Property testing for distributions
on partially ordered sets

by
Punyashloka Biswal

S.B., Computer Science (2005)
S.B., Mathematics (2006)
Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of '
Master of Engineering in Electrical Engineering and Computer Science

at the
Massachusetts Institute of Technology

September 2007

(©) 2007 Massachusetts Institute of Technology
All rights reserved

Author P B - E A G
Department of Electrical Engineering and Computer Science
July 13, 2007

Certified by Foon e e et e e
P 14

/ Ronitt Rubinfeld

of Electrical Engineering and Computer Science

Accepted by(.... e . , A
e ~ Arthur C. Smith

Professor of Electrical Engineering
Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTITUTE,

OF TECHNOLOGY

oct 03 2007 ARCHIVES
LIBRARIES

Property testing for distributions
on partially ordered sets
by

Punyashloka Biswal

Submitted to the

Department of Electrical Engineering and Computer Science
July 13, 2007

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

We survey the results of Rubinfeld, Batu et al. ([2], [3]) on testing distributions for
monotonicity, and testing distributions known to be monotone for uniformity. We extend
some of their results to new partial orders, and provide evidence for some new conjectural
lower bounds. Our results apply to various partial orders: bipartite graphs, lines, trees, grids,

and hypercubes.

Thesis Supervisor: Ronitt Rubinfeld

Title: Professor of Electrical Engineering and Computer Science

Acknowledgements

I owe a huge debt of gratitude to my advisor, Prof. Ronitt Rubinfeld. She introduced me to
this area of research, and worked with me patiently even when I found it difficult to produce
any new results. This thesis would not have been possible without her encouragement and
support.

Arnab Bhattacharyya and Jelani Nelson, my friends from the theory group, were always
willing to take time out of their own research to talk to me or listen to me as I explained
whatever I was working on. Their involvement has been instrumental in keeping me motivated.

Last but certainly not least, I would like to thank my parents, for bringing me up, sending

me to MIT, and not losing faith in me even when I faltered.

Contents

1 Introduction

2 Preliminaries

3 Monotonicity testing

3.1
3.2
3.3
3.4
3.5

3.6

Connections with uniformity testing

Monotonicity testingonaline.

Alower bound e e e e e e

.......................................

Towards a tester for the hypercube

3.5.1 Level monotonicity e

3.5.2 Projections e

Bipartite graphs o o o

3.6.1 An upper bound in the combined model

3.6.2 Towards a lower bound in the sampling model

4 Tests relying on monotonicity

4.1
4.2
4.3
4.4
4.5
4.6

Oraclemodel e e

.......................................

Layered expander

Hypercube

.......................................

10
10
11
12
12
13
13
14
14
15
15

19
19
20
20
21
21
23

1 Introduction

While most traditional algorithms take super-linear time to process an input consisting of
n elements, the recent proliferation of huge data sets has led to interest in sub-linear time
algorithms. These algorithms typically work by taking a small number of random samples
from their input (specified by an oracle) and give high-probability correctness guarantees. A
particularly natural setting for such tests is when the input is itself a probability distribution
that can be sampled from.

In this thesis. we shall concentrate on algorithms that test or compute properties of
distributions whose domain of definition corresponds to the elements of a partial ordering.
Such distributions often arise in practical applications: consider, for example, the probability
that a patient suffering from a disease displays some set of symptoms. For a particular
symptom to be a good indicator of the disease, we would like to ensure that all else remaining
fixed, a patient is more likely to show the symptom than to not show it. In this case, the
partial ordering is defined by the inclusion relation on sets, and we would like to test whether
the distribution is monotone.

In chapter 3, we will survey algorithms that test whether a given distribution is monotone
or far from being monotone. While there exist good characterizations of how far a function
f: A — B is from monotone for an arbitrary poset A and linear ordering B, surprisingly
little is known about the distance of a distribution from monotonicity. One reason for this
contrast is that distribution testers get samples from different, unknown distributions, and are
therefore harder to characterize than function testers, which always use the uniform distribu-

tion. Another reason is that different metrics are used in the two scenarios: for functions, the

distance to monotonicity is simply the fraction of vertices that need to be changed to make
the function monotone, whereas for distributions we ask for the minimum [; distance to a
monotone distribution.

In chapter 4, we shall switch to a discussion of efficient algorithms that rely on their input
distributions being monotone. Knowing that the input is monotone is often very useful to an
algorithm, because it can then afford to ignore those parts of the input which will have a small
contribution to the result. Algorithms of this form have been described to test uniformity and

independence, as well as to compute the entropy of a distribution, for various classes of posets.

2 Preliminaries

This chapter introduces notation and basic results we shall use in the remainder of this thesis.
Because of their basic character, the results are stated without proof.

We write [n] for the set {1,2,...,n}. A distribution p on a finite set S can be identified
with a vector from RISI. When S = [N], we have p = (p1,...,DN).

Observe that any norm defined on RISl induces a metric on the space of probability

distributions over S. In particular, the l; distance between two distributions q and ¢’ is given

by llg = dll = vV2zes(laz — qyl)?. The l1 distance, also called the statistical distance, is
written as |g — ¢/|.

When we draw i.i.d. samples from a distribution p, we obtain a multiset S. For any
subset I of the domain of the distribution, S; represents the sub-multiset of S whose values

lie within I. For any multiset T', coll(T") represents the number of self-collisions of T'.

Definition 2.1 (Partial order). A relation < on a set S is called a partial order if it has the
following three properties:

Reflexivity for any element x of S, x < x.

Antisymmetry if elements and y of S are such that x <y and y <z, then x = v.

Transitivity if elements z,y, z of S are such that x <y and y < z, then z < 2.

For every partial order < on a finite set S, there is a directed acyclic graph G = (S, E)
such that for any two elements z,y of S, < y if and only if there is a path from z to y in G,

or equivalently, (z,y) is an edge of the transitive closure TC(G).

Definition 2.2 (Monotonicity). Let S and T be sets with partial orders <g and <, respec-

tively. A function f: S — T is said to be monotone with respect to <g and <r if, for any
two elements z and y of S such that x <g y, we have f(z) <7 f(y). Often, when <g and <r

are understood from the context, we say simply that f is monotone.

Definition 2.3 (Property; Robust tester). Let C be a class of combinatorial objects equipped
with a metric d. A subset P C C is called a property. For x € C, define d(z, P) :=
infyepd(z,y). If d(z,P) > ¢, then we say that z is e-far from having property P. An al-
gorithm A(:) is called a robust tester for property P if it accepts all z € P and rejects all '
that are e-far from having P. There are analogous definitions for testers with one-sided or

two-sided error.

Definition 2.4 (Black box; Value oracle). Let p be a distribution over a set S. Then a black
box B for p is an oracle that, on each call, generates a fresh independent sample from S
distributed according to p. A walue oracle V for p is an oracle that, given x € S as input,

outputs the exact value of p,.

A property tester for distributions may have access to its input in the form of a black
box, a value oracle, or both. As we shall see, black boxes and value oracles have (in general)

incomparable power.

Theorem 2.1. Let p and ¢ be distributions on a set S. If A(-) is a statistical test (i.e., an
algorithm that relies on samples from its input distribution, which is specified as a black box),

then E[|A(p) — A(g)[] < |p —q-

3 Monotonicity testing

Batu, Kumar and Rubinfeld show ([2]) that it is possible to test whether a black box distri-
bution on [N] is monotone or far-from-monotone using O(v/N) samples, and demonstrate an
(essentially) matching lower bound of Q(v/N) on the sample complexity. Both bounds draw
upon connections with uniformity testing, which is known to have O(v/N) complexity. They
then go on to extend their bounds to grids of constant dimension (i.e. [m]? for constant d;
note that the number of points in the domain is N = m? rather than n): they obtain an

O(md=1/2) = O(N1-1/24) algorithm, but only a Q(m%?) = Q(v/N) lower bound.

3.1 Connections with uniformity testing

Both the monotonicity testers constructed in [2] break down the domain of a given distribution
into a small number of ‘patches’ such that the conditional distribution on each patch is close
to uniform. Lemma 3.1 below shows how samples from a patch can be used to decide whether

the distribution is close to uniform, or needs to be decomposed further.

Lemma 3.1 (Estimating 5 norm, [1]). Let p be a distribution on a set U of size N, and
let S be a multiset of i.i.d. samples from p. Let I be a subset of U, and define ¢ to be the

conditional distribution of p on I. Then

62

= 32[I]

coll(Sr)

(|521|)

IIIQII2 -

with probability at least 1 — Q(log™2 N) as long as |Sf| = Q(e4y/]I] loglog N).

10

Algorithm 3.1 Test if p is monotone or e-far from monotone

1: Obtain S « s samples from p. (Here, s = O(e™*v/Nlog N).)

2: Bisect I = [1, N] recursively until |Sy| < s/log? or coll(Sy) < (1 +e2,1'32)(|52’|)/|1|. Let
0=1ip <% <--- <141 <4 =N be the endpoints of the resuling sequence of intervals.
if the previous step performed more than O(e~!log? N bisections, then

Reject.
end if
Obtain T' — O(e ' log* N) additional samples from p.
Define a new distribution ¢ as follows: for ix_1 < j < i, set p; = |T(;,_, 4,1/ (ik — ik—1)-
if g is e-close to some flat distribution with the same patches, then
Accept.
10: else
11: Reject.
12: end if

But for any distribution p, we have ||p—U|2 = ¥ (p; — 1/N)? = ||p||> — 1/N. Therefore,

if a distribution has a small number of self-collisions, it is close to uniform.

3.2 Monotonicity testing on a line

A flat distribution on a line is one that can be decomposed into a sequence of uniform
patches (Definition 3.1). [2]’s line tester relies on the fact that it is possible to efficiently find
a flat distribution close to the input distribution (Lemma 3.2), that a flat distribution that
is close to monotone must be close to a monotone flat distribution (Lemma 3.3), and finally,

that it is possible to check whether a flat distribution is close to monotone (Lemma 3.4).

Definition 3.1 (Flat distribution). Let ! be an integer and 0 =iy <i; <--- <41 <4 =N
be indices. A distribution p on [N] is called an [-flat distribution if there exist real numbers

{wj} such that P = wj/(ij has ij_l) for ’ij_l <k < ij.

Lemma 3.2. There is an algorithm A that uses O(¢*v/Nlog N) samples from the input
distribution p, and whenever p is monotone, outputs the description of an I-flat distribution

P that is €/2-close to p, for I = O(e"'log? N).

11

Lemma 3.3. A flat distribution with intervals given by 1 < i; < --- <14_1 < N is e-close to

monotone if and only if it is e-close to a monotone flat distribution on the same intervals.

Lemma 3.4. There is a linear programming-based algorithm that can determine in time
poly(!) whether a given [-flat distribution is e-close to some monotone flat distribution on the

same intervals.

3.3 A lower bound

Theorem 3.1 ([2]). An algorithm that can distinguish monotone distributions on [N] from

ones that are e-far from monotone with 2-sided error must use Q(+v/ V) samples.

Proof idea. For any distribution p, let pf be its reverse (i.e., sz = pp—i+1). Clearly, if both
p and pf are monotone, then p must be uniform. In fact, more is true: if p and p® are both
e-close to monotone, then it can be shown that p must be O(¢)-close to uniform. However,
we know that at least Q(v/N) samples are required to distinguish uniform distributions from

ones that are e-far from uniform. The bound follows. O

3.4 Grids

Batu, Kumar, and Rubinfeld’s monotonicity tester for grids ([2]) follows the line tester’s
approach of approximating the given distribution by a set of monotone patches. For grids, the
natural patches to consider are rectangular. Unfortunately, the partial order makes it difficult
to get a tight bound on the number of patches. For this reason, the algorithm’s recursion
simply stops dividing patches once it’s close to the origin, on the grounds that a monotone
distribution cannot place too much weight there (this rule is in addition to the weight and
balance rules). This algorithm achieves a O(m@1/2) sample complexity.

The corresponding lower bound of Q(md/ 2} is obtained by reducing uniformity testing to

multiple instances of monotonicity testing, just as in the linear case.

12

3.5 Towards a tester for the hypercube

Given the known upper and lower bounds for lines and (constant-dimensional) grids, it is
natural to ask what is the complexity of testing monotonicity on hypercube graphs. Unfor-
tunately, no sublinear-time monotonicity tester is known for the boolean hypercube {0,1}™.
While we shall not show an algorithm for this problem, we shall demonstrate several properties
of monotone distributions on the hypercube that a tester might find useful. An actual tester
might use these properties to provide ‘certificates of non-monotonicity’ for some (but not all)
far-from-monotone distributions. For completeness, it would then need to test some more
properties to be able to reject the remaining far-from-monotone distributions (for example,
se. |

In what follows, let p be a monotone distribution on {0, 1}"”.

3.5.1 Level monotonicity

One natural way to look at monotonicity on the hypercube is to ask how a monotone distri-
bution behaves on levels, where the ith level L; of a hypercube {0,1}" is defined as the set of
points whose coordinates sum to . One might naively think that the weight of levels increases

as we go up; this is not true, as demonstrated by Theorem 3.2.

Theorem 3.2. Let p be a monotone distribution on a hypercube {0, 1} with levels {L;}7_,.
Then the average weight of a point on the ith level increases as a function of i. Formally, if
i > j, then p(L)/(}) 2 p(L;)/(3)-

Proof. Each point of L; has n — i neighbors in L;;; (because there are n — i coordinates that
can be changed from 0 to 1), and (similarly) each point of L;y; has i + 1 neighbors in L;.
Therefore, if we write down all the inequality relations between points of these two levels, we
find that each point of L; occurs n—i times, and each point of L;1; occurs i+1 times. Adding

up all these inequalities, we obtain

(=)) pa<(i+1) > ps (3.1)

a€L; B€Lit1

13

But |Li| /| Liy1| = (?)/(zzl) = (i +1)/(n —1). The result follows. O
Call a distribution if it has property (3.1). We just showed that all monotone distributions

must be level-monotone.

Remark 3.1. The converse is not true: consider the distribution that places a weight of

(’;) /2™ on a single vertex of level L;, for i =0, ..., n, and places no weight elsewhere.

3.5.2 Projections

Theorem 3.3. Let S C [n] be a set of indices. Define the S-projection of p to be a distribution
p° over {0,1}5, whose weights are set as p3 = 3~ gefn]\s Pag: Where a3 denotes the n-bit string
constructed by getting the values of the S-indices from « and of the rest from 8. Then if p is

monotone, ¢ is also monotone.

Proof. If o > o, then a3 > o/f3 for each 3. Therefore, when we sum up corresponding

weights, monotonicity is maintained. O

Remark 3.2. Once again, all monotone functions are projection-monotone (i.e., their pro-
jections are monctone), but checking a small set of projections for monotonicity does not
guarantee that the original distribution is monotone. For example, define p to be the uniform
distribution on the set of points of even parity; this distribution has distance 1 from mono-
tone. Then for any S C [n] containing at least two elements, the projection p° is uniform,

and therefore monotone.

3.6 Bipartite graphs

Bipartite graphs, or 2-layer posets, are interesting because they have a particularly simple
structure. We shall consider regular graphs, i.e., those in which all the upper vertices have
the same (in-)degree and all the lower vertices have the same (out-)degree. Another reason
to study these graphs is that every pair of adjacent layers of a hypercube has this structure.

Since we know that the middle layers of a hypercube contain a large fraction of its vertices

14

and edges, we need to understand distribution monotonicity on these graphs in order to solve
the problem on the (more complicated) hypercube.
In this section, we shall consider bipartite graphs (alternatively called 2-layer posets)

G = (L, R; E) where E C L x R, so that for any z,y € G, x < y implies x € L and y € R.

3.6.1 An upper bound in the combined model

Theorem 3.4. Let G = (L, R; E) be a bipartite graph where all the L-vertices have outdegree
d. There exists an algorithm that distinguishes between monotone distributions on G, and
distributions that are e-far from monotone. The algorithm uses 1/¢ samples and makes d/e

queries.

Proof. Fix a distribution p, and call z € L bad if some edge above it is violated. If the total
weight w of all the bad vertices was less than ¢/2, then we could construct a new distribution
9’ in which all the formerly bad vertices have weight 0 and the weights of all the R-vertices
have been increased by w/|R|. Clearly, p’ is monotone and at most e-far from p. This means
that if p is e-far from monotone, it must have at least ¢/2 weight on bad vertices.

This suggests a straightforward test: we sample ©(1/¢) vertices. For each sampled L-
vertex, check that its incident edges are unviolated. If p is monotone, this test clearly accepts
it. If it isn’t, then with probability 1 — (1 — e)e(l/) =1-— M one of the sampled vertices

will be bad, and one of its edges will be violated. |

3.6.2 Towards a lower bound in the sampling model

Remark 3.3. While it is true that a distribution on a multi-layer poset is monotone if and
only if it is monotone between each pair of adjacent layers, it is unclear how to make this
characterization robust under small deviations from monotone.

As a simple example, consider a 3-layer poset and an associated distribution that is e-far
from monotone when restricted to either pair of adjacent layers. We do not know a bound on

how far the entire distribution is from monotone.

15

Below, we give evidence that distributions on bipartite graphs require Q(N?/3) samples
to test for monotonicity, even when we restrict ourselves to perfect matchings. Define the
directed bipartite graph G = (L, R; E) where L = [N/2] x {0}, R = [N/2] x {1} and E =
{((4,0),(3,1)) | < € [N/2]}. This graph defines a partial ordering on its vertices: (i,0) < (z,1).

Conjecture 3.1. There exist families of distributions P and Q@ over V(G) such that
e Every distribution in P is monotone and every distribution in Q is e-far from monotone.

e No algorithm that takes s = o(N?/3) samples can distinguish between black boxes for a

p randomly chosen from P and a ¢ randomly chosen from Q.

A possible approach. We shall begin by defining two families of distributions, one monotone
and one far from monotone. To make computation easier, we shall modify the distributions
slightly to get some independence properties. Finally, we shall look at the distributions of the

statistics available to an algorithm and attempt to show that they are very close.

Defining the families Now define distributions pp and ¢o on the vertex set with weights as

follows:
4 (
% 0<z§%%— ' % 0<z<9—21(-\)’—
Poli,0) = ¢ po(i, 1) = {
1-10¢ 9N _ ; ~ N 1+10e 9N N
|V W <!=3 N 2 <'S3
{
e o<y | i<
QO(Z,O) = ﬁ QO(Z, 1) - 4
1-4¢ n N l+de N N
|V 1<isy |~ T<is3

It is clear that pg is monotone and qg is e-far from monotone. Let P be the set of all edge
permutations of pp, and likewise let Q be the set of all edge permutations of gy (by an edge
permutation we mean a renaming of the vertices of the graph which preserves the connectivity,
i.e. the edge ((,0), (¢,1)) gets mapped to ((xi,0), (ni, 1))).

Now, consider an algorithm M that takes s = o(N?/3) samples from the black box

provided to it, and accepts p €g P with probability > 4/5. We shall try to show that it

16

must accept ¢ €g @ with probability > 3/5. Because of the random permutation used in the

construction of p and ¢, it suffices to consider symmetric algorithms.

Independence Observe that the probability that three vertices sampled from the distribution
all lie on the same edge is bounded by 4/N2. So if we take s samples, the probability that
some triple shares an edge is at most 4(3)/N? = o(1) when s = o(N?/%). We shall assume

henceforth that this event does not occur.

We would like to prove an impossibility result for M, but we shall instead consider an
algorithm M of the following form: it picks a random number 3 from the Poisson distribution
with parameter 2s (i.e., Pr[5 = k] = e=*A¥/k!, where A = 2s), and then decides whether
its input distribution is from P or Q using § samples. Observe that § > s with probability
1 — o(1), so that one possible strategy for M is to pass the first s samples to M and discard

the rest. Therefore, it would suffice to prove our claim for M.

While we shall not succeed in proving our conjecture completely even for M, we shall

provide some evidence and the beginnings of a possible proof.

Computation For any distribution from P or Q, the distribution induced on edges is uniform.
Call an edge single if exactly one sample lies on it, and double if two do. Then the number of

single and double edges is independent of which distribution we choose (whether from P or

Q).

A single edge e can have its sample lie on the 0 vertex or the 1 vertex. Similarly, a double
edge can have samples of the form 00, 01, or 11. We shall denote the event that a single edge

e has its sample on the 1 vertex by e[11. Similarly, we write e[111 for a double edge e with

17

both samples on the 1 vertex. Then,

PrleC 1] e single, P] = %%+ 11_0 1+21()e _ 1;6

Prlel11 | e single, Q] :%. 1;26 +%_1;4e _ 1;6
Prled11 | e double, P] = 1% (%)2 i% (1 +210€>2 _ 1 +2€4—+— 20¢2
Prled11 | e double, Q] = .;_ (1 “226)2 % (1;4e>2 _ Ltgﬁf_go_g

Here, conditioning on P means that the distribution being sampled from was chosen from the
family P. Unfortunately, this does not complete the proof, because we need to show that these

quantities have similar joint distributions, not just that their expectations are the same. [

18

4 Tests relying on monotonicity

Batu, Kumar, and Rubinfeld ([2]) pose the question: if we know with certainty that an
input distribution is monotone under some partial ordering of the domain, how can we use
this information to reduce the sample complexity of testing uniformity? We shall summarize
results that answer this question from ([2]) and Rubinfeld and Servedio ([3]), along with a few

more of our own.

4.1 Oracle model

The following is a slight generalization of what appears in ([3]):

Theorem 4.1. Let (S, <) be a pointed poset (i.e., one that has either a minimum or a
maximum element). Then there exists a single-query algorithm that distinguishes between
the uniform distribution, and monotone distributions that are not uniform, when given oracle

access to the distribution weights.

Proof. Suppose S has a minimum at p (the maximum case is analogous). The algorithm
simplies queries the weight of the input distribution p at u. If the weight equals 1/|S|, the
algorithm declares that p is uniform, and if not, it declares that p is not uniform.

By monotonicity, we know that the weight of every point in S is at least p,. Suppose
pu = 1/|5] and there exists some point o > p such that p, > 1/|S|. Then the sum of all
the weights would be at least (|S| — 1)p, + pa > 1, a contradiction. This shows that p must
be uniform. Conversely, if p is uniform, then p, = 1/|5|, by the definition of the uniform

distribution. O

19

In this form, the result applies to lines, grids, trees, and hypercubes.

4.2 Lower bound for bipartite graphs

We shall use notation from section 3.6. Note that this lower bound applies even to the simpler

case of matchings.

Theorem 4.2. Let G = (L, Ry E) be a perfect matching with N vertices in all, where L =
[1,N/2], R = [N/2+ 1,N], and E = {(i,i + N/Q)}ivz/f Any algorithm that distinguishes
between the uniform distribution and monotone distributions that are e-far from uniform

requires (v N) samples.

Proof. Given an arbitrary distribution ¢ on [N/2], construct a distribution p with weights
given by
qi/2 i €[1,N/2]
pi =
¢%-nj2/2 1 €[N/2+1,N|.

The distance of p from uniform is given by
N/2 N/2

N
S lps = YN = |20 = 2/N| = |pi — 2/N],
=1 =1 i=1

which is just the distance of ¢ from uniform. The claim follows from the Q(y/n) lower bound

for uniformity testing. O

4.3 Line

Theorem 4.3 (|2]). There exists an algorithm A that distinguishes the uniform distribution
on [n] from monotone distributions that are e-far from uniform, using only O(1) samples

(where we suppress the dependence on ¢ and the confidence parameter 0).

20

4.4 Grid

Theorem 4.4. There is an algorithm that can distinguish between the uniform distribution
over [m]? and distributions over [m]?> that are monotone and uniform over their support
(subset-uniform), but e-far from uniform (over the entire domain). The algorithm uses O(1/€?)

samples.

Proof. A subset-uniform distribution that is e-far from uniform must have support over exactly
m?(1 — ¢/2) points. Now, if the distribution is supported at any point of the square [1,dm] x
[1,0m], it must have support over the entire square [§m + 1,m] x [0m + 1,m]. Therefore,
a monotone subset-uniform distribution that is e-far from monotone cannot be supported
on any point of the square S = [1,dym] X [1,dom]|, where & is the solution of the equation
(1-0)2=1-¢/2.

This suggests a simple uniformity test for this class of distributions: obtain ¢/Z samples,
and test if any of them lie within S. If the distribution is uniform, then we will see a sample
from S with probability 1 — (1 — (53)6/ B =1- e~ ¢, which can be made arbitrarily close to 1.
On the other hand, if the distribution is monotone, we have already seen that there can be

no samples whatsoever from S. O

Remark 4.1. Note that the tester of Theorem 4.4 is one-sided, but in the unusual direction:
it always correctly rejects subset-uniform monotone distributions that are e-far from uniform,

but may occasionally fail to accept ones that are uniform.

4.5 Layered expander

The hypercube can be viewed as a layered graph where each layer is an expander. As an
attempt to understand how this expansion affects whether it is easy to test monotone dis-
tributions for uniformity, we consider a graph consisting of several identical expander layers
(unlike the hypercube, whose layers have different sizes and expansion parameters). We show

that such graphs do, indeed, have good tests when the number of layers is large compared to

21

the logarithm of the size of each layer. (It is unclear in retrospect whether this was a good
model for the hypercube, because the number of layers in a hypercube is roughly equal to the
size of the widest layers.)

Formally, let H be a balanced, bipartite expander with vertex expansion o over 2m
vertices. We have the additional requirement that [['(S)| > «|S| for all vertex sets S C H of
size less than or equal to N/a. Note that this requirement is a very strong one: we need the
expander to “expand all the way.” Orient the edges from left to right to obtain a poset. Now,
construct a graph G consisting of k + 1 layers, such that each pair of adjacent layers looks like

H. Call the jth layer L;.

Theorem 4.5. When k >> logm, there exists an algorithm that distinguishes the uniform
distribution over G from monotone distributions that are uniform over their support, but
are e-far from being uniform over the entire set. The sample complexity of this algorithm is

asymptotically independent of the size of G.

Proof. Let j be the smallest number such that the input distribution p has support on Lj;.
Then, because of monotonicity and the expansion of the graph, it must have support over a
points of layer j + 1, o? points of layer j + 2, and so until it has support over all the points
of the (j + clog m)th layer for some c.

Now, we shall bucket together layers of p, clogm at a time, to construct a new distribution

iclogm
r=(i—1)clogm+1

g on the line [k/{clogm)]. Define ¢; = 3 Y wcr, Pa- Then observe that g
has no weight on points of [1,7/(clogm)], and constant weight on points of [j/(clogm) +
2,k/(clogm)]. There is one vertex in the middle, whose weight is intermediate between those
before and those after it (by monotonicity). If we ignore this vertex, then p and g have the
same distance to the uniform distribution, because we have only bucketed together points of
the same weight. The contribution due to this vertex is O(clog m/k), which is very small by

our assumption that & > logm. Therefore, in order to test p for uniformity, it suflices to

apply the test for lines to q. 0

22

4.6 Hypercube

Theorem 4.6 ([3]). There exists an algorithm A that distinguishes the uniform distribu-
tion on {0,1}" from monotone distributions that are e-far from uniform, using only poly(n)

samples.

Proof idea. The algorithm is very simple: it takes poly(n) samples from the input distribution
and checks that their average level is within /n of n/2. Intuitively, this works because a
monotone distribution that is far from uniform must have less weight in the upper half of the

cube than in the lower half. O

Theorem 4.7 ([3]). There exists a monotone distribution p over {0,1}" such that any al-
gorithm that can distinguish p from monotone distributions e-far from p requires at least ¢”
samples for some c¢. Further, p has a very simple description (in particular, it is easy to sample

from).

It suffices to set p to be the joint distribution of n independent biased coins, where
each coin has probability 4/5 of yielding 1. This surprising result can be understood in
a geometric sense as follows: the monotonicity constraints carve out a convex polytope of
monotone distributions, and the uniform distribution is a vertex of this polytope, while our p
is an interior point. Thus, a test for the distance from the uniform distribution needs to rule

out a smaller set of possibilities than the corresponding test for p.

23

Bibliography

[1] T. Batu, L. Fortnow, R. Rubinfeld, W. Smith, and P. White. Testing that distributions
are close. In FOCS ’00: Proceedings of the forty-first annual IEEE symposium on the
Foundations of Computer Science, volume 00, page 259, Los Alamitos, CA, USA, 2000.
IEEE Computer Society.

[2] T.Batu, R. Kumar, and R. Rubinfeld. Sublinear algorithms for testing monotone and uni-
modal distributions. In STOC ’04: Proceedings of the thirty-sizth annual ACM symposium
on Theory of computing, pages 381-390, New York, NY, USA, 2004. ACM Press.

(3] R. Rubinfeld and R. A. Servedio. Testing monotone high-dimensional distributions. In
STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on Theory of com-
puting, pages 147-156, New York, NY, USA, 2005. ACM Press.

24

