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A hybrid Euler/Navier-Stokes solver is developed for computing the laminar, transonic

vortex flow over the blunt-edged NTF delta wing. The flow domain is split into two zones;

an inner zone in the near the wing and wake where viscous effects are significant, and an

outer zone away from the wing and wake where the flow is inviscid. A grid is generated

in each zone, with the two grids fitting together to form a composite grid. The thin layer

Navier-Stokes (TLNS) equations are solved on the inner grid and the Euler equations are

solved on the outer grid. The two solvers are coupled at the interface between grids at each

stage of the Runge-Kutta time integration which was used. The TLNS solver functions in

two modes; ezplicit and semi-implicit. With the TLNS solver running in explicit mode,

results were obtained at Moo = 0.85, a = 15* for Reynolds numbers of 2 x 106 and 7.5 x 106

on a grid with 276,000 cells. Explicit results at Moo = 0.75, a = 160 and Re = 1 x 105

were also obtained on a coarse grid of 36,000 cells. The semi-implicit TLNS mode was not

found to be robust, and only one solution at M = 0.75, a = 16*, Re = 1 x 10s was found

on a very coarse grid of 11,400 cells. The results are qualitatively correct, but quantitative

assessment is impossible, as no experimental data is currently available.
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Chapter 1

Introduction

1.1 Background

Since the first powered flight by Orville and Wilbur Wright in 1903, the science of flight

has progressed at an extremely fast pace, greatly aided by the occurence of two world wars.

Had it not been for the wars, aviation would probably not be where it is today, since the

amount of money spent on aviation research and development in times of war is significant.

Early aircraft were awkward, flimsy contraptions which flew rather slowly and often were

a hazard to the person flying them, due to inherent instability of the design. As aviation

progressed, advances were made in many areas. Planes were better built, more stable, had

longer ranges and endurances and, most of all, greater speeds.

The delta wing came into existence as speeds attained by aircraft approached and even-

tually surpassed the speed of sound. Designers found that the important parameter for

drag in the transonic and supersonic flow regimes was the Mach number normal to the

leading edge, rather than the freestream Mach number. By sweeping the leading edges of

the wing, the normal Mach number, and thus the drag, could be reduced. This concept has

been used extensively, as shown by the fact that most supersonic aircraft have delta wings.

In addition, all modern aircraft travelling at transonic or greater speeds have wings which,

though not delta wings, are swept.

Experience with delta wings showed that this type of wing had a certain phenomenon

associated with it at high angles of attack, namely the formation of leading edge vortices.

The phenomenon of leading edge vortices is of interest because of its complexity and its



direct practical application in enhancing the high a characteristics of flight vehicles. It also

has the potential for seriously degrading the performance of a flight vehicle and causing it

to spin and crash. For these reasons, an understanding of leading edge vortices is essential.

1.1.1 Occurrence of Leading Edge Vortices

The flow over a given delta wing depends greatly upon the geometry of the wing and

the flow conditions which are involved. A general classification suggested by Newsome and

Kandil [23] places delta wing flows into four diferent categories as follows:

1. Low a. In this flow regime, the flow is attached over the wing and no vortices are

present.

2. Moderate to High a. At the higher angles of attack, 3-D boundary layer separation

takes place and large lee-side vortices are shed. The flow is stable and symmetric.

3. Very high a. Here, the vortices are still being shed but there is a loss of stability of

the vortex system, resulting in the onset of asymmetry, unsteadiness, vortex bursting,

or a combination of these.

4. Extreme a's. This regime includes angles of attack up to 90*. An unsteady, diffuse

wake is present. Periodic vortex shedding may also be present, depending on flow

parameters and geometry.

The flows of interest in this investigation fall into Category 2, i.e. stable and symmetric

flows.

1.1.2 Structure of a Leading Edge Vortex System

Stanbrook and Squire [30] devised a grouping for the different vortical flow topologies

which occur in the "stable and symmetric" regime described in the previous section. The

grouping is based on the Mach number and angle of attack normal to the leading edge,



40

20

10

0

1 Classical
Vortex

2 Separation
Bubble with
No Shock

3 No Shock/
No Separation

4 Shock with no
Separation

5 Shock-Induced
Separation

6 Separation
Bubble with
Shock

7 Vortex with
•LI L

%nSOCk

Figure 1.1: Classification of leading edge vortex flows, based on MN and aN.

defined respectively by

MN = Moo1 - sin A cosa (1.1)

and
tana .

aN = tan-l ( ). (1.2)
cos A

This classification was later improved and expanded by Miller and Wood [20] as a result

of their extensive experimental investigation on sharp-edged delta wings. Their classification

in terms of the normal Mach number and angle of attack is shown in Figure 1.1. Although

this figure is for sharp edged delta wings, the occurence of vortices over blunt edged delta

wings may be classified in the same way, the only difference being that, due to the bluntness,

the exact flow conditions for separation may vary and the vortices will not be as strong. The

flows of interest in this investigation fall into Region 1 of Figure 1.1, labeled the "classical

vortex" regime.

Figure 1.2 shows the structure of a typical leading-edge vortex from Region 1 of Figure

1.1. As it flows around the leading edges, the wing boundary layer is unable to negotiate the

adverse pressure gradient it encounters on the leeward side of the wing just inboard of the
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Figure 1.2: Structure of a leading edge vortex system.

leading edge. It therefore separates from the body, producing a free shear layer of distributed

vorticity. In contrast to sharp edged delta wings, for blunt delta wings the separation point

is not fixed at the leading edge, but varies with the particular flow conditions.

The shear-layer shed from the leading edge proceeds to roll up into a spiral under its

own influence and forms the core of the leading edge vortex. The high fluid velocities in

the vortices sitting above the wing create low pressure regions on the lee-side of the wing.

This is shown in Figure 1.3.

The swirling flow about the vortex core induces a spanwise velocity in the boundary

layer fluid on the wing surface. This outward flow is subject to an adverse pressure gradient

as it moves from the low pressure area beneath the leading edge vortex (known as the

"primary" vortex) to the recompression area just inboard of the leading edges. Unable to

negotiate this pressure gradient, the boundary layer again separates into a free vorticity

layer, giving rise to a second, smaller vortex (known as the "secondary" vortex) located

underneath the large primary vortex. The secondary vortex rotates in the sense opposite

to the primary. The location of separation of the secondary vortex is very dependent on
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Figure 1.3: Pressure distribution on the lee-side of the wing.

the state of the boundary layer on the wing. In transonic flows the secondary vortex has

a large effect on the location of the primary vortex compared with subsonic and transonic

regimes. The secondary vortex produces a smaller and less powerful low pressure region on

the wing than the primary vortex, as shown in Figure 1.3.

1.1.3 Practical Consequences of Leading Edge Vortices

Leading edge vortices may have positive or negative effects on the wing from which they

are shed, depending on the details of their occurrence. Some associated phenomena, such

as vortex bursting, may also occur and influence the characteristics of the wing.

When they are symmetric and steady, leading edge vortices have a positive effect on the

wing, providing regions of low pressure on the wing surface below where the vortex is located.

These low pressure regions formed on the upper side of the wing make the lift significantly

higher than would be obtained if the flow remained attached, especially at higher angles of

attack. The vortices are also responsible for the non-linear lift characteristics of delta wings

at high angles of attack.

II I



Leading edge vortices may be used to provide thrust by using a wing modification known

as a "vortex flap". Vortex flaps are downward deflections of the leading edges. This creates

a part of the wing surface which has a normal vector with a component in the upstream

direction. The intent is to place the shed vortex over this surface, so that the low pressure

on the vortex flap creates a net forward force.

In the case of asymmetric vortices, the effects on the wing are negative. The differ-

ent vortex strengths cause the low pressure regions on either side of the wing to vary in

magnitude and size, creating a net rolling moment about the wing centerline. When the

asymmetric vortices are unsteady, they may lead to the phenomenon of "wing rock" where

the rolling moment alternates in sign, causing the wing to oscillate in roll and possibly be-

come unstable. For an arbitrary configuration, current knowledge is not sufficient to predict

the onset of vortex asymmetry.

Another phenomenon associated with leading edge vortices (and vortices in general)

is vortex bursting, which involves a sudden stagnation of the vortex core and subsequent

breakdown of the vortex itself. Vortex bursting is usually a highly unsteady phenomenon,

which can lead to large unsteady pressure transients in the region of the burst. Vortex

bursting is a very poorly understood phenomenon. A couple of excellent reviews of progress

made to date in vortex bursting are the papers by Liebovich [16] and Hall [9].

At lower angles of attack, the vortex usually bursts downstream of the trailing edge

of the wing, having little effect on the wing itself. As the angle is increased, however,

the breakdown location moves upstream until it does occur over the wing. When this

happens, there is a sudden loss of lift due to the increased pressure under the bursting

vortex. Associated with this is a nose-up pitching moment due to higher pressures on the

aft part of the wing.

The large unsteady pressure transients associated with vortex bursting can cause struc-

tural fatigue in complex configurations where the vortex shed from one part of the vehicle

bursts near another component. An example of this is the F-18 fighter, where a vortex

being shed from the forebody strakes was bursting near the vertical tail, causing fatigue at

the tail's base.



1.2 Previous Delta Wing Studies

Previous studies of vortex flows over delta wings may be broken down into two groups.

In the first group are methods in which the topology of the separation is known a priori

and the vortex sheet arising from the separation is modeled in an approximate way. The

second group consists of methods in which the leading edge vortex is captured as part of the

solution of the governing equations of the flow. Hoeijmakers [10] presents a good review of

methods from the first group. Only studies which fall into the second group are of interest

here.

Studies which involve solution of the governing equations of the flow may be further

divided into two types; Euler studies and Navier-Stokes studies. For an excellent and

thorough review of work done so far in these two areas, consult the paper by Newsome and

Kandil [23]. Brief discussion of some representative studies in each category is given below.

The Euler equations have been used for numerous studies, such as those by Goodsell

[8], Murman and Rizzi [22], Rizzi et al [27], Powell [25] and Powell et al [26]. Most of

the studies done so far have captured the primary vortex and correlated fairly well with

experiments in the subsonic and supersonic flow regimes. The correlation is poorest in the

transonic regime [8]. None of the Euler studies have captured the secondary vortex, since

this is a viscous phenomenon which is not modeled in the equations. The Euler equations

have been applied almost exclusively to sharp edged delta wings, since the separation point

can be captured correctly due to the Kutta condition.

A controversy surrounding Euler studies, however, is how the equations manage to cap-

ture the separation of the vortex when there is no viscosity present and thus no mechanism

to induce the separation. Powell [25], who solved the conical Euler equations for flow over

a flat delta wing, explains that the separation at the leading edges is due to the numerical

dissipation in the algorithm. The numerical dissipation mimics the physical viscosity and

causes a Kutta condition to exist at the sharp edge.

Not many Euler studies have been done for blunt-edged delta wings, as the absence of



a fixed separation point such as a sharp leading edge would render the equations incapable

of predicting the separation point correctly. In fact, for flow over blunt edged delta wings,

Kandil and Chuang [13] showed conclusively that the numerical dissipation is the cause of

the inviscid separation. By varying the amount of dissipation, they could cause separation

not to occur.

Numerous investigators have used the full Navier-Stokes equations or simplifications

thereof to compute delta wing flows. Since they include the effects of physical viscosity, these

equations should capture all phenomena such as the secondary separation and subsequent

secondary vortex formation. They should also correctly capture the separation point of

the primary vortex on a blunt leading edge. As with any viscous simulation, however, the

limitations of present turbulence models limits the quality of solutions.

A few representative studies using Navier-Stokes equations are those by Fujii and Schiff

[7], Loyd [17], and Rizzi et al [27]. All of these captured the viscous flow physics quite well.

Fujii and Schiff [7] solved the thin layer Navier Stokes equations over a strake-delta wing,

using an extremely fine grid with 850,000 points. Both primary and secondary vortices were

captured and, surprisingly, vortex bursting was captured at high angles of attack.

Loyd [17] uses a semi-implicit algorithm to solve for the laminar flow over a blunt edged,

elliptical delta wing. The primary and secondary vortices were captured, and two different

mechanisms for separation at blunt leading edges were identified, namely separation due

to shockless recompression and separation involving a leading edge shock. Loyd found the

semi-implicit algorithm to be very efficient, as it eliminates the stiffness associated with N-S

solutions.



1.3 Present Study

1.3.1 Approach to Problem

The approach selected for this investigation consists of splitting the flow domain into

two regions, and solving a different set of governing equations on each. The thin layer

Navier-Stokes (TLNS) equations are solved on an inner region near the body and in the

wake where the viscous effects are significant. The Euler equations are solved in the outer

part of the domain, where the flow is effectively inviscid.

The first step is to generate a grid consisting of two sections; an inner grid and an outer

grid. The inner grid surrounds the wing and wake, and it is on this grid that the TLNS

equations are solved. The outer grid surrounds the inner grid over most of the domain.

This is the grid that the Euler equations are solved on.

After obtaining the grid, an Euler solver and a thin layer Navier-Stokes solver are

combined into a hybrid solver; each flow solver is run on its respective portion of the grid,

with the solvers being coupled at the interface between the two regions of the grid. Both

solvers are run until a steady state solution has been obtained in the domain.

1.3.2 Research Objectives

There are three main objectives to this investigation. The first objective is to capture all

the relevant flow physics for this type of problem. This includes capture of the secondary

( and possibly tertiary) vortex, and correct prediction of the separation point at the leading

edge. Capture of the secondary vortex is especially important in transonic flows, as the

secondary vortex has its greatest influence on the flow in this regime. This objective is

accomplished by applying a viscous solver to the area where all these viscous-dominated

phenomena are taking place.

The second objective is to acheive computational efficiency while still capturing all flow

phenomena. This is accomplished by running the Euler solver in the region away from the



wing where the flow is essentially inviscid, thus avoiding the computation of viscous terms

from the Navier-Stokes equations which would be of negligible magnitude anyway.

The third objective is to investigate the use of these multi-zone, multi-solver approaches

on this type of flows, assessing the degree to which they succeed in correctly computing the

flow and the computational savings which they offer.

1.3.3 Thesis Summary

The first chapter of this thesis gives a brief qualitative description of the phenomenon of

leading edge vortices, along with a discussion of a few of the computational studies which

have been done to date on this topic. Also covered are the general approach to the problem

which is taken here and the objectives of the research.

Chapter 2 presents the two sets of governing equations whose solutions are the topic of

this thesis, along with the boundary conditions which are applied to each. Some comments

are made on the assumptions which lead to each equation set and on their applicability to

different problems.

Chapter 3 provides the details of the grid generation done for this research. Both the

inner grid and outer grid are described, along with the combination grid made up of the

two. Examples of both grids and the combination are given for the grid size which was used

in the final computations.

Chapter 4 gives the details of both solution algorithms which were used and describes

how the two were coupled together to give the hybrid solver. Algorithm characteristics

which are common to both algorithms are discussed, followed by discussion of those items

which are particular to each of the solvers.

Chapter 5 presents the computational results obtained using the hybrid code, giving

qualitative data in the form of color graphics and some limited quantitative data. Discussion

of the results is given.



Finally, Chapter 6 discusses some of the conclusions that may be drawn from the results

of the investigation.



Chapter 2

Governing Equations

The full, unsteady 3-D Navier-Stokes (N-S) equations govern the flow of any Newtonian

continuum fluid. They are a system of five coupled, nonlinear partial differential equations.

The fact that they are coupled and non-linear, in addition to the fact that the classification

of the equations changes depending on the flow regime (for unsteady flows they exhibit

both hyperbolic and elliptic behavior), makes it almost impossible to obtain an analytical

solution for a general case. A few exact solutions for these equations have been obtained,

although they are for very simplified cases. These analytic solutions provide a great deal

of insight about the N-S equations, however they are not general enough to be directly

applicable to practical problems.

Given the difficulty in obtaining analytical solutions, one must resort to numerical so-

lutions of the equations using a computer. While algorithms are available which solve the

full N-S equations, they are currently very expensive in terms of computing resource time.

Consequently, people have resorted to solving simplifications of the equations which still

give physically meaningful results but whose numerical solution is much cheaper.

This chapter describes the simplifications of the N-S equations whose numerical solution

is the topic of this thesis. These are the Euler equations and the thin-layer Navier-Stokes

(TLNS) equations. No detailed derivation is given, since this is found in many good texts

on fluid mechanics. Instead, the equations will be presented along with their respective

boundary conditions, some explanation will be given about the assumptions inherent in

these simplifications, and the range of applicability of the simplified equation sets will be

discussed briefly.
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Figure 2.1: Control volume for Navier-Stokes derivation.

2.1 Basic Considerations

2.1.1 Conservation Laws

The full Navier-Stokes equations are the mathematical model of a fluid flow which

comes about by application of conservation laws to the flow. Usually, they are derived by

considering the flow through a control volume fixed in space, as shown in Fig 2.1.

Application of the conservation laws to this control volume simply states that the rate

of change of a physical property inside the control volume must be equal to the flux of

this property through the surface of the control volume plus the rate of change due to

causes internal to the control volume. In the case of a fluid flow, there are three physical

quantities which are preserved: mass, momentum and energy. Mass and energy, being

scalar quantities, yield one equation each. Momentum, being a vector quantity, yields three

equations since conservation must occur in each of its three component directions. Usually

one more equation, the equation of state, is needed to obtain closure for the system of

equations.



2.1.2 Turbulence Issues

Turbulence has long been considered the greatest challenge of fluid mechanics, due to

the extreme complexity and poor understanding of the phenomenon. Mathematicians and

scientists have been working on turbulence for years, to little avail.

Turbulence has both positive and negative effects. Negative effects include higher friction

drag, higher pressure loss and more noise. Positive effects are that the turbulent boundary

layer is more energetic and can negotiate larger regions of adverse pressure gradient, delaying

separation of the flow over bodies. The overall effect of turbulence is to cause the flow

to behave as if the viscosity had increased by a large amount. Whatever the effect of

turbulence, it is significant in most flows where it occurs, so that some attempt has to be

made to predict its effects.

It is generally accepted that turbulent flows are governed by the unsteady Navier-Stokes

equations, so that, in principle, all the effects of turbulence could be captured simply by

solving the equations. Unfortunately this is not possible, due to the extremely small length

and time scales involved in turbulent fluid motion. To resolve such scales numerically for a

problem of practical significance would require a tremendous concentration of grid points.

No computer available today, and no computer in the forseeable future, could handle the

amount of computation, memory and storage involved.

This being the case, the approach taken by the fluid dynamics community has been

to come up with ways to model the turbulence without calculating it from fundamental

considerations. Numerous models exist in varying degrees of complexity, however none

has been able to correctly predict the flow over a wide range of conditions. Most of the

models contain so many free parameters that the flow solution can be "tuned" to match

experimental data, giving the impression that the model works well. While they may do a

good job in this post-dictive mode, use of present turbulence models as predictive tools is

cast in doubt by this.

Although the NTF delta wing is designed to be run at very high Reynolds numbers

where the flow will certainly be turbulent, all the cases run in this study are assumed



laminar in nature. It has been found that use of a turbulence model is not that important

to capture the relevant physics of the primary vortex. In fact, Powell [25] has shown that the

artificial dissipation added to stabilize the time marching algorithm becomes large enough

to overwhelm the physical viscosity in the region of the primary vortex. Turbulence has a

more profound effect on the wing boundary layer and the secondary vortex. The usual effect

of turbulence is to decrease the size and strength of the secondary vortex and to increase

the magnitude of the suction pressure peak under the primary vortex.

Since the use of turbulence models as predictive tools is doubtful, and this study is

essentially a predictive study since experimental data is not yet available for comparison,

it was felt that laminar calculations would probably compare with experimental data just

as well as turbulent ones.

2.1.3 General Form

The 3-D Navier-Stokes equations and all of its simplified forms may be written in a

general form. This form is an integral equation in Cartesian coordinates over a control

volume V , surrounded by a control surface aV, as follows (see Fig 2.1):

U dV F(U). iidS = 0. (2.1)

Equation 2.1 is written in conservative vector form. Writing the equation in this form

allows correct capturing of flow features such as shocks and, in unsteady flows, the shock

speed. It is written with the assumption that body forces such as gravity or electromagnetic

forces are negligible and that there are no internal heat or mass sources. In other words,

changes in the control volume are due only to fluxes through its surface.

For both simplifications of the Navier-Stokes equations considered in this thesis, the

vector of state variables, U, is the same and is given by U = (p pu pv pw pE)T, where p

is the density, u, v, w are components of velocity in the z, y, and z directions repectively,

and E is energy per unit mass. The only aspect in which the simplifications of the N-S



equations differ is in the contents of the flux vector F.

2.2 Euler Equations

2.2.1 Assumptions and Applications

The Euler equations are the governing equations for a flow which is totally inviscid.

These equations are obtained by elimination of the all of the viscous terms and all of the

heat transfer terms from the full Navier-Stokes equations.

The Euler equations are more useful than approaches such as the potential equations

because they can convect and capture vorticity in the field. They are also capable of

capturing vortex stretching and tilting in three-dimensional flows. Using the potential

approach, these phenomena must be modeled by placing singularities in the flow field. The

Euler equations can also capture flow discontinuities such as shocks as part of their solution

( a shock wave is a weak solution of the hyberbolic equations ), and the solutions satisfy

the Rankine-Hugoniot equations relating the end states across a shock.

While treating the flow as totally inviscid may seem like quite a severe restriction on

the applicability of the equations, they in fact model a large range of conditions. The Euler

equations are most applicable for flows where the Reynolds number is large enough that

the effects of viscosity are confined to a thin layer near a solid boundary. In cases where the

viscous layer is very thin compared with the characteristic dimension of the flowfield, the

inviscid portion of the flow field may be solved for independently and the Euler equations

may be used.

One of the best applications of the Euler equations is for preliminary design purposes,

as they usually do a good job of predicting the pressure field, and thus the lift and pressure

drag, on a configuration. The cost of using Euler equations is substantially lower than the

cost of Navier-Stokes solutions, and the Euler solutions are obtained faster.



2.2.2 Equations

The Euler equations are given by the general form shown in Equation 2.1, with the flux

vector F being divided into components in each of the three coordinate directions

F = F:+ Gj+ H , (2.2)

where the unit vectors i, j, and Ic denote the z, y, and z coordinate directions , respectively.

The flux vectors F, G, and H are given by

Spu \ / pv \ / pw

pu 2 + P puv puw

F= puv , G= pv + P , H= pv , (2.3)

puw pvw pw 2 + P

pulH pvH pwH

where H is the total enthalpy, H = E + P/p, and P is the static pressure.

The equation of state which is used to close the system of equations is the perfect gas

equation, P = pRT, which is combined with the definition of internal energy per unit mass

to give the closing relation

1P 1 2  2
E= + -(u + v2 + w). (2.4)

"- l p 2

2.2.3 Boundary Conditions

As with any PDE or system of PDE's, it is important to specify boundary conditions

to have a well-posed mathematical problem. For the Euler equations, there are two types

of boundary conditions which are usually specified; conditions in the far field, away from

any solid boundaries, and conditions at a solid boundary. In addition, some sort of Kutta

condition must be applied for flow over a lifting body.

The boundary condition at the upstream and lateral far field is simply that the flow

conditions there should be the same as freestream, i.e. that no influence of the body on the



flow is felt there. This is expressed mathematically as

lim U = Uoo. (2.5)
YZ--*+oo

At the downstream far field boundary (x -- +oo) the flow does not return to free stream

conditions, due to the wake created by the presence of the body and due to changes in flow

properties which occur across any shocks which are present. While the pressure at the

downstream far field is usually assumed to have returned to the free stream value, other

properties, such as the entropy, will be at values different from the free stream. For flow

over a lifting body, the condition that flow perturbations in the streamwise direction vanish

in the Trefftz plane applies. This is stated mathematically as

OU
lim = 0. (2.6)

z-.+oo ax

The boundary condition at a solid boundary states that there can be no flow through

the boundary. In other words, the velocity normal to the boundary must vanish there. This

is expressed mathematically as

V9 - = 0, (2.7)

where V is the total velocity vector and n^ is an outward pointing unit vector normal to the

body surface.

The final boundary condition which must be applied is the Kutta condition. This

condition makes the flow solution unique by fixing the circulation at that value which causes

the flow to separate from the body at sharp edges. This condition is not usually enforced

explicitly, in Euler or Navier-Stokes calculations, as it evolves as part of the solution. With

other schemes, such as vortex panel methods and potential methods, it is necessary to

enforce the Kutta condition explicitly.



2.3 Thin Layer Navier-Stokes Equations

2.3.1 Assumptions and Applications

The thin layer Navier-Stokes equations come about in an ad hoc manner in a way similar

to the boundary layer equations (see Anderson et al, [1]). As with the boundary layer

equations, an order-of-magnitude analysis is performed on the full Navier-Stokes equations

and terms of order 1/RVR-L and smaller are neglected. This means that, in the viscous

terms, all derivatives in the directions parallel to the body surface are dropped since they

are substantially smaller than the derivatives normal to the surface.

Unlike the boundary layer equations, however, in the thin layer Navier-Stokes equations

the normal momentum equation is not simplified to ap/8y = 0. Instead, all the terms in

the normal momentum equation are retained, with the exception of the viscous derivatives

parallel to the body, as described above.

Experience by numerous investigators has shown that the TLNS equations may be

applied to a wide range of practical problems. Since most of the terms in the normal

momentum equation are left intact, the equations may be used to calculate separated and

reverse regions of flow in a straightforward manner. Also, the equations can easily model

flows with large pressure gradients. With sufficient resolution, the phenomenon of vortex

bursting may even be captured with this equation set, as shown by Fujii and Schiff [7].

2.3.2 Equations

The TLNS equations again have the same general form as Equation 2.1. The flux vector

F is again split into components in three directions, however each component now consists

of viscous and inviscid contributions

= (F1 - Fv)7+ (GI - Gv)j+ (Hi - Hv)i , (2.8)

where the unit vectors i, 3, and k represent the z, y and z directions, respectively. The

subscripts I and V refer to the inviscid and viscous contributions, respectively.



The inviscid parts of the flux vectors are the same as those previously given for the

Euler equations:

pU2 + P puV puw

FI = puv , G = pv 2 + P , HI = pvw

puw pvw p '2 + P

puH pvH \pwH

where H is the total enthalpy, H = E + P/p, and P is the static pressure.

The viscous fluxes, which represent the effects of shearing stresses and

across the surface of the control volume, are given by

S 0 0 0
rxz rzv rzz

Fv = , GV- , Hv-

urT, + vrTY UTZY + Vryy UT2 , + vry

+w2 zz - qz +wryz - qy +wrzz - q

Before application of the thin layer approximation, the components of the

are given by

S (2.9)

heat conduction

(2.10)

stress tensor, r,

2 2au v aw
3 ax z a a
2 2• aBu aw
3 ay axz 8z
2 aw au avB
3 az ax ay)

r7v=,rv, = JA

r,,=Tzr = IA

ryz= rzv = JA

(u( +a

(uataz09Z

and the heat flux terms are given by

= T
qx = -k Cz

8T
qY = -k T

ay

By introducing the equation of state for a perfect gas, given by

H = CPT + .5(u + V2 + w 2)

av
8t)

aw

8w)aw
TY)

(2.11)

aT

q = - k- "
8z

(2.12)

(2.13)

A



and introducing the Prandtl number Pr = "-, we may eliminate the temperature T as a

variable and re-write the heat flux terms as

Ss 8H u av - 8w
qz = - p-- -u --o -

pt 8H B y -Wq = P 5- u a -v aw (2.14)Pr y By ay ay
,. (8H au 8v 8w)

qz -5-- - u- - -
Pr z z 8z 8z

The value of the Prandtl number Pr was taken as 0.72 for the laminar flow solutions

presented in this thesis. The Stokes hypothesis is assumed to hold for the viscous terms,

and the coefficient of viscosity is related to the local enthalpy by the Sutherland formula

S(h 3 / h + h (2.15)
h h+h '(2.15)

where hi is a dimensional constant (= 111421 in SI units), and oo refers to free stream

conditions. This relation closes the system of equations.

2.3.3 The Thin Layer Approximation

When dealing with a Cartesian coordinate system, the Cartesian directions will not, in

general, correspond exactly with the directions parallel and normal to the body. The body-

fitted coordinate system, however, does correspond to the directions parallel and normal

to the surface. Because the thin layer form of the Navier Stokes equations only retains the

viscous terms in the body-normal direction, the viscous stresses must be transformed from

the Cartesian z, y, z system to body-fitted C, ri, and ý coordinates.

By applying the chain rule of differentiation, derivative terms with respect to z, y, and

z may be transformed to derivatives with respect to C, q, and S coordinates:

a ac a art a as a a a a

8 a c a x at a+ a a + a(, .16)- = + + = F +z+

a aC a a7 a at a a a a+ y7+ + - C + 77 + - (2.16)Sy 8FY ac ay 8y ac a 8 a

8z 8z8( 8z87 By 88 8( B



Applying the thin layer assumption that derivatives in the downstream C and cross

stream 5 directions are small compared to derivatives in the body-normal 17 direction,

a a a-, >> a (2.17)

all C and 5 derivative terms may be dropped from (2.16) to obtain

a a a a a7 -- , - r , and z - z (2.18)

Inserting (2.18) into (2.11) gives the components of the thin layer stress tensor,

.2 A (2 _' au ad) ( ( yz aov(
X ---- 2- t=--• -_3 all au1 aw) 72( a- a• aw) ( w
S- r = (2.19)3 a7 Y17 z a. + a

2 au v av a w\

terms, they in fact allow considerable computational savings, since derivatives in this ap-proximation need be evaluated only on the two faces of each volume that are parallel toLikewise, applying (2.18) to (2.14), the thin layer heat fluxes are given byby assumption, face-to-face changes in the streamwise and cross stream viscous terms arew2..4 Boundary Conditionsz JA aH au av )aw

While these expressions seem no simpler than the original stress tensr and heat toux

terms, they in fact allow considerable computational savings, since derivatives in this ap-

proximation need be evaluated only on the two faces of each volume that are parallel to

the body. Evaluating the thin layer terms on the other four faces is unnecessary since,
by assumption, face-to-face changes in the streamwise and cross stream viscous terms are
negligible.

2.3.4 Boundary Conditions

As with the Euler equations, the TLNS equations also require boundary conditions to
form a well posed problem. The boundary conditions for the TLNS equations are the same
as those for the Euler equations with the exception of the condition at a solid boundary.



Instead of only having the velocity normal to the flow go to zero, the no-slip condition is

applied so that the total velocity at the surface is zero:

IVaurfaceI = 0. (2.21)

2.4 Non-dimensionalization

Non-dimensionalization of variables in the governing equations allows characteristic flow

parameters such as the Mach number and Reynolds number to be identified and varied

independently. The free stream values of density, speed of sound, and viscosity poo, aoo, /oo,

and a characteristic length c were chosen as reference values. Introducing these quantities

gives the nondimensional variables:

zx= y =Y Z =_
C C C
U V) W

., , I _

a.oo aoo a_ (2.22)
p P , tP =

Poo Pooa coo
A= Moo E'= E H'=

poo Reoo a2 a2

The forms of the nondimensional governing equations, equation of state, and viscosity

model are identical to that of the dimensional equations. The free stream vector in terms

of nondimensional variables is

S 1 1

Moo cos a

UO =0 , (2.23)

Moo sin a
1 M2

S(" -1) 2
where a is the angle of attack and the yaw angle, /, is assumed zero. The non-dimensional

free stream pressure is pw = 1/h.

To avoid carrying around many symbols, the primes will be dropped from all equations

that follow in this document. Henceforth, all variable references are to be interpreted as

applying to non-dimensional variables.



Chapter 3

Grid Generation

The first step in any computational study of fluid flow is the generation of a suitable

grid about the body of interest to provide the points at which the discretized governing

equations will be solved. Exactly what constitutes a "suitable" grid is not clear. In general,

this is a qualitative measure obtained by visual inspection of the grids. The qualities most

sought are smoothness of the grid, lack of skewness of cells and sufficient number of points in

the areas of the flow where interesting phenomena are occurring, so that these phenomena

may be adequately resolved.

This chapter describes the generation of the grids for the NTF delta wing which were

used to perform calculations. First, the geometry of the NTF wing itself is described,

along with some of its geometric characteristics. Next, in keeping with the philosophy

of describing the whole before the parts, the combined grid system is described. This is

followed by detailed descriptions of the generation of the two zones of the grid. Finally,

some graphics results are presented showing the grids obtained using the generation methods

described.

3.1 The NTF Delta Wing

3.1.1 Description

The NTF delta wing [191 is a blunt edged delta wing which is to be tested at NASA's

Langley Research Center in the National Transonic Facility ( thus the name "NTF Delta

Wing"), a cryogenic nitrogen tunnel used for testing at very high Reynolds numbers.



Table 3.1: Characteristics of the NTF Delta Wing.

The wing has a set of three interchangeable leading edges, having radii of curvature

(r/E) of 0.05, 0.15 and 0.30. These are designated leading edges 1, 2, and 3, respectively.

All the computations in this thesis were done using leading edge # 2. For data collection,

the NTF wing is instrumented with a large number of static pressure taps on the bottom

and top surfaces. The taps are located in spanwise rows at several chordwise stations. In

addition, there are pressure taps located right on the leading edges.

The geometric characteristics of the NTF wing are shown in Table 3.1. The wing has

no twist or camber.

Note that, in the description which follows, all lengths have been normalzed by the root

chord of the wing.

3.1.2 Physical Coordinate System

Figure 3.1 shows the physical coordinate system which is used for this study. Note

that this figure is merely a schematic, as it depicts a wing with sharp leading edges while

the actual NTF wing has blunt leading edges. The coordinate system is right handed,

Cartesian and body-fixed. The coordinate origin, (z, y, z) = (0,0,0), is located at the apex

of the wing, with the z coordinate being in the chordwise direction, the y coordinate in the

spanwise direction and the z coordinate in the direction normal to the wing at its centerline.

Parameter Value
Aspect Ratio 1.865

Root Chord(ft) 2.140

Span(ft) 1.996

ti/c 0.034

Sweep (deg) 65.00



Figure 3.1: Schematic of body-fixed physical coordinate system.

3.1.3 Wing Geometry

The NTF delta wing consists of four distinct sections; a fiat plate region which makes

up most of the wing, analytically defined leading edges and trailing edge closure regions,

and an analytically defined sting fairing where the sting fits in to the back of the wing.

This layout is shown in Figure 3.2. Section views of the wing in streamwise and spanwise

directions are shown in Figures 3.3 and 3.4, respectively.

In the present study, all of these regions are modeled except for the sting fairing, which

was not modeled due to ambiguity in the model description by Luckring [19]. Thus, for com-

putational purposes, the wing is considered to be an isolated body with no solid structure

(such as a sting) supporting it.

The semi-thicknesses 4 of the wing in the leading-edge and trailing edge closure regions

are defined by the equation
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Figure 3.2: Schematic Layout of the NTF Delta Wing.
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Figure 3.4: Spanwise section of NTF wing (section B-B in Figure 3.2).

0(0) = K (a + bO + cO2 + d O3 ) ; < 0 < 1 (3.1)

where the definition of 0 and the constants a, b, c, d and K varies depending on whether one

is describing the leading or trailing edge region.

The leading edge geometry is constant in the streamwise direction at each spanwise

station (such as Section A-A, shown in Figure 3.4) except for a region near the wingtip

where the geometries of the leading edge and the trailing edge closure region intersect,

resulting in a discontinuity in the surface. The rounded leading edges are designed to meet

the flat plate portion of the wing at a streamwise distance of 15 percent root chord aft of

the leading edge, with continuity through the second derivative. In the leading edge region,

0 is given by

0 = ( - where (3.2)
K K = 0.15

Here, xz, is the z location of the leading edge for each y location, i.e. at any station along

the span. For easier stacking of 2-D grid planes in the chordwise direction, Equation 3.2

was transformed so it would be in terms of y by replacing (x - xo) with (y - yo) tan A.



The trailing edge closure region is designed to exhibit a sharp trailing edge and to match

the flat plate portion of the wing at 90 percent root chord, also with continuity through the

second derivative. In the trailing edge region, since it is constant in the spanwise direction

at any given z station, 0 is defined in terms of z as

0 = (X- z) where . (3.3)
K K = 0.10

In the flat plate portion of the wing, the wing semi thickness is described simply by

0(0) = ± 0.017000800036901 ; 0 < 0 < 1 (3.4)

where 0 in this case is given by

(X - zo) where X0= zz, + 0.15=where {(3.5)K K = 0.90 - zo

In the region near the wingtips where the leading and trailing edge geometries intersect,

one uses either definition 3.2 or 3.3, depending on which side of the discontinuity between

the two regions one is interested in calculating.

The values of the constants a, b, c, and d for the three interchangeable leading edges and

the trailing edge closure region are given in Appendix A.

3.2 Features of the Combined Grid

3.2.1 Computational Coordinate Systems

The computational coordinate system used to generate both grids is shown in Figure 3.5.

The figure shows that the computational coordinates, like the physical ones, form a right-

handed system with the i index denoting the streamwise direction, the j index denoting

the body-normal direction and the k index wrapping around the wing from bottom to top.

The i, j, k indices represent the body-fitted coordinates (, rq, ý respectively.



Figure 3.5: Schematic of right-handed computational coordinate system.

An important point is that each grid has its own separate indexing system. For example,

the i index of the apex in the inner grid is different than the i index for the same location

in the outer grid (the apex is at i = 1 in the inner grid and i = 11 in the outer grid). For

each grid, the ranges of indices in the i, j and k directions are 1 - i7m1 , 1 --+ j, and

1 --+ k, 3,, respectively. In addition, each direction i, j and k has two "ghost cells" at each

extreme. For example, in the i direction there is two ghost cells having indices 0 and -1

at the lower extreme and two ghost cells having indices im + 1 and i,~ + 2 at the upper

extreme.

3.2.2 Description

The combination grid system on which all solutions are computed consists of two parts;

an inner grid and an outer grid. The two grids are constructed to fit together, with grid

lines having CO continuity across the interface between them. This is shown schematically in

Figure 3.6. Both grids are assembled by stacking of two-dimensional grids in the chordwise

(z) direction, giving them both an O-H topology.



The inner grid begins at the apex of the wing at z = 0 and runs back to the outflow

boundary of the domain, located one chord length downstream of the trailing edge at x = 2.

This grid is generated algebraically at each chordwise station along the wing by computing

a family of wing shapes in each y - z plane. The 2-D planes at each chordwise station

are then stacked to give the 3-D grid. At the apex, the wing comes to a point, creating a

singularity in the grid where all the grid points at that chordwise station collapse onto the

apex. The outer boundary of the inner grid is not fixed in advance, but is a result of the

generation. The TLNS equations are solved on this grid, since it lies closest to the wing.

The outer grid begins at the upstream boundary of the domain, located at x = -1, and

extends all the way to the downstream boundary of the domain. In the area of the wing

and wake, the outer grid surrounds the inner grid, with the outer boundary of the inner

grid being the inner boundary of the outer grid. This grid is generated using an elliptic

method to compute two-dimensional grids in the y - z plane at each chordwise (z) station

on the wing. The 2-D grids at each x location are then stacked to give the 3-D grid. The

Euler equations are solved on this grid.

Both the inner and outer grids are generated only over half of the wing. This is because

only symmetrical cases are being computed ( that is, cases with zero yaw angle, P) so that

it is more efficient to compute on half the wing and apply symmetry conditions at the

symmetry boundary. Better resolution at places of interest on the wing is thus acheived by

placing the same number of points over half the wing that one would use in computing the

whole wing.

3.3 Inner Grid

This section describes in detail how the inner grid is generated. Note that this grid is

generated only between the apex and the trailing edge of the wing. The portion of the inner

grid in the wake is computed simply by extending the grid from the trailing edge station to

the downstream boundary of the domain. In other words, at a streamwise location in the

wake, the inner grid looks exactly like the inner grid at the trailing edge station (x = 1).
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Figure 3.6: Planform schematic view of the combined computational grid.

3.3.1 Generation

The inner grid is generated algebraically. This method was chosen for generation because

the equations for the wing surface are known analytically, making it easy to generate a grid

which is orthogonal to the wing, as required by the TLNS equations. The resulting grid is

orthogonal over most of the wing, except at the leading edges due to the sweep of the wing

and at the trailing edge due to the slope of the closure region in the streamwise direction.

The grid is generated by calculating a series of wing families in the y - z plane. In other

words, if the wing surface is defined by z = 0(0) , then each grid surface in the body-normal

direction is given by zj = f(j)4(0), where f(j) is a factor depending on what body-normal

(j) location is being considered.

Since the equation of the wing is known analytically, it is straightforward to calculate

the slope of a constant j grid line at any point:

dz f d d =9 (3.6)-= f(j) _L = f(j) (dy dy =o dO dy i=o

Upstream boundary
/•,. 4.^,, k .... A ....
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Figure 3.7: Generation of the Inner Grid.

Knowing the slope of the grid line at any point, the slope of the line which is normal to the

grid line at that point is determined using the fact that the product of the slope of a line

and the slope of its normal should equal -1. Thus, the slope of the normal line is given by

-1
m dz/d= (3.7)dz/dyi

Once the slope of the normal line is known, the next grid point in the body-normal (j)

direction is placed along the normal line at a distance ASi from the current position. This

is illustrated in Figure 3.7. The distribution of ASj is specified beforehand and determines

what the clustering of points along the normal lines will be.

There are two places where the above formulation will run into trouble, namely the flat

plate portion of the wing, where the slope of the normal line is infinite, and the tip of the

wing where the slope of the grid line will be infinite. This is easily handled, however, simply

by placing the next point out along a vertical or horizontal line, respectively.

j=2



3.3.2 Grid Stretching and Scaling

With any Navier-Stokes calculation, it is necessary to have a great deal of resolution in

the lower part of the boundary layer near a solid wall due to the small physical scales which

govern viscous diffusion in the direction normal to the wall. Many grid points can be placed

in the lower part of the boundary layer by "stretching" the grid. In the formulation of the

previous section, this is done by specifying a small AS adjacent to the boundary and then

increasing the ASy's as a function of the body-normal distance from the wing. This gives

a continuous increase in cell size between the wing surface and the outer grid boundary.

In this case, the grid is stretched exponentially. To begin with, body-normal "sizes"

for the innermost and outermost grid cells, Ac1 and A•,mz, are specified. The difference

between these two quantities will determine the amount of stretching. The "sizes" of the

grid cells in between are then specified by

AO' = Aal ei Av  (3.8)

where

AV= o) - logA ) (3.9)
jmaz - 1

To account for the growth of the boundary layer over the wing, the outer boundary of

the inner grid is scaled by some measure of the local boundary layer thickness. Thus, the

actual cell sizes AS, are determined by multiplying all of the Aai by a scale factor which

reflects the thickness of the boundary layer at that particular chordwise location:

ASi = Ai -lc (3.10)

Here, 6 is the boundary layer thickness at the chordwise location, calculated somewhat

un-sophisticatedly as a flat plate boundary layer using

4.960s
6= 90 <_ 1. (3.11)

Note that the boundary layer scaling takes place only from the apex to the trailing edge

of the wing. Aft of the trailing edge, the grid is simply extended backwards from the last

station on the wing to the downstream boundary of the domain.



3.4 Outer Grid

This section describes how the outer (Euler) part of the grid is generated. Note that

this grid is also generated only between the apex and the trailing edge of the wing. The

portion of the outer grid in the wake is computed simply by extending the grid from the

trailing edge station to the downstream boundary of the domain. Likewise, the portion of

the grid upstream of the apex is computed by extending the apex station forward to the

upstream domain boundary. In other words, at any streamwise location in the wake, the

outer grid looks exactly like the outer grid station at the trailing edge (z = 1), and at any

streamwise location upstream of the apex, the grids looks exactly like the grid at the apex

station (z = 0).

3.4.1 Generation

The outer grid is generated elliptically. This method was chosen because of the smooth

grids it generates, and to provide a smooth transition of the grid from the inner boundary

(which is the outer boundary of the inner grid) to the outer boundary, which is a circle of

radius equal to one root chord.

The elliptic system which is solved for the grid is given by

(k y)v + (ke), = 0

(k~y,)y + (ky,), = 0, (3.12)

where k is a factor analogous to the thermal conductivity in a heat transfer problem and

will later be used to cluster the grid. This approach was first used by Giles and Drela in

their theses. A further description is given by Murman and Giles [21].

To be useful, the above system must first be transformed so that y and z are the

dependent variables. We do this by applying the standard transformation (see Anderson et

al [1]) and we get

ay - 2fly(" + yY = k (kz, - kze)



-J

azoq - 2p3z~ + yz,, = • (key, - kry) (3.13)

where a, f, and - are coefficients and J is the Jacobian of the transformation. These

quantities are defined as follows:

a = y72 + z2

# = yoy, + zz,

7 = y2 + z 2  (3.14)

J = yOz -yzý.

This set of equations is then written in finite difference form , using central differences

for all derivatives. The system is then solved using an SLOR iterative method for elliptic

equations. The convergence criteria for the grid is that the RMS change in the y and z

positions of the grid from one iteration to the next be less than a specified small amount:

AyRMS,AZRtMS :< 5 x 10- 4 . (3.15)

3.4.2 Grid Clustering

Solution of the Equations 3.13 does not always produce a grid that places enough points

in the places of interest in the flowfield. It is therefore necessary to find a way to alter the

grid which is generated by these equations. Alteration is accomplished through variation of

the factor k in the equations. This factor, if correctly varied, will cause the system to cluster

more points in certain places in the domain. In this case, we want to cluster more points

near the interface between the grids so that phenomena near the interface are captured

correctly and so that there is not a large disparity in size between the outermost cells of

the inner grid and the innermost cells of the outer grid.

A clustering function k which gives adequate results is given by

(j - jmin) (i - i'e) (3.16)k = C'1 + C( x o'S

where the factors C1 , C 2 and C3 may be varied to change the clustering. The values 5, 15

and 2 , respectively, were found to work well. The last factor containing i was inserted to



turn off the clustering at the apex and make it more powerful at each streamwise station.

If this wasn't done, the clustering effect was too severe near the apex, causing grid points

to be pulled inside the inner grid. If the clustering was turned off in the whole domain,

however, the resolution obtained near the trailing edge was poor.

3.5 Grid Results

This section gives graphic results of the grids which were obtained using the generation

methods described. The results are limited to two-dimensional views of the grids at different

locations. This is because, at the time of writing, no program which produces 3-D hardcopy

is available to the author.

Results of the inner grid generation are presented first, followed by results of the outer

grid generation. The section concludes with some views of the combination grid.

3.5.1 Inner Grid

The results shown are the grids which were used in the final flow calculations in this

thesis. The inner grid has dimensions of 40 x 20 x 120 cells in the i, j and k directions

respectively. This gives a total of 96,000 computational cells in the inner grid. The 40

streamwise cells are distributed with 10 cells upstream, 25 cells on the wing and 15 cells in

the wake.

Figure 3.8 shows a planform view of the inner grid. The wing is located between z = 0

and z = 1. It can be seen that , on the wing, constant k grid lines are rays emanating from

the apex. The portion of the grid between the trailing edge and the downstream boundary

represents the computational wake boundary, which is just a slit of zero thickness in the

y - z plane. It is also seen from this figure that more points have been concentrated near

the leading edges to capture the phenomena there.

Figure 3.9 shows a view of the inner grid at a typical chordwise station on the wing.
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Figure 3.8: Planform view of the inner grid.

The shape of the wing at a chordwise section and the bluntness of the leading edge are

evident. The orthogonality of the grid can be seen in this view, along with the effects of

the grid stretching which was applied.

Figure 3.10 is a blowup of the leading edge region of Figure 3.9. This figure more clearly

shows the orthogonality of the inner grid and the concentration of grid points close to the

body.

Figure 3.11 is a view of the inner grid at a spanwise station, in this case the wing

centerline. The boundary layer scaling of the grid is clearly seen and the extension of the

grid from the trailing edge to the downstream boundary of the domain is evident. Note

that the vertical scale of this figure is greatly exaggerated, so that the orthogonality of the

grid in the trailing edge and apex regions is actually much better than it looks.
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Figure 3.9: View of inner grid at a typical streamwise location on the wing.
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Figure 3.10: Blowup of inner grid at leading edge to show stretching.
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Figure 3.11: View of inner grid at a spanwise station (wing centerline).

3.5.2 Outer Grid

The dimensions of the outer grid used in the final calculations is 50 x 30 x 120 cells

in the i,j and k directions, respectively , for a total of 180,000 computational cells in the

outer grid. The streamwise distribution of cells places 25 on the wing and 15 in the wake.

Figure 3.12 shows a view of the outer grid at a typical chordwise station at 71 percent

chord. Some degree of grid clustering is evident in this figure. Figure 3.13 is an enlargement

of the leading edge region of Figure 3.12. The grid clustering is shown better in this view.

The boundary where the points are clustered is the outer boundary of the inner grid. The

clustering is not as severe as one is used to seeing, since the main intent here is to try to

match the cell sizes of the two grids at the interface. The secondary goal of the clustering

is to increase the resolution in this area, which seems to be accomplished, especially at the

leading edge.

Figure 3.14 is a view of the outer grid at a spanwise location, in this case the wing

centerline (which is also the symmetry plane). Here, the wing is between x = 0 and z = 1,

· t~i~i~i~
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Figure 3.14: View of outer grid at a spanwise location (wing centerline).

and the wake runs between z = 1 and z = 2. It can be seen in this figure that an attempt

was made to place more streamwise points near the apex and trailing edge regions, as more

resolution is needed there. Careful inspection of the bottom portion of this figure in the

wake region reveals where the inner grid fits inside this outer portion of the grid.

3.5.3 Combination Grid System

The combined grid system, as previously mentioned, is a composite of the inner and

outer grids. Thus the number of computational cells in the grid system is equal to the sum

of the two individual grids, giving a total of 276,000 cells used for calculation in the domain.

Figure 3.15 is an enlargement of the leading edge region of the combination grid at a

streamwise station on the wing. It can be seen that the grid sizes at the interface seem to

match adequately. The Co continuity of the grid lines across the interface is apparent, as

is the lack of C1 continuity.

Other views of the combination grid do not reveal much more than is shown in this
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Figure 3.15: Blowup of combination grid at leading edge (71 percent chord).

view, and are thus omitted.



Chapter 4

Solution Algorithms

This chapter describes the numerical algorithms used in this thesis to solve the govern-

ing equations presented in Chapter 2. Both of the algorithms ( for the Euler and TLNS

equations) are of the cell-centered finite volume variety, the difference between them being

in the temporal integration applied to march the solution forward in time to a steady state.

The Euler solver used is that of Roberts [28] as modified by Goodsell [8]. The TLNS code

used is the semi-implicit SINSS code of Loyd [17]. Each code was modified extensively to

do the code coupling.

The chapter begins by describing items which are common to all finite-volume type

algorithms (and are thus similar for both algorithms being dealt with here), such as the

spatial discretization, artificial dissipation and convergence acceleration. This is followed by

a description of the unique aspects of each of the solvers, such as the temporal integration

and the boundary conditions. Finally, the treatment of the interface between the two grids

and the coupling of the two flow solvers is described.

4.1 The Finite Volume Method

4.1.1 Spatial Discretization

In order to render Equation 2.1 solvable by a numerical method, it must first be dis-

cretized. The discretization consists of two different aspects; time discretization and space

discretization. The first term of Equation 2.1, which is the time rate of change of the state

vector in the control volume, is subject to discretization in time, while the second term
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Figure 4.1: Hexahedral Cell and Cell Nomenclature.

of the equation, which represents the flux

discretization in space.

into or out of the control volume, is subject to

In the three dimensional finite volume method, the spatial discretization is done by di-

viding the domain of interest into a large number of hexahedral cells (i.e., "finite volumes").

A typical hexahedral cell is shown in Figure 4.1. In this figure, Faces 5 and 6 are in the

body-normal direction (j), Faces 1 and 2 are in the streamwise direction (i) and Faces 3

and 4 are in the cross-stream direction (k).

The values of the state vector are assumed to be stored at the center of each of cell and

the flux vector F is calculated at each cell based on the state vector there. The flux vector

is assumed to have a constant value over any cell face.
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Applying this discretization leads to the semi-discrete form of the governing equation ( 2.1):

6

d(U i,jkVi,i,kv ) = - F(U), .S
f=1 (4.1)

= - (FS, + GSy + HS,),
f=1

Here, the flux integral over the surface of the cell has been converted into a discrete sum of

fluxes through the faces of the cell. The flux through each face is calculated by multiplying

the projected area of the face by the value of the flux vector in the corresponding direction.

For example, the net flux through a cell in the z direction is found using

6

Z(FS.)I = (Fs2)I + (FS,) 2 + (FS,)s + (FPS) 4 + (PS.)5 + (FS,)e, (4.2)
f=1

where S. is the projected area of the cell face in the y - z plane. Similarly, in the y and z

directions the fluxes are obtained by replacing (FS,) with (GS.) and (HS,), respectively.

The value of the inviscid flux at a cell face is computed by averaging the values of the

flux vectors at adjacent cells which share that particular face. Using the component G as

an example, the values of the flux on each of the six faces of a cell are given by

G1 = .5(G/I,_1,j,k + GI,,;,k) G2 = .5(GI,++,3,k + GIx,,ik)

Gs = .5(Gl,,id,_I + GIi,, k,)  G4 - .5(Gl,,i,A+l + GI,,.,A)  (4.3)

G5 = .5(Gi,,i.-,, + Gri,,,) G6 = .5(Gi,,j+,,k + Gr,,j,) .

The values of the viscous terms, when they occur, are written in finite difference form

using forward or backwards differences as

) or (4.4)

depending whether the viscous flux across Face 5 or Face 6 is sought. At is equal to 1 by

definition. Notice that the viscous terms in the streamwise and cross-stream directions are

not computed. This is to be consistent with the thin layer assumption that derivatives in

these directions are small in comparison to the normal direction, and can thus be neglected.



4.1.2 Artificial Viscosity

Since the discretization described above uses central differencing, and central difference

algorithms are dispersive rather than dissipative, it is necessary to add some form of artifi-

cial damping to the algorithm to stabilize the time integration. This is done following the

approach of Jameson [11], which defines a dissipation operator D as a sum of non-linear

second and fourth difference operators. In addition, the dissipation is weighted by "pres-

sure switches" designed to regulate the relative magnitudes of the second and fourth order

dissipations, depending on the pressure gradients in the flow. The actual equation which

is solved is then Equation (4.1) with the dissipation operator D subtracted from the right

hand side.

The purpose of the fourth-order dissipation is to provide a low level of dissipation

throughout the domain to eliminate the odd-even oscillations which are characteristic of

methods employing central differences. It also serves to stabilize the time integration of the

equations, but may lead to de-stabilization of the scheme when there are discontinuities in

the flow, such as shock waves. This is because the fourth order smoothing tends to increase

the magnitude of the Gibbs phenomenon near discontinuities. In other words, it increases

overshoots in physical quantities such as the pressure near the shocks.

Second-order dissipation is added to the scheme to make capturing of shocks and flow

discontinuities possible. Without it, the fourth order dissipation is insufficient to stabilize

the time integration in the presence of the discontinuity.

The dissipation operator D at each cell consists of contributions in each of the three

computational coordinate directions:

D(U) = DE(U) + D,(U) + D,(U), (4.5)

where De, D., and Dr are differences across the cell in the C, rl and ý directions, respectively:

DC(U) = di+1/2j,k - di-1/2,j,k

D,(U) = di,j+1/2,A - di,j-1/2,k (4.6)

D,(U) = di,j,k+/lt - dij,k-1/2



The damping flux terms d+1/2j,k, d-l1/2j,ý, etc. are constructed such that D(U) is

a sum of 2nd and 4th differences across the cell. Each d is the sum of a first and third

difference, so that differencing of d's across the cells makes D a sum of second and fourth

differences. For example, in the C computational direction,

d
/  [ i+ I/2 ( U "

(4) (4.7)
E+i,/2(U+ 2 - 3Ui+i 3U+ - U_1)]

and
di-1/2 - •t)-12 1/2 (Ui - Ui-1) --1/ C4)(4.8)

)1/2 (Ui+I - 3U + 3Ui_ 1 - Ui_2 )]

where the indices j, k have been suppressed for clarity. Analogous differences are defined

in the ,r and S directions by replacing the index i with j or k, respectively. With this

formulation and the factor of V/At, the artificial viscosity terms are conservative.

The coefficients e(2) and e(4) contain pressure "switches" designed to turn on the second

order dissipation in regions near shocks and to turn it off in smooth regions of the flow. It

does the opposite to the fourth order dissipation, turning it down near shocks and up in

smooth regions of the flow. The coefficients are defined as:

2)1/ = (2)•Vi+ I + vj,)/2 , (4.9)

14), max( O, &(4)- -_ 2) ·. (4.10)

The factor v is the actual pressure switch, calculated based on pressure gradients in the

region:

Pi+1 - 2Pi + Pi- (4.11)
S i+- + 2Pi + Pi-1

Some representative values of the damping coefficients ,c(2) and C(4), which are specified

by the user, are 0.07 and 0.012, respectively.

Establishing adequate boundary conditions for the artificial viscosity is important for

maintaining a well-posed numerical problem, however this is difficult because the artificial

viscosity is a non-physical term added to stabilize the integration.



The approach taken here is due to Eriksson [5], which guarantees that the artificial vis-

cosity terms are dissipative throughout the domain. To accomodate the five point difference

stencil of the fourth order dissipation, two "ghost cells" are defined outside the boundary.

This is illustrated in Figure 4.2. Values of the state vector at the ghost cells are found by

linear extrapolation from the interior of the domain:

Uo = 2U 1 - U2  (4.12)

U_1 = 3U 1 - 2U ,

where the subscript o denotes the ghost cell adjacent to the boundary and -1 denotes the

next ghost cell.

The fourth order dissipation at the boundary is then calculated based on the last three

cells interior to the boundary and the two ghost cells outside the boundary, while the second

order is calculated based on the last two cells inside the domain and the first ghost cell.

This particular boundary treatment is applied at all boundaries, with the exception of

the symmetry boundaries, wake boundary and the interface boundary. At the symmetry

boundaries, a reflection condition is applied, as described in Section 4.2.2. At the wake

boundary , a throughflow condition is applied as described in Section 4.3.3. The conditions

at the interface between grids are described in Section 4.4.

4.1.3 Convergence Acceleration Techniques

It is often advantageous (and cheaper) to try to speed the convergence to steady state

of the time integration. This can be accomplished through several techniques, such as

multigrid, time inclining, residual smoothing, enthalpy damping and local time stepping.

The ones chosen for this application are implicit residual smoothing, due to Jameson and

Baker [12], enthalpy damping, due to Jameson [11], and local time stepping. Each of these

is described briefly below.

Implicit residual smoothing functions by spreading out the change in the residuals over

more of the domain. This effectively increases the size of the difference stencil which is
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used , and allows a greater CFL number, and thus a greater time step, to be used, speeding

convergence to the steady state.

In three dimensions, residual smoothing is implemented by applying a smoothing oper-

ator succesively in each of the three computational coordinate directions (, r, ( as follows:

(1 - p/Rjb)R' =R

(1 - pjRt6)R" =R' (4.13)

(1 - pR S)R"' =R"

The smoothing operator consists of the second difference operator 6 applied to the vector of

residuals R and a "residual smoothing coefficient" , piR, which weights the second difference

operator. Note that setting PR to zero leaves the residuals unmodified after application of

the smoothing operator. The operator 6 is given in the f direction by 6ejR = Ri+I - 2Rj +

Ri-I and is thus an undivided second difference operator.

In the computation, the vector of residuals R is smoothed using the above sequence

of smoothing operators and the "smoothed" residuals R' are then placed back into the



computation, which proceeds as normal. The optimum value of MR was found for each

case by numerical experimentation. Complete details of the implementation of the residual

smoothing and solution of the resulting matrix systems may be found in Appendix C of

Loyd [17].

In the TLNS solver, residual smoothing in a given direction is superfluous if the discrete

fluxes are already treated implicitly as in a semi-implicit or fully implicit scheme. In a

semi-implicit scheme, it is still profitably applied in the explicit directions.

Enthalpy damping is a convergence acceleration technique mostly applicable to subsonic

inviscid flow. It has its greatest effect at very low Mach numbers and in supersonic flows

it is de-stabilizing, however Roberts [28] and others have found that it is not necessary to

turn the enthalpy damping off in transonic flows. It is implemented by solving a modified

version of the Euler equations in which a term proportional to the difference between the

local enthalpy and the free-stream enthalpy is added :

- U dV + (U) -fidS + aE(H -Hoo)U = 0. (4.14)

Here, aE is an enthalpy damping coefficient and U is a modification of the normal state

vector U given by U = (p pu pv py p)T. Modification of the state vector by replacing the

last element pH with p is necessary to ensure stability (Turkel, [31]).

Enthalpy damping, as the name implies, speeds convergence by damping out flow tran-

sients. It does not, however, increase the time step which may be taken. At steady state,

an inviscid flow should have constant enthalpy, so that the added term in the equation goes

to zero and the original equation is recovered. If a time accurate calculation is of interest,

enthalpy damping cannot be used because the addition of the enthalpy term to the Euler

equations introduces non-physical transients in the solution.

The enthalpy damping is applied in the code by adding the damping terms to the state

vector at the the end of each iteration. A good value of aE was found by Roberts [28] to

be 0.025.

Local time stepping is applied by allowing the size of the time step At to vary from

cell to cell. At each cell, the time step is allowed to be the highest value which meets the



CFL conditions and produces a convergent iteration. Thus, since each cell is advanced by

a different time step, each iteration is described more aptly as a step forward in "pseudo-

time". Time accurate calculations may be run by setting the time step in all cells equal to the

minimum value of the entire domain, however this usually results in very slow convergence.

In the TLNS solver, Loyd [17] found that convergence in semi-implicit mode could not be

acheived for separated flow cases using local time stepping, possibly due to some non-linear

numerical instability. His approach was to set all the time steps in a given j, k plane equal

to the minimum in that plane. Lee [15] found that convergence could still be acheived, and

at a greater rate, if for each row of cells at a given j the time step was set to the minimum

in that row. For the Euler solver, there were no problems in using local time steps.

4.1.4 Convergence Criterion

As with any iterative scheme, it is necessary to establish some criterion to determine

when the solution has converged to its steady state solution, if such a solution exists. In

this case we take the mathematical approach and assume that the steady state has been

reached when the RMS change in the state vector from one time step to another , labeled

the "error", drops by a given number of orders of magnitude. The RMS change in the state

vector is defined by

AU= (a'+(pu2  + ( )2 + (Apw2 + pE (4.15)

and

AURMS = (4.16)5Ncejna
where A is the CFL number and Nce,, is the number of cells in the particular domain. Note

that the convergence criterion is the same for both the Euler and Navier-Stokes domains.

The error AURMS is computed separately in each domain and the error value must drop

by a certain amount in both domains in order for convergence to be considered acheived.

The exact number of orders of magnitude that the error must drop for convergence varies

from case to case, at the discretion of the researcher.



4.2 Euler Solution Procedure

Having applied the finite-volume discretization to Equation 2.1 and arrived at the semi-

discrete equation(4.1), it is now necessary to find a suitable time discretization and inte-

gration to march the solution of the equation forward in time to the steady state solution

which is sought. This is done following the approach of Jameson [11].

4.2.1 Explicit Time Integration

The method chosen to integrate the semi-discrete equation forward in time for the Euler

solver is the well-known, tried-and-true explicit 4-stage Runge-Kutta integration. Beginning

with an initial guess Un , where n denotes the pseudo-time level, the value of the state vector

at each cell at the next time level, Un + l, is calulated using

U0  = U-

U' = Uo -a• [ 1 (F +GoSy + HS,), - Do]

U' = U 0 - •2 [ .(F'S + GiS, + H'S,)1 - Do] (4.17)

U3  = U0 - •, [' (F2'S. + G2S, + H'S,), - Do]

U' = UO - a - ~= (FSS + G3S, + H3S,) - Do]

Un+ 1 = U4 ,

where the pseudo-time level is identified by superscripts and the multistage coefficients aC

are given by
1 1 1

at=-, a2= , as=3 , a4= 1. (4.18)

The terms F, G, and H are flux vectors in the z, y, and z directions, respectively. One

iteration consists of an entire pass through the above sequence of time stepping stages. The

superscript o on the dissipation operator indicates that the dissipation is only calculated

at the beginning of each iteration and not at each stage of the integration scheme. The

purpose of this is simply to reduce computational expense, as Jameson [11] has found it

unnecessary to compute the dissipation after each stage.



As with most numerical schemes, the Runge-Kutta integration has limits on its numeri-

cal stability. By performing a Von Neumann stability analysis on the above scheme applied

to the model linear equation for this problem (the wave equation), the scheme is found to

be stable provided certain conditions on the time step At are met. This condition is known

as the CFL condition (standing for Courant-Friedrichs-Lewy, who first discovered it) and

is given by
V

At - A W S +CS (4.19)1W -Slmaz + C|Smazl
where C is the local speed of sound, V is volume of the cell, and W and S are vector velocity

and projected surface area, W = us + v4 + wk and S = Sfi + Suj+ Sk, respectively. The

stability analysis tells us that the value of A , known as the " CFL Number ", is restricted

by A < 2V .

4.2.2 Boundary Conditions

As with the governing PDE, boundary conditions must be applied to the numerical

scheme to have a well posed problem. For the Euler solver as used in this study, the

boundaries may be arranged into three groups at which the boundary treatments are the

same. These are:

1. Inflow, Outflow and Outer Boundaries. These are the "far field" boundaries of

the domain, located at i = 1, i = i4,, and j = j,,s, respectively. A special treatment

is applied at these boundaries to approximate Equation 2.5.

2. Symmetry Boundaries. These boundaries are present because only symmetrical

flow cases are of interest for this study, and computation takes place only over half of

the wing. The boundaries are located at k = 1 and k = k,,,.

3. Interface Boundary. This is the boundary at which the Euler solver is matched to

the thin layer Navier-Stokes solver. It is located at j = 1 between the wing apex and

the downstream boundary ( i = it, to i = imaz).



The first two of the above categories are describe in this section. The third is described

in the last section of the chapter on code coupling.

Inflow, Outflow and Outer Boundaries

Application of the far-field boundary condition , Equation 2.5 is difficult in the case of a

numerical computation because the domain boundaries are not located at infinity. Usually

the boundaries are placed at a distance from the body at which the effect of the body on

the flow is small. Often, this is a judgement call on the part of the particular researcher.

Numerically, the inflow, outflow and outer boundaries are handled by assuming that the

flow is locally one dimensional in the direction normal to the boundaries. The theory of

characteristics is applied, giving a series of boundary conditions which allow disturbances

to go through the boundaries with minimum reflection. This treatment is due to Jameson

and Baker [12] and involves the introduction of Riemann invariants at the boundaries.

For flows with subsonic free stream velocities as are being dealt with here, the theory

of characteristics tells us that, for a subsonic inflow, there are four characteristics entering

the domain and one leaving the domain. Thus, four characteristic variables are specified

and one is extrapolated from the interior. At a subsonic outflow, there is one incoming

characteristic and four outgoing ones, so that four values are extrapolated from the interior

and one is specified.

The incoming and outgoing Riemann invariants are given respectively by

_# aoo a
R_ = i A - 2 = un - 2 (4.20)

and

R+ = i. A +2 a = u+ 2a (4.21)
7-1 -1

where subscripts oo and ex denotes freestream values and extrapolated values , respectively,

and n^ is an outward pointing unit vector. These characteristics may be combined to give

the velocity normal to the boundary and the speed of sound as

un = 1 (R+ + R_) (4.22)



and

a = Y4 (R+ - R-). (4.23)

At an inflow boundary, the entropy is specified as the free stream value s, = 1/-I. The

tangential components of velocity are also specified from the free stream and the total

velocity is given by

u = u• + (u, - U~ -A) A. (4.24)

On an outflow boundary, the entropy is extrapolated to the boundary using

Pe = so • (4.25)
Pez

The tangential components of velocity are also extrapolated and the total velocity is given

in the following manner:

U = l,, + (u, - Uz * ii) A. (4.26)

Symmetry Boundaries

If the wing is symmetric and is not at an angle of yaw then the flow need only be solved

on half the wing and symmetry conditions can be assumed. These are applied by defining

ghost points on the symmetry plane and reflecting all the conservation variables from the

interior cells adjacent to the boundary. For example, the state vectors U at ghost points

(i,j,0) and (i,j, kmax + 1) are given by

U(o,k,+l1) =

P

-pv . (4.27)

pw

pE .

Likewise, the state vector at the second ghost points away from the boundary, (i, j, -1)

and (i, j, kmaz+2), are defined by applying the above, using the state vector at the real cells

(i, j, 2) and (i, j, kmax - 1), respectively. While only the first ghost cell value is necessary

for the actual computation, the additional ghost cells at this boundary must be set so that

the artificial dissipation can be calculated.



4.3 Thin-Layer Navier-Stokes Solver

In the case of the TLNS solver, it was coded such that it could run in one of two modes;

Explicit and Semi-Implicit.

4.3.1 Explicit Time Integration

In explicit mode, the time integration of the TLNS equations is carried out in exactly

the same manner as the integration of the Euler equations described in Section 4.2.1. The

only difference is that the restriction on the time step is modified by a viscous contribution

to the denominator

At A V (4.28)
1W * SIma + CISmaz, + ,Sn

In this equation, the quantity Al, is the cell dimension in the direction normal to the body

and S, is the projected area of the cell in that direction. See appendix A of Loyd [17] for

a detailed derivation of this relation.

Examination of this equation reveals the problem with using explicit schemes for viscous

flows. In these flows, it is necessary to have many points concentrated in the area near the

body, resulting in small cell sizes there. The above restriction on the time step tells us that,

correspondingly, the size of the allowed time step in these regions will be very small, making

convergence extremely slow. The advantage of low cost per iteration for the explicit scheme

is thus overridden because so many more iterations are necessary.

4.3.2 Semi-Implicit Time Integration

The numerical stiffness inherent in Navier-Stokes calculations due to the small spacing in

the body-normal direction causes serious difficulties with explicit schemes. This difficulty

may be eliminated by using an implicit scheme, however these are computationally very

expensive due to the large matrix inversions which must be done. A compromise between

the low cost per iteration of the explicit scheme and the large time step possible with



implicit schemes is acheived by treating the problem semi-implicitly. The integration in the

normal direction is implicit while the integration in direction tangential to the body remain

explicit. Referring to Figure 4.1, consider the first stage of (4.17) with implicit treatment

of the normal component of the flux vectors

U' - UO = -a~ 1 [ (FoS, + GOSy + HS,)I + (FS, + GOS , + HoS,)2+
(FoS, + GOS, + HoSZ) s + (FoS, + GOS, + HoS,)4+

(F'S, + G'S, + H'S,)5 + (F'S, + G 'S + H'S,)e - Do) i
(4.29)

The semi-implicit treatment is evident in these equations, as the fluxes through the stream-

wise and cross-stream faces 1, 2 and 3,4 respectively are evaluated at the time step before

the fluxes through the body-normal faces, 5 and 6. Numerical experimentation by Loyd [17]

shows that it is not necessary to treat the body normal artificial viscosity terms implicitly.

Since the flux vectors F, G and H are nonlinear with respect to the state vector U, the

fluxes at Faces 5 and 6 must be linearized in time to allow calculation of U 1.Writing the

Taylor series in time for F, G, and H gives

F1 = Fo + At + O(At2) = Fo + [A]oAU' + O(At2)at
G1'= GO+ - At + O(At2 ) = G O + [B]OAU' + O(At 2) (4.30)

aHo
HI = Ho + -t + O(At2 ) = Ho + [C]oAU1 + O(At 2)

where [A], [B], and [C] are the 5 x 5 Jacobian matrices [aF/aU], [aG/aU], and [aH/8U],

respectively, and the vector of changes AU is defined as AU1 = U 1 - UO.

Inserting the linearization into (4.29) gives

AU = -a1 E61(FS,+GS,+HSz)f-Do

+ [[A]5SS, + [AleS, + [B]sSy, + [B6leS, + [C]sS,6 + [C]6S,,] AU}.
(4.31)

Re-arranging this a bit leads to

[[] + a, ([A],S., + [A]6S., + [BsS],, + [B]6S,6 + [C]S,z + [C]S)] AU o 2)
-a 1t V•-~E= (FS, + FS, + HS,), - D]



where the quantity in the square brackets [ ] prefacing AU is a matrix which operates on

the 5 x J,,,a vector of changes AU at a given (i, k). Thus, (4.32) is an implicit matrix

equation for the changes in the state vector U at a line of cells (i, k). The right-hand side is

the usual semi-discrete form of the residual, while the left-hand side differs from the identity

matrix [I] due to introduction of the terms from the time linearization of the fluxes.

The remaining steps in the integration scheme are computed in the same fashion as

UO = U"

[LHS]o AU' = RO

[LHS]' AU2 = R' - AU'
(4.33)

[LHS]2 AU s  R2 - (AU2 + AU1)

[LHS] 3 AU4 = R - (AU3 + AU2 + AU1)

U-n+ = US + AU4

where R is given by

R = -an V  (FS + GS + HSz) - Do (4.34)f=1

and the matrix [LHS] is given by

[LHS]" = [I] + a, - ([A]sSz, + [A]6S., + [B]5Sy + [B]6S,, + [C]sS,, + [C]6S,)n

(4.35)

The change in the state vector AU is defined by

AU s = Us - Us - 1 . (4.36)

Note that the explicit scheme is recovered when [LHS] = [I]. The LHS only contains

dependent variables at (j - 1,j,j + 1) due to the compact three point stencil used in the

spatial discretization of the viscous and inviscid terms. Thus, (4.32) is a block tridiagonal

system of equations, which can be efficiently inverted. Details of the setup of the matrices

and solution of the matrix system are discussed in Appendix B of Loyd [17].

The time step in the semi-implicit integration is limited by the tangential and cross



stream flux terms, due to their explicit treatment:

at < 2 (4.37)
(IV -SI)mazi,2 + (iV -SI)maZ3,4 + CISmazll, 2,s,4

As with the explicit scheme, the limitation on the CFL numer A may be taken as A < 2•N.

Details of the derivation of this time step restriction are given in Appendix A of Loyd [17].

4.3.3 Boundary Conditions

As with the Euler code, it is necessary to provide boundary conditions for the TLNS

code. The boundaries of the TLNS domain may be grouped into five categories at which

the boundary treatment is the same:

1. Upstream and Outer Boundaries. These are the boundaries of the TLNS grid

at which coupling with the Euler solver takes place, located at i = 1 and j = jnz,,

respectively. The conditions applied are described in the section on code coupling.

2. Wing Surface. This boundary is at j = 1 between the apex and the trailing edge of

the wing (it, to it,). The condition of no slip at a solid boundary is applied here.

3. Wake Boundary. This boundary is at j = 1 between the trailing edge and the

downstream boundary (it, to i,•n). Here, the inner boundary of the grid collapses

to a "slit", and a special treatment must be applied so that flow may pass through it

undisturbed.

4. Downstream Boundary. This boundary is at i = imz,. Values of the state vector

must be specified here, although the procedure is different than in the Euler solver.

5. Symmetry Boundaries. These boundaries are located at k = 1 and k = kmaz.

They are treated exactly as in the Euler solver.

Descriptions of the boundary conditions at the wing surface, wake surface and down-

stream boundary follow. The symmetry boundaries are described in Section 4.2.2 and the

interface treatment is described in Section 4.4.



Outflow Boundary

Since the characteristic treatment using Riemann invariants is not applicable to viscous flows

due to their elliptic character, the boundary condition at the outflow is handled simply by

extrapolating from the last streamwise cell in the domain to the outer boundary. This is

written mathematically as

Uimx - 2 Uimaz-1 - Uimaz-2. (4.38)

Wing Boundary

On the wing surface, the no-slip condition associated with viscous flows at solid boundaries

is applied. This is accomplished numerically by setting the values of the velocities at the

first ghost cell inside the body equal to the negative of the velocity in the first real cell, so

that the average of the velocities at the face between the cells, which is the body surface,

will be zero. Mathematically, this is written as
/

Uii=o, =

-pu

-pv

-pw

pE ,

(4.39)

Wake Boundary

On the wake boundary, the ghost cells are reflected across the wake so that there is essen-

tially flow through the boundary as if it wasn't even there. This condition is implemented

by setting the value of the first ghost cell at j = 0 equal to the first real cell in the domain

directly on the other side of the wake. Likewise, the value at the second ghost cell from

the boundary is computed using values from the corresponding cell on the other side of the

wake. Figure 4.3 illustrates the procedure. This condition is expressed mathematically as

U(i,j=O,k) = U(i,=l1,kma-k)



j=-3

j-2

j=

Wake slit boundary

x, + are Real cells values

® are Ghost cells associated with real cells x

Figure 4.3: Treatment of Wake Boundary Condition.

U(ij=--,k) = U(ij=2,kmaz-k) (4.40)

The flux and artificial viscosity across the wake boundary may then be calculated in the

usual way.

4.4 Code Coupling

The main objective of the treatment of the interface between the Euler and TLNS solvers

is to ensure that the interface is transparent to the flow, i.e., that the flow may pass through

the interface undisturbed.

The coupling of the two codes is accomplished by matching values of the state vectors in

the two domains at the interface. The two Euler ghost cells at the interface (which is is the

j = 1 Euler boundary) are set equal to the two outermost real cells in the TLNS domain.

Likewise, the two TLNS ghost cells at the interface (the j = jmaz TLNS boundary) are

set equal to the first two real cells in the Euler domain. This is shown in Figure 4.4.
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Mathematically, this condition is written

[Ui,O,k]Eo,, = [Ui,jma,k]NS

[Ui,-1,k]Eer = [Ui,jmaz-l,k]NS (4.41)

and

[Ui,jmaz+l,k]NS = [Ui,1,k]Euer

fUimaz+2,]NS = [Ui,2,klEtdr . (4.42)

Once the ghost cell values are set, the flux across the interface is calculated individually

in each solver using its respective ghost cell values. Only the first ghost cell used for the flux

calculation. The second ghost cell value for each domain is set so that the artificial viscosity,

with its 5 point difference stencil, may be calculated at the interface. This treatment makes

the interface transparent to the artificial viscosity.

To obtain a better coupling, the state vector matching takes place at each stage of the

four-stage time integrations. This is illustrated for the first two stages in Figure 4.4. Re-

maining stages are computed similarly. To ensure the implicit treatment of the boundary for

the semi-implicit solver, the ghost cell setting, flux computation and state vector updating

had to be performed in a given sequence at each time step stage. This sequence is

1. Set Euler ghost cell values (Equation 4.41).

2. Calculate Euler fluxes.

3. Update Euler state vector.

4. Set N-S ghost cell values (Equation 4.42).

5. Calculate N-S fluxes.

6. Update Euler Navier-Stokes state vectors.

7. Go to step #1 for next time-step stage.



Using this particular sequence, the flux across the interface is not conservative until

steady state is reached. An alternate sequence which made the flux conservative was at-

tempted, but did not seem to make much of a difference to the functioning of the hybrid

code.



Chapter 5

Results

This chapter presents the results obtained using the hybrid computational code on the

NTF delta wing. Some preliminary results which were obtained on coarse grids are presented

first, as 3-D color graphics were available for these cases. The 3-D graphics reveal some

features of the flow which would not be evident in 2-D results such as contour plots. For

the large final cases, the color graphics software was unable to handle grids and flowfields of

that size, so no color graphics of the final results are shown. Instead, more standard black

and white graphics, such as countour plots and line plots, are presented.

Table 5.1: Summary of NTF flow cases run.

All cases run are summarized in Table 5.1. It is seen in this table that only one semi-

implicit solution was obtained on a very coarse grid. This is because the semi-implicit mode

of the TLNS solver turned out not to be robust. To obtain convergence, it was necessary to

find the exact combination of smoothing coefficients and other parameters . This meant a

lot of trial and error. Unfortunately, for the fine grid computations, the correct combination

was never found.

Case # M a Re, No. of cells TLNS Mode

1 0.75 160 1 x 105 11,400 Semi-Implicit

2 0.75 160 1 x 10' 36,000 Explicit

3 0.85 150 2 x 106 276,000 Explicit

4 0.85 150 7.5 x 106 276,000 Explicit
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Figure 5.1: Convergence history for case 1.

5.1 Preliminary Flow Results

Since they were run on coarse grids that did not allow capture of all the relevant phe-

nomena, cases 1 and 2 from Table 5.1 are presented as preliminary results.

5.1.1 Case 1 : Semi-Implicit TLNS - M = 0.75, a = 160, Re, = 1 x 105

The grid in this case contained 11,400 cells. The dimensions of the outer grid were

15 x 20 x 30 in the i, j and k directions, respectively. Dimensions of the inner grid were

10 x 8 x 30.

Results of these computations are shown in Figures 5.1 through 5.5. Figure 5.1 shows

the convergence characteristics of the hybrid code with the TLNS solver running in semi-

implicit mode. The error in both the Euler and Navier-Stokes domains drops about 5 orders

of magnitude to machine zero in about 1200 iterations, with the error always being higher

in the Navier-Stokes domain.

^ ^^^



The distribution of total pressure in the domain is shown in Figure 5.2 The figure is

divided into two regions; the left side shows color contours of total pressure (and thus static

pressure, since it is a viscous flow) on the top wing surface. Also shown is a vortex cross

section at a chordwise station near the trailing edge of the wing. This is generated using a

thresholding algorithm where only values in a certain range are plotted and values falling

outside the range are discarded. The surface which extends downstream of the trailing edge

is the wake boundary (or wake "slit") of the grid. This is drawn by the graphics package,

but does not represent a physical surface.

The right side of Figure 5.2 shows in detail the cross section of the vortex from the left

part of the figure. The white line which wraps around the wing represents the interface

between the two solvers, across which the solution is seen to be smooth and continuous.

The rollup of the primary vortex from the leading edge and the total pressure loss in its

core are evident, but the secondary vortex is not captured due to lack of grid resolution

near the body. Inspection of the bottom and top of the wing also reveals the presence of

the wing boundary layer.

Figure 5.3 again shows contours of total pressure generated using thresholding. The

left side of the figure shows the wing surface with numerous vortex cross sections on it.

This shows the tendency of the vortex core to turn towards the free-stream direction upon

leaving the trailing edge of the wing, and its tendency to move inboard as well. The right

side of this figure shows the cross section of the vortex at the last streamwise station. Due

to the coarse grid, the vortex has diffused significantly and is much weaker at this location

than in the wing region.

The left side of Figure 5.4 shows another vortex cross section at a chordwise station in

the wake and numerous particle paths on top of the wing. The particle paths are seen to

wrap around this cross section, showing the swirling nature of the flow and indicating that

they are following the vortex. The right side of Figure 5.4 is a detailed cross section of the

vortex at the wake location shown in the left side of the figure. The feeding sheet may be

seen rolling up into the vortex and the total pressure loss in the core is evident.



Figure 5.2: Total pressure contours on wing surface and vortex near trailing edge.

Figure 5.3: Thresholded total pressure contours showing vortex path.



5.1.2 Case 2 : Explicit TLNS - M = 0.75, a = 160, Re: = 1 x 105

The results obtained for this case are very similar to those from Case 1, so only limited

data is presented. The increased resolution results in better capture of some flow features

and less numerical diffusion of the vortex, but there is still not enough resolution in this

computation to capture all the relevant viscous flow features, such as the secondary vortex.

The outer grid in this case has dimensions 25 x 20 x 40 cells in the i, j and k directions,

respectively. The inner grid dimensions are 20 x 20 x 40 cells. This gives a total of 36, 000

cells in the domain.

One intersting result for this case is shown in Figure 5.5. Compare this with Figure 5.6,

which is a total pressure survey in the wake of a sharp edged delta wing, from an experiment

by Fink [6]. They are remarkably similar qualitatively, although they vary quantitatively

because Fink's experiment was run at a lower Mach number and angle of attack. Another

difference is that and the experiment was run on a sharp edged wing, which will shed

stronger vortices than a blunt edged one.

The convergence history for this case is shown in Figure 5.7. The error is small at

the beginning because the history shown is for the period after a restart. The portion of

the history before the restart was not available. The error is seen to drop two orders of

magnitude in about 1500 iterations, never reaching machine zero. This is slower than the

same flow case with the TLNS solver in semi-implicit mode, however an accurate comparison

cannot be made because the grid sizes are different.



Figure 5.4: Total pressure contours showing particle paths and thresholded vortex in the

wake.

Figure 5.5: Thresholded Total pressure contours showing vortex in wake.
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Figure 5.6: Total head survey in the wake of a sharp edged delta wing.
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Figure 5.7: Convergence history for case 2.
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5.2 Final Flow Results

Cases 3 and 4, which were run on the fine grid, are presented as "final" results, since

there was sufficient resolution to capture all the flow phenomena in this case. The grid used

in both of these cases has the dimensions described in Chapter 3.

For each case, data is presented for chordwise stations at 30 and 80 percent of chord. In

all the figures presented, with the exception of planform views, the linear dimensions have

been normalized by the local span of the wing. This allows comparisons to be made with

greater ease.

5.2.1 Case 3: M = 0.85, a = 15*, Re = 2 x 106

Figure 5.8 shows the convergence history for this calculation. The error only drops

about two orders of magnitude before the solution appears to stop converging. Ordinarily,

one would expect the error to keep on dropping until machine zero, at which point the

solution is considered converged. In the case of these vortex flows, however, it appears that

the normal convergence criterion, derived from mathematical considerations, does not truly

predict convergence. A vortical solution may in fact be converged in a global sense, however

some localized unsteadiness may be present. Usually this appears as a "wobbling" of the

vortex, which drives up the error and make it appear that the solution is unconverged. This

should not come as a surprise, as a steady solution is not guaranteed anyway. Murman and

Rizzi [22] also found this unsteadiness and lack of full convergence (in the mathematical

sense) in their fine grid Euler solutions for flow over sharp edged delta wing. By examining

the flowfield at a couple of iteration intervals, they found that all the flow features were

predicted and the only change was a slight movement of the secondary vortex. Likewise,

examination of the results that follow show that all the relevant flow features are captured,

even though the solution is "unconverged" in the mathematical sense.

The presence of a vortex in this case is verified in Figure 5.9, which is a vector plot of

the crossflow velocity at 30 percent chord . The primary vortex sitting above the wing at

84
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Figure 5.8: Convergence history for case 3.

about 65 percent of the local span is clearly visible. The secondary vortex has not yet fully

developed this far forward on the wing, so it is not clearly visible in this plot. Inspection

of the velocity vectors near the surface, which form a boundary layer profile, show that

there is a region of reverse flow just outboard and underneath the primary vortex. There

is significant displacement of the streamlimes over this reverse flow "bubble".

Mach number contours in the crossflow plane at 30 percent chord are shown in Figure

5.10. The primary vortex is visible in this plot, sitting above the wing. The Mach number

in the core of the vortex is 1.387. This plot does not reveal much about the secondary

vortex, however. The rapid expansion of the flow around the leading edge can be seen, as

can the boundary layer forming on the wing, due to the Mach number going to zero on the

wing surface as the no-slip condition is enforced.

Pressure coefficient information at 30 percent chord is given in Figures 5.11 and 5.12.

The pressure coefficient is defined by the equation

P - Poo (5.1)
CP = (5.1)

where P and P00 are the local and freestream pressures, respectively. Figure 5.11 shows

)0 x103
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Figure 5.9: Crossflow velocity vector plot at 30 percent chord.
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Figure 5.10: Mach number contours at 30 percent chord.
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Figure 5.11: Pressure coefficient contours at 30 percent chord.

pressure coefficient contours in the crossflow plane. The core of the primary vortex is clearly

seen in this figure, with a pressure coefficient of -1.2577 in the core. The secondary vortex

does not show up in the contour plot. Figure 5.12, which is a plot of the spanwise Cp

distribution on the wing surface, shows clearly the presence of both primary and secondary

vortices. The suction peak on the left, with a Cp of aoout -1.25, is the region below the

primary vortex, while the second suction peak to the right, having a Cp just slightly less

than that of the primary, represents the secondary vortex.

Figure 5.13 is a contour plot of the total pressure loss Cp0 in the crossflow plane at 30

percent chord. The total pressure loss is defined by

Po. - Po
Pooo

Again, the primary vortex is visible in this plot, having a Cpo in the core of 0.491. The

secondary vortex cannot be discerned. The wing boundary layer is clearly visible, as the

total pressure loss will be high there due to the vorticity, which is related to the total

pressure by Crocco's theorem.

The more interesting features of the flowfield show up in plots at 80 percent of the

. ^



Moo =0.85 a =15.00 Re =2.00000E+06 Station X = 0.30
PRES COEF ON BODY AT A CHORDWISE STATION

Primary vortex Secondary vortex

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Y

Figure 5.12: Spanwise distribution of pressure coefficient at 30 percent chord.
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Figure 5.14: Crossflow velocity vector plot at 80 percent chord.

chord, as the primary vortex becomes stronger and the secondary vortex becomes better

developed. Figure 5.14 is a plot of the crossflow velocity vectors at 80 percent chord. The

primary vortex is clearly visible , as is the secondary vortex which is below and outboard

of the primary vortex. Clear regions of reverse flow are seen by inspection of the boundary

layer profiles outboard of the primary vortex. Comparison with the vector plot at 30 percent

chord shows that the primary vortex has grown larger and stronger. The secondary vortex

has also gained in strength and size, as shown by the increased deflection of the streamlines

above it. The primary vortex is at about the same span fraction as at the 30 percent chord

station. It is difficult to say from this plot whether the secondary vortex has moved, as it is

hard to pinpoint its center based on the velocity vectors. A better measure of the secondary

vortex position is found by looking at surface Cp distributions, as in Figure 5.17.

Mach number contours at 80 percent of chord are shown in Figure 5.15. The primary

vortex and wing boundary layer are again clearly visible, while the secondary vortex is still

not well defined in this plot. Inspection of this figure on the upper wing surface under the

primary vortex reveals an area of high Mach number gradient. At first glance this appears

to be a weak crossflow shock, however the pressure coefficient contours in Figure 5.16 do not
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Figure 5.15: Mach number contours at 80 percent chord.

show the high pressure gradient which would correspond to a shock at that location. This

region of high Mach number gradient is probably a shear layer, since the pressure doesn't

increase abruptly. The possible instability of such a free shear layer may be responsible in

part for the localized unsteadiness which is present.

The pressure coefficient contours at 80 percent chord are shown in Figure 5.16. The

secondary and primary vortices are clearly visible, having pressure coefficients in their cores

of -1.34604 and -1.4762 respectively. A region of high pressure gradient is seen just outboard

of the secondary vortex. This could be interpreted as a shock, however the Mach contours

of Figure 5.15 do not show a high Mach number gradient in this region. The spanwise

pressure distribution of Figure 5.17 also does not reveal a sharp pressure rise there.

The spanwise surface distribution of Cp at 80 percent chord is shown in Figure 5.17.

The suction peaks under the primary and secondary vortices are clearly seen. The reason

for the small suction pressure peak outboard of the secondary vortex is unknown, but it is

though to be related to phenomena occuring near the point of primary separation. Note

that the high pressure gradient region shown in the Cp contours of Figure 5.16 just outboard
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Figure 5.16: Pressure coefficient contours at 80 percent chord.

of the secondary vortex also shows up here. Comparison with the corresponding figure at

30 percent chord, Figure 5.12, shows that the primary vortex has remained at the same

span fraction, while the secondary vortex has moved slightly inboard to about 82 percent

of the local span, compared with 90 percent at the upstream station.

Contours of total pressure loss at 80 percent chord are shown in Figure 5.18. Again, the

primary and secondary vortices are clearly visible, having total pressure losses in their cores

of 0.5864 and 0.5234 respectively. The vortex sheet resulting from the secondary separation

can be seen clearly rolling up into the secondary vortex.

Figure 5.19 is a contour plot of the total pressure loss at a station in the wake of the

wing. The rollup of the feeding sheet into the vortex is evident. This again shows qualitative

comparison with Figure 5.6, although in this case the contours are of total pressure loss,

not total pressure itself.

The trace of the primary and secondary vortices on the wing planform is shown in Figure

5.20, which is a contour plot of the surface Cp on the lee-side of the wing. The primary

and secondary vortices do not become distinguishable until about 30 percent of the chord.
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Figure 5.17: Spanwise distribution of pressure coefficient at 80 percent chord.
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Thereafter, each vortex is visible and seems to follow essentially a straight line path as it

travels down the wing.

5.2.2 Case 4: M = 0.85, a = 15%, Re, = 7.5 x 106

This case presents a higher Reynolds number flow than that of Case 3. For this case,

most of the data presented is at 80 percent of chord, as this is where the most significant

differences with Case 3 show up. Most of the contour information at 30 percent chord does

not reveal much difference between this case and Case 3. Plots of pressure coefficient at 30

percent chord are presented, as some difference is visible in these.

The convergence history for this case is shown in Figure 5.21. The large jump followed

by a large drop in the error of the Euler domain is due to an initial start with high smoothing

and a subsequent restart at about 500 iterations with a lower smoothing. Like Case 3, this

case does not converge to machine zero but instead the error drops only a couple of orders

of magnitude and then stops decreasing. This is for the same reasons cited in Case 3, i.e.

that the vortex tends to wobble, driving the error up significantly, even though the solution

0 i--I I
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is converged in the remainder of the domain.

Cross flow velocity vectors at 80 percent chord are shown for this case in Figure 5.22.

The primary vortex is clearly visible along with the secondary vortex and the displacement

of streamlines about the secondary vortex. Examination of the velocity profiles on the wing

in the area of the secondary vortex reveals some interesting velocity profiles and suggests

the possibility that tertiary separation could be occurring.

Mach number contour plots at 80 percent chord are shown in Figure 5.23. The primary

vortex is still clearly visible and the high Mach number gradient region, which is thought

to be a shear layer, is still visible. The remainder of the flow structure is very complicated,

making it hard to distinguish any other features. This may be related to the unsteadiness

of the flow which led to the lack of full convergence.

Total pressure loss contours at 80 percent chord are shown in Figure 5.24. The primary

and secondary vortices can be seen in this plot, having total pressure losses of 0.615 and

0.525 respectively. The vortex sheet from the secondary separation, and its subsequent

rollup into the secondary vortex, can also be seen
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Figure 5.23: Mach number contours at 80 percent chord.
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Figure 5.25: Pressure coefficient contours at 30 percent chord.

Pressure coefficient information at 30 percent chord is shown in Figures 5.25 and 5.26.

Comparison of the contour plot in Figure 5.25 with the corresponding plot for Case 3,

Figure 5.11, reveals that there is not much difference in contour plots at this location.

The primary vortex is still seen in this case, but not much else. The spanwise pressure

coefficient distribution at this station, Figure 5.26, again shows the primary and secondary

vortices clearly, along with a suction peak outboard of the secondary vortex. There is some

difference between this plot and the corresponding one for Case 3, however discussion of

this is postponed until Section 5.3.

Information about the pressure coefficient at 80 percent chord is shown in Figures 5.27

and 5.28, respectively. The contour plot of Figure 5.27 shows the primary and secondary

vortices having pressure coefficients in the core of -1.472 and -1.442, respectively. The

spanwise surface Cp distribution of Figure 5.28 shows the primary and secondary vortices,

although the structure of the vortex system is more complicated than in Case 3. The

secondary vortex has grown considerably stronger than at 30 percent chord, and is stronger

than the primary vortex at this station. The suction peak outboard of the secondary vortex

is also seen in this plot.
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Figure 5.26: Spanwise distribution of pressure coefficient at 30 percent chord.
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Spanwise distribution of pressure coefficient at 80 percent chord.

Pressure coefficient contours on the lee-side planform are shown in Figure 5.29. Again

it shows the near straight line path of the vortex over the wing, but otherwise doesn't reveal

much more than the similar figure of the previous case.

5.3 Reynolds Number Effect

An idea of the effect of the Reynolds number on the vortical flow can be obtained by

comparison of some of the data from cases 3 and 4. Probably the best indicators of difference

are the spanwise distributions of pressure coefficient, as they reveal strength and position

of the vortices.

Comparison of the spanwise surface Cp distributions at 30 percent chord, Figures 5.12

and 5.26, show that the flow structures are similar, with the primary and secondary vortices

being slightly stronger at the higher Re. The primary vortex is almost unaffected, whereas

the Cp jumps from -1.2 for the low Re case to -1.3 for the high Re case. The largest effect

is in the position of the secondary vortex, which has moved inboard for the higher Reynolds
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number. The primary vortex position has not changed significantly.

Comparison of spanwise Cp plots at 80 percent chord for Cases 3 and 4, Figures 5.17

and 5.28, show that at this station the primary vortex is only slihtly stronger at the higher

Reynolds number. The secondary vortex has grown much stronger at the higher Reynolds

number, with a peak suction pressure of about -1.4 for the Re = 7.5 x 106 case and about

-1.2 for the Re = 2.0 x 106 case. The primary vortex stays in the same relative position

for both cases, while the secondary vortex moves inboard for the higher Reynolds number.

The inboard movement of the secondary vortex is not as pronounced at this chordwise

station. The suction peak outboard of the secondary vortex also moves inboard for the

higher Reynolds number.

Inspection of the Mach number contour plots at 80 percent chord, Figures 5.15 and 5.23

show that the flow structure is more complicated for the higher Reynolds number. The

remaining contour plots do not reveal many differences in the flows at the two Reynolds

numbers.

Some effects might also be introduced due to the action of the artificial viscosity. This
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was not investigated here, but could be important. Further studies are needed.

5.4 Code Efficiency

Although one of the stated objectives of the research was to compute the flow over the

NTF wing using a zonal method to acheive computational efficiency, the efficiency of the

code was never measured against a full N-S code. This is left as a future exercise.

101



Chapter 6

Conclusions

The main goal of this research was to correctly capture the viscous dominated flow

physics of a blunt edged wing, such as the separation point and secondary vortex, while

attaining computational efficiency by not computing extra viscous terms in parts of the

domain where they are negligible anyway. A secondary goal was simply to investigate the

use of this multi-block, multi-solver approach for these types of flow.

To accomplish these goals, a hybrid Euler/Navier-Stokes method for solving the laminar

vortical flows over the blunt-edged NTF delta wing is presented. An Euler solver is run in

the area of the domain where the flow is essentially inviscid, and the Navier-Stokes solver is

run in the area where viscous effects dominate. The two solvers are coupled at the interface

between the two regions of the flow.

The semi-implicit mode of the thin layer Navier-Stokes (TLNS) solver was found to

lack robustness. To acheive convergence, the exact combination of smoothing, time step

and other numerical parameters had to be found. This amounted to trying many, many

runs. Unfortunately, the correct combination was never found for the fine grid. Only

one semi-implicit solution was found, using a coarse grid of 11,400 cells. With the TLNS

solver running in explicit mode, the code was much more robust. However, due to the

poor convergence characteristics of explicit schemes for high Reynolds number flows, a fully

converged solution ( i.e. the error goes to machine zero) was never obtained.

Even without full convergence in the mathematical sense, all the relevant features of

the flow were captured. The treatment applied at the interface between solvers also worked

well, providing smooth and continuous solutions across the interface. Timing studies were
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not run on the code, so its efficiency compared to a full Navier-Stokes code is uncertain.

This is left as future work.

The two final results at Moo = 0.85, a = 150 and Reynolds numbers of 2.0 x 106 and

7.5 x 106 were quite detailed and revealed a highly complex transonic vortical flow over the

NTF wing. The effect of Reynolds number on the vortical flow was examined; the primary

vortex was found to be insensitive to Reynolds number, while the strength and position of

the secondary vortex were more dependent. Qualitative agreement with known flows over

other delta configurations was good, however it is impossible to fully judge the quality of

the results, as there is no experimental data for comparison.

Numerous possibilities exist for future work which may be done with this hybrid code.

They are as follows:

* Change the algorithm from a central difference scheme to , for example, an upwinding

scheme. This would improve the robustness of the code, since upwind codes are

usually very robust.

* Investigate ways of enhancing the robustness of the current central difference scheme,

such as using integration schemes with different numbers of stages and alternative

strategies for evaluation of the dissipation terms at each stage.

* Convergence acceleration techniques, such as multigrid, could be added to improve

the convergence characteristics of the code.

* The dual-solver approach could be tried using adaptation or grid embedding. This

has the potential of generating some good, detailed results.

* Timing studies should be run on the hybrid code to evaluate its efficiency compared

to a full Navier-Stokes simulation.

* Finally, a turbulence model should be added to assess the effects of turbulence on

these types of flows.
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Appendix A

Geometry Constants for the NTF

Delta Wing

This appendix gives the values of the constants a, b, c, and d for computation of the

geometry of the leading edges and the trailing edge closure region of the NTF Wing.

The constants for the three leading edges of the NTF wing are given in Table A.1 below:

Table A.1: Leading Edge Geometry Constants

L.E. No. r/E a b c d

1 0.05 0.06666666666667 0.21501600073802 -0.25668266740469 0.08833866691267

2 0.15 0.11547005383792 0.12350964979191 -0.19567843344062 0.07003739672345

3 0.30 0.16329931618554 0.03382978289013 -0.13589185550609 0.05210142334309

The constants for the the trailing edge closure region are given in Table A.2 below:

Table A.2: Trailing Edge Closure Constants

r/e a b c d
0.00 0.00 0.51002400110703 -0.51002400110703 0.17000800036901
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