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Abstract

Boron Neutron Capture Therapy (BNCT) is a binary cancer radiation therapy that utilizes
biochemical tumor cell targeting and provides a mixed field of high and low Linear Energy
Transfer (LET) radiation with differing biological effectiveness. This project investigated the
radiobiology of normal rat lung in BNCT and measured the relative biological effectiveness
factors for the lung.

Rat thorax irradiations were carried out with x-rays and neutrons with or without the boron
compound boronophenylalanine-fructose (BPA-F). Monte Carlo radiation transport simulations
were used to design the rat lung neutron irradiations. Among the neutron beam facilities
available for BNCT at the MIT Research Reactor, the thermal neutron beam facility was found to
provide a suitable dose distribution for this project. A delimiter was designed and constructed
for the rat lung irradiations as a lithiated-polyethylene plate of 1.5 cm thickness with an aperture
tapered from 4 to 3 cm in width to expose the lung to the beam and shield adjacent radiosensitive
organs. The simulation design was validated with in-phantom measurements using gold foil
activation and the dual ion chamber technique. By using a two-field irradiation, a relatively
uniform dose distribution could be delivered to the rat lung. The mean lung dose rate was 18.7
cGy/min for neutron beam only irradiation and 37.5 cGy/min with neutrons plus BPA and a
blood boron concentration of 18 gg/g. The delimiter designed for rat lung irradiation, and
another similar delimiter, along with the animal holding box, all designed in this project, also
serve as the apparatus for other small animal irradiations and cell irradiations at the thermal
neutron facility at the MIT Research Reactor.

An open-flow whole-body plethysmography system with fully automated signal processing
programs was developed to non-invasively measure rat breathing rates and lung functional
damage after lung irradiation. Noise reduction was carried out against high frequencies beyond
the range of rat breathing frequency and large amplitude spikes due to abnormal animal
movement. The denoised breathing signals were analyzed using the Fast Fourier Transform with



a circular moving block in combination with the bootstrap for noise suppression and to allow
estimation of the statistical uncertainty (standard deviation) of frequency measurements. The
major frequency of the mean frequency spectrum was determined as the breathing frequency.
The mean control breathing rate was 176 ± 13 (7.4%) min' (mean ± SD), and breathing rates
20% (- 3 SD) above the control average were considered to be abnormally elevated. The mean
standard deviation of all measurements (n = 4269) was 2.4%. The dose responses of different
irradiation groups with breathing rate elevation as the biological endpoint were evaluated with
probit analysis. Two response phases of breathing rate elevation were observed as the early
response phase (<100 days) and the late response phase (>100 days). The ED50 values for x-
rays, neutrons only, and neutrons plus BPA during the early response phase, and neutrons plus
BPA during the late response phase, were 11.5 ± 0.4 Gy, 9.2 + 0.5 Gy, 8.7 ± 0.6 Gy and 6.7 ± 0.4
Gy, respectively. The radiobiological weighting factors for the neutron beam (neutrons and
photons), thermal neutrons only, %°B dose component during the early response phase, and 10B
dose component during the late response phase were 1.24 ± 0.08, 2.2 ± 0.4, 1.4 ± 0.2, and 2.3 +
0.3, respectively.

The histological damage to the lung during the late phase was also quantified with a histological
scoring system. A set of linear dose response curves with histological damage as the endpoint
was constructed. The radiobiological weighting factors for the different dose components were
also determined at a degree of lung histological damage corresponding to a median histological
score between the baseline (similar to the control) and the maximum. The weighting factors
measured, 1.22 ± 0.09 for the thermal neutron beam and 1.9 + 0.2 for the o1 B dose component,
are consistent with the corresponding weighting factors measured using functional damage.

The knowledge gained in these radiobiological studies of the normal rat lung indicates that the
lung complications experienced by two patients in the Harvard-MIT clinical trial of BNCT for
brain tumors do not appear to be related to the BNCT irradiations. This project is also helpful
for evaluating the feasibility of BNCT for lung cancer.
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CHAPTER ONE

Introduction

1.1 Introduction to BNCT
1.1.1 Principles of Boron Neutron Capture Therapy (BNCT)

Boron Neutron Capture Therapy (BNCT) is a binary cancer therapy with biochemical tumor-

cell targeting (1). Theoretically, it delivers higher dose to the tumor cells, due to the higher

concentration of the 'lB carrier in tumor cells and the significantly larger 10B thermal neutron

capture cross section than the other isotopes in normal tissues. The 'OB(n,a)7Li neutron capture

reaction releases 2.79 Mev energy, of which 82.8% on average is deposited locally due to the

short ranges (-7 pm and -4 gm) of the heavy charged particles released, a and 7Li. The BNCT

theory was first proposed in 1936 by Locher (2). BNCT requires two elements: a 1oB-carrying

drug that preferentially accumulates in tumor cells is first administered; then the target region

(including some volume of surrounding normal tissue) is irradiated by a neutron beam of

adequate intensity and appropriate energy range.

1.1.2 Clinical trials of BNCT
BNCT clinical trials were first carried out on human malignant tumors in the 1950s and

1960s at Brookhaven National Laboratory (BNL) and the Massachusetts Institute of Technology

(MIT) Nuclear Reactor Laboratory (NRL) (1, 3). The results were discouraging due to lack of

knowledge of the pharmacokinetic/biodistribution characteristics of the boron compound used

and the poor penetration of the thermal neutron beam in tissue (3). Patients died from tumor
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regrowth and, in many cases, developed serious radiation damage to their skin and brain. These

results were attributed to two problems. The low energy neutron beams were attenuated

exponentially in tissue, making it difficult to deliver adequate fluences to tumor at depth. The

boron compounds used were not sufficiently selective for tumor; there were high concentrations

of boron in the blood which led to damage to blood vessels in the skin and brain. Clinical trials

of BNCT were therefore closed in the US after 1961. BNCT clinical trials continued in Japan in

the 1970s, with anecdotal reports of long-term survivors following BNCT of brain tumors (4).

Basic research on BNCT continued in the United States throughout this period. Investigations

focused on finding more appropriate boron drugs and the development of higher energy neutron

beams with improved tissue penetration characteristics, as well as developing adequate physical

dosimetry and treatment planning methods. Two boron compounds, the amino acid p-

boronophenylalanine (BPA) and the sulfhydryl borane (Na2B12HllSH, or BSH) were evaluated

and demonstrated higher accumulations in certain brain tumors (5-9), subcutaneous melanoma,

and intracranial melanoma metastasis than surrounding normal tissues, and are currently used in

BNCT clinical trials. Higher energy neutron beams composed of epithermal (0.4 eV <Eepi < 10

keV) neutrons(10, 11), were developed to replace the thermal neutron beams previously used in

BNCT clinical trials to achieve better penetration in tissues. The improvements in both boron

carriers and neutron beams in BNCT irradiations led to the initiation of new BNCT clinical trials

in the 1990s in the US. Several clinical trials were carried out in the 1990s for glioblastoma,

melanoma metastatic to the brain, or subcutaneous melanoma of the extremities, at Harvard-MIT

(12-14), and for glioblastoma multiforme at Brookhaven National Laboratory (15-17).

Currently, BNCT is an experimental radiation therapy being evaluated mainly on brain tumors

and melanoma in Japan, Europe and Argentina (18-23).

J. L. Kiger
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In the clinical trials at Harvard-MIT between 1994 and 1999, two patients out of thirteen

receiving treatment for brain tumors developed a fatal acute respiratory distress syndrome

(ARDS); one other patient developed acute pneumonitis, but recovered following intensive

supportive care (14, 24). At the time dose estimates for scattered radiation to the lung were

below the threshold for radiation induced ARDS. However the serious adverse events with

ARDS raised the concern that the lung dose estimates might be too low. This indicated that

studies of the radiobiology of the lung under BNCT conditions were needed. A project was

therefore proposed to systematically study the effect of BNCT on normal lung and also examine

the possibility of treating lung cancer using BNCT.

1.1.3 Dose components of BNCT radiation
The reaction used in BNCT is l'B(n,a)7Li, and is illustrated in Fig. 1.1, and the energy level

diagram is illustrated in Fig. 1.2. When a thermal neutron (En < 0.4 eV) is captured by a 10B

nucleus, a temporary excited nuclear state of lB* is formed which immediately breaks down into

4He and 7Li* with 94% probability. The excited 7Li* then releases a photon of 479 keV in its

decay to the ground state. With 6% probability the l"B* decays directly to the ground state of

4He and 7Li (Fig. 1.2). The initial linear energy transfer (LET) values in tissue for the heavy

charged particles from the reaction, 4He and 7Li, are high, at 200 keV/jtm and 300 keV/ptm

respectively. These heavy charged particles have very short ranges in tissue (5-9 Vm), a scale

comparable to a cell diameter, and deposit all their energy locally (1).

When energetic neutrons traverse tissue, they interact with the various nuclei present with

different probabilities, being either scattered or captured, and at the same time creating

secondary particles that eventually deposit energy. Epithermal (0.4 eV-10 keV) neutrons tend to

be scattered and thermalized (mainly by collision with 'H in tissue), with a certain amount of
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kinetic energy transferred to the nuclei; thermal neutrons are more likely to be captured than

epithermal neutrons with new energetic charged particles or photons released. The charged

particles and photons typically released from the thermal neutron capture reactions have different

mean free paths in tissue. The charged particles will deposit all their energy locally, and have

high LET values. The photons have a much larger mean free path than the charged particles,

will deposit only part of their energy in the target region, and have relatively lower LET.

* Thermal Neutron
+

Boron-10

Boron- 11*

cc particle
(1.47 MeV)

& 7'Li (0.84 MeV)

27_

Y-ray
(0.478 MeV 94%)

Fig. 1.1 Illustration of the reaction 'lB(n,a)7Li. (Adapted from Ref. (27).)

The capture reactions of thermal neutrons with other nuclides are generally similar to the

1oB(n,a) 7Li reaction, with a temporary nucleus formed from neutron capture which then decays.

- ~-~- --·--~·~-·--P- C -- -·~ ~··.-I-I 1 ---.·- --- _

J. L. Kiger



Radiobiology of Normal Rat Lung in Boron Neutron Capture Therapy

Neutron capture is the primary mechanism for energy deposition by thermal neutrons in matter,

with the reaction probability described by the thermal neutron absorption cross sections, which

are often inversely proportional to neutron speed. The neutron cross sections for major elements

in tissue at neutron speed of 2200 m/s (0.025 eV) are listed in Table 1.1 together with those of

'lB. The absorption cross sections of 'H, '4N, 160 and 12C are much lower than the absorption

cross section of l'B. Therefore, even though the boron accumulation in tumor cells is relatively

small (usually tens of jtg/g) (25), the dose from the l'B(n,a)7Li reaction is generally larger than

that from the reactions of neutrons with other elements in tissue. Under conditions with a

boronated drug accumulation in tumor cells 3 or 4 times that of the normal cells (such as is the

case with boronophenylalanine, BPA) (26), the tumor dose is significantly greater than the

normal tissue dose within the treatment field, thus producing a therapeutic gain.

0.478 MeV y
T112-10 -3 s

7Li

Fig. 1.2 Energy level diagram for the 'OB(n,a)7 Li reaction. (Adapted from Ref. (27).)



Chapter 1: Introduction J. L. Kiger

Table 1.1 A summary of important thermal neutron capture reactions in normal brain tissue
(28).

Cross Section (barn) NT capture Composition in

Absorption Scattering Total Reaction Q value (MeV) normal brain %
1H 0.33 20.5 21.8 1H(n,;) 2H 2.22 10.7

12C 0.004 4.8 4.8 - 14.5
160 2 3.8 5.8 - 71.2
14N 1.7 10.0 11.7 14N(n,p)14C 0.626 2.2

10B 3843 2.1 3845 '0B(n, a) 7Li 2.79

In general, dose delivered to tissues in BNCT irradiations is compromised of:

DY: Photon dose (low LET). It mainly comprises the 2.22 MeV photon from

'H(n,y) 2H and contaminant photons from the neutron beam; with boron present, it also includes

the 479 keV photon released by Li* from loB(n,ca) Li*;

DT: Thermal neutron dose (high LET). This dose component is mainly from 0.626

MeV protons produced by the '4N(n,p)14C reaction;

DF: Fast neutron dose (high LET). This dose component is mainly due to recoil

protons produced by epithermal and fast neutron collisions with hydrogen but also includes

similar contributions from other nuclei;

DB: 'lB dose component (high LET). This dose component is from 4He and 7Li from

the 'lB(n,a)7Li reaction (Fig. 1.1).

1.1.4 Biological effectiveness of BNCT radiation
The BNCT dose components in tissue listed above have different biological effectiveness due

to their differing LET. The biological effectiveness of ' 0B dose is also influenced by the boron

microdistribution from specific boron compounds. In order to express the total BNCT dose in

photon-equivalent dose units, Relative Biological Effectiveness (RBE) factors determined

experimentally were defined as the weighting factors for each of the high-LET dose components
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(1). Analogous to the RBE, the compound biological effectiveness (CBE) factor is defined as

the weighting factor for the 'lB dose component that accounts for the influence of both the

l'B(n,ct)VLi radiation quality and the boron microdistribution on the radiobiological effectiveness

(1, 29). For a given biological endpoint in a particular tissue, the RBE or CBE is defined as the

ratio of the dose of a high LET radiation to an isoeffective dose of x-ray radiation. Thus, the

total biologically weighted BNCT dose is the weighted sum of all dose components:

D, = wrD, + wTD, + wDF + wBDB, (1)

where wy, WT, WF and wB are weighting factors (RBE or CBE factors) for the photon, thermal

neutron, fast neutron and the o1 B absorbed doses, respectively. In BNCT, w. is usually regarded

as unity and wT and wF are usually equal to each other (1). In lung, the biological effectiveness

weighting factors are unknown. This information is critical for estimating the total biologically

weighted dose to the lung.

1.1.5 BNCT radiobiology of normal tissues: skin, spinal cord, oral mucosa
Before the recent clinical trials of BNCT for brain tumor, normal tissue tolerance in BNCT

was investigated for spinal cord (30), oral mucosa (31) and skin (32). Normal tissue dose

responses with BNCT irradiations were established with animal models and certain biological

endpoints, and compared to the irradiations with x-rays (1). The dose response curves are

usually fitted to a smooth curve with probit analysis (33, 34). The weighting factors of the high

LET dose components are usually determined at the ED50 (effective dose for 50% incidence)

(29) of the dose response curves (1). The radiation responses of different normal tissues and the

measured weighting factors of the high-LET dose components in BNCT are summarized in

Table 1.2.
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Table 1.2 Summary of radiation responses of different normal tissues in BNCT with rat as the
animal model. The incidence/onset times recorded here are at the ED 50 level of the
dose response curves.

Incidence time after CBE for RBE for
Tissue (Ref) Biological Endpoint ED5 0 (Gyw) irradiation (days) BPA neurn

irradiation (days) BPA neutron

Spinal cord/Brain (29) paralysis 18.6 ± 0.1 163" 1.33 1.8
Oral mucosa (30) tongue uleration 13.4 ± 0.2 6 - 10 4.9 3.8
Skin (31) moist desquamation 42.2 ± 2.2 11 - 36 3.74 5.1

Skin (31) dermal necrosis 56.6 ± 2.9 168 - 301 0.73

* onset time

1.2 Normal lung irradiation with conventional radiation
Lung is one of the dose limiting tissues in radiation therapy for bone marrow transplantation

and thoracic malignancies including lung cancer and Hodgkin's disease (35-38). Significant

work has been done in investigating lung radiation response and lung radiation damage

mechanisms to improve the quality of clinical radiotherapy involving lung radiation.

1.2.1 Lung radiation response
Lung radiation damage in clinical radiotherapy was first reported in the 1920s and at the time

the lung reaction was compared to the skin reaction (39). Two phases of the lung radiation

response have been identified in the clinic and in animal models: the early inflammatory

pneumonitis and the late pulmonary fibrosis (40-43). The pneumonitis phase usually occurs

within 6 months after irradiation (44), with syndromes of shortness of breath and cough. Fine

structural and histological changes occurring from hours to months after irradiation are well

documented with animal models in the literature (40, 43, 45-49). Cellular changes due to

radiation damage observed in this period include increased capillary permeability, Type I and II

pneumocyte degeneration, increased vasculature permeability, fibrin and inflammatory

infiltration into alveolar space, and other changes to lung structure. Pulmonary fibrosis due to

J. L. Kiger
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radiation damage can occur from months to years after irradiation, with the symptom of chronic

dyspnea (shortness of breath). Histological observation in this stage shows that wounds are

organized and that final scars are formed, mostly in the form of fibrosis. The exact onset time of

the pneumonitis and fibrosis is dose-related and also varies with different animal species and

strains (50-52). Experimental animals used in radiation lung studies are mostly rodents including

rabbits (53), rats (43, 54, 55) and mice (46, 56), but also include dogs (57-59) and pigs (52).

1.2.2 Non-invasive assays of lung functions
Several techniques have been developed to non-invasively measure lung functional changes

after irradiation of small animals, especially rats and mice. The most common technique is

whole body plethysmography to measure the breathing rate, lung functional volume (tidal

volume) and minute ventilation of the animal (60-63). The basic setup of the whole body

plethysmography is to hold the animal in an air-tight chamber and to measure the breathing rate

by measuring the temporal variation in air pressure inside the chamber. Carbon monoxide

uptake has been used to measure the lung diffusion capacity (56, 64). Animals with irradiated

lung usually have a smaller CO uptake than control animals primarily due to decreased lung

ventilation and decreased diffusion between alveolar gas and blood as a result of a thickened

alveolar wall. Other measurements of lung functional changes also show decreased compliance

(ease of lung expansion) during radiation pneumonitis, increased vascular permeability, and

decreased blood flow in the lung after irradiation (65). In addition to the functional assays listed

above, Computed Tomography (CT) densitometry is another non-invasive assay to evaluate the

increase in lung density after irradiation (51, 55, 66).
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1.2.3 Lung radiation targets at the cellular level
There are more than 40 cell types in the lung, and the major cell types are Type I

pneumocytes, Type II pneumocytes, endothelial cells, and interstitial cells (67, 68). In the rat

lung, they compose 8.1%, 12.1%, 51.1%, and 24.4% of the total lung cells, respectively. Type I

pneumocytes also cover 96.4% of the alveolar area in rat lung with the rest covered by Type II

pneumocytes (67). Gas exchange in the lung takes place across the alveolar-capillary membrane,

which consists of attenuated cytoplasm of type I pneumocytes, endothelial cell cytoplasm, and

their cell membranes. The type II pneumocytes produce surfactant which reduces lung surface

tension and prevents the lung from collapsing. They also serve as the 'stem cells' in the lung by

degenerating into Type I cells and forming a new layer of epithelium upon lung injury (69, 70).

Type II pneumocytes have been extensively studied due to their important function in the lung.

The interstitial cells consist mostly of fibroblasts (50-60% in rat lung) and blood cells. Not much

is known about the interstitial cells in the lung due to their low mitotic activity (67).

The mechanisms of radiation lung damage, especially for fibroblast synthesis and collagen

deposition during the fibrosis stage, have been extensively studied. Damage targets at the

cellular level, named 'target cells', were sought at the beginning. Endothelial cells and Type II

pneumocytes, showing abnormal activities between hours and months after lung irradiation, were

the two leading candidates for the target cells in lung radiation damage. Among the early

changes in the lung tissue, edema, fibrin accumulation in alveolar space, and increased alveolar

protein are all related to pulmonary vasculature permeability (71, 72), which supported the

hypothesis that endothelia were the target. Similarly, other changes related to Type II

pneumocytes, including dramatic increases in lung surfactant and phospholipids levels, attracted

significant interest to Type II pneumocytes as the target cells for lung radiation damage (40, 73).

J. L. Kiger
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Various invasive techniques were developed to evaluate radiation lung damage both

qualitatively and quantitatively. The most common and conventional technique is to examine the

lung tissue changes directly under either a photomicroscope or electron microscope. Various

stains are sometimes applied to highlight specific cells or cell types to enable easy recognition

with the photomicroscope, e.g., Van Gieson is used specifically for fiber staining. The

information and contents of the lung fluid, obtained with bronchioalveolar lavage (BAL) (74-76),

are also valuable and were closely studied to detect the lung cellular activity after irradiation.

The contents of the lung fluid from BAL, including hydroxyproline accumulation for

collagenous protein synthesis (77), the amount of macrophages and protein as exudates from

vasculature (78-80), phospholipids and surfactant released by Type II pneumocytes (40, 73),

DNA accumulation for lung cellularity (81), and histamine released by mast cells related to

fibrotic tissue turnover (82, 83), were all examined and quantified. Lung weight (wet and dry)

has also been used to grossly estimate the amount of lung fluid and lung mass, respectively (81,

84, 85). Despite all the investigations of cellular activities after lung irradiation, the target cells

have not been identified (50, 86, 87).

1.2.4 Lung radiation targets at the molecular level
Further investigation of the pathogenesis of lung radiation damage and the damage targets at

the molecular level lead to a more fundamental understanding of lung radiation damage than the

classical hypothesis as connective tissue replacement of the parenchymal cells. A new

hypothesis proposed that genetic expression of radiation injury initiates synthesis and secretion

of numerous growth and inhibitory factors that orchestrate multicellular interactions (88-93).

With this theory, pneumonitis is considered as a stage for cells to prepare the growth factors and

fibrosis is considered as the repair stage, both as a necessary component of the same process. A
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most interesting growth factor and a target at the molecular level in mediating gene expression of

extracelluar matrix proteins after lung irradiation is Transforming Growth Factor-n (TGF-P, 1-3)

(80, 94-98). TGF-3 holds a central role in normal wound healing, including inhibiting epithelial

cell proliferation, promoting fibroblast proliferation (99), modulating the immune system and the

inflammatory process (100), and controlling the homeostasis of the cellular matrix (101).

1.2.5 Alteration of lung radiation response
Two major approaches have been investigated to alter and relieve the radiation response

process, especially fibrosis. Radioprotectors, mostly free radical scavengers, were tested with

animals and were delivered to normal lung cells to protect them from radiation damage in lung

irradiation (102-105). The other approach is pharmacological alteration of the gene expressions

and pathways and cytokines responding to irradiation injuries. Captopril, one of the Angiotensin

Converting Enzyme (ACE) inhibitors, has been proven in animals to reduce endothelial leakage

from radiation damage (65, 106-109), and shows promise for clinical application.

1.2.6 The lung radiation response in clinical radiotherapy
Clinically, the incidence of radiation pneumonitis is related to the dose delivered and also to

the fraction of the total lung volume irradiated. Therefore, dose volume histograms (DVH) of

the lung and the mean lung dose are important in predicting the incidence of radiation induced

pneumonitis (44, 110-112). A mean lung dose of 9.3 Gy in a single fraction was reported as the

ED 50 for radiation pneumonitis in patients (110). The fractionated dose-time relationship for the

normal lung response is also well documented in both animal models (113, 114) and in humans

(115). For 20 fractions, the TD5 (tolerance dose at 5% incidence) is about 26 Gy mean lung dose

and the TD 50 is about 30 Gy mean lung dose in patients (112, 116). Higher doses are required to

produce a similar incidence of radiation pneumonitis when the lung is partially irradiated. The
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hypersensitivity of different parts of the lung volume to radiation damage is also currently being

evaluated with experimental animals (117-119). The lung radiation response very likely depends

on the individual patient. With similar radiation treatment to the lung, the lung radiation

response among patients can vary significantly (38). The concentration of TGF-f3 in blood

serum was found to be related to the lung radiosensitivity of individual patients (38).

1.3 Research goals and thesis organization
This thesis describes radiobiological studies of the normal rat lung which investigate the lung

tolerance to BNCT radiation, and also measure the biological weighting factors required for the

weighted lung dose calculation in BNCT. The knowledge of the normal lung tolerance in BNCT

also provides information that will be helpful for evaluating the feasibility of BNCT for lung

cancer (120) and for the BNCT irradiation of any organ near the lung.

1.3.1 Dosimetry of the rat lung irradiation
In this project, the whole rat lung is irradiated with x-rays and neutrons with or without BPA-

F, the 10B carrier. Since many radiosensitive organs are located close to the lung, including the

spinal cord, skin, esophagus and small intestines, design studies using, e.g., Monte Carlo

simulations, are necessary to ensure that adequate shielding is provided for these adjacent organs

during lung irradiation with neutrons. Since the lung response may be influenced by a volume

effect, that is, irradiating different fractions of lung volume may result in different responses, the

design also needed to ensure a uniform dose delivery to the whole lung. Chapter 2 discusses in

detail the design of the rat thorax irradiation, first carried out in simulations, then validated with

measurement, describing the dosimetric aspects of this project.
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1.3.2 Rat breathing rate measurement and the signal processing
After the lung irradiation, the lung damage is evaluated by measuring the lung response

functionally and histologically. Among the non-invasive lung functional assays described above,

whole body plethysmograph for breathing rate is the most convenient and commonly used assay.

However, an automatic method for converting the raw pressure data into a breathing frequency

was not fully developed; manual selection of the regular breathing signal was often used. The

manual method is not only very laborious, especially when applied to a large number of animals,

but the results are also prone to user bias. The plethysmograph, including both hardware for

breathing signal collection, and software for signal processing and breathing rate determination,

needed to be developed to reliably monitor the animal breathing rate changes after irradiation.

Chapter 3 explains in detail both the hardware and software of the system constructed for this

project.

1.3.3 Measurement of dose response
The breathing rate responses measured after irradiation of animals of different irradiation

groups are reported in Chapter 4. The breathing rates along with the weight measured after

irradiation of all animals are plotted in Appendix A. Lung histological changes of animals from

different irradiation groups are also assessed at certain times after lung irradiation and the results

are reported in Chapter 5. The weighting factors of different high-LET dose components in

BNCT are determined by evaluating the dose response curves and comparing the doses of

different radiations at the same biological effectiveness, usually ED50. The endpoints used in this

project are functional damage, measured with breathing rate elevation, and histological damage,

scored with a histological system. The details of the weighting factor determination are reported

in Chapters 4 and 5, with corresponding endpoints. The clinical implications for BNCT of the

weighting factors measured in this project and possible future work are discussed in Chapter 6.

J. L. Kiger
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CHAPTER Two

Design of a Delimiter for Rat Lung
Irradiations in the MITR-II Thermal
Neutron Beam

2.1 Introduction
Boron neutron capture therapy (BNCT) is a binary therapy that has the potential to

selectively target high linear energy transfer (LET) radiation to tumors while sparing normal

tissue (1). BNCT requires the selective delivery of a boron-labeled compound to tumor tissue to

attain therapeutic advantage. The tumor region, is then irradiated with low-energy neutrons.

When a nucleus of the minor stable isotope of boron, o1 B, captures a thermal neutron, it

immediately undergoes a fission reaction producing highly-energetic, short-range disintegration

products (2). The short track lengths of the alpha (9 gpm) and lithium (5 gpm) particles produced

by the boron neutron capture reaction essentially limit their radiation damage to cells containing

1oB or the nearest neighbors. Concurrently, a non-specific background from the neutron beam

delivers dose to both tumor and the normal tissues. Thus the dose to tumor and normal tissues is

composed of the boron and background beam components, with the boron component in tumor

considerably higher due to the selective uptake of boron from presently available boron

compounds. Several reviews on BNCT have recently been published (3-7).
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In tissue, the boron neutron capture irradiation produces a complex mixture of radiation types

that differ in their LET characteristics and, hence, in their relative biological effectiveness. The

dose components comprise (8): a) thermal neutron dose, mainly delivered by the protons

produced by the thermal neutron capture reaction 14N(n,p) 14C; b) fast neutron dose (neutron

energies above 0.4 eV), primarily from energy released by elastic collisions of fast neutrons on

hydrogen 'H(n,n')'H; c) photon dose, comprised of incident photons in the neutron beam incident

on the target, and induced photons arising in tissue primarily from the capture of thermal

neutrons by hydrogen: 'H(n,y) 2H; and d) 1'B dose, arising from the heavy charged particles

released by thermal neutron capture reaction 'lB(n,a)7Li. The biological weighting factors,

relative biological effectiveness (RBE) (7) for each of the high-LET components, are employed

to express total BNCT radiation doses in photon-equivalent terms. An analogous terminology,

compound biological effectiveness (CBE) factor, is implemented since the weighting factor for

'lB dose is strongly influenced by the characteristics, primarily the microdistribution, of the

specific boron compound (7). The convention recommended for the description of the total

biologically weighted BNCT dose is (9):

D, = wYDr + wFDF + wTD + wBD,, (1)

where wy, wF, WT and wB are weighting factors for photon dose, fast neutron dose, thermal

neutron dose and o1 B dose, respectively.

BNCT clinical trials are underway at a number of sites worldwide (9-14). In the period

between 1994 and 1999, researchers at Harvard and MIT carried out clinical trials for patients

with glioblastoma and melanoma metastatic to the brain (9, 11), or subcutaneous melanoma of

the extremities (15). Two patients treated for brain tumors in the initial Harvard-MIT BNCT

clinical trial developed an acute respiratory distress syndrome (ARDS) that proved fatal; one
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other patient developed an acute pneumonitis, but recovered following intensive supportive care.

The physical dose at several points of the lung was measured afterwards in an Anderson/Rando

(ART) head, neck and chest phantom, with the phantom repeating various patient positions

during the cranial BNCT irradiations (16). At the time, the BNCT dosimetry and radiobiology of

the lung during brain irradiations was not well defined and so it was not clear whether the ARDS

was due to the radiation dose to the lung either from beam leakage around the irradiation port or

from a dose scattered from the head or a result of completely different causes unrelated to the

BNCT treatments.

The normal lung dose response to BNCT irradiation must be established to calculate the

corresponding RBE and CBE factors and to determine the total weighted tolerance dose of the

normal lung in BNCT. Rat was chosen as the experimental subjects since rat lung responses to

photon irradiations have been reported in the literature (17-19). Shielding of the adjacent

radiosensitive normal tissues during the lung irradiations is essential to avoid death from acute

radiation responses of the normal tissues other than lung during the long follow up period

required for lung irradiation endpoints (> 6 months). With neutrons, the relatively small size of

the rat complicates the shielding design in BNCT, since low energy neutrons are far more

difficult to efficiently collimate than photons.

This Chapter describes an approach using Monte Carlo radiation transport simulations to

design a rat lung neutron irradiation experiment. The specific goals include selecting a suitable

beam from the two NCT neutron beam facilities at the MITR-II and, designing and optimizing a

beam delimiter for the rat lung irradiations. The simulation design was validated with

measurements in two cylindrical water-filled rat phantoms.
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2.2 Materials and Methods
2.2.1 Neutron beam facilities

The MITR-II Research Reactor has a maximum operating power of 5 MW with neutron

facilities for multiple research purposes (20). The core bums highly enriched 235U fuel and is

cooled by light water and moderated by heavy water. Neutrons from the core are reflected and

moderated by a heavy water tank and further reflected by the surrounding graphite reflector. The

maximum thermal neutron flux of 1014 n/cm2s is produced below the core in the D20 reflector

tank (21).

One neutron facility at the MITR-II currently available for human or animal BNCT

irradiations is the vertical MO11 thermal neutron beam port (22). The MO11 beam line extends

from below the D20 reflector tank to the beam port in the medical room located in the basement

of the reactor facility. It measures about 2.3m long, including in series, a D20 blister tank

embedded in the D20 reflector tank, an H20 shutter tank, a tapered graphite collimator, a

movable boral shutter, a movable lead shutter, a bismuth plug fit into a tapered bismuth

collimator. A recently constructed borated polyethylene delimiter is fixed beneath the lead

shutter and contains four fission counters to monitor the neutron beam. The D20 filter tank

efficiently moderates and thermalizes the fast fission neutrons from the core to produce an

intense, high purity thermal neutron beam (Eth<0. 4 eV) with a negligible fast neutron dose

component. The graphite collimator improves the directionality of the neutron beam and

conducts the neutrons to the beam port. The bismuth plug and bismuth collimator close to the

end of the beam line provide photon filtration for the neutron beam. The borated polyethylene

plate delimiter reduces the ambient dose in the medical room away from the beam port. A cross

section of the MO 11 beam is plotted in Fig. 2.1. The MO 11 beam is suitable for small animal

irradiations and superficial human tumors such as melanoma with its low energy spectrum and
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high intensity (- 10 1°n/cm 2 s) (23, 24). The circular beam aperture of the M011 is 12 cm in

diameter and is able to irradiate two rats simultaneously.

Bismuth Plug I
(Variable Thickness

and Renovable)

Fig. 2.1 The cross-section of the MO 11 beam at the MITR-II (23).

The MOl11 beam line was previously occupied by the M067 epithermal neutron beam that

was used for the Phase I clinical trials of BNCT at the MITR-II in the 1990s (9, 11, 25). In the

M067 beam, the D20 blister tank was emptied to reduce the thermalization. Additional

aluminum and sulfur filters were installed in the graphite collimator to filter out fast neutrons

(25, 26). After the advanced fission converter epithermal neutron beam was constructed and
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commissioned, the M067 beam was decommissioned and converted back to the MOl11 thermal

beam. More detailed descriptions of the two beam lines is available in the literature (23, 24).

The other neutron facility at the MITR-II eligible for BNCT radiobiology experiments is the

horizontal fission converter beam (FCB) (21, 27, 28). The FCB is a high-intensity epithermal

neutron beam (0.4 eV<Eepi<10 KeV) with very low, essentially negligible, fast neutron and

photon contamination designed for deep-seated tumors (21, 27, 29). The fission converter is

located outside the graphite reflector surrounding the D20 reflector tank of the reactor core. A

14-inch window through the graphite allows neutrons from the core to reach the fission converter

after moderation by H20, graphite and D20. The subcritical fission converter, contained in an

aluminum tank and cooled by heavy water, is driven by the reactor core. In the current

configuration of converter fuel, the maximum power of the fission converter is 83.5 kW,

controlled by a cadmium shutter located between the core and the fission converter. The beam

line measures about 2m long from the fission converter to the beam port, including in series: an

Al and Teflon (PTFE) moderator surrounded by a lead reflector, a cadmium thermal neutron

filter, a lead photon filter, a lead collimator surrounded by high density concrete and, a set of

leaded-lithiated-epoxy patient collimators with inner diameters varying from 16 to 8 cm. The

FCB is further controlled with two in line shutters, the water shutter and the mechanical shutter.

Detailed descriptions of the FCB are available elsewhere (21, 27, 29, 30). Since the beam

aperture diameter of the FCB varies from 12 to 16 cm, 2 to 3 rats can be irradiated at once.

2.2.2 Computational methods
Monte Carlo N-Particle (MCNP) is a well-benchmarked simulation code commonly used in

neutron, photon and electron transport calculations (31). A computational model of the reactor

core, as well as the M067 beam (32), were previously constructed in MCNP, and provided the

J. L. Kiger



Radiobiology of Normal Rat Lung in Boron Neutron Capture Therapy

beam source description for the treatment planning computations in clinical trials during the

1990s (9). This MCNP model was benchmarked against experiments at various positions,

including the reactor core (32, 33) and the beam port (34), and became the basis of the MCNP

model of the reconstructed M011 facility. The MCNP model of the MITR-II core was also used

in design studies for the FCB. This model was later validated against measurements at both the

fission converter position (21, 35) and the beam port (27, 36, 37), and was similarly used for

treatment planning.

Since the primary disadvantage of the Monte Carlo simulations of large structures, such as

the reactor neutron beams, is the lengthy computer time required to achieve good statistics, the

MCNP code offers several techniques to improve computational efficiency (31). Surface source

generation, which allows separating large transport calculations into smaller segments, was used

in the MITR-II MCNP model. The model was segmented into several divisions and a surface

source file at the boundary of each segment was written, recording every particle passing that

surface. The surface source then served as the neutron source in calculations of the next

segment. A variance reduction technique, the energy dependent weight window, was also used

in each simulation segment to improve computational efficiency. The weight window values

were calculated manually (33) or calculated using MCNP weight window generator. This

technique shifts computational emphasis to the particles coming from the source with higher

probabilities to reach the regions of interest and produces improved statistics within the same

computer time.

In the MCNP simulations of the FCB, the model and particle transport calculations was

separated into three parts and two surface sources files were written at the corresponding planes.

The first part encompasses the reactor core, and a source file was written at the edge of the
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graphite reflector, 10 cm before the fission converter. A criticality calculation of the core was

performed and an energy-independent weight window for neutrons only (32) was applied to

enhance the number of neutrons reaching the source plane. The surface source, with records of

all neutrons passing through the plane, was fit in the upstream region of the second segment,

which includes the region from the fission converter to the end of the mechanical lead shutter,

where a second surface source was written. In the simulations of the second segment, energy-

dependent weight windows for both neutrons and photons were used to enhance the number of

particles reaching the plane at the shutter. The second surface source was set at the upstream

portion of the third segment, in which the simulation optimization of the FCB suitability for the

rat lung irradiations was carried out.

In the M011 MCNP model, a similar calculation scheme was applied, and the simulations

were split into four segments with three neutron source planes. The first segment was the

criticality calculation in the core and to construct a fission volume neutron source. No weight

windows were used in this stage. The volume source then was read into the second stage, and

neutrons were transported through the beam line to the core reflector boundary in the middle of

the light water shutter, where the second neutron source was written. In the third stage, neutrons

transport from the water shutter to the end of the bismuth collimator at the beam port, where the

third neutron source plane was written. The last segment, with the third source plane as the

neutron source, was used in the simulation design of the delimiter for the rat lung irradiations.

Weight windows for neutrons only were applied in the last three stages; thus no photon particles

were recorded in any of the three sources. A uniform importance was assigned to all photons in

the last simulation segment in the MO11 beam where the delimiter was designed, to tally induced

photon dose rate in the rat phantoms.

J. L. Kiger
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Fig. 2.2 illustrates the general simulation setup in the last segment of the FCB and MO 11

MCNP model, with the neutron source planes serving as the beam source. Two rat models,

positioned in the shielding box with the delimiter mounted on the top, were located next to the

beam port. Neutron transport from the source through the objects was simulated and dose rates

and neutron fluxes were tallied in the rat models, to select a neutron beam and optimize the

delimiter geometry.

- Rat model

lid

Fig. 2.2 The sagittal (a) and transverse (b) cross-section of the rat lung irradiation
configuration used in simulations.

2.2.3 Detailed rat computational model

A detailed rat model was constructed in the MCNP simulations that included the critical

anatomical features. The cross-sections are illustrated in Fig. 2.3. The rat model was defined as

a cylinder 5 cm in diameter and 20 cm long. The lung region was approximated as a 4 cm

". I "'~
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diameter cylinder, 4 cm long, located at 4.7 cm from the top of the rat phantom, filled with ICRU

46 (38) lung tissue of low density (0.26 g/cm 3). A cylindrical spinal cord of 0.5 cm in diameter

and spherical heart of 1.2 cm in diameter were embedded in this region to approximate the true

anatomy. Adult brain composition and adult healthy heart (38) composition were used for spinal

cord and heart tissue, respectively. A concentric layer, 0.5 cm-thick, and of adult skin (38)

composition, surrounds the lung region, designating the rat skin. The rest of the rat cylinder other

than the lung region was filled with average soft tissue (38). Two radiosensitive regions

representing intestines and esophagus were defined as cylinders 1-cm in diameter and 2-cm long,

located along the central axis of the rat cylinder and 1 cm from the lung.
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b
[ 11.3cm [ 4 cm --

L--The transverse cross-section
20 cm

Fig. 2.3 The transverse (a) and sagittal (b) cross-sections of the rat model in MCNP. The
location of the cross section plane in panel a is labeled in panel b.

With the rat model specified in MCNP, upper dose limits were set for the lung volume and

other radiosensitive tissues according to the normal tissue tolerance data in the literature. An

average lung dose of 12 Gy with X-rays has been reported to produce 100% response in lung

irradiations using the breathing rate assay (17-19, 39). A 10 Gy mean lung dose from a neutron

beam in the absence of boron was assumed to have the equivalent effect and chosen as the target

dose for simulating lung irradiation. This neutron beam physical dose was chosen with the

assumption that the RBE of the neutron beam alone would be approximately 1.2. This is the

-
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value that was previously reported for the thermal neutron beam of the Brookhaven Medical

Research Reactor using other radiobiological endpoints of other tissues (7, 40).

Upper weighted dose limits were also set for the radiosensitive tissues. An effective dose of

20% (ED20) of a biological endpoint was selected as the upper limit for each normal tissue. The

upper limits of single fraction irradiation for the acute response of specific tissues are listed in

Table 2.1. The dose delivered to the radiosensitive tissues should be lower than the limits

prescribed, attained by shielding from the delimiter or irradiation field arrangement. For the

throat region, a dose response curve for ulceration of the rat tongue was used as the biological

endpoint (40). From the published data, the dose for ED20 was 13 Gyw. With 13 Gy delivered to

the rat tongue, ulceration was evident at the 5th day after irradiation and healed by 13 days.

There are mainly two radiation reactions for the rat skin: 1) acute moist desquamation, which is

less severe, shows onset between 11 and 21 days after irradiation and will be healed by 36 days;

2) late dermal necrosis, which is evident at 24-25 weeks and the healing is usually finished by

42-43 weeks after irradiation (41). The physical dose adequate for moist desquamation is

smaller than that for dermal necrosis, in irradiations with thermal neutrons only and thermal

neutrons with BPA. Therefore moist desquamation was selected as the endpoint and the RBE

dose for ED 20 (- 42 Gyw), was chosen as the upper limit for skin irradiations. With this much

dose delivered to the skin, the late response from dermal necrosis is negligible. In deciding

spinal cord upper dose limit, paralysis was used as the biological endpoint (42). The ED20 for

this effect is 17 Gyw (42), and was chosen as the upper dose limit delivered to the spinal cord in

the rat lung irradiations. The intestinal complications of enterocutaneous fistula formation and

intestinal obstruction were used as the biological endpoint for the intestine irradiations. The ED 20

J. L. Kiger
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for these effects is 18 Gyw (43, 44) and was chosen as the upper limit for the dose delivered to

the intestines.

Table 2.1 RBE factors and weighted dose limits of the radiosensitive normal tissues.

Dose
Tissue (ref) Gy Neutron RBE

Skin (40) 42 5.1
Thorax (tongue) (39) 13 3.8

Intestine (43) 18 5*
Spinal Cord (41) 17 1.8

*Because intestine irradiations in low energy neutron beams were not found in the literature, a
conservative neutron RBE for the intestines of 5 was chosen.

2.2.4 The Beam optimization
There are advantages and disadvantages to both the FCB and the M011 beam for this rat lung

irradiation. The FCB has better penetration and would deliver a more uniform dose distribution

at a greater depth over the irradiated field. At the same time, epithermal neutrons are more

difficult to shield and the scattering can produce unfavorably high dose in shielded regions. The

MO11 beam, on the other hand, is easier to shield and produces less scattering, but the dose

decreases exponentially with depth in tissue. Parallel-opposed radiation fields would have to be

used to address this problem. An optimization study was performed to determine which beam is

best suited for the rat lung irradiations. The figure of merit of the FCB and the M011 beam in

the rat lung irradiation were explored using MCNP simulations.

The optimum situations for the rat lung irradiations were investigated in MCNP with four

neutron beams: two epithermal neutron beams, including a unidirectional ideal epithermal

neutron beam (8), the actual FCB, and two thermal neutron beams, including an ideal

unidirectional monoenergetic (0.0253 eV) beam and the actual M011 beam. Ideal shielding of

neutrons and photons were applied in the two real neutron beams (FCB and M011) outside the
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lung region, on the two collateral regions 2 cm from the lung center. Similar boundary

conditions were applied to the two ideal neutron beams with no photon contaminations. The two

ideal beams were of 4 cm x 15 cm rectangular geometry, comparable in size to the real beams,

and placed right above the 4 cm rat lung. Thus in these simulations, almost all neutrons and

photons entering the collateral regions outside the incident beam in the rat model were scattered

from the lung region. The setup in the simulations was to compare and investigate the maximum

performance of the epithermal and thermal neutron beams without impact from the delimiters

and the suitability for the rat lung irradiations.

In-phantom thermal neutron fluxes and photon dose rates were tallied along the central axis

at 0, 1.5, 2.5, 3.5 and 4.5 cm from the lung center. Published photon kerma factors were used to

calculate the dose rates in tissues (8). Relative thermal neutron fluxes and photon dose rates to

the lung center were calculated to investigate shielding under extreme situations with different

neutron beams. The two ideal-source simulations were run with enough particles that the

uncertainties for the relevant tallies were less than 1%. The uncertainties for the tallies with the

FCB and MO 11 beams were around 2% and 1%, respectively.

2.2.5 The delimiter and its design and optimization criteria
After the beam was optimized and selected, a delimiter was designed for the rat lung

irradiation in this beam. Two optimization criteria were considered for the delimiter design. The

dose rate in the lung center was one criterion and a larger dose rate in the lung would ensure

comparatively shorter irradiation. To quantify the delimiter shielding quality, the second

criterion was defined, as the thermal neutron dose rate ratios in the lung center relative to those

in the collateral regions especially the intestines and esophagus. While in reality too much

shielding would block the beam and decrease the dose rate and dose distribution uniformity in

J. L. Kiger
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the lung region, the thermal neutron dose rate ratios were optimized below an upper limit. The

delimiter with ideal shielding, described in the last section, was set as the goal and upper limit

for the delimiter design. That was, a delimiter producing similar thermal neutron dose rate ratios

as the one with ideal shielding, and with adequately large lung dose rates, was deemed optimum.

The range of the thermal neutron dose rate ratio also had a lower limit, to ensure the doses to

collateral radiosensitive tissues below the dose limits listed in Table 2.1, with 10 Gy mean lung

dose. For the rat lung irradiation in the MO11 beam, the neutron component of total in-phantom

dose was approximately 20% with negligible fast neutron contamination (22), indicating 2 Gy

thermal neutron dose delivered to the lung. The thermal doses to the collateral regions could be

estimated with the thermal neutron dose rate ratio. The photon doses to these regions were

estimated as 8 Gy, similar to the photon dose delivered to the lung. In order to keep the

biologically weighted dose to the esophagus and intestines below 13 Gyw and 18 Gyw,

respectively (Table 2.1), the minimum thermal neutron dose rate ratio was determined as 1.5,

using reported or estimated neutron RBE values of gastrointestinal death and Eq. 1. This simple

estimation was theoretical and based on a rigid rat phantom. The thermal neutron dose rate ratio

in the actual design needed to be significantly larger than this lower limit.

A delimiter of thin plate geometry with a rectangular opening exposing the rat lung region to

the neutron beam was the basic idea of the design. Li-poly was selected as the delimiter

material, due to the high concentration of Li-6 (7% by weight), which has high thermal neutron

capture cross-section with almost no photons produced from the capture reaction. The

simulation goal was a delimiter geometry that would reach the design criteria described above, to

have close to ideal thermal neutron dose rate ratios and dose rates in the lung as large as possible.

Photon dose rates, thermal neutron dose rates and total neutron dose rates were tallied in the lung
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and along the central axis including the esophagus and intestines, for this purpose. The

parameters of the geometry to be optimized are thickness, aperture width and the taper angle of

the aperture edges. The optimization of the delimiter was initially in two dimensions, the

thickness and the aperture width, with the third parameter, the aperture taper angle, fixed at 900.

After the thickness and the width were decided, the taper angle was fine-tuned in search of some

advantages of larger neutron dose rate ratios or larger physical dose rates in the lung. The

detailed calculations for each beam are discussed later.

2.2.6 Experimental validation
Two Lucite phantoms filled with light water were built for the validation of the MCNP beam

model. Lucite was selected for the phantom material because it has a density close to that of

tissue and it has a low activity induced by neutrons. The phantoms are 20 cm long cylinders, 5

cm in diameter, a much simplified version of the MCNP rat model. One cylindrical phantom has

a 1-cm inner diameter concentric channel for dosimeters positioned along the horizontal

dimension to check the shielding effect of the delimiter. Another phantom has a 1-cm channel to

measure the dose/flux depth profiles in the lung location. Dose and flux profiles along these two

orthogonal dimensions were measured to benchmark the simulation design against the

experiment.

The measurements were done with the Lucite phantoms positioned inside the Li-poly

shielding box with the Li-poly delimiter mounted on the top and placed below the MO 11 beam

port. The dual ion chamber technique (25) was used to measure the photon and the neutron dose

rates in the mixed radiation field at various horizontal locations along the cylinder axis. An A-

150 muscle tissue-equivalent (25, 38) ionization chamber flushed with tissue equivalent gas and

a carbon graphite ionization chamber flushed with CO 2 gas were used. The gas flow rate for

J. L. Kiger
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both chambers was 20 ml/min. The two chambers have different sensitivities to photons and

neutrons, thus providing two simultaneous equations from which the photon and neutron dose

rates are readily solved (25).

Bare gold foils (12-18 mg, 0.005 cm thick) and gold foils with cadmium covers (0.050 cm

thick) were used to measure total neutron and epi-cadmium neutron flux (E>0.4eV),

respectively, along the horizontal and vertical dimensions in the two Lucite rat dosimetry

phantoms. The gold reaction induced by neutrons is 197Au(n, y)198Au. Cadmium covers served

as thermal neutron barriers to allow only fast neutrons to pass through and interact with the gold

foils. A high purity germanium detector was used to count the emission rate of the 411 keV

photons from the gold foils after the irradiation. To determine the neutron flux in the vertical

dimension of the phantom, bare gold foils were positioned every 1 cm from the surface of the

phantom at 0, 1, 2, 3, 4 cm depth along the central beam line. The foils with cadmium covers

were positioned at every 2 cm (0, 2, 4 cm from the surface) to avoid perturbation of the neutron

field at the location of the next foil (24). In the phantom to determine the flux distribution along

the horizontal dimension, bare foils were positioned at the center of the lung (0 cm), and 1.0, 2.5,

3.5, 4.5 cm from the center towards the 'body' end of the phantom, and 1.0, 2.0, 3.5 cm towards

the 'head' end of the phantom. Cadmium-covered foils were placed 2.5, 4.5 cm and 2, 3.5 cm

from the center of the lung region to each end of the phantom. The techniques for mixed field

dosimetry, including the dual chamber technique and gold foil measurement, have been

described in detail (25). The simplified cross-section of the phantom irradiation underneath the

beam and the Li-Poly delimiter, the phantoms, and the dual ion chambers and the foils are

displayed in Fig. 2.4.
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cut]

Fig. 2.4 Experimental validation of irradiation simulations: a) a simplified cross-section of the
simulated irradiation geometry with the dosimetry phantom in place; b) the two lucite
water-filled phantoms positioned inside the Li-Poly shielding box; and c) the dual ion
chambers and gold foils used to measure the dose rate and neutron flux in the
irradiation field.

J. L. Kiger
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These simplified dosimetry phantoms were modeled in MCNP to obtain scale factors

between simulations and measurements. The geometries of the water filled lucite phantoms, the

Li-poly delimiter, and the Li-poly shielding box were constructed below the MCNP model of the

MO11 beam. The dose rates were tallied at various locations matching the real ion chamber

measurements. Cadmium-covered and bare gold foils were also included in the simulations to

tally the fast neutron (E>0.4eV) flux and thermal neutron flux. The scale factors were then

applied to the calculations of lung and other tissue dose rates in the sophisticated MCNP models,

to obtain the dose rates delivered in the real irradiations. The dose contribution from the

l'B(n,a)7Li reaction was calculated from the simulation data multiplied with scale factors, with

reported Boron-10 kerma factors (8).

2.3 Results
2.3.1 Comparison of the FCB and the M011 beams

Simulations with four idealized neutron beams were performed to investigate the suitability

of actual epithermal and thermal neutron beams available for the rat lung irradiations, including

the FCB and the MO 11 beam. With ideal shielding or unidirectional beams in simulations, doses

delivered to the collateral region were mostly due to scattered neutrons and induced photons

from the exposed lung region, with minimum neutrons and photons directly from the beam.

Distributions of relative neutron fluxes and photon dose rates along the central axis, including

the esophagus and intestines, compared to those at the lung center, were calculated and plotted in

Fig. 2.5.
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Fig. 2.5 Normalized neutron flux and photon dose rate distribution along the central axis of
the rat cylinder from the calculations with MCNP. Lung region extends from 0-2 cm,
which is exposed to the beams. 'Ideal shielding' is applied beyond 2 cm from the
lung center, with all neutrons and photons entering the shielded regions terminated in
MCNP. The size of the two ideal epithermal and thermal neutron beams is 4 x 15 cm,
and the two neutron sources are unidirectional (fully collimated).

For the irradiations with the epithermal neutron beams, both relative thermal neutron flux and

photon dose rates at 0.5 cm outside the beam were close to or above 1. With the ideal

unidirectional epithermal neutron beam, photon dose rate at 0.5 cm outside the beam is about

15% higher than that in the lung center and then decreases to about 95% at 2.5 cm outside the

beam opening. The thermal neutron flux at 0.5 cm outside the beam in this situation is about

91% of the flux at the lung center and decreases to 61% at the locations of the intestines and

esophagus. Similarly, in the simulation with the FCB and ideal collateral shielding, both off-
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-V- Ideal Ther. Beam -s-- Idea. Ther. Beam
-M- FCB --E- FCB
- M01 -C-- M01

J. L. Kiger

f1%*

U



Radiobiology of Normal Rat Lung in Boron Neutron Capture Therapy

central thermal neutron flux peaks and off-central photon dose peaks were accumulated due to

neutron scatterings. The thermal neutron flux at 0.5 cm beyond the opening is 8% higher than

that in the center of the lung, and decreases to 76% at the locations of intestines and esophagus.

The photon dose at 0.5 cm outside the beam is 34% higher than the lung center, and remains

14% higher at the intestines and esophagus locations. A simple estimation showed that with 10

Gy mean lung close in the irradiations with the FCB, the dose at the esophagus and intestines

would be much higher than the weighted dose limits listed in Table 2.1. These distributions of

thermal neutron fluxes and photon dose rates in the collateral regions demonstrate the

significantly unfavorable scattering characteristic of the epithermal neutron beams. This

problem is not relievable since ideal conditions have already been applied to the irradiation

simulations with epithermal neutron beams.

More simulations were done with real collateral shielding (a 0.8 cm thick and 4 cm aperture

Li-Poly delimiter) in the irradiation of FCB. Not surprisingly, the off-central dose peak problem

was more severe with less idealization. Both relative thermal neutron flux and photon dose rate

were greater than 1 at up to 1.5 cm beyond beam opening. Though the epithermal beams have

advantages of greater penetration and more uniform distribution in the lung, the unfavorably high

dose delivered to the shielded radiosensitive regions cannot be compromised. Therefore, the

FCB is determined as unsuitable for the rat lung irradiations.

In contrast, the irradiations with the two thermal neutron beams have much less problems

from neutron scattering. Fig. 2.5 shows that, with the unidirectional and monoenergetic thermal

neutron beam, the thermal neutron flux decreases significantly faster along the central axis,

dropping to 590/o of the flux at the lung center at 0.5 cm outside the beam, and 26% at 1.5 cm

beyond, where the esophagus and intestines are located. The relative induced photon dose rates



Chapter 2: Design of Rat Lung Irradiations in BNCT

are also smaller, being 88% and 58% of the photon dose rate at the lung center, at 0.5 cm and 1.5

cm beyond the beam, respectively. The relative thermal neutron flux distribution along the

central axis of the rat phantom with the MO11 beam and ideal collateral shielding is similar to

that with the ideal thermal neutron beam. The relative photon dose rate distribution along the

central axis with the M011 beam is slightly larger at 1.5 cm and beyond outside the beam than

that with the ideal thermal beam. This indicates that the M011 beam is composed of almost pure

thermal neutrons and is much easier to shield for the rat lung irradiations. A calculation with the

neutron kerma factors (8) applied showed that the thermal neutron dose rate ratio at the intestines

and esophagus is 4 in this M011 irradiation, significantly larger than the minimum required ratio

of 1.5, as discussed above.

From the calculations and comparisons above, thermal neutron beams proved to be more

suitable for the rat lung irradiations, due to the neutron scattering problem resulted in irradiations

with epithermal neutron beams. Thus the MO11 beam was chosen over the FCB for the rat lung

irradiations. From the comparison between the ideal thermal neutron beam and the MO11, the

MO11 beam has characteristics similar to a unidirectional and monoenergetic thermal neutron

beam. The performance along the central axis of the rat cylinder in the irradiations with the

M011 beam and ideal collateral shielding, was set as the goal for delimiter design in the rat lung

irradiations in the M011 beam, in the following stage of this project.

2.3.2 Delimiter design for irradiations in the M011 thermal neutron beam
A delimiter was designed and optimized for the rat lung irradiations in the MO 11 thermal

neutron beam. As described in the method section, two criteria were used to evaluate the

delimiter design: the thermal neutron dose rate in the lung center; the ratios of the thermal

neutron dose rate in the lung center to those in the collateral regions along the central axis,

J. L. Kiger
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especially the intestines and esophagus. Also as discussed above, the delimiter with ideal

shielding was set as the goal for the real delimiter design for the rat lung irradiations in the M011

beam. In the simulations, the delimiter was optimized by comparing the thermal neutron dose

rate ratios to the idealized situation of the MO11 irradiations. The geometry of the Li-poly

delimiter was optimized with the thickness and aperture width determined first and then the

aperture edge fined tuned.

In the previous section, ideal shielding of neutrons and photons was applied to the collateral

sides above the cylinder rat phantom with a 4 cm aperture in the MO 11 beam irradiation.

According to a simple hand-calculation, 1 cm Li-poly plate can absorb up to 99.9% of the

thermal neutron flux (0.0253 eV) (33). The initial geometric parameters of the delimiter were

therefore approximated as 1-2 cm thick, with an aperture tapered from 4-3 cm, comparable to the

lung length of 4 cm. The calculated data in the rat models from the simulations of the M011

beam irradiations, with various real delimiters and the ideal delimiter, are plotted in Fig. 2.6.

From this figure, the thermal neutron dose rate ratios varied more with the delimiter width

opening than the thickness, between the thickness of 1 - 2 cm. The ratios of the Li-poly delimiter

group of 3 cm aperture width were closer to the ratios with ideal shielding of 4 cm aperture

width. This indicates that a close to ideal thermal neutron dose rate ratio was achieved by

decreasing the aperture width, or the beam exposing area. Among delimiters of the same

aperture (4 cm or 3 cm) but different thickness, the delimiters of 1.5 cm thick seemed to provide

a better shielding effect than delimiters of 1.2 cm and 1.8 cm thick, though there is no statistical

difference between the ratios. Therefore, the initial delimiter geometry was chosen to be 1.5 cm

thick with a 3 cm aperture width. Fig. 2.7 also lists the relative thermal neutron dose rate at the

lung center of the irradiations with different delimiters compared to that of ideal shielding,
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assuming the latter as the standard. The thermal neutron dose rates at the lung center were lower

for 3 cm aperture and compromised for a better shielding.

1 2 3 4
Axial Distance from Lung Center (cm)

Fig. 2.6 Simulations of thermal neutron dose rate ratios in the MO 11 thermal beam, of the lung
center to the collateral regions on the central axis, with Li-poly delimiters of various
combinations of thickness and aperture width. A larger ratio indicates better
shielding. The results were compared with ideal shielding of a 4 cm aperture. The
relative thermal neutron dose rates at the lung center of different delimiters were
compared to the case of ideal shielding, listed in the panel. The uncertainties for all
the thermal neutron dose tallies are within 1.5% in simulations.

After the parameters of thickness and aperture width of the delimiter were optimized, the

aperture tapering angles were fine tuned from 90' to 72'. That is, the original straight delimiter

aperture was altered to a tapered opening 4-3 cm with the smaller aperture close to the rat

phantoms, with the 1.5 cm thickness unchanged. The thermal neutron dose rate ratios were also
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plotted in Fig. 2.6. Similar shielding ratios were obtained for this altered geometry but the

average thermal neutron dose rate in the lung center increased by about 10%. This is desirable

for both a shorter irradiation time and a more distinguishable boron physical dose when boron

compound is added in the lung irradiations. Therefore, the final design of the plate Li-poly

delimiter was 1.5 cm thickness and 3 cm wide aperture tapered 720 to 4 cm at the beam entry

surface, to produce a thermal neutron dose rate ratio of 4 at the esophagus and intestines

locations. A total physical lung dose rate of 19.2 cGy/min/5MW with single field was obtained

and about 50 minutes beam time is required to deliver 10 Gy dose with two-field. Table 2.2 lists

the mean lung dose rates in the MO 11 beam irradiations with single field shielded by the

optimized delimiter.

The final design of the shielding box (rat holder) for the thermal beam irradiation is a Li-poly

box of 7 x 15 x 30 cm inner dimensions, which can hold 2 rats. The optimized 1.5 cm thick

delimiter with a 3 x 14 cm aperture, tapered 72 degrees, is mounted on the top of the box. The

delimiter/holder is attached to the beam port in the ceiling of the medical room for irradiation in

the vertical MO11 neutron beam.

Table 2.2 Mean lung dose rates calculated for the lung in the M011 beam irradiations for single
and with the delimiter of 1.5 cm thickness and 4-3 cm wide aperture. Only
calculation uncertainties are included.

Physical Dose Rate for the Lung Volume (cGy/min)
Thermal N Total N Photon Total Physical
3.29 + 0.04 3.50 + 0.04 15.71 ± 0.14 19.21 ± 0.29

2.3.3 Validation measurements
Validation measurements were carried out following the simulation design of the rat lung

irradiation delimiter as described in previous sections. In-phantom photon dose rates and total

thermal neutron dose rates were measured along the horizontal axis: at the centre of the 'lung' of
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the phantom, and 3.5 cm away from this point, which is 2 cm from the bottom edge of the Li-

poly delimiter aperture. Total neutron flux was measured along the horizontal axis: at the center

lung, 1.0, 2.0, 3.5 cm away towards the 'head' end, and 1.0, 2.5, 3.5, 4.5 cm away towards the

'body' end. Cadmium covered gold foils were placed at the 'lung' center, 2.0, 3.5 cm and 2.5, 4.5

cm away correspondingly on each end. Only neutron fluxes were measured on the vertical

direction of the phantom. Bare gold foils were positioned every 1 cm from the phantom surface

to 4 cm depth. Cadmium covered gold foils were placed at 0, 2 and 4 cm from the surface.

Figs. 2.7 - 9 plot the measured and calculated thermal neutron flux and photon dose rates

along the vertical and horizontal directions of the phantom. Both the measurements and

calculations demonstrate that the MO 11 beam has a very small fast neutron contamination. The

simulations show that the in-phantom fast neutron component is less than 1% of the total neutron

flux, with the uncertainties for fast neutron flux around 5% or less. In the measurements, the

counting rates for bare gold foils is 20 times or more higher than that of the cadmium covered

gold foils, while both sets of foils had similar beam exposure time and counting start time after

irradiations. A gross calculation demonstrates that the MO 11 beam has a cadmium ratio of

approximate -150 in the central 'lung' of the rat phantom. Therefore, the beam was considered

as a pure thermal neutron beam and only total/thermal neutron flux was plotted in Figures 5 and

6 for clarity.

From Fig. 2.7, the thermal neutron flux at the surface of the phantom was 8.4 x 109 n/cm2 s.

This flux decreased to 6.1, 3.4, 1.8 and 0.9 x 109 n/cm2 s at depths of 1, 2, 3 and 4 cm in the

phantom, respectively. Along the central axis of the rat phantom (2.5 cm from the surface) the

thermal neutron flux directly under the delimiter aperture was 2.2 x 109 n /cm 2 s. This dropped

to 0.6 x 109 n/cm 2 s in the region of the shielded collateral regions 3.5 cm from the center of the
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aperture opening. The measured photon dose rate in the central axis of the phantom, directly

under the aperture, was 19.5 cGy/min. All MCNP simulations were scaled to match these

physical dosimetry measurements. The scaling factors connecting the simulation and the

experiment for the rat lung irradiations were determined to be 0.56 for neutrons and 0.75 for

photons. After this scaling, the discrepancies between measured and calculated neutron flux and

photon dose rate depth profiles along the beam axis, as well as the profiles along the central axis

of the phantom, were mostly within 5%.
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Fig. 2.7 Neutron flux versus depth profile in the rat phantom along the central beam axis. In
the M0 11 thermal neutron beam, calculations were normalized to measurements by
applying a factor of 0.56.
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Fig. 2.8 Profile of neutron flux versus displacement along the axis of the rat cylinder.
Calculations were normalized to measurements by applying a factor of 0.56.
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Fig. 2.9 Photon dose rates versus axial displacement profile. Calculations were normalized to
measurements by applying a factor of 0.75.

2.3.4 Dose Volume Histogram (DVH) and the irradiation fields
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After the delimiter was designed, the irradiation procedure was further optimized to produce

a uniform dose distribution in the lung volume and avoid over exposure of surrounding tissues

including skin and spinal cord. Due to the significant attenuation of thermal neutrons with depth

in tissue, irradiation of the lung with a single field will produce a large dose gradient as a

function of depth. A two-field irradiation from ventral and dorsal surfaces of the phantom was

superior to the one-field irradiation in terms of dose uniformity in the lung volume. The dose

distribution in the total lung volume was calculated by constructing dose volume histograms

(DVHs) from the MCNP simulation data. To calculate the DVH, the 4 cm diameter, 4 cm long

lung cylinder was segmented into voxels by first dividing the lung cylinder into three segments

(1, 2 and 1 cm-thick) along the body axis, and then subdividing these cylinders further by

superimposing a grid of - 0.5 cm squares on each segment. The heart and spinal cord volumes

were excluded. Thus, voxels along the outer edge and adjacent to the heart or spinal cord, had

irregular geometries. Voxel volumes ranged from 0.6 cm 3 to 0.02 cm 3. The calculation

uncertainties for the thermal neutron and photon doses were less than 2.5% for each voxel. The

DVHs was constructed from the dose rates tallied in each voxel in MCNP.

The calculated dose volume histograms (DVHs) for one-field and two-field irradiation were

compared and are shown in Fig. 2.10. The two-field irradiation showed more uniform dose

distribution (approx. 9.5 -11.5 Gy) than the one-field irradiation (approx. 7-15 Gy) with the mean

lung dose fixed at 10 Gy in both cases. This is due to the compensation of the two-field

irradiation for the exponential attenuation of the thermal neutron beam in tissue. The DVHs for

thermal and total neutron dose components for the two-field irradiation are also shown in Fig.

2.10. Additionally, the dose delivered to the ventral skin in the two-field irradiation was

significantly lower than in the one-field irradiation. This protected the ventral skin from
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receiving overdose during irradiations especially when B-10 carrying drug were introduced in

the irradiations.
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Fig. 2.10 Physical dose volume histograms for the lung with mean lung dose fixed at 10 Gy for
both one- and two-field irradiations.

2.3.5 Final calculation results
Table 2.3 lists the simulation results of the physical dose delivered to different tissues with

10 Gy mean lung dose, with the delimiter of 1.5 cm thickness and 4-3 cm aperture width. The

calculated total physical dose rate in the lung volume was 18.7 cGy/min for a 2-field irradiation

in the absence of boron, including thermal neutron and photon components of 3.3 cGy/min and

15.4 cGy/min, respectively. A beam only 10 Gy mean lung dose could be delivered to the rat in

a total irradiation time of about 54 minutes using two fields (- 27 min/field) at 5 MW reactor

power. With 10B present, the calculated dose rate for the boron neutron capture dose component

was 1.04 cGy/min for every ýpg 10B present in 1 gram blood. Assuming the average boron

concentration in the rat blood is 18ppm at the irradiation time (2.5-3.5 hours after Intraperitioneal

J. L. Kiger
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Injection) (45), the total irradiation time required to deliver 10 Gy physical dose is about 26.7

minutes (13.4 min/field), approximately half of the time for beam only irradiations.

Table 2.3 Physical radiation doses in Gy delivered to the surrounding tissues with 10 Gy mean
lung dose. The calculation uncertainties are within 5% and are omitted for clarity.

1-field (ventral) (Gy) 2-field (ventral and dorsal) (Gy)
Tissue Neutron Gamma Total Neutron Gamma Total
Skin 7.0 13.0 20.0 3.9 9.5 13.4

Spinal cord 0.7 6.5 7.2 1.9 9.8 11.7
Heart 4.1 15.2 19.3 2.8 12.4 15.2
Intestines 0.4 6.8 7.2 0.4 7.0 7.4
Esophagus 0.4 6.8 7.2 0.4 7.0 7.4
Lung 1.8 8.2 10 1.8 8.2 10

2.4 Conclusions and Discussion
The simulations indicated that 10 Gy mean lung dose can be delivered within 54 min beam

time using two-field irradiations (27 min per field). The DVH for the rat lung region indicated a

relatively uniform dose distribution in the lung for two-field irradiations. With a thermal neutron

dose rate ratio of 4 at the esophagus and intestines relative to the lung center, acceptable doses

(about 9 Gyw) to these critical normal tissues can be delivered, which are well below the

tolerance limits listed in Table 2.1. The doses delivered to the surrounding skin and spinal cord

in the two-field irradiations are about 30 Gyw and 13 Gyw, respectively, again below the

tolerance limits.

The irradiation of the whole lung volume in rats is significantly different than the small

animal BNCT radiation studies reported to date, where the exponential attenuation of thermal

neutrons as a function of depth in tissue was not a limiting factor for irradiation of brain tumors,

skin, spinal cord or tongue of rats. All of these tissues were < 1 cm from the skin surface and
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generally represent treated volumes of much less than 1 cm3 (8). Irradiations of the rat lung

require the delivery of uniform thermal neutron fluences to tissue depths of 3-4 cm for a target

volume of approximately 50 cm3 . In addition, the sensitive normal tissues outside the field, such

as the esophagus and intestine, must be adequately shielded so that the rats will survive long

enough to express the late pneumonitis and fibrosis changes to the lung. Thermal neutrons are

attenuated exponentially in tissue, which with a single-field irradiation produces a steep dose

gradient across the lung volume as a function of depth. Simulations with the MITR-II thermal

neutron beam showed that the collateral regions could be shielded effectively, and the approach

of using parallel apposed field can deliver a more uniform thermal neutron fluence to the lung

volume (- 50 cm3). This approach delivers the specified dose to the lung volume with a dose

variation of approximately ± 10%, based on the calculations. An additional advantage of the

two-field approach is the relative sparing of the skin.

The thermal neutron facility of the MITR-II is being prepared for both clinical applications

and for small animal radiation biology experiments. Most small animal irradiations in the M011

medical beam, similar to the rat lung irradiations, require shielding of the neutrons to confine the

irradiations to small target areas. With additional calculations and dosimetry, the same holder

and delimiter or with some simple adaptation, should also be adequate for irradiations of

subcutaneous or intracranial tumors in small animals in the Ml011 beam. So far a Li-poly

delimiter of the same thickness but an aperture tapered from 3 to 2 cm aperture and the Li-poly

rat holder have served in mice leg irradiations and rat brain irradiations. The holder also serves

as the container for other irradiations, such as the cell irradiations.
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CHAPTER THREE

An Automated Method for
Breathing Frequency Determination
in Rat Whole-body
Plethysmography

3.1 Introduction
Whole-body plethysmography for small animal breathing frequency measurement has been

widely used to non-invasively assess lung damage after irradiation or toxic exposures. The

apparatus and hardware for plethysmography of small animals, especially rats and mice, have

been well established (1-6). The basic principle is to confine the animal in an air-tight chamber

and measure the pressure changes inside the chamber due to the respiration-related movement.

Potential problems have been reported related to inadequate measurement time due to the limited

air supply and possibly increased temperature inside the sealed chamber (1, 3). These problems

were addressed by purging the chamber with a constant or low-frequency air flow during

measurement, an approach known as open-flow plethysmography (4, 5).

The method for converting the raw pressure data into a breathing frequency continues to

evolve. Breathing frequencies were originally counted manually or reported by a frequency

counter, based on a few breath cycles during regular breathing. Regular breathing, as opposed to

animal movement or sniffing, which caused irregular pressure signal changes, was observed and
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accepted manually by the operator. These methods were not only very laborious, especially

when applied to a large number of animals; but the results were also prone to user bias due to the

need for manual selection of regular breathing regions of the data set. Additionally, it has been

reported that breathing frequencies calculated from short evaluation intervals (< 15 s) have

significantly larger variations than the frequencies calculated from longer intervals (> 15 s) (6).

It is possible that some of the considerable differences in breathing frequencies reported for

control animals of the same strain, sex, and similar age could be due to variations in evaluation

intervals or to differences in identification of the breathing cycle endpoints and evaluation

procedures (7-12). Significant variations in the pattern of the resting breathing signal for a group

of control WAG/Rij rats have been reported to produce a three-fold difference in the calculated

breathing frequency (6). This problem could be more severe, if breathing pattern variations

become more pronounced due to lung damage.

Two computer-aided analysis methods for breathing frequency measurement in small

animals have been reported (2, 13) which eliminate some of the potential user bias. In one

report, the consistency of the breath cycles was used to discriminate against animal movement.

Regular breathing was empirically defined as when the difference between the periods of two

consecutive breath cycles was less than 4% (13). The computer results were reported to correlate

well with manual counting (13). In another report, the standard deviation of the breathing cycle

period during the measurement interval was used to discriminate against aberrant data related to

animal movement. Regular breathing was defined as when the standard deviation of the period

varied by less than 5% of the average baseline period, measured for each animal prior to

irradiation (2). Though these two computer-aided methods could better discriminate against

movement than manual labor and possibly bias, they still calculated the breathing frequencies
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based on mostly short evaluation intervals (< 15 s). Additionally, assessing quiet breathing using

signal segment lengths of multiple breath periods unfavorably discarded quiet breathing cycles

along with adjacent aberrant cycles. After identifying periods of quiet breathing, these

approaches counted breathing cycles using either a zero-crossing counter approach (2) or,

similarly, by calculating the mean amplitude of the signal and then using a mean-crossing

counter technique (13). In the zero-crossing approach, a pressure reference was set either using

the zero pressure or the local mean pressure, and the points where the breathing signal crossing

the pressure reference were regarded as the beginnings or ends of the breath cycles.

An open-flow whole-body plethysmography approach with an automatic data analysis

system is reported here, and will be applied for measuring rat breathing frequencies after

irradiations to noninvasively quantify radiation-induced lung damage. This chapter describes

both the hardware and software of this system and uses data from sham-irradiated control rats

and one group of 8 rats that received a whole-lung dose of 11.75 Gy of x-rays; the BNCT

radiation biology in the lung will be reported in Chapter 4. The apparatus was adapted from a

commercially available system for rat breathing signal collection (Respiromax, Columbus

Instruments, Columbus, OH). Customized Matlab programs were written for noise reduction

and breathing frequency calculations. Fourier transform analysis was used to extract the

breathing frequency from the breathing signal pressure data. The results of this Fourier

transform-based analysis were compared to a method based on breath cycle counting, also

programmed in Matlab, and to the results from the commercial software. The goals of the signal

processing approach described here were to preserve long segments of breathing rate pressure

change data after the automated noise filtering. The algorithms described here also allow

estimation of the uncertainty (standard deviation) on each individual measurement using the
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bootstrap method (14-16). The Fourier transform approach described here does not rely on a

zero-crossing count as a measure of breath cycles and has allowed us to detect a fine structure in

the breathing rate signal that is present in some control animals at a very low amplitude, but

increases dramatically in the x-ray irradiated group, for example. The irregular shape of the

individual breath cycles described here and analyzed by the signal processing algorithm could

contain significant information about the nature of the lung damage.

3.2 MATERIALS AND METHODS
3.2.1 Animal irradiations

Male Fisher 344 rats, approximately 12 weeks old, were used for these studies. Rats were

anesthetized with an i.p. injection of ketamine (80 mg/kg) and xylazine (10 mg/kg). Two rats

were positioned, side-by side, under a 0.64 cm-thick lead delimiter with 4 cm wide aperture and

immobilized with 5-cm wide clear adhesive tape. The lung region was positioned in the beam

aperture (12 cm in diameter) using the bony protuberance of the T2 vertebra and the xyphoid

sternum as reference points. Irradiations with x-rays were carried out using a Phillips RT250

unit operating at 250 kV and 12 mA with 0.4 mm Sn plus 0.25 mm Cu added filtration and a

focus-to-skin distance of 32 cm. The x-ray dose rate in the lung volume was 1.0 Gy/min. These

experiments were conducted with approval from the Committee on Animal Care at the

Massachusetts Institute of Technology.

3.2.2 Breathing measurement apparatus
The apparatus for breathing frequency measurement was adapted from a commercially

available breathing rate measurement system (Respiromax, Columbus Instruments, Columbus,

OH). The commercial design confined the animal in a chamber and sealed the chamber by
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cuffing the animal at the neck with an air-filled collar. The chamber was connected to a pressure

transducer (SenSym, SCXL004DN, Columbus Instruments, Columbus, OH) and pressure

changes inside the chamber were converted to electrical voltage signals, at data sampling rates of

up to a maximum of 200 Hz, then sent to a laptop computer. The signal was displayed and

stored on the computer. Four animals could be measured simultaneously on independent

channels, each with one transducer and one chamber to hold one animal, provided by the system.

Mean pressure during 8 breath cycles was calculated by the commercial software and 'zero-

crossing' was applied to define the start and end of each breath cycle. The commercial software

calculated breathing frequency as the mean of the 8 breath cycles and the results were recorded

every 5 seconds during the measurement. No noise reduction was available in the commercial

software.

The commercial chamber design for rat immobilization and breathing rate measurement did

not work well with the male Fisher 344 rats in this experiment. The animals confined in the

commercial chambers constantly struggled, sometimes were able to escape and occasionally died

from asphyxiation. To resolve these issues, new chambers were designed, constructed and

integrated into the commercial system. Four cylindrical Lucite chambers, each of 7.6 cm inner

diameter and 20 cm long, with plugs and with expandable gaskets on each end to obtain an air-

tight seal, were built to contain the animals. The chamber volume is adequate for rats weighing

between 200 g and 500 g and the pressure changes inside the chamber due to animal respiration

were easily detectable. Two holes were drilled in each chamber near each end and fitted with

brass tubing connection ports (2 mm inner diameter). One port was connected to an air pump to

provide fresh airflow through the chamber. Four chambers were connected to the airflow using
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T-connections in the air-supply tubing. The second port on each chamber was connected to the

pressure transducer and also served as the airflow outlet.

The breathing rates were measured for each animal every 1-2 weeks until 180 days after

irradiation. During the measurement, animals were placed in the chambers with the head close

to the air inlet. The airflow was maintained constant at 110 cm 3/min using a pressure meter. The

chambers were covered with a cloth to calm the animals, and the four breathing signals were

monitored simultaneously on the computer using the commercial software (Columbus

Instruments). Breathing signals were collected continuously for 3 minutes with a sampling rate

of 200 Hz.

3.2.3 Breathing Rate Analysis
Noise Reduction. The stored 3-minute breathing signals were analyzed offline using custom-

developed programs in Matlab (The Mathworks, Natick, MA). Noise reduction was carried out

in three stages. In the first stage, the sign of the first derivative of the pressure signal was

computed and transition points from positive to negative or vice versa were marked, determining

all local maxima and minima in the pressure signal. With the transition points, the signal was

divided into individual segments of monotonic pressure changes. These segments were

comprised of mainly regular animal inhalations and exhalations, a small portion of high-

frequency noise, and, occasionally, large-amplitude noise related to animal movement. The

noise was filtered in the next two stages.

In the second stage, high-frequency noise were removed by comparing the time intervals

between the transition points. If any two transition points occurred within 0.04 s of each other,

one was removed. This amounts to a 12.5 Hz high frequency cut-off on the raw pressure signal

data. Maxima or minima with intervals of 0.04 s or less would correspond to > 750 breaths per

J. L. Kiger
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minute (min-'), and were considered to be beyond the breathing frequency range of a male F344

rat. Also, the amplitude of this noise was small compared to the usual amplitude for a regular

breath cycle. It should be emphasized that the breathing signal pressure data remained

unchanged; only the very high frequency transition point markers were discarded.

In the third stage, large-amplitude peaks, due to irregular animal movement (e.g., struggling

against the chamber), were eliminated from the breathing signal data. Absolute values of the

differences in amplitude between adjacent transition points were calculated. A histogram was

plotted for this distribution of peak to valley (and valley to peak) amplitudes and the median

value of this amplitude distribution was calculated. A limit was defined from the distribution as

2.5 times the median value, to differentiate animal movement from regular breathing. Segments

with amplitudes larger than the limit were eliminated from the breathing signal. The remaining

breathing signal, free of large-amplitude segments, was joined together. Once the breathing

pressure signal was processed to remove the high-frequency noise and the large-amplitude noise

from spurious movement to produce a continuous breathing pressure signal, the breathing

frequency was then calculated using two independent algorithms and the results were compared.

Fast Fourier Transform and Bootstrap (FFT+BS). The algorithm to calculate breathing

frequency used the Fast Fourier Transform to nonparametrically calculate the frequency

spectrum of the pressure breathing signal. The input was the original pressure signal after the

large-amplitude, movement-related peaks had been removed as described above. The FFT+BS

method does not rely on peak counting, therefore no high frequency (>12.5 Hz) data was

removed from the signal prior to the FFT analysis.

Rather than Fast Fourier transforming the entire 3 min breathing signal into the frequency

domain all at once, the signal was analyzed using the FFT in combination with a circular moving
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block bootstrap (14-17). This approach has advantages of noise suppression in the frequency

domain and permits estimation of the uncertainty (standard deviation or confidence interval) of

the frequency spectrum parameter of interest. In the time domain, the 3-min breathing signal

was evenly segmented into 12 consecutive, overlapping blocks. Each block was 1 minute in

length and the time between the start of two consecutive overlapping blocks was -15 seconds.

Some times between the start of two consecutive blocks are slightly shorter than 15 seconds,

depending on the length of large-amplitude noise removed, as described above. Thus, there was

75% (45 seconds) or slightly larger overlap between two consecutive blocks. In the circular

blocking technique, the last few blocks (three in this case) are wrapped around from the end of

the signal to the beginning and encompass both the end and the beginning section of the

breathing signal. This circular blocking technique ensures that all segments of the signal are

equally sampled and weighted.

The frequency spectrum of each of the 12 blocks was calculated using FFT and a mean

spectrum was calculated from the 12 frequency spectra. The maximum peak location in the

mean frequency spectrum of the 12 blocks was defined to be the breathing frequency for the 3-

min measurement. The starts of the overlapping breathing signal blocks were -15 seconds apart,

which is much longer than one breath cycle. The signal blocks were therefore regarded as only

weakly dependent on each other. Also, after the large amplitude noise reduction described

above, the statistical character of the rat breathing was assumed not to change significantly over

the 3-min measurement period. Thus, the 12 overlapping blocks of breathing signal data were

considered as "identical distributions" and the 12 frequency spectra from the 12 signal blocks

were treated as Identical Independently Distributed (i.i.d.) random variables. The standard

deviation of the breathing frequency derived from the mean frequency spectrum was estimated

J. L. Kiger
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using the bootstrap, a nonparametric re-sampling method with replacement (15, 16). The 12

frequency spectra served as a data set for bootstrap re-sampling. In each bootstrap calculation,

12 bootstrap samples (frequency spectra) were randomly selected, with replacement, from the

data set. The location of the peak frequency computed from the mean of the 12 resampled

bootstrap spectra was defined as the bootstrap breathing frequency for that calculation. To

generate adequate statistical power, the bootstrap calculation of the breathing frequency was

repeated 200 times. The 200 bootstrapped breathing frequencies formed an estimated

distribution of the breathing frequency for the one original 3-min pressure change breathing

signal. The standard deviation of this distribution estimates the standard deviation of the

breathing frequency of this particular breathing signal, obtained previously from the mean of the

12 original frequency spectra (15). In summary, for each 3-min breathing signal measurement,

the breathing frequency was the maximum value in the mean frequency spectrum of the 12

signal blocks. The standard deviation of the breathing frequency was estimated using the

bootstrap from the 12 i.i.d. signal blocks. The process of mean breathing frequency

determination and the uncertainty estimation with bootstrap is displayed in Fig. 3.1.

Based on a survey of the rat breathing rate literature, it was assumed that a breathing rate

range of 100 to 600 min-' would cover all situations for the male F344 rats. The frequency

spectra were only analyzed within this range. The control Fisher 344 rats showed a regular and

symmetrical pattern of breath cycles, and the FFT frequency spectra usually had one major peak,

but occasionally one or two very low amplitude peaks appeared at higher frequencies. In this

situation, the frequency of the major peak maximum was defined as the breathing frequency of

the breathing signal data, and the standard deviation was estimated with the bootstrap method

described above. For animals with radiation-induced lung damage, considerably larger variation
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of the breath cycle pattern was observed. Up to three peaks of comparable amplitude appeared

in the FFT frequency spectra calculated from the breathing signal data. In this situation,

frequencies of each peak maximum were recorded and the standard deviations of the frequencies

were estimated within subranges of about 100 min-1 centered on each peak. Since only one value

of breathing frequency was to be derived from the breathing signal, if the relative amplitude of

the higher frequency peak in the FFT spectrum was greater than 0.5, the higher value was used

as the breathing frequency and served to demonstrate the severity of the lung damage.
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Fig. 3.1 The process of the FFT+BS method: breathing frequency determination (panel a) and
the uncertainty estimation with bootstrap (panel b).

Time (s)

b
FFT

C-)

·-~,~inaa;8nna~~~,,l-~T----iLi~LY-ii~"? --- · ·-~··--_-art~·l-~--cF-;---- ~~·-r~-- T-llis;iRR*s~r



Chapter 3: Rat Breathing Frequency Determination

Breathing Frequency Density Function. The Breathing Frequency Density Function (BFDF)

method is an approach for estimating the distribution of breathing frequencies based on peak

counting. The input is the original pressure signal after the noise reduction algorithm has

removed both the large-amplitude, movement-related noise, as well as components greater than

12.5 Hz, as described above. The BFDF method uses the transition points of the pressure signal,

where the derivative changes sign, to calculate the periods of individual breath cycles. Time

intervals were calculated for each breath cycle, defined as two consecutive monotonic segments

of opposite sign in the breathing signal data, after the noise reduction described above. The

breathing frequency of each breath cycle was calculated as the inverse of the time interval. A

histogram of the distribution of breathing frequency of this breathing signal was calculated.

Because the breathing signal is sampled at 200 Hz, the distribution of the time intervals of the

breathing periods is discretized in increments of 0.005 s. Inverting the discrete time intervals to

obtain breathing frequencies results in a distribution of possible frequencies that are not

uniformly spaced but, rather, have a spacing proportional to frequency. To properly compensate

for this nonuniform spacing of frequencies, the frequency distribution histogram was divided by

the band width of each discrete frequency, which was defined as the sum of half the distance to

the upper and lower frequencies. The breathing frequency density function (BFDF) was defined

as this frequency distribution histogram, normalized by the frequency bandwidths. The

frequency with maximum density in the BFDF was defined to be the breathing frequency of the

particular measurement. The breathing frequency calculated with BFDF was used as an

independent check on the breathing frequency calculated with the FFT+BS method described

above.

J. L. Kiger
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3.3 RESULTS
Fig. 3.2 shows an example of a 30 s segment from a 3-minute long breathing signal acquired

from a control animal 35 days after sham irradiation. Calm regular breathing is evident with a

few periods of large amplitude movement-related noise near the end of the signal.

0.1

-0.10.

-0.2

150 155 160 165 170 175 180
Time (s)

Fig. 3.2 A 30 s segment from a 3-minute long breathing signal from a control animal acquired
35 days after sham irradiation. After a period of relatively regular breathing, high
amplitude movement-related noise is evident in the latter third of this signal segment.

3.3.1 Noise Reduction
The procedure for noise reduction is demonstrated with a breathing signal example from a

control animal with large-amplitude movement-related noise observed at the end of the 3-minute

measurement. In the first stage of noise reduction, pressure signal sign change transition points

were identified, and the high-frequency noise (>12.5 Hz) filtered out by removing transition

points with periods < 0.04 s. The absolute values of the amplitudes of the segments from this

signal, after high-frequency filtering, were calculated and the histogram is shown in Fig. 3.3 with

the x-axis (amplitude) normalized to the median value of the distribution. The main distribution
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of the pressure amplitude histogram was approximately bell-shaped. The main distribution

decreased to almost zero at about 2 times the median with a low-occurrence tail out to 2.5 times

the median. Beyond 2.5 times the median, the segments were sparse and did not appear to be

relevant to the main distribution. Therefore, a value of 2.5 times the median pressure amplitude

of the segments was defined to be the limit for large-amplitude noise elimination for this

breathing signal. With the limit defined, breath cycles with individual monotonic pressure

change sign segments having an amplitude greater than the limit were eliminated from the signal

and the remaining signal was joined together. Fig. 3.4 shows the detail of this stage of noise

reduction with this breathing signal as an example. The dark black section of the original signal

(dashed black line) was determined to be large amplitude noise and then removed from the

signal. The remaining signal was then joined together as the processed signal (the solid grey

line). The derivative sign change transitions of the pressure signal at the start and end of each

inhalation and exhalation are also highlighted with circles on the processed signal.

The value of 2.5 times the median pressure segment amplitude was found to be a universal

threshold between segments of regular breathing and irregular animal movement in each

individual breathing signal. Therefore, this value was calculated and defined as the limit for

large amplitude noise elimination during processing of each breathing signal. Using this limit,

among more than 4000 breathing signals processed, 92% of the signals had more than 98% of

the original 3-minute breathing signal remaining. Only 0.6% of the signals had less than 90% of

the original signal remaining and none lost more than 30% of the original signal. The signals

processed for noise reduction were then used in the two independent calculations of breathing

frequencies.

J. L. Kiger
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Fig. 3.3 An example pressure amplitude distribution histogram for a 3-minute breathing signal
from a control animal.
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Fig. 3.4 The elimination of segments of large amplitude in noise reduction after
discrimination against ripple noise. The dotted line is the signal before noise
reduction. The black solid line is the highlighted noise due to irregular animal
movement and was eliminated from the original signal. The signal after noise
reduction is demonstrated with the grey line, with the circles marking the pressure
transition points (after elimination of ripple noise).
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3.3.2 Comparison of different methods for determining of breathing frequency using
control animals

An example of the mean frequency spectrum calculated with the FFT from the 12 blocks of a

3-minute breathing signal of a control animal is shown in Fig. 3.5. In the example, the spectrum

has been normalized to its maximum amplitude and shows one major peak located at a frequency

of 177 + 1.4 min - , and two small peaks located at higher frequencies of about 350 and 530 min

i, respectively. The relative amplitudes of the two higher frequency peaks were less than 0.1.

The BFDF of this signal is also plotted in Fig. 3.5 and normalized to its maximum amplitude.

The peak of the BFDF is located at 171 min-'. The difference between breathing frequencies

determined by these two methods is 3.4%.

The two methods of breathing frequency calculation, FFT+BS and BFDF, were compared to

each other by using both methods to analyze the breathing signal data from a group of 8 control

rats. The data set consisted of 136 signals from 8 sham-irradiated control animals measured over

a period of about 180 days after the sham irradiations. Among the total 136 pairs (FFT+BS and

BFDF) of results, 81% had less than 5% difference; 15% had differences between 5% and 10%;

and the rest had differences of more than 10%, but none of the differences exceeded 20%. For

this group of 8 control rats, the breathing frequency calculated with the FFT+BS was 176 ± 13

(7.4%) min-' (mean ± SD), with a mean standard deviation for each individual breathing

frequency of 2.3%. For the same data from the same group, the value calculated with the BFDF

was 177 ± 11 min-' (mean ± SD).

J. L. Kiger
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Fig. 3.5 The spectrum calculated with FFT compared to BFDF of a 3-minute breathing signal
from a control animal. The major peak values from the FFT and BFDF analyses are
177 min-1 and 171 min-', respectively. Both the FFT spectrum and the BFDF are
normalized to a major peak amplitude of unity. The presence of peaks in the FFT
spectrum, at about 2 and 3 times the frequency of the principal peak, is notable.

After the FFT+BS method was compared to the BFDF method, the results with FFT+BS

were compared to the results calculated by the commercial software which used short evaluation

intervals, no noise reduction, and a zero-crossing approach for breath cycles counting. U ing the

commercial software, during one 3-minute measurement of control rat breathing rate, the

breathing frequency based on 8-breath cycles was recorded every 5 seconds and the m an and

standard deviation of the these 36 values were calculated. As an example, the breathing

frequencies calculated with this commercial software are compared to results with FFT+BS

using data from one individual sham-irradiated control animal (Fig. 3.6). Since the commercial

software does not employ noise reduction, the data used to determine the 36 breathing rates from

each 3-minute breathing signal sometimes included large-amplitude noise which was otherwise

eliminated in the customized software described in this thesis. In Fig. 3.6, the number of the 36
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subsamples calculated by the commercial software that contained large-amplitude noise was

determined manually for this example and the values are indicated above each breathing

frequency value. The frequency measurements with no numerical labels above the points had no

large-amplitude noise involved in the measurements and agree reasonably with the breathing

frequencies calculated by the FFT + BS method. The standard deviation of individual breathing

frequency measurements from the commercial software is significantly larger than with

FFT+BS, in all situations, including the points with no large-amplitude noise. In this example,

the mean of the standard deviation from the 17 measurements taken over 180 days with this

animal was 17% with the commercial method compared to 2% with the FFT+BS. For the

control group, both the mean breathing frequency and the standard deviation calculated with the

commercial software were larger than with FFT+BS, as 213 ± 28 min 1 compared to 176 ± 13

min1'. The average standard deviation of the 136 measurements from this particular control

animal with the commercial software was 16%, much larger than the corresponding value of

2.3% with the FFT+BS method. This is perhaps not a fair comparison due to the serious

limitations in the commercial software: short (8 breath cycle) evaluation intervals and no noise

reduction. This software would only produce data as accurate if there were manual observation

to identify periods of quiet breathing and data acquisition only during these quiet periods.

J. L. Kiger
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Fig. 3.6 The breathing frequencies of a control rat versus time after sham irradiation
calculated with 8-peak method from the commercial software compared to the
FFT+BS method. The number labeled above each frequency of 8-peak method is the
number of the 36 subsamples recorded during the 3-minute measurement calculated
from 8 breath cycles involving large amplitude noise. The measurements with no
labels above them had no large amplitude noise involved in the data.

3.3.3 Analysis of radiation-damaged rat breathing signal data with the method of FFT+BS
As shown in Fig. 3.5, small peaks at frequencies higher than the main breathing frequency

peak sometimes appeared in the frequency spectrum of the control animals. This phenomenon

occurred in about 70% of the control signals collected. This feature of the breathing signal

frequency spectrum is presumably due to the natural variations and fine structure of the breathing

pattern. In the control group breathing frequency spectra, the amplitudes of these peaks at high

frequencies were small compared to those of the primary peak. About 80% of these smaller,

higher frequency peaks had a relative amplitude of 0.2 or smaller and none of them had a relative

amplitude larger than 0.5. However, when the lung became damaged from radiation, the pattern

of breathing varied considerably and this fine structure phenomenon became more significant.

More than one peak was often observed in the breathing frequency spectrum, and the amplitude

- FFT+BS
- 9 - 8 Peaks



Chapter 3: Rat Breathing Frequency Determination

of the high-frequency peaks became comparable to or larger than the primary breathing

frequency peak. A relative amplitude of 0.5 was used as a threshold to define peaks at high

frequency as 'normal' (<0.5) and due to the fine structure of the normal breathing pattern

variation or as 'responding' (>0.5) and due to lung damage. Peaks in the frequency spectra

larger than the 0.5 relative amplitude threshold were automatically located and their frequencies

were recorded. The frequency of the highest frequency significant peak in the spectrum was

defined as the breathing frequency for the measurement, although, the frequencies of all

significant peaks were recorded. The standard deviation of the frequency of each significant

peak of the spectrum was estimated using the bootstrap within a 100 min -+ range centered around

the maximum value. The BFDF method also detected more than one peak, but the frequency of

the maximum value of the BFDF was used directly as the breathing frequency with the BFDF for

irradiated animals. For breathing signal from control animals, the high frequency peaks were

barely detectable with the BFDF, because most of this fine structure of the breath cycles fell into

the range of ripple noise (< 25 Hz) and their transition markers were discarded before frequency

calculation in the BFDF.

Breathing signal pressure change data from a rat with radiation-induced lung damage is

shown in Fig. 3.7 and compared to data from a control animal. The animal with lung damage

received an X-ray dose of 11.75 Gy to the whole lung region and the breathing measurement was

at 68 days after irradiation. The breath cycles of the responding animal showed significantly

larger variations and more fine structure compared to the control animal (Fig. 3.7). The

frequency spectrum of the breathing signal of the control animal is shown in Fig. 3.5. The

frequency spectrum of the responding animal is shown in Fig. 3.8. Two peaks were observed in

the responding animal frequency spectrum, located at 200 + 1 min -1 and 381 ± 2 min-' with

J. L. Kiger
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relative amplitudes of 1 and 0.8, respectively. Also shown in Fig. 3.9 is the BFDF of the same

breathing signal from this positively-responding, irradiated rat. Two corresponding peaks were

also observed located at 203 and 375 min', which are within 3% and 2% of the respective values

obtained via FFT.

Of the more than 4000 breathing signals processed with this software using the two

independent methods of FFT+BS and BFDF, about 70% of the pairs of breathing frequency

values calculated with the two methods from the same pressure signal (after noise reduction) had

agreement better than ±5%; about 90% had agreement better than ±10%; 98% of the results had

agreement better than ±20%. The mean of standard deviation of all the breathing frequencies

estimated with the FFT+BS method was 2.4%, with 75% of the values smaller than 3% and 99%

smaller than 10%.
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Fig. 3.7 The comparison of breath cycle patterns from a responding animal to the patterns of a
control animal. The frequency spectrum of this control signal is shown in Fig. 3.5.
The frequency spectrum of the responding signal is shown in Fig. 3.8.
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Fig. 3.8 The spectrum with the method of FFT+BS comparing to the BFDF of a breathing
signal from a responding animal. Peaks of relative amplitude larger than 0.5 were
automatically located and the corresponding frequencies calculated. The peak
location for the second peak of the FFT spectrum was used as the breathing frequency
of this signal. The breathing frequency in this case is 381 + 2 min- ' with FFT+BS and
375 min-' with BFDF.
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3.4 DISCUSSION
The FFT+BS and BFDF methods produce similar but subtly different results related to the

distribution of breathing frequencies. The BFDF method constructs a histogram of breathing

frequencies for a signal by determining the frequency of each breathing cycle in a signal (as

determined by the inverse of the period between peaks) and counting the number of occurrences

of each of the resulting discrete frequencies. The FFT plus bootstrap method resolves a

breathing signal into its constituent frequencies. The values contained in FFT frequency

spectrum at each frequency are proportional to the signal amplitude at that frequency. The

BFDF is proportional to the incidence of breathing cycles at a particular frequency in a signal.

The differences in the nature of these two techniques, the analysis of discrete breathing

cycles in the BFDF and the continuous analysis of the breathing signal with the FFT, can lead to

differences in results. One might consider this as a difference in how the breathing cycles are

weighted in the two techniques. In the BFDF, all breathing cycles are weighted uniformly and

their contributions to the distribution are equal, where as in the FFT spectrum, each frequency is

weighted by its amplitude in the time domain. Thus, differences in the amplitudes of breathing

peaks will be reflected in the FFT spectrum. Moreover, quick changes (<0.04 s) or irregularities

in the shapes of the peaks and valleys of the breathing cycle will be detected by the FFT

spectrum, but not by the BFDF. In spite of the differences between these two techniques, they

produced very similar results in this study and their comparison serves as a useful consistency

check on these results.

The use of breathing rate as a functional endpoint in studies of the radiation biology of the

lung is well established (1-6). A serial functional assay has many advantages over an invasive

one-time assay. The analysis of breathing signal pressure data has always involved the
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complications due to animal movement producing spurious noise in the data. Early

investigations relied on manual observation to identify time periods when the animal was resting

quietly and breathing "normally." Some investigations preferably selected minimum recordings

of the breathing frequency as quiet breathing data to avoid large variations in the determined

breathing frequency (11). Two semi-automated approaches have been previously reported that

use computer algorithms to identify periods of quiet resting breathing and analyze only this part

of the signal (2, 13). These approaches have taken the approach of sequentially analyzing short

segments of breath cycle data and rejecting as noise segments containing a calculated breathing

frequency difference greater than an arbitrarily chosen limit. One effective improvement of the

customized breathing frequency analysis software reported here from the previous approaches is

noise reduction. Since there seemed to be no universal threshold with the period or frequency

covering all situations in noise discrimination without having prior knowledge of the breathing

signal, the noise discrimination was carried out on the basis of peak amplitude. The peak

amplitude distribution histogram of the 3-minute breathing signal was used to discriminate

against large-amplitude noise. It is a more direct and efficient way to differentiate irregular

animal movement. In the FFT+BS method, random noise suppression was further carried out in

the frequency domain through a circular blocking technique.

Another advance of this breathing frequency analysis approach is that the breathing

frequency is derived from a distribution of frequencies in the 3-minute breathing signal, yielded

either with the BFDF or FFT, as compared to the conventional method, where breathing

frequency is defined as the number of breath cycles during a period divided by the time (1-3, 13).

Most conventional frequency measurements counted breath cycles with a zero-crossing approach

or an exactly analogous mean amplitude crossing approach. For example, Haston et al.
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calculated breathing frequency by first determining the mean signal amplitude for a region of

quiet breathing and then counting the number of times the breathing signal crossed this mean

value divided by twice the duration of the counted region (2). Thus, the zero-crossing approach

yields the mean value of the breathing frequency during the selected period (or periods). The

definition of each individual breath cycle with a zero-crossing approach can be problematic and

can influence the frequency measured, especially with a small number of breath cycles, due to

the locally changing baseline of the breathing pressure trace. A defined or calculated mean

pressure drawn through the breathing pressure trace (mean-crossing) does not necessarily

segment the breath cycles consistently or uniformly. Additionally, it can overlook some fine

structures in the valleys or peaks of the breath cycles. Defining the breath cycles with transition

points at their local maxima or minima, as in BFDF, in contrast, more consistently segments the

breath cycles and is a more accurate approach especially with a small number of breath cycles.

The conventional peak counting approach results in a single mean value for the breathing rate

while the FFT and BFDF yield distributions of frequencies, with the standard deviation of the

mean breathing frequency with FFT estimated with the bootstrap. The differential analysis of

the breathing frequency components in the signal make the FFT and BFDF more robust than

conventional approaches, and more readily capture irregularities in the breathing patterns.

Fourier transform analysis is especially well suited to extract the underlying frequency

information by decomposing the signal into its constituent frequencies. Nevertheless, it is still

necessary to determine a single value from the FFT and BFDF spectra to represent the breathing

rate. For the BFDF, this value is the most probable (most frequently occurring) frequency while

for the FFT, it is the most powerful frequency.
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Using the Fourier transform to analyze the breathing signal and decompose the frequency

information has detected and quantified interesting information and fine structure of the animal

breathing pattern, which would be overlooked by a conventional zero-crossing approach. For

example, consider the lower (responding) data trace in Fig. 3.7. The irregularities of the

breathing pattern of this trace were transformed into two major peaks in the frequency domain

obtained with FFT in Fig. 3.8. On the other hand, a conventional zero-crossing counting method

with a horizontal line drawn through this trace at the mean amplitude would miss many of the

fine structure peaks that occur near the peaks or valleys of the primary signal. Additionally, as a

result of the averaging in the conventional approach, it is possible to calculate a breathing

frequency that does not actually exist in the frequency spectrum obtained with FFT, due to the

irregularity of the breathing signal from radiation damage. This might have contributed to the

variation that has been reported by different groups in the literature for the breathing rates of

similarly-treated animals of the same strain (7, 8, 10, 18). The possibility of breathing frequency

measurements being influenced by variations in breathing pattern was also reported by Raabe

and Beck-Bornholdt (6) with a group of control WAG/Rij rats that had not been subjected to any

lung insult. The breathing patterns of these control animals fell into three distinct shapes: regular

sinusoidal; an elongated inhalation phase followed by a short exhalation; and a third example

that was a more extreme version of the second. The breathing frequencies determined for these

three distinct patterns, by manual counting of the breath cycles from printed strip chart records,

varied by a factor of three and were reported as 150 + 3 , 104 + 3, and 44 + 1 min-', respectively.

The authors pointed out that breathing pattern should be considered when breathing rate data

were evaluated.
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The phenomenon that we have detected in the breathing signal from irradiated rats indicates

that this may indeed be a case of the breath cycle pattern changing as a function of the

physiology due to the damage in the lung. The data shown in Fig. 3.7 as a typical example of

breathing signals of irradiated animals suggest that the breath cycles are mostly primary regular

breath cycles with secondary, higher frequency damaged-breathing activities superimposed on

top of it. It is interesting to note that the positions of these peaks are at about 2-times and 3-

times the primary frequency. Moreover, in some control animals these peaks are also visible,

albeit at a very low amplitude (see Fig. 3.5). This observation suggests that even in the control

animals, a small percentage of the individual breath cycles had a fine structure, i.e., a secondary

smaller peak (see the upper trace in Fig. 3.7). The changing of the breathing patterns can be

explained as the lung physiological change due to radiation damage, which is often observed in

human with radiation lung damage (19). During the pneumonitis stage after the lung radiation,

the lung alveoli are partially obstructed by lung fluid, and the surface tension of the lung

increased due to lack of surfactant. Both contributed to the decreased lung compliance (the ease

to inflate a lung) (20). Under this condition, with the same pressure change applied to the lung

by the chest wall, the volume change of the lung with radiation pneumonitis is smaller that of a

normal lung. Not only does the lung have problem inflating during inspiration, it also has

problem to exhale the air inside and decrease its volume. Most often, the first breath cycle is not

totally completed and the lung has not returned to the status at the beginning of the inhalation,

when the beginning of the next breath cycle takes place. Similarly, during the lung radiation

response of fibrosis, the compliance is also decreased due to the thickened alveolar wall, which

initiates the irregularity of the breath cycles. In general, the breathing signals with radiation lung

damage are composed of irregular and nonsymmetrical breath cycles (Fig. 3.7).
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Breathing frequency dose response data are often quantized, fit with a probit function, and

analyzed by comparing 50% effective doses (ED5o). Converting the dose response data into a

quantal response is carried out by establishing a threshold based on the control breathing

frequency and by defining a positive response as any breathing rate that exceeds this threshold.

For this approach, the standard deviation of the control data defines the threshold that can be

used. The difference between the threshold and the controls must be statistically significant; the

threshold should be at least 2 standard deviations above the control group mean value. Response

threshold values used in the literature have ranged from 20% to 40% above the control group

mean (2, 11, 21, 22). The improved accuracy and small standard deviation of the measured

breathing frequencies of the control group with this custom developed software resulted in

significant improvements in sensitivity for detecting the occurrence of lung damage. The

FFT+BS mean for the 8 control animals was 176 + 13 min-' and a positive response threshold

20% higher would be 212 min', which is 2.8 standard deviations above the control group mean.

No breathing frequency was measured above the positive response threshold (mean +20%) for

control animals using this customized system. Variability is dramatically higher with the

commercial software, making correct assessment of the breathing rate data very difficult. With

the breathing rates determined by the commercial software, 1 of the 8 control animals would be

categorized as responding if the response threshold were set at 40% above the mean value.

Using a threshold 30% above the mean, 2 of the 8 controls would be categorized by the

commercial software as responding and, with the threshold used with the FFT+bootstrap method,

20% above the mean, 6 of 8 controls would be categorized as responding.

In summary, a new and improved approach to the analysis of digital breathing signal data is

reported here. The method includes an automated program for removal of movement-related
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noise in the signal, followed by a Fourier transform analysis to extract all breathing frequency

information from the raw data. A fine structure in the breathing rate data is detected that is

infrequently present in the controls at very low amplitude, but that increases dramatically in

amplitude in the irradiated group of rats. This fine structure in the breathing pressure change

signal will require further study to fully understand the origin and implications of this

phenomenon.
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CHAPTER FOUR

Radiobiology of Normal Rat Lung
in Boron Neutron Capture Therapy
Evaluated with Breathing
Frequency

4.1 Introduction
Lung is one of the dose limiting tissues in radiation therapy for bone marrow transplantation

and thoracic malignancies including lung cancer and Hodgkin's disease (1-4). Two phases of the

lung radiation response have been identified both in the clinic and in experimental animal models

of lung radiation response: the early inflammatory pneumonitis and the late pulmonary fibrosis

(5-8). In clinical radiotherapy, the early phase usually occurs within 6 months after irradiation

(9). The late fibrosis can develop from months to years after the irradiation. The incidence of

radiation pneumonitis is related to the dose delivered and also to the volume of the lung

irradiated. Dose volume histograms (DVH) of the lung are calculated, and the mean lung dose is

used as a simple parameter to predict the incidence of radiation induced pneumonitis (9-11). A

single mean lung dose of 9.3 Gy was reported as the ED 50 for radiation pneumonitis in patients

(12). Higher doses are required to produce a similar incidence of radiation pneumonitis when the

lung is partially irradiated or dose is fractionated.
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Boron Neutron Capture Therapy (BNCT) is a binary cancer therapy with biochemical tumor-

cell targeting (13). The neutron capture reaction in o1 B releases 2.79 Mev energy, 82.8% on

average of which is deposited within the targeted cell due to the short ranges (7 pm and 4 pm) of

the heavy charged particles released, a and 7Li. In the period between 1994 and 1999,

researchers at Harvard-MIT carried out BNCT clinical studies involving patients with

glioblastoma, melanoma metastatic to the brain, or subcutaneous melanoma of the extremities

(14, 15). Two patients receiving treatment for brain tumors developed a fatal acute respiratory

distress syndrome (ARDS); one other patient developed an acute pneumonitis, but recovered

following intensive supportive care. At the time dose estimates for scattered radiation to the lung

were below the threshold for radiation induced ARDS. However the serious adverse events with

ARDS raised the concern that the lung might be more radiosensitive to BNCT irradiation than

presumed and the weighting factors might be unexpectedly high. The boronated amino acid,

boronophenylalanine-fructose (BPA-F), was used in this clinical trial (16).

BNCT produces a mixture of radiations in tissue that have different Linear Energy Transfer

(LET) and hence have varying biological effectiveness. Our approach to express the total BNCT

dose in photon-equivalent units utilizes the experimental determination of Relative Biological

Effectiveness (RBE) factors, weighting factors for each of the high-LET dose components (13).

Analogous to the RBE, the compound biological effectiveness (CBE) factor is defined the

weighting factor for the 10B dose component that accounts for the influence of both the

o1 B(n,ot)7Li radiation quality and the boron microdistribution (from a specific boron compound)

on the radiobiological effectiveness. (13, 14). For a given biological endpoint, the RBE or CBE

is defined as the ratio of the dose of a high LET radiation to an isoeffective dose of x-ray
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radiation. Thus, the total biologically weighted BNCT dose is the weighted sum of all dose

components:

D, = wrD + wTD, + wFD, + wBD,, (1)

where wy, WT, WF and wB are weighting factors (RBE or CBE factors) for the photon, thermal

neutron, fast neutron and the o1 B absorbed doses, respectively. In BNCT, w. is usually regarded

as unity and WT and wF are usually equal to each other (13). In lung, the biological effectiveness

weighting factors are unknown. This information is critical to estimation of the total biologically

weighted dose to the lung. From the normal lung clinical tolerance reported in the literature (12),

if the lung complications in the three patients treated with BNCT were indeed due to radiation

dose, it would imply that the maximum (single fraction) dose to the lung was at least 8 Gyw.

Dosimetry measurements in an Alderson-RANDO anthropomorphic phantom indicated that

the weighting factors for the high LET (Linear Energy Transfer) dose components of neutron and

'0B in BNCT would have to be at least 3.2 and 4, respectively, to bring the dose to the apex of

the lung to 8 Gyw (17). The 'lB concentration in the lung was estimated to be twice the blood

o1 B concentration in this report. In this chapter, radiobiological studies in the normal lung of rats

are described which measure the weighting factors required for the weighted lung dose

calculation in BNCT. Rat whole-thorax irradiations were carried out with x-rays, thermal

neutrons, and thermal neutrons with BPA. The rat lung functional morbidity measured with a

breathing rate assay was used as the biological endpoint to quantify lung radiation damage in

BNCT. Dose response curves were established and the RBE and CBE factors were determined

from these curves.
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4.2 Materials and methods
The vertical MO 11 thermal neutron beam (18, 19) of the MIT Research Reactor (20) was

used for neutron irradiations in these studies. This neutron beam is suitable for small animal

irradiations and for treating superficial human tumors such as melanoma. It has a clean thermal

neutron energy spectrum (fast neutron component of total neutron flux is - 1%) and high

intensity (-1010n/cm2s) (19). Irradiations with x-rays were carried out using a Phillips RT250

unit operating at 250 kV and 12 mA with 0.4 mm Sn plus 0.25 mm Cu added filtration.

4.2.1 The MCNP rat model for BNCT irradiations

The computational tool used in the design of the experimental rat lung irradiation in BNCT

was MCNP-4B (21). The rat model was defined as a cylinder, 5 cm in diameter and 20 cm long.

The lung region was approximated as a 4 cm diameter cylinder, 4 cm long, located 4.7 cm from

the superior of the model, composed of ICRU 46 lung tissue with a density of 0.26 g/cm 3 (22).

A cylindrical spinal cord and spherical heart were embedded in the lung region, and skin was

simulated as a 0.5 cm-thick concentric shell. Elemental compositions for brain, heart, skin and

average soft tissue were obtained from ICRU 46. Two radiosensitive regions, representing the

intestines and esophagus, were defined as cylinders 1 cm in diameter and 2 cm long, located on

the central axis of the model, 1 cm from the lung volume. An average physical dose of 10 Gy to

the entire lung volume with the neutron beam irradiation in the absence of loB was chosen as the

planned maximum dose for simulating lung irradiation. This dose was assumed to be the highest

dose required to obtain a full thermal neutron dose response curve (in the absence of l'B) for

breathing rate increase, assuming that the Relative Biological Effectiveness (RBE) of the thermal

neutron beam alone would be approximately 1.2. Similar value has been reported for the thermal

neutron beam of the Brookhaven Medical Research Reactor using myeloparesis in rat spinal cord
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irradiations with single dose (13). X-ray doses of 12 Gy to the whole rat lung have been reported

to produce a 100% response using the breathing rate assay (23).

4.2.2 The delimiter for the rat lung irradiations in BNCT
In the rat lung irradiations with the M011 neutron beam, a delimiter was designed to allow an

adequate thermal neutron flux delivered to the lung region, while shielding the nearby

radiosensitive tissues (24, 25). The shielding material used for thermal neutron beam irradiation

was lithiated-polyethylene (Li-Poly; 93% 6Li-enriched Li2CO 3 dispersed in polyethylene; 7.5%

total Li by weight; Reactor Experiments, Sunnyvale, CA). A shielding box was constructed of

1.5 cm-thick Li-poly plates, with inner dimensions of 7 x 15 x 30 cm 3. The lid includes a 3 x 14

cm rectangular aperture that serves as the beam delimiter for the simultaneous irradiation of two

rats. The aperture opening was tapered 720 from 3 cm on the inside to 4 cm on the outside facing

the reactor.

4.2.3 Two simplified phantoms for Monte Carlo model validation
Two simplified phantoms consisting of water-filled cylinders with 3 mm-thick Lucite walls

(overall dimensions 20 cm long and 5 cm in diameter) were built for dose measurements to

validate the MCNP models. Dose and neutron flux profiles along two axes were measured to

compare the simulation results with experimental measurements. The phantoms had 1 cm-

diameter, air-filled channels, along either the horizontal central axis, which would be

perpendicular to the beam axis when the phantom was placed in the shielding box under the

delimiter, or perpendicular to the rat body axis to provide depth-dose data along the beam axis.

The photon and the neutron dose rates in the mixed radiation field at various locations in the

phantom were measured with the dual ion chamber technique (26). Total neutron flux, along the

horizontal and the vertical dimensions of the two rat dosimetry phantoms, were measured using
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bare gold foil activation (12-18 mg, 0.005 cm thick) (27). The validation experiments with two

simplified phantoms were duplicated in MCNP simulations and scaling factors were obtained

between the calculations and measurements. The scaling factors were then applied to the

calculations of lung and other tissue doses in the more detailed MCNP model. The photon,

neutron and boron dose rates were calculated in MCNP by integrating the neutron and photon

flux spectra against the appropriate energy dependent kerma factors (28).

4.2.4 Dose Volume Histograms of 2-field irradiation and the validation
The dose distribution in the total lung volume was calculated by constructing dose volume

histograms (DVHs) from the MCNP simulation data. To calculate the DVH, the 4 cm diameter,

4 cm long lung cylinder was segmented into voxels by first dividing the lung cylinder into three

segments (1, 2 and 1 cm-thick) along the body axis, and then subdividing these cylinders further

by superimposing a grid of - 0.5 cm squares on each segment. The heart and spinal cord

volumes were excluded. Thus, voxels along the outer edge and adjacent to the heart or spinal

cord, had irregular geometries. Voxel volumes ranged from 0.6 cm 3 to 0.02 cm 3. The statistical

uncertainties for the thermal neutron and photon doses were less than 2.5% for each voxel. The

DVH was constructed from the dose tallied in each voxel in MCNP. A 2-field (ventral and

dorsal) irradiation procedure was employed for these experiments. Different mean lung doses

were delivered to the lung with neutron beam irradiations, including 4.7, 7.1, 8.2, 9.1, 9.4 and 9.7

Gy.

4.2.5 X-ray dosimetry
A 6 mm thick lead plate with an opening of 4 x12 cm exposing the lung region was used as

the beam delimiter in x-ray irradiations. The two simplified cylindrical rat phantoms used in the

neutron dosimetry validations were used in the x-ray dosimetry measurements. The dose rate in
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the center of the 'lung' position in the phantom was measured with a graphite ion chamber. A

focus-to-skin distance of 32.6 cm was used and the dose rate in the center of the 'lung' was 1

Gy/min. Single field irradiations were used for the x-ray irradiations, with dose groups of 11,

11.5, 11.75 and 12 Gy.

4.2.6 Animal irradiation procedures
Male Fisher 344 rats, approximately 12 weeks old (200-250 g) at the time of irradiation, were

used for these studies. Rats were anesthetized with an intraperitoneal (i.p.) injection of ketamine

(80 mg/kg) and xylazine (10 mg/kg). During the irradiations, two rats were positioned side-by

side on the beam delimiter and attached to the delimiter with 5-cm wide clear adhesive tape. The

lung region was positioned in the beam aperture with the bony protuberance of the T2 vertebra

and the xyphoid sternum as reference points which were aligned with the delimiter aperture.

Approximately 10 rats were irradiated at each dose level.

In the groups irradiated with neutrons plus BPA-F, BPA-F was administered as an i.p.

injection of the BPA-fructose complex (900 mg BPA/kg body weight), approximately 2.5 hours

prior to irradiation, for a relatively stable blood 10B concentration during the time of irradiation.

At the time of irradiation, a blood sample of about 0.5 ml was taken from each rat via the retro-

orbital sinus for boron analysis. The o1 B concentration of each blood sample was measured

using Prompt Gamma Neutron Activation Analysis (PGNAA)(29). As previously reported (30,

31), the blood B-10 concentration at this BPA dose can be regarded as constant with time during

the period 2.5-3.5 hrs after injection. Therefore, the loB concentration measured at one time

point during irradiation was used directly to calculate the boron dose delivered to the lung,

assuming that the lung o°B concentration is the same as blood at about 3 hrs after BPA injection.
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For the irradiations with neutrons plus BPA, 90 rats were irradiated with mean lung doses

ranging from 4 to 12 Gy and approximately 10 animals were irradiated per dose level.

4.2.7 Breathing rate measurement
Rat breathing rates were measured using whole-body plethysmography at one to two-week

intervals from one or two weeks before the irradiation until the euthanasia or death of the

animals. The apparatus for breathing frequency measurement was adapted from the

commercially available rat breathing rate measurement system (Respiromax, Columbus

Instruments, Columbus, OH). Four cylindrical Lucite chambers, 7.6 in diameter and 20 cm long,

with plugs on each end with expandable gaskets to obtain an air-tight seal, were built for the rat

whole-body plethysmography. A constant airflow of 110 ml/min was provided to the animals

during the measurement via two ports on each chamber. Up to four animals were measured at

once and the chambers were covered during the measurement to ease the animals. The pressure

inside each chamber was recorded digitally during the measurement at a sampling rate of 200

Hz. If any animal showed significant movement during the 3-minute data collection, the

measurement was repeated. Before measurements, rats were acclimated to being inside the

chambers for measurements.

Breathing rate analysis is described in detail in Chapter 3. Briefly, the digitized breathing

signals were analyzed automatically offline using custom designed programs written in Matlab.

Noise discrimination was employed in the time domain against ripple noise (< 0.04 s), and large

amplitude noise from animal movement. The median of the peak amplitudes of the 3-minute

sample was calculated and peaks larger than 2.5 times the median were discriminated against as

large-amplitude noise and removed from the signal. In general, less than 10% of any 3-minute

signal was removed and usually there were only a few, if any, peaks deleted. After noise
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reduction, the signal was segmented into 12 circular, consecutive and overlapping blocks, with

each block approximately 1 minute in length. The time between the start of two consecutive

blocks was -15 s, and the overlap was -75% of the block length (-45 s). The frequency

spectrum of each block was calculated with Fast Fourier Transform (FFT), and the mean of the

12 spectra was calculated as the mean frequency spectrum (32) of each breathing pressure signal.

The frequency of the primary peak of the mean frequency spectrum was determined as the

breathing frequency of the breathing signal. The standard deviation of the breathing frequency,

the location of the primary peak in the mean frequency spectrum, was estimated with the

bootstrap (32-35), assuming that the spectra of the 12 blocks are Identically Independently

Distributed (i.i.d.) random variables (34). The number of bootstrap repetitions (33) was 200.

The circular blocking technique with the bootstrap and FFT provides noise suppression and a

direct means of estimating the uncertainty in the measured breathing frequency for individual

measurements.

4.2.8 Dose response analysis and the determination of weighting factors for rat lung
irradiation in BNCT with BPA

Animals with breathing frequencies greater than the threshold, 20% (- 3 standard deviations)

above the mean of the control group, occurring after 20 days post irradiation, were considered as

responding to radiation lung damage. The binary response data (0 no response or 1 for response)

and the dose delivered to the lung of individual rats were analyzed with probit analysis (13, 36-

38). ED5o values of the dose response curves were calculated to determine RBE or CBE factors

for the rat lung in the BNCT irradiation (13, 14).

With x-ray and neutron beam irradiation, the absorbed dose deviated only a few percent from

the planned dose and the variation in delivered dose is mainly due to the inherent minor

fluctuations of the x-ray or neutron beam. The relative proportions of the neutron and photon
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dose components in the doses delivered by the neutron beam were also fixed and invariant from

animal to animal. This was not the case with the neutron irradiations with BPA. The blood

boron concentration varied from animal to animal and consequently, for the same neutron

fluence, the boron dose component and the total dose varied, even for animals irradiated

simultaneously. On the other hand, for animals that received the same absorbed doses to the

lung, the proportions of different dose (beam and 10B) components were not necessarily uniform.

In the neutron-only irradiations, the total dose value and the total weighted dose value are

directly proportional because the high and low LET dose components are fixed relative to the

total dose. However, in the irradiations with BPA, this one-to-one relationship no longer holds.

Instead, for the same total dose delivered to the lung with neutrons plus BPA, different weighted

doses could result due to the changing proportion of boron dose component of the total dose.

This problem makes it difficult and perhaps inaccurate to calculate the biological group response

in the conventional way, where the animals are grouped according to their previously planned

dose, or according to their final delivered physical dose (13, 39, 40).

To solve the problem of variability in total absorbed dose and inconstant '0B dose in neutron

irradiations with BPA, a new computer algorithm was developed to more accurately assess the

CBE of the boron dose. The CBE is defined as the ratio of the dose of a test radiation to an

isoeffective dose of reference photon radiation, usually at ED5o. In the new algorithm, a range of

potential CBE values were evaluated to determine the one that provided the best match between

the ED50 of the weighted dose response of the neutron beam plus BPA and the ED5o of the x-ray

dose response. Each value in the range of CBE being evaluated was used to calculate the

weighted dose using Eq. 1, using the measured RBE for the thermal neutron beam for normal rat

lung. The binary response data of the individual animals and the weighted dose were fitted using
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probit analysis and the EDso value was derived for the potential CBE being tested. The CBE

value that produced minimum difference between the ED 50 of the weighted dose response of

neutrons plus BPA, and the ED50 of the x-ray dose response was selected as the CBE at ED 50 .

Using an analogous approach, the CBEs for BPA at the ED10 and ED90 levels of the breathing

rate dose response were also derived.

4.3 Results
4.3.1 Dosimetry of the rat lung irradiations in the M011 beam and the DVH

In the validation of the Li-poly delimiter of 1.5 cm thick and with a 14 x 3 cm aperture

designed in MCNP, the two simplified lucite phantoms were positioned side by side in the Li-

poly rat box underneath the delimiter. The box was then positioned in the M011 neutron beam

with the center of the delimiter aperture aligned along the central axis of the beam.

The neutron flux measured at the surface of the phantom under the delimiter aperture and 2.5

cm displacement from the beam central axis, after scaled to match the full operation power of the

reactor at 5 MW, was 8.4 x 109 n/cm2 s. This flux decreased to 6.1, 3.4, 1.8 and 0.9 x 109 n/cm 2 s

at depths of 1, 2, 3 and 4 cm in the phantom, respectively. Along the longitudinal axis of the rat

phantom (2.5 cm from the surface) the thermal neutron flux directly under the delimiter aperture

was 2.2 x 109 n /cm 2 s. This dropped to 0.6 x 109 n/cm2 s in the shielded collateral regions 3.5

cm from the center of the aperture opening. The measured photon dose rate in the longitudinal

axis of the phantom, directly under the aperture, was 19.5 cGy/min. The validation experiment

simulated with MCNP and the calculation results were compared to the measurements. The

scaling factors connecting the simulation and the experiment for the rat lung irradiations were

determined to be 0.56 for neutrons and 0.75 for photons. After applying this scaling, the
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difference between measured and calculated neutron flux and photon dose rate depth profiles

along the beam axis, as well as the profiles along the central axis of the phantom were within 5%

except for the flux measured at the phantom surface. Since both calculations and measurements

indicated that the MO 11 beam has a fast neutron component less than 1% of the total neutron

flux, it was taken to be a pure thermal neutron beam and the total neutron flux and thermal

neutron flux were assumed to be the same.

The photon scaling factor being larger than the neutron scaling factor can be due to two

major factors. In the MCNP model of the Ml011 beam, photons were not represented and

therefore no incident photons from the beam were included in the photon dose rate calculation in

the rat models. Additionally, MCNP does not calculate delayed photons which compose a large

portion of the photon dose in the neutron irradiation field. The scaling factors obtained in this rat

irradiation are similar to 0.64, the factors measured and used in the clinical trial with the M067

epithermal neutron beam, which the MO11 beam was adapted from.

Two-field (anterior and posterior) irradiations were used in the rat lung neutron irradiations

with or without BPA. Scaled to full power (5 MW), the calculated mean lung dose rate was 18.7

cGy/min for a 2-field irradiation of the neutron beam only. The thermal neutron component was

3.3 cGy/min, approximately 20% of the total beam dose rate. With this dose rate, a mean lung

dose of 10 Gy could be administered in two fields of approximately 25 min each. The DVH of

the rat lung in the neutron-only irradiations is shown in Fig. 4.1. With the mean lung dose of 10

Gy, a relatively uniform dose distribution (range: 9-11.5 Gy) was achieved with the two-field

irradiation.
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Fig. 4.1 The dose volume histogram (DVH) for a two-field neutron-only lung irradiation, with
a mean lung dose of 10 Gy.

4.3.2 Boron biodistribution
A simple biodistribution study with 6 rats was done at 3 hrs after BPA injection and the o0B

concentration in blood and different tissues were measured with -0.5 ml samples with PGNAA

(29). The measured concentrations in different tissues are listed in Table 4.1. No statistically

significant difference between 10B concentration in blood and lung was detected. The measured

concentrations were consistent with reports in the literature (30, 31). In the neutron irradiations

with BPA, a blood sample was taken from each rat at the time of irradiation, approximately 3 hrs

after i.p. injection of BPA. The lung tissue '0B concentration of the rat was assumed equal to the

'0B concentration of its blood. The mean blood 'lB concentration for all 90 rats was 17.7 ± 3.4

jtg/g, ranging between 6.3 - 29.1 tg/g.

In neutron irradiations with BPA, the calculated mean lung dose rate for the 'OB dose

component was 1.04 cGy/min for every [tg 10B present per gram of tissue. With blood and lung

o0B concentrations of approximately 20 gg/g, the total mean lung physical dose rate was about
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0.4 Gy/min, of which approximately 50% was due to 10B reactions. In this case, delivering a

mean lung dose of 10 Gy with BPA requires approximately 26 minutes or 13 min for each field.

Table 4.1 The 1oB concentrations measured with PGNAA in different tissues at 3 hrs after i.p.
injection of BPA-F (900 mg BPA/kg body weight) with 6 animals.

Tissue 1oB concentration ([ig/g)
Blood 19.9 ± 3.2
Lung 21.9 ± 1.7
Heart 21.2 ± 1.3
Skin 21.5 ± 6.5
Liver 21.6 ± 1.3
Spinal Cord 8.9 + 1.4
Brain 11.2 ± 0.5
Intestine 32.4 ± 10.8
Kidney 108.5 ± 3.3

4.3.3 Dose responses of radiosensitive tissues
The estimated total weighted doses and the dose components to the surrounding

radiosensitive tissues with 10 Gy mean lung dose in neutron irradiations with or without BPA,

are reported in Table 4.2. Esophagus and intestines are shielded by the Li-Poly delimiter and the

weighted doses were well below the EDs50 of 13 Gyw for tongue ulceration (39), or the LD5o of 22

Gyw for gastrointestinal death after local intestine irradiation (41-44). No gastrointestinal death

or severe tongue ulceration was observed among the rats with lung neutron irradiations with or

without BPA. Complications were observed for tissues exposed in the delimiter aperture, with

skin reactions the most serious aside from the lung. For the irradiations with neutrons-only, the

acute skin response of epilation and mild moist desquamation were observed from several weeks

to two months after irradiation at doses close to 10 Gy mean lung dose. For the neutron

irradiations with BPA, similar skin responses were observed with a mean lung dose of about 6-7

Gy. At higher doses, more severe skin responses (erythema and ulceration) were observed with
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a shorter latent time and persisting up to three months post irradiations, especially with a mean

lung dose at about 10 Gy. At these dose levels, the skin was treated with antibiotic ointment. No

dermal necrosis was observed before euthanasia. The highest dose delivered to the skin in the

lung irradiations was about 50 Gyw, close to the dose threshold for dermal necrosis (45). If the

rats had been kept long enough, dermal necrosis might have occurred with low frequency (45).

The skin responses of the early phase observed here are generally consistent to what has been

reported in the literature with BNCT radiation (45). For the rats receiving neutron radiation with

or without BPA, no animal died at about 100 days after irradiation, when pericarditis death

occurred due to radiation heart damage (46, 47). For the lung x-ray irradiations up to 12 Gy, no

signs of radiation damage were observed to any of the in-field or out-of-field tissues except the

lung.

Table 4.2 Calculated maximum local absorbed doses in surrounding tissues with a mean lung
dose of 10 Gy, with or without BPA present. The o1 B concentrations are assumed at
20 p.g/g for skin, heart, and esophagus (the same as blood), 9 [lg/g for spinal cord, and
32 ig/g for intestines, based on the biodistribution data 3 hr after BPA i.p. injection
(Table 4.1). The RBEs and CBEs used for skin (45), spinal cord (48) and esophagus
(39) are reported in the literature. The weighting factors for intestines (41-43) are
estimated from the literature. The statistical uncertainties in the calculated dose are
within 5% and omitted for clarity.

RBE/CBE Thermal neutron beam only Thermal neutron beam with BPA

Tissue Thermal N BPA Neutron (Gy) Photon (Gy) Total (Gy,) Neutron (Gy) Photon (Gy) 'OB (Gy) Total (Gy,)
Skin 5.1 3.74 4.1 9.5 30.4 1.9 4.7 9.6 50.3
Spinal cord 1.8 1.33 1.9 9.8 13.2 0.9 4.8 3.5 11.1
Heart - - 2.8 12.4 - 1.3 5.9 8.9 -

Intestine 5 5 0.4 7.0 9.0 0.2 3.3 1.9 13.8
Esophagus 3.8 4.9 0.4 6.9 8.4 0.2 3.3 1.1 9.5

4.3.4 Breathing Rate Measurement and Computer Analysis
Two examples of breathing signals are shown with their mean normalized frequency spectra

after noise reduction in Fig. 4.2. One animal (a control) was measured 48 days after sham

irradiation and the other at 37 days after irradiation to a mean lung dose of 10.5 Gy of neutrons
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with BPA. Sham-irradiated control breathing signals acquired in this experiment demonstrated

mostly a symmetrical breathing pattern and some irregularity mainly in the peaks and valleys of

the breathing cycles. The symmetrical breathing patterns in the time domain transformed into a

primary frequency peak with the Fast Fourier Transform (FFT). In this control animal breathing

signal, the maximum value of the normalized mean spectrum from the 12 blocks of the 3-minute

signal was 179 ± 1 min-'. The mean spectrum of the control signal also captures the

irregularities of the breathing signal from the time domain, demonstrated as small secondary

peaks at higher frequencies, located approximately at 350 min1 and 530 min-' in this example.

In the example of the segment from a 3-minute breathing signal from a positively responding

irradiated rat (Fig. 4.2c), the breathing pattern shows more significant irregularity and more fine

structure compared to the control animal signal. Three major peaks were present in the mean

frequency spectrum (Fig. 4.2d), located at 185 ± 5 mind ', 291 ± 8 min-' and 439 ± 10 min-'. The

FFT spectrum was normalized to its maximum value at 439 min-' and the relative amplitudes of

the three peaks in the frequency domain were about 0.8, 0.6 and 1, respectively. The peak value

in the frequency domain with the highest frequency (439 + 10 min -1) was taken as the breathing

frequency of the breathing signal.

For the male Fisher 344 rats with radiation-induced lung damage, considerable irregularity of

the breathing pattern was observed in this experiment, indicating functional lung damage. Up to

three peaks were observed in the breathing frequency spectra from the responding rats. The

relative amplitudes of the significant peaks in the frequency domain were usually comparable to

each other and greater than the threshold of significance previously defined as a relative

amplitude of 0.5. Frequency peaks with relative amplitudes larger than 0.5 were located and the

highest frequency among the peaks larger than 0.5 was selected as the breathing frequency of the
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measurement. For breathing signals from control animals, the phenomenon of breathing pattern

irregularity, in addition to the dominant regular and symmetrical breath cycles, was also

observed, but at a much smaller scale. The secondary higher frequency peaks in the breathing

frequency spectra for control animals were usually significantly smaller than 0.5 and mostly

around 0.2 in normalized amplitude. Using this breathing rate measurement method, the

breathing rate for the control group of 8 animals and 136 measurements altogether, up to 180

days after sham irradiations was determined to be 176 ± 13 min 1 (mean ± SD).
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Fig. 4.2 Breathing pressure signals and their FFT spectra of a control animal (panels a and b)
and responding animal (panels c and d). The signal of the control animal was
acquired 48 days after sham irradiation. The signal of the responding animal was
acquired 37 days after irradiation with neutrons plus BPA.

4.3.5 Breathing frequency and body weight responses
The group means and percent responses of breathing rate measured up to about 180 days post

irradiation at various dose levels for the different radiations are shown in Fig. 4.3. Two

responding phases with elevated breathing rate were observed, as shown in Fig. 4.3. The early

phase occurred before about 100 days post irradiation with the maximum elevation occurring
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between 40 to 80 days. At lower doses, the elevation from the early response phase often

decreased to the normal range by about 100 days. The late phase was observed after 100 days,

and usually elevation started at about 120 days and sometimes persisted until euthanasia or death

of the animal. For some animals that received relatively high doses (e.g., 9.7 Gy of neutron or

9.5 Gy of neutrons plus BPA), the breathing rate elevation started in the early phase would

extend until the death or euthanasia of the animal. The onset time for the early and late phases of

breathing rate response observed with the high-LET radiations of neutrons-only or neutrons plus

BPA is consistent with the fact that reported for x-rays with F344 rats in the literature (49-51).

For the responding rats that received neutrons-only or x-ray radiation, most rats showed a

biphasic response of breathing rate increase, the early phase and the late phase. However, the

response changed significantly for neutrons plus BPA. With relatively low doses (- 5-9 Gy), 25

out of 47 animals showed only the late phase, and the early phase was asymptomatic. As an

example of this situation, the percent responses of breathing frequency for the 7.5 Gy and 8.6 Gy

dose groups for neutrons plus BPA are larger after 100 days post irradiation than before, as

shown in Fig. 4.3f.
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Fig. 4.3 The group mean breathing frequency and percentage response of breathing frequency
elevation measured up to - 180 days after irradiation with x-rays (a, b), neutrons-only
(c, d) and neutrons with BPA (e, f). The range of control values is represented by the
grey shaded areas with the mean breathing frequency and 20% (- 3 SD) above the
mean, and plotted in panels a, c and e. The error bars for the percentage response
data (b, d and f) are generally about 10% since 10 animals were usually in each dose
group, and are omitted for clarity. For animals that died before 180 days due to lung
damage, a positive response was counted until 180 days. In the neutron-only
response data (panels c and d), the responses for the 4.7 and 7.1 Gy dose groups are
omitted for clarity since they are similar to the control. In the neutrons with BPA
response data (panels e and f), dose groups of 5.5 and 6.5 Gy have similar response to
4.5 Gy, and are also omitted for clarity.
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Fig. 4.4 Group mean of normalized weight for animals irradiated with x-ray (a), neutrons-only
(b), and neutrons with BPA (c). The weight was normalized to the weight measured
one day before irradiation for each animal. The range of control values (mean + SD
of the normalized weight of the control group) is represented by the shaded area in
each panel.

Body weight was also monitored from several days before the irradiations until euthanasia or

death. The group means of normalized weight from different dose groups are shown in Fig. 4.4.

Groups with higher doses had larger mean weight losses right after irradiations for the same

radiation type. For groups that received relatively high doses, a growth delay or weight loss was
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observed at about 60 days, demonstrated by the 12 Gy and the 11.75 Gy x-ray group, the 9.7 Gy

group in neutrons-only and the 10.4 Gy group in neutrons plus BPA. The onset of the weight

loss at about 60 days is consistent with the onset of breathing rate elevation (Fig. 4.3) in the same

dose groups. Among the irradiations with neutrons-only or neutrons with BPA, some dose

groups showed no breathing rate response but did show a growth delay compared to the control

group. An example of this is the 8.2 Gy neutrons-only group.

4.3.6 Dose responses with breathing frequency and the RBEs and CBEs
The dose response curves of the x-ray and neutron-only radiation fitted with probit analysis

are shown in Fig. 4.5a. Since the response curves for the late phase of x-ray and neutrons-only

had no statistically significant difference from their corresponding early phases, only one curve

was plotted for each radiation in Fig. 4.5a. X-ray and neutron-only irradiations produced

similarly steep dose-response relationships and the difference between ED 5 and ED 95 were less

than 2 Gy. The ED5o for x-rays was 11.5 ± 0.2 Gy and the ED50 for the neutron-only irradiation

was 9.2 ± 0.6 Gy. Comparison of these ED5o values determined that the RBE of the MITR-II

thermal neutron beam was 1.2 ± 0.1 and the RBE for thermal neutrons was 2.2 ± 0.3 with a 50%

incidence of breathing rate increase as the biological endpoint in rat lung.

For the irradiation with neutrons plus BPA, the dose ranges for the early phase (<100 days)

and late phase (>100 days) of breathing rate elevation were different. The dose response curves

were determined separately for these two phases, using probit analysis of the lung physical dose

and binary response of individual animals. The dose responses for neutrons plus BPA are shown

in Fig. 4.5a. The ED50 values are 8.7 ± 0.5 Gy and 6.7 ± 0.4 Gy for the early and late phases,

respectively. With these ED 5o values, the CBE factors were determined with this conventional

method as 1.4 ± 0.1 and 2.2 ± 0.2 for early and late responses, respectively. The 1'B dose
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component of the EDsos were calculated with the mean blood 10B concentration for the 90

irradiated rats, 17.7 ± 3.4 jpg/g.
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Fig. 4.5 Dose responses and their probit analysis for animals irradiated with x-ray, neutrons,
and neutrons with BPA. a) group response and probit analysis (using the binary
responses and doses of individual animals) with absorbed dose; b) analysis using
weighted dose.

The CBE factors were also evaluated with the new minimization algorithm described above.

The CBE values at ED5o were determined to be 1.4 ± 0.1 for the early phase breathing rate

response and 2.3 ± 0.2 for the late phase. The probit analysis response curves for weighted dose

are plotted in Fig. 4.5b for the early and late phases.
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The biologically weighted dose responses of the x-ray and neutrons-only irradiations are also

plotted in Fig. 4.5b. The two biologically weighted dose response curves of the x-ray and

neutrons-only irradiations are consistent, having similar steepness. The weighted dose response

curves for neutrons plus BPA, however, are not parallel to the response curves for x-rays and

neutrons-only. The CBE factors for BPA, correspondingly, varied depending on the response

level. The CBEs at ED 10 and ED90 approximately represent the maximum and minimum of the

CBE range. Determined with similar method for the CBE factors at ED 50 , the factors at EDlo for

the early phase and late phase breathing rate response were 2.2 ± 0.2 and 3.6 ± 0.3, respectively,

defining the upper limit of the CBE range. The CBE factors for BPA at ED90 for the early and

late breathing rate response phases were 1.0 ± 0.1 and 1.7 + 0.1, respectively, defining the lower

limit of the CBE range.

4.4 Discussion
One of the major motivations of this experiment was to investigate whether the lung

complications that the patients developed during the Harvard-MIT BNCT clinical trial in the

period between 1994 and 1999 was due to the unexpectedly high radiosensitivity of the lung.in

BNCT irradiation. With the lung dosimetry measured in an anthropomorphic phantom

positioned for cranial irradiation, the minimum weighting factors for neutron and o1 B dose

needed to elicit the lung damage in the patients were estimated to be at least 3.2 and 4,

respectively (17). In this experiment, the RBE measured for thermal neutrons was 2.2 ± 0.3, and

the range of the CBE for BPA with the early breathing rate response was 1.0 - 2.2, both below

the estimated requirements for weighting factors. This suggests that the lung complications
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developed by the three patients after BNCT treatment for brain tumors most likely did not result

from BNCT irradiation.

In this report, the similar onset times of the early and late breathing rate responses for the

high-LET neutron radiation with or without BPA are comparable to the onset times for low-LET

x-ray radiation, and are similar to what has been reported in the literature (49, 50). However, the

different steepness of the dose response curves observed for neutrons plus BPA compared to x-

rays and neutrons-only, suggests different damage mechanisms with the radiation of neutrons

plus BPA. For the early breathing rate dose response curve for neutrons plus BPA, two different

situations seem to occur for lower (<8 Gy) and higher (>8 Gy) doses (Fig. 4.5). In the 4.0-8.0

Gy dose range, only 4 out of 36 rats developed an early breathing rate response. The dose

response within this range is therefore much shallower than the x-ray response curve at similar

percent responses. With neutrons plus BPA in the dose range 8.0-12 Gy, the response of the

early phase almost overlaps the neutrons-only response curve, except for at about 10.4 Gy, where

one rat out of 15 failed to show early phase response. The biphasic early response curve for

neutrons plus BPA suggests that there maybe different damage mechanisms for the lower and

higher dose ranges.

One reason for the increased variability in the lower end of the dose response curve for

neutrons with BPA may be the inhomogeniety of the BPA distribution in the lung. With the

neutron and x-ray irradiations, the dose delivered mainly depends on the spatial distribution of

neutron or x-ray fluence. With the neutron irradiations with BPA, however, the spatial

distribution of 10B is also an important factor in the dose delivered to lung tissue. If the spatial

distribution of BPA in the lung is non-uniform, different lung volumes or populations of

functional units (52, 53) will receive different doses when irradiated with neutrons, resulting in a

132

J. L. Kiger



Radiobiology of Normal Rat Lung in Boron Neutron Capture Therapy

different overall radiation response distinct from the response from a uniform dose to the lung.

A volume effect due to BPA inhomogeneity in the lung may contribute to the less steep dose

response curves of neutrons plus BPA as compared to x-rays and neutrons alone. Unfortunately,

there is no information on the BPA distribution in the lung available in the literature to address

this question. The simple biodistribution at 3hr after BPA injection in this report and a lung BPA

biodistribution in mice (51), both analyzed with PGNAA(29), can only give a gross boron

concentration in the entire lung sample analyzed, including blood within the sample. These

measurements were statistically nondiscernible from the BPA concentration measured in blood.

Microscopic techniques such as High Resolution Quantitative Autoradiography (HRQAR) (16)

or Secondary Ion Mass Spectroscopy (SIMS) (54), more advanced than PGNAA, are required to

provide information on BPA concentration inhomogeniety within the lung and to measure the

BPA concentration of the lung tissue only, without blood.

In this report, another interesting phenomenon occurred in the neutrons plus BPA groups,

where 28 animals, with 25 within dose range of 5-9 Gy and 3 larger than 9 Gy, showed no early

response but did develop a late response. The spared early phase has been reported in lung in

radiations of mice or rats, with either hyper-fractionated dose delivery to allow repair between

fractions for the first phase (55-57), or partial lung volume irradiation (53). There are possibly

two interpretations for this observation in this report.

The first interpretation is that there are separate target cells (9, 36) responsible for early and

late radiation lung responses, or cells that have different significance for developing early and

late responses, and BPA has a different boron microdistribution in them. The two leading target

cell candidates for radiation lung response are endothelium (58-62) and type II pneumocytes (63,

64), based on their important function in lung tissue and the cellular changes of lung tissue after
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irradiation (58-60, 63, 64). One could hypothesize that BPA has a higher concentration in cells

that are more important in the late response phase, which reduces the ED 50 dose of the late

response for neutrons with BPA. The fact that BPA concentrations are different in blood and

other cells was reported in rat skin and tongue (65), where the concentration was reported to be

25% higher in lamina propria than that in the blood (65). However, this hypothesis of different

target cells and different BPA micro-distribution can not explain the different steepness of the

late response curve for neutrons plus BPA as compared to those of x-ray and neutrons-only.

Additionally, the hypothesis of different target cells is not consistent with the finding that the

response curves for the early phase and the late phase are statistically the same for x-rays and

neutrons-only.

The second interpretation of the decreased doses for late lung radiation response compared to

the early response for neutrons plus BPA is that complications from heart irradiation enhanced

loss of the lung function during the late response period. In terms of radiation damage, heart and

lung are reported to be closely correlated and interacting with each other such that a functional

loss in one organ would aggravate the functional loss in the other in both humans (66) and

experimental animals (67, 68). Pulmonary hypertension from radiation lung damage can lead to

a right ventricular hypertrophy and on the other hand, decreased cardiac output and oxygen

supply would result in a breathing rate increase (67, 68). Therefore in the whole thorax

irradiation, breathing rate increase could be a synergistic response to multiple organ damage.

That this combined radiation effect seems to affect the late lung response more than the early

response has been reported in the literature for the hypersensitivity testing of different lung

volumes (53). The authors suggested that the reasons were related to a lower sensitivity of the

mediastinum and also the possible repair of the heart radiation damage during the intermediate
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lung response phase (53). In this report, this could be explained by the relatively lower dose (5-9

Gy) of neutrons plus BPA which resulted in damage to the lung that was not significant enough

to induce immediate or early abnormal breathing rate elevation and also repair may have

occurred in the lung and heart during the intermediate phase. The hypothesis that the late

breathing rate response for neutrons plus BPA is due to combined heart and lung organ damage,

could also explain the different steepness of this dose response curve compared to those of the

neutrons-only or x-rays.

If this hypothesis of cardiac involvement in the functional lung response holds, the weighing

factors for the high LET dose components in BNCT heart irradiations can also be estimated. In

heart only x-ray irradiation excluding the lung in rats, a single fraction dose of 15-20 Gy was

reported to produce up to 100% reversible pericarditis at about 100 days post irradiation (46, 69).

At a single fraction dose of 17.5 Gy, cardiomyopathy with various onset time after irradiation

were elicited (70). With single fraction doses larger than 20 Gy, the rats were sacrificed for

pericarditis at 100-120 days post irradiation (46) . From the lung dose response with neutrons-

only (Fig. 4.5), the response curves for early phase and late phase are not distinguishable and

have the same steepness as those of x-rays. It seems that the responses here are not due to

combined heart and lung organ damage but rather lung damage only. This would indicate that

with a mean lung dose of 9.7 Gy, the EDl00 for the lung response, the weighted dose delivered to

the heart is smaller than 15 Gy, the minimum dose for any heart radiation response. Using Table

4.2 and a simple proportional calculation, the physical dose delivered to the heart in this case is

14.7 Gy (15.2 Gy /10 Gy x 9.7 Gy = 14.7 Gy), with 2.7 Gy high-LET dose components from

thermal neutrons. Assuming that the heart dose of 14.7 Gy in neutron irradiation and 15 Gy in x-

ray irradiation are isoeffective, a weighting factor for thermal neutrons-only close to unity is
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obtained. Similarly, assuming the late breathing rate responses of neutrons plus BPA are also

due to heart damage in addition to lung damage, and at ED5 of the response and mean lung dose

of 5 Gy, the dose to the heart is the isoeffective dose to 15 Gy x-ray to the heart. Using the

weighting factor of one for the thermal neutron component, the CBE for BPA for heart

irradiation in BNCT should be approximately 2.5.
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CHAPTER FIVE

Pathological Changes of the Rat
Lung in Boron Neutron Capture
Therapy Irradiation

5.1 Introduction
Lung is one of the dose limiting organs in radiation therapy for bone marrow transplantation

and thoracic malignancies including lung cancer and Hodgkin's disease (1-4). Three phases

have been categorized for radiation lung changes as follows: the early phase, including the latent

period before radiation pneumonitis and the pneumonitis itself; the intermediate phase between

pneumonitis and fibrosis, when healing of damage from the early phase occurs to some extent;

and the late fibrosis phase (5-9). Ultrastructural and histological changes occurring from hours

to months after irradiation are well documented with experimental animals in the literature (5, 8,

10-14). Cellular changes due to radiation damage, occurring as early as hours after irradiation

during the early phase are observed, including increased capillary permeability, Type I and II

pneumocyte degeneration, edematous basement membrane, fibrin and inflammatory cell

infiltration into alveolar space, and other changes to lung structure. During the intermediate

phase, healing is activated. Increased cellularity and hyperplasia is generally observed for Type

II pneumocytes and septal membranes, and large foamy cells appear in the alveolar space in this

stage. In the fibrosis stage, radiation wounds are organized and final scars are formed, mostly in
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the form of fibrosis. The exact onset time of the pneumonitis and fibrosis is dose-related and

also varies with different animal species and strains (15-17). The lesions of the three stages may

also exist simultaneously in the lung after irradiations.

Functional damage to the lung, measured with the breathing rate assay, for irradiations with

x-rays, neutrons, and neutrons plus BPA, is reported in detail in Chapter 4. Animals with

breathing rate 20% higher than the control mean after irradiations, set as the threshold for

abnormal breathing rate, were defined as positive responses. The fractional response of each

dose group was calculated and dose response curves determined for the three radiation groups.

Weighting factors for the high-LET dose components in BNCT rat lung irradiation were derived

from the dose response curves at the ED50 level of response. The weighting factors were 1.24 +

0.08 for the M011 thermal neutron beam RBE, and 1.4 ± 0.2 and 2.3 ± 0.3 for the CBE factors

for the o1 B dose from neutron plus BPA for early and late responses, respectively.

In this chapter, the lung damage in the irradiated rats was evaluated histologically and

quantified with a histological scoring system. The lung damage from different radiations and

dose levels were compared in severity and development in time. The weighting factors of the

high LET dose components in BNCT rat lung irradiation were also determined from the

histological assessment of lung damage. Functional damage assessed with breathing rate

measurement and the histological damage was compared to demonstrate the correlation between

these two methods.

5.2 Materials and Methods
Male Fisher 344 rats, approximately 12 weeks old, were used for these studies. The vertical

MO11 thermal neutron beam (18, 19) of the MITR-II was used for neutron irradiations. The
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irradiations and dosimetry are described in detail in Chapters 2 and 4. Irradiations with x-rays

were carried out using a Phillips RT250 unit operating at 250 kV and 12 mA with 0.4 mm Sn

plus 0.25 mm Cu added filtration. Different doses were delivered to the lung, including 11, 11.5,

11.75 and 12 Gy of x-rays, 4.7, 7.1, 8.2, 9.1, 9.4 and 9.7 Gy of neutrons-only radiation. For the

irradiations with neutrons plus BPA, the doses delivered to the lung were distributed between 4-

12 Gy. Precise delivery of certain doses with BPA was not possible because of the variability in

blood boron concentration. 90 animals were irradiated within this dose range with

approximately 10 rats irradiated for each dose level. During irradiations, rats were anesthetized

with intraperitoneal (i.p.) injections of ketamine (80 mg/kg) and xylazine (10 mg/kg). Two rats

were positioned, side-by side, under the delimiter and immobilized with 5-cm wide clear

adhesive tape. The lung region was positioned in the beam aperture using the bony protuberance

of the T2 vertebra and the xyphoid sternum as reference points, with the reference points lined

up with the edge of the delimiter aperture. These experiments were conducted with approval

from the Committee on Animal Care at the Massachusetts Institute of Technology.

The rats were euthanized for lung histological changes during early and late phases at various

times after different radiations. For the early phase of the rat lung radiation response, rats were

euthanized 60 days after irradiations with 9.7 Gy neutrons only or 10.5 Gy neutrons plus BPA,

and 20, 40, 60, 80 and 100 days after irradiation with 12 Gy X-rays. The dose levels of the three

radiations selected for the early phase lung radiation damage produced a 100% response for

breathing rate increase. Some representative histological changes were specifically examined

during the early response phase. For the late phase of rat lung irradiation response, rats were

euthanized at about 180 days at various dose levels, listed previously. At least 6 rats were

euthanized for each dose group or time point. The consistency of histological damage between
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different radiations and the correlation between breathing rate increase and histological damage

was assessed during both the early and the late response phases. Rats were euthanized with i.p.

injection of a lethal dose of pentobarbital. Immediately before the death of the animal, the lung

was infused with 10% neutral buffered formaldehyde through the opened trachea and fixed.

Two slices of lung, each about 3 mm thickness, were taken from each animal: one at the left lung

close to the main bronchus and the other at the lower half of the superior lobe of the right lung.

The two slices were embedded in a paraffin block and two sections of 4 jim thickness were cut

from the sample and stained with Hematoxylin and Eosin (H&E) and Van Gieson separately.

H&E is a routine histological stain while the Van Gieson stain is specialized for elastic fiber.

A scoring system to quantify the lung histology radiation damage was established, similar to

what has been used in the literature (11, 20). The presence of the characteristic lesions of the

three phases of lung radiation response, early, intermediate, and late (8, 10, 11, 21, 22), was

assessed in the lung sections of each animal. The characteristics and lesions of these three

phases are listed in Table 5.1. Since the lesions of the three phases may exist simultaneously

with varying severity, the presence and severity of each set of lesions in the rat lung was assessed

and assigned a score. Therefore, three histological scores (one for each set of lesions) were

given to each lung section examined. The percent area of the lung sections occupied by the

lesions of a specific criterion was used to quantify the severity of this criterion. The severity

scale is described in Table 5.2. In the situation when an integer severity score was
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Table 5.1 Histological characteristics and lesions of the three phases of lung radiation responses
(11). The three phases were also used as the scoring criteria.

Phase/Criteria Histological lesion

Early Patchy areas of pneumonitis with
inflammatory cells and intra-alveolar
macrophages; perivascular cuffing with
mononuclear cell infiltrate; edema

Intermediate Increased septal cellularity with large
foamy cells in the alveoli

Late Septal fibrosis; pleural fibrosis;
pathological organization; alveolar wall
epithelialization

Table 5.2 Histological severity scale.

Severity scale Criterion

0: none Normal lung

1: mild Small (< 5 alveoli) foci involved

2: moderate Large (> 5 alveoli) foci involved;
not more than 10 large foci involved

3: marked More than 10 large foci but less
than 50% of the section area involved

4: severe More than 50% of the section area
involved

difficult to determine, a half-integer score (e.g., 1.5) was assigned to the slide. During the

histological scoring process, the examiner was blinded to the identity of each slide and rat

including dose and euthanasia date. All slides were scored within a few days to ensure scoring

consistency. The scoring system and some sample slides were examined and the scores of these

slides were confirmed by a pathologist, Dr. Prashant Nambiar of the MIT Division of

Comparative Medicine (DCM). A Nikon light microscope was used for the histology scoring

with magnifications of 20-400x. Examples of some common lesions seen in the radiation

damaged lung are shown in Fig. 5.1.
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Fig. 5.1 Examples of the histological lesions: a) alveolar edema, b) perivascular cuffing with

mononuclear cells exudates; c) mesothelial hyperplasia d) chronic lesion with

collagen nodule and epithelialization, e) interstitial and pleural fibrosis, f) pleural

fibrosis.

5.3 Results
5.3.1 Time course for lung histological damage from x-ray irradiations

For rats receiving 12 Gy x-rays, the evidence of early phase histological changes (Table 5.1)

presented at 20 days post irradiation, peaked at 60 days, and had diminished by 180 days. The

early changes were characterized by intra-alveolar macrophages, perivascular cuffing,

mononuclear cell infiltrate and edema. The intermediate phase (Table 5.1) started at 60 days,

although Type II pneumocyte hyperplasia was seen as early as 20 days post irradiation. The late

phase, pulmonary fibrosis (Table 5.1), started at 100 days with organization of inflammatory

cells, markedly thickened alveolar wall and epithelialization, although the unusual collagen

deposition in the lung parenchyma was continuously observed from 20 days after irradiation.

Both the intermediate and late phases lasted through 180 days post irradiation with increasing
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severity. At about 180 days, a mix of intermediate and late characteristics was present in the

lung. Other lesions occurring less often than the ones listed in Table 5.1 were also observed,

including fibrins in blood vessels from 20 days post irradiation, fibrous connective perivascular

tissue later than 100 days post irradiation, and osseous metaplasia or calcification in the alveolar

space, mostly at 180 days in the late phase. The normal architecture of the lung parenchyma

demonstrated more distortion and depletion than in the early phase from the radiation damage.

The lesions were not uniformly distributed within the lung and usually more damage occurred

close to the bronchioles. The severity of damage could also vary significantly between the

different lung sections from the same rat. Similar histological changes have been reported in

literature (8, 10, 11, 21, 22) as were observed in this experiment. The group average severity

scores versus time for the three specified phases after 12 Gy x-rays are plotted in Fig. 5.2.

5.3.2 Comparison of X-rays, neutrons, and neutron plus BPA at 60 days
For the rats sacrificed at 60 days post irradiation, during the early phase, similar histological

damage in terms of lesion characteristics and severity was observed in the rat lungs that received

12 Gy x-rays and 9.7 Gy neutrons. This similarity in histological damage for these two doses of

x-rays and neutrons is consistent with the similarity in their functional damage measured with the

breathing rate. These two doses produced a 100% response in breathing rate (Fig. 4.3 and Fig.

4.5) and about 10% death rate before 60 days post irradiation, with about 20 animals irradiated in

each dose level. Much more severe early phase response was observed with 10.5 Gy of neutrons

plus BPA, with significantly more perivascular cuffing of mononuclear cell infiltrates and

edematous exudate in the alveolar space, as shown in Fig. 5.1, a-c. Most of the doses higher than

10 Gy of neutrons plus BPA produced a 100% response in breathing rate and a death rate of 90%

before 60 days with about 10 animals irradiated at each dose level.
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Fig. 5.2 The severity of the histological damage versus time after irradiation of rat lung with
12 Gy of x-rays. The uncertainties plotted in this figure are standard error of the
mean (SEM).

Some examples of the histological changes in the pulmonary pneumonitis and fibrosis phases

are shown in Fig. 5.3, from rats in different radiation groups during the early and late response

phases. A mix of early and intermediate phase characteristics was evident in the lung at about 60

days post irradiation. The typical lung histological changes at this time seemed to be monocyte

infiltrates with foamy cells in the alveolar space, with fibrins sometimes seen in blood vessels

and alveolar space. Various types of chronic inflammatory and pathological reorganization were

observed in addition to fibrosis during the late response phase. Some examples of different

lesions present during the late phase are shown in Fig. 5.3, e-f.

5.3.3 Comparison of X-rays, neutrons, and neutron plus BPA at 180 days
At approximately 180 days post irradiation, all the remaining rats were euthanized. Dose

response curves of the late lung response assessed functionally or histologically of these rats, are

shown in Fig. 5.4. The dose response curves for functional damage measured with the breathing
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rate are reproduced from Chapter 4. The sum of the three histological scores (early, intermediate

and late) of each rat was used to quantify the overall lung histological damage of the rats. Group

means of the total scores of rats at different dose levels are plotted as the responses. From the

dose response curves of the lung histological damage, the sum of the histology score appears to

increase linearly with dose above a certain threshold value. For doses below the threshold, the

histological damage was similar to or slightly above the control (Table 5.3) and remained

constant with dose. For neutron only radiation, the threshold was about 7 Gy and for neutrons

plus BPA, the threshold was about 5.5 Gy. For the dose response curve of X-rays, the minimum

doses delivered were above the threshold but extrapolating the linear fit to lower doses suggests

a threshold of approximate 10 Gy. A simple linear regression was used to fit the response data

above the threshold dose for each radiation, as shown in Fig. 5.4b. A method was then used to

determine the biological weighting factors with this set of response curves, similar to the

weighting factors measured functionally. First, a reference endpoint, analogous to the 50%

response for breathing rate increase was determined with the responses of histological damage.

The doses of neutrons plus BPA covered the entire range of severity of the histological damage

well, from below the threshold where the score was low and nearly constant, to above the

threshold where the severity increased linearly with dose, to just below the lethal dose range,

where the rats mostly died in the early phase. The reference level of histological damage, used

as the endpoint in this assessment, was defined as the mid point (4.3) of the response between the

threshold score (1.5) and the maximum score observed (7.1) for rats irradiated with neutrons plus

BPA. The doses corresponding to this score with the different radiations are listed in Table 5.4,

along with the EDsos of the breathing rate responses. The differences between the doses

corresponding to the histological damage endpoint, listed in Table 5.4, and the ED50 values of the
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breathing rate responses are not statistically significant. Using the conventional method of

weighting factor determination described in Chapter 4, the RBE for the neutron beam only

determined here histologically was 1.22 ± 0.09 (SD), the same as the RBE obtained with the

breathing rate assay. The CBE for BPA with histological response estimated here was 1.9 ± 0.2

(SD), and had no statistically significant difference from the CBE measured for late lung

functional response, 2.3 ± 0.3. This is because the 95% confidence intervals of the

corresponding doses, from which the two CBE factors were derived, overlap (Table 5.4).

Fig. 5.3 Histological changes of the early and late phase for different radiations. Panels b-d
show typical changes at 60 days post irradiation with different radiations. Panels e-g
show examples of various lesions during the late pulmonary response phase at about
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180 days: epithelialization
calcification (g) and muscle

10

8

6
0
C.
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(e), fat cells deposition (e), cholesterol clefts (23) (f),
hyperplasia (g), in addition to collagen deposition.
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Fig. 5.4 Dose responses and fitted curves with breathing rate increase (a) or histological
damage (b) as the biological endpoint at 180 days after the irradiation. The shaded
area in panel b represents the control group mean ± one standard deviation of the
mean (SEM). The uncertainties plotted for each dose groups in panel (b) are standard
errors of the mean (SEM).
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5.3 Mean histological scores for different groups during early (around 60 days) and late
(around 180 days) response phases.

Euthanasia Average histology score
Phase Early Intermediate Late Total

Sham-irradiated controls late 0.1+0.1 0.3+0.1 0.4+0.1 0.8+0.3
X 11.75 Gy late 1.2+0.4 2.4±0.2 1.9+0.2 5.5+0.5
N 9.7 Gy early 1.8+0.1 1.3+0.2 0.6+0.2 3.7+0.2
N 9.7 Gy late 0.7+0.3 1.9±0.1 2.4+0.2 5.0+0.4
N+BPA 10.5 Gy early 3.4+0.4 1.3+0.2 1.0+0.3 5.7+0.6
N+BPA 9.1 Gy late 1.5+0.3 3.0+0.3 2.7+0.3 7.2+0.5

Table 5.4 The doses corresponding
the weighting factors for
from BPA.

to functional and histological endpoints used to determine
the M011 thermal neutron beam and o1 B dose component

Dose (Gy) (mean + SD) Neutron CBE for
X-ray Neutron N + BPA beam RBE BPA

ED 50 of BR 11.5 + 0.4 9.2 + 0.5 6.7 + 0.4 1.24 + 0.08 2.3 + 0.3

Hist. Score = 4.3 11.5 ± 0.5 9.4 + 0.6 7.3 ± 0.4 1.22 + 0.09 1.9 + 0.2

The correlation between the two assays is demonstrated in a direct way by examining the

relationship between histological score and breathing rate response. This is demonstrated in Fig.

5.5, which shows the breathing rate response for rats grouped by histological score. Rats were

separated according to their euthanasia date during early (<100 days post irradiation) or late

phase (>100 days). Most rats euthanized in the early phase were sacrificed at 60 days and most

animals euthanized during the late phase were sacrificed at 180 days. In the breathing rate

percent response, the last breathing rate measured before the euthanasia and the maximum

breathing rate measured during the early or late phase were assessed separately. During the early

phase, differences between the breathing rate response curves using the last breathing rate and

maximum breathing rate are statistically significant while during the late phase, the two are

similar except at one histology score.
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Fig. 5.5 Percent of rats with breathing rate increase for the histological scores for early (a.
euthanasia 5 100 days) and late (b. euthanasia > 100 days) phases of response. The
breathing rate percent response was calculated for both the last breathing rate
measured before euthanasia and the maximum breathing rate measured. For the
animals euthanized later than 180 days in panel b, maximum breathing rate measured
after 100 days was used to calculate the breathing rate percent response.

5.4 Discussion
Using the technique described in this chapter, the time course of the lung histological
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changes for rats receiving high LET radiation to the lung were observed similar to those

receiving x-rays. For the rats receiving lung irradiations of neutron plus BPA and showing

breathing rate elevation only after 100 days post irradiation, histological examination of the

lungs demonstrated that the breathing rate elevation was due to pulmonary fibrosis, rather than a

delayed pneumonitis.

Another important objective of assessing the radiation lung damage with histological changes

was to confirm the assessment of the lung damage with breathing rate. The breathing rate

measurement showed a peak elevation in the breathing rate at about 60 days post irradiation, and

later decreased, sometimes back to normal, breathing rates until the response of the late phase

(Fig. 4.3). A peak in the histological score versus time of lesions of the early phase was also

observed at 60-80 days (Fig. 5.2), indicating a peak response of the early phase at this time. The

score for the early phase decreased later and the presence of the early phase lesions almost

diminished at 180 days post irradiation (Fig. 5.2). From Fig. 5.4 and Table 5.4, consistent

weighting factors were obtained using the functional assessment with breathing rate

measurement and histological assessment. With functional assessment, dose responses were

fitted into sigmoidal curves with binary response of individual animals. With histological

assessment, linear dose response curves were obtained with the histological response of each

animal estimated with a quantitative score. The consistency of the two assessments was also

shown more directly in Fig. 5.5.

In Chapter 4, two explanations were proposed for the phenomenon that most animals

receiving lower doses (e.g., 5-9 Gy) of neutrons plus BPA demonstrated the late phase of

breathing rate response without first showing the early phase of response. One possibility

suggested higher BPA microdistribution in the target cells responsible for the late lung response.
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The other involved heart complications. Further investigations are necessary to prove the

involvement of the heart in this phenomenon and also to further understand the lung response to

BNCT irradiation. First, examination of histological changes during the early phase after 5-9 Gy

neutrons plus BPA would be helpful for interpreting the development of the late lung response.

Second, examination of heart histological damage at about 180 days during the late lung

response phase may answer the question of the heart involvement in this case. If the heart were

indeed involved, it would affect the late lung response more, which has also been reported in the

literature (24). If the heart were not involved, a more interesting alternative hypothesis is that

different target cells may be responsible for the early and late lung responses. The 10B

concentration of BPA at cellular level in lung tissue needs to be investigated with 10B

microdistribution techniques such as High Resolution Quantitative Autoradiography (HRQAR)

(25) or Secondary Ion Mass Spectroscopy (SIMS) (26).
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CHAPTER SIX

Summary, Conclusions, and
Recommendations for Future Work

6.1 Conclusions
This project investigated the radiobiology of the normal rat lung and measured the

radiobiological weighting factors required for the weighted lung dose calculation in BNCT. The

male F344 rat was used as the experimental animal model. Rat thorax irradiations were carried

out with x-rays and neutrons with or without the boron compound p-boronophenylalanine

fructose (BPA-F). Functional assay of breathing rate measurement and histological damage

scoring were used to assess the lung radiation damage. Dose response curves for the different

radiations were constructed using endpoints of breathing rate elevation or histological damage.

These dose response curves were analyzed and the radiobiological weighting factors were

determined for the high LET dose components in BNCT.

A system for the rat lung neutron irradiation was designed using Monte Carlo radiation

transport simulations. The design goal of the rat lung irradiation system was to deliver a uniform

thermal neutron dose to the lung region while sparing the adjacent radiosensitive normal tissues.

The two neutron beam facilities available for BNCT experiments at the MIT Research Reactor

were compared and the MO11 thermal neutron beam was found to be the most suitable for the rat

lung irradiation. A delimiter was then designed and optimized for the rat lung irradiations as a

Li-Poly plate of 1.5 cm thickness with a tapered aperture of 4-3 cm width to expose the lung
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section to the beam. The simulation design was validated with in-phantom dose measurements

using gold foil activation and the dual ion chamber method. A 10 Gy dose of neutron-only or

beam-only irradiation could be delivered to the lung in about 50 minutes beam time with a two-

field irradiation. About 20% of the total beam dose is neutron dose mostly from the 14N(n, p)

capture reactions, and the remaining 80% is from photons. With 10B present from BPA, a 10 Gy

total dose was delivered in about 20 minutes and about 50% of the total dose was from the

neutron beam and 50% from o1 B.

An open-flow whole-body plethysmography with fully automated signal processing

programs was developed to non-invasively measure the rat breathing rate after lung irradiation.

The apparatus was adapted from a commercially available system for rat breathing signal

collection (Respiromax, Columbus Instruments, Columbus, OH). Software was developed to

automatically process digital pressure change signals from the plethysmography system and

determine breathing frequencies. Three minutes of pressure signal were collected in each rat

breathing rate measurement at a data-sampling rate of 200 Hz. Noise discrimination was

employed in the time domain against ripple noise (<0.04 s) and large amplitude noise from

animal movement. The breathing pressure signals were then analyzed using the Fast Fourier

Transform (FFT) with a circular moving block in combination with the bootstrap (1-3) for noise

suppression and to allow estimation of the statistical uncertainty (standard deviation) of

frequency measurements. The mean standard deviation of all measurements in the data set was

2.4%. As an independent check on the FFT results, a peak-counting method was used to analyze

the same set of breathing signal data and determine the Breathing Frequency Density Function

(BFDF) of the signal from the periods of all breath cycles. Using this software, more than 4269

stored breathing rate signals were analyzed and 90% of the breathing frequency results from the
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FFT and BFDF methods agreed to within 10%. The measured mean breathing rate for the

control group (8 animals and 17 measurements each) was 176 ± 13 (7.4%) min-' (mean ± SD)

and breathing rates 20% (- 3 SD) above the control mean were considered abnormal.

Radiobiological studies in the normal lung of rats were performed to measure the

radiobiological weighting factors required for the weighted lung dose calculation in BNCT. Rat

thorax irradiations of Fisher344 rats were carried out with x-rays, thermal neutrons, and thermal

neutrons with BPA-F. The rat breathing rates were measured up to 180 days post-irradiation to

assess and quantify functional damage in the lung following irradiation. For the responding rats

that received neutrons-only or x-ray radiation, most rats showed a biphasic response in breathing

rate elevation, the early phase (5100 days) and the late phase (>100 days). The response was

different for neutrons plus BPA since that at relatively low doses (- 5-9 Gy), 25 out of 47

animals responded only in the late phase. The dose responses of different irradiation groups

were analyzed with probit analysis. The ED 50 values for x-rays, neutrons only, and neutrons plus

BPA during the early response phase, and neutrons plus BPA during the late response phase,

were 11.5 ± 0.4 Gy, 9.2 ± 0.5 Gy, 8.7 + 0.6 Gy and 6.7 ± 0.4 Gy (mean ± SD), respectively. The

radiobiological weighting factors for the neutron beam (neutrons and photons) and thermal

neutrons only were determined as 1.24 ± 0.08 and 2.2 + 0.4, respectively. A new algorithm was

used to determine the weighting factor for the o1 B dose component in neutrons plus BPA

irradiation. A potential radiobiologically weighted dose response curve of the neutron plus BPA

irradiation was constructed, with probit analysis and the weighted dose estimated with the

neutron beam RBE for the beam dose component and a testing CBE for the '0B dose component.

A series of CBE values were tested and each produced a weighted dose response curve and a

corresponding ED50 value. These ED 50 values were compared to the ED 50 value of the x-ray
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dose response curve. The testing CBE value that produced minimum difference between the two

was determined as the weighting factor for the 10B dose component in rat lung irradiation of

neutron plus BPA. Thus, the weighting factors for the 10B dose component were measured at 1.4

± 0.2 during the early response phase and 2.3 ± 0.3 during the late response phase.

The lung damage during the late response phase in the irradiated rats was also evaluated and

quantified with a histological scoring system. The lung damage from different irradiations and

dose levels was compared in severity and development in time. The dose responses were fitted

with a linear response curve for each irradiation. The radiobiological weighting factors for the

different dose components were also determined at a degree of lung histological damage

corresponding to a median histological score, 4.3, between the baseline (similar to the control)

and the maximum. The doses estimated at this histological damage level were 11.5 + 0.5 Gy, 9.4

± 0.6 Gy, and 7.3 ± 0.4 Gy, for x-rays, neutrons-only, and neutrons plus BPA at the late response

phase. The weighting factors determined at this damage level were 1.22 ± 0.09 for the neutron

beam and 1.9 ± 0.2 for the 10B dose component with BPA during the late response phase. The

two measured sets of weighting factors for the high-LET dose components of rat lung irradiation

in BNCT, with either histological damage or functional damage as the biological endpoint, have

no statistically significant difference between each other.

6.2 -Clinical implications
One of the major motivations of this study was to investigate whether the lung complications

that the three patients developed during the Harvard-MIT BNCT clinical trial in the period

between 1994 and 1999 were due to BNCT dose. With the lung dosimetry measured in an

anthropomorphic phantom positioned for cranial irradiation in a prone position, the minimum
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weighting factors for neutron and 10B dose needed to initiate the lung damage in the patients

were estimated to be at least 3.2 and 4, respectively (4). In this study, the RBE measured for

thermal neutrons was 2.2 ± 0.4, and the range of the CBE factor for BPA with the early breathing

rate response was 1.0 - 2.2, both below the estimated requirements for weighting factors. Using

the information provided by the report (4) and the measured biological weighting factors, a

maximum weighted dose to the lung apex, using the dose in Table 6.1, is estimated to be 5.3 Gyw

for the patients who developed ARDS. The mean lung dose in these patients would be well

below 5.3 Gyw. With conventional x-ray irradiation, the threshold for radiation pneumonitis in

patients treated with whole lung irradiation was 7 Gy of single fraction (5-8). This suggests that

the lung complications developed by the patients after BNCT treatment for brain tumors most

likely did not result from BNCT irradiation.

Table 6.1 Estimation of maximum dose delivered to the lung apex of the patients treated for
brain tumors at the MIT-Harvard BNCT clinical trial in 1994-1999 who later
developed ARDS. Lung 10B concentration is assumed at 15 pg/g, the same as
measured in blood.

NF N Photon B Weighted dose Beam time Total weighted
rate (cGyw/min) (min) dose (Gy,)

Dose rate (cGy/min) 0.17 0.014 0.66 0.12 1.33 400 5.3
RBE/CBE 2.2 2.2 1 2.2

The weighting factors in BNCT for normal lung irradiations measured in this project are also

helpful for evaluating the feasibility of BNCT for lung cancer (9). With these measured

biological weighting factors, a simple treatment plan with two field (anterior and posterior) lung

irradiation in the FCB is calculated. The dimensions for this calculation were estimated from a

human thorax cross section at lung from the Visible Human Project National Medical Library

(10). The thickness of the human body at this region was measured at 26 cm, with 4.5 cm

thickness of soft tissue on each side, and 17 cm thickness of lung in the middle. The dose-depth
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profile in the lung region of the human cross section was estimated by extrapolating the dose-

depth profile for the MIT FCB measured along the central axis of a large rectangular water

phantom (40 x 40 x 60 cm 3) (11) by a factor of 4, since the lung density (0.26 g/cm 3) is about a

quarter of water density or soft tissue density (1 g/cm3). The o1 B concentration and RBEs used in

BNCT brain tumor treatments at Harvard-MIT listed in Table 6.2 are used in calculation of the

weighted dose rate for skin and tumor. The CBE for BPA in BNCT rat lung irradiation

measured at ED1o during the late phase, 3.6, is used in this calculation to ensure minimum lung

complication. The soft tissues between the skin and lung mainly include fat, muscle, bone and

connective tissues. The weighted dose rate delivered to this region was estimated with the same

weighting factors measured for lung in this experiment, as listed in Table 6.2. This is a higher

estimate since soft tissues are very likely to be less radiosensitive than lung. The weighted dose

rate profile through the human lung is plotted in Fig. 6.1a. The weighted dose rate to skin is

plotted at a depth of 0.5 cm. The profile of the posterior field is simply the reverse of the

anterior field profile. The weighted dose-depth profile for normal lung tissue and tumor with a

two-field neutron irradiation (anterior and posterior) at this cross section is plotted in Fig. 6. lb.

In this simulation, the maximum dose to the lung was 8.2 Gyw (TD1o), which is the maximum

dose delivered to the normal lung in conventional radiation for bone marrow transplant (5-8).

From this figure, the minimum biologically weighted dose that could be delivered to the tumor is

about 20 Gyw and a clear dose separation between normal lung dose and tumor dose is achieved

at all depths, mainly as a result of the higher o1 B concentration in the tumor. A relatively

uniform dose distribution is also achieved on the central axis, due to the good penetration of the

epithermal neutrons and the low lung density. The weighted dose to skin is estimated as 6.4 Gyw

and is well below 22 Gyw, the threshold for skin dose in BNCT irradiation for brain tumors (12).
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Table 6.2 Information used to calculate the weighted dose in the hand calculation of lung
irradiation (12).

Weighting factors toB conc.

Neutron oB Photon gpg/g
Skin 3.2 2.5 1.0 22.5
Normal lung/soft tissue 2.2 3.6* 1.0 15
Tumor 3.2 3.8 1.0 52.5
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Fig. 6.1 Weighted dose and dose rate profiles for single-field irradiation (a) and two-field
(anterior and posterior) irradiation (b) of the lung. The dose depth profile calculated
along the central axis in the water phantom (40 x 40 x 60 cm3) was obtained from Ref
(11).

6.3 Future work
In this project, the dose-response curves with early (<100 days) and late (>100 days)

breathing rate response as the biological endpoint had different dose ranges for neutron
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irradiations with BPA. The ED5o for the late response was 6.7 ± 0.4 Gy, smaller than the ED50

for the early response, 8.7 ± 0.6 Gy. Most animals receiving lower doses (4-9 Gy) of neutrons

plus BPA did not demonstrate the early phase but showed breathing rate elevation during the late

phase. Two explanations were proposed for this phenomenon. One hypothesis is that a higher

microscopic BPA concentration is in the unknown target cells which are responsible for the late

lung response. The other hypothesis is that heart complications were involved in the breathing

rate increase in the late phase with neutrons plus BPA irradiation. Further investigations are

necessary to investigate the heart involvement and also to further understand the mechanisms of

the lung damage in BNCT irradiation.

First, the histological changes during the early phase (- 60 days post irradiation) of the

animals receiving 4-9 Gy neutrons plus BPA should be studied, which will also help to interpret

the development of the late lung response. Second, examination of cardiac histological damage

at about 180 days during the late lung response phase may answer the question of the heart

involvement in this case. If the heart was indeed involved, the late breathing rate response

should be considered as a combined radiation effect from both lung and heart damage. Cardiac

complication will have to be considered and heart irradiation avoided, should BNCT be used for

lung cancer in the future. This will be very helpful for understanding the mechanisms of lung

radiation damage that have been studied for about a half century. In order to assess the

hypothesis of higher 10B concentration in different cell types, the 1°B concentration of BPA at the

cellular level in lung tissue needs to be investigated with o1 B micro-imaging techniques such as

High Resolution Quantitative Autoradiography (HRQAR) (13) or Secondary Ion Mass

Spectroscopy (SIMS) (14).
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APPENDIX A

Error Analysis of the Dosimetry and
the Dose Uncertainty from Rat
Positioning during Irradiations

A. 1 Equations for uncertainty estimation
The basic uncertainties used for uncertainty estimation are listed as:

Uncertainty detected Uncertainty Used
x-ray (Dx) 2% 3%

Neutron flux (Dx) 6% 7%

Photon dose (Dy) 6% 7%

BPA 1% (counting) 5%

The detected uncertainty was measured over time during the lung irradiations with x-rays or

neutrons. These uncertainties were expanded to 'used' uncertainties, since not all factors were

detected. The uncertainties for x-ray, neutron dose, photon dose were beam fluctuations

measured over time during rat lung irradiations. The detected uncertainty listed here for BPA,

1%, is the estimate of the counting errors usually obtained for 0.5 ml blood sample with about 20

ptg of loB present in each gram of blood.

The Equations used for error propagations are as the following:

1) Basic equations:
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XZ =X ,or, Z = XY;
Y

= - "+ Y ;(relative error)
ZY

z = Zx ; (absolute error)

Z= X+ Y;

z = ( + (ry )2 ;(absolute error)

2) Beam dose and the dose of neutron plus BPA, assuming that the beam dose was composed

of 20% neutron dose, and 80% photon dose, and the dose of neutron plus BPA was composed of

50% o1 B dose, and 50% beam dose.

Dn beam= D, + Dr;

Sbeam, r + ; (absolute error)

nn beam beam Dn Dbea

nbeam Dn beam Dn beam D beam D , beam

= )2 (0.2)2+ ' (0.8)2 = 6%;(relative error)

DB = Nx CBPA; (CBPA : BPA concentration)

n 2
( + BP = 9%; relative error

D N FBPA

DN+BPA = Dn beam + DB;

CN+BPA - B 2 n beam B 2 DB n beam Dn beamD+BP(N+BPA Dn beamD4,

SDN+BPA) DNF+BPA DN+BPA DB N+BPA Dbeam DN+BPA

( 2 (0.5)2+ beam (0.5)2 = 5%; relativeerror

Propagated errors of the ED 50 (or some other endpoints, e.g., EDio) values using fitting errors

and dose errors:
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Jr ; relative error2 2
ED50(x-ray) _ ED50(x-ray Afitting) 'x-rayE7 + ) Eraorela Ii D erroED ED 2rD

50(x- ray) 50(x-ray) ay

(ED50(n beam)

ED50 (n beam)

(ED50(N+BPA)

EDO50
(N+BPA)

a2
YED50(n_ beam_ fitting)

ED50(n_ beam- fitting)

2
-n beam

+ ; eam relative error
Dn beam

2 2

, ED50(N+BPA fltting) + N+BPA

ED50(N+BPA_ fitting) DN+BPA

Errors of the ratios of the EDsos:

Rai2 2

Ratio of ED(x-ray) toED i-ED50(x-ray) + 7 ED50(n_ beam)

50(nbeam) brelative(x-rayln 50(x-ray) 50(n_ beam)

Ratio of ED50(x-ray) to ED50(N+BPA)  relative(x-ray N+BPA) =

Error of the RBE for neutron beam only (n+y):

'ED50(x-ray)

50(x-ray)

2

ED50(N+BPA)

EDso50(N+BPA)

2
c'w(n_ beam) _ 'ED50(x-ray)

= 0 'relative(x-ray/n _beam) = ED
n beam ED50(x-ray)

Error of the RBE for thermal neutron only:

ED50(x-ray) 0.8
ED50(n_ beam)

n 0.2
5x EDso(x-ray) 4;

ED50(nbeam)

0ED (x-ray)
w n -'= 5 X (Trelative(x-ray/n beam) X ED am )

50(n beam)

2

= 5x ,ED50(x- ray)

EDo( x-ray)

2
OED50(n_ beam)

ED50(n_ beam)

SEDso(x-ray); absolute error
ED50(n_beam)

Error of the CBE for the BPA (during the early phase or the late phase):
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Appendix A: Error Analysis

EDsO(x ray) - 0.5 x w beam

B = 50(N+BPA) = 2 x E (x-ray) beam
0.5 ED50(N+BPA)

o'wB = 2 XO'relatve(x~rayIN+BPA) × EDSO(N+BPA)

=2x EDso(-a) so(N+BPA) ED50x-ra absolute error.
ED50(x-ray) E0(N+BPA) ED50(N+BPA)

A.2 Results of the uncertainties

Table A.1 Summary of the measured end doses and
rate; Hist.: histology scoring.)

their standard deviations. (B.R.: breathing

EDso with B.R. (Gy) EDIo with B.R. (Gy) ED90 with B.R. (Gy) ED5o with Hist. (Gy)
Dose SD Dose SD Dose SD Dose SD

x-ray 11.5 0.4 11.0 0.3 11.9 0.4 11.5 0.5
N beam (n+y) 9.2 0.5 8.8 0.6 9.7 0.6 9.4 0.6
N+BPA early 8.7 0.6 6.7 0.6 11.0 0.8 - -
N+BPA late 6.7 0.4 5.1 0.5 8.2 0.6 7.3 0.4

Table A.2 Summary of the measured weighting factors and their standard deviations.

At EDso with B.R. At EDlo with B.R. At ED90 with B.R. At EDso with Hist.

w SD w SD w SD w SD

N beam (n+y) 1.24 0.08 1.25 0.09 1.23 0.09 1.22 0.09
N only 2.2 0.4 2.3 0.5 2.2 0.4 2.1 0.5
N+BPA early 1.4 0.2 2.2 0.3 1.0 0.2 - -

N+BPA late 2.3 0.3 3.6 0.5 1.7 0.2 1.9 0.2

A.3 Positioning errors
Uncertainties of dose delivered to the lung in the neutron beam only irradiation were

estimated in MCNP, with the two rat models positioned 0.5 cm off to different directions, and

also with only one rat model in the field. Maximum discrepancies of 23% for local neutron dose
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rate and 11% for local beam dose rate were observed from the DVH calculations. However, the

maximum discrepancies for mean lung neutron dose rate and for mean lung total dose rate were

within 5%. As the mean lung dose was used to predict the rat lung response from radiation

damage, the final lung responses of the animal were not significantly influenced by the

positioning errors during the lung irradiation. Also since the positioning errors are random

errors, they were not propagated in the total error analysis. The calculated DVHs of the rat lung

irradiation with different positioning are plotted in Fig. A. 1.

100%

80%

60%

40%

20%

0%

0.00 3.000.50 1.00 1.50 2.00 2.50

Total Neutron Dose from the Anterior Field (Gy)

Fig. A. 1 The calculated DVHs with different positioning of the rats.
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APPENDIX B

Rat Breathing Rate and Weight
Measurements after Lung
Irradiation

In this appendix, breathing rate and weight measurements of individual rats are plotted. The

Y axis in all the figures is used for both breathing rate and weight. Breathing rates are

represented with diamonds and the weights are represented with squares. The control mean and

20% above is represented with the shaded area.
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Fig. B.1 Breathing rate and weight of the control group.
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10 Gy x-rays
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Fig. B.2 Breathing rate and weight after lung irradiation of 10 Gy x-rays.
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Appendix B: Rat Breathing Rate and Weight Measurements after Lung Irradiation

11 Gy x-rays
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Fig. B.3 Breathing rate and weight after lung irradiation of 11 Gy x-rays.
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11.5 Gy x-rays
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Fig. B.4 Breathing rate and weight after lung irradiation of 11.5 Gy x-rays.
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11.75 Gyx-rays
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Fig. B.5 Breathing rate and weight after lung irradiation of 11.75 Gy x-rays.
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12 Gy x-rays

500

400

300

200

0 40 80 120 160 200 -40

No. 27
hist: 227 days

S1 DE5

-Si

Inn

400

300

I I I I i nn

0 40 80 120 160 200 -40

No. 29
hist: 233 days

0 40 80 120 160 200

No. 31
hist: 233 days

- ~ i~tl~yP1

0 0 40 80 120 160 200

Time post irradiation (days)

400

300

200

inn
-40

400

300

200

'I An

No. 26
hist: 227 days

0 40 80 120 160 200

- No. 28
hist: 227 days

No. 30C

No. 30
died: 203 days

No. 32

No. 32
hist: 233 days

-40 0 40 80 120 160 200
Time post irradiation (days)

0 40 80 120 160 200

Fig. B.6 Breathing rate and weight after lung irradiation of 12 Gy x-rays.

183

500t-c
,E

"' 400

300

200

M inn L-

-40

500

E53 400

• 300

M- 200

S 0nn

500

400

300

200

Inn

E

(3E

M,Dm(7

a)
cc.

t)
. -

133

-40

500

400

300

100Inn

0 40 80 120 160 200

-4

I

" "~"""'~""~I'""~~'-" "

E

LL

I

I| ULJ

-4(

L
L

L



Appendix B: Rat Breathing Rate and Weight Measurements after Lung Irradiation

12 Gy x-rays
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Fig. B.7 Breathing rate and weight after lung irradiation of 12 Gy x-rays.
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12 Gy x-rays
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12 Gyx-rays
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Fig. B.9 Breathing rate and weight after lung irradiation of 12 Gy x-rays.
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12 Gy x-rays
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12 Gy
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Fig. B. 11 Breathing rate and weight after lung irradiation of 12 Gy x-rays.
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16 Gy x-rays
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Fig. B.12 Breathing rate and weight after lung irradiation of 16 Gy x-rays.
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Appendix B: Rat Breathing Rate and Weight Measurements after Lung Irradiation

4.7 Gy ne utrons
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Fig. B. 13 Breathing rate and weight after lung irradiation of 4.7 Gy neutrons.
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7.1 Gy neutrons
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Fig. B.14 Breathing rate and weight after lung irradiation of 7.1 Gy neutrons.
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Appendix B: Rat Breathing Rate and Weight Measurements after Lung Irradiation

8.2 Gy neutrons
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Radiobiology of Normal Rat Lung in Boron Neutron Capture Therapy

9.1 Gy neutrons
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Appendix B: Rat Breathing Rate and Weight Measurements after Lung Irradiation

9.4 Gy neutrons
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Fig. B.17 Breathing rate and weight after lung irradiation of 9.4 Gy neutrons.
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Radiobiology of Normal Rat Lung in Boron Neutron Capture Therapy

9.7 Gy neutrons
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Appendix B: Rat Breathing Rate and Weight Measurements after Lung Irradiation

9.7 Gy neutrons
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Fig. B. 19 Breathing rate and weight after lung irradiation of 9.7 Gy neutrons.
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Radiobiology of Normal Rat Lung in Boron Neutron Capture Therapy
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Appendix B: Rat Breathing Rate and Weight Measurements after Lung Irradiation

4.0-5.0 Gy N+BPA
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Fig. B.21 Breathing rate and weight after lung irradiation of 4.0-5.0 Gy neutron plus BPA.
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Radiobiology of Normal Rat Lung in Boron Neutron Capture Therapy

5.0-6.0 Gy N+BPA
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Appendix B: Rat Breathing Rate and Weight Measurements after Lung Irradiation

6.0-7.0 Gy N+BPA
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Fig. B.23 Breathing rate and weight after lung irradiation of 6.0-7.0 Gy neutron plus BPA.
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Radiobiology of Normal Rat Lung in Boron Neutron Capture Therapy

7.0-8.0 Gy N+BPA
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Appendix B: Rat Breathing Rate and Weight Measurements after Lung Irradiation

8.0-8.6 Gy N+BPA
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Radiobiology of Normal Rat Lung in Boron Neutron Capture Therapy

8.6-9.0 Gy N+BPA
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Appendix B: Rat Breathing Rate and Weight Measurements after Lung Irradiation

9.0-10.0 Gy N+BPA
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Fig. B.27 Breathing rate and weight after lung irradiation of 9.0-10.0 Gy neutron plus BPA.
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Radiobiology of Normal Rat Lung in Boron Neutron Capture Therapy

10.0-10.5 Gy N+BPA
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Appendix B: Rat Breathing Rate and Weight Measurements after Lung Irradiation

10.5-11.5 Gy N+BPA
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Fig. B.29 Breathing rate and weight after lung irradiation of 10.5-11.5 Gy neutron plus BPA.
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Fig. B.30 Breathing rate and weight after lung irradiation of 11.5-12.25 Gy neutron plus BPA.
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