believe it possible to admit some examples of

arguments "based on intuition" without adjudication of the larger

questions. For, as a practical matter, it is useful or even

necessary to attempt to visualize mathematical structures which

one wishes to study, and to use this visualization as an aide to

understanding existing results and suggesting new ones. For

example, in studing the real line, one may imagine it as

consisting of an extremely large number of tiny objects, such as

grains of sand. Imagining selections or transformations of these

objects may then convey information about their mathematical

counterparts.

I believe that it can be argued successfully that "intuition" of

this sort is very useful indeed in the ways mentioned, without opting
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either for the positions of the intuitionist schools or those like

Zermelo's. Detailed studies of the history of analysis such as

Boyer's 4 make it clear that intuitive notions did in fact play

an enormous role in the development of analysis before and during

the foundational work of Cauchy, 5 Weierstrauss and Cantor which

finally gave definitive formulations to the fundamental notions and

proof methods in that field. 6

It may be denied that this role was either a necessary or a

useful one. In fact, one of Boyer's main contentions is that

reliance on intuitive notions retarded the precise formulation

of the concepts of limit, derivative, etc. But far from being

incompatible with the claim that "intuition" can be a reliable guide

before fundamental notions receive a definitive formulation, this

contention tends to support it. The fact is that reliance on

intuitive notions did not make the practice of analysis impossible,

even if it retarded further development of that field.

During an extended period--several hundred years---in which

the difficulties in analysis were at least as great as those in naive

set theory before resolution of the paradoxes, a rich theory of great

practical ultilty was developed and the overwhelmingly greater

part of this theory remained intact after the precise formulations

were finally developed. It seems eminently reasonable to maintain

that the influence of "intuition" in early analysis was generally

beneficial and, at the time, necessary to research.
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That "intuition" has played this role in analysis does not

decisively refute the contention of philosophers such as Quine

who have maintained that "intuition is bankrupt" in set theory, 7

but the fact of the utility of "intuition" in a field with strong

logical and historical ties with set theory suggests that intuition

may play a role here as well. This is really beside the point

we will need, however, because the "intuitive" arguments which

we will examine will actually be about consequences of AC and

CH in analysis itself.

Despite the previous argument to the effect that "intuitive"

arguments can be of some value, this writer doubts that propositions

supported only by considerations of tjypes (A) or (C) can be

regarded as well established. Persuasive arguments of type (B)

can probably be constructed only in a relatively small range of cases.

All three sorts of arguments are often put to a different purpose,

that of suggesting new directions for investigation. No doubt

it is easier to establish the conclusion that such and such is

worth looking into than the stronger assertion that such and

such in probably true.

THE AXIOM OF CHOICE

Origin and Early Controversies

The axiom of choice states that for every set S of mutually

exclusive non-empty sets, there exists a set containing exactly

one member of each set in S. Although several earlier author s
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mention related principles, 8 the axiom was first introduced by

E. Zermelo, who used it in his proof that every set can be

well-ordered. This proof met a number of objections against

AC, mainly from the French intuitionists. Borel, in particular,

maintained that reasoning which presupposed, as he initially

thought AC did," an arbirtary choice made a non-denumerable

infinity of times" is "outside the domain of mathematics".10 The

publication of Borel's remarks provoked a series of exchanges among

French mathematicians, the so-called Cinq lettres, in which Borel,

Baire and Lebesgue attacked the "principle of Choice", and

Hadamard defended. it. 11

In this debate, the main issue which emerged was whether

the sets whose existence is guaranteed by the axiom might fail

to be definable. Poincare pronounced the special case of the

well-ordering theorem for the continuum "devoid of meaning or

false or at least not proved" on just such grounds.13 All of

these opponents of the AC objected as well to other aspects of

Cantorian set theory which are now hardly controversial. Borel,

for example, regarded Cantor's theory of cardinality as having

little "intrinsic value", although it " served as a guide to more

serious reasoning. "14

Well-ordering and the Continuum Hypothesis

One consequence of the well-ordering theorem which particularly

concerns us is that the continuum can be well ordered. For

otherwise, P(w) has no cardinal at all in the sense we have been
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employing (von Neuman' s) and in the alternative sense of cardinal

of Frege-Russell, it would turn out that the cardinal of P(W) is

not equal to and not less than any , so is larger than any N&

to which it can be compared under the ',greater than" relation for

cardinals.15 Thus in either case, the Aleph Hypothesis (AH)

that 2 = ý1 , which, lacking AC, we must momentarily distinguish

from CH, cannot be true if the continuum cannot be well-ordered.

For von Neumann Cardinals, it doesn't even make sense" since

'2 0' does not denote, and for Frege-Russell cardinals, it is

about as false as it could be. The continuum hypothesis proper,

that there are no cardinals properly between 80 and 2 , fares

just as badly. For von Neumann cardinals, it still doesn't make

sense. For Frege-Russell versions, CH will be false if any

N0
N with N greater than 0 is comparable with 2 . Otherwise,

we will have even less hope for solving the continuum question than

with AC.

Since the continuum and the series of natural numbers are

perhaps the two most important structures in all of mathematics,

the inapplicability of Cantor's theory of Ms to one of them

would substantially reduce the interest and practical importance

of that theory. This should certainly count as an undersirable

consequence of a failure of AC radical enough to result in the

non-well-order ability of the continuum.
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Later controversies about AC

Four years after his first proof of the well-ordering theorem,

Zermelo published a new proof and a set of replies to objections to

his first paper, dealing in particular with objections to AC. Zermelo

maintained that AC meets the same criteria as other axioms in that

it is "intuitively evident and necessary for science.16 In support of

this contention, he cites implicit use of the principle in the work of

earlier invertigators, including Cantor. 17 As we shall see below,

what is essentially Zermelo's view has become the dominent one,

but other developments were to come first.

The objections of the French intuitionists to AC were, in effect,

objections to non-constructive existence arguments, that is, they

were of a general, methodological character. Later objections were

based on supposedly implausible consequences of the axiom. In 1905,

Vitali proved that AC implies the existence of a set of real numbers

which is not Lebesgue measureable.18 This result can also be obtain-

ed on the weaker hypothesis that the continuum can be well-ordered

(WOC).18 So, by the remarks of the previous section, 'Every set of

reals is Lebesgue measureable' (LM), implies not-CH, since it im-

plies not-WOC. LM has proved to be an attractive, if not

particularly plausible, hypothesis.

In 1924, Tarski and Banach cast the existence of a non-measurable

set in a striking form. They showed that, assuming AC, the

unit sphere can be decomposed into a small finite number of "pieces, "

which can be "reassembled" by translation and rotation into two

unit spheres.20 At first glance, at least, this seems an absurd
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result---that an object can be cut into "pieces" which when rearranged

yield two objects the same size as the first. This appearant absurdity

can be at least partially explained away by pointing out that the "pieces"

(sets of points) in question are very far from corresponding to any

intuitive notion of "piece. " They are, for example, neither open

nor closed sets, nor sets formed from finite or countable unions

or intersections of such sets, or any other sets even remotely

resembling pieces cut with scissors. The result might still be

troubling if one only had to apologize for lack of correspondence

with intuitive notions in connection with AC. This is not the case.

There are a number of "paradoxical" results in elementary analysis

21
which require similar explaining away. One such well known

example is Peano's "space-filling curve", a continuous curve which

22
touches every point of an open rectangle in the plane. This result

is certainly counter-intuitive, but no one has seriously proposed

that it shows some serious inadequacy in the notions involved or in

the principles---which do not include AC--used to prove it.

Single examples are still occasionally used, however, to argue

that AC is implausible. Fairly recently (1947), Borel used the

standard non-measurable set construction minus the measure-

theoretic terminology to obtain a decomposition of the unit interval

of the real numbers into countably many sets which are all

translations of one another. This example forces us, he claims, to

either give up the AC or to modify the notion of "Euclidean equilivence"

(i. e., "being translations of one another" for sets). The former
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course is the one he recommends.23 Such arguments are now,

however, rather unusual.

Present status of AC

Discussion of the present status of the axiom can be organized

under two heads suggested by Zermelo's remark that it is "intuitively

evident and necessary for science. " We will first review in just

what sense AC may be necessary for science, arguments which

are broadly speaking of type (B).

Several authors have reviewed elementary analysis to see to

what extent AC may be necessary for standard results. Fraenkel

and Bar-Hillel list a number of propositions of the type taught in

beginning analysis courses whose proofs require AC. A more

careful survey has been made by Rosser, who claims that AC for

countable sets (CAC) is necessary to develop to theory of

Lebesgue measure.25 CAC is not, however, sufficient to prove

the existence of a non-measurable set. 26

Outside analysis, numerous useful principles and some standard

27
theorems of topology and algebra are equilivent to AC, and some

propositions weaker or apparently weaker than AC have no known

proofs from principles better established than AC.28

The role of AC in set theory itself is especially important,

particularly in such basic areas as the theory of cardinality.

Comparability of all Frege-Russell cardinals is equilivent to AC, 29

and only sets which can be well-ordered have von Neumann cardinals.
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We have already seen what havoc is wrecked in this area if crucial

consequences of AC are unavailable.

Apart from the theory of cardinals, it should be remembered

that AC is implied by the (apparent) restriction of the notion of

set either to constructible or to ordinal definable sets, as we

have already noted elsewhere. That AC holds of such semi-

constructive notions suggests that the objections of the French

intuitionists on the ground of definibility may not have been well

taken even if their general prospective is accepted.

We may summarize this section as follows: AC is

"necessary for science" in the sense that it is necessary for a

great deal of mathematical science that most mathematicians

accept. Although there are some who are willing to give up those

portions of contemporary mathematics dependent on AC, they

generally also reject other portions of "classical" mathematics

as well. Many more accept the attitude of Hilbert that AC "rests

on a general logical principle which is necessary and indispensable

for the first elements of mathematical inference."30

AC and Physical Science

Given that AC is essential for some fundamental sorts of

mathematics, it is interesting to ask whether the truth of some

of this same mathematics may not be a necessary condition for

the truth of parts of physical theory which we have good reason

to believe true. If this were the case, we might construct a

rather loose argument of type (B) for the truth of at least some
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weakened version of AC. The ever increasing volume of mathematics

required (at least in a practical sense) for contemporary physics

suggests that this might be the case.

There are counter-indications, however, in the development

of "constructive" analysis, including a version of Lebesgue measure

theory, by E. Bishop31 and, independently, by a group of Soviet

analysts,32 without using AC or other "non-constructive"

principles. The work of these writers contain theorems which

sound like the standard theorems of classical analysis, but often

this is deceptive, for some of them are very far from meaning

the same as their classical counterparts. 33 Getting to the bottom

of this particular question is plainly beyond the scope of the present

inquiry.

"Intuitive Evidence" of AC

The question of the types and strength of plausibility arguments

which may support AC is complicated by the following fact: much

of the widespread agreement to accept AC is undoubtedly the result

of its indispensibility for results of considerable elegance and

utility of the types already noted. Many of these results now have

a place in the training of young mathematicians such that their

unattainability would now seem counter-intuitive in itself. Consequences

of AC formely adduced as evidence against it, such as the Banach-

Tarski theorem, tend now to be treated in elementary courses and

texts as amusing curiosities, and not mentioned at .all in more

advanced treatements.
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Cohen has drawn the conclusion from such facts as these that

the axiom has won acceptance out of "philosophical opportunism", 34

by which he means accepting a principle for it aesthetic, financial

or other pleasing consequences.35 Those who, like Cohen, believe

that it is at least extremely problematic whether we have grounds

for believing AC to be true might profitably ask themselves whether

the situation is any better for other powerful axioms of ZF, say

Replacement or Powerset.

Each of these is independent of the remaining axioms of ZF, and

one would be hard put to give a conclusive argument for their truth

in every case which made no appeal to utility or elegance of resulting

mathematics. Eliminating Powerset entirely would undoubtedly

leave us too little mathematics for physics, but such an arguement

will certainly not do as a justification for all applications of Powerset,

especially in conjunction with Replacement. Why, for example,

must there exist a powerset of 1R (w + w)? As far as one can see

now, sets this ,"far out" in the ranks have no physical significance

36
and play no role in classical mathematics. The ordinal w + W

itself cannot even be proved to exist without Replacement. Restricting

Powerset or abandoning Replacement would be inelegant (and perhaps

therefore implausible) in the former case and inconvenient in the

latter, but other considerations are not easily forthcoming.

It is possible that, if pressed, Cohen might concede that the

acceptance of Power-set and Replacement is opportunistic as well,
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since he is defending a formalist position. But this leaves no

room for objection to AC in particular.

Cohen is right in this much, that the "satisfactoriness" of

the resulting set theory as a working basis for the rest of

mathematics has favorably influenced peoples' attitudes about AC.

While it is true that not every reason for accepting an axiom is a

reason to believe it true, we will only reduce ourselves to an

impotent skepticism if we label arguments based on "satisfactorinessi,

as mere opportunism, since we can hardly do better for other axioms.

For realist positions, at least, why the most satisfactory

theory--in the stated sense for set theory, or others for others

areas of science---should be the most plausible remains an

unsolved question in the "theory of science". For formalists ones,

the question of probable truth of such theories does not arise.

In any case, we will side-step all such problems, and inquire

whether any alternative to AC may yield an equally satisfactory set

theory, using whatever plausibility arguments may be available.

Alternatives to AC--Their Relative Plausibility

Few principles yielding any hope as satisfactory alternatives

to AC have been proposed by its opponents. In 1927, Church listed

two alternative "assumptions", but suggested no arguments to

support them. 37 Nor can this writer see any reason to find them

attractive.

AC and its equilivents such as the mulplicative axiom, which

says that the cartesian product of arbitrarily many non-empty sets
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is non-empty, are generalizations of principles provable in ZF for

finite sets. Until fairly recently, AC represented the only really

attractive such generalization, but there are now others in the

field. To describe them, we need to explain some notions from

the theory of games.

The axiom of determinateness

We can describe informally a positional game of perfect

information as follows. Two "players" alternately "choose"

successive elements of a sequence from a set M of possible

"moves". In making his "choices", each "player" is assumed

to know the sequence of "moves:' up to that point. This is the

"perfect information" clause. Player I moves first, and if the

sequence is infinite of order type greater than w , he also

"chooses" at limit ordinals. Player I "wins" if, when the sequence

is completed, it is a member of a previously designated set of

winning sequences P; otherwise, player II "wins". The game

thus described is designated G M(P), where , is the sequence

order type. We also consider the modifications to G7M(P) in

which (a) at his "turn", the first ,"player" may choose any finite or

empty sequence of elements of M (written GM(P)*) or (b) each

player may choose a finite, non-empty sequence from M (written

Go (P),: ).

If both M and the sequence length are finite, it is a theorem

of ZF that one player can always "win" the game Gn(P), no matter

what choices his opponent makes and what sequences are in P.
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In this case, G M(P) is said to be determined for all P, written

Dn and similiarly for other games. This determinateness theorem
M'

will not tell us which player has the perfect strategy, for that will

depend on the particular set of sequences P.

The most obvious generalization of this theorem to the infinite

case is DU for all a and all M. This statement is inconsistent
M

with ZF, 38 as are a number of other ambitious generalizations,

S39 40
including D D , D D Several other generalizations

W 1

2 ,, 41
are more interesting. "For all M, DM i euilivent to AC. 4 1

D , which is equivilent to DW, and inconsistent with ZF+AC, is

called the axiom of determinateness (AD). 4 2

Whether AD is consistent with ZF (without AC) is not known,

and if true, it will be practically impossible to prove, since Con(ZF+AD)

implies Con(ZF+AC+ "there is a measurable cardinal").43 Thus,

proving Con(ZF+AD) will require principles stronger than the most

"outlandish" currently considered principles. In fact, AD implies

that N1 is measurable. 4 4

AD was origionally proposed by Steinhaus and Mycielski in 1962,45

and Mycielski has studied its consequences extensively. It must be

said that some of these consequences dealing with the properties of

the continuum of the kind studied in descriptive set theory are

extremely interesting. We list a few here:

(1) Every set of real numbers is Lebesgue measureable. 4 6
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(2) The AC holds for every denumerable set of disjoint non-

0 47
empty sets whose union has power less than or equal to 2

(3) Every non-denumerable subset of the Cantor set has a

perfect subset.48

(4) 1l is regular but there is no choice set for the Lebesgue

decomposition of the real line. 49

S w* w** w* "'** 50(5) D, D , D"'. D... D"
0 W W 2 2

Comments on (1) - (5): As we have already remarked, (1) implies

not-CH, and also the falsity of the Tarski-Banach theorem.

Mycielski shows that AD implies in addition that 2 and 1 are

actually incomparable.

(2) is a special case of CAC which Mycielski claims to be

"sufficient for most applications of the axiom of choice in analysis. "51

In support of this contention, he shows that (2) implies the countable

additivity of Lebesgue measure. 52

(3) is a particular case of the AH, which we must here again

distinguish from CH. Since every non-empty perfect set has

0 53
cardinality 2 , (3) states that every uncountable subset of the

N0 0
Cantor set has cardinality 2 . If 2 and N1 were comparable,

the Cantor set would have to have a subset of power Z1, and we

would have 2 0= N1, but also, we do not have comparability.

As for (4) and (5), (4) is one of Church's alternatives, and

(5) lists generalizations of AD (that is, D2 ) to countable M's and

the '*' and '"~' modifications of positional games.
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Plausibility of AD

Mycielski evidently regards these "many interesting

implications" of AD as real advantages of ZF+AD over the

"'sad facts' following from the axiom of choice, such as, e. g.,

paradoxical decompositions of the sphere. "54 He had also wished

to obtain an "infinitistic rule of De Morgan, " but was unable to

find a consistent formulation of AD with this consequence. 55

In a later paper, Mycielski proposed another axiom to

supplant AD, which we shall call AD', which also implies (1)-(5).

AD' is D , where IR is the set of real numbers. According

to Mycielski, AD' recommends itself because "the consistency

of this new form is a conjecture which is much better founded" 5 6

than that of the old AD. The basis for this claim is that an

important special case of AD' is a theorem of ZF augmented by a

version of AC implied by AD'. 57 This special case is that the game

GR (P) is determined if P is an analytic set of sequences. 58

It should be noted that the consistency of AD, would be as difficult

to prove as that of AD, since it still implies consistency of ZF+AC+"

there is a measureable cardinal".

Mycielski makes it clear that he has arrived at AD--and AD'--

by casting about among incompatible conjectures, trying to find one

which will not be plainly inconsistent with ZF. It is in order to

ask what guiding principles might govern this selection. Mycielski

and Steinhaus offer the following "'intuitive justification" for their

choice:
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Suppose that both players I and II are infinitely clever and
that they know perfectly well what P is, then, owing to
the complete information during every play, the result
of the play cannot depend on chance. (AD] expresses this.

The great difficulty with this "justification" is that it suggests no

relevant difference between AD or AD' and other generalizations

from the finite case, such as DW , which are inconsistent with ZF.

Why, for example, should increasing the cardinality of possible

moves to R 1 make the outcome "depend on chance"?

Strangely, Mycielski and Steinhaus regard AD as false in the

"classical universum of sets, " because they regard AC as true in

this "universum. " They propose that their axiom be considered as

"a restriction of the classical notion of a set leading to a smaller

universum, ... which reflects some physical intuitions which are

not fulfilled by the classical sets. "60 They cite the Tarski-Banach

theorem as an example of not "fulfilling physical intuitions. ,,61

The view that both AC and AD might be true in different

"universa" closely resembles positions defended about CH which

we have discussed in Chapter II. Mycielski and Steinhaus do not,

however, suggest that the "universum", appropriate to AD contains

"sets" which are not in the classical one. They state that the

notion of set appropriate to ZF+AD is a restriction of the classical

notion.

Taking this attitude lets Mycielski and Steinhaus "off the hook"

as far as justifying their axiom as against the powerfully supported

AC, but it also confines AD to the status of a curiousity since they

admit that it is false according to the "classical", that is, the
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usual notion of set. On the other hand, Mycielski's and Steinhaus'

clear intention is to propose a new axiom of mathematics to be

used by mathematicians not interested in the curiousities of

foundational research, and to accept the "sad fact" of the failure

of AC as a consequence of this recommendation.

The philosophical attitudes which best accord with such

recommendations are either to hold that the question of the truth

(as opposed to the utility) of the new axiom does not arise--a

formalist attitude--or to maintain that AD or AD' is, or may be

true. That AD might be true under a reinterpretation of set

theory aides neither view. Since we reject formalist positions

under the assumptions of the present work, and indeed Mycielski

and Steinhaus do not suggest that this is their view either, we

are left with the latter view. But here we find little reason

to accept determinateness. The only positive advantages cited

for AD are the Lebesgue measurability of all sets of reals, and

similar propositions, and we have already noted the highly

unpleasant consequences of such results. Mycielski and

Steinhaus suppose that these consequences to be advantages of

AD because they are "interesting" and because they contradict

the Tarski-Banach theorem. But I have already argued that

this theorem is no more paradoxical than theorems of analysis

not requiring AC.

A final unsettling fact is the very real possibility that either

AD or AD' or both will turn out to be inconsistent with ZF.
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We know that this particular problem cannot arise with AC.

Since Mycielski and Steinhaus published their work, set

theorists have shown a good deal of interest in the technical

consequences of AD and its variants. 62 It has been shown, for

example, that various nice properties provable for sets at some

level of the analytical heirarchy can be proved for all sets at some

63
higher level in the heirarchy by assuming AD. Other

investigations have been carried out on the relation between various

versions of determinateness and large cardinal axioms. Martin,

for example, has shown that if there is a measurable cardinal,

then every z1 (analytic) set is determined, 64 a result parallel

65
to that obtained by Mycielski for AD,. Davis has proved in

ZF+AC that certain simple Borel sets are determined. 67

All these results are technically interesting, but they do not

bear directly on the plausibility of AD or AD'. They merely show

that these hypotheses are mathematically interesting.

There is one other reason to regard AD as an interesting

proposal, however. Since both it and AC are supported by

"generalization" arguments from finite cases not obviously differing

in strength, we are oblidged to disregard such arguments for AC.

The case for AC must then rest on an appreciation of its consequences

of all kinds, that is, on the "satisfactoriness" of ZF+AC.
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THE CONTINUUM HYPOTHESIS

In contrast to the extensive literature arguing for or against AC

or presenting plausible or implausible consequences of it, much

less of either kind of material is available for CH. As we noted

in the Introduction, a number of earlier authors, including Cantor,

Konig, and Hilbert were sufficiently confident of the truth of CH

not only to attempt to prove it, but to announce that they had done

so. As it began to seem that CH might not be a theorem of ZF and,

simultaneously, more consequences of CH became known through

the work of the Polish school of set theorists, some authors began

to suggest that CH might be false. Lusin seems to have been the

first to deny CH, outright proposing an hypothesis whose "certitude

appears to me to be beyond doubt''68 which obviously implies not-CH.

Modern writers who have expressed opinions about CH almost

uniformly disbelieve it. Godel has given extensive arguments

against it which we will examine below. 69 Cohen maintains that

the point of view t"which may eventually be accepted is that CH is

obviously false. "70 Cohen supports this contention by stating that

since the continuum is "generated by a totally new and more powerful

principle, namely the Powerset axiom", it is "unreasonable to expect

that any description of a larger cardinal which attempts to build up

that cardinal from ideas deriving from the Replacement axiom

can never reach [the cardinal of the continuum]. " 71 Cohen presents

no arguments for adopting this attitude toward the Powerset axiom,
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but merely expresses the hope that "future generations will see the

72
problem more clearly and express themselves more eloquently."

In what follows, we will be mainly concerned with arguments against

CH presented by Godel. and with certain plausible consequences of

CH not mentioned by him.

Consequences of CH

In the main, the consequences of CH are neither as far-reaching

nor as striking as the consequences of AC examined in the previous

section. Generally, CH plays the role of a simplifying assumption

in otherwise less manageable situations. This is hardly surprizing,

since CH is, in an obvious sense, the simpliest hypotheses about

the position of 2 in the series of X's. This simplifying role

is exploited in a specific way to obtain a number of the consequences

of CH which will be cited below: "The continuum hypothesis permits

intricate constructions because in a well-ordering of R of type 1l'

73
any segment is countable and so easy to handle." GCH also plays

a simplifying role in areas requiring intricate calculations with

cardinals. In model theory, it is common to be able to prove power-

ful results on the assumption of GCH, and not even severely restricted

versions of these without it.74 One cannot convert this simplifying

role of (G)CH into a plausibility argument in its favor without a

liberal dose of wishful thinking or some analysis of the plausibility

of the particular results obtained. Prefering the latter, we now

turn to specific examples which are interesting either for their

own sake or because they are cited by Godel as implausible. Most

of these propositions are contained in Sierpinski's compendium of
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consequences and equilivents of CH, Hypothese du Continu. 75

We give these in the form of a list of theorems of ZF+CH, followed

by commentary.

Non-Measureble Sets of Reals

(1) There is a set of real numbers which is not Lebesgue measureable.

We have already seen that (1) is a consequence of AC as well as of

0
2 = N , for any ca> 1. CH, or the much weaker hypothesis that

2 0 is not greater than or equal to any weakly inaccessible cardinal

yield s:

(2) (Ulam) Every finite-valued measure defined on all subsets of R

which is zero for sets consisting of a single point vanishes

identically for all sets of reals. 76

It follows that no modification of Lebesgue measure will change the

situation in (1). Although it is a consequence of ZF that Lebesgue

77
measure can be extended to any particular set of reals, CH

implies that

(3) (Banach) There is a countable family of sets of reals to which

Lebesgue measure cannot be extended. 78

All but perhaps the last of these assertions can already be

obtained from ZF+AC, so if we accept AC they will be irrelevant

to the plausibility of CH. If AC is held to be in doubt, they amount

to minor drawbacks of CH. Ulam's construction in the proof of (2)

will appear in a more interesting context in the proof of proposition

(11).
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Relations of Measure and Categroy

(4) (Erdos) Assuming CH, there is a one-one mapping f of R

onto itself such that f = f-1 and f(E) is of first category if and only

if E has measure zero.

Both "measure zero" and "first category" are ways of making

precise the notion of a very "small" or "sparse,, set of reals, the

former from measure theory and the later from topology. Although

neither class of sets in contained in the other, there are wide-

ranging analogies between their properties and many close parallels

80
between the main results for each sort of "small" set. In view

of (4), CH permits us to assert a kind of '"duality principle" which

gives a precise sense to this parallelism:

(5) True propositions (expressed in a language appropriate for the

field of sets of reals) about sets of reals remain true when 'measure

zero' and'first category' are interchanged. 81

Existence of "Sparse" Sets

The following are consequences of ZF+CH, where E is the interval

[0, 1]:

(6) (Sierpinski) There is a set of reals X of the power of the

continuum whose intersection with every perfect set A is of first

category on A. 82

(7) (Lusin &Sierpinski) There is a set of reals Y of the power of

the continuum whose image under every continuous mapping of R

into itself has measure zero. 83

(8) (Sierpinski) There is a set of reals Z of the power of the

continuum such that for any infinite series of reals ! an ne w' Z
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can be covered by a set of intervals such that the length of the nth

84
interval is a .n

(9) (Sierpinski) The sets of reals X,Y, & Z of (7), (8) & (9) can

be chosen so that they coincide except for countably many points

with every translation of themselves along the real line. 85

(10) (Lusin) There is a set of reals W of the power of the continuum

which is covered except for countably many points by every dense set

of intervals. 86

(11) (Ulam) For each subset M of E, of the power of the continuum

there is a countable family a i of decompositions of M into continuum

many sets with the following properties:

(a) for all i, a. = fA i 1 and M= U Ai1 xxR X X
xsR

(b) for all i, Ai l A = 0 if x ý y
x y

(c) for all i, x, Ai has the power of the continuum

(d) for any increasing countable sequence i i I j~m and

1.
any countable sequence f x. , M- U A 3 is at most

8j J
countable.

The "Implausibility" of (6) - (11)

Godel asserts that propositions (6) - (11) are "highly implausible, "88

and thus "indicate that Cantor's conjecture will turn out to be wrong."89

He also claims that (10) and (11) remain implausible when 'power of

the continuum' is replaced by 'power 1 ' 90
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Beyond the general remark that (6) - (11) assert "an extreme

rareness of the sets concerned", Godel does not explain why these

propositions should be considered implausible. In order to

construct an argument in aide of his claim, we will need some

"intuitive" explanation of (6) - (11) which indicates why they might

be thought implausible.

Each of (6) - (11) can be seen to have a slightly paradoxical

character in that each asserts the existence of a set large in

cardinality--the power of the continuum--but smal in various other

senses,and also "uniformly spread out', in various senses. In the

following paragraphs, we explain why each of these propositions

can be characterized in this way.

As to (6), sets of the first category are intuitively "small",

but (6) also requires that X be of first category on every perfect

set A contained in R. Since perfect sets can themselves be small

(e. g., first category on R), (6) requires that X be a "small"

portion of a number of "small" sets. On account of (9), X must

also be "uniformly dispersed", i. e., that any translation

("sliding") of X along the real line will cover all but a countable

portion of it.

In (7), Y is required to be "small" not only in the sense of

having zero measure, but also to remain "small" under any

continuous "deformation" (continuous function). Continuity is a

non-trivial condition here, because since Y has the power of the

continuum, it can be "deformed" into a set of any desired measure
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by a non-continuous function. Y is required by (9) to be

"uniformly spread outf1 in the same sense as was X.

In (8), Z must have zero measure because the total length of

the intervals, 7 an can be made arbitrarily small. Since Z is
n=1

uncountable, some interval must always cover uncountably many

points of Z. This would seem to require that much of Z must

be concentrated in a small area of the real line. But on account

of (9), Z must still be spread out.

In (10), at most countably many points of W can lie outside

any dense set of intervals of R, but there are such dense sets

whose compliment is uncountable, e. g., the compliment of the

Cantor set. W must therefore be both very small and very spread

out.

In (11), each a. is a decomposition of M, say [0,1] itself,
1

into continuum many disjoint sets of the power of the continuum,

but the union of any countable selection of at most one of these

disjoint sets from each a, omits at most countably many points

from M. The fact that any such countable selection has this

property suggests that most A;,s must be spread out along M.

Since U A i = M for each i, and the A i are disjoint for each
x x

xGR

i, most of the Ai must be small. (11) is equilivent to thex

existence of a family ..' satisfying (a), (b), and (c) of (11) and

the following condition:
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(d'): for each x, M - U A I is countable.
i=l x

Certainly the plausibility of this assertion (call if (11') ) is about

the same as that of its equivilent (in ZF) (11). (11') is an immed-

iate consequence of CH plus the following theorem of ZF. 92

(12) If M is a set of reals of power N1, there is a family of

decompositions of M into N1 sets Ai of power Nl such that

(a) M= U A i

Y< , I W 1

(b) A' 0 A =0 if 0 <P <W 1'

CO i

(c) M - U A is at most countable for all i, all ca< w .
i=l 1

It is difficult to see why (12) should be any more or less plausible

thatn (11) or (11'). But we have already noted that Godel finds (11)

implausible even if CH is not assumed and M is taken to have

cardinal r1. Thus we find that if we grant Godel's judgement,

we infer that a theorem of ZF -- that is, (12), is implausible.

This may be so, but it certainly removes any objection to similar

consequences of CH.

Explaining away implausibility

In so far as the "intuitive" translations of (6) - (11) given in the

previous few pages are accurate, I believe that these propositions

may be counted implausible or at very least, surprizing.
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Godel insists that these "implausible" consequences of CH cannot

be explained away in the same way as Peano's space filling curve

or other "highly unexpected and implausible '" 9 3 geometrical

results not requireing CH (or AC). This method of "explaining

away" is the one we have already noted in connection with the

Tarksi-Banach theorem, pointing to the "lack of agreement

between our intuitive geometrical concepts and the set theoretical

ones occuring in the theorems." 9 4

Since Godel does not say why he considers (6) - (11) "highly

implausible, " it is difficult to conjecture what would count as an

adequate reply to his claim. If one found a wide-spread evaluation

of (6) - (11) as implausible and no supporting argument for this claim,

then one could hardly explain this away by citing lack of agreement

between geometrical and set-theoretic concepts, because (6)- (11)

contain no commonsense geometrical terms at all. But I doubt that

many will react this way to (6) - (11) without any discussion which

connects these propositions with more "intuitive" notions.

Suggesting such a connection was the intent of the previous few

pages discussion, and Godel himself has already opened the door

to this by his characterization of (6) - (9) as " asserting an extreme

rareness of the sets concerned. "95 It is, of course, open to object

that the approximate translations are implausible but that they

inadequately represent the sense of (6) - (11). But this simply amounts

to allowing the defense of inadequate correspondence to intuitive
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notions or it leaves us unable to evaluate (6) - (11) until some

improved explanation is available. Godel has not supplied this,

and I am unable to do so either.

Cardinality questions and plausibility

Since the analogues of (6) - (11) requiring the small spread

out sets to be only countable are straight forward theorems of ZF,

the "power of the continuum" clauses in these propositions are vital

to any implausibility arguments. But it is just this notion of the

cardinality of sets of reals which it is difficult to describe in

intuitive terms.

There are far less arcane examples which present the same

problem. It is obvious from the countable additivity of Lebesgue

measure that there are countable sets of reals of measure zero.

It is not so obvious that there are also uncountable zero sets.

Perhaps one expects sets of large cardinality to correspond more

nearly to familiar geometrical "parts" of the continuum. The standard

example of such a set--the Cantor discontinuum--is not the sort

that a neophyte would think of in a few minutes time. It turns out
H N0

that there are only 2 0 countable sets, but there are 22  sets

of measure zero, so that the obvious examples are actually a minority

of the sets of small measure. It is hard for this writer to see the

relevant differences in the plausibility of (6) - (11) and such familiar

examples examples except their familiarity.
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Expert opinion is not all on the side of Godel in this connection.

Solovay and Martin, who believe as Godel does that CH is false,

confess that they "have virtually no intuitions at all about" the

problematical propositions.97 They see no immediate hope of

supporting or rejecting their own axiom, 98 which also implies

(6), (7) and (8).

Hypotheses incompatible with CH

Godel offers one additional reason for finding CH implausible,

that "as against the numerous plausible propositions which imply

the negation of the continuum hypothesis, not one plausible

proposition is known which would imply the continuum hypothesis. "100

Godel does not cite any of these numerous propositions, and I find

only one in the papers cited in his notes. This is Lusin's continuum

hypothesis:

(13) 2 = 2

which is implied in turn by:

(14) Every set of reals of cardinality 1 is the compliment

of an analytic set.

Lusin says that the "certainly of [14] appears to me beyond doubt. "101

but his reasons for saying this are obscure. This much is clear, that

they derive from his constructivist reinterpretation of the notion

of analytic compliment. According to this reinterpretation, "real"

analytic compliments are distinguished from "ideal" ones, and the

latter eschewed.
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Since Lusin admits that the problem:

(15) are there any analytic compliments of power N1 ?

102
has resisted more conventional solution, (14) is apparently among

the propositions '"which may appear entirely implausible

[entierment invraisemblables ]" on views other than his

reinterpretation. The theorem on which such speculation undoubtedly

relies is:

(16) Every analytic compliment (CA) is the disjoint union of

I Borel sets. 10 3 If there is a CA set suct that the sets of the

decomposition are all at most countable, then (16) implies that the

answer to (15) is "yes". Lusin hoped that by restricting the notion

of CA set so as to exclude the "ideal" ones, he could not only

answer (15) in the affirmative, but establish (14). Since single

points are Borel sets, (14) is a special case of the converse of (16).

We know now that either answer to (15) is consitent with ZF+AC+CH.104

If there is a measureable cardinal, then the answer is "no". 10 5

If Lusin's (14) is accepted, there are 2 CA sets. Other

arguments show that there are 2 of these, so (14) implies (13),

10
2 = 2 . No arguments known to this writer other than Lusin' s

pretend to establish either (13) or (14), and if their is a measureable

cardinal, (14) is definitely false.

Since 2 1 1 , (13) implies not-CH, so the nepgtion of (13)

is consistent with ZF+AC. Other arguments show that (13) itself is

also relatively consistent with this theory. 106
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Plausibility of CH Summed Up:

CH has some plausible consequences, and a number which

may or may not be implausible. Not-CH is implied by (13), but

this writer finds no reason to regard this proposition as particularly

plausible. Godel is undoubtedly correct in claiming that no known

plausible hypothesis implies CH.

Each of the prominent set theorists who have ventured an

opinion about CH, Godel, Cohen, Solovay and Martin, believes it

to be false, although they cite no convincing reasons for this belief.

One does find a number of mathematicians who publish results

with CH or GCH as an hypothesis, and few who use hypotheses

incompatible with CH, but this may be purely a matter of the

greater ease of obtaining results with CH. Although the weight

of expert opinion seems to be against CH, almost nothing else

definite can be said.

OTHER PRINCIPLES

For completeness, we should look briefly at the plausibility

arguments for the principal remaining set theoretic axioms which

cannot be proved in ZF, the so-called ,"large cardinal" axioms.

Since, as we have already suggested, sets of rank greater than cu +

have no apparent significance outside set theory, these axioms

are far more removed from mathematical practice than either AC

or CH.
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The considerations occasionally urged in favor of these axioms

are almost entirely of two kinds. The first is a group of generali-

zation arguments of the following sort. One considers some

property P possessed by 0 but not by any finite cardinal. Thus,

one can regard such properties as being possessed by comparatively

large cardinals. If some cardinal greater than N 0 were to possesses

this property, it would seem reasonable to regard such a cardinal

as large compared to .0. If P is the property of inaccessibility,

one obtains in this manner the axiom of inaccessible cardinals,

107
and similarly for measureable and Ramsey cardinals. Presumably,

one can now construct some argument for these principles, that

since there are "arbitrarily larger, cardinals, there should be

cardinals large enough to have P.

The second sort of generalization argument applies to those

principles, particularly measureable cardinal, which permit results

of the same kind as, but of greater generality than, whose available

1
in ZF. For example, one can prove in ZF that every E1 set of reals

has a perfect subset.108 In ZF+ 'there is a measureable cardinal',

one can prove that every EZ set of reals has a perfect subset. 109

Both of these sorts of arguments are classificable as type (A).

No argument of either other type seems possible at present. The

feeling of this writer, and evidently some others, is that such con-

siderations are entirely too tenuous to come to any even tentative

conclusions.
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One additional argument for measureable cardinal deserves

mention, which is based on a generalization of the reflection principle.

This principle is a set-theoretic version of the Lowenheim-Skolem

theorem which says that every sentence p (x1 , ... , xn) of ZF with

free variables among x, . . . , xn is "reflected" in a portion of the

universe. That is, there is an ordinal a such that 1R (0a) cp (x 1, . . . xn)

if and only if cp (x 1, .. , Xn), if x, ... , x n  are elements of

1R(a). 110 Reinhardt has shown that a similar principle for second-

order sentences implies measureable cardinals exist, and conversely.111

But since the Lowenheim-Skolem theorem for second-order sentences

is false, we have no better reason to believe this generalized

reflection principle than to believe that measureable cardinals exist.



APPENDIX B

AXIOM SYSTEMS USED IN THE TEXT

I. ZF (Zermelo-Fraenkel set theory). Language: first-order predicate

calculus with one two-place relation symbol 's', read "is a member of".

(Identity is included among the logical notions).

Below, we denote this language 'LZF' ; in the text, it is sometimes

called simply "the language of set theory". ZF has the following

axioms:

(1) Extensionality: (x) (y)((u)(u ex - u ey) x = y)

(2) Pairing: (x)(y) (Hz) (u) (u e z - u = x v u = y)

(3) Sumset: (x)(2y) (u) (u ez = (9v) (u ev & v ex))

(4) Null s et: ([ x) (u) (u e x)

(5) Powers et: (x) (9 y) (u) (u c y = u c x)

(6) Infinity: (Sx) (x # 0 & (u) (u ex D(2v) (v ex &vEc u &vv u))

(7) Foundation (schema): (zl) - '(Zn)(( v) q0 (v, z, . ., Zn )

((av) (p(v, z1,...,zn)  & (u)(u e v D ~ (u, 1, ...,  n)))) .

(8) Replacement (schema): (z1 ) .. (Zn) (x) ((u) (u ex D(E! v)

yp(u,v, zl,..., Znv)D(2y) (v) (vey - (u) (u ex &

0 (u, v, z1, ..., zn))) '

In (7) & (8), n can be any integer, and cp is any formula of LZF whose

free variables are among those shown such that no clashes of variables

result when it is substituted in (7) or (8). ZF is not finitely

axiomatizable. Standard reference: P. Suppes,

Axiomatic Set Theory, New York, 1972.

201
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II. VBG (von Neumann-Godel-Bernays set theory). The language

is the same as LZF except that there are two styles of variables.

Upper-case Roman letters (class variables) are primitive;

Lower-case variables (set variables) are understood to be relativized

to the defined predicate M(X) = df (SY) (X e Y). VBG has the

following axioms:

(1) Extensionality: (X) (Y)((u) (u e X - u Y) D X = Y )

Axioms (2) - (6) are the same as those of ZF.

(7) Replacement: (F) (x) ((<u, v>) (<u, w>) (<u, v> e F &<u, w> eF

Sv= w) :( y) (v ey E ( 2 u) (<u, v> eF & u ex)))

(8) Foundation: (X) (X i* D(2u) (u eX & u nX = •))

(9) Comprehension (schema): (X 1) ...(Xn) (HA) (u) (u cA - q((u, X1 X ))

In (9), ýp is any formula of the language of VBG which does not contain

A or bounded class variables. (9) can be replaced by a finite list of

its instances. Standard reference on VBG: Godel, The Consistency

of the Continuum Hypothesis, Princeton, 1940.

III. VBG (Bernay's version). Bernays' version of VBG takes LZF

plu:s the following logical notions: (a) Class variables -- class

quantification is not permitted: (b) descriptive set terms (i x)(W (x),0);

and (c) class terms xj y (x) }. Operations (b) &(c) require the

following axioms:

(A) ye IxI p(x) (y)

(B) Wy(x) &(y) (ýy(y) Dx = y) Dx = (iz) (W(y), ,)

(2x) ((Wp(x) &(y)(p(y) Dx = y)) v ( i z) (W(z), ,) =,
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In (A) and (B), qO(x) is any formula in the language of Bernays' VBG,

which may include free variables other than x. Of course, clash

of bound variables must be avoided in choosing suitable p (x)

in (A) and (B). Equality of sets is taken as a logical notion,

but equality for classes is defined: A eq B - (x)(x eA - x e B).

The set axioms are the same as (1), (4), (5) and a modified version

of (6). Axiom (7) is introduced for sets only:

(7) Foundation: x / A D(2ay) (y ex & (z) (z ý y v z x)

The Replacement axiom need not be added, since the class formalism

of this variant makes it a theorem. Standard reference: P. Bernays

and A. Fraenkel, Axiomatic Set Theory, Amsterdam, 1958.

IV. ZF 2 (Second-order version of ZF). Language: LZF plus

second-order predicate variables of one place. The new logical

axioms for second-order quantification are:

(A) (P)(p D 1Y) D(p D(P) Y) where P is not free in cp.

(B) (P) qp D S'x) where S is the substitution operation

defined in A. Church, Introduction to Mathematical

Logic, Vol. I., Princeton, 1956, p. 192, and p9

satisfies the substitution restrictions in Church, op. cit.

The set axioms of ZF 2 are the same as those of ZF

except for (7) & (8), which are replaced by:

(7) Foundation: (P)((az) P(x) D(Hu) (P(u) &(x) (x/u v~P(x))

(8) R eplacement: (P)(x)(( <u, v>)(<u, w>)( P(<u, v>) & P(<u, w>)

Ov =w) D (Ey)(v e y -(1u) (P(<u, v> &u e x))
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V. VBI ( von Neuman- Bernays-Impredicative set theory). This

system is identical with VBG as described in section II above, except

the restriction on bound class variables in axiom schema (9) is

removed.

VI. STC (J.I. Friedman's set theory of "Extended Sets") The

language is that of VBG with an additional one-place predicate M(x),

read "x is an extended set". STC has the axioms of VBG plus

the axiom of Choice (see end of this appendix for AC). The axioms for

the predicate M(x) are:

(10) SubsetsM: x e MDx nZ M: wher

Z is any class, possibly extended.

(11) UnionM: x e M D UMx e M; where

U is "union".

(12) PowersetM: x e M DP(x) e M; where

(13) PairingM: x, y eM D {x, y} M

(14) InfinityM: (ax) (x e M & T(x) e M &"x

T(x) = x UUx UUUx UUUUx ...

SM = {x I M(x)} and

UMx = U(x fM) and

P(x) is powerset of x.

is infinite'") ; where

(15) UniversesM: {x 1 T(x) e M Uz} e V: where V = {x I x = x}

(16) MaximalityM: x eK P (x Mp v (2 < )((TM(X ) M YM )

where TM(x) = x UUMx UUMUMx U... , 'p' means cardinal similarity,

Kp= {x eV - MI T(x) c M UUK } (a recursive definition)

Mp ={x eM I T(x)c M U UK }

V <
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The main facts about STC are given in the text. The only reference

is Friedman's paper in Math. Ann. 183(1969), pp. 232-240.

VII. NTT (Nodal Type Theory). The language of NTT is formed

from LZF by the following process: Let A(oa,p) be a relation

on ordinal numbers which satisfies the following sentence CA:

(a) (9! P) A(a,P ) &(Ga) (P) (A(a,p) D a <P ). If A is a formula

of LZF, the degree of the variable XA is 1. The degree of a set

variable is 0. If n is the maximum of the degrees of variables

in a formula A satisfying CA, then the degree of XA is n+l.

The resulting atomic formulas of the language of NTT are

x e y, XA e y, x e XA, X XB. Let R(a) be a rank; we define the

relativation of a formula yp to R(a!) as follows: For formulas

containing no variables of degree greater than 0, qpR() is defined

as usual. For quantification of higher degree variables, we define.

pR (a) as follows: (XA)ýp(XA) R (c ) = df (CA &(HP ) (A(a, ) &

(x R (a)) ( R ( (x)) v (- CA &(x eR(oa)) R(a)(x)). The set axioms are

axioms are those of ZF (1) - (8). In addition, NTT has a new one place

predicate N(X), and the following axioms:

(17) (X)(N(X) DO ' X c On) where X is a variable of any degree, and

On is the class of all ordinals.

(18) (X) (Y)(N(X) & X c Y c- On D N(Y))

(19) (X)(y)(N(X) D N(X - y))

(20) (X) ((x)N(Xx) D( fa' (x eR(Ca))( e Xx)})) where Xx = X" b.
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(21) (X) (N( ( (x eR(a)) (p(x, X)) q;R(Q)(x, X n(a))) ))

(22) the wc-rule.

In axiom (21), the formula yp is assumed not to contain the predicate

N(X). The only reference on NTT is Takeuti's "The Universe of

Set Theory", in J. J. Bulloff, et. al., eds. , Foundations of

Mathematics, New York, 1969.

VIII. NF (New Foundations). The language of NF is LZF minus

identity (which is later introduced by a definition) The axioms of NF

are

(1) Extensionality: (x = y &y s z ) Dx e z

(23) Comprehension: (2 x) (y) (y ex -Ip ), where pý is any formula

of the language of NF which does not contain the variable x, and

which satisfies the following condition (called "Stratification"):

every variable of ýp can be assigned a natural number such that the

same number is assigned to every occurrence of a given variable,

and if m is assigned to x and n to y and 'x e Y' occurs in y0,

then n = m+I. Standard Reference on NF: W. Quine, Set Theory and

its Logic, Cambridge, Ma, 1969 (2nd Edition).

IX. ML(Mathematical Logic). We may conveniently take the language

of ML to be that of VBG, without identity, whicnhas with NF, is to

be introduced by definition. As with VBG, we understand lower-case

variables to be relativized to elements; i. e., (x) (... is to be read:

(X) (2Y) (X eY D ..---. The axioms of ML are then:

(1) Extensionality: (X = Y & X e Z) D Y e Z
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(24) Sethood (as in NF): ( 2 x) (y) (y ex =E (), where ýo does

not contain the variable x, is stratified, and all free and bound variables

of p9 are lower-case.

(25) Comprehension- (SY) (x) (x e Y = (x)); .p need not be

stratified. General Reference: see under NF.

X. TSS(Theory of Semi-Sets) The language of TSS is the language

of VBG. We take as axioms (1), (2), (6), (9) of VBG. In addition,

we take the axiom of separation:

(26) Separation: (x) (Hy) (z) (z e y z e x & ýp (z)) ' where

q (z) does not contain y.

Finally, we need an analogue of the replacement axiom, which it is

easiest to describe in words. We say that Y is a semiset if it is

contained in some set; Sm(Y) = df (Sx) (Y c x). Let R be a class of

ordered pairs which is one-one and functional. Let Dom(R) be the

domain of R: {x (F y) (<x, y> e R). We say that R is regular if for

all x, R i x} is a semiset. We say that R is nowhere constant if

(x)(y)((x, y e Dom(R) &x /y) •R {x / R/ {y})

If R is regular and nowhere constant, it is called an exact functor.

Our new axiom then states that:

(27) If R is an exact functor, then the domain of R is a semiset

iff the range of R is a semiset.

If we add to TSS the axiom "Every semiset is a set", the resulting

theory is equivalent to VBG minus Foundation. Reference: P. Hajek,

"On Semisets", in Gandy and Yates, Logic Colloquium '69, Amsterdam,

1971, pp. 67-76.
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XI. Other Principles:

(28) The axiom of choice: (x)(qf) (u)((u /ex & " f is a function) D

f(u) e u)

(29) The axiom of Determinateness--see Appendix A, T. 179.

(30) The axiom of constructibility -- see Chapter II, D. 143.

(31) "'Every set is ordinal definable,,: This axioms says that

every set x is first-order definable over the ran',k R(a), for some a.

(32) Measurable Cardinal: Let x be an uncountable cardinal.

Suppose that there is a function 4: P(K) -+ 0, 1 such that for every

pair-wise disjoint set of subsets of f x I i eI} such that the

cardinality of I is less than nt, the following conditions are satisfied:

(a) " (U xi) = 4 (xi)
isI i eI

(b) (K) = : (c) for < a<

Such a function is called a measure on {. If { has a measure, it is

said to be a measureable cardinal.

(33) Regularity: A cardinal is said to be regular if it is not

the union of fewer cardinals of smaller cardinality.

(34) Inaccessibility: A cardinal is said to be (strongly)

inaccessible if it is regular and cardinally greater than the powerset

of any smaller ordinal.



APPENDIX C

EQUIVALENCE OF VBI AND ZF 2 + E

Proposition: If cp is any formula of VBI and cp* is the formula

2
of ZF which results from replacing every atom of <p of the form

x eX by the predicate variable X(x), then ZF + E - cp: iff VBI

A sketch of the proof: Since all the axioms of VBI except the

class comprehension axiom schema are converted into axioms of

2
ZF + E by the *-transformation (and conversely for the non-logical

axioms of ZF 2 + E under the inverse transformation), we need only

prove the following two lemmas which relate the comprehension

schema of VBI to the substitution schema of ZF 2 :

Lemma 1: If <p (x, x, ... ,x, P' .. ,Pk) is a formula in the

language of ZF 2 whose only free set and predicate variables are

as indicated, then ZF 2  (xl) (xn) (P1).(P) (P)(y)

( (y, X1 , ''.'' Xn' P'''' P,) P(y)), where y is alohabetically

the first variable not in <p.

Lemma 2: If <p(X) is a formula in the language of VBI with X free,

and the substitution restrictions (Church, p. 192) for X are satisfied

by the VBI formula L (x,. .), then VBI - (X) <p (X) D p(~Y(x .. ))).

Plainly, these lemmas permit proof of the remaining axioms of

VBI(ZF 2 ) in ZF2(VBI). We now si'etch proofs of the lemmas.

209
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For lemma 1, the following is the contrapositive of an instance

of Church's substitution schema "509n:

,•(x,...) &(y)((Y (v.) ( (y,...))&(~( O(yY .. ) ~O(y ... )))
(1)

(aP) (Px &(y)((<p(v, ... ) P y) &(,, p(y,...) ~,Py))

The antecedent is logically equivalent to

quantification theory,

ZF 2 ýp (x, (2) 1 P) (y) (c (V, Xl..

On the other hand, if we replace cp (x,..

and cpq (y,..), respectively, in (1), we

2
ZF PWýO (X, :D (9 F) (y) xi

<y (x, . . ): hence, by

'xn, Pl'Y'''' P ) - P y )

.) and y (y,. .. ) by -Cp (x,...)

obtain, in a similar manner,

S..., x, Pi'' ''' P) Py).
_ _ - z

From these two formulas, we need only construct a dilemma

to obtain

ZF2 1- (xl) "" "(x n)(Pl) . k) ( P) (a ) ( Y(,YX,...,' X ,PI""' 1k - PY)

For lemma 2, p (X), cp (Y(x, .. )) are alike except that ' (x, . . .)'

occurs in place of 'x eX'. p (i(x, . .) satisfies the condition that no

free variable of Y (x, . .. ) is bound in p (T (x, . . .)) except possibly

x or its alphabetic variants which may arise in the substitution of

T (x,...) and we assume for the time being that X is not free in

(x, .). Since X is not free in TY(x, ... ), we have

(2Y) (x) (x e Y T (x .... ))

by the comprehension axiom of VBI. Instantiating (7Y) to A, we have

(x) (x eA = I (x, ... )).
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Since the only free variable in the formulas x eA, AT (x,...)

which may be bound in ýp(A) is x, we can use the Equivalence

Theorem of quantification theory (Mendelson, p. 71) to obtain

It is then a matter of routine quantifier logic to obtain

(2) (X) yO(X) DO Y(~(x,...))

as desired.

In case X is free in T (x,...), we first substitute for it some

variable not used in any of the formulas of the proof, and then

substitute X for that variable in (2). X does not thereby become

bound in the consequent of (2) since the quantifier (X) only binds

the antecedent.



APPENDIX D

"Categoricity'" of *ZF 2

Proposition: Every *-model of ZF2 is isomorphic to the entire CTS

or to a natural model with first-order universe R(h), where ; is

inaccessible.

The proof of this proposition is presented here so that the reader

may see how it depends on the assumption of "*-ness". The

argument is a minor modification of an argument for VBG in

Shepherdson's Daperl, which in turn relies on Zermelo's work1 . 2

As we have remarlked in Chapter I, every *model of ZF 2

is Well-founded; that is, every subclass of the FO universe has an

e - least element. By the Isomorprhism Theorem, 4 every well-founded

model of ZF 2 is isomorphic to a transitive e - model, that is, an

e -model in which every element of the FO universe is a subset of

that universe. Transitive e -models M have the property that for

a large class of formulas op,

q(xl, .. . ,x  ) iff M P q(X ,...,Xn)

for all xl,..., ,n e M. Such formulas are called absolute; all

absoluteness results used in this appendix are from Shepherdson. 5

Without loss of generality, we confine our attention to transitive

e- models of *ZF 2: M = <U, C, R>.

As before, we let CTS = U R(ca), where 0 is the class of

all ordinals. Within M, we define an analogous rank function r(a)

212
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as usual: r(O) = $ & e > 0 D(x er (a) -(,p ) (@ <ac& xc r(p ))

Since 'x is an ordinal; 'x e y', 'cra< ', 'x = y', ' x = 0 ', and

'x c y' are all absolute, every "ordinal" of M is actually an

ordinal, and for all a, U, r(y) c R(a). I.e., all the "ranks"

of M are contained in the "real"t ranks. We want to show that

for all aC U, r(a) = R(ca), i.e., the universe of M coincides

with an initial portion of the "real" universe. We prove this by

induction on a' that is, let y be the least 0aeU such that

for some set a, a e R(y), but not a e r(y-). y- cannot be 0, since

M = r(0) = 0 and 'x = 0' is absolute. y cannot be a limit ordinal,

since R(0a), r(ca), are just unions of smaller R(1 )'s and r(3 )'s

respectively, if a0 is a limit. We can assume, therefore, that y

is a successor.

Since R(y) is transitive and asR(y), ac R(y). Since a eR(y)

iff every member of a is in some R( ), for p < y, and R( ) = r( )

by the induction hypothesis, we also have a c r(y). We need to

show that a e U : y is a set of M, so by the replacement axiom,

r(y) is a set of M. Since M is a *-structure, and a c r (y) c U,

we have a e C. If we let a = P, then , by the second-order axiom

of separation, M (9y) (z) (z ey z e r(y-) & P(z)). Since

M z (z) (z sa - P(z)) and Mt ac r(y-), M y = a, so y = a,

so a e U. We now need a er (y).

Since y is a successor, let p + 1 = y. By hypothesis,

r(P ) = R(P ), and since a e R(y), aC R(c ) = r(0 ). Since 'xc y'

is absolute, M ý ac r(p ), and then using the theorem
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ZF 2 - (x) (oQ) (x c r(a') D x e r(a+ 1)) and the fact that 'x e y'

is absolute, we have a e r(y). This contradicts the hypothesis.

Hence every *:-model of ZF2 is (isomorphic to) a model of the

form <R(c~), P(R(cv)) , e t lR(a) >. We refer the reader to

Shepherdson for the proof that a must be inaccessible.



FOOTNOTES -- INTRODUCTION

1. "Une contribution a la theorie des ensembles", Acta Math. 2(1883),

pp. 327-8. This volume and volume 4 of these same journal contain

french translations of Cantor's papers thru the end of 1883. These

translations, which were corrected by Cantor himself, will be used here

as sources of most of Cantor's work not now available in English.

2. Cantor, Fondements d'une Theorie Generale des Ensembles, (excerpts)

loc. cit., p. 395.

3. See note 1.

4. A particularly interesting effort is contained in his letter to Dedekind

(1899), translated in Form Frege to Gbtdel, J. van Heijenoort, ed.,

Cambridge (Mass), 1967, pp. 113-7. Others are cited in Grattan-Guiness'

introduction to "An Unpublished Paper by Georg Cantor: Principien Einer

Theorie Der Ordungstypen Erste Mittheilung", Acta Math. 124 (1970), pp. 65-107.

5. Konig, "On the foundations of set theory and the continuum problem",

van Heijenoort, op. cit., pp. 145-9, and editor's introduction, p. 145.

6. ibid., p. 367.

7. "On the infinite', ibid., pp. 369-92.

8. ibid., p. 367.

9. ZF is described in appendix B.

10. This notion is discussed in Chapter II.

11. "The consistency of the axiom of choice and the generalized continuum

hypothesis", Proc. Nat. Acad. Sci. 24(1938), pp. 556-7 and "Consistency

proof for the generalized continuum hypothesis", ibid., 25(1938), pp. 220-24.

12. That is, it is impossible to prove the consistency of ZF+A by "inner

model" methods unless A is true in the minimal (inner) model. See L. Tharp,

Notes on Set Theory, mimeograph notes, Massachusetts Institute of

Technology, 1967, p. 35.
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13. "The independence of the continuum hypothesis", Proc. Nat. Acad.

Sci. 50(1963), pp. 1143-8 and ",The independence of the continuum

hypothesis, II", ibid. , 51(1964), pp. 105-110.

14. "Some remarks on axiomatized set theory", in van Heijenoort,

op. cit., p. 299n9.

15. See papers cited in notes 11, 13.

16. Levy and Solovay, "Measureable cardinals and the continuum

hypothesis", Israel Journal of Math. 5(1967), pp. 234-248.

17. These matters are taken up in appendix A.

18. This position is modeled on that of H. Curry in "Remarks on the

definition and nature of mathematics' in Philosophy of Mathematics:

Selected Readings, P.Benacerraf and H. Putnam, eds., Englewood

Cliffs, 1964, p. 153.

19. A. Robinson, "Formalism '64" in Logic, Methodology and

Philosophy of Science, Y. Bar-Hillel, Amsterdam, 1965, p. 230.
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