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Abstract
Sheared zonal flow is known to be the predominant saturation mechanism of plasma
turbulence. Rosenbluth and Hinton(R-H) have shown that the zonal flow level is in-
versely proportional to the plasma radial polarizability due to magnetic drift departure
from a flux surface. In another calculation, Hinton and Rosenbluth (H-R) considered
the weakly collisional case in the banana regime and calculated the neoclassical polariza-
tion and associated zonal flow damping in the high frequency and low frequency limits.
The work presented here extends R-H's calculation in several aspects. We calculate the
neoclassical polarization for arbitrary radial wavelength zonal flows so that finite ion
banana width and ion gyroradius are retained. We also add plasma shape effects into
the R-H collisionless calculation and find the influence of elongation and triangularity
on neoclassical polarization and zonal flow damping. In addition, we extend the H-R
collisional calculation using an exact eigenfunction expansion of the collision operator to
calculate neoclassical polarization for the entire range of frequencies. A semi-analytical
fit of the exact results is obtained that gives the polarization to within 15% and allows
the collisional zonal flow damping rate to be evaluated for arbitrary collisionality.
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Chapter 1

Introduction

It has been observed in tokamak experiments [45] that radial particle and heat transport

are much larger than neoclassical theory predicts [26][411. Neoclassical theory based on a

collisional diffusion model only sets up a minimal transport level for fusion plasmas. The

majority of the radial transport is believed to be from small spatial scale (compared to

the tokamak size), low frequency (compared to the ion gyrofrequency) microinstabilities

[29] [35][6] [39]. These drift wave type instabilities include the ion temperature gradient

(ITG) [4] [33] [11] mode, the electron temperature gradient (ETG) [31] mode, the trapped

ion mode [42][43] and the trapped electron mode (TEM) [19][8][37][32]. The ITG mode

and TEM mode have recently been observed in experiments [40][20] and identified as the

main instabilities that lead to anomalous transport [31].

A focus of the last several decades of fusion research has been identifying new mi-

croinstabilities, investigating the physics behind these microinstabilities, and searching

for possible approaches to avoid or suppress the microturbulence associated with these

microinstabilities. These microinstabilities can lead to an axisymmetric flow called zonal

flows that can impact the fluctuation levels. The zonal flow produced by the sheared

radial electric field is found to be an effective way to reduce tokamak turbulent transport

[13][47] once it is excited by the microturbulence. Gyrokinetic simulations find that the

threshold of ITG turbulence is shifted upwards by the excitation of the zonal flow[14].



The discovery of this Dimits Shift has been important evidence of the regulation effect of

the zonal flow. Therefore the damping of the zonal flow and the asymptotic residual zonal

flow level becomes an important issue in setting the turbulence saturation amplitude.

Different simulation models have provided different predictions on the zonal flow

damping. Gyrokinetic simulations [36][15][34] found a much larger residual zonal flow

level than the gyrofluid models [35][2][17]. In an analytical gyrokinetic calculation[44],

Rosenbluth and Hinton (R-H) showed that an axisymmetric zonal flow can't be damped

by linear collisionless kinetic effects. Therefore, the severe damping term embedded in

gyrofluid codes is not appropriate for describing the zonal flow evolution and gyrofluid

modeling has been largely replaced by gyrokinetic models in the last few years. The R-H

calculation also showed that the residual zonal flow level is inversely proportional to the

radial plasma polarization. This radial polarization is associated with departure of charge

from a flux surface due to the magnetic drifts or even gyromotion. In the collisionless

regime, the plasma polarization is dominated by the ion neoclassical polarization, which

originates from the trapped and passing ion departure from flux surfaces in a tokamak.

In a later calculation[27], Hinton and Rosenbluth (H-R) calculated the neoclassical

polarization and associated zonal flow damping in the presence of collisions for the fol-

lowing two asymptotic limits: the high frequency limit where the driving frequency is

much larger than the ion-ion collision frequency, and the low frequency limit, where the

driving frequency is much smaller than the ion-ion collision frequency. They did not give

explicit results for the intermediate driving frequencies, but found the zonal flow to be

strongly damped at high collisionality.

In this thesis, several advances have been made to understanding neoclassical polar-

ization and the associated residual zonal flow following H-R's approach [27][44]. These

advances include the following calculations:

* the neoclassical polarization and residual zonal flow level for arbitrary perpendicular

wavelengths;

* the neoclassical polarization and residual zonal flow level for shaped plasma with



finite elongation and triangularity;

* the collisional neoclassical polarization for the entire range of driving frequencies

or arbitrary collisional frequencies below the transit frequency.

To set the stage for these calculations, we review the basic R-H zonal flow physics,

and show that the residual zonal flow is closely related to the polarization of the plasma in

Chapter 2. Then in Chapter 3, we first develop the formalism to calculate the neoclassical

polarization following H-R [27]. We review the calculation of the neoclassical polarization

in the collisionless limit and show the importance of the distribution function's structure

in pitch angle space. We also calculate the classical polarization for a screw pinch model.

In addition, we calculate the poloidal and toroidal rotation with the collisionless R-H

distribution and find that zonal flow not only has a poloidal component, but also has a

comparable toroidal component.

In Chapter 4, we calculate the neoclassical polarization and the associated zonal

flow analytically for short wavelengths (wavelengths of the order of the ion poloidal

gyroradius) in the collisionless limit, since short wavelength zonal flow plays a different

role in regulating turbulence [9]. We find that for a given initial density perturbation

the residual zonal flow level is much smaller for short wavelengths in the core. The short

wavelength zonal flow is expected to be of interest in the pedestal edge plasma region as

well. We then calculate the neoclassical polarization and the residual zonal flow level for

arbitrary wavelengths numerically so that both finite ion banana width and ion gyroradius

effects are retained. We find the zonal flow can become totally undamped in this case.

Since magnetic geometry is pertinent to the residual zonal flow level [22], we then calculate

the neoclassical polarization for shaped plasma cross sections with nontrivial elongation

and triangularity, and find that the residual zonal flow level increases with elongation,

while decreasing with triangularity.

The next chapter, Chapter 5, reviews the H-R collisional calculation in two asymptotic

limits: the high driving frequency limit and the low driving frequency limit. We then

proceed to develop a semi-analytical method, based on an eigenfunction expansion of



the collision operator [30] [12], to calculate the collisional neoclassical polarization for the

entire driving frequency range or arbitrary collisionalities in Chapter 6. For collision

frequencies comparable to the driving wave frequency the damping of the zonal flow

increases slightly as the inverse aspect ratio increases, and of course, the zonal flow is

strongly damped at high collisionality.

The last chapter summarizes and discusses what we have discovered in the previous

chapters.



Chapter 2

Background

Heat and particle transport in experiments is observed to be much larger than neoclassi-

cal theory[26] [3] or collisional diffusion predicts. It is widely believed that this anomalous

transport is caused by small spatial scale, low frequency fluctuations. These fluctuations,

namely turbulence, stem from microinstabilities, such as the ion temperature gradient

(ITG) mode[4][14][16][11] and trapped electron mode (TEM) [19][8] [37] [10] [43] [32]. A fo-

cus of fusion plasma research has been the physical mechanism of these micro instabilities

and how to reduce the associated turbulence level [44] [9][13].

An important tool to study turbulence is the gyrokinetic equation[5][1][7][21]. The

gyrokinetic equation is the gyro phase averaged kinetic equation holding the guiding

center fixed. For a strongly magnetized plasma, the gyromotion is the fastest motion

of interest. Based on this fact, the gyrokinetic approach eliminates the gyro phase de-

pendence of the distribution function when it is written as a function of guiding center.

This gyrokinetic approach is believed to contain all the relevant physics of turbulence.

Although it is greatly simplified, the gyrokinetic equation is still quite difficult to solve,

even numerically. Additional simplifications are normally required. For example, in the

case of drift wave turbulence, some of the neoclassical drives are usually ignored.

Another useful approach to deal with turbulence is through reduced fluid models,

which essentially take the moments of the kinetic equation and then close the moment



hierarchy by approximate kinetic models. One of these fluid models is the gyrofluid model

[35], which includes magnetic drift and finite Larmor radius(FLR) effects in the moment

equations.

Numerical simulations show that the low frequency poloidal (and toroidal) rotation,

or zonal flow, plays an important role in regulating turbulence. Specifically, in the pres-

ence of sheared zonal flows, the turbulence can be strongly reduced. Hence, the damping

of these poloidal flows became an important issue. Both gyrokinetic and gyrofluid simu-

lation can predict zonal flow damping, but gyrofluid codes [35][2] observed a much larger

damping than gyrokinetic codes [36].

Rosenbluth and Hinton (R-H) performed an analytic check[44][27]. Their kinetic cal-

culation demonstrated that the axisymmetric fluctuations can't be damped by linear

collisionless kinetic effects; consistent with gyrokinetic simulations. R-H found that the

linear damping term implemented in gyrofluid models is not appropriate for axisymmetric

poloidal flows. Their calculation also shows that the residual zonal flow level is inversely

proportional to the polarization constant of the plasma. Therefore the plasma polariza-

tion plays a crucial role in regulating zonal flow damping. In tokamaks, the majority of

the polarization comes from the bounce motion of the particle trajectories, rather than

the gyromotion of the particle trajectories. In fact, neoclassical polarization is bigger

than classical polarization by a factor of BI/B2, where BT and B, are the toroidal and

poloidal components of the magnetic field. As a result, neoclassical polarization will be

the main focus of our investigations. The classical polarization is usually easy to identify.

To set the stage for our work, we briefly review the R-H model[44] [27] in the remainder

of this section. To determine the neoclassical part of the polarization, they start with the

gyrokinetic equation and ignore the FLR effect to obtain the drift kinetic equation[23] [26].

+ (v,,b + VB) - Vf 1 - Ci {fi} = Fo (v,,b + vd) -V4 + Sn, (2.1)

where e is the charge of the particles, including sign. For simplicity, here we assume only

hydrogenic ions in the plasma. Note that fi is the first order or linearized distribution



function, F0 is the lowest order distribution function, assumed to be a Maxtwellian, and

0 is the perturbed electrostatic potential. In addition, V is the spatial gradient holding

the kinetic energy E = v2/2 and magnetic moment ~ = v /2B fixed; b = B/B, is the

unit vector along magnetic field; Q = eB/mc is the gyro frequency; vd = vB - b x V4,

is the total drift velocity with

b
VB = x (PVB + vb -Vb) (2.2)

the magnetic drift; and Cii is the linearized ion-ion collision operator. The source term

S, in Eq.(2.1) is the gyro average of the nonlinear term in the drift kinetic equation,

S = B V x b -Vf1  (2.3)

The R-H's approach is to divide the electrostatic fluctuations into two groups: non-

axisymmetric fluctuations and axisymmetric fluctuations. The non-axisymmetric fluctu-

ations include unstable modes that are coupled together in the source term. On the other

hand, the axisymmetric fluctuations are driven by this first group through mode coupling

and then act to regulate the first group. Although solving the whole nonlinear problem

consistently is desirable, it is generally too complicated and more convenient to use the

R-H's approach to gain some physical insight. In R-H's approach, the axisymmetric fluc-

tuations are treated in detail, while the effect of the non-axisymmetric fluctuations are

modelled as an axisymmetric noise source with known properties.

From Eq.(2.1), the first order distribution fi is composed of two parts,

f1 = fL '+ fIN L , (2.4)

where the linear part fjL is driven by the axisymmetric source EFo (v,,b + Vd) - V0, and

the nonlinear part fJNL is driven by the axisymmetric noise source Sn. It is convenient



to introduce the notation

f"L = dtSn,

fi fL +JdtS, (2.5)

and fL satisfies the following equation,

f' + (v,,b + VB) -VfJ - Cii {fL} = -Fo (v,,b + Vd) -VO.atT (2.6)

A Fourier representation in the direction perpendicular to the magnetic field can be

applied to the preceding equation by defining,

4 (r, t)

ff' (r, t)

= Zk (t) eS,
k

= Zfk (t)eiS,

(2.7)

(2.8)

with k± = VS. Then in Fourier space, Eq.(2.6) becomes

O ibfk (b +v k i {f} -F (v,,b0A + (v,,b -V + vB " ik-) fk - Cii jfkj = Fo (vilbat T -V + vs ikI) Ck.

We can solve the preceding equation for fk in terms of Ok by Laplace transforming to

frequency domain, by utilizing the transform pair

¢k (P)

Ck (t)

- dte-PtOk (t),

0

12ri dpePt k (P) ,27ri

(2.10)

(2.11)

where p = iw, is the frequency-like variable in the Laplace transform.

then

(2.9)



We may define a polarization e, (p) in Fourier and frequency domain by

e (p) (k2) qk (p) -47r ( (p)), (2.12)

where ( ) is the flux surface average and pl° (p) is polarization charge density. This

definition for polarization retains only the linear portion of fi and may be rewritten as

pk ( k k (p (k) ( = -4e ( d3v(f(p) - f(p)) (2.13)

In the case of interest to be considered here, the ion and electron response will cancel the

adiabatic response and leaving only the polarization effect. The ion polarization is larger

than the electron polarization by the mass ratio, mi/me, so the electron polarization is

generally ignored in calculation, and we only need to consider

Po' (p) (k) , (p) = -4e iK d3vf (p)) . (2.14)

This expression will be used to calculate the polarization constant, ýe' (p).

The axisymmetric potential qk is determined by quasineutrality within a flux surface

with both the linear and nonlinear portion of fi retained,

Sd3vfe) = ( d3vfl) . (2.15)

In addition, we may define a noise source combining both electron and ion contributions

s (Jd3v dt (S - S) .

Inserting Eq.(2.5) in Eq.(2.15) and introducing sk (p), the frequency and Fourier spectrum

of the noise source s, and then combining with Eqs.(2.13,2.15), we find

4"O (p) (kI) kk (p) = -47resk (p) . (2.16)



For a known noise source s (one whose spectrum in Fourier and frequency domain is

known), we see from Eq.(2.16) that the axisymmetric electrostatic potential k (p), which

drives the zonal flow, is inversely proportional to the polarizability of the plasma, e (p).

Moreover, we assume an initial charge eSnk (t = 0) is established by the nonlinear noise

source, during a time larger than the gyroperiod, but much smaller than a bounce time.

The nonlinear source is assumed to be of the form

d3v (Sek - Sik) = -5nk (0) 5 (t).

It is convenient to relate eSnk (t = 0) to the initial electrostatic potential qk (t = 0) by

employing the following relation,

4re65nk (0) = ei (k1) Ok (t = 0), (2.17)

with the classical polarization defined as

w = 2  (2.18)

where wp defines the ion plasma frequency, and wd = eBo/mic, is the ion gyrofrequency

at the magnetic axis. The preceding source gives the following noise spectrum,

( ki ~k (t = 0)
Sk (P) = ,c1 (2.19)47rep

As a result, the axisymmetric electrostatic potential Ok (p) calculated from Eq.(2.16) is

given by

= kd (2.20)
k (t = 0) pe(' (p)

The polarization, E0 (p), usually contains two parts:

x"(p) = E + Ekcnc (p). (2.21)



The classical part -P, is due to the gyromotion of particles, while the neoclassical part

comes from the particle's drift departure from flux surface. They are decoupled in a

tokamak for large wavelength perturbations. Inverting the transform, we find that

kk (t) = 'k (t = 0) Kk (t), (2.22)

where the response kernel for an initial charge perturbation, Kk (t), is defined as

Kk(t)= fP , ) (2.23)

with the path of the p integration from -ooi to +ooi, and to the right of all the singular-

ities of the integrand. From the preceding equation, the long time asymptotic behavior

of zonal flows depends on the zero frequency polarization response, i.e.,

0k (t = o) _ _ _=( (2.24)qk (t = 0) -Po + E.- (0)

R-H found that in the collisionless case, the polarization doesn't depend on frequency

p [44]. Therefore this collisionless polarization determines the residual zonal flow level.

In R-H's paper, the dielectric susceptibility k (p) is used instead of the polarization

constant P, (p). They differ from each other by a constant,

k (p) 2 pr, (p). (2.25)

where p1 = x/'VT/mi/wd, is the gyroradius at the magnetic axis.

From the preceding expression, we conclude that for a fixed source, the smaller the

polarization ek I' (p), the larger the axisymmetric electrostatic potential Ok (p), and there-

fore, the larger the zonal flow which acts to reduce the turbulence level.

The polarization can also be derived by introducing a polarization current. According



to Maxwell's equation
4_ 4r 1 BE

Vx B = 4r + JP +a (2.26)
C C c t

where the current J refers to all the other currents except the linear polarization current

Jpol and the vacuum displacement current aE/lt. We can define the polarization through

the linear polarization current JP"",

•ePl = 47rJPOi, (2.27)

or in the Fourier space

-ikel'00k -= 4rJ" (t). (2.28)

The polarization current JP itself should satisfy the continuity equation on a flux surface,

j (pk o(t)) + (iki -J (t) = 0. (2.29)

Combining the preceding two equations, we find

eh(ko) wk v- 4fo rr p in , (2.30)

consistent with the previous definition for ep1 in Eq.(2.12).



Chapter 3

Neoclassical Polarization

The previous chapter has demonstrated that the magnitude of zonal flow is inversely

proportional to the neoclassical polarization for a given source. This chapter will demon-

strate the calculation of neoclassical polarization and evaluate it for a circular tokamak

in the collisionless limit[27]. We also calculate the classical polarization and compare it

to the neoclassical polarization. Finally, we will discuss some features of the zonal flow.

3.1 Neoclassical Polarization

For a known axisymmetric potential source, the linear portion of the density fluctuations

can be calculated by solving the linearized drift kinetic equation for ions ( Zi = 1 ) in

E = v2/2 and p, = v2/2B variables:

---• + (v,,b + vs) - V fL - C fL } = -T Fo (v,,b + VB) - V. (3.1)

The linearized or perturbed distribution ff is driven by the perturbed axisymmetric

potential 0. The parallel drift v,,b and magnetic drift vd, defined in Eq.(2.2), must be

retained for this analysis. The lowest order distribution Fo is assumed to be a local



Maxwellian,

Fo = no ) exp . (3.2)
27 r Ti 2Ti "

In a tokamak, the potential fluctuations vary rapidly across the magnetic field, but

vary smoothly along the magnetic field. This existence of disparate length scales facilitate

the use of eikonal analysis. For neoclassical polarization calculations we may assume

k(r, t) = EpkeiS
k

where 0k is taken to be independent of the position along a field line. The eikonal S is

assumed to be a function of flux surface, S = S (0). The perpendicular wave vector k±

is then defined by

k± = VS = S' (¢) V . (3.3)

The perturbed distribution f1L takes a similar form

fP (r, t) = fkeiS
k

but fk is allowed to vary along a field line. Therefore, in Fourier space, the drift kinetic

equation in Eq.(3.1) becomes

afk e+ (vb V + iwd) f - Cii fk} = Fo (v,,b V + iwD) OI, (3.4)

where the magnetic drift frequency wd is defined as,

Wd = k * VB.

The magnetic drift from Eq.(2.2) gives VB = vb. V ). Inserting the perpendic-

ular wave vector k1 of Eq.(3.3) in the preceding equation, the magnetic drift frequency



Wd can be conveniently written as

Wd = v,b VQ, (3.5)

with Q defined as
IS'v.,

Q = S (3.6)

and Q , kipp ., p,/L±, where p, = piq/e is the poloidal gyroradius, and L1 is the

perpendicular scale length. For zonal flows, the perpendicular scale length is generally

much larger than the poloidal gyroradius. So Q < 1 is a reasonable assumption for the

ions. For electrons, Q -+ 0 is assumed.

Based on the preceding discussion, Eq.(3.4) can be further simplified to

+ (v,,b V + iv,,b VQ) fk - Cii fk = Foivb VQ. (3.7)

To solve this equation, we may define

fk - -TekFO + HkeiQ. (3.8)

Then, the new distribution to be determined, Hk, satisfies the following equation,

+ v,,b VHk - eiQ ii {Hke- 'iQ = e -TiF a (3.9)

We may solve the preceding equation by a perturbation method for small Q. For

Q < 1, we may expand Hk



where HIj+1)  Hk )O(Q). The leading order kinetic equation in this expansion becomes

& + %P b - VHk) iH { } FoT . (3.10)

By inspection, we find that the leading order solution is simply,

Hk(o) = Fo0k, (3.11)

since b VHk( ) = Cii { H (O) = 0. The next order kinetic equation in the preceding

expansion gives

S+ v,b VHk1) - CiiHkl) = iQ Fo , (3.12)

since Ci {Hk)Q = 0 as well. In addition, the second order kinetic equation in the

preceding expansion becomes

+v,,b VH 2 ) -Cii H2) } -iQCii { H() I +CiI iQH(') } Q2 eFaFo (3.13)

In terms of the H( ), the perturbed density function fk to the requisite accuracy can

be written as,

fk = e-iQ Hk - eiQ Fobk)
Ti

= e- Fook (1 - e kQ) + + Hk2)

= Fok kH) 0ok 1lQ2 Hk(2)  (3.14)T ( FokiQ + H)) (1 - iQ) + 2 + ) (3.14)

Fortunately, it is not necessary to solve Eq.(3.12) and (3.13) for Hk1 ) and H(2) . Instead, to

calculate the polarization constant, it is convenient to make a detour and first calculate

the time change of flux-surface averaged polarization density,(nV) = (f d3vfk), to



obtain

a(ýnP) = Jd3 fk Jd3 Vfk (3.15)

= v  - iieQFo Ok 1) (1 2Fo0 + 2)]

Ti Ot at 2Tj Ot Ot

Inserting Eqs.(3.12) and (3.13) for - and - in the preceding equation and

utilizing the properties of linear ion-ion collisional operator Cii, we find

nz =l v -FiQ + (_iq) .
Thus, we obtain

(n) = - Jd 3v (iQh + oQ2) (3.16)

where we let hk =-H1). This expression for the polarization density is accurate to second

order in Q2 , yet we need only solve the first order equation, Eq.(3.12), for the first order

distribution Hl1) = hk:

Ohk e
+ v,,b. Vhk - Ciihk = iQ Fo (3.17)

At this stage, a further simplification can be made to the polarization density in

Eq.(3.16) for a large aspect ratio circular tokamak model. Define the pitch angle variable

A = vIBo/v 2 B, with Bo the on axis value of magnetic field and Bo/B = RIRo =

1 + e cos 0, then the velocity volume element d3v can be written as

4r = BEdEdA

Bo I(3.18)

Inserting the definition of Q in Eq.(3.6), and carrying out the energy E integration, we



find a form convenient for our purposes:

Bi 2 3 d2h(nkk 2 no kIpiL dA S've'Fo hk) - dh2  ) (3.19)

where I = v,,i /v, is the dimensionless parallel speed, h =- = 1 + ecos0 for a large

aspect ratio circular tokamak, and the energy average is defined as

A fo dEE3/2e-mE/TA
E foo dEE3/2e-mE/T (3.20)

The preceding equation can be used in Eq.(2.14) to obtain the neoclassical polarization

constant in the form,

S(P) 2 - i oS've o 2 hkr ' + 2'J 2 ) (3.21)
pk",nc (P) 2. W -2 (icIS'veqkFo 2r E 2r

where e = r/Ro is the inverse aspect ratio for a tokamak. This form of the expression

for e, c (p) is convenient to display the A space structure of total perturbed distribution

and determine the contributions from trapped particles and passing particles separately,

even though the second term in the preceding equation can easily be integrated by using

/d3vu2F noTi

to obtain the neoclassical polarization constant in the form,

2 q 320oT d4h.S() = . -2 dA ~ ' hk + 1 . (3.22)kfc W. 6  2iaIS'vekFo 2 E

The remaining task is to solve the kinetic equation, Eq.(3.17), for the distribution hk.

Compared to the original drift kinetic equation Eq.(3.1), Eq.(3.17) is greatly simpli-

fied, but it is still difficult to solve directly. However, we can solve it in some interesting

limits. In particular, when the drive frequency of zonal flows is much smaller than the ion

bounce frequency, w < Wb, we may perform transit average to annihilate the streaming



term in Eq.(3.17).

3.2 Transit Average Kinetic Equation

Following H-R's approach [27], we solve Eq. (3.17) perturbatively by expanding in w/Wb <

1, by writing

h- = h(l + h (+ 2)

Then, the leading order equation reads

v,,b Vh(1) = 0, (3.23)

which gives that h' ) is independent of poloidal angle 0, i.e.,

h = hl ) (V), A, E) (3.24)

The next order equation becomes,

Oh(akt
Ot + v,,b - 7h2) - he= i 0 kFo-Chl)-iQyiFo a (3.25)

A transit average of the preceding equation gives

CA { I ) i= • Fo ,

where the transit average is defined as,

S=dTA (3.27)
f dr

with dT = dO/ (v,,b - VO). For trapped particles, this average is over a full bounce; while

for passing particles, it is over one complete poloidal circuit. Specifically, for a large aspect

(3.26)



ratio circular cross section tokamak, a convenient approximation is dTr qRodO/v,,, where

q is the safety factor. In this case the transit average is thus written as

d A= d (3.28)

The preceding transit averaged equation (3.26) is what Hinton and Rosenbluth(H-R)

solve to obtain their collisional polarization [27].

3.3 Collisionless Polarization

It is difficult to find a general analytic solution to the transit average kinetic equation

Eq.(3.26) in the presence of collisions. However, following R-H we can solve it in the

collisionless limit, where it becomes

AhM )  . e 1k
-k = •-Fo (3.29)at Ti dt

This equation is easily integrated to obtain

h =ziQ - Fo, (3.30)k Ti

giving the perturbed distribution

fk = i (Q - Q) - Fo + 0 (Q2). (3.31)

Note that hl) vanishes for trapped particles, since Q = 0 for trapped particles. Inserting

this solution in Eq.(3.21), we obtain the expression for the collisionless polarization,

S(q23 = dA I- + 1
epo ( p) q d 2-r 1 + dOFI (3.32)"C72



where a = 1 for passing particles and a = 0 for trapped particles. We may rewrite the

preceding equation as

ek c(p) = (S2 - P1), (3.33)

where

PI = dATi(A) ,with Tl(A)- , (3.34)

0

S2 = jdAT2 (A) with T, (A) = ! dO•. (3.35)

0

The detailed calculations that follow are performed for a circular tokamak in the large

aspect ratio limit, e < 1, since in this limit, analytic solutions are possible. In the

preceding equations, Ac is the pitch angle of the trapped-passing boundary. For a circular

tokamak, Ac = 1 - e. We denote the maximum value of pitch angle by Am,; for a circular

tokamak, Am = 1 + e.

The function Ti (A) and T2 (A) can be evaluated explicitly using elliptic integrals in

the large aspect ratio limit. For passing particles, A < A,, we find

x 1-A+e
T (A) = 2 (- ) (3.36)

2 2e
T• (A) = -21/-A +6E 2- . (3.37)

For trapped particles, A, < A _< Am, we find

2 1+e-A\1+e-A \2e
T (A) = 212 (E( l + 6 - A)2 +(l+ A - 1)- K2 .2e- A)) (3.38)

With these expressios, t 2e 2integrals of P and in Eqs.(3.34) and (3.35) can be eval-

With these expressions, the integrals of P, and S2 in Eqs.(3.34) and (3.35) can be eval-



the Collisionless Distribution in X Space

0.

0 0.2 0.4 0.6 0.8 1 1.2

Figure 3-1: The collisionless distribution in A space for e = 0.2.

uated to O (e3/2) accuracy to find:

P1  = 1 - 1.635e3/2, (3.39)

S4 1 - (26)3/2, (3.40)
37

4 (26)3/2, (3.41)
3w

and S2 = S2 + S2. From these calculations, we see that the passing particle's polariza-

tion cancels the trapped particle's polarization to the leading order, O (1), and a small

residue, of order O (63/2), remains. Hence, the final value for the collisionless neoclassical

polarization is

q2 (p) = 1.w6 i (3.42)

Adding in the classical polarization discussed next, the total polarization in the collision-



less limit for kIp, < 15, is

(p) = 1 +1.6 . (3.43)

This result is the well known Rosenbluth-Hinton collisionless polarization.

3.4 Classical Polarization

The classical polarization can be obtained by considering a screw pinch model, where no

neoclassical effects like drift departures from flux surfaces are involved. To calculate the

classical polarization, we need to consider the gyrokinetic equation [7] [21], instead of the

drift kinetic equation employed earlier. As a result, we consider

Agk + (v,,b- V + iWD) gk = FoJo0 , (3.44)

where gk is the Fourier transform of the nonadiabatic part of the perturbed distribution

and the total distribution is given by

f = Fo - + g. (3.45)

The function Jo = Jo (A- ) , is the zeroth order Bessel function, and comes from gyroav-

eraging the potential 0 holding the guiding center fixed instead of the particle location.

For simplicity, we also assume no collisions in this calculation.

For a screw pinch model, the magnetic field is helical and given by

B = Bo•"+ Be (r)O. (3.46)



Therefore, the magnetic drift is

1 p BB B 2 V 2
v =: -b xF 2 0 2 -2 0 2 11 (3.47)

Q Bo + B- B + B0 r

where the factor Bo = const. Since this drift has no component in the radial direction,

the drift frequency Wd = 0. If we assume no 0 dependence for the potential qk, as we did

in the neoclassical case, the distribution gk will be independent of 0 due to axisymmetry,

giving v,,b Vgk = 0. Then, the gyrokinetic equation becomes simply

9 e 09k
jk - Fo Jo (3.48)at Ti OT

and has the solution

ek Fo Jo. (3.49)

Using this result along with Eqs.(3.45) and (2.14), we find

4r 2 (P) = T 1- d \o j (3.50)
(kij)T \JVO /Jno

The integral can be carried out to obtain

e (ol w k 1 1 - \Fo (k P-I) )' (3.51)

where the function To (b) - lo (b) e-b, with Io a modified Bessel function of the first kind.

When k±p, <« 1, To (k pi) = 1 - kIpLt +0 kI a , giving

2

'Y (p) = P (3.52)4 )ci

This classical polarization is purely due to the gyromotion of the particles. When the

gyromotion and bounce motion are on disparate time scales, such as in a tokamak, the

classical polarization and neoclassical polarization are decoupled from each other and



become additive in the long wavelength limit. Usually neoclassical polarization is much

larger than classical polarization, as we have shown, due to neoclassical enhancement

3.5 Poloidal and Toroidal Rotation

It is widely accepted that the zonal flow only includes poloidal rotation of plasmas. In

truth the zonal flow also includes a toroidal rotation as demonstrated by the following

calculation.

The complete solution to the linearized kinetic equation includes both gyrophase in-

dependent f and gyrophase dependent f contributions: f = f + f. The gyrophase

independent part f produces a parallel flow, which can be calculated to accuracy of

O (Q2) in the collisionless limit using f = Fo + ffL. Here f1L is the linearized distribution,

satisfying Eq.(3.1), so includes neoclassical and polarization effects. For the demonstra-

tion here, only the polarization part is of interest. It has been calculated and is given by

Eq.(3.14) in Fourier space to O (Q2) accuracy. Therefore, the parallel flow is

S= d3vv,,f = fd3vvj,, L. (3.53)
U no no

The Q2 terms in Eq.(3.14) contribute nothing to the preceding integral due to the odd

parity of the integrand. Recalling Eqs.(3.30) and (3.8), and Hk h(), to 0 (Q2) accuracy,

we only need to insert fL = A ~ i  - Q) Fo to obtain
k

Ull = n3i 0 du3 vFov (3.54)

Carrying out the integration for the second term in the preceding equation, we find

ul cI
0 B= BF () - ' (3.55)



with the flux function F (b) defined as

F() el )= ,d vFo VaII. (3.56)
S( noTa B 0¢

The perpendicular flow is given by the gyrophase dependent part f, which is simply

the diamagnetic term
- 1
f = v x b. VIFo, (3.57)

with gradient taken holding the total energy e - v2/2 + € fixed. Therefore, taking the

gradient holding E fixed gives

- 1 ef =-vxb VEFo + F V (3.58)

The first term in the preceding equation gives the diamagnetic flow, which combines with

the parallel neoclassical flow to give a divergence free flow. This piece is ignored as small

when evaluating the zonal flow. The second term in the preceding equation gives the

poloidal zonal flow that is of interest, namely

U1 --

--e!b x V, J d3vvFFo, (3.59)noTiQ

which not surprisingly simply turns out to be

c
u± = -bxVq. (3.60)

Combining the parallel flow in Eq.(3.55) and perpendicular flow from the preceding equa-

tion, we find the divergence free flow

u = -c R( + BF (s) , (3.61)
4C,0



with C = RVC, the unit vector in the toroidal direction. From the preceding equation,

we see that the zonal flow not only contains poloidal rotation, but also toroidal rotation.

In the collisionless limit, the function F (0) can be evaluated for a circular tokamak in

the same way we calculate the collisionless polarization in the previous section to find

F ( 01 ) - B (1- 1.6/), (3.62)

where Bo = I/Ro. Therefore, the total flow becomes

u = -cR-(c + (1 - 1.6e3/2)B, (3.63)
u=-R I Bo ¢o

which gives the toroidal velocity

uc = -Roc (2 cos+ + .6 1.63/2) (3.64)

and

up, = Roc8'6 (1 - 1.663/2). (3.65)

Hence, toroidal rotation and poloidal rotation both exist for zonal flows and are of similar

magnitude, 0 (ecRo ~), with the toroidal flow larger on the outboard side than on the

inboard side.



Chapter 4

Several Collisionless Issues

In the preceding chapter, we have discussed the collisionless neoclassical polarization to

some detail. But there are still several interesting issues worth exploring in the colli-

sionless limit, e.g., when Q in Eq.(3.6) is large enough that the Q < 1 expansion is no

longer accurate; and when the shape of plasma is not circular so that the elongation

and triangularity effects need to be considered. In this chapter we will explore these

interesting issues to see how the neoclassical polarization and residual zonal flow level

are influenced.

4.1 Large Q Case

When we calculate the collisionless neoclassical polarization, we assume that the Q factor

in Eq.(3.6) is much smaller than one and expand the distribution fk for Q < 1. Actually,

in the collisionless limit, there exists a general solution to the distribution fk[44], valid

for all orders of Q.

To start the calculation we return to Eq.(3.9). The transit average is performed to

annihilate the streaming term to obtain

e(4.1)H, FoeiQ. (4.1)



With this expression, the perturbed distribution fk in Eq.(3.8) becomes

f= -1 iQ . (4.2)

Inserting this expression in Eq.(2.14) we obtain the neoclassical polarization

1= S1 - d3vFoe-iQQ , (4.3)

where Q kj±pp ,, kIpiq/E. In the preceding chapter, we assume Q < 1 and calculate

the polarization accurate to 0 (Q2). The assumption Q < 1 is usually adequate for the

core plasma. However, in the edge plasma or for large kI, the factor Q becomes of order

unity or even larger so the small Q assumption is no longer valid. Therefore, polarization

in the range of k±p, ~ 1, but kipi <« 1 is of practical interest.

4.1.1 Analytical Calculation

It is not possible to integrate Eq.(4.3) analytically for arbitrary Q. Therefore, we first

study the case where Q2 < 1 by extending the expansion to order Q4 . In this case, we

may expand Eq.(4.3) to obtain an approximate analytical result for a large aspect ratio

circular tokamak:

1 K d3vFoe-QdiQ) = 1 K d3 vFOT• 7)4
no no

+oo

-213/2 dye-'/ dA eQ- eQ (4.4)
0
+oo

12/ Jdyeyvv dAf d(1+Q -2Q2

1 1 -I 2 1
- 4+ -2 -- ), (4.5)12 4 3



where y = mjE/Ti and Q = IS'(h/Qo, with h = 1 + ecos9. Inserting the preceding

equation in Eq.(4.3), we obtain

+oo

w Si/w' 1 d dO +-2 1 -1 1-2 1--ddnc -dye -dA - Q + -Q4 +  --Q Q
0

(4.6)
We can evaluate the preceding expression term by term for e < 1, accurate to O ( 4).

The full details of the calculation are given in Appendix B.

Recalling that Q = 0 for the trapped particles, there are two terms that only contains

contributions from the passing particles, Q2 and -!Q Q3. They are computed first to

obtain

1-e, d O2 (1 - 1.63/ 2 + e2 - 0.36e-/2

-0.03e 7/2 + E )kVp, (4.7)

11 dA 167r mE 2 (1- - 0.23e 5/ 2

55 4 p4+3.9e - 1e ) kp4. (4.8)

where the details are left to Appendix B and k±p, is defined as

kjp, = T[i (4.9)
_p, = no mi,

The remaining three terms contain contributions from both trapped and passing particles.

However, two of them can be computed exactly,

3uu 0 =" no-•, (4.10)

J d3 vv Fo = 3no0 ( (4.11)



Using these results, we find

dA Q - 3 T j1 + 2) k2p 2, (4.12)SJ / 2 )( I
dA d.-. 1 6= 1r52 1+562+1+ e kIp,. (4.13)

The last term involves the most effort to compute accurately. The full details are

provided in Appendix B and lead to the result

dA f -2 2- 6 + e2 + 1.46 5/ 2 - 0.4e67/ + e4 kIp. (4.14)

Combining with the preceding results, the polarization in Eq.(4.6) is found to be

2w 2 1 1
eqL [(1.663/2 + 2 + 0.3665/2 + 0.037/2 -, )

-RW .6 + 2 10

5 611(
-kI2p2( 56 + 1.365/2 - 4.267/2 + 64)]. (4.15)J-t3 96

This analytical expression allows k pp to be closer to one, but still requires kip4 to be

much smaller than one. It also provides a benchmark to check the Q , 1 numerical

calculation of 5eko considered next.

4.1.2 Numerical Calculation

A numerical calculation is necessary when ki4p is no longer small. First, we notice

f diQ- = ( -j1  (f cosQ)2 dO sin 2 . (4.16)

However, this form is not very convenient for numerical integration because the function

cos Q contains a unity factor that cancels in Eq.(4.3), after which we expect to observe

very small variations, of O (e3/2). Hence, it is useful to transform the preceding equation



to the following form,

e-eiQ= + K (Q),
with the function K (Q) defined as

with the function K (Q) defined as

K(Q)
dO= 2 1 (cos Q -

[ dO

l)+

(cosQ - 1)]

As a result, the polarization becomes

= p2 2 3 2

+00ooJ dye" VJdAK (Q).

Notice that for Q << 1 we may expand to obtain

cos Q - 1

cos Q - 12

sin

1 1= + Q4+(Q 6)2 24

4 0(Q 6) ,
= _ -QQ3 +(Q 6 ).

3

Inserting these expressions in Eq.(4.18), we find

2cos Q - 1 + cos Q - 12 + sin Q2

dO -2
-Q

-+1- Q2 Q412
1-2
- 2

4

which recovers the result in Eq.(4.5). Therefore, the analytical solution from these small

(4.17)

sinQ)2. (4.18)

(4.19)

(4.20)

(4.21)

(4.22)

K(Q)

=1d 3 /3 (4.23)

(f dO



Q expansions can be utilized to benchmark the numerical calculation, specifically

dA d2cosQ - 1

f dO 2
dA -cos Q - 1

dA yisinQ

8r(1 3 62) 2miE3 2 Tm

4r 12

4= -(1 + e2 +1.46e5/25 3
-0.4 7/2 + e4) (kipP) 4 (E) 2

= (-1.6e3/2 -1 2 - 0.3665/ 2 - 0.037/2

1 2 E 16ir
+ 6E4) (kpP) 2 + ( 66 2 + 4.4465/2

-14.07e7/ 2 + 611r 4) (k-pp) 4 • 2

60 T

Next we carry out the integration in Eq.(4.19), noting that the sin Q integration in

Eq.(4.18) vanishes for trapped particles due to the odd parity of the integrand. The

transit average of an arbitrary function F (0, A, y) can be evaluated using

dO F2(0,,,y)= 2fdO °Vl- F (0,A, y),'for A < 1 - e

2 fobd d 1EcosAeF (0, A, y) , for 1 - < A < 1 +
(4.27)

with Ob = arccos ((A - 1) /e) the turning point angle. The function F (0, A) is either 1,

sin Q or cos Q - 1, for the different integrals in Eq.(4.18). The 0 and A integrals are

carried out by adaptive Lobatto quadrature in Matlab, accurate to 10- . For the energy

integral, a Gaussian quadrature is applied with 20 Gauss points in the integration range

of [0, 12]. The energy integral is accurate until perpendicular wave number k±Ip, is up to

ten. When the number kIp, gets even larger, an oscillating feature appears in the low

energy part and more Gauss points are required for accurate numerical integration.

(4.24)

(4.25)

(4.26)
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Figure 4-2: The neoclassical polarization e•,c in unit of as a function of the
inverse aspect ratio e for various perpendicular wavenumbers kj pp. The solid curves
represent the analytical results from Eq.(4.15), and the discrete shapes represent the
numerical results. The polarization increases with kjpp.
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Figure 4-3: A contour plot of the residual factor -, for q = 1.4. For small inverse aspect
ratio e, the factor y changes slowly with the wavelength.
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Figure 4-4: A contour plot of the logarithm of the effective residual factor ,fif, which
include the source's strength. The factor Yeff decreases with k±p, rapidly.

Recall that the zonal flow residual factor was given by Eq.(2.24) to be

k (OO) _ 1k(0) PL(0 (4.28)k (0) E p (0)

For the case considered here, kLp, 1 and klp? 2 1, the residual factor becomes

1

-1 + e~ (0) w/w2 ' (4.29)

where e~ k, • (0) is defined by Eq.(4.3). We may plot the residual factor -y as a function of

kpp and inverse aspect ratio e for a given safety factor q = 1.4, as show in Fig.(4-3).

When e < 1, the residual factor y doesn't change much with the perpendicular wavenum-

ber kipp. Even when e N 0.3, 7 only changes by a factor of three between k±p, ,v 0.1 and

kp, ^,, 2. However, according to Eq.(2.17), 0 (0) - 6nk (0) /k . Therefore, if the initial

density fluctuation 6nk (0) remains fixed, the initial zonal flow is much larger at long



wavelengths than short wavelengths [31]. Hence, it is convenient to define an effective

residual factor Yeff to include this source strength effect by introducing

Y ef k e (oc) no (4.30)ef =- Ti6nk (0)

Using Eqs.(2.24) and (4.29), the effective residual factor then can be rewritten as

SepIf 1 (4.31)
R(1 +efOl (0)W2.1W2

The Fig.(4-4) shows a contour plot of Yeff for various e and k±pp. When the source

strength is included, the residual zonal flow increases rapidly with the wavelength. Hence,

in the edge plasma where k±p, ,, 1, the residual zonal flow level is much smaller than

that in the core plasma where k±p, <« 1. This observation indicates that the turbulence

is much more virulent in the edge due to lack of zonal flow regulation for a fixed source.

We may extend our discussion to the limit where the wavelength is the same size

as ion gyroradius. In this limit, the total polarization can no longer be decoupled to

neoclassical part and classical part and only numerical solution is available.

In the collisionless case, the gyrokinetic equation gives the following total polarization

[44]
() = 1--- d vFoJoe-i J7 q . (4.32)( k no=(

Comparing this result to the collisionless neoclassical polarization in Eq.(4.3), we see

that the preceding equation includes finite gyroradius effects through Jo. Therefore, the

arbitrary kI residual factor is given by

a 1 - -L( d3vFoo2)
'k = no . (4.33)

e (0) 1 - f d3vFoJoe-iQJoeiQ



Use of a Schwarz inequality gives

Joe-iQ Joe'iQ < J. (4.34)

Therefore,

Sd3vFoJoe-'QJ7 -Q 06i) d3vFoJ . (4.35)

We also have J2 < 1. Hence, the residual factor

< 1. (4.36)

When the polarization Q is large, the residual zonal flow level is low and y is small.

When the residual factor -y reaches unity, there is no effect due to polarization. Notice

that 1 (f d3vFoJ2) = (Fo), which decreases rapidly when kjLpi > 1. Therefore, we

expect to see y approaching unity smoothly without the oscillations seen in Fig. 7. of

Ref. [31]. In Ref.[311, the extra oscillations are due to the electron polarization effect

which is ignored here.

It is straight forward to implement the numerical calculation for eko' (p) using Eq.(4.32),

or ^ from Eq.(4.33). We need only change the factor K (Q) in Eq.(4.18) to the following:

K (Q) 2 1fTJo (cos Q 1) +(

S Jo(cos Q - 1)2 + Jo sin 2 (4.37)

We may then plot the residual factor 7 as a function of the perpendicular wave number

kipi, as shown in Fig.(4-5). When k±pi < 0.1, the small residual flow is determined by

the R-H polarization, which has no dependence on kIpi. When 0.1 < k±p1 < 1, there

is transitional region where the residual zonal flow increases with k±pi. When k±pi > 1

the damping effect is effectively zero for the zonal flow.
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Figure 4-5: The residual zonal flow potential for a unit initial potential varies with the
perpendicular wavelength k±pi.
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Figure 4-6: The residual zonal flow potential for a unit initial potential varies with the
perpendicular wavelength kjpi for e = 0.2 and 0.3, which is sensitive to q/e.



The transitional region for the residual is sensitive to q/e, as shown in Fig.(4-6).

When k±pi <« 1 the residual zonal flow level remains at the R-H value, that is inversely

proportional to the neoclassical polarization. Recall that the neoclassical polarization

e•,'- oc Fc/q 2 in the collisionless long wavelength limit. Therefore, the plateau residual

zonal flow level as k±pi -- 0 is proportional to q2/xV and becomes larger at smaller

inverse aspect ratio e, as shown in Fig.(4-6), or at larger q. When k±pi increases, the

residual zonal flow enters the transitional region and increases with k±pi. This increase

is due to the finite Q effect, e.g., the Q4 terms in Eq.(4.6) can no longer be ignored.

Note that Q ~, k±piq/e so that for a constant kipi, the smaller the e/q, the larger the

Q factor becomes. As a result, we expect a smaller e/q residual zonal flow will enter

the transitional region earlier than a larger e/q one. This is confirmed by Fig.(4-6).

As Q increases, eventually k±pi > 1 effects enter to create a second plateau as shown

in Fig.(4-5) for k±p» > 1. The width of this transitional region A {k±p-} between the

two plateaus can be estimated by letting A {k±pi} q/e ~ const. Therefore, the width

A {ki±p} is proportional to e/q, which indicates that smaller e/q residual zonal flow has a

narrower transitional region. This behavior is why in the transitional regime the e = 0.2

residual zonal flow increases faster than the e = 0.3 residual zonal flow, as shown in

Fig.(4-6).

4.2 Plasma Shape Effect

Elongation and triangularity are used to help improve tokamak performance. In this

section, we explore the effect of the plasma shape in regulating zonal flow. It is not pos-

sible to find an analytically tractable MHD equilibrium which contains all the important

shape ingredients, such as elongation and triangularity. However, for constant dp/dV)

and Idl/db, there exists an MHD equilibrium that satisfies the Grad-Shafranov equa-

tion. Following Helander and Sigmar [25], the flux surfaces in this case may be written
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Figure 4-7: Flux surface of the solution (4.38) to the Grad-Shafranov equation for o0 = 1

in the form

V(RZ) [(R2 _ 2 2S(R, Z) T(R2 ()+ ( - R

-TR (R2 (R2 -_ 2 ], (4.38)- R21 n -(R8 - - 2R8

where R,, E, and T are free parameters which determine the plasma shape, such as the X

point location of the separatrix, elongation, and triangularity. The constant '0 controls

the magnitude of the magnetic flux V, the constant Ro represent the radial location of

magnetic axis where V = 0, and R, is the radial X point location. A typical flux surface

is shown in Fig.(4-7).

Near the magnetic axis the magnetic flux becomes an approximate ellipse satisfying

S(x, z) = 4 (x + 6) 2 + 22 1 - (4.39)

o0 4 E2 R



where the Shafranov shift A is defined as

A= 1+3
x2  z2

2 4E21 (4.40)

and we have corrected the sign of r and a factor of 2 in Ref. [25]. We introduce the new

dimensionless variables x and z defined as

R = Ro(1+x), (4.41)

(4.42)Z = Roz.

We may change variables from (x, z) to (e, 0) using

x = -A+ecos0, (4.43)

(4.44)z = e sin 0,

where e is the inverse aspect ratio, 0 is the poloidal angle, and the constant i is the

elongation of this ellipse,
2E

1 - R/Re

Then in the new (e, 0) coordinates the magnetic flux 0 becomes

V = 40oe2,

(4.45)

(4.46)

making the inverse aspect ratio a flux label. Ignoring higher order terms of 0 (e3 ) and

noting 6 9 O (E2), we find the Shafranov shift to be

T K2 2 2• 2
+ -cos 2  2-E2 sin 2 9.

3/ 2 4E2 (4.47)



Figure 4-8: The triangularity 6 of the plasma describes the deviation between the plasma
center and the radial location of the maximum Z point.

This form suggests

S= Eco - 1 + os2 - 62 2 sin2 , (4.48)
3 2 4E 2

z = ne sin0. (4.49)

The flux shape defined by the preceding equations contains both elongation and trian-

gularity effects. We may define the triangularity 6 in the conventional manner [38], as

noted in Fig.(4-8), to find

S [2 1 + -] . (4.50)
= 4E2  2(+3)

Therefore, the triangularity is related to is, 7 and E. Notice, however, that for a given

elongation n and triangularity 6, the position of the separatrix Pi is determined by E.

To simplify the notation, it is convenient to use the following two variables instead of



1 (1
K2

K 2 2
+ 7 4E1. (4.51)

(4.52)

Then the magnetic flux can be written in the following way:

R = Ro (1 + e cos - AE.2 cos2

Z = RoKesin0,

- 362 sin 2)

(4.53)

where e is a flux function, as shown by Eq.(4.46).

The poloidal magnetic field is computed using the following relationship,

RB, = IV4'I. (4.54)

Combining with Eq.(4.46) we obtain

80o0 IVe6IBP R (4.55)

The gradient IVel can be calculated from Eq.(4.53),

Ro (1 - 2cos 0
(4.56)

where the numerator 77 is defined as

? = KV2cos2 0 + sin2 9 (4.57)

7 and E,

-_ ) 2.
+ 46 sin2 0 cos 0 ( + 4e2 sin2B 0 cos2 0 (B



With this expression for IVeI, we find

2Ae cos ) (1 + e cos 0 - A62 cos 2 0 - B 2 sin2

The safety factor q is defined by

dlp
R2Bp 'q (p) - 2

where the poloidal field line length is

dl, = VdR 2 + dZ 2.

Using Eq.(4.53) we find

dl, = rlRoedO. (4.61)

Inserting dlp into the preceding equation, and Bp from Eq.(4.58) into Eq. (4.59), we obtain

xROI
q 81 0q=o

(1 - 2A cos0)
(4.62)

27r (1+ e cos - A6 2 cos 2 - Be2 sin2 )

In the large aspect ratio limit we may first expand e and then integrate to obtain

kRoI
q - 8 1 1+

) e2 O(4) . (4.63)

Then we can write the poloidal field Bp in terms of this safety factor instead of constant

i1 o to obtain

B I K /2 COsZ & + 2 0 (1 + O (()) ,BpRo q

(4.58)

(4.59)

(4.60)

rv R -

1 1 + 3A +2

(4.64)



dlp
Bp

Rq !d0 1 - 2AMcos 0 1 + cs - 2cos- cos2 0 - Be2sin 20

1 1-
+ 3A + B) 2+ (4) . (4.65)

Fortunately, in the polarization calculation we need only evaluate flux surface averages,

Bp
(4.66)

where the factor dlpB, appears in both the numerator and denominator so we may

simply use the replacement

dl,
B, --+ dO (1 - 2Ae cos) 0( 1 +ecos 0 - A2 COS2 _ 62 sin20) (4.67)

To evaluate the polarization and other flux surface averages, we will need an expression

for B, the magnitude of magnetic field,

B = VB +B= 2+ B.
p+s.

Therefore, accurate to the order of 0 (E2), we find the magnetic field to be

B = Bo {1 - e cos + e2 [(A+ 1 + 2-
2q2 cos 0 + (B +

and its inverse to be

= 1 1 + e cos 0
Bo

K2
KcOS2 +2q2 )- e2 +

1(
2q2

where B0 is defined by

and

sin2 0] (4.68)

sin 2 0] (4.69)

I RBT
Bo- =

Ro Ro
(4.70)



Notice that in • = 1 - AB/Bo the magnetic well is altered by an amount (A + 24

becoming deeper due to the elongation x, and shallower due to the triangularity A, as

can be seen from Eq.(4.51). In addition, the trapped passing boundary is given by

AC= 1-e- 2 (+ 2q2. (4.71)

Therefore, we expect that shaping effects will enter at one order higher in the e expansion

than trapping effects. Recalling that the trapped particle contribution to polarization is

of order 0 (e3/2), we expect the shaping effects to be of order 0 (e5/ 2).

The residual zonal flow is determined by both the neoclassical and classical polariza-

tion, as can be seen from Eq.(2.24). In a shaped plasma the classical polarization needs

to be evaluated with more care, but the leading order classical polarization still turns

out to be w2,/w'. To see that this is the case, recall that the classical polarization of

Eq.(3.51), in the large wavelengths limit simplifies to

2 B0 (4.72)

where Bo is defined in Eq.(4.70), and wdc = eBo/mic. The perpendicular wave vector is

now given by

k- = S' yIVi = S'8 0oe IVel, (4.73)

when we use Eq.(4.46). Inserting IVJe from Eq.(4.56) in the preceding equation, we

obtain

ki 2+ 1+ 1 +( 3A + 62 4) + (4.74)
9 1 - 2Ae cos ) 2

Therefore, the flux surface averages in Eq.(4.72) become

e1 BP (1-2 cos)4
(k) IS/ 1+2 1 + 3A+ 6,' diB (4.75)



and

B2>2 0k- B2 S'-)q ) + B 62 Bp (1-2A coe)" (4.76)

with dlp/Bp given by Eq.(4.67). The integrals in the preceding equation can be evaluated

by first expanding the integrand in powers of e to accuracy O (e2), and then integrating

over poloidal angle 0. The results of these integrations are

dlp 72

BP (1 - 2Ae cos0)

dli
Bp

(1+ 2) + {-3A
4

- 2r [1 - 3A + ,)

where the use of an arrow indicates that Eq.(4.67) is employed. Similarly, using Bo/B

in Eq.(4.69), we obtain

- { (1 + 42) +

S I O •, 1

2K 4

q2 [-3 - 3 4
4q2

- 9A + B(3 +

+K2 {-2 + 3q2 [3 + A(3 + 4A) - ]}]}.

With the preceding integrals, we find the classical polarization in Eq.(4.72) to be

2

-~locdd

The geometrical effects A, B, and K, only enter in the O (E2) terms. We also find

4B)) q2

(4.79)

(kI) = I(S' 2 K2)

and

+ + 4B2

+ 4b) - b]K2}}, (4.77)

dlp 72 Bo2

(4.78)

(4.80)

+ ' 1 + 3A
2

Bp _ ' . . 2 B 2

[1 + (62)] , (4.81)

+ [3A (1



which is needed to calculate the neoclassical polarization.

Next we consider shaping effects on the neoclassical polarization. In the large perpen-

dicular wavelength limit, inserting Eq.(4.2) in Eq.(2.12), we have the following expression

for neoclassical polarization,

(ki) e = 2 d3vFo )) (4.82)

Using the expression for Q in Eq.(3.6), we obtain

k)e =w (Is'Bo) mi
Sw noT2

(4.83)dKvFo ( ) B )

where the first term can be evaluated as

(, d3vFo

-mB2"noT2 /Bo\nT .

Just as we have done for the classical polarization, the integral in

can be evaluated in the small e limit using Eq.(4.67) for dlp/B,,

(4.84)

the preceding equation

2 (4.85)

Therefore, the integral in Eq.(4.84) can be written as

(4.86)noTi 27r 1+K•62 1
=miB2 - (3+ B - 1) + e2 ,

m0B2B 2q

where f dlp/Bp is given by Eq.(4.78).

<Jd3vFo ( )>

dl1pB2 {1-+ 27

d 3vFo ( )B2)

3 (3A + iý - 1) + 1 + K21
2 2q2



The evaluation of the second term in Eq.(4.83) is much more involved. Fortunately

we only need to consider the passing particles' contribution. Then

dvF (l2 2m(iB, f

where the trapped-passing boundary Ac is defined in Eq.(4.71), ( = vil /v, and f dlp/B,

is given by Eq.(4.78). The integral jfz can be written as

Sdlp B
B, Bo

dlB JB/iB
BP JBo/B - A';

(4.88)

where we already have expressions for Bo/B and B/Bo in Eqs.(4.69) and (4.68). Using

these expressions, we find

1
Bo/B- A

/1 - A + cos - [(A +) os2 0 + (

and recalling Eq.(4.67) we have

dlv x//
- dO{1 + e (

+4q2) + ) sin2 0]e 2}.
4q2

We may let x = 1 - A, then e < x < 1 for the passing particles. Then 1//Bo/B7- A

may be expanded in powers of e to obtain

1

/B-o/B- A
17

(1
1 ecos 8

-

1 e2

+2 (2 x
A + K c os 2o+2q2)

3 e2
sin2 0) + 862 cOS2 + .... + 0 SCM+1) , (4.91)

where the expansion order M depends on the desired accuracy of the final integral in

dA p B
Bp Bo

(4.87)

+ 1 sin 2o

(4.89)

- 2A) c

1-
+(-2 B

3-+ 2 A1
8

(4.90)



Eq.(4.87). We first assume M = 2 to get an initial result for Eq.(4.87). Then we increase

M to see how the result changes with M, and thereby determine the value of M required

for the requisite accuracy. Inserting Eqs.(4.90) and (4.91) in Eq.(4.88), we find

fdl, BB
Bp Bo0

(4.92)(1)

where a, (1) is a nth degree polynomial for 1/x. We find a0 (1) = 2r,X Xrruw 2/-11

+•r [2(1 + [ 2)+8q2x (-2 + 12A+ 4 q2]

2 [-2 (1 + 2) + (1i+ 12A + 4B)

and for m = 0, 1, 2, 3..., a2m+1 (1) = 0. Therefore,

1

B + M
Bp Bo an )n

n=0

We may then expand the preceding expression to O (eM) to find

1
f p o

M

n=O
(1)_,

(4.94)

(4.95)

where bn (1) is a nth degree polynomial in 1, with bo () = 1/2r, b2m+1 (1) = 0, and

3 1+ + (6A +

321rx 2

-2 - 2K2 +

2B - 1) q2

167rq 2x

(12A + 4 + 1) q2

32irq2

a2 (')X1
37r1
8x2

q2], (4.93)

b2
X(1

(4.96)

1

E--an
-• n--o



Hence, we have

I 1
6+ (AI+ - ) C2

M

n=0

This integral can be carried out easily, and we may then expand the result in e to O (E2),

as shown in Appendix C, to find

25 3/2

48 -
1+ 2+(-2+33+A q2 2,2

6rq2

+ (~8
11

+ A+
32x

1
-B
4w

8 - 5_2\ 5/2
S64rq 2 (4.98)

As we increase the expansion order M in Eq.(4.91), only the coefficient of e3/2 and 65/2

in the preceding equation changes slightly, but they converge very rapidly to the exact

values given by

1
-+ 1 - 0.173e3 /2

37r

1+2 + (-2+3+ ) q

67rq 2 62 + (-0.0383

S0.0383
+0.0797A + 0.0765B +

q2
0.0367K25/2

2 5/2q

Inserting the preceding equation and Eq.(4.78) in Eq.(4.87), we find

dJ v-For v - noT= 2r
- B2 j-d1{

Bp B
- 1.635e 3/ 2

1 1
+( (3 + )- 1)] - (-0.722 + 1.502A2 2

0.722 - 0.69202
+1.443B + .2 )e5/2}

q2

where j dlp/B, is given by Eq.(4.78). Therefore, combining the preceding equation and

dA -1j-B·
rPW

(I n (4.97)

1
dA B

Bp Bot

1
3-4
3w

1
dA

Bp BoZ

(4.99)

I + K2

2q2

(4.100)

%.1

---



Eq.(4.86) we obtain

Kd3vFor ) ( d3vFo )
n-= o 27r [1.635 3/2 + 2  _2 (-0.722

0.722 - 0.69225
+1.502A + 1.443B + 0.722 - 0.69 /2] (4.101)

where f dlp/B, is given by Eq.(4.78). We keep f dlp/Bp in the preceding equation be-

cause it will cancel the corresponding term in Eq.(4.81) when calculating neoclassical

polarization. Using the preceding expression and Eq.(4.81), we can write the neoclassical

polarization in Eq.(4.83) as

W q2 1q
E = e [3.27e3/2 + 2 - (-0.722w2.62 1 + X2

+1.502A + 1.443B + 0.722 - 0.69 )e/2

wqq 1
W q 2  1 [3.27 3/ + 2 - (-0.722
2~ a21 _ K2

0.736K2  1.5026 0.722 - 0.692K2

+ E2 q2 )e5/2], (4.102)
+ 2 q2

where we have usedA= A - ~ 1, B= • 1. If we take i = 1, A = = 0,

then the plasma shape becomes circular and the neoclassical polarization returns to the

previous tokamak result, 1.663/2 + 0.562 + O (65/2). From Eq.(4.102), we can see that the

neoclassical polarization depends on the shaping effects, such as the elongation K and

triangularity 6. However, to leading order 0 (e3/2), only the elongation K is important.

The larger the elongation, the smaller the neoclassical polarization, which for a fixed

source, increases the residual zonal flow and reduces the turbulence. Triangularity only

plays a role in next order, O (e5/ 2), where it tries to cancel some of the beneficial effect

of the elongation, but this negative effect is e smaller than the leading elongation effect.

Using Eq.(4.80) and (4.102) we find with the shaping retained the residual zonal flow of
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Figure 4-9: The residual zonal flow level for q = 1.4, e = 0.2, E = 1.0, and 6 = E/4. The
dashed curve only uses the first two terms, namely 3.27 + \/§, in Eq.(4.104), while the
solid curve uses the whole expression. There is a significant increase of the zonal flow for
large elongation.

Eq.(4.29) becomes
1

S= 1 (4.103)1 + Ns'
where the function N, is defined as

q2 1 1.5026
N ,  . 1+ 2{3.27 + + [

F 1 l+ C2

+0.722 - ) + (0.692 E2 .736) 2]e}. (4.104)

Plots of the residual factor y versus elongation and triangularity are given in Figs.(4-9)

and (4-10), showing that the zonal flow increases with elongation and decreases with

triangularity.
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Figure 4-10: The residual zonal flow level for q = 1.4, e = 0.2, and E = 1.0. The residual
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Chapter 5

Collisional Neoclassical Polarization:

Hinton & Rosenbluth Limits

In the preceding chapters, we have discussed neoclassical polarization and the associ-

ated zonal flow damping for a collisionless plasma. However, collisions always exist in a

plasma. Even in a high temperature plasma where the collisions are weak, they can still

make a significant change to the neoclassical polarization in the long time limit. For this

collisional study, we only consider long wavelength zonal flows, since long wavelengths

dominate the zonal flow spectrum for the core plasma. In this and the following chapter,

we investigate how collisions can affect the neoclassical polarization. In this chapter, we

will review Hinton-Rosenbluth's approach [27] to treating collisional neoclassical polar-

ization and then review the weak and strong collisionality limits.

The task here is to solve the transit averaged kinetic equation Eq.(3.26) for the pass-

ing particle distribution h( ), which is required to calculate neoclassical polarization in

Eq.(3.22). Since the distribution h(1) is the leading order approximation to hk and it

is not necessary to evaluate higher order terms, we need not make distinction between

h(' ) and hk. The trapped contribution remains h( ) = 0, since it also satisfies Eq.(3.26)

but the drive Q vanishes. Laplace transforming Eq.(3.26), the transit averaged kinetic



equation can be written as

1 - ebk(p)hk (p)- -Cii hk (p) =iQ F0, (5.1)
p Ti

where the distribution hk (p) is independent of the poloidal angle 0. Since all the analysis

that follows is done in the frequency domain, hk (p) is abbreviated to hk without causing

any confusion. It is known that pitch angle scattering is the dominant collisional process

in a large aspect ratio tokamak plasma [26][28]. We therefore approximate the ion-ion

collisional operator by a model Lorentz operator by using the simplifying replacement

S{h} = 23/2 Bo Ohk (5.2)

with
47re4ni In AVii =re In A (5.3)

1Nm T/2

For a large aspect ratio circular tokamak, the preceding equation can be written as

Vi- - Ti )3/2 1 8 8 .27ae4k IS'v
hk - 2v" D (A) hk = i Fo, (5.4)p (m.,E L (A) OA OA TiL (A) Q

where the functions L (A) and D (A) are defined by

L (A) = (5.5)
L(V-1 + e cos0 - A

- 4 K (k), (5.6)

D (A) = dOAv/1 + cos0 - A (5.7)

= 4A E (k), (5.8)

with k defined as

k 2e (5.9)
1-A+e"



Note that L (A) is essentially the bounce time. If we define a new distribution Gk through

Gk = hk, (5.10)
iaeklIS'vFo

then Gk satisfies

Gk - 2L" 3/ D (A) aGk 2 . (5.11)
p m( E L (A) OA A L (A)

Therefore, the neoclassical polarization in Eq.(3.22) can be written as

(p) = (_ 1-E dA (GkE+1), (5.12)

when the energy average defined by Eq.(3.20) is employed. Hinton-Rosenbluth(H-R)

solved Eq.(5.11) analytically for two asymptotic limits: the high frequency, early time

(low collisionality) limit where prii >» 1, and the low frequency, long time (collisional)

limit where prii < 1.

5.1 High Frequency Limit

Rather than repeating H-R's variational approach to solving Eq.(5.11) for the normalized

particle distribution Gk, we employ a direct approach [42]. In the high frequency limit,

we expect only a small modification to the collisionless polarization, since the driving

frequency is so fast that collisions don't have enough time to change the distribution

significantly during a driving period. In fact, in this limit collisions can only make a

significant modification to distribution function shape close to the trapping boundary.

Therefore, the functions L (A) in Eqs.(5.6) and D (A) in Eq.(5.8) can both be further

simplified by approximating them by their values close to trapping boundary, namely

2 Vk 16
L (A) c In 1 (5.13)2 1-k



which still keeps the singular behavior of L (A) near the trapping boundary (k = 1), and

D (A) -4 ,r. (5.14)

Notice that D (A) varies smoothly near the trapping boundary so we take it approximately

as a constant. Then the kinetic equation, Eq.(5.11), can be rewritten as

1 8, 02  7r E 1Gk - In - G k = - (5.15)
p la In1 OA 2 kK (k)

where rii = 1/vii is the ion collisional time. To further simplify the discussion, we have

ignored the energy dependence of the collision operator in the preceding equation by

letting E = Ti/mi. Essentially, we treat all particles as if they are thermal particles. H-R

used the same approximation. However, their treatment is variational so we anticipate an

order unity error in our treatment. Moreover, recall that since their pitch angle scattering

collision operator, like ours, does not retain the full E dependence, this replacement is

similar in spirit to the replacement of Cii by a model Lorentz operator.

When prii --+ oo, the collisional term in the preceding equation can be ignored and

the leading order solution to this equation will be the collisionless distribution, which

we have calculated to evaluate the collisionless polarization. As shown in Fig.(3-1), the

collisionless distribution T1 (A) is smooth for most of the passing space, particularly, the

region away from the trapping boundary. Indeed in this freely passing region, the colli-

sional term can be ignored and the collisionless distribution is a good approximation for

this high frequency case prii >» 1. However, close to the trapping boundary, the colli-

sionless distribution becomes singular and the collisional term in Eq.(5.15), 92 Gk/OA2,

becomes so large that we have to take ion-ion collisions into account. From another

perspective, there exists a boundary layer close to trapping boundary, within which the

weak collisions can no longer be ignored. Assume the width of this boundary is AA, then

the collision frequency is magnified to an effective collision frequency, vff , vii/AA2.

When the effective frequency becomes as large as the driving frequency p, the collisional



term in Eq.(5.15) becomes about the same size as Gk.

Next we will estimate the size of this boundary layer. We change our variable from A

to x by using

A = 1 - C - xAA, (5.16)

with x P. 0(1) for the boundary layer particles. The boundary layer AA is assumed

small here, AA < 1. Then Eq.(5.15) becomes

1 8e 1 i2 r 2 1
G 1 / Gk K (5.17)

k pTrii In AZ 2  k  2 Lk K (k)"

Making the two terms on the left hand side of the equation comparable by defining,

1 8e 1 1 8 1 1 (5.18)
prii In 1-6 A'\ 2

we obtain the size of the boundary layer as

AA = 8c (5.19)

where k is evaluated at a point within the boundary layer. Noticing that

k = 2e (5.20)
2e + xAA'

and setting x • 1,
2e

2e + AA'

gives,

AA 8 32-, (5.21)

where we assume the boundary layer width is small compared to the inverse aspect ratio,

AA < e. We apply an iterative method to solve the preceding equation. Taking the first



iteration as

then the second iteration becomes

S - n - 32e

Se, (5.22)

where the constant y is defined by

S-- Ini•• (16 ). (5.23)

In the high frequency limit, p-ri > 1, and AA < e then gives y > 1.

Using the preceding boundary layer width from Eq.(5.19), Eq.(5.17) becomes

Gk - 2 Gk = (k) (5.24)Ox* 2 Vk K (k)

We follow H-R by guessing a trial function for the preceding equation to be

7r 1 2x 1Gk = (1 (l-e-), (5.25)
2 k K (k)'

where k is defined in Eq.(5.9), and x is defined in Eq.(5.16) and related to k by

X (1- k) (5.26)
k

This trial function satisfies the boundary condition Gk (x = 0) = 0, thereby making the

distribution continuous at the trapping boundary where the trapping particle distribution

vanishes. Recall from Eq.(3.30) that hk oc Q oc vl/B and that at the trapping boundary,



f d•r -+ 00 in Eq.(3.27) giving Q - 0. Away from the trapping boundary,

Gk = (5.27)
2V k Kg(k)'

which is the collisionless distribution given by TjI (A) in Eq.(3.36).

Next, we demonstrate that this trial function is a good approximation to the exact

distribution that satisfies Eq.(5.24). We already know that the trial function is very good

in the freely passing region. Therefore, we need only consider whether the trial function

is a good approximation near the trapping boundary. Inserting the trial distribution

from Eq.(5.25) into the left hand side of Eq.(5.24), we find

12 7r 19 1t 8 2e 1 e
GA; - Gk= [Gk 2 -1 e6

xGk 22 -2V k K(k) O k K (k)

+ 12 '6 1 ( 1 - e - x) ] . ( 5 .2 8 )8X2 k K (k)

The function is singular near the trapping boundary. Therefore, derivatives of

this function are very localized to the vicinity of the trapping boundary, or k = 1. As a

result we can make the approximation

0 ( i)e1 -2e Ok(5.29)
Sk K (k) =2(In___)2X

Inserting Eq.(5.22) in Eq.(5.20), we find

k = - -(5.30)1 + X/ 7'

We also learned from Eq.(5.19) that in the boundary layer,

16 2e 1
In p A2 (5.31)1--k kPii AA2



Inserting the boundary layer width from Eq.(5.22) in the preceding equation, we obtain

16
In - A, (5.32)

1-k

with A defined as

A =In 16 ) (5.33)

Therefore, we can estimate

' -2- - e (5 .34 )Ox k kK(k) 2,yA 2

Similarly, we can find
0--2 2 1  V--•• (5.35)

(x 2 ( k K (k) 7y2 A 3

Hence, after inserting the trial function, the left hand side of Eq.(5.24) becomes

Gk Gk -- 2 1 [+ -e (1 - e)] (5.36)
G x2Gk = 2 k K (k) +A 7-~A2 2

Therefore, as long as -A > 1, the trial function is an adequate approximation to the full

Gk that contains the weakly collisional effects.

Inserting the preceding trial function in Eq.(5.25) into Eq.(5.12), and noticing that

dA = -2edk/k 2 and that Gk doesn't depend on E, we obtain the neoclassical polarization

2 q2 3 (2e)3/2 1 dk
(P)3() -- J _2. 62 4 _a_ k5/2K (k)

31r (2e)3 / 2  1 dke-'(1-k)/k
4 2. k5/2K (k)

Had we retained the energy factors in the Lorentz operator then y --+ (E), but the last

integral would have become an analytically intractable energy integral. The first two

terms in the preceding equation come from purely collisionless effects, giving the 1.6e3/2



R-H polarization we already calculated in Chapter 3. The third term is new and comes

from the collisional effects. Note that

i dke-7(1-k)/k 11 dke-(-k) (5.38)
_ k5/2K (k) In2

since the integrand is very localized at k - 1. Letting t = 7 (1 - k), then the preceding

integral becomes

•1 dke-7(1-k)/k 2 0 1 n tI dte-t (1 - + .. (5.39)
_ k 5/2 K (k) - -ln(16y) In (ln16y) (5.39)

=1 2+(1).(5.40)
'In (16-y) (+ In (16)y)

Recall A = ln (16y) and since In (16-) > 1, we need only keep the leading term in the

preceding equation. Therefore, the neoclassical polarization can be written as

Wpi q 1.6e3/2 + 3 23/2
pk,nc (P) 2 2

W= q2 1.6+ .3f (5.41)

Since we assumed -yA > 1, this collisional correction is formally only a small modification

to the collisionless result. However, the modification can be significant since 3JV'7r - 10.

This result is consistent with H-R's collisional result if we replace our collision frequency

vii with vii/4, or increase our collisional time Tii to 47;i. Accordingly, the numerical

factors -y and A need to be changed to,

7= -= 2epTrn In (16, ,/2r) (5.42)

A = ln(16 J2epTi) . (5.43)

This need to enhance collisional time occurs because we ignored the energy dependence



of the collision operator by simply setting E = Ti/mi. In this prii > 1 calculation we are

essentially calculating the energy average of the collisional time, or (1/7)6E c (11/v/)E,I

where the energy weighting in the energy average is E3/2e-miE/Ti. In the high frequency

limit, the polarization due to collisions decreases after considering the energy dependence

of 7ii because the energy integral changes from (1/'7)E to (1 / ,y3/ 4)) E ~ 0.66/VYF.

Since this polarization is inversely proportional to AV-', the reduction of the polarization

actually corresponds to an increase in the collision time. In the low frequency limit, we

will see that the polarization due to collisions increases after considering the energy

dependence of 7ii. However, the polarization in this limit is proportional to prii, so the

enhancement of the polarization again corresponds to an increase in the collision time.

We will confirm this point further in the low driving frequency case considered next.

5.2 Low Frequency Limit

In the low frequency limit prii <« 1 there is no singular layer to worry about. The problem

becomes a regular perturbation problem. In Eq.(5.11), the collision term dominates the

left hand side to give

a ( mrE 3/2
- D (A) a-Gk = lprii 3 (5.44)

where we have used Tii = 1/vii with vii defined in Eq.(5.3). This equation can be

integrated to get Gk without difficulty by noting that the particle flux should vanish at

A = 0, giving D (A) Gk •=o = 0. The distribution Gk must vanish to be continuous

with the trapped distribution. With these boundary conditions we find

Gk (mETii 3/2 1-  d' (5.45)
Ti= x\-4 41 + e - A'E 2( )'l-e-,h



with the diffusion coefficient D (A) inserted from Eq.(5.8). With this equation and

Eq.(5.12), the neoclassical polarization is found to be

; q2 33prii mg E 3/2
Ec (p) = (-(1-k,c (2i -F 2 Ti

1-d 41 + V A'E +dA-) ). (5.46)

Exchanging the integration order, we find

6dAj fdAl f-I2
o d 4/1 + -YA'E ) o 4 1 e - A'E (+ )

= 01-E IdA'

2 _- 0.31/ + (e3/2). (5.47)
37r

Noting K(miE/T)3/2 ) = 8//-r, we see that in this case the higher energy ions are more

important than the lower energy ones, and we then find

(= ci2 (1 -1.461 + ( (5.48)

This result tells that strong collisions can increase the neoclassical polarization from

order 63/2 to order unity. This increase comes from the decrease of the distribution Gk.

When the driving frequency is low p7Ti < 1, the distribution Gk has enough time to

diffuse to form a constant shape in A space independent of any boundary layer physics.

Then, the magnitude of Gk is determined by the strength of the driving source, which is

proportional to the driving frequency p.

In this case, due to its simplicity, we included the energy dependence of the collision

operator. Had we ignored the energy dependence of the collision operator in the begin-

ning, we would have needed to increase the collision time rij to (8/\/-) 7ii - 4.57ii, to

make the final result consistent with Eq.(5.48). This observation is interesting . Recall



that in the high frequency case we found a factor of 4 for the energy average magnification

of rii. Therefore, the average energy magnification for these two limits is close to the

same. Consequently, we expect in the intermediate frequency case, the average energy

magnification is between 4 and 4.5 over the E = Ti/mi value. As a result, in the next

chapter, we will attempt one fit by ignoring the energy dependence of the collision op-

erator at the beginning to simplify the calculation and then increasing the final collision

time by 4 times once the calculation is finished. This approximation is justified by the

preceding discussion showing that the thermal particles are a sufficient representation of

the total particle population if we let vii -- vii/4 in Eq.(5.4).



Chapter 6

Collisional Neoclassical Polarization:

Arbitrary Collisionality

Eigenfunction Expansion

In the last chapter, we solved the transit averaged kinetic equation analytically for two

asymptotic driving frequency limits: high frequency and low frequency [27]. A singular

perturbation method is required for the high frequency limit, while regular perturbation

theory is sufficient for the low. However, we still lack knowledge of the intermediate

frequency range. It would be advantageous to find a general approach which leads to

an solution suited for the entire frequency range. In this chapter we will explore such a

general approach which is based on an eigenfunction expansion of the collision operator.

6.1 Eigenfunction Expansion and Shooting Method

The idea behind this general approach is straight forward. If the eigenfunctions and

eigenvalues of the transit averaged collisional operator can be found, then the transit

average kinetic equation of Eq.(5.1) essentially becomes an algebraic equation. To make

the problem tractable, we continue to utilize a Lorentz operator as the ion-ion collisional



operator. A completely analytical method is desirable, but impractical even for this

simple Lorentz operator. However, we can find the eigenfunctions and eigenvalues for

this Lorentz operator [30] numerically and develop a semi-analytic approach. This semi-

analytical method turns out to be useful to calculate the neoclassical polarization for the

entire range of driving frequencies.

We continue to consider a large aspect ratio circular tokamak model, where the trap-

ping boundary is A = 1 - e. To facilitate numerical implementation, we normalize the

passing pitch angle space to [0, 1] by setting A = (1 - e) x. Then the simplified transit

average kinetic equation in Eq.(5.11) can be written in terms of the new x variable,

- a
D (x) Gk - pfiiL (x) Gk = -2Xrp~iG, (6.1)

where the collision time Tii includes the energy dependence implicitly,

1 m3E (6.2)
iii ii Ti Ti

and the functions D (x) and L (x) are defined as

2D (A)S(x) (A) (6.3)
(1 - e)2

8 ( 2e

1- /1- x + e + E +xe) (6.4)

L(x) = L(A)= 4 x-+x x + (6.5)1- z +6+ 1+-6x + e+ze +

At the trapping boundary x = 1, the distribution function Gk must vanish to be

continuous with the trapped particle distribution. At the other end x = 0, the velocity

particle flux must vanish, D (x) GkA=0 = 0, to avoid a flux into a forbidden region. The

boundary condition at this end is automatically satisfied since D (x = 0) = 0. In addition,

the distribution function Gk is not allowed to diverge to infinity at either boundary.

In order to solve Eq.(6.1), we first find the eigenfunctions and eigenvalues of the colli-



sion operator D (x)- by considering the following eigenvalue problem and boundary

condition [30][12]:

a a
-D (x) ~G = -1L (x) G, (6.6)

G(x=0) = 1,G(x=l)=0, (6.7)

where y is the eigenvalue and G the eigenfunction. We take G (x = 0) = 1 as a way

to normalize the eigenfunctions. To facilitate numerical implementation, we write the

preceding equation as follows:

82  a
2 G -M(x) G - (x) G, (6.8)

where the coefficients M (x) and N (x) are defined as

ob (X) /Ox
D (x)

S1-+_+e) (6.9)
S2(1-x+e+xe) E 2,1-x+e+xe

D(x)
K K 2e

(-x+E+xe) (6.10)
2x(1 x + e + xe) E (1--x5cp ,

and the boundary conditions remain as in Eq.(6.7).

We apply a shooting method to solve Eq.(6.6). With the prescribed initial parameter

G' (0) in the (x, G (x)) plane, we integrate Eq.(6.8) to shoot at the end point (1, 0) from

the beginning point (0, 1). However, the point x = 0 is a singular point for both M (x)

and N (x). We can avoid this difficulty by determining the behavior of the function G



near x = 0. Notice that as x -+ 0,

) 8x---6 E ( 2e , (6.11)

and

L (x) - K (6.12)2() ýfi -+

Then the function G satisfies the following equation as x -- 0,

G + 1 G = 0. (6.13)
Oxx Ox 2 (1 + e) E ( )

The solution to this equation turns out to be a Bessel function,

( 2 (1 - e) K ( )) (614)

S(1 - e) K ( 2E)
-+1 _ x+O (()(2) , as - 0. (6.15)2 (1 + e) E ( 2)

This solution automatically satisfies the normalization condition G (x = 0) = 1. From

Eq.(6.15) we also know that to leading order,

'p (1 - e) K (2(`)
G' (x) = 21+e ,as x -+ 0. (6.16)

2 (1 + e) E (\ )

Therefore, we don't have to start shooting exactly at point (1, 0). Instead, we can shoot

a curve by starting at

we (1- 1eiXo, 1 -  )  1+6 ' 0 (6.17)
2 (1 + c) E (2)

where xo < 1. The initial slope of curve is given by

/ (1 - e) K(1)
G' (xo) = - 1+e (6.18)

2 (1 + e)E ( 2)1+
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Figure 6-1: Eigenfunction Gn and eigenvalue /, in Eq.(6.19) for n = 1 -- 6, and e = 0.1.

where the error of G (xo) is of order O (x2), while the error of G' (xo) is of order O (xo).

When we shoot for some value of I, only those curves which end at (1, 0) are eigen-

functions of Eq.(6.6). So only special values of p are of interest. Increasing the value of

It gradually, we find a series of eigenfunctions g, (x) and corresponding eigenvalues /i,

n = 1, 2, ... , as shown in Fig.(6-1).

The eigenfunctions g, (x) and the associated eigenvalues ,c satisfy the following equa-

tion:
a a
-- D (x) -xygn (x) = -ItnL (x) gn (x) , (6.19)

where gn (x) and An depend on e implicitly. The eigenfunctions are orthogonal to each

other,

fo dxgm (x) g (x) L (x) = Mn., (6.20)

011



where 6 m, is the Kronecker delta, and the constant Mn is defined as

(

M=]JO dxg2 (x)L(x). (6.21)

The differential equation (6.19) is of the Sturm-Liouville form so that eigenfunctions are

complete. We can therefore expand the solution of Eq.(6.1) as

oo

Gk = E aig (x). (6.22)

Inserting this series into Eq.(6.1), we obtain

l=1

S00

(x) axg, (x) - ajp-iýjj (x) g (x) = -2rpýii 2 .

Multiplying the preceding equation by gn (x) and integrating it from 0 to 1, we obtain

an algebraic equation

an (An + 0o) Mn = 27r0o3n, (6.24)

where the constants -o and n are defined as

5o PTii,

dxg,, (x) .

(6.25)

(6.26)

Note that yo depends on energy implicitly and /3 depends on e implicitly. From Eq.(6.24)

we know that the eigenfunction expansion coefficient an is

S27+rO)n
an - (An + 50) Mn'

(6.27)

and the distribution function Gk becomes

00

Gk= E
n=1

(6.23)

2~- " g (x) .
(Anr + %) Mn

(6.28)

° - O



Knowing the eigenfunctions gn, we can then calculate P. and M,. These quantities,

together with the eigenvalues L. and driving frequency %, can be used to determine the

distribution Gk and then the neoclassical polarization.

6.2 Properties of Eigenfunctions and Eigenvalues

Before going any further, we want to discuss some useful properties of the eigenfunctions

{gn} and eigenvalues {(,}. As shown in Fig.(6-1), the eigenfunctions show the usual

Sturm-Liouville feature that the eigenfunction gn has n - 1 nodes in the interval (0, 1).

This eigenvalue problem is a Sturm-Liouville problem since the bounce average Lorentz

operator, D (x) , is self-ajoint. Therefore the eigenfunctions form an orthogonal

function space.

We are particularly interested in the properties of the quantities Pn, Mn and /n,

because these quantities are closely related to the passing particle distribution Gk, as we

have shown in the preceding section. It is found that these quantities can expanded in

the power series of inverse aspect ratio e, [30]

00

pZ (e) = u u (n, k) Ck/2, (6.29)
k=O

On (e) = B (n, k) 'k/2, (6.30)
k=O

Mn (e) = M (n, k) E k/2. (6.31)
k=O

In order to obtain the leading order coefficients in the preceding expansions, we can let

e -+ 0. Then the eigenequation, Eq.(6.6), becomes a Legendre equation with the variable

-(1 -ý) G = -2tpG. (6.32)



Therefore, we can easily determine the eigenvalues and eigenfunctions,

pn (0) = 2n2 - n, (6.33)

and

g(o) (x) = P2n-1 (•f- ) (6.34)

With these eigenfunctions, we can evaluate On (0) and M. (0) to find

n, (0) = jdxP 2n(1 V ) =3 6n,, (6.35)

M. (0) = dxP2n- ( i--) 2 4X.-x (6.36)
-04n - (6.36)

Therefore, we may write the leading term explicitly to obtain

00

A, (e) = 2n' -n + u (n, k) 6/2  (6.37)
k=1

~, (e) = 3 1 + E B (n, k) e/ 2  (6.38)
k=1

47r 0e0

M ( 4 - 1 -  M (n, k) /2  (6.39)
k=1

We can compute the numerical values of p. (E), 6, (e) and Mn (e) for various inverse

aspect ratios e and mode numbers n, as shown in Figs.(6-2). Then, for each mode number

n, we can fit the numerical data for the first few power coefficients: u (n, k), B (n, k) and

M (n, k). More details about this fitting can be found in Appendix D.

In the next section, we will show that the coefficients p, (e) and Mn (e) are related to

the neoclassical polarization through a particular combination of the coefficients 8, (e)

and Mn (e), namely 02 (e) /M, (e). If we define

n W( (n, k) 0k/2, (6.40)
MU (e) k=0
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Figure 6-2: The quantities c, (e), IJ, (e) I, M, (e) and I, (e) I2/Mn (e) versus mode
number n in a log-log plot, for e = 0.01, 0.1, 0.2. For large n, p, cx n2, jn (6) x1 c n - 5/ 3

and Mn cx n - 1. Hence, jI, (e) j2/M, (E) x n -7 /3.



k\n 1 2 3 4 5 6
1 1.46 7.67 18.83 34.95 56.03 82.08
2 1.48 7.67 18.06 32.02 49.33 70.22
3 0.13 -0.36 -0.06 2.99 10.14 20.90

Table 6.1: The numerical power coefficients u(n,k)

k\n 1 2 3 4 5 6
1 -0.41 -0.29 0.13 -0.08 0.056 -0.042
2 0.36 0.37 -0.15 0.10 -0.076 0.060
3 -0.24 -0.29 0.11 -0.086 0.072 -0.063

Table 6.2: The numerical power coefficients B(n,k)

then the leading

the result

order term can be obtained from Eqs.(6.38) and (6.39). This leads to

/2 (e) 4n-- 1
= 6n + W (n, k)e (6.41)

M () 9ir k=1

The numerical coefficients W (n, k) can be calculated from B (n, k) and M (n, k), which

themselves are obtained from fitting the numerical data. These fitting results are tabu-

lated in Tables (6.1), (6.2), (6.3) and (6.4).

6.3 Benchmark of Distribution Function

We can utilize the first few terms in Eq.(6.28) to approximate the exact distribution

function. It is useful to check how many terms suffice to reproduce the exact distribution

for various collisionalities and aspect ratios. Here we study several limiting cases in which

k\n 1 2 3 4 5 6
1 -5.21 -2.24 -1.41 -1.04 -0.81 -0.67
2 5.48 2.64 1.71 1.27 0.98 0.79
3 -2.91 -2.22 -1.55 -1.21 -0.92 -0.74

Table 6.3: The numerical power coefficients M(n,k)



k\n 1 2 3 4 5 6
1 0 0 0 0 0 0
2 0.017 0.048 0.015 0.0077 0.0047 0.0032
3 0.052 -0.060 -0.017 -0.010 -0.0072 -0.0054

Table 6.4: The numerical power coefficients W(n,k)

we have already found the analytical distributions in previous chapters.

First we study the collisionless limit. If no collisions exist, yo -+ oo, then the numerical

distribution Gk in Eq.(6.28) can be written as

Gk M n (X) , (6.42)
n=1

where N is the number of terms retained. The collisionless analytical distribution is

known from Eq.(6.1) to be
27r

Gk L ( (6.43)

The comparison between the analytical distribution and the numerical distribution is

shown in Fig.(6-3). We find that we need many eigenmodes to approach the exact ana-

lytical distribution. Even if we sum up to 20 terms there are still some small oscillations

on the curve. To obtain a fairly smooth curve we would need many more terms because

the coefficient of this eigenfunction expansion P,/Mn decays rather slowly. We know

from Fig.(6-2), n, c( n-5 /3 and Mn oc n- 1. Therefore, the coefficient P,/Mn oc n- 2/3

doesn't converge. Fortunately, the integration of the nth term in Eq. (6.42) goes like n-7/ 3

and converges. This feature occurs because the small oscillations seen in Fig.(6-3) tend

to cancel.

If we add weak collisions the numerical distribution approaches to the analytical

distribution much faster than the collisionless case. In the high frequency limit prii > 1,

only about ten terms are needed to make a smooth and consistent distribution, as shown

in Fig.(6-4). This behavior indicates that the high eigenmode coefficients decay rather

rapidly due to collisions. In this case, the numerical distribution is given by
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Gk = 2(l bo ng ()E. (6.44)
n=1 (An ) Mn

We now set m1E/Ti = 1 to facilitate the numerical computation and comparison with

the results from Chapter 5. For p7ii > 1 and m1E/Ti = 1, the analytical distribution is

given by the trial function of Eq.(5.25),

=Gk ) 1- e (' - 2 )] (6.45)
L (x)

where -y is defined in Eq.(5.42), but in this equation we use x = A/ (1 - e). From

Eq.(6.44) we see that for a finite collision frequency %o, the eigenvalue i, will catch up

with %0 very quickly since x oc n2. When Ap >» 0, the total coefficient in Eq.(6.44)

decays as n- 8/3. Therefore, the high eigenmodes will decay rapidly as ti > »%, to make

the distribution smooth.

In the low frequency limit, prii <« 1, the numerical distribution is still given by

Eq.(6.44). From Fig.(6-5), we see that only two or three terms are required to obtain a

good approximation. The analytical distribution in Fig.(6-5) is given by

Gk = d 7 (1-(6.46)S- 4/1 x + + xE( 2c

which comes from Eq.(5.45). Recall that this expression is from the first order expansion

of pir. To be consistent with this distribution, we need to take the numerical distribution

as follows
N

Gk x= g" (2) (6.47)
n=1 AnMn

The numerical series converges much faster than the high frequency case, so only two

terms are needed to approach the analytical distribution.

The consistency between the numerical series and analytical distribution confirms the

usefulness of the eigenfunction expansion method for solving the collisional neoclassical

polarization problem.
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6.4 Collisional Neoclassical Polarization

We proceed to construct the neoclassical polarization from these eigenfunctions. Accord-

ing to Eq.(5.12), the neoclassical polarization can be written in terms of the distribution

function Gk. To be consistent with the notation of Eq.(3.33) in Chapter 3, we let

P1 = dA (Gk)E. (6.48)

For the polarization we will use the form from Eq.(3.22) rather than the equivalent form

from Eq.(3.21). Using the preceding, we have

o () = 2 (1 - P) (6.49)

Once we know the term P1, we effectively know the whole neoclassical polarization.

Therefore, we focus on studying the term P1. We insert the expression for Gk in Eq.(6.28)

into the preceding equation to obtain

P1 = 37r (1 - e) ~ , (6.50)

where the energy average is defined in Eq.(3.20). Letting y = miE/Ti, the preceding

equation can be explicitly written as

00

P = 4V~(1 - ) n dyy 3  /2+ (6.51)
n=l M J/Yo"3 + /'

where the frequency -o = pri doesn't contain the energy dependence since ^'o = p7iy 3/2 .

Employing the preceding equation and Eq.(6.49) we can calculate the neoclassical

polarization for various driving frequencies or collisionalities prIn, and inverse aspect ratios

e, as shown in Fig.(6-6). Recall that the residual zonal flow is inversely proportional to

the neoclassical polarization so that the zonal flow is strongly damped for prj --+ 0.

The damping of the zonal flow increases slightly as the inverse aspect ratio e increases
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to approach the exact value.



when the collision frequency is comparable to the driving wave frequency. Of course,

the zonal flow is strongly damped at the high collisionalities and weakly damped at low

collisionalities, as found by H-R, but their low collisionality or high driving frequency

limit is only valid for /j» > 1. From Fig.(6-6) we also see that, for high driving

frequencies or low collisionalities, the neoclassical polarization is small, so it is sensitive

to inverse aspect ratio e. However, for low driving frequencies or high collisionalities, the

neoclassical polarization becomes large and ignoring the e dependence is not as critical

to the final answer.

Since we need to calculate each point numerically in Fig.(6-6), it is sometimes more

convenient to apply a more analytical, but approximate method. We can employ the

fitting procedure described in Appendix D to obtain a e power series for the coefficients A,

and ~3/M, in Eq.(6.51), as shown in Eq.(6.37) and (6.41). The coefficients m (n, k) and

W (n, k) are listed in Table I (6.1) and IV. Since we have obtained analytical expressions

for the coefficients C, and n /Mn, we only need to compute the integral in Eq.(6.51)

numerically to obtain the neoclassical polarization in Eq.(6.49). This method can be

regarded as a semi-analytical approach.

6.4.1 Approximate Methods for Neoclassical Polarization

The preceding exact eigenfunction expansion method is very accurate, but sometimes a

simpler result may be convenient. We proceed to seek more concise but approximate

method to calculate the neoclassical polarization.

From Fig.(6-2), we see that 132/M 1 dominates the other eigenfunction expansion co-

efficients. Therefore, it is sometimes convenient to retain only the leading order term in

the preceding equation, namely

P1 = 4 (1 - e) 1 y, (6.52)
Ml o A1/7o + y3/2 '



where the coefficients 1, and I3/M1 can be read from Tables I and IV, to find

#1 = 1 + 1.46v§ + 1.48e + 0.13e3/2 (6.53)
__ 1

= - + 0.017e - 0.052c3/2. (6.54)
M1 37x

For a given e, there are two different approaches to deal with the energy integral in the

Eq.(6.52).

(1). One term numerical approaches.

For each driving frequency yo, we integrate this integral numerically. This approach

provides a benchmark to check the other approximate approaches. We denote this method

as "1 Term Exact".

We may even be less accurate, e.g., ignoring the 6 dependence in p1.Then Eq.(6.52)

becomes

P, = 4B1 dy(y3  . (6.55)
MP • o '1/ + y 3/2 "

This approximate method is denoted as as "1 Term Approx".

(2). One term approximate analytical approaches.

There are two approximate methods we have considered. The first method is to apply

the observation we found in the preceding chapter by setting Yo -+ 470, where ^o = prii.

Thus we obtain
P2  4Ym

P1 = 37r (1 - E) 1  47 (6.56)
M, IL, + 470'

which we denote as "Approx 1".

The second method is to use a Pade's approximation. Notice

f* dyy 3e-Y 't ,for //-yo > 1,

o n/70 + y3/2 6p.

S 4 , for ,/70Y <O 1,



and the Pade's approximation gives

/00 y d3yee- y  
8^to 3v/•Sdyy 3 (6.57)

Jo -ton/ +y3/ 2 t- An+ 0yo 4

Then the one term approximation becomes

M + (6.58)

which is essentially the same as "Approx 1" since we take the energy average magni-

fication to be 8/fr; the low frequency energy average magnification. We denote this

approximation method as "Approx 2".

A comparison of the preceding different methods is shown in Fig.(6-7). For very small

e, E = 0.01, we can see from Fig.(6-2) that the coefficient 01/M1 is 100 times larger than

the other term. Therefore, we can ignore the higher order terms in the eigenfunction

expansion. If the energy integral is computed exactly, the "1 Term Exact" curve will be

very close to the exact value, as shown by the first plot of Fig.(6-7). We also see, the "1

Term Approx" curve is also a quite good approximation for small e. The small deviation

of "1 Term Approx" from the exact line is due to the neglect of the higher e terms in i,.

For small e, the curves "Approx 1" and "Approx 2" are also very accurate in the high

frequency and low frequency limits. However, there is almost a 20% error in the middle

that comes from the inaccuracy of the energy integral in the middle. This error is a typical

feature of a Pade's approximation. The method "Approx 1" is only slightly better than

"Approx 2". The H-R low frequency approximation breaks down quickly upon entering

the intermediate frequency regime. The R-H high frequency approximation is not good

for e = 0.01 because the condition 7 > 1 or /i > 1 is easily violated as e -- 0.

When e becomes larger the "1 Term Exact" curve is still good for most of the fre-

quencies, but becomes less good at very high frequencies, as shown in the second plot

of Fig.(6-7). This is because the higher order coefficients 26/M. become large to within
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10% of the i'/M 1, as seen from Fig.(6-2). The higher order contributions will cause the

"1 Term Exact" curve to have a 10% deviation from the exact line for the high frequency
w2 .q2

case, as shown in Fig.(6-7). Recall that e= (1 - Pi). Therefore, in the high
frequency limit, e.g. p7ii " 100, a 10% error in P1 can cause an order unity error in e7 ,.

Fortunately, in this limit(relatively large e and high frequency), the H-R high frequency

approximation remains valid, even though this is the worst case for the approximate

methods discussed so far.

However, we can improve our approximate method to have better performance in

the high frequency range. We know from Eq.(3.39) that in the collisionless limit P1 =

1 - 1.635e3/ 2. This limit suggests that a reasonable approximation that satisfies the high

frequency asymptotic limit and also has the form of Eq.(6.52) is

S= (1- 1.635e 3P) j dyy 3e- ' (6.59)3 ( a/ yo + y3/2'

where the quantity a is to be determined by the low frequency asymptotic limit. In the

low frequency limit we know from Eq.(5.48) that

8
-P=7 Y0o (1 - 1.461y§), (6.60)

where To = prin. In this low frequency limit, Eq.(6.59) becomes

P, = W7r (1 - 1.635E / ' ) . (6.61)

Setting this equation equal to Eq.(6.60) we find a to be

a = 1 + 1.461V, (6.62)

to the accuracy of O (/V). Therefore the neoclassical polarization can be calculated from

Eq.(6.49), (6.59) and (6.62). We denote this approximate method as "Approx 3". It is

equivalent to what we obtain by setting ,1 and M1 to their leading values: 31 = 2/3 and
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Figure 6-8: A comparison of the frequency dependence of the polarization P1 from dif-
ferent methods, for e = 0.1. The exact line is calculated by Eq.(6.51). "HR-High" is
the H-R high frequency polarization derived from Eq.(5.41), while "HR-Low" is the H-R
high frequency polarization derived from Eq.(5.48). The dotted curve "Approx 3" is
calculated by Eqs.(6.59) and (6.62).

M, = 47r/3, and keeping p1 to first order accuracy, p, = 1 +1.461y' in Eq.(6.52). The

comparison between the approximate methods "1 Term Approx" and "1 Term Exact"

in Fig.(6-7) shows that using M, to first order accuracy is good enough for the energy

integrals. Therefore, the error in the approximation "Approx 3" comes from ignoring the

higher order terms of &M /Mn in the eigenfunction expansion. From Fig.(6-2) we expect

this error to be about 15%. This estimate is verified by Figs.(6-8) and (6-9) that shows

the approximate method "Approx 3" is good for almost all collision frequencies and small

inverse aspect ratios s.
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Figure 6-9: The relative error in the calculation of the neoclassical polarization from
method "Approx 3" of Eqs.(6.59) and (6.62) compared to the exact value, for various
p-ri and e = 0.01, 0.1, and 0.2.

Finally, we estimate the upper limit the driving wave frequency can reach in a real

tokamak. Taking ITER as an example, then ni - 1.1 x 1014cm- 3 , Ti -- l0kev Ro r' 6m,

and Bo ^,, 5T. Then, a typical ion-ion collision frequency is vii '% 100 sec - 1 and the transit

frequency is wt e,, 105 sec- 1. For the transit average to be valid, we require p/wt < 1.

So prTi , 100 is about the upper limit that a driving frequency can reach. In Alcator

C-Mod, ni ,,- 2.0 x 1014cm-3, Ti , 2kev Ro 0  0.64m, and Bo %, 5T. Then, a typical

ion-ion collision frequency for C-Mod is vii , 1600sec - 1 and the transit frequency is

wt ~ 4.0 x 105 sec- 1. Therefore, for C-Mod, prim , 200 is the rough upper limit that the

driving frequency can reach.

6.5 Collisional Zonal Flow Damping

Having a complete understanding of the role of collisions on neoclassical polarization, we

can proceed to investigate the zonal flow damping associated with it. Using Eq.(2.22)
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and (2.23), the evolution of the zonal flow potential can be written as

1 / dp e?
tk = k (t = 0) 1 deP (6.63)P 4,d + ptk (P)

where the classical polarization is = in the long wavelength limit, and the neo-

classical polarization can be calculated by Eq.(6.49) and the approximate P1 of Eq. (6.59).

To make the results even simpler, we can apply a Pade approximation for the energy

integral in Eq.(6.59). Therefore Eq.(6.59) becomes

P1 = (1 - 1.6e3/2) 'Yo (6.64)
7o + s 8C1

where yo = P-ii and p1 = 1 + 1.46/Fi. Inserting this equation into Eq.(6.49), we find the

neoclassical polarization to be

w2 q2 1.6e3/ 2 r +
C• ,2 8 (6.65)

WCS 70 + 8 l2

In the large aspect ratio limit, the neoclassical polarization is much larger than the

classical polarization. Therefore, we may ignore the classical polarization in Eq.(6.63).

Inserting the neoclassical polarization in Eq.(6.65) into Eq.(6.63), we obtain

k (t) = k (t = 0) 2 dePt )

q2 2ri P 1.6e 3/2pTii -+ 861-.1

Inverting the Laplace transform we find

Ok (t) = Ok (t = 0) 1 + - e . (6.67)

From this equation we can see, with collisions the zonal flow damps to a level much smaller

than the R-H collisionless residual within a decay time of order e3/27ii. Although the

decay time is of order E3/2 Tii, it is enhanced by the numerical factor 7.4 to roughly the
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magnitude of ion-ion collision time.
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Chapter 7

Summary

In the preceding chapters we have extended the original R-H/H-R work in many respects.

We summarize these extensions as follows.

At the end of Chapter 3 we employed the R-H collisionless distribution to calculate

the zonal flow. This calculation revealed that the zonal flow contains not only poloidal

rotation, but also a similar size toroidal rotation.

In the first part of Chapter 4, we calculated the neoclassical polarization and R-H

residual zonal flow level for arbitrary perpendicular wavelengths. First, we extended

the R-H neoclassical polarization calculation analytically from k±p, << 1 to k±p, < 1 by

expanding the calculation to include Q4 terms. Then we calculated the neoclassical polar-

ization and residual zonal flow level numerically for arbitrary perpendicular wavelengths

from k±p, < 1 to k±p, >» 1. We find that the effective zonal flow or effective resid-

ual caused by a given density perturbation is much weaker for short wavelengths. The

weakness of zonal flow is not due to the damping of the zonal flow, but rather due to the

weakness of the source potential produced by the initial density perturbation [18]. Notice

that this small wavelength result is expected to be valid at the edge of an internal trans-

port barrier (ITB) [46], where the assumption of large parallel mean free path remains

valid. Radial wavelengths in the pedestal region of a tokamak are typically comparable

to the poloidal ion gyroradius, so small zonal flows are expected there where they are
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also reduced by collisions. This result may have some implications for the higher levels of

turbulence observed in the pedestal. A complete kinetic treatment of the pedestal must

allow arbitrary parallel mean free paths and sharp density and temperature gradients,

making the problem still more involved and challenging.

In the second part of Chapter 4, we developed a small inverse aspect ratio expansion

method to calculate shaping effects on the R-H collisionless residual zonal flow. We find

that the elongation is strongly beneficial to the residual zonal flow, while the triangularity

is harmful but much weaker. The small e expansion method employed here is quite

general so that it can be applied to more complicated MHD equilibrium that include

not only the safety factor, elongation and triangularity effects, but also their shears. In

addition, a careful comparison to numerical simulations is desirable and feasible. Another

straightforward extension of the present work would be to treat both plasma shape and

collisional effects simultaneously.

In Chapter 6 we developed a semi-analytical method, based on an eigenfunction ex-

pansion of a Lorentz collision operator [30][12], to calculate the collisional neoclassical

polarization for the entire driving frequency range and arbitrary collision frequencies

below the transit frequency. For high driving frequencies or low collisionalities, the neo-

classical polarization is small, so it is sensitive to inverse aspect ratio e. However, for low

driving frequencies or high collisionalities, the neoclassical polarization becomes large

and insensitive to e. In addition to the exact result, we find a fairly good analytical

approximation for the neoclassical polarization which is concise and suitable for a large

range of driving wave frequencies or collisionalities. We also calculate the collisional zonal

flow damping and find that, with collisions the zonal flow damps to a level much smaller

than the R-H collisionless residual within a decay time of order e3/2rii. The eigenfunc-

tion method employed here is more general than the variational treatment of H-R that

only considered the weak and strong collisionality limits. This expansion method can be

employed to solve even more complicated collisional zonal flow problems.

106



Appendix A

A Derivation of Nonlinear Drift

Kinetic Equation

The electrostatic drift kinetic equation, in E = v2/2 and p = v2 /2B variables, accurate

to the first order in gyroradius expansion when the lowest order distribution function is

isotropic in velocity space, was shown by Hazeltine[24] [23], to be given by,

Of e f()+ (v,,b + vB + vE) Vf - C,{} = M (v,,b + v-) .VO, (A.1)

where vB is the magnetic drift, defined in Eq.(2.2); vE is the E x B drift; f is the

gyroaveraged distribution function, M and e are species mass and charge. Letting

f = Fo + fi,

with Fo a local Maxwellian with b -VFo = O0, then fi = 6f, an assumed small correction

to F0, satisfies the nonlinear equation

i'1+ (v,b + V) - Vfl - Cii {fl} =at
e-- Fo (v,,b + vB) -V - (vB + VE) ' FO

-VE Vfl + e (v,,b + vB) -V-, (A.2)OE
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where we assume aFo/&t < Ofl/&t.

To further simplify this equation, we estimate the size of the drive terms. We estimate

the sizes of term by using vE r,, kipv, VB - 2 vt. We allow

ev,,b - VqOf 1/E 1
MVE ' Vf k±pk±qRo -

so that the nonlinear term v,,b - V00fl/OE is not ignored comparing to the E x B

nonlinearity vE Vf1 . However, another nonlinear term vsB Vq8fil/&E may be safely

ignored since
evB. Vc fil/OE 1

VE. Vf1 klRo

For polarization and neoclassical calculations, the distribution Fo and electrostatic po-

tential k are lowest order flux functions, so there is no contribution from vE - VFO. The

drive vs - VFo must be retained to evaluate the neoclassical particle and heat flux. As a

result, the drift kinetic equation of interest may be written as

8f e+ (v,,b + Vd) " Vf - Cii If } - Fo (v,,b + vd) - V - vB -VFo
e

-VE Vf 1 + ev,,b - VoOf 1/9E. (A.3)

However, when evaluating the polarization, we might neglect the neoclassical drive vB •

VFo, because it does not enter the evaluation of the polarization.

108



Appendix B

Details about Large Q calculation

This appendix presents algebraic details used to evaluate the collisionless neoclassical

polarization to O (Q4). In particular, we need to evaluate the following integrals:

d dOdAY 4,

7, JdA f

o1-e df dO-2

t-2-Q2 .

The first two integrals can be carried out by using the following identities:

Ti
mi

380 2 .

We first note that we can use the preceding identities to obtain

J d3vFo2
S(2is4 ) 2

-) 2 (h h2

Ti
no-mi
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dO-•(,

Jo 1-6 (B.1)

J d3vFo

Jd 3VVF o

(B.2)

(B.3)

d3lFo)

3+ 3 , 22) (B.4)

dA jQ Q
dhpd

n

. r .

noI S')



with h = 1 + e cos, and

( d3vFo4 = ) 4 h 4d3VVtUo

= 3no( )Miri )
i 4

no ) (1 + S 2+

Alternatively, we can write

Jd 3vFoQ2

and

J d3vFoQ4 ) 15no
4r

3n oT4 , IS'\ dA (h)
=wr A -z (() E

2 Is' dA-1 (-0

Comparing the preceding four equations, we obtain

47r
dA 1 1+

and Jdf ((h)4 41r
5

Therefore,

dA -f 2 =
87r
3

165 (=--5 1
\ _ : 2

with k p L = -o y , and E = v2/2.

The third and fourth integrals in Eq.(B.1) involve only passing particles. The usual

way to deal with them utilizes elliptic integrals. Here we employ an alternate method

based on an e expansion to carry out the integrations.

110

154
8 (B.5)

(B.6)

(ýh) 4 . (B.7)

2) (B.8)

15 e
+ 562+ 1548

and

(B.9)

dAdO

mTi (k ps)2

) ýki) I •

(B.10)

15+ Se' + 8
m\ E 1 (B.11)
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First we look at the integral fo -" dA f -Q2 , where

-Q = (k p,) 47rmiE 27r (B.12)d dO

For a large aspect ratio circular tokamak we have

1 _ 1 + cos

=1 1 - A+-cos9" (B.13)

If we let x = 1 - A, then E < x < 1 for passing particles. We may then expand 1/( to

order eM,

1 1 I 1[1 + - cos - +

+ +  2  coe2 C 0 + .. + O (eM+1)], (B.14)8 4x 8x2

where the expansion order M depends on the accuracy desired for the integral fo•' dA f .O Q2

Therefore,

f d 17  an ( 1)n, (B.15)
n=O

where the coefficient an (i) is a nth order polynomial in 1/x, with ao (1) = 27r, and

a2 (1)= 27r ( 16x 2  8l 1 ) (B. 16)
x 16x 8x 16,1

for M = 2, for example. In fact, only even n terms survive the 0 integration since

a2m+l (1) = 0, for m = 0, 1, 2.... Using Eq.(B.15) we find

2w= M 1 _, (B.17)
n=0

where bo = 1,
3 1 1

b2 = 1 + 1 (B.18)16X2 8x 16'
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and b2m+ (1) = 0, for m = 0, 1, 2....
that

jo1- dA d T-2

Using Eqs.(B.17) and (B.12) for M = 2 we find

= fidxf dO Q2

2 47rm E 2
- (kip) T 3

We next increase the expansion order M to obtain a more precise result. The coeffi-

cient polynomial b, (,) has the following form

b ()(1
n

= bk)//xk,
k=O

(B.20)

where the numerical coefficients bi ) can be evaluated using the preceding expansion

procedure, e.g.,
b2 = _ 3

16' 8
(B.21)b -o) 1

16

in the preceding M = 2 case. Once all the numerical coefficients in Eq.(B.20) determined

from Eq.(B.14) we obtain

dA f d• Q2 = (kp) 2 4 r m i E

= (k )

Ti

1
M/2

m=0

M/2

m-=O2

2m

2m Z
k=0

b dx4 .

The preceding integrals can be easily carried out to obtain

1-e dA dO20 1- = (k-p,) 2 4rmiE M/2 2m b(k)
T2q k(1 - e3/2-k)

T • 2m 3/2k - km=O k=0
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(B.19)

o1-6
(B.22)

(B.23)

+2 2
3 )



Now, we look at the term

M/2

E2m
m=0

when m = 0, it gives

6(0)
o (/ - e3/223/2

while for m = 1 we find

,2b(O)
2b 3/23/2
+ 2b1)

3/2 - 1

+ 2b 2)
3/2 - 2

If we write
M/2 2m

E 62m
m=0 k==0

b(k)
2m (1

3/2 - k
-_ 3/2-k)

then
b(0)  2

To = 23/2 3 (B.27)

and T1/ 2 Ti = 0, and
2M

T3/2 - ) 3/2 - 2m"
m=O

(B.28)

Although the preceding expression is an infinite series, we find this series converges very

rapidly. Just keeping the first several terms we obtain the following precise result

T3/ 2 -+ -1.09. (B.29)
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2m - e )2, -, 63/2-i
i=O

(B.24)

1 - c3/2-1)

1 - 63/2-2). (B.25)

2M

E- Tk/26k/2,
k=0

(B.26)



Following this procedure, we can also easily obtain

b(o) + ) b(2) 2
T4 = - + + -+ -. (B.30)

3/2 3/2 - 1 3/2- 2 3

Therefore, to order 0 (E2) we find

M/2 2m (k) 2 2
:2m 2m (1 -3/2-k) - 1.093/2

m=O k=O 3/2 - k (3 3

In general, the integer power coefficients T, in Eq.(B.26) only depend on the coeffi-

cients b$(k ), k = 0, 1, 2, ..., n, or the polynomial bn (1). However, the half integer power

coefficients T(2n+1)/ 2 in Eq.(B.26) require an infinite series to approach the exact value.

Fortunately this series usually converges very rapidly. The expansion procedure we de-

scribed here is different from the conventional approach that uses elliptic integrals. We

expand the integrand from the beginning to avoid the elliptic integrals since we know

the final result will be a Taylor series in inverse aspect ratio e. This approach is alge-

braically less involved and makes some complicated integrals easier to handle. Using this

expansion procedure, we obtain

--dA (kp,) Ti 3 (1 - 1.635e3/2

+e2 - 0.3665/2 -_ 0.028567/2 + !4), (B.31)
10

which is accurate to O (E4).
10-Next we evaluate the integral fo - d _A f dQ Q3 in Eq.(B.1):

f d (p) 2miE 2 f d Oh f dc O 2h3  (B.32)dA Q Q (k Ti (B.32)'
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= d(1 - Ah)h3

= 2r (1 + 3 ~~ A +3c62
2C-~l3

dOQ& 3
/t-i~~ r'\

= (krp,)4 (j Ti)

-A (1 + 3e2 + 3,48

2r 3

dO 2ze

(B.34)

We can apply the same technique as we did to evaluate fo - e dA " -R2 to obtain

dA dOJQ
A Q 3

= (k p,)4 Ti )
2 167r 12

5 (1 - 6e5j 6
(B.35)

(B.36)-0.23e5/ 2 + 3.96 7/2 - 55 ).12

The final integral in Eq.(B.1), f dA f -Q2, contains both passing and trapped par-

ticle contributions. For the passing particle contribution we follow the same procedure

as we did to evaluate fSo' dA J Q2 to obtain0r t oti

f1-e dA - 2 = k, EdA -Q2 = (kip,)4 T( )

+0.99e 5/2 - 5.467/2

The trapped particle contribution is more complicated.

J1-e
dA i dO2

J 1-e
0

dA (j dkh2) 2
Cy

47r 47r
5 15
7r 4
5

=r (k 2m) E (2 1+)jie (fdOrh2)2=(k-pP) 4( dA 2

(B.37)

(B.38)
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J d2 h3

Therefore,

34\\
8ej (B.33)
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where we need to evaluate both f dBJh2 and f 1 for the trapped particles. First we have

d 1 - A + 6cos (1 + 6 cos 8)3/ 2 ,

where the turning angle 0b is defined by 0 b = arccos ( ). We may

sin 2 (Ob/2), and sin y - sin (0/2) / sin (0b/2), then

2 sin cos
dO = 2 CO dy.

V/1 - x sin 2

Hence, Eq.(B.39) can be evaluated as

2 2V•j dO x- sin2 1 +

(B.39)

define x 1 =2-

(B.40)

36 cos 0

= 4 V x j

= 2v{[2 + (2 - 1)]E(x)+(x-1)(2 - )K(x)},

1 - sin 2  [1 +

V/1 - x sin 2 y

3
3e (12 - 2x sin2 Y)

where K (x) and E (x) are complete Elliptic Integrals of the first and second kind, re-

spectively. Similarly, we obtain the bounce time for the trapped particles

f dO _ 4
Vr2 [(1- (B.42)

Using the preceding two equations, the integral in Eq.(B.37) can be written as

1-e- dA dO
01 ,, &

(kp)4 (2mtE 2

=~~ Tk p) n (2e) 3/ 2a dx
{[2 + e (2x - 1)] E (x) + (x - 1) (2 - e) K (x)}2

(B.43)

This integral can be expanded in e and then evaluated numerically to obtain

e dA
d9-2
-Q2 = (kp,)4 2m iESTi ) [2.68e5 /2 + 4.467/2 + (e9/2)] .
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o0bJ d90h 2 = 2

J d9Oh 2

(B.41)

(B.44)

(1 - e) K (x) + eE (x)

1 ) le1 K (x) + FE (x) .2



From this expression we see that the trapped particle contribution only contains half

integer powers of e.
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Appendix C

The Neoclassical Polarization

Calculation for Shaped Plasma

Some of the detailed algebra needed to evaluate the shaped plasma polarization is pre-

sented in this appendix.

When we calculate the neoclassical polarization in Eq.(4.87), we use the small e

expansion for the second term with x = 1 - A to obtain

1
-{1

e cos 0
+2

2x

+ 12 sin2 0]( 1 2q2

- dO{ + e

2x 2q2

3 e2+ 3 cOS2 s + .... + o (

- 2 cos 0 + [(- + 2A

)2 + + 1
+q2) Co s2 B + q2 s in 2 8]e2}.Tq2 2 qq (C.2)

Since ý VB/Bo is expanded only to O (e2), all the high order terms, O (63), are

ignored in this calculation and our calculation is only valid to O (e5/2). Using the pre-

118

1
Bo/B- A

dl B /B oBp

and

(c.1)



ceding two equations along with / = /1 - ABIBo, we may integrate over 9 to obtain

the form

-+ an , (C.3)
n=0

where the coefficient an (-) is a nth order polynomial in 1/x, with a0 (1) = 2r, and

S3wr / + r2
a2  = 1+ 2) + [-2 + 12A + 4B) q

8q2 [-2 (1 + 2 ) + (1 + 12A + 4B) q. (C.4)

In fact, only even n terms survive the 0 integration so a2m+l ( ) = 0, for m = 0, 1, 2...,

since the power index of E is the same power as cos 0 sin 0 in each term of the expansion

of p_. The coefficient an (1) is a nth order polynomial in 1/x since the index of eBp BoC"

is the same or greater than that of 1/x in Eq.(C.1). In addition, the coefficient 1/x" in

the polynomial coefficient an (") must be a number independent of the shaping effects,

because it comes from the e cos 0/x term of Eq.(C.1). Therefore, the inverse of Eq.(C.3)

can be expanded in e as

1 B b le " , (C.5)
Bp Bot n=0

where bo = 1/27r, and

(1 3 1 + + (6A+ + 2B - 1)q2

x 32=x2  16rq2x

-2-2 2 + (12 + 4B + 1) q2

+ 3272rq 2  (C.6)

and the polynomial coefficients bn (1) vanish for odd n and have the same features as

an (1). Then, Eq.(4.97) can be rewritten as

AcM 1 EL1
dA 1 --dip dx b ", (C.7)

0 Bp Bo n=Oe(1+ae)
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where a - A+ K2/2q 2. We evaluate the preceding expression term by term. For a general

term, n = 2m,

dx b2mI
e(1+are)

2m

where we assume b2m ( =) = b/(k) k
k=O

2m,=
C2 = Z: b~2m,

k=O e(l+ae)

(C.8)dx-dXk

and bk are functions of shaping effects and b 27)

is a number. The preceding integration is straight forward,

dxv/Fb2m -(
(1 I)

2m ( 2m

e2m = Zb(2m--
k=O 3/2 k

1 - E3/2-k (1+ aE)3/2- k]

When m = 0 we get

i
e(1+ae)

dx V/-b 2m () 52m bo
9/2 ) 3/2] , (C.10)

while for m = 1 we find

dx '~.b 2m Q 62m -e3/2 (1 + ae)3/2](-+ ) -u2 3/2

- e1/ 2 (1 + e)1/2]

1 - 6-1/ 2 (1 + )-1/2]

e(l+ae)

(C.9)

I
e(i+ae)

+b1) 1/2

1Ibl /22-(2) 2
-1/2

(C.11)
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Finally for m = 2 we obtain

d, dx Vb 2m -* b4 1 (1 + ae)3/2
e(i+ae)

+b4()4 [1 _- e1/2 (1 + ae)1/2

4
+b - 1 - e-11 2 (1 + )/

-1/2 L
4

+b3) - _ -3/ 2 (1 + 3/2

+b4 /2 [- 5/2 (1 -+ ae -5/2]  (C.12)+b)-5/2

After calculating the value of b(, the integral in Eq.(C.7) can be expressed in terms

of an e expansion

J dA 1 B - * Tk //2ek/2, (C.13)

0 Bp Bot i=0

where the coefficients Tk/2 are

1 1To = bo (C.14)
3/2 3ir'

and T1/ 2 = T1 = 0, and

T3/2=-Zb /) 1 . (C.15)T3/2 = - 2m 3/2 - 2m"

Notice that b2, m ) is a number, so the coefficient T3/ 2 is independent of shaping effects.

This series converges very rapidly. Within an error of 2%, we only need the first two

terms to obtain T3/ 2  - 2, but the exact coefficient is

T3/2 - -0.173. (C.16)
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The next coefficient in this e expansion series is

2

k=O Z 3/2 - k

1 + + (-2 + 3A + B) q

67rq2

The last interesting coefficient is

oo

= -a bO -
m=o2

M~= 2m 3/2 - (2m - 1)

0.0383
-0.0383 + 0.0797A + 0.0765B + -

q2

0.0367m 2
q2

(C.19)

(C.20)

where keeping up to ten terms in the preceding series gives the result to an error of 1%.
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Appendix D

The Fitting Procedure

This appendix gives the details of the fitting procedure employed in Chapter 6 for calcu-

lating the eigenfunction expansion coefficients a, (e), ~, (e) and Mn (e).

For each mode number n, we can compute Ki (e), •, (e) and Mn (e) for various e

values, and then fit the numerical curves for the first few coefficients u (n, k), B (n, k) and

M (n, k), which are defined in Eqs.(6.29), (6.30), and (6.31). When e --+ 0, the coefficients

/.s (e), fp (e) and Mn (e) should approach their lowest order values, on (0) = 2n2 - n,

,n (0) = 2 6 ni/ 3 , and Mn (0) = 3r/ (4n - 1), which can be found in Eqs.(6.37), (6.38)

and (6.39). This is shown in Fig.(D-1) for y, and Mn. Usually the first order coefficients

u (n, 1), B (n, 1), and M (n, 1) will be the most accurate, the second order coefficients

u (n, 1), B (n, 1) and M (n, 1) less accurate, and so on. To get better fitting results, we

employ additional information about the properties of these coefficients.

First, we know the coefficient u (n, 1) from Ref.([30])

u(n, 1) = 1.461 r(2 1)!! (D.1)3 /(2n - 2)!!1

Therefore, to accuracy of 0 (/)

4n - 1 (2n- 1)!! (D.2)
S(E) = 2n2 - n + 1.461 n (2n - )! (D.2)V 3 1(2n - 2)!!~
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2

0

0 5 10 15 20
n

Figure D-1: The eigenfunction expansion coefficients varies with modenumber n for small
e, e = 0.004. The red circles are the exact numerical value for e = 0.004. In the first
plot of An, the dashed green line is lowest order contribution, An = 2n2 - n, and the solid
blue line contains the first order correction from Eq.(D.2). In the third plot of M,, the
solid blue line contains only the lowest order contribution Mn = 3?r/(4n - 1). We do not

plot •• since to lowest order it is simply •, = 26,1/3.
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This result is verified in the first plot of Fig.(D-1).

When we fit the coefficients u (n, k), B (n, k), and M (n, k), there exist some con-

straints between them which improve the fitting accuracy, since we know the exact neo-

classical polarization in the collisionless high frequency and the collisional low frequency

limits.

In the collisionless high frequency limit, we know from Eq.(3.39) that P1 = 1 -

1.635e3 /2 . On the other hand, we know from Eq.(6.50) that

P, = 3 (1 - E) Z (D.3)
n=1 

M n

Therefore

E _1 (1 + - 1.635e3 /2 ). (D.4)
=1M 3r

00

Inserting Eqs.(6.37), (6.38), and (6.39) into P -- , and expanding in e, we find

0i o2 1 + B (1, 1) M (1, 1)]
n=1 31 7 47r

00 4n - 1 2)
+[ 4n B (n, 1)2 + - + - M (1,1)2

4i 164r3
n --

S 2B (1, 1) M (1, 1) - M (1, 2)]e + O (E3/2) (D.5)

Comparing this equation to Eq.(D.4), gives

M (1, 1) = 47B (1, 1), (D.6)

and

4r3 4n -M( 1 (, 1)
M (1, 2) = 3 4 B (n, 1) + 4xB (1, 2)

-3B (1, 1) M (1, 1) + 3- M (1, 1)2 . (D.7)47r
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We can also proceed to next order by comparing the e3/2 coefficients in Eq.(D.5) and

(D.4), which will give an expression for M (1, 3) in terms of the constant 1.635 and other

coefficients.

In the low frequency collisional limit, from Eq.(5.48) we know

8
P1 = prii (1 - 1.461/f). (D.8)

In this limit we know from Eq.(6.47) and Eq.(6.48) that

oo 2

P1 = 24vr (1 - e) E _ (D.9)
n=l MnLn"

Again, comparing the e expansion coefficients of Eq.(D.9) and Eq.(D.8), we obtain

u (1, 1) = 1.461 (D.10)

and u (1, 2) and u (1, 3), etc. Interestingly, in Ref.([30]) the coefficient u (1, 1) is calculated

by a variational method, while here we obtain it by a different approach.

The general fitting procedure proceeds as follows:

(1) Fit the coefficients B (n, k), especially B (n, 1) and B (n, 2) accurately.

(2) Calculate M (1, 1) and M (1, 2) from B (n, k) by using Eqs.(D.6) and (D.7), etc.

(3) Calculate u (n, 1) from Eq.(D.1).

(4) Fix the above known coefficients and numerically fit the remaining coefficients.
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