
A Synchronous Communication System for a
Software-Based Byzantine Fault Tolerant Computer

by

Reuben Marbell Sterling

B.S. Computer Science and Electrical Engineering
Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Masters of Engineering in Electrical Engineering and Computer Science
at the

Massachusetts Institute of Technology

September, 2006

c©2006 Reuben Marbell Sterling. All rights reserved.

The author hereby grants MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part.

Signature of Author:

Department of Electrical Engineering and Computer Science

August 21, 2006

Certified by:

Roger Racine

Charles Stark Draper Laboratory

Thesis Supervisor

Certified by:

Barbara H. Liskov

Ford Professor of Engineering

Thesis Advisor

Accepted by:

Arthur C. Smith

Professor of Electrical Engineering

Chairman, Department Committee on Graduate Theses

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4405868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THIS PAGE INTENTIONALLY LEFT BLANK

2

A Synchronous Communication System for a
Software-Based Byzantine Fault Tolerant Computer

by

Reuben Marbell Sterling

Submitted to the
Department of Electrical Engineering and Computer Science

August 21, 2006

in Partial Fulfillment of the Requirements for the Degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes the redesign of a Byzantine-resilient, quad-redundant computer to
remove proprietary hardware components. The basic architecture consists of four Commer-
cial Off-The-Shelf (COTS) processors in a completely-connected network of point-to-point
ethernet connections. In particular, the focus of this thesis is an algorithm that combines
clock synchronization and communications between fault containment regions by inferring
relative clock skew from the arrival time of expected messages. Both a failsafe and a fault-
tolerant algorithm are discussed, though the fault-tolerant algorithm is not fully analyzed.
The performance of a prototype and the failsafe synchronization algorithm are discussed.

Technical Supervisor: Roger Racine
Title: Principle Member Technical Staff

Thesis Advisor: Professor Barbara H. Liskov
Title: Ford Professor of Engineering, MIT Computer Science and Artificial Intelligence Laboratory

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

Acknowledgment
August 21, 2006

This thesis was prepared at The Charles Stark Draper Laboratory, Inc., under Internal Com-
pany Sponsored Research Project 20317-001, Software Based Fault Tolerant Computer.

Publication of this thesis does not constitute approval by Draper or the sponsoring agency
of the findings or conclusions herein. It is published for the exchange and stimulation of
ideas.

(Reuben Marbell Sterling)

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

THIS PAGE INTENTIONALLY LEFT BLANK

8

Contents

1 Introduction 13

1.1 Thesis Description . 14

1.2 Advantages of Software-Based Fault Tolerant Computers 15

1.3 Organization . 16

2 Background 17

2.1 Basic Voting Architectures . 17

2.2 Advanced Voting Architectures . 18

2.3 Introduction to Byzantine Resilience . 19

2.4 Introduction to X-38 Fault Tolerant Computer 23

2.5 Clock Synchronization . 26

3 System Overview 29

3.1 Physical Description . 30

3.2 Software Design . 34

3.2.1 Abstraction Layers . 35

3.2.2 Communication Stack . 37

3.2.3 Code Structure . 43

4 Synchronization Protocol 49

9

4.1 Motivation and Description . 50

4.2 Definitions and Assumptions . 53

4.3 Failstop Algorithm . 56

4.3.1 Characterization of Algorithm for Two Nodes 60

4.3.2 Characterization of Algorithm for Three or More Nodes 92

4.4 Byzantine Resilient Algorithm . 114

5 Experimental Application 135

6 Results and Conclusions 141

6.1 Prototype and Experimental Results . 141

6.1.1 Current SBFTC Limitations . 141

6.1.2 Synchronization Algorithm Performance 142

6.1.3 SBFTC Performance . 145

6.1.4 Design Alternatives . 148

6.2 Discussion and Recommendations . 149

6.3 Summary and Future Work . 151

6.4 Acknowledgements . 153

10

List of Figures

2-1 Basic Voter . 18

2-2 Advanced Voter . 19

2-3 Potential X-38 Configuration . 24

2-4 Actual X-38 Configuration . 25

3-1 Ideal SBFTC Physical Layout . 31

3-2 Actual SBFTC Physical Layout . 32

3-3 Message Delivery through a Switch . 33

3-4 X-38 vs. SBFTC Layout . 34

3-5 Software Abstraction Layers . 36

3-6 Communication Layers . 37

3-7 Class 1 Message Steps . 42

3-8 Class 2 Message Steps . 43

4-1 Synchronization Timing Diagram . 58

4-2 Failstop Synchronization Algorithm . 59

4-3 Byzantine Synchronization Algorithm - Part 1 116

4-4 Byzantine Synchronization Algorithm - Part 2 117

5-1 Inverted Pendulum . 136

5-2 Physical Layout of Experimental Application 138

11

5-3 Experimental Application Screen Shot . 138

5-4 Demonstration Timing Diagram . 139

6-1 Dmax vs. Min network latency and max network latency 144

6-2 Dmax vs. Min network latency and Latency Spread 144

12

Chapter 1

Introduction

The advantage of fault tolerant computer systems in critical applications is clear. Comput-

ers are a powerful and ubiquitous resource, and their reliability can dictate the success or

failure of a system. In particular, applications involving human safety require computer

reliability far greater than what is typically needed. In such important applications, fault

tolerant computer systems are absolutely necessary to ensure the safety of the humans in-

volved.

In a naively engineered system, reliability of the whole system is only as good as the

most unreliable piece. Unfortunately, building basic components of a system to the stan-

dards required by critical applications is usually infeasible due to time, cost, or techno-

logical constraints. As a result, systems must be engineered with the low reliability of

individual components in mind.

The reliability of a computer system depends on both the correctness of the software

written for the system and the robustness of the hardware against malfunction, particularly

when the system operates in extreme environments like Earth orbit and beyond. Both hard-

ware and software have their own unique challenges when implementing highly-reliable

systems. This thesis is concerned primarily with techniques to increase the reliability of

13

the hardware aspects of critical systems by running identical code on redundant computers.

1.1 Thesis Description

This thesis project spans the first year of a two year effort to redesign an existing fault tol-

erant computer to remove specialized hardware. The original fault tolerant computer, built

by Draper Laboratory for NASA’s X-38 vehicle, features four redundant computers that

communicate via special-purpose hardware. The system also provides a complete API for

user applications to take advantage of the fault tolerance features. The result of the current

thesis work is a prototype fault tolerant computer running entirely on generic hardware,

with the specialized communication protocols implemented entirely in software. Basic ab-

straction layers were built to support a rudimentary API, and an experimental application

was developed to demonstrate the control of a simple inverted pendulum.

The work focused on redesigning the low-level synchronization, communication and

voting protocols that support the fault tolerant properties of the system, since this is the

functionality implemented at the hardware level in the X-38 computer. While the algorithm

used to vote the inputs and outputs of the redundant computers remains largely identical

to that implemented in the X-38 system, the synchronization and communication protocols

are substantially different.

In addition to the implementation of a prototype system, a major goal of this thesis

was to propose and develop a Byzantine resilient synchronization algorithm targeted at the

specific requirements for this system. The algorithm runs on each node and determines

how far to adjust that node’s clock forward by inferring other nodes’ clocks from the ar-

rival times of messages. At each round of execution, the algorithm selects the node that

it determines to be the most ahead and adjusts the local clock to match it as closely as

possible. Unfortunately, due to time constraints, the proposed algorithm was not developed

14

sufficiently. Instead, the partial work completed toward the development of the Byzantine

resilient algorithm is given in this thesis, and the continued development and comparison

is left for future work.

1.2 Advantages of Software-Based Fault Tolerant Com-

puters

Traditionally, fault tolerant systems are built using specially designed hardware. This spe-

cialized hardware might act as interfaces between redundant computers, or it may even be

processors designed for fault tolerance at the CPU level via redundant circuitry. Hardware-

level fault tolerance is motivated by performance requirements typically not achievable at a

software level, but the development and low-volume fabrication costs of special hardware

makes fault tolerance typically quite expensive. Fortunately, as processor speeds grow and

communication latencies shrink, the opportunity to lift fault tolerance functionality from

hardware to software becomes more realistic. The migration of fault tolerance support to

software allows the use of generic hardware. As a result, fault tolerant computers will

become cheaper to produce.

In addition, implementing fault tolerance support in software allows an unprecedented

level of flexibility. For instance, if a hardware-based fault tolerant computer loses some

specialized hardware due to a fault, the functionality of that piece of hardware may be lost

for good. A fault tolerant computer in which specialized functions are implemented in

software could migrate that functionality from one generic piece of hardware to another.

15

1.3 Organization

Chapter 2 presents a discussion of background information on the subject of fault tolerant

computers and clock synchronization. Chapter 3 follows with a description of the design

of the prototype software-based fault tolerant computer (SBFTC) developed as part of this

thesis work.

Chapter 4 describes the partially-developed Byzantine resilient synchronization algo-

rithm. It begins by describing the motivation for the development of the algorithm and

then introduces the definitions and assumptions used in the design and analysis. A simpler,

failstop (non-Byzantine) version of the algorithm is presented and analyzed as a introduc-

tion and guide to reasoning about the Byzantine resilient algorithm. Finally, the Byzantine

resilient algorithm is introduced. The intuition behind the algorithm is described, and the

beginnings of mathematical analysis are presented, but a full analysis is not yet available.

Chapter 5 describes the experimental application developed to demonstrate and test the

prototype SBFTC, and, finally, Chapter 6 presents the experimental results from this thesis

work and concludes with suggestions for future development.

16

Chapter 2

Background

This chapter provides background information necessary to understand the thesis topic be-

fore the work is described in greater detail. An introduction to fault tolerance, particularly

Byzantine fault tolerance, is presented, followed by an introduction to the Draper Labora-

tory X-38 fault tolerant computer. A brief survey of former research in clock synchroniza-

tion is given, along with additional relevant research.

2.1 Basic Voting Architectures

Techniques to increase the reliability of the hardware of critical systems typically use re-

dundant computers, each executing the same code simultaneously, operating on the same

inputs, and (ideally) producing the same outputs.

Figure 2-1 presents a logical diagram of such a system. Fault detection is done via vot-

ing. When the redundant computers produce output, such as an actuator command or status

message, the outputs from all the redundant computers are compared by a voting element

for discrepancies. If a discrepancy is detected, various actions may be taken, depending

on the number of redundant outputs available for comparison. Assuming only a single er-

17

ror, if three or more redundant outputs are available and two are in agreement, the system

may continue to function normally. If only two redundant outputs are available and they

disagree, typically the system cannot continue and merely reports an error and ceases ex-

ecution. This system behavior stands in contrast to a non-redundant system, which would

continue unchecked and produce incorrect output in the event of an error.

Figure 2-1:In the basic voter architecture, multiple computers execute the same code simultane-
ously. The redundant output created by the computers is voted to produce a single output masking
any single error.

2.2 Advanced Voting Architectures

The voting system described above is not sufficient for many critical applications, par-

ticularly space operations, where radiation can corrupt any part of the system. Although

faults that occur within the redundant computers would be handled correctly, consider the

consequences of a failure of the voter element. While the voter may be considerably less

complex than the redundant processors and less prone to error, the existence of a single

point of failure excludes this design as a viable candidate for space applications.

Figure 2-2 shows an architecture that avoids single points of failure. Each node in

the redundant system represents a fault containment region (FCR). Each FCR experiences

18

faults independently from every other. For example, an electrical short in one FCR is

guaranteed not to affect any other FCR.

Every node is fully connected to every other via a bi-directional link. Messages can

travel from one node to another without affecting communication in the opposite direction

or between any other pair of nodes. While single failures may cause an FCR or a link to

become unavailable, this architecture supports communication and voting protocols that

are unaffected by an error in one part of the system.

Figure 2-2:In the advanced voter architecture, processors broadcast their output to all other proces-
sors, which each vote the results.

2.3 Introduction to Byzantine Resilience

One important type of fault tolerance supported by the above architecture is known as

Byzantine resilience. The term “Byzantine” is used as a synonym for “arbitrary.” It was

originally coined in a paper by Lamport, et. al. [3], which described algorithms to reach

consensus among cooperating parties – in their examples, Byzantine military generals –

despite the existence of “traitors” that may fail to pass on messages, lie, or even conspire

to break the consensus among the loyal generals.

The ability to tolerate arbitrary system faults, including lying and collaboration, might

19

seem like an excessive precaution. In many kinds of applications for which fault tolerant

systems are required, like manned space exploration, the likelihood that the system may

contain an active adversary is slight. Nonetheless, there are a few reasons why it might be

preferable to design a system to be Byzantine resilient.

First, many types of failures that can occur naturally are similar to the types of attacks

an active adversary might use to break the consistency of a system. For example, a node

with failing hardware could easily transmit slightly different versions of a message to dif-

ferent recipients, introducing the same sort of confusion to the system an active adversary

would want. Second, designing a system to handleany fault makes reasoning about the

capabilities of the system much easier.

Lamport’s paper proposes the following scenario. In a group ofn generals, there exists

a single commanding general andn−1 lieutenant generals. The commanding general must

send a message to his lieutenants such that the following requirement are satisfied:

1. All loyal generals obey the same order.

2. If the commander is loyal, every loyal lieutenant obeys the order he sends.

3. If the commander is not loyal (sends conflicting messages), every loyal lieutenant

must agree on the same order (or agree to take no action).

In the architecture shown in figure 2-2, the incorrect execution of any single processor

is considered a single fault. When a system is described as Byzantine resilient, it means

that the system can tolerate some number of arbitrary faults and still function correctly. The

number of tolerated failures depends on the number of nodes in the system, how completely

the nodes are connected, whether the system is synchronous or asynchronous, and also on

the types of messages being passed.

A synchronous system is one where the absence of a message from a particular node

implies that the node is faulty. An asynchronous system makes no such assumption. The

20

Internet is an example of an asynchronous system. If a computer sends a message to another

computer across the Internet, the communication medium offers no guarantees about the

delivery time of that message or even that the message will arrive at all. A failed delivery

does not implies that the sender is faulty. Systems with more predictable communication

mediums, such as point-to-point connections, can support synchronous communication. If

a node expects a message to arrive from another node by a particular time and it receives

no message, the receiving node may assume the sender is faulty. Lamport et. al. assume

synchronous communication.

Lamport et. al. describe two message types, “oral” and “written”. Intuitively, oral

messages may be modified as they pass through nodes. Written messages, however, cannot

be changed without detection and are always “signed” by the author. As a result, a recip-

ient of a written message can know for certain who composed the message, or else he is

guaranteed to notice a modification.

For synchronous systems using oral messages, Lamport et. al. show that in order to

tolerate f faults, there must be at least 3f + 1 total nodes in the system, i.e. 2f + 1 loyal

nodes. The system described in this thesis implements oral messages and a synchronous

communication system.

A Simple Byzantine Resilient Protocol

Consider a system designed to handlef faults. There must ben ≥ 3 f + 1 nodes in the

system. Each pair of nodes has a dedicated two-way link through which that pair can send

messages between each other. Thus configuration allows a node to distinguish between

messages from different nodes. The generalized algorithm requiresf recursive iterations,

but the specific case off = 1, which only requires two communication rounds, is described

here.

21

The steps of the algorithm are as follows:

1. The node with the message to transmit begins by broadcasting the message to all

other nodes.

2. When a node receives the original message, the node stores it and re-broadcasts it to

all other nodes.

3. When a node receives the re-broadcasted message, the node stores it.

4. After both communication rounds are complete, each node compares all the versions

of the messages it received and accepts the majority version. If no majority is found,

no message is accepted.

This algorithm satisfies the requirements listed above for Byzantine resilience. Con-

sider requirement 2. Given that only one adversary may exist, if a commander sends the

same message to all lieutenants, every node will receive the same messageat leastone

more time. Since each lieutenant receives a maximum of three versions (from the com-

mander and two other lieutenants), two matching messages comprise a majority, and the

correct message is accepted.

Now consider requirement 3. A non-loyal commander is one who does not send the

same original message to all three lieutenants. Fortunately, since the commander is dishon-

est, the three lieutenants are guaranteed to be honest. Letm1, m2 andm3 be three possible

messages the commander can send. Say the commander sendsm1 to two of the lieutenants

andm2 to the third. Then, in the second round, the first two lieutenants will receive another

copy of m1 from the other and the third will receivetwo copies ofm1 from the first two.

Thus, all three lieutenants have received a majority ofm1 messages.

Suppose the disloyal commander sendsm1 to the first lieutenant,m2 to the second,

andm3 to the third. This time, after round 2, none of the lieutenants will have received a

22

majority ofanymessage, thus all the lieutenants will agree to not accept any message.

Requirement 1 follows from 2 and 3.

2.4 Introduction to X-38 Fault Tolerant Computer

The X-38 fault tolerant computer (FTC) is a Byzantine resilient, quad-redundant system on

which this thesis is based [8]. Implemented at Charles Stark Draper Laboratory in 2002 for

NASA’s X-38 experimental aircraft, it provides a flexible architecture in which fault toler-

ant properties are provided by specialized hardware elements known as Network Elements

(NE). In addition to the fault tolerant hardware architecture, the X-38 computer includes a

large set of software libraries, which high-level software applications use to inherit the fault

tolerant properties of the system. Since this thesis is primarily concerned with redesigning

the specialized hardware as software, only the X-38’s hardware architecture is described

here.

Five NEs are linked in a fully connected network, and they perform the synchronization

and I/O voting necessary for fault detection. The actual redundant processing is done by

COTS processors that sit behind the NEs. Each redundant processor resides behind a differ-

ent NE. A group of redundant processors is known as a virtual group. The quad-redundant

virtual group requires processors residing behind four NEs, but the fifth NE still participates

in communication/voting, allowing the system to tolerate two non-simultaneous faults. The

first fault may be a Byzantine fault. After the system has recognized and recovered from

the first fault, it is prepared to handle a second. Under certain conditions, the second fault

may also be Byzantine, but under others, the system may only handle a subset of possible

second faults.

The flexibility in the design is reflected by the ability to add an arbitrary number of

COTS processors behind each NE, with the processors and the associated NE connected

23

through a VME backplane. As a result, multiple redundant computers can all exist simulta-

neously in the X-38 architecture, with each NE handling the communication for processors

belonging to one or more redundant computers. A diagram of a potential hardware layout

is given in figure 2-3.

Figure 2-3:The X-38 is capable of supporting several redundant computers. Each processor of
a redundant computer resides behind a different NE. In this example, processors marked by A are
part of a quad-redundant computer, processors marked by B are part of a tri-redundant computer,
and processors marked by C are part of a duplex computer. Simplex computers (not shown) are also
supported.

The actual X-38 hardware layout contains only one quad-redundant computer and five

simplex (non-redundant) computers. A diagram depicting the actual hardware layout of

the X-38 computer is given in figure 2-4. The simplexes perform the roles of actuator

and sensor control and communicate with the quad-redundant computer through the fault

tolerant communication services provided by the NEs. Each quad-redundant processor

was referred to as a flight-critical processor (FCP), and each simplex was known as an I/O

Control Processor (ICP).

Communication between the NEs occurs at regular intervals and follows what is called a

24

Figure 2-4:The actual X-38 configuration consists of a single quad-redundant computer (A) and
five simplex computers (B, C, D, E, and F), which control actuators and sensors.

System Exchange Request Protocol (SERP). The basic feature of the SERP is an agreement

step that takes place before each message exchange. During the agreement step, each pair

of boards determines whether there is a message to send, whether the receiving board has

space in its buffers to accept the message, and what class of message is to be sent. When

an agreement is reached, the actual message is sent between the NEs. Once the appropriate

voting steps among the NEs have been completed, the NEs deliver the message to the

appropriate processor that resides behind them.

Since the NEs must know when to perform the SERP, a clock must be shared between

NEs so they may communicate with the other NEs at the correct times. If no clock were

shared, the various clocks used across the system would drift apart, eventually making the

communication system useless. Unfortunately, NEs cannot directly share clock signals,

since this would violate the integrity of the fault containment regions. Instead, clock syn-

chronization is established through messages passed over the fault tolerant network.

25

2.5 Clock Synchronization

Much prior research has been published on the topic of fault-tolerant clock synchroniza-

tion in distributed systems. One example of a distributed clock synchronization system is

the Network Time Protocol (NTP),which is heavily in use throughout the modern Internet

[7]. NTP is an extension of the distribute time service originally proposed by [6]. NTP is

designed for a highly unpredictable environment, i.e. the Internet, where communication

between computers can be delayed large and unpredictable lengths of time. NTP uses a

large number of sources to determine the correct time, potentially down to milliseconds.

The algorithm first determines a range of possible correct times based on a sampling of

readings from a single source, with each sample taking a variable length trip across the net-

work. Based on the intersection of a number of such ranges, the algorithm produces a good

approximation of the true time. While NTP is very effective for Internet synchronization,

the amount of overhead required makes it less appealing for embedded applications, where

network latency can be much more predictable. Also, NTP is a “one-direction” algorithm

where there is eventually a single, ultimate source of time, such as an atomic clock.

Algorithms for distributed, embedded systems commonly do not enjoy a connection

to a wide area network, and thus cannot update their time from oracle sources. Instead,

the nodes must cooperatively keep their time synchronized. Fortunately, such applications

have much more predictable networks, which allows clocks to be kept quite synchronized,

and many fault-tolerant algorithms have been developed for this purpose. The properties

of these algorithms guarantee that if enough nodes are operating correctly, that all correct

nodes in the system will adjust their clocks toward a consistent point in time and maintain

synchronized clocks.

A general solution to the problem is given by [2]. This algorithm does not assume a

completely connected network, but instead assumes that all correct nodes are fully con-

26

nected through some non-faulty path. The latency between any two correct nodes along

the fault-free path is assumed to be bounded by some constant. The solution also requires

the use of signatures. Like the algorithm presented in this thesis, neighboring clock times

are inferred from the arrival times of messages, but since this solution does not assume a

completely connected network, the achievable bound is not as favorable.

Another, more related solution is presented in [5]. This algorithm is very similar to the

solution proposed here. Messages are sent from each node at a standard time, as measured

by each node’s logical clock, and every node waits long enough to receive the messages

from every other correct node and the arrival time is recorded. Afterwards, an averaging

function is applied to all the times at which the messages were received and the local

clock is adjusted to the calculated average. The achievable synchronization is a function

of the variation in network latency, i.e. minimum and maximum latencies. However, this

algorithm potentially sets some clocks backwards which is not acceptable for the SBFTC.

The above algorithms strive to be optimal in terms of clock agreement between nodes.

The algorithm in [9] provides synchronized clocks that are optimal in reference to accu-

racy, i.e. the departure from real time. The drift of the synchronized clocks from real

time in this algorithm are only as much as the underlying physical clocks’ maximum drift

rate. However, the actual synchronization between nodes is not optimal. The maximum

synchronization is a function of the maximum network latency, not of the variation in net-

work latency. This algorithm follows the requirement that clocks may never be adjusted

backwards.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

Chapter 3

System Overview

The aim of this thesis work is to redesign the previously existing X-38 fault tolerant com-

puter architecture to remove proprietary hardware components. Since the X-38 proprietary

hardware’s role is fault-tolerant communication between fault containment regions (FCR),

i.e. a Network Element (NE) and its associated processors, the principal contribution of

this thesis is to implement the fault-tolerant communication protocols as software running

on COTS hardware. This style of computer can be referred to as a software-based fault

tolerant computer (SBFTC).

An SBFTC offers some advantages over an FTC containing proprietary hardware. One

clear advantage is cost. Producing a system requiring proprietary hardware is a costly

endeavor, requiring greater development resources and low-volume fabrication of the spe-

cialized hardware. Of course, the high development and manufacturing costs imply a less

competitive price on the market. A software-based solution promises faster development

and lower-cost hardware, since it can be purchased from a third-party vendor, who presum-

ably manufactures the product in higher quantities and can sell it cheaply.

Another advantage is flexibility. As more of a system’s functionality is raised to the

software level, the less dependent on any one piece of hardware the system becomes. If a

29

node fails due to a physical malfunction, a software process might be moved from executing

on the failed hardware to another spare.

Traditionally, SBFTC’s have been infeasible due to technology constraints, particularly

CPU speed. Even with the advent of modern high-speed processors, radiation-hardened

technology required for space operation tends to lag in performance. For example, while

current high-end processor technology approaches clock speeds of several gigahertz, radiation-

hardened computer clock speed remains in the range of hundreds of megahertz.

The SBFTC developed as part of the thesis work is a prototype intended to test the

feasibility of a such a system with current technology. Since the SBFTC is intended to

replace the original X-38 FTC, the design strives to achieve the specifications of the origi-

nal system: two non-simultaneous faults, arbitrary numbers of virtual groups, and similar

computation power and I/O throughput.

The system currently only handles a single fault, since it has only four nodes and imple-

ments only oral messages. For work on how to augment the SBFTC with written messages

to support two faults, see [1].

3.1 Physical Description

This section describes two architectures. The first is the ideal fault-tolerant architecture

toward which the work described in this thesis is targeted. The second is the actual physical

architecture used in the experimental application of this thesis work. As will be seen,

the actual physical architecture does not provide the properties of the ideal architecture

and, therefore, is not well-suited for the application. Fortunately, the software written for

the application hides the ill-suited architecture via an abstraction layer, so the high-level

software described in this section and the synchronization algorithm described in Chapter

4 are written as if running on the ideal architecture. Unfortunately, the performance of the

30

system is adversely affected.

The physical layout of the ideal SBFTC consists of five boards, each with its own CPU.

Four of the boards run both an NE and a flight-critical processor (FCP). The remaining

board runs only an I/O Control Processor (ICP). The four NE/FCPs have independent,

point-to-point connections. Messages sent on one link will not cause contention with mes-

sages on any other. The fifth ICP board only shares a connection with a single NE. If the

ICP wishes to send a message to any other board, it must send the message first to its asso-

ciated NE, which will forward it to the other nodes. Figure 3-1 depicts the ideal architecture

of the SBFTC.

Figure 3-1:The ideal SBFTC would be composed of four nodes connected over a point-to-point
communication medium. The fifth node, an ICP, may only communicate with its associated NE.

The actual physical layout of the SBFTC also consists of five boards, an ICP and four

NE/FCPs, but all five boards are connected via a common ethernet. Each board, an Em-

bedded Planet EP405, features a 300 MHz IBM PowerPC 4xx processor and a 100BaseTX

ethernet adapter. Figure 3-2 depicts the actual physical layout of the SBFTC.

There are a few noteworthy departures from the ideal design. First, there is a common

31

Figure 3-2:The actual SBFTC is composed of five boards with ethernet adapters and one ethernet
switch, which provides a common network between all the boards.

ethernet switch connecting all the boards instead of a dedicated channel between each pair

of boards. Clearly, a common switch for all inter-board communication introduces a single

point-of-failure and should not exist in an ideal system.

Additionally, ethernet network contention raises the issue of increased, and even indef-

inite, network delays. The switch alleviates some of the problem. Typically, every board

connected to an ethernet competes to send its message across a shared network. If two

boards try to send a message at the same time, the boards detect the conflict, and each

board waits a random amount of time before trying again. With so many nodes trying to

send messages at the same time, the potential for large delays is high. In fact, theoretically,

an ethernet does not guarantee that a message will ever reach its destination, since there

is an exponentially small probability that nodes may continue to attempt sending at the

same time forever. The switch solves this problem by accepting messages from multiple

nodes simultaneously and storing the competing messages in a buffer, thus preventing the

boards from ever conflicting and waiting. However, messages with the same destination

32

still need to be sent serially across the same wire. As a result, messages sent at the same

time may take a long time to reach their destination. Fortunately, if there is a known upper

bound on the number of messages in-flight at any time, there is a known upper bound on

the maximum latency. Figure 3-3 illustrates how the switch handles messages.

Due to resource constraints, the common switch is the easiest way to simulate a com-

pletely connected point-to-point network. Fortunately, as long as the network can guaran-

tee a maximum bound on latency, there is no theoretical limitation to the system capability

other than decreased performance.

Figure 3-3:The common switch allows all boards to send at the same time and buffers the messages
internally. Messages with a common destination must still be sent serially after they are buffered.

Another curious feature is that not all the nodes connected to the common network are

NEs. Four of the nodes are NEs and the last is an ICP. Recall that in the X-38 FTC, ICPs

and FCPs both reside behind NEs. In the SBFTC, this single ICP should also exist behind

an NE and not have direct access to the common network, but, again, lack of access to the

required hardware necessitated the given topology. Logically, the ICP functions as if it were

located behind a single NE via software-layer abstraction.. It does not participate in any

33

communication protocols between NEs and only communicates with a single, designated

NE, but it uses the common network to do so.

3.2 Software Design

Figure 3-4 depicts the hardware and software components of a single FCR of the X-38 FTC

and the new SBFTC and demonstrates a few major differences between the two designs.

First, and most importantly, the network element now exists as a software module running

on a commercial off-the-shelf (COTS) board. Also, while the NE hardware in the X-38

FTC is dedicated entirely to performing NE functions, the COTS board in the SBFTC runs

both the software-based NE and an FCP.

Figure 3-4:The physical layout of a single FCR in the X-38 FTC and the SBFTC. In a shift from
the X-38 FTC design, the SBFTC combines the NE and the FCP as logical processors executing on
a single board. The ICP still runs on a separate board.

Both FTCs use a real-time operating system (RTOS) to help ensure that critical tasks

receive sufficient CPU resources at the appropriate times. The RTOS used for this project

34

is Green Hills Integrity. Integrity is marketed as a “time and space partitioned” RTOS. Its

time partitioning helps support “hard” real-time constraints. A system with tasks thatmust

be completed by given deadlines (or else the system fails) is said to have hard real-time

constraints. In contrast, a system with more relaxed deadlines is said to have soft real-

time constraints. Integrity’s time partitioning guarantees that software modules receive

the amount of CPU time intended by the system designer regardless of the behavior of

other modules running on the system. Its space partitioning guarantees that a software

module cannot interact (or interfere) with other software modules running on the same

board unless given explicit permission before runtime. As a result, despite accidental or

malicious behavior of foreign software, the kernel and other software processes remain

unaffected.

A time and space partitioned RTOS is particularly useful in the software design of the

SBFTC, since it allows the NE to reliably coexist on-board with the FCP. Not only must

the NE be protected from the FCP software, which contains application-dependent, foreign

code, both the NE and the FCP must perform time-critical operations despite sharing the

CPU with one another. A time-partitioned RTOS helps guarantee that the CPU is shared

correctly and efficiently.

3.2.1 Abstraction Layers

Abstraction layers in the SBFTC hide low-level implementation details of the system from

higher-level software components. This allows cleaner, clearer code, and it also will allow

the non-ideal physical layout of the system to be changed in the future without modifying

the higher-level code. The SBFTC implementation defines a few layers of abstraction,

depicted by figure 3-5.

The lowest layer of abstraction in the SBFTC is the board layer. A board is the basic

35

unit of hardware, and there are always a fixed number of boards in the system. Code written

at this layer is aware of the physical layout of the system.

The virtual processor (VP) layer sits above the board layer. The VP layer defines three

processor types: NEs, FCPs and ICPs. One or more VPs may exist on a single board. The

VP layer keeps track of which processors are running on which physical elements. In the

current prototype, there are a fixed number of NEs, FCPs and ICPs in the system, and the

particular boards where they exist are set before run-time and remain static throughout the

lifetime of the system.

The virtual group (VG) layer is built on top of the processor layer. A VG is a set of one

or more VPs, each sitting behind a different NE, that act as a single, logical computer. Each

member of a VG executes the exact same software, operates on exactly the same inputs, and

produces, under error free conditions, exactly the same output. Several different VG’s may

exist in the SBFTC at the same time, and different VG’s may contain different numbers of

members. This software layer maintains knowledge of which processors comprise which

groups. In the prototype, VGs and their members are set before run-time and remain static

throughout the lifetime of the system. Ideally, the system should be capable of assembling

VGs upon startup according to available resources and reconfiguring as resources change

during execution. Such an extension is left for future development.

Figure 3-5:The SBFTC software implements several abstraction layers, the hierarchy of which is
depicted here. The board layer recognizes individual, fixed physical elements is the system. The
virtual processor layer recognizes processors running on top of the physical elements. The virtual
group layer combines multiple processors into redundant, fault tolerant computers.

36

3.2.2 Communication Stack

Each abstraction layer described in Section 3.2 has an associated communication layer.

The communication stack defined for the SBFTC sits atop the layers defined by the Open

Source Interconnect (OSI) model (physical, link, network, and transport). Each commu-

nication layer provides an API to the layer above, which uses the API to route messages

to the corresponding layer on a destination node. The following sections describe the rela-

tionships between each layer. The communication layers are depicted in figure 3-6.

Figure 3-6: Each SBFTC abstraction layers defines an associated communication medium, the
hierarchy of which is depicted here. The SBFTC layers are built above the Transport OSI layer.
Messages between virtual groups are addressed by virtual group ID. Virtual group messages are
turned into processor layer messages and passed to the processor layer. The processor layer main-
tains a list of which virtual processors are running on which physical nodes, and passes appropriately
addressed packets to the board layer. Each layer may require some message processing at each hop
to determine if the destination has been reached yet.

Board Communication

Boards are the lowest abstraction layer defined by the SBFTC. Messages between boards

are passed via UDP packets, which are sent over a switched 100 Mbps ethernet network.

Each board contains a standard ethernet adapter with a unique ethernet address and unique

37

IP address.

Ideally, each NE would have a dedicated point-to-point connection to every other node.

Such a design is simulated by connecting each NE through a shared ethernet switch. The

switch eliminates wire contention between the ethernet adapters at the multiple nodes,

thereby reducing the average transport latency across the network.

In an ideal system, dedicated point-to-point connections would be achieved with multi-

ple communication ports on each board (not necessarily ethernet), with each port connected

directly to that of another board. If this were the case, it would be the responsibility of the

board communication layer to route messages destined for a particular board through the

correct communication port.

In the interests of prototype performance, it should be noted that circumventing the

transport and network layers entirely and using the ethernet link layer directly may be

desirable, however such optimizations are beyond the scope of the thesis.

Virtual Processor Communication

NEs, FCPs and ICPs pass messages via a communication layer that sits above the board

communication layer. If the board communication layer is analogous to the OSI model’s

physical layer, the VP communication layer is analogous to the OSI link layer. It provides

a protocol to send messages across the board layer to an “adjacent” VP.

FCPs and ICPs are considered to be adjacent to their associated NEs, and NEs are

adjacent to each other. This communication layer cannot be used to pass messages between

FCPs and ICPs. Such communication is required to be fault tolerant, and it is handled via

virtual groups at the next communication layer.

Each NE is assigned an ID that is unique to the system, and each FCP or ICP is assigned

an ID that is unique to its associated NE. The IDs are assigned before run-time and remain

constant throughout the lifetime of the system. The processor layer on each NE stores a

38

table mapping VP IDs to board IDs. When a message is sent using this layer, the board ID

is fetched from the table, and the message is passed down the communication stack to the

board layer, which sends the message over UDP to the correct board.

A message originating from an FCP or an ICP need not include an address since it may

only send messages to its NE. A message originating from an NE may be addressed to one

or more NEs or to a single VP. NEs may address messages to themselves.

In the current prototype, messages must be a fixed length, although this limitation was

primarily imposed for ease of implementation and analysis. Although there is no funda-

mental minimum limit to the length, the nature of the communication network requires that

a maximum message length be imposed for timing reasons.

Since multiple messages may need to be sent from one NE to another during the same

interval, part of the NE/NE communication routine’s job is to merge these messages into a

single buffer when transmitting and to split the messages when receiving.

NE/NE messages are exchanged regularly at fixed intervals, and all NEs send their

messages at as close to the same time as possible. Small differences in send times are due

to discrepancies in each board’s internal clock and fundamental limits of synchronization.

The strategy of sending all messages at the same time is advantageous in a few ways.

First, it eases analysis of the system and allows an easy bound to be determined for the

latency of messages across the network. Also, it provides the opportunity for clock syn-

chronization based on inferring clock differences between boards via message arrival times.

The clock synchronization algorithm used in the SBFTC is presented in Section 4.

FCP/ICP to NE messages can be sent asynchronously. NE to FCP/ICP messages are

sent by the NE at regular intervals following NE/NE message exchanges in order to deliver

incoming messages.

39

Virtual Group Communication

The virtual group (VG) communication layer is analogous to the OSI network layer, which

sits above the link layer and provides communication between non-adjacent nodes. The

VG communication layer provides communication between non-adjacent VPs.

Each VG is associated with a system-wide unique ID. In the prototype SBFTC, VG’s

and their members are hard-coded into the system. Ideally, the system should be capable

of assembling VG’s upon startup and reconfiguring during runtime according to available

resources. Such an extension is left for future development.

VGs provide the basic level of Byzantine fault-tolerance in the SBFTC. As discussed

in Section 3.2, a VG is one or more VPs all running the exact same code simultaneously,

operating on the same inputs and producing the same outputs. This communication layer

enforces that communication occur between entire VGs instead of between single VPs.

Any message sent from one VG to another will be delivered reliably, provided that the

system currently is suffering at most one fault.

The guarantee of reliable delivery requires:

1. The output of all members of a VG are correctly voted to mask errors in any one of

the members of the VG.

2. The same input is delivered to all members of the recipient VG.

To achieve these requirements, the SBFTC uses a broadcast and reflect algorithm simi-

lar to that discussed in Section 2.3. There are two kinds of messages that are sent over the

VG communication layer, known as class 1 and class 2 messages. Class 1 messages are

also known as single-source messages and are used when a single-member VG (an ICP)

sends a message to a multi-member VG (an FCP). An example of such a message is an in-

put sensor sending data to a set of FCPs. Class 2 messages are sent when a multi-member

40

VG sends a message to another VG of any size, though typically an ICP. An example of

such a message is a set of redundant FCPs belonging to the same VG sending a control

command to an ICP controlling a flap or an engine valve. ICPs may not send messages to

other ICPs, so no message class is defined to handle such cases.

Class 1 Messages

Figure 3-7 shows the path of a class 1 message. A class 1 message makes four hops in

its journey from an ICP to multiple FCPs.

1. The message travels from the ICP to its associated NE.

2. The NE recognizes that the message originated from an ICP, initiates a class 1 mes-

sage exchange by sending a copy of the message to all other NEs in the system.

3. Each receiving NE responds by reflecting its copy of the class 1 message to all other

NEs.

4. Each NE determines the correct message by comparing its multiple copies. Each NE

then checks whether it is responsible for a member of the destination VG indicated

is the message. If so, the NE forwards the message to the appropriate FCP.

At the end of the exchange, each FCP receives the exact same message at approximately

the same time.

Note that all NEs vote their multiple message copies regardless of whether they are

responsible for an FCP on not. This way, in the event of an error, each NE reaches a

decision on who the guilty party might be.

Class 2 Messages

41

Figure 3-7:A class 1 message requires four steps to travel from an ICP to an FCP. The message is
first sent from the ICP to the adjacent NE. Next, the NE initiates a two-step, Byzantine fault tolerant
message exchange for the message to reach the other NEs. When the multiple copies of the message
have been received by the NEs, each NE votes the message, then forwards it to its adjacent FCP.

Figure 3-8 shows the path of a class 2 message from a set of FCPs to an ICP. A class 2

message requires three hops en route to its destination.

1. The message travels from the FCP to its associated NE.

2. The NE recognizes that the message originated from an FCP, then initiates a class 2

message exchange by sending a copy of the message to all other NEs in the system.

3. Each receiving NE now has a version of the FCP output from all NEs and performs

two steps in parallel

(a) Each NE checks whether it is responsible for a member of the destination VG

indicated is the message. If so, the NE determines the correct message by com-

paring its multiple copies, then forwards the message to the appropriate ICP.

(b) Each NE also reflects the multiple versions of the FCP output to all other NEs

so that, it the event of an inconsistency, all NEs can determine the guilty node.

42

Figure 3-8:A class 2 message requires three steps to travel from an FCP to an ICP. The message
is first sent from the FCP to the adjacent NE. Next, the NE sends a copy of the message to all other
NEs. Step three involves two parallel operations. First, each NE checks to see if it is responsible
for the destination ICP. If it is, it forwards the voted message to that ICP. At the same time, each
NE reflects the messages it received in step two to all other NEs. This way, if any of the FCPs send
inconsistent output, all the NEs may agree on the guilty party.

3.2.3 Code Structure

The source code is divided into major components: communication libraries, initializa-

tion routine, and communication loop. These three parts rely heavily on two third-party

libraries, Integrity’s OS API and Interpeak’s IPCOM/IPLITE lightweight network stack.

The Integrity API is particularly important for running multiple tasks and scheduling the

execution of those tasks via timers and “alarms.” The Interpeak network stack provides a

BSD-compliant API for IP/UDP functionality designed for embedded applications.

The communication libraries define the board and virtual process abstraction layers and

associated APIs. They allow an NE to send and receive messages to its associated FCP and

ICP and to other NEs without having specific knowledge on which physical boards those

processors are executing. Currently, the mapping between VPs and physical nodes is hand-

43

coded into the libraries, but further development would allow those tables to be initialized

at startup.

The libraries provide a send/receive mechanism based on fixed-size packets, and allow

applications to wait on the arrival of packets using a Unix select-like interface. A user

defines a set of NEs and/or FCP/ICPs to wait for a specified (or indeterminate) length of

time. The operation will block until a message arrives for any of the defined processors or

until the specified time elapses. If the wait operation indicates that a particular processor

has messages waiting, a read operation for that processor is guaranteed not to block.

The initialization routine is primarily an implementation of the non-authenticated “Op-

timal Clock Synchronization” algorithm described in [3]. Its job is to ensure the clocks of

the nodes are sufficiently synchronized before the synchronization algorithm described in

this thesis takes over maintenance. The implementation consists of two tasks. One task’s

responsibility is to keep track of time and broadcast “init” packets at the start of each syn-

chronization round. The other task waits for incoming packets, which may arrive before

and after what the node believes is the start of the synchronization round. When a packet

arrives, the task takes appropriate action, i.e., recording the packet’s arrival, sending out an

echo packet when appropriate, or adjusting the system clock forward.

Once the initialization routine has completed, control is passed to the communication

loop, which manages both the VP and VG communication layers. The communication loop

is the heart of the NE, which functions as a fault-tolerant bridge between FCPs and ICPs,

maintains synchronization, and controls message sending, receiving and voting. The loop

runs as a single thread, performing each responsibility in sequence and repeating every

fixed amount of time.

The communication loop repeats the following steps:

1. Prepare and send messages

44

2. Wait to receive all messages

3. Process and vote appropriate messages

4. Send and receive messages from FCP/ICP

At the beginning of a communication round, the communication loop wakes up, ex-

amines its active message table to determine which messages must be sent to other NEs,

prepares a buffer containing the messages specific for each NE, and sends them all. The

contents of the buffers to each NE are not necessarily the same. For instance, a NE does not

need to reflect a message back to the node from which it received the message originally.

After sending, each node waits a pre-specified amount of time to allow messages from

trailing nodes to arrive. During this time, the processor is freed for other work to be per-

formed by the CPU, such as executing FCP code.

When the waiting time has elapsed, the NE then checks all the incoming messages for

header corruption and adds the new message information to the appropriate locations in the

active message table. For example, if the NE receives multiple messages from different NEs

containing different versions of the same class 1 message, those versions will be grouped

together in the message table. When enough message versions have been received from the

other NEs, the versions are compared for inconsistencies. If one version contains errors,

they are out-voted by the consistent messages, and thus the errors will not be propagated to

the destination FCP or ICP.

The final task of the NE’s communication loop is to handle messages to and from its

associated FCP/ICPs. If any voted messages are intended for an FCP or ICP for which the

NE is responsible, the NE then forwards the message. If any messages are available from

the FCP/ICP to be received by the NE, the NE reads them and adds them to the message

table in preparation for the next communication cycle. The NE then sleeps until the next

cycle, allowing other processes on the node to receive CPU time.

45

Message Table

The description of the communication loop mentioned the active message table. Each

NE maintains a table of active messages is the system. An active message is one that has

been sent by an FCP or ICP, but has not yet been delivered to the recipient FCP or ICP.

A message is created in the NE’s table when it is received from an FCP/ICP or when it is

received from another NE during a first-round broadcast for a class 1 or class 2 message.

The message is deleted when it either delivered to a recipient FCP/ICP or when the NE

recognizes it is not responsible for the destination processor. The table may be thought of

as part of the Virtual Group layer, since the table keeps track of related class 1 and class 2

messages for voting purposes.

Other Capabilities

In addition to the SBFTC functionality, the system also includes meta-capabilities to as-

sist in development, debugging, and demonstration. First, the system provides a logging

capability that allows debugging text to be stored to a memory buffer rather than a de-

bugging console. This allows debugging and status information to be collected without

significantly impacting the timing of the code, particularly the communication loop, and

then replayed at the developer’s convenience. Text printed directly to the console signif-

icantly delays the execution of code, which causes unpredictable behavior between nodes

expecting messages within time windows.

In order to support delayed log printing and other on-demand services, an administra-

tion interface provides the ability for a user to send UDP packets to specific nodes that

instruct them to perform actions like dumping the debug log. If a task wishes to accept

external commands, it may register a callback function and a command header such as

46

“LOG”. The administrator interface then listens on a dedicated port for incoming packets.

If a packet arrives in which contents follow the pattern “LOG *”, the specified callback

function is invoked with the packet’s contents as an argument.

The administration interface is also used to allow a user to inject faults into the system

at will for testing and demonstration purposes.

47

THIS PAGE INTENTIONALLY LEFT BLANK

48

Chapter 4

Synchronization Protocol

Each of the Network Elements (NE) in the SBFTC must maintain its internal clock at

approximately the same time to ensure proper functioning of the system. Periodic adjust-

ments of the local clocks are necessary, since all clocks drift relative to one another, and

eventually the skew will prevent the boards from behaving in a consistent, predictable man-

ner. The primary reason for keeping the clocks on each board synchronized is to ensure

predictability of the communication system and to ease the implementation of the fault

tolerant network.

In many multi-node applications, it is often possible and convenient to directly wire

all the nodes with the same electrical clock signal. However, in a highly available system,

using a common clock signal is impossible because it introduces a single point of failure.

If the clock faults, the entire system goes down.

Fault tolerant solutions using custom hardware are able to solve the problem of syn-

chronization by comparing redundant clock signals emanating from each node and adjust-

ing them via specialized hardware. An SBFTC running on COTS hardware cannot rely on

such a solution, since low-cost hardware does not include mechanisms for reliable electri-

cal clock synchronization. Instead, each node must maintain a synchronized logical clock

49

that should keep approximately the same time as the logical clocks on all other nodes. A

node maintains its logical clock through two values, an absolute time and a delta. The

absolute time is incremented according to the hardware clock. The delta may be adjusted

programmatically. The logical clock time is calculated by summing the absolute value and

the delta.

Operating systems provide such a clock. However, the challenge exists in adjusting the

delta component on all nodes correctly. Since no hardware support exists to synchronize

logical clocks, the software is responsible for determining when clock adjustments are

necessary by passing messages over a standard communication medium.

The following sections describe a logical clock synchronization algorithm developed

for the SBFTC as part of this thesis work. The first section introduces the concepts and

intuition behind the algorithm. The next section describes the notation used in this section

as well as the assumptions the algorithm depends on. The third section presents a failstop

(non-Byzantine resilient) algorithm. The fourth section extends the algorithm for Byzantine

resilience. The Byzantine resilient algorithm is introduced, but a complete mathematical

analysis has not been completed.

4.1 Motivation and Description

The fault-tolerant network is a bottleneck resource in the SBFTC. In order to make behavior

of the system predictable and useful, the SBFTC must guarantee a user application that any

data sent across the network will have amaximumlatency across the network. If that

guarantee is violated, time-critical operations may cease to function correctly.

The smallest maximum latency the SBFTC can promise to user applications is the la-

tency of a standard message across the networkplus the maximum time that message may

have to wait for other, higher priority operations to finish using the network. If the sys-

50

tem must reserve the network periodically for system-level operations like clock synchro-

nization, applications can never be guaranteed latencies less than the time that operation

consumes.

Given the importance of reducing required network overhead, the intent of this algo-

rithm is to allow the nodes of the system to maintain a synchronized logical clock while

reserving the network for the smallest time intervals possible. While the Byzantine resilient

algorithm actually requires a large amount of data to be exchanged between nodes, it allows

individual communication rounds to be separated by time, allowing critical messages to be

sent in between.

Another motivation in the design of these algorithms is the requirement that clocks

never be set backward. In real-time systems, where tasks are scheduled via the system clock

and messages may be timestamped, adjusting a clock backwards can result in inconsistent

operation unless great care is taken. These algorithms avoid that pitfall by always setting

clocks forward or not at all.

Defining Clock Synchronization

Synchronization does not imply that the logical clock is exactly the same on every node

at all times. Such perfect synchronization is not possible at the software level. This is not

to say that the logical clocks cannot be perfectly synchronized at someinstant, but main-

taining constant perfect synchronization over a time interval is not possible without the

high granularity of control possible at the hardware level.

Synchronization of a set of logical clocks is instead defined in a more relaxed way. The

logical clocks of a set ofk correctly functioning nodesN = {n1, n2, ..., nk} are considered

51

synchronized over a time interval fromt0 to t1 if

∃Dmax s.t.∀t ∈ [t0, t1], ∀ni , nj ∈ N,
∣∣∣Ci(t) −Cj(t)

∣∣∣ ≤ Dmax ,

whereCi(t) is the value of nodei’s logical clock at real timet andDmax is a constant.

In other words, the logical clocks of the nodes are considered synchronized if the dif-

ference between any two logical clocks is at mostDmax. This relaxed definition of synchro-

nization is necessary because it is impossible to achieve perfect synchronization.

Equally important, the relaxed constraint allows time to pass and clocks to drift between

synchronization rounds. To describe this notion more precisely, begin with the following

definitions:

1. LetAsyncbe a synchronization algorithm that runs periodically.

2. Let the drift rate between the physical clocks of two nodes be bounded by a constant

dr.

3. LetDmax be the minimum synchronization (i.e. a maximum difference between logi-

cal clocks) required for an application.

4. LetDsync≤ Dmax be the minimum synchronization achieved byAsync.

Then, the amount of timedtbetweenallowed between points of maximum synchroniza-

tions is bounded by

dtbetween≤
Dmax− Dsync

dr
− ε,

whereε is a constant. The role ofε is to leave opportunity for mid-execution clock

adjustments that may temporarily increase clock skew more than natural drift would.

The algorithms presented below run at well-defined intervals as described above. At the

appropriate time according to its logical clock, each node sends a message to every other

52

node, and each receiving node takes note of the time that each message arrives (according

to its own logical clock). Then, given that

• All nodes send their messages at what they believe is the correct time,

• The network has a known minimum and maximum latency,

each node can infer the local logical clock value at each of the other nodes and update

its clock appropriately.

As will be shown in the following sections, the achievableDsync value of the synchro-

nization algorithms depends on properties of the network and the drift rate between nodes.

4.2 Definitions and Assumptions

This section presents definitions and assumptions used in the characterization of the syn-

chronization algorithms presented in the following sections.

Node: An independent processing unit with an on-board timekeeper and a method of com-

munication with all other nodes.

Wall clock: A timekeeper that maintains an absolute reference time. This time is not avail-

able to the nodes, but as an observer, one is aware of it.

Local clock: A timekeeper belonging to each node. Each local clock keeps time indepen-

dently from the others. Different local clocks may read different times at the same

wall clock time.

Clock drift: The tendency for local clocks on different nodes to run at slightly different

rates.

53

Local clock drift from wall time is assumed to be bounded by a known constantρ > 0.

Let Ci(t) be the local clock reading of nodei at timet. Then,

(1 + ρ)−1(t2 − t1) ≤ Ci(t2) −Ci(t1) ≤ (1 + ρ)(t2 − t1). (4.1)

The above may be interpreted as, given two times,t1 and t2, the amount of logical clock

time that could elapse on a node during that period is bounded by linear envelope.

The above may also be rewritten as

(1 + ρ)−1 (Ci(t2) −Ci(t1)) ≤ t2 − t1 ≤ (1 + ρ) (Ci(t2) −Ci(t1)) . (4.2)

Similarly, this may be read as, given two logical clock times,Ci(t1) andCi(t2), the amount

of real time that could elapse during that period is bounded by a linear envelope.

Note that the local clock drift rate between any two nodes is bounded by

dr = (1 + ρ) − (1 + ρ)−1 =
ρ(2 + ρ)

1 + ρ
.

It should be noted that, intuitively, the lower drift bounds might more correctly be

(1−ρ)(t2− t1) ≤ Ci(t2)−Ci(t1). However, the type of bound given above is more convenient,

and is consistent with other literature, including [9].

Let wall times be denoted by a lowercaset and local clock times be denoted by an

uppercaseT.

Let Ci(t) be the value of the local clock of nodei at timet.

Let Di(t) be the difference between the local clock of nodei and timet at timet. In other

words,

Ci(t) = t + Di(t).

54

Let Di j (t) be the difference between the local clocks of nodesi and j at timet. This can

be expressed as

Di j (t) = Di(t) − Dj(t) = Ci(t) −Cj(t).

Let Dmax denote the maximum value ofDi j (t) acceptable for an application. More pre-

cisely,

∀ nodesi, j,∀ timest,
∣∣∣Di j (t)

∣∣∣ ≤ Dmax.

Let
[
Di j

]
i

be the difference between the local clocks on nodesi and j, as calculated by

node i. Note that
[
Di j

]
i
is not a function oft. It represents a single value calculated

by nodei.

Let Tsend be the local time at which all nodes are scheduled to send a message to every

other node.

Let tsendi be the time at which nodei actually sends its messages to the other nodes. Note

thatTsendmay correspond to differenttsendi ’s for different nodes. Note that

Ci(tsendi) = Tsend.

Let mi j represent a message sent from nodei to nodej.

Let tmi j be the time at whichmi j is received by nodej.

Let Tmi j be the local time on nodej at whichmi j was received by nodej.

Let `mi j be the time it takes formi j to travel from nodei to nodej. Note the relationship

tmi j = tsendi + `mi j .

55

,

The communication network is assumed to deliver a message in a bounded window of

time. Thus,

Let `max be the maximum possible value of any`mi j .

Let `min be the minimum possible value of any`mi j . In other words,

∀ nodesi, j, `min ≤ `mi j ≤ `max.

Let `assume represent a constant such that`min ≤ `assume≤ `max. It may be interpreted as a

best guess for̀mi j . Its optimal value will be calculated as part of the analysis.

Finally, correct functioning of this algorithm requires that all local clocks are initialized

such that they are synchronized to within some known value. No initialization algorithm

based on the discussed algorithm is provided in this paper. It is left for future work.

4.3 Failstop Algorithm

This section presents the characterization of the non-Byzantine resilient synchronization

algorithm. First, the algorithm is analyzed for two nodes. Then the analysis is extended to

include three nodes.

The algorithm runs symmetrically on all participating nodes. Algorithm 4.3.1 defines

the steps of a single round of the failstop algorithm. The algorithm may be broken into two

processes:

1. Receive: The node maintains a process at all times that timestamps packets when

they arrive.

56

2. Send, Wait, and Adjust: Upon a predetermined time,Tsend, the node sends a mes-

sage to all other nodes. The node then spends a predetermined length of timeτwait

waiting for the arrival of messages from other, slower nodes. From the arrival times

of each message, the node estimates the largest difference between its local clock

and other local clocks. If the node estimates that its own local clock is ahead of all

others, it does not adjust its local clock. If it estimates that its local clock is behind

the clocks of at least one other node, it adjusts its own clock to match that of the node

estimated to be most ahead.

In the next round of synchronization,Tsend takes on another value agreed upon by all

participating nodes. Typically, the value ofTsend at roundi, T(i)
send, is defined byT(i)

send =

T(0)
send+ iP, whereP is some constant.

Figure 4-1 depicts a timing diagram of the interaction between two nodes executing

algorithm 4.3.1 between which clocks are initially skewed by an amount∆. Note that

although each node sends a message at what it believes isTsend, the messages are actually

sent at different times.

57

Figure 4-1:An example timing diagram of the interaction between two nodes. Not to scale. The
top horizontal line represents wall time. The lower two represent the progression of local clock
time for nodes1 and2. The two nodes send a message at what each believes to be Tsend. Note
that at timetsend1, node1’s clock readsTsend and node2’s clock readsTsend− ∆, indicating that
D12(tsend1) = ∆. Each message may take a different amount of time to reach its destination. In this
case,m12 takes the longest time possible andm21 takes the shortest time possible. Each node counts
out τwait after sending its message, then checks to see if it should adjust its clock forward. Each
node infers the other’s relative clock skew based on the arrival time of the received message. In this
case, node1 realizes it is first and does not adjust its clock. Node2 adjusts its clock forward to
match1’s as closely as possible, in this case a little too much, since node2 reachesT′ ahead of1.

58

Algorithm 4.3.1: F-S()

Let N = {n1...nk} be a set of k participating nodes.
Let i ∈ {1...k} be the number of the node executing the instance of the algorithm.
τwait will be derived during later analysis

global timestamps[k] ← {null, ..., null}

processR-M()
while Ci(t) < Tsend+ τwait

do
{

if mji received
then timestamps[j] = C-T()

processS-A-A ()
local deltas[k] ← {0, ...0, }

if Ci(t) = Tsend

then

for j ← 1 to k

do
{

if j , i
then Send messagemi j to nj .

while Ci(t) < Tsend+ τwait

do
{

Nothing

for j ← 1 to k

do
{

if j , i
then deltas[j] ← C-D(timestamps[j])

S-T(C-T() − (deltas))

procedureC-D(timestamp)
delta← timestamp− (Tsend+ `assume)
return (delta)

Figure 4-2:Failstop synchronization algorithm. Process Receive-Messages and process Send-And-
Adjust run separately. The first process timestamps messages as they arrive from other nodes. The
second sends messages, waits for all messages to arrive, then adjusts the clock forward if necessary.

59

4.3.1 Characterization of Algorithm for Two Nodes

This section provides the mathematical characterization of the failstop synchronization al-

gorithm and demonstrates that it is correct.

The analysis is organized as follows:

1. First, bounds on the nodes’ estimation of the other’s clock skew are determined in

terms the initial relative clock skew between the nodes.

2. Next, the estimation bounds from the previous result are used to determine the clock

adjustment behavior under all possible initial relative clock skews.

3. After understanding how nodes adjust their clocks, bounds are derived for the maxi-

mum clock skew possible following the execution of the algorithm.

4. Next, an expression is derived for the actual maximum skew possible at any point

during the algorithm in term of the elapsed time between synchronizations.

5. Finally, lower bounds are derived on how frequently the algorithm may be executed,

thereby allowing the actual maximum synchronization to be calculated using the

results from step 4.

Determining each node’s perception of local clock difference

To begin, consider two nodes,1 and2, performing algorithm 4.3.1. The analysis of the

two nodes will not generalize to the case of three or more nodes, but it is described first

because it is the most straightforward to analyze.

Without loss of generality, the local clock of node1 is defined to be equal or ahead of

2’s at the start of the algorithm. In other words,

60

D12(tstart) ≥ 0.

The first step of analysis is to determine the bounds of1 and2’s perception of the other

nodes’ local clocks in terms of the relative skew between them at the start of the algorithm.

The start of the algorithm is defined to be the time at which the first node sends a

message. Since node1’s clock is defined to be ahead of2’s at the start of the algorithm, by

definition,

D12(tstart) = D12(tsend1).

First consider how node2 perceives the local clock of node1. Begin by recalling the

formula that the nodes use to estimate the difference between their local clocks based on

message arrival time,

[Di j] i = Ci(tmji) − (Tsend+ `assume).

Therefore,2 predicts the difference between1’s and its own local clocks by

[D21]2 = C2(tm12) − (Tsend+ `assume),

which may be also expressed as

[D21]2 = tm12 + D2(tm12) − (Tsend+ `assume). (4.3)

Next, consider amount of time that will elapse on2’s local clock from when1 sends

the messagem12 at timetsend1 to when2 receives the message at timetm12. Equation (4.1)

provides bounds on the elapsed time:

61

C2(tm12) −C2(tsend1) ≤ (1 + ρ)(tm12 − tsend1)

C2(tm12) −C2(tsend1) ≥ (1 + ρ)−1(tm12 − tsend1).

SinceCi(t) = t + Di(t), the above can be rewritten as

tm12 + D2(tm12) − tsend1 − D2(tsend1) ≤ (1 + ρ)(tm12 − tsend1)

tm12 + D2(tm12) − tsend1 − D2(tsend1) ≥ (1 + ρ)−1(tm12 − tsend1).

IsolatingD2(tm12) yields

D2(tm12) ≤ (1 + ρ)(tm12 − tsend1) − (tm12 − tsend1) + D2(tsend1)

D2(tm12) ≥ (1 + ρ)−1(tm12 − tsend1) − (tm12 − tsend1) + D2(tsend1)

⇒ D2(tm12) ≤ ρ(tm12 − tsend1) + D2(tsend1)

D2(tm12) ≥ −
(

ρ

1 + ρ

)
(tm12 − tsend1) + D2(tsend1).

Recognizing thattm12 − tsend1 = `m12 and that̀ min ≤ `m12 ≤ `max gives

D2(tm12) ≤ (ρ)`max + D2(tsend1)

D2(tm12) ≥ −
(

ρ

1 + ρ

)
`max + D2(tsend1).

From these inequalities, bounds can now be found for [D21]2 using equation (4.3):

62

[D21]2 ≤ tm12 + (ρ)`max + D2(tsend1) − (Tsend+ `assume)

[D21]2 ≥ tm12 −
(

ρ

1 + ρ

)
`max + D2(tsend1) − (Tsend+ `assume).

Finally, by recognizing thatTsend= C1(tsend1) = tsend1 + D1(tsend1), the following bounds

are achieved:

[D21]2 ≤ tm12 + (ρ)`max + D2(tsend1) −
(
tsend1 + D1(tsend1) + `assume

)

[D21]2 ≥ tm12 −
(

ρ

1 + ρ

)
`max + D2(tsend1) −

(
tsend1 + D1(tsend1) + `assume

)

⇒ [D21]2 ≤ (tm12 − tsend1) + (ρ)`max +
(
D2(tsend1) − D1(tsend1

)
) − `assume

[D21]2 ≥ (tm12 − tsend1) −
(

ρ

1 + ρ

)
`max + (D2(tsend1) − D1(tsend1)) − `assume

⇒ [D21]2 ≤ (`m12) + (ρ)`max + (D21(tsend1)) − `assume

[D21]2 ≥ (`m12) −
(

ρ

1 + ρ

)
`max + (D21(tsend1)) − `assume

⇒ [D21]2 ≤ `max + (ρ)`max− D12(tsend1) − `assume

[D21]2 ≥ `min−
(

ρ

1 + ρ

)
`max− D12(tsend1) − `assume,

which finally simplifies to

[D21]2 ≤ (1 + ρ)`max− D12(tsend1) − `assume

[D21]2 ≥ `min−
(

ρ

1 + ρ

)
`max− D12(tsend1) − `assume. (4.4)

63

In the next step, the bounds of1’s perception of2’s local clock are determined. Begin

by recognizing that

[D12]1 = C1(tm21) − (Tsend+ `assume). (4.5)

The challenge here is to findC1(tm21) in terms of the local clock difference at the start

of the algorithm, namelyD12(tsend1). Begin by determining the bounds of the elapsed time

on1’s local clock in terms of real time. Equation (4.1) gives the following:

C1(tm21) −C1(tsend1) ≤ (1 + ρ)(tm21 − tsend1)

C1(tm21) −C1(tsend1) ≥ (1 + ρ)−1(tm21 − tsend1). (4.6)

Sincetm21 = tsend2 + `m21 and`min ≤ `m21 ≤ `max, bounds ontm21 are as follows

tm21 ≤ tsend2 + `max

tm21 ≥ tsend2 + `min. (4.7)

Bounds ontsend2 can be determined using equation (4.2):

tsend2 − tsend1 ≤ (1 + ρ)(C2(tsend2) −C2(tsend1))

tsend2 − tsend1 ≥ (1 + ρ)−1(C2(tsend2) −C2(tsend1)).

Recognizing thatC2(tsend2) = Tsend= C1(tsend1) gives

64

tsend2 − tsend1 ≤ (1 + ρ)(C1(tsend1) −C2(tsend1))

tsend2 − tsend1 ≥ (1 + ρ)−1(C1(tsend1) −C2(tsend1))

⇒ tsend2 − tsend1 ≤ (1 + ρ)D12(tsend1)

tsend2 − tsend1 ≥ (1 + ρ)−1D12(tsend1)

⇒ tsend2 ≤ (1 + ρ)D12(tsend1) + tsend1

tsend2 ≥ (1 + ρ)−1D12(tsend1) + tsend1.

Substituting fortsend2 in equation (4.7) gives

tm21 ≤ (1 + ρ)D12(tsend1) + tsend1 + `max

tm21 ≥ (1 + ρ)−1D12(tsend1) + tsend1 + `min.

Next, referring back to the bounds onC1(tm21) − C1(tsend1) given by equation (4.6) and

substituting fortm21 yields

C1(tm21) −C1(tsend1) ≤ (1 + ρ)((1 + ρ)D12(tsend1) + tsend1 + `max− tsend1)

C1(tm21) −C1(tsend1) ≥ (1 + ρ)−1((1 + ρ)−1D12(tsend1) + tsend1 + `min− tsend1)

⇒ C1(tm21) −C1(tsend1) ≤ (1 + ρ)2D12(tsend1) + (1 + ρ)`max

C1(tm21) −C1(tsend1) ≥ (1 + ρ)−2D12(tsend1) + (1 + ρ)−1`min.

Finally, sinceC1(tsend1) = Tsend, the above bounds can be directly substituted into equa-

65

tion (4.5), determining the bounds on [D12]1 in terms ofD12(tsend1):

[D12]1 ≤ (1 + ρ)2D12(tsend1) + (1 + ρ)`max− `assume

[D12]1 ≥ (1 + ρ)−2D12(tsend1) + (1 + ρ)−1`min− `assume. (4.8)

Determining limits of behavior

Now that the bounds for [D12]1 and [D21]2 have been determined in terms of the initial

clock difference, it is possible to evaluate how nodes will adjust their local clocks based on

their approximation of their distance from the other node.

The amount that a nodei adjusts its clock is a function of [Di j] i, its approximation of

its own clock’s distance fromj’s clock, but the function is not smooth over all values of

[Di j] i, but rather a piecewise function of the form

ad just([Di j] i) =

−[Di j] i , [Di j] i < 0

0 , [Di j] i ≥ 0

.

The piecewise nature of the adjustment function requires the behavior analysis of the

synchronization to be applied in a piecewise manner as well, with discontinuities existing

when either [Di j] i = 0 or [Dji] j = 0.

In other words, the behavior of the system depends on whether one, both, or neither

node adjusts its local clock during the algorithm. Different equations will bound the achiev-

able synchronization for each case.

Returning to nodes1 and2, the following questions are considered:

1. Under what conditions is [D12]1 ≥ 0 possible?

66

2. Under what conditions is [D12]1 < 0 possible?

3. Under what conditions is [D21]2 ≥ 0 possible?

4. Under what conditions is [D21]2 < 0 possible?

The conditions for all cases are expressed in terms ofD12(tsendi):

[D12]1 ≥ 0 possible: [D12]1 ≥ 0 is possible when the upper bound of [D12]1 is positive.

Equation (4.8) gives

(1 + ρ)2D12(tsend1) + (1 + ρ)`max− `assume ≥ 0

⇒ D12(tsend1) ≥ (1 + ρ)−2`assume− (1 + ρ)−1`max.

Note that, by definition,ρ > 0, `assume≤ `max, and D12(tsend1) ≥ 0, thus the above

inequality is always true. Therefore, it is always possible that node1 estimates its local

clock to be ahead of2’s. This makes sense, since1’s clock is defined to be the same or

ahead of2’s at the start of the algorithm.

[D12]1 < 0 possible: [D12]1 < 0 is possible when the lower bound of [D12]1 is negative.

Equation (4.8) gives

(1 + ρ)−2D12(tsend1) + (1 + ρ)−1`min− `assume < 0

⇒ D12(tsend1) < (1 + ρ)2`assume− (1 + ρ)`min.

The above condition can be true or false depending on the values ofρ, `max and`assume.

[D21]2 ≥ 0 possible: Equation (4.4) gives

(1 + ρ)`max− D12(tsend1) − `assume ≥ 0

67

⇒ D12(tsend1) ≤ (1 + ρ)`max− `assume.

[D21]2 < 0 possible: Equation (4.4) gives

`min−
(

ρ

1 + ρ

)
`max− D12(tsend1) − `assume < 0

⇒ D12(tsend1) > `min−
(

ρ

1 + ρ

)
`max− `assume.

Since`assume> `min, this inequality is always true.

With these limits established, limits can now be found for each of the behavior cases by

looking at the intersection of the limits.

[D12]1 ≥ 0∧ [D21]2 < 0 possible: The case of only node2 adjusting its clock is always

possible, i.e.,

D12(tsend1) ≥ (1 + ρ)−2`assume− (1 + ρ)−1`max

D12(tsend1) > `min−
(

ρ

1 + ρ

)
`max− `assume

⇒ D12(tsendi) > 0.

[D12]1 < 0∧ [D21]2 < 0 possible: The case of both nodes1 and2 adjusting their clocks

is possible when

D12(tsend1) < (1 + ρ)2`assume− (1 + ρ)`min

D12(tsend1) > `min−
(

ρ

1 + ρ

)
`max− `assume

⇒ D12(tsend1) < (1 + ρ)2`assume− (1 + ρ)`min

D12(tsend1) > 0

68

[D12]1 < 0∧ [D21]2 ≥ 0 possible: The case of only node1 adjusting its clock is possible

when

D12(tsend1) < (1 + ρ)2`assume− (1 + ρ)`min

D12(tsend1) ≤ (1 + ρ)`max− `assume

[D12]1 ≥ 0∧ [D21]2 ≥ 0 possible: Finally, the case of neither node adjusting its clock is

possible when

D12(tsend1) ≥ (1 + ρ)−2`assume− (1 + ρ)−1`max

D12(tsend1) ≤ (1 + ρ)`max− `assume

⇒ D12(tsend1) ≥ 0

D12(tsend1) ≤ (1 + ρ)`max− `assume

From these results, the range ofD12(tsend1) can be broken up into regions where different

clock adjustment behavior is known to occur. Analysis can then be performed for each

region independently, then compared. The regions depend on the value of`assume. Let `mid

be defined as the value of`assumewhen (1+ ρ)`max− `assume= (1 + ρ)2`assume− (1 + ρ)`min.

Then,

`mid = ((1 + ρ)`max + (1 + ρ)`min)
(
1 + (1 + ρ)2

)−1
.

If

`assume> `mid,

then

69

(1 + ρ)2`assume− (1 + ρ)`min > (1 + ρ)`max− `assume,

and the possible node behavior in different regions are as follows:

D12(tsend1) ∈ [0, (1 + ρ)`max− `assume] : 1 sets,2 sets, both set, neither sets

∈ [(1 + ρ)`max− `assume, (1 + ρ)2`assume− (1 + ρ)`min] : 2 sets, both set

∈ [(1 + ρ)2`assume− (1 + ρ)`min,∞) : 2 sets.

Alternatively, if

`assume< `mid,

then

(1 + ρ)2`assume− (1 + ρ)`min < (1 + ρ)`max− `assume,

and the possible node behavior in different regions are instead

D12(tsend1) ∈ [0, (1 + ρ)2`assume− (1 + ρ)`min] : 1 sets,2 sets, both set, neither sets

∈ [(1 + ρ)2`assume− (1 + ρ)`min, (1 + ρ)`max− `assume] : 2 sets, neither sets

∈ [(1 + ρ)`max− `assume,∞) : 2 sets.

Determining limits of synchronization

The maximum synchronization achievable through the algorithm depends not only on en-

vironment variables likèmax, `min, andρ, but also on how frequently the synchronization

70

algorithm can run. Given the synchronization of the nodesD12(tstart) at the start of a round

and the maximum timedtbetweenbetween rounds, the synchronization of the nodes at the

start of the next round,D12(t
(2)
start), is bounded by

D12(t
(2)
start) ≤ D12(tstart) + ∆syncmax + dr · dtbetween

D12(t
(2)
start) ≥ D12(tstart) + ∆syncmin − dr · dtbetween, (4.9)

where∆syncmin and∆syncmax are the minimum and maximum change in clock skew due

to adjustment in a single round, anddr · dtbetweenis the maximum drift between two local

clocks possible between the start of two rounds. Note∆syncmin and∆syncmax may be broken

down further into

∆syncmin = ∆syncmin1
+ ∆syncmin2

∆syncmax = ∆syncmax1
+ ∆syncmax2

,

where∆syncmin1
is the change contributed by node1 and∆syncmax2

is the change contributed

by node2. Note that a positive value of∆syncmin or ∆syncmax indicates that node1 adjusted its

clock forward (generally undesirable) while a negative value means that node2 adjusted its

clock forward (generally desirable).

The previous section determined the boundary cases for how nodes adjust their clocks,

so it is now possible to calculate∆syncmin and∆syncmax for each of the different adjustment

cases in each of the different regions.

Case`assume> `mid, D12(tsend1) ∈ [0, (1+ ρ)`max− `assume]: In this case the smallest contri-

bution of node1 is

71

∆syncmin1
= −min {0,max{[D12]1}}

= −min
{
0, (1 + ρ)2D12(tsend1) + (1 + ρ)`max− `assume

}

= 0.

The largest contribution of node1 is

∆syncmax1
= −min {0,min {[D12]1}}

= −min
{
0, (1 + ρ)−2D12(tsend1) + (1 + ρ)−1`min− `assume

}

= −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume.

The smallest contribution of node2 is

∆syncmin2
= min {0,min {[D21]2}}

= min

{
0, `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume

}

= `min−
(

ρ

1 + ρ

)
`max− D12(tsend1) − `assume.

The largest contribution of node2 is

∆syncmax2
= min {0,max{[D21]2}}

= min
{
0, (1 + ρ)`max− D12(tsend1) − `assume

}

= 0.

72

Therefore, for the casèassume> `mid, D12(tsend1) ∈ [0, (1 + ρ)`max− `assume],

∆syncmin = 0 + `min−
(

ρ

1 + ρ

)
`max− D12(tsend1) − `assume

∆syncmax = −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume+ 0

⇒ ∆syncmin = `min−
(

ρ

1 + ρ

)
`max− D12(tsend1) − `assume

∆syncmax = −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume.

Substituting these results into equation (4.9) yields

D12(t
(2)
start) ≤ D12(tsend1) − (1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume+ dr · dtbetween

D12(t
(2)
start) ≥ D12(tsend1) + `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume− dr · dtbetween

⇒ D12(t
(2)
start) ≤

(
1− (1 + ρ)−2

)
D12(tsend1) − (1 + ρ)−1`min + `assume+ dr · dtbetween

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween.

SinceD12(tsend1) ≤ (1 + ρ)`max− `assume, substituting forD12(tsend1) gives

D12(t
(2)
start) ≤

(
1− (1 + ρ)−2

)
((1 + ρ)`max− `assume) − (1 + ρ)−1`min + `assume+ dr · dtbetween

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween

⇒ D12(t
(2)
start) ≤

(
(1 + ρ) − (1 + ρ)−1

)
`max + (1 + ρ)−2`assume− (1 + ρ)−1`min + dr · dtbetween

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween.

Case`assume> `mid, D12(tsend1) ∈ [(1 + ρ)`max− `assume, (1+ ρ)2`assume− (1+ ρ)`min]: In this

case, the only possible behaviors are that only node2 adjusts its clock or that both nodes1

73

and2 adjust their clocks.

The smallest contribution of node1 is

∆syncmin1
= −min {0,max{[D12]1}}

= 0.

The largest contribution of node1 is

∆syncmax1
= −min {0,min {[D12]1}}

= −min
{
0, (1 + ρ)−2D12(tsend1) + (1 + ρ)−1`min− `assume

}
.

The smallest contribution of node2 is

∆syncmin2
= min {0,min {[D21]2}}

= `min−
(

ρ

1 + ρ

)
`max− D12(tsend1) − `assume.

The largest contribution of node2 is

∆syncmax2
= min {0,max{[D21]2}}

= (1 + ρ)`max− D12(tsend1) − `assume.

Therefore, for the casèassume> `mid, D12(tsend1) ∈ [(1 + ρ)`max− `assume, (1+ ρ)2`assume−

74

(1 + ρ)`min],

∆syncmin = `min−
(

ρ

1 + ρ

)
`max− D12(tsend1) − `assume

∆syncmax = −min
{
0, (1 + ρ)−2D12(tsend1) + (1 + ρ)−1`min− `assume

}

+(1 + ρ)`max− D12(tsend1) − `assume.

Substituting these results into equation (4.9) yields

D12(t
(2)
start) ≤ −min

{
0, (1 + ρ)−2D12(tsend1) + (1 + ρ)−1`min− `assume

}

+(1 + ρ)`max− `assume+ dr · dtbetween

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween.

The smallest possible value forD12(tsend1) in this case is chosen as a substitution, giving

D12(t
(2)
start) ≤ −min

{
0, (1 + ρ)−2 ((1 + ρ)`max− `assume) + (1 + ρ)−1`min− `assume

}

+(1 + ρ)`max− `assume+ dr · dtbetween

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween

⇒ D12(t
(2)
start) ≤ −

(
(1 + ρ)−2 ((1 + ρ)`max− `assume) + (1 + ρ)−1`min− `assume

)

+(1 + ρ)`max− `assume+ dr · dtbetween

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween,

which simplifies to

75

D12(t
(2)
start) ≤

(
(1 + ρ) − (1 + ρ)−1

)
`max− (1 + ρ)−1`min + (1 + ρ)−2`assume+ dr · dtbetween

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween.

Case`assume> `mid, D12(tsend1) ∈ [(1 + ρ)2`assume− (1 + ρ)`min],∞: In this case, the only

possible behavior is that only node2 adjusts its clock. The limits of adjustment are

∆syncmin1
= 0

∆syncmax1
= 0

∆syncmin2
= `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume

∆syncmax2
= (1 + ρ)`max− D12(tsend1) − `assume,

giving

∆syncmin = `min−
(

ρ

1 + ρ

)
`max− D12(tsend1) − `assume

∆syncmax = (1 + ρ)`max− D12(tsend1) − `assume

and

D12(t
(2)
start) ≤ (1 + ρ)`max− `assume+ dr · dtbetween

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween.

76

The same analysis is now performed for the cases where`assume< `mid.

Case`assume< `mid, D12(tsend1) ∈ [0, (1 + ρ)2`assume− (1 + ρ)`min]:

∆syncmin1
= −min {0,max{[D12]1}}

= −min
{
0, (1 + ρ)2D12(tsend1) + (1 + ρ)`max− `assume

}

= 0

∆syncmax1
= −min {0,min {[D12]1}}

= −min
{
0, (1 + ρ)−2D12(tsend1) + (1 + ρ)−1`min− `assume

}

= −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

∆syncmin2
= min {0,min {[D21]2}}

= min

{
0, `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume

}

= `min−
(

ρ

1 + ρ

)
`max− D12(tsend1) − `assume

∆syncmax2
= min {0,max{[D21]2}}

= min
{
0, (1 + ρ)`max− D12(tsend1) − `assume

}
,

which gives

77

∆syncmin = `min−
(

ρ

1 + ρ

)
`max− D12(tsend1) − `assume

∆syncmax = −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

+ min
{
0, (1 + ρ)`max− D12(tsend1) − `assume

}

and

D12(t
(2)
start) ≤

(
1− (1 + ρ)−2

)
D12(tsend1) − (1 + ρ)−1`min + `assume

+ min
{
0, (1 + ρ)`max− D12(tsend1) − `assume

}
+ dr · dtbetween

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween.

Ideally, to find the maximum possible value ofD12(t
(2)
start) under these conditions, the

value ofD12(tsend1) should be selected such that (1+ ρ)`max− D12(tsend1) − `assume= 0. Any

smaller value would decrease the total via the
(
1− (1 + ρ)−2

)
D12(tsend1) term, and any larger

value would also decrease the total via theD12(tsend1) within the min function. Solving gives

D12(tsend1) = (1 + ρ)`max− `assume.

However, sincèassume< `mid, then (1+ ρ)2`assume− (1 + ρ)`min < (1 + ρ)`max− `assume,

so the largest valueD12(tsend1) may take is (1+ ρ)2`assume− (1+ ρ)`min. Therefore, the limits

of D12(t
(2)
start) become

D12(t
(2)
start) ≤

(
1− (1 + ρ)−2

) (
(1 + ρ)2`assume− (1 + ρ)`min

)
− (1 + ρ)−1`min + `assume

+dr · dtbetween

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween

78

⇒ D12(t
(2)
start) ≤ (1 + ρ)2`assume− (1 + ρ)`min + dr · dtbetween

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween.

Case`assume< `mid, D12(tsend1) ∈ [(1 + ρ)2`assume− (1+ ρ)`min, (1+ ρ)`max− `assume]: In this

case, the possible node behaviors are either2 adjusts its clock or neither adjusts its clock:

∆syncmin1
= 0

∆syncmax1
= 0

∆syncmin2
= `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume

∆syncmax2
= 0.

Therefore,

∆syncmin = `min−
(

ρ

1 + ρ

)
`max− D12(tsend1) − `assume

∆syncmax = 0

and

D12(t
(2)
start) ≤ (1 + ρ)`max− `assume+ dr · dtbetween

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween.

Case`assume< `mid, D12(tsend1) ∈ [(1 + ρ)`max− `assume,∞]: In this case, node2 adjusts its

clock:

79

∆syncmin1
= 0

∆syncmax1
= 0

∆syncmin2
= `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume

∆syncmax2
= (1 + ρ)`max− D12(tsend1) − `assume.

Therefore,

∆syncmin = `min−
(

ρ

1 + ρ

)
`max− D12(tsend1) − `assume

∆syncmax = (1 + ρ)`max− D12(tsend1) − `assume

and

D12(t
(2)
start) ≤ (1 + ρ)`max− `assume+ dr · dtbetween

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween.

At this point, three upper bounds and three lower bounds have been derived for the

clock skew between nodes at the start of the following synchronization round for each of

the conditions̀ assume> `mid and`assume< `mid. It is now possible to evaluate the actual

upper and lower bounds onD12(t
(2)
start) by comparing the bounds in each case and selecting

the most extreme. In addition, since`assumeis a tunable parameter, it is possible to minimize

the extremes by selecting̀assumeappropriately.

Note that for all six cases,

80

D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween,

making the selection of the actual (most extreme) lower bound trivial.

The possible maximum values ofD12(t
(2)
start) when`assume> `mid are

D12(t
(2)
start) ≤

(
(1 + ρ) − (1 + ρ)−1

)
`max + (1 + ρ)−2`assume− (1 + ρ)−1`min + dr · dtbetween

D12(t
(2)
start) ≤ (1 + ρ)`max− `assume+ dr · dtbetween,

and wheǹ assume< `mid, the possible maximum values are

D12(t
(2)
start) ≤ (1 + ρ)2`assume− (1 + ρ)`min + dr · dtbetween

D12(t
(2)
start) ≤ (1 + ρ)`max− `assume+ dr · dtbetween.

Since each of the bounds is linear with respect to`assumed, and since for each pair of

bounds one is positively sloped and one is negatively sloped, the upper bound is at its

minimum when the lines intersect. For both pairs, the intersection occurs at`assumed= `min.

In addition, at that value of̀assumed,

|(1 + ρ)`max− `assume+ dr · dtbetween| >

∣∣∣∣∣∣`min−
(

ρ

1 + ρ

)
`max− `assume− dr · dtbetween

∣∣∣∣∣∣⇒

(1 + ρ)`max− `assume+ dr · dtbetween > −`min +

(
ρ

1 + ρ

)
`max + `assume+ dr · dtbetween⇒

(1 + ρ)`max− `assume > −`min +

(
ρ

1 + ρ

)
`max + `assume.

81

Therefore, the most extreme bound onD12(t
(2)
start) is minimized at`assume = `mid and

evaluates to

∣∣∣D12(t
(2)
start)

∣∣∣ ≤ (1+ρ)`max−
(
1 + (1 + ρ)2

)−1
((1 + ρ)`max + (1 + ρ)`min)+dr ·dtbetween. (4.10)

Determining maximum synchronization

It is tempting to assume that, given the bounds forD12(t
(2)
start) above, the task of finding

the maximum synchronization supported is trivial: simply plug in the values of`max, `min,

ρ, dr, and the smallest value ofdtbetweenachievable and evaluate. However, to do so would

neglect the fact that clocks may continue to drift during the execution of the algorithm

before node2 adjusts its clock forward.

Therefore, determining the actual maximum synchronization achievable requires knowl-

edge of how much time may pass between the start of the algorithm and the time node2

adjusts its clock.

The intervaldtseti between the beginning of the algorithm and when nodei adjusts its

clock is given by

dtseti = tsendi + dtwaiti + dtcalci − tstart,

wheretsendi is the time at which nodei sends its messages to all other nodes,dtwaiti is

the length of time it waits to receive messages from other nodes,dtcalci is the length of time

the node takes to perform subsequent calculations after receiving all messages and before

adjusting its clock, andtstart is the time at which the algorithm begins. Note that for the

running example with nodes1 and2,

82

dtset2 = tsend2 + dtwait2 + dtcalc2 − tsend1.

The termdtcalci is bounded above by,

dtcalci ≤ dtcalcmax,

wheredtcalcmax is determined experimentally.

A benchmark to determine the maximum amount of time required for calculations

would use local clock readings. In other words, a benchmark would determineτcalcmax.

By the bounds of clock drift from real time,τcalcmax gives

dtcalcmax ≤ (1 + ρ)τcalcmax

and

dtcalci ≤ (1 + ρ)τcalcmax.

The possible values ofdtwaiti must be restricted to values thatguaranteethat the node

will receive all messages from all other functioning nodes before continuing on to deter-

mine how to adjust its clock. Letdtwaitreq be the minimum value ofdtwaiti that provides such

a guarantee. Let the related valueτwaitreq be the amount oflocal time a node must count on

its own local clock to guarantee the passage ofdtwaitreq in real time.

Note thatτwaitreq , dtwaitreq because of local clocks’ tendency to drift from real time.

83

If a node is required to wait an intervaldtwaitreq in real time, it must actually count out

τwaitreq > dtwaitreq units of time on its local clock, since it is possible for a local clock to

count faster than real time.

From the bounds on clock drift provided by equation (4.2), the actual amount of real

timedtwait that may elapse over a local clock interval ofτwaitreq can be bounded as follows:

dtwait ≤ (1 + ρ)τwaitreq

dtwait ≥ (1 + ρ)−1τwaitreq,

whereτwaitreq = Ci(tsendi + dtwait) −Ci(tsendi).

The requirement thatdtwait ≥ dtwaitreq gives

τwaitreq > (1 + ρ)dtwaitreq.

Now an expression fordtwaitreq must be determined. Recall thatdtwaitreq is the length

of time a node must wait after it sends its messages to guarantee it receives all messages

before continuing. Thus, the value ofdtwaitreq may be expressed as

dtwaitreq = max
{
tsendj − tsendi

}
+ `max, (4.11)

wheremax
{
tsendj − tsendi

}
is the maximum time possible between when nodesi and j

send their messages.

To calculate an upper bound fortsendj − tsendi , a maximum allowed skew between local

clocks at the start of the algorithm must first be defined. The constantDstartmax is defined to

be this limit. In other words,

84

Di j (tsendi) ≤ Dstartmax

Di j (tsendi) ≥ −Dstartmax.

Note that a node which isDstartmax behind another node at the start of the algorithm is

not guaranteed to send its messages exactlyDstartmax time units after the first. It may send

them later, due to the possibility of the node’s local clock counting slower than real time.

What is guaranteed, however, is that if two nodes,i and j, begin with

Di j (tsendi) = Dstartmax

⇒ Ci(tsendi) = Cj(tsendi) + Dstartmax,

then

Cj(tsendj) = Cj(tsendi) + Dstartmax.

In other words, if the two nodes begin with their clocksDstartmax apart, then between the

times when nodei and nodej send their messages, nodej’s clock must count off exactly

Dstartmax.

This fact can be used with equation (4.2) to determine the maximum time that can

elapse between when nodesi and j send their messages:

tsendj − tsendi ≤ (1 + ρ)(Cj(tsendj) −Cj(tsendi))

tsendj − tsendi ≥ (1 + ρ)−1(Cj(tsendj) −Cj(tsendi))

⇒ tsendj − tsendi ≤ (1 + ρ)Dstartmax

85

tsendj − tsendi ≥ (1 + ρ)−1Dstartmax. (4.12)

Finally, substituting the largest value oftsendj − tsendi into equation (4.11) yields

dtwaitreq = (1 + ρ)Dstartmax + `max

and

τwaitreq = (1 + ρ)2Dstartmax + (1 + ρ)`max.

Of course, if a node counts outτwaitreq on its local clock, the maximum interval of real

timedtwaitmax a node may actually wait is

dtwaitmax = (1 + ρ)3Dstartmax + (1 + ρ)2`max. (4.13)

The maximum intervaldtsetmax is calculated by

dtsetmax = max
{
tsendi − tstart

}
+ dtwaitmax + dtcalcmax.

With the condition thattstart , tsendi and using equations (4.12) and (4.13), the expres-

sion becomes

dtsetmax =
(
(1 + ρ)3 + (1 + ρ)

)
Dstartmax + (1 + ρ)2`max + dtcalcmax. (4.14)

From here, it is possible to determine the maximum synchronization possible. Define

Dmax to be the constant which bounds clock skew at all times. Then,

Dmax≥ Dstartmax + dr · dtsetmax,

86

wheredr · dtsetmax is the maximum drift possible between nodes from the start time of

the algorithm to the time when the last node adjusts its clock.

Substituting fordtsetmax via equation (4.14) gives

Dmax≥ dr
((

(1 + ρ)3 + (1 + ρ) + dr−1
)
Dstartmax + (1 + ρ)2`max + dtcalcmax

)
.

Fortunately, a bound forDstartmax has already been calculated in the guise of bounds for

D12(t
(2)
start) in equation (4.10), whereDstartmax = max

{∣∣∣D12(t
(2)
start)

∣∣∣
}
. Therefore,

Dmax ≥ dr
((

(1 + ρ)3 + (1 + ρ) + dr−1
)

·
(
(1 + ρ)`max−

(
1 + (1 + ρ)2

)−1 · ((1 + ρ)`max + (1 + ρ)`min) + dr · dtbetween

)

+ (1 + ρ)2`max + dtcalcmax

)
.

Determining timing constraints

The final step of analysis is to determine the minimumdtbetweenthat will guarantee correct

operation of the algorithm over multiple rounds. There are two conditions on the minimum

length of time between rounds to ensure correct operation:

∀ nodesi, j, t(2)
sendi

+ `min ≥ tsetj

∀ nodesi, T(2)
send ≥ Ci(tseti).

In the first condition, the time at which each node sends its messages for round two

must be late enough that those messages arrive at the other nodes after those nodes have

adjusted their clocks from round one. If this were not the case, a node receiving a message

for round two would be timestamping using a clock that was not yet updated given the

87

information in the first round. The incorrect timestamp might cause the node incorrectly

approximate the source node’s relative clock skew.

In the second condition, for each node, after the local clock is adjusted, the local clock

should read less thanT(2)
send, the local time at which the nodes are to send their messages for

the next round of synchronization. For intuition as to why this is a requirement, consider

if a node’s clock were adjusted to a time beyond the point at which it was to send its next

round of messages. Possibly, the node may never recognize that it didn’t send its messages

at the correct time, but more probably, the node would realize it was late and send the

messages immediately. Unfortunately, other nodes would perceive the local clock of that

node as being at an earlier time than is correct, i.e. they would not realize how ahead that

node’s clock actually is. Therefore, the other nodes would not adjust their clocks forward

enough, and the same synchronization guarantees could not be maintained.

To begin, recall that

∀ nodesi, j, t(2)
sendi

+ `min ≥ tsetj .

For nodes1 and2, this means

t(2)
send1

+ `min ≥ tset2

t(2)
send2

+ `min ≥ tset1.

Recognizing thattseti ≤ tsendi + dtsetmax gives

88

t(2)
send1

+ `min ≥ tsend2 + dtsetmax

t(2)
send2

+ `min ≥ tsend1 + dtsetmax,

and recalling by (4.12) that (1+ ρ)−1Dstartmax ≤ tsendj − tsendi ≤ (1 + ρ)Dstartmax (with

i = 1, j = 2) yields

t(2)
send1

+ `min ≥ tsend1 + (1 + ρ)Dstartmax + dtsetmax

t(2)
send2

+ `min ≥ tsend2 − (1 + ρ)−1Dstartmax + dtsetmax

⇒ t(2)
send1
− tsend1 ≥ (1 + ρ)Dstartmax + dtsetmax − `min

t(2)
send2
− tsend2 ≥ −(1 + ρ)−1Dstartmax + dtsetmax − `min

⇒ dtbetween ≥ (1 + ρ)Dstartmax + dtsetmax − `min

dtbetween ≥ −(1 + ρ)−1Dstartmax + dtsetmax − `min.

Clearly, the first bound is more strict, so it is the only one considered now. Substituting

for dtsetmax via (4.14) gives

dtbetween≥ (1+ρ)Dstartmax+
(
(1 + ρ)3 + (1 + ρ)

)
Dstartmax+(1+ρ)2`max+dtcalcmax−`min. (4.15)

Substituting forDstartmax gives

89

dtbetween ≥
(
(1 + ρ)3 + 2(1+ ρ)

)
((1 + ρ)`max− `assume+ dr · dtbetween)

+(1 + ρ)2`max− `min + dtcalcmax.

Solving fordtbetweenfinally gives

dtbetween ≥
[(

(1 + ρ)3 + 2(1+ ρ)
)
((1 + ρ)`max− `assume)

+(1 + ρ)2`max− `min + dtcalcmax

]

·
(
1− dr ·

(
(1 + ρ)3 + 2(1+ ρ)

))−1
.

The second condition requires that for a nodei,

T(2)
send≥ Ci(tseti),

which can be rewritten as

T(2)
send ≥ Tsend+ τwaitreq + τcalcmax −min

{[
Di j

]
i

}

⇒ T(2)
send− Tsend ≥ τwaitreq + τcalcmax −min

{[
Di j

]
i

}

⇒ τbetween ≥ τwaitreq + τcalcmax −min
{[

Di j

]
i

}
.

For nodes1 and2, this becomes

τbetween ≥ τwaitreq + τcalcmax −min {[D12]1}

90

τbetween ≥ τwaitreq + τcalcmax −min {[D21]2}

⇒ τbetween ≥ τwaitreq + τcalcmax −
(
(1 + ρ)−2D12(tsend1) + (1 + ρ)−1`min− `assume

)

τbetween ≥ τwaitreq + τcalcmax −
(
`min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume

)
.

Substituting the appropriate minimum and maximum values ofD12(tsend1) gives

τbetween ≥ τwaitreq + τcalcmax − (1 + ρ)−1`min + `assume

τbetween ≥ τwaitreq + τcalcmax − `min +

(
ρ

1 + ρ

)
`max + Dstartmax + `assume.

Since the second lower bound is stricter, it is the only one considered further. Substi-

tuting forτwaitreq gives

τbetween ≥ (1 + ρ)2Dstartmax + (1 + ρ)`max + τcalcmax

−`min +

(
ρ

1 + ρ

)
`max + Dstartmax + `assume

⇒ τbetween ≥
(
1 + (1 + ρ)2

)
Dstartmax + (1 + ρ)`max + τcalcmax

−`min +

(
ρ

1 + ρ

)
`max + `assume. (4.16)

Substituting forDstartmax gives

τbetween ≥
(
1 + (1 + ρ)2

)
((1 + ρ)`max− `assume+ dr · dtbetween)

+

(
1 + ρ +

ρ

1 + ρ

)
`max− `min + `assume+ τcalcmax.

91

The analysis has resulted in a lower bound onτbetweendescribed in terms ofdtbetween.

Since a bound fordtbetweenhas already been determined from the first condition, the bound

for τbetweenmay be found by substitution.

4.3.2 Characterization of Algorithm for Three or More Nodes

The analysis of the failstop algorithm for three or more nodes proceeds similarly to the

case of two nodes. The different results for three or more nodes stem from a removal of

assumptions implicit in the two-node case. Specifically, in the two-node case, if node2 was

sufficiently behind node1, node1 was guaranteednot to adjust its clock forward. In the

case of three or more nodes, that assumption can no longer be made, since the leading node

may adjust its clock based on its approximation of the clock of a node other than the trailing

node. Similarly, even if the clocks of the leading and trailing nodes are within a range that

permits both nodes to adjust their clocks forward, the existence of additional nodes loosens

the bounds of how far forward the leading node may adjust its clock forward. The broken

assumptions result in less favorable bounds on the achievable synchronization.

Definen nodes,1, 2,...,n. Without loss of generality, let

C1(tstart) ≥ C2(tstart) ≥ ... ≥ Cn(tstart).

Once again,tstart = tsend1.

Determining each node’s perception of local clock difference

By the same analysis performed for the two-node case, each node’s perception of the oth-

ers’ clocks may be bounded as follows:

∀ nodesj ∈ 1, ...,n :

92

∀ nodesi < j :
[
Dji

]
j
≤ (1 + ρ)`max− Dij (tsendi) − `assume

[
Dji

]
j
≥ `min−

(
ρ

1 + ρ

)
`max− Dij (tsendi) − `assume

∀ nodesk > j :
[
Djk

]
j
≤ (1 + ρ)2Djk (tsendj) + (1 + ρ)`max− `assume

[
Djk

]
j
≥ (1 + ρ)−2Djk (tsendj) + (1 + ρ)−1`min− `assume.

Note that for node1, the leading node, the first set of bounds do not apply, and for node

n, the trailing node, the second set of bounds do not apply.

Determining limits of behavior

Using the above bounds, conditions are established for the behavior of the nodes. For

each nodei ∈ 1, ...,n, the following questions are considered:

1. Under what conditions is it possible for nodei to set its clock?

2. Under what conditions is it possible for nodei to not set its clock?

To determine the necessary conditions, recall that a node determines whether to adjust

its clock based on its approximation of all clock skews. The function used by nodei to

calculate the magnitude of the adjustment may be expressed as

ad justi([Di1] i , [Di2] i , ..., [Din] i) =

−min
j=1..n

j,i

{
[Di j]

}
, min

j=1..n
j,i

{
[Di j]

}
< 0

0 , min
j=1..n

j,i

{
[Di j]

}
≥ 0

.

In other words, each node selects the smallest value among its approximations of clock

skews. If that value is smaller than zero, the node’s clock is adjusted forward by that

93

amount, otherwise, the clock is not adjusted.

To find the conditions that make it possible for nodei to adjust its clock, the conditions

must be found that satisfy

min

min
j=1..n

j,i

{
[Di j]

}
 < 0,

i.e., the largest possible value ofad justi() is greater than zero. Similarly, to find the

conditions that make it possible for nodei to leave its clock alone, the conditions must be

found that satisfy

max

min
j=1..n

j,i

{
[Di j]

}
 ≥ 0,

i.e., the smallest possible value ofad justi() is zero.

Recall that for any nodei:

D1i(tsend1) ≥ D2i(tsend1) ≥ ... ≥ Dni(tsend1)

Di1(tsend1) ≤ Di2(tsend1) ≤ ... ≤ Din(tsend1).

Therefore, for node1,

min

{
min
j=2..n

{
[D1j]

}}
< 0

⇒ (1 + ρ)−2D12(tsend1) + (1 + ρ)−1`min− `assume < 0

⇒ D12(tsend1) < (1 + ρ)2`assume− (1 + ρ)`min.

Thus, the possibility of node1 adjusting its clock is dependent on the relative skew of

its closest neighbor.

94

In addition,

max

{
min
j=2..n

{
[D1j]

}}
≥ 0

⇒ (1 + ρ)2D12(tsendj) + (1 + ρ)`max− `assume ≥ 0

⇒ D12(tsend1) ≥ (1 + ρ)−2`assume− (1 + ρ)−1`max

→ D12(tsend1) ≥ 0.

Again, the possibility of node1 not adjusting its clock is dependent on the relative skew

of its closest neighbor.

Continuing, for nodei ∈ 2..n,

min

min
j=1..n

j,i

{
[Dij]

}
 < 0

⇒ `min−
(

ρ

1 + ρ

)
`max− D1i(tsend1) − `assume < 0

⇒ D1i(tsend1) > `min−
(

ρ

1 + ρ

)
`max− `assume

→ D1i(tsend1) ≥ 0.

It is always possible for these nodes to adjust their clocks forward.

Next it is determined under what conditions it is possible for nodes2..n to not adjust

their clocks at all:

max

min
j=1..n

j,i

{
[Dij]

}
 ≥ 0

⇒ (1 + ρ)`max− D1i(tsendi) − `assume ≥ 0

⇒ D1i(tsend1) ≤ (1 + ρ)`max− `assume

95

Thus the possibility for these nodes exists only when the relative skew of the leading

node1 is small enough.

Now it is possible to identify the set of initial conditions of the nodes’ clocks that

require independent analysis. Once again, the set of relevant initial conditions will depend

on whether

(1 + ρ)2`assume− (1 + ρ)`min
?
> (1 + ρ)`max− `assume.

If

`assume> `mid = ((1 + ρ)`max + (1 + ρ)`min)
(
1 + (1 + ρ)2

)−1
,

then the statement is true.

Thus, the list of all initial conditions that may need to be independently analyzed is as

follows:

1. ∀ nodesi ∈ 2..n,D1i(tsend1) ∈ [0, (1 + ρ)`max− `assume]

2. ∀ nodesi ∈ 2..n-1,D1i(tsend1) ∈ [0, (1 + ρ)`max− `assume]

D1n(tsend1) ∈ ((1 + ρ)`max− `assume, (1 + ρ)2`assume− (1 + ρ)`min]

3. ∀ nodesi ∈ 2..n-1,D1i(tsend1) ∈ [0, (1 + ρ)`max− `assume]

D1n(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

4. ∀ nodesi ∈ 2..n-2,D1i(tsend1) ∈ [0, (1 + ρ)`max− `assume]

∀ nodesi ∈ n-1..n,D1i(tsend1) ∈ ((1 + ρ)`max− `assume, (1 + ρ)2`assume− (1 + ρ)`min]

...

5. D12(tsend1) ∈ ((1 + ρ)`max− `assume, (1 + ρ)2`assume− (1 + ρ)`min]

∀ nodesi ∈ 3..n,D1i(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

96

6. ∀ nodesi ∈ 2..n,D1i(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

In total, there are12n(n+ 1) number of different ways for the nodes’ clocks to reside in

different regions. Fortunately, most of these configurations may be ignored.

Recall that the goal of distinguishing between initial conditions is to identify which

conditions may result in different limits of synchronization after the possible adjustment of

all the clocks. Keeping this in mind, it is possible to eliminate many of the possible initial

conditions that result in equivalent synchronization limits.

In fact, the number of interesting cases may be reduced to the following:

1. D12(tsend1) ∈ [0, (1 + ρ)`max− `assume]

D1n(tsend1) ∈ [0, (1 + ρ)`max− `assume]

2. D12(tsend1) ∈ [0, (1 + ρ)`max− `assume]

D1n(tsend1) ∈ ((1 + ρ)`max− `assume, (1 + ρ)2`assume− (1 + ρ)`min]

3. D12(tsend1) ∈ [0, (1 + ρ)`max− `assume]

D1n(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

4. D12(tsend1) ∈ ((1 + ρ)`max− `assume, (1 + ρ)2`assume− (1 + ρ)`min]

D1n(tsend1) ∈ ((1 + ρ)`max− `assume, (1 + ρ)2`assume− (1 + ρ)`min]

5. D12(tsend1) ∈ ((1 + ρ)`max− `assume, (1 + ρ)2`assume− (1 + ρ)`min]

D1n(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

6. D12(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

D1n(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

For the case of̀assume< `mid, the following initial condition cases are interesting:

1. D12(tsend1) ∈ [0, (1 + ρ)2`assume− (1 + ρ)`min]

D1n(tsend1) ∈ [0, (1 + ρ)2`assume− (1 + ρ)`min]

97

2. D12(tsend1) ∈ [0, (1 + ρ)2`assume− (1 + ρ)`min]

D1n(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min, (1 + ρ)`max− `assume]

3. D12(tsend1) ∈ [0, (1 + ρ)2`assume− (1 + ρ)`min]

D1n(tsend1) ∈ ((1 + ρ)`max− `assume,∞)

4. D12(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min, (1 + ρ)`max− `assume]

D1n(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min, (1 + ρ)`max− `assume]

5. D12(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min, (1 + ρ)`max− `assume]

D1n(tsend1) ∈ ((1 + ρ)`max− `assume,∞)

6. D12(tsend1) ∈ ((1 + ρ)`max− `assume,∞)

D1n(tsend1) ∈ ((1 + ρ)`max− `assume,∞)

Determining limits of synchronization

The synchronization of two nodes,i andj, at the start of the next synchronization round is

given by

Dij (t
(2)
start) ≤ Dij (tstart) + ∆syncmaxij

+ dr · dtbetween

Dij (t
(2)
start) ≥ Dij (tstart) + ∆syncminij

− dr · dtbetween,

where∆syncminij
and∆syncmaxij

are the minimum and maximum change in clock skew be-

tween nodesi andj due to adjustment in a single round, anddr · dtbetweenis the maximum

drift between two local clocks possible between the start of two rounds. IfCi(tstart) >

Cj (tstart), then∆syncminij
and∆syncmaxij

may be broken down further into

98

∆syncminij
= min {ad justi()} −max

{
ad justj ()

}

∆syncmaxij
= max{ad justi()} −min

{
ad justj ()

}
,

wheread justi() is the amount nodei adjusts its clock forward andad justj () is the

amount nodej adjusts its clock forward.

There are three interesting clock skews for which bounds will be analyzed for each

of the 12 initial conditions listed above:D12(t
(2)
start), D1n(t

(2)
start), andD2n(t

(2)
start). The bounds

of these three skews are guaranteed to be equal to or greater to those of any other, since

∀ nodesi ∈ 3..n-1,Cn(tsend1) ≤ Ci(tsend1) ≤ C1(tsend1), making analysis of any other bounds

unnecessary.

Case of`assume> `min:

First note the following implications:

D12(tsend1) ∈ [0, (1 + ρ)`max− `assume]

→ min {ad just1()} = 0

→ max{ad just1()} = −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

→ min {ad just2()} = 0

→ max{ad just2()} = −`min +

(
ρ

1 + ρ

)
`max + D12(tsend1) + `assume

D12(tsend1) ∈ ((1 + ρ)`max− `assume, (1 + ρ)2`assume− (1 + ρ)`min]

99

→ min {ad just1()} = 0

→ max{ad just1()} = −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

→ min {ad just2()} = −(1 + ρ)`max + D12(tsend1) + `assume

→ max{ad just2()} = −`min +

(
ρ

1 + ρ

)
`max + D12(tsend1) + `assume

D12(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

→ min {ad just1()} = 0

→ max{ad just1()} = 0

→ min {ad just2()} = −(1 + ρ)`max + D12(tsend1) + `assume

→ max{ad just2()} = −`min +

(
ρ

1 + ρ

)
`max + D12(tsend1) + `assume

D1n(tsend1) ∈ [0, (1 + ρ)`max− `assume]

→ min {ad justn()} = 0

→ max{ad justn()} = −`min +

(
ρ

1 + ρ

)
`max + D1n(tsend1) + `assume

D1n(tsend1) ∈ ((1 + ρ)`max− `assume,∞]

→ min {ad justn()} = −(1 + ρ)`max + D1n(tsend1) + `assume

→ max{ad justn()} = −`min +

(
ρ

1 + ρ

)
`max + D1n(tsend1) + `assume

Next, the minimum and maximum relative changes in clock skew between nodes1, 2,

100

andn are determined for each set of initial conditions listed in the previous section. Since

the results of some sets of initial conditions are the same, they have been combined below

for brevity.

D12(tsend1) ∈ [0, (1 + ρ)`max− `assume]

D1n(tsend1) ∈ [0, (1 + ρ)`max− `assume]

→ ∆syncmin12
= `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume

→ ∆syncmax12
= −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

→ ∆syncmin1n
= `min−

(
ρ

1 + ρ

)
`max− D1n(tsend1) − `assume

→ ∆syncmax1n
= −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

→ ∆syncmin2n
= `min−

(
ρ

1 + ρ

)
`max− D1n(tsend1) − `assume

→ ∆syncmax2n
= −`min +

(
ρ

1 + ρ

)
`max + D12(tsend1) + `assume

D12(tsend1) ∈ [0, (1 + ρ)`max− `assume]

D1n(tsend1) ∈ ((1 + ρ)`max− `assume,∞]

→ ∆syncmin12
= `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume

→ ∆syncmax12
= −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

→ ∆syncmin1n
= `min−

(
ρ

1 + ρ

)
`max− D1n(tsend1) − `assume

→ ∆syncmax1n
= −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

101

+(1 + ρ)`max− D1n(tsend1) − `assume

→ ∆syncmin2n
= `min−

(
ρ

1 + ρ

)
`max− D1n(tsend1) − `assume

→ ∆syncmax2n
= −`min +

(
ρ

1 + ρ

)
`max + D12(tsend1) + `assume

+(1 + ρ)`max− D1n(tsend1) − `assume

D12(tsend1) ∈ ((1 + ρ)`max− `assume, (1 + ρ)2`assume− (1 + ρ)`min]

D1n(tsend1) ∈ ((1 + ρ)`max− `assume,∞]

→ ∆syncmin12
= `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume

→ ∆syncmax12
= −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

+(1 + ρ)`max− D12(tsend1) − `assume

→ ∆syncmin1n
= `min−

(
ρ

1 + ρ

)
`max− D1n(tsend1) − `assume

→ ∆syncmax1n
= −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

+(1 + ρ)`max− D1n(tsend1) − `assume

→ ∆syncmin2n
= −(1 + ρ)`max + D12(tsend1) + `assume

+`min−
(

ρ

1 + ρ

)
`max− D1n(tsend1) − `assume

→ ∆syncmax2n
= −`min +

(
ρ

1 + ρ

)
`max + D12(tsend1) + `assume

+(1 + ρ)`max− D1n(tsend1) − `assume

D12(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

102

D1n(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

→ ∆syncmin12
= `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume

→ ∆syncmax12
= (1 + ρ)`max− D12(tsend1) − `assume

→ ∆syncmin1n
= `min−

(
ρ

1 + ρ

)
`max− D1n(tsend1) − `assume

→ ∆syncmax1n
= (1 + ρ)`max− D1n(tsend1) − `assume

→ ∆syncmin2n
= −(1 + ρ)`max + D12(tsend1) + `assume

+`min−
(

ρ

1 + ρ

)
`max− D1n(tsend1) − `assume

→ ∆syncmax2n
= −`min +

(
ρ

1 + ρ

)
`max + D12(tsend1) + `assume

+(1 + ρ)`max− D1n(tsend1) − `assume

With the maximum and minimum change in clock skew determined for all cases, the

next step is plug these values into the appropriate synchronization equation.

Each resulting maximum bound onDij (t
(2)
start) is listed below:

D12(tsend1) ∈ [0, (1 + ρ)`max− `assume]

D1n(tsend1) ∈ [0, (1 + ρ)`max− `assume]

→ D12(t
(2)
start) ≤ D12(tstart) − (1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume+ dr · dtbetween

→ D1n(t
(2)
start) ≤ D1n(tstart) − (1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume+ dr · dtbetween

→ D2n(t
(2)
start) ≤ D2n(tstart) − `min +

(
ρ

1 + ρ

)
`max + D12(tsend1) + `assume+ dr · dtbetween

103

D12(tsend1) ∈ [0, (1 + ρ)`max− `assume]

D1n(tsend1) ∈ ((1 + ρ)`max− `assume,∞]

→ D12(t
(2)
start) ≤ D12(tstart) − (1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume+ dr · dtbetween

→ D1n(t
(2)
start) ≤ D1n(tstart) − (1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

+(1 + ρ)`max− D1n(tsend1) − `assume+ dr · dtbetween

→ D2n(t
(2)
start) ≤ D2n(tstart) − `min +

(
ρ

1 + ρ

)
`max + D12(tsend1) + `assume

+(1 + ρ)`max− D1n(tsend1) − `assume+ dr · dtbetween

D12(tsend1) ∈ ((1 + ρ)`max− `assume, (1 + ρ)2`assume− (1 + ρ)`min]

D1n(tsend1) ∈ ((1 + ρ)`max− `assume,∞]

→ D12(t
(2)
start) ≤ D12(tstart) − (1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

+(1 + ρ)`max− D12(tsend1) − `assume+ dr · dtbetween

→ D1n(t
(2)
start) ≤ D1n(tstart) − (1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

+(1 + ρ)`max− D1n(tsend1) − `assume+ dr · dtbetween

→ D2n(t
(2)
start) ≤ D2n(tstart) − `min +

(
ρ

1 + ρ

)
`max + D12(tsend1) + `assume

+(1 + ρ)`max− D1n(tsend1) − `assume+ dr · dtbetween

D12(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

D1n(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

104

→ D12(t
(2)
start) ≤ D12(tstart) + (1 + ρ)`max− D12(tsend1) − `assume+ dr · dtbetween

→ D1n(t
(2)
start) ≤ D1n(tstart) + (1 + ρ)`max− D1n(tsend1) − `assume+ dr · dtbetween

→ D2n(t
(2)
start) ≤ D2n(tstart) − `min +

(
ρ

1 + ρ

)
`max + D12(tsend1) + `assume

+(1 + ρ)`max− D1n(tsend1) − `assume+ dr · dtbetween

Noting thatD2n(tsend1) = D1n(tsend1) − D12(tsend1) and substituting the appropriate min-

imum or maximum values forD12(tsend1) and D1n(tsend1) to yield the largest bounds, the

above equations become

→ D12(t
(2)
start) ≤

(
(1 + ρ) − (1 + ρ)−1

)
`max + (1 + ρ)−2`assume− (1 + ρ)−1`min + dr · dtbetween

→ D1n(t
(2)
start) ≤ (1 + ρ)`max− (1 + ρ)−1`min + dr · dtbetween

→ D2n(t
(2)
start) ≤

(
1 + ρ +

(
ρ

1 + ρ

))
`max− `min + dr · dtbetween

→ D12(t
(2)
start) ≤

(
(1 + ρ) − (1 + ρ)−1

)
`max + (1 + ρ)−2`assume− (1 + ρ)−1`min + dr · dtbetween

→ D1n(t
(2)
start) ≤ (1 + ρ)`max− (1 + ρ)−1`min + dr · dtbetween

→ D2n(t
(2)
start) ≤

(
1 + ρ +

(
ρ

1 + ρ

))
`max− `min + dr · dtbetween

→ D12(t
(2)
start) ≤

(
(1 + ρ) − (1 + ρ)−1

)
`max + (1 + ρ)−2`assume− (1 + ρ)−1`min + dr · dtbetween

→ D1n(t
(2)
start) ≤

(
(1 + ρ) − (1 + ρ)−1

)
`max + (1 + ρ)−2`assume− (1 + ρ)−1`min + dr · dtbetween

→ D2n(t
(2)
start) ≤

(
1 + ρ +

(
ρ

1 + ρ

))
`max− `min + dr · dtbetween

→ D12(t
(2)
start) ≤ (1 + ρ)`max− `assume+ dr · dtbetween

→ D1n(t
(2)
start) ≤ (1 + ρ)`max− `assume+ dr · dtbetween

105

→ D2n(t
(2)
start) ≤

(
1 + ρ +

(
ρ

1 + ρ

))
`max− `min + dr · dtbetween

Comparing all the possible upper bounds reveals that the third condition,

D2n(t
(2)
start) ≤

(
1 + ρ +

(
ρ

1 + ρ

))
`max− `min + dr · dtbetween,

gives the greatest possible bound for any skew between two nodes. Note that, unlike

the case of two nodes, the upper bound has no dependence on`assume.

The same analysis is also done for the lower bounds.

D12(tsend1) ∈ [0, (1 + ρ)`max− `assume]

D1n(tsend1) ∈ [0, (1 + ρ)`max− `assume]

→ D12(t
(2)
start) ≥ D12(tstart) + `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume− dr · dtbetween

→ D1n(t
(2)
start) ≥ D1n(tstart) + `min−

(
ρ

1 + ρ

)
`max− D1n(tsend1) − `assume− dr · dtbetween

→ D2n(t
(2)
start) ≥ D2n(tstart) + `min−

(
ρ

1 + ρ

)
`max− D1n(tsend1) − `assume− dr · dtbetween

D12(tsend1) ∈ [0, (1 + ρ)`max− `assume]

D1n(tsend1) ∈ ((1 + ρ)`max− `assume,∞]

→ D12(t
(2)
start) ≥ D12(tstart) + `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume− dr · dtbetween

→ D1n(t
(2)
start) ≥ D1n(tstart) + `min−

(
ρ

1 + ρ

)
`max− D1n(tsend1) − `assume− dr · dtbetween

→ D2n(t
(2)
start) ≥ D2n(tstart) + `min−

(
ρ

1 + ρ

)
`max− D1n(tsend1) − `assume− dr · dtbetween

106

D12(tsend1) ∈ ((1 + ρ)`max− `assume, (1 + ρ)2`assume− (1 + ρ)`min]

D1n(tsend1) ∈ ((1 + ρ)`max− `assume,∞]

→ D12(t
(2)
start) ≥ D12(tstart) + `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume− dr · dtbetween

→ D1n(t
(2)
start) ≥ D1n(tstart) + `min−

(
ρ

1 + ρ

)
`max− D1n(tsend1) − `assume− dr · dtbetween

→ D2n(t
(2)
start) ≥ D2n(tstart) − (1 + ρ)`max + D12(tsend1) + `assume

+`min−
(

ρ

1 + ρ

)
`max− D1n(tsend1) − `assume− dr · dtbetween

D12(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

D1n(tsend1) ∈ ((1 + ρ)2`assume− (1 + ρ)`min,∞)

→ D12(t
(2)
start) ≥ D12(tstart) + `min−

(
ρ

1 + ρ

)
`max− D12(tsend1) − `assume− dr · dtbetween

→ D1n(t
(2)
start) ≥ D1n(tstart) + `min−

(
ρ

1 + ρ

)
`max− D1n(tsend1) − `assume− dr · dtbetween

→ D2n(t
(2)
start) ≥ D2n(tstart) − (1 + ρ)`max + D12(tsend1) + `assume

+`min−
(

ρ

1 + ρ

)
`max− D1n(tsend1) − `assume− dr · dtbetween

The above inequalities reduce to

→ D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween

→ D1n(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween

→ D2n(t
(2)
start) ≥ `min−

(
1 + ρ +

ρ

1 + ρ

)
`max− dr · dtbetween

107

→ D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween

→ D1n(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween

→ D2n(t
(2)
start) ≥ `min−

(
1 + ρ +

ρ

1 + ρ

)
`max− dr · dtbetween

→ D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween

→ D1n(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween

→ D2n(t
(2)
start) ≥ `min−

(
1 + ρ +

ρ

1 + ρ

)
`max− dr · dtbetween

→ D12(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween

→ D1n(t
(2)
start) ≥ `min−

(
ρ

1 + ρ

)
`max− `assume− dr · dtbetween

→ D2n(t
(2)
start) ≥ `min−

(
1 + ρ +

ρ

1 + ρ

)
`max− dr · dtbetween

Comparing all the above bounds reveals that the third bound,

D2n(t
(2)
start) ≥ `min−

(
1 + ρ +

ρ

1 + ρ

)
`max− dr · dtbetween,

provides the smallest possible lower bound. Again, note that this lower bound is not

dependent oǹassume.

Furthermore, note that

108

∣∣∣∣min
{
D2n(t

(2)
start)

}∣∣∣∣ =
∣∣∣∣max

{
D2n(t

(2)
start)

}∣∣∣∣

⇒
∣∣∣∣∣∣`min−

(
1 + ρ +

ρ

1 + ρ

)
`max− dr · dtbetween

∣∣∣∣∣∣ =

∣∣∣∣∣∣
(
1 + ρ +

(
ρ

1 + ρ

))
`max− `min + dr · dtbetween

∣∣∣∣∣∣ .

In other words, neither the maximum upper bound nor the minimum lower bound dom-

inates the other.

So finally, for the casèassume> `mid, the limit of synchronization at the start of the next

round may be expressed as

∀ nodesi, j ∈ 1..n,
∣∣∣Dij (t

(2)
start)

∣∣∣ ≤
(
1 + ρ +

(
ρ

1 + ρ

))
`max− `min + dr · dtbetween (4.17)

Case of`assume< `min:

The details of the second case will be omitted, since the analysis is very similar to the

case of̀ assume> `min. The resulting synchronization limit is also independent of`assumeand

turns out to be the same as the result above. Thus, the bounds expressed in (4.17) hold for

all values of̀ assume.

Comparing the synchronization bounds for the case of three or more nodes (4.17) with

that of the case of only two nodes (4.10) shows that the case of three or more nodes permits

weaker synchronization.

Determining maximum synchronization

Once again, it is necessary to realize that the bounds on
∣∣∣Dij (t

(2)
start)

∣∣∣ described in the pre-

109

vious section do not directly translate into an upper bound on clock skew for the algorithm.

To determine the actual synchronization achievable, it is necessary to determine the largest

clock skew possible during the execution of the algorithm, a value that was ignored in pre-

vious analysis. Although much of the analysis from the two-node case may be reused, once

again the existence of additional nodes relaxes some previous assumptions, and hence, the

achievable bounds.

Any increase in clock skew between two nodes during execution will be caused by two

factors, clock drift and leading nodes adjusting their clock forward before the trailing nodes

do. The latter reason could occur if the leading node incorrectly calculates a closely trailing

node’s clock as ahead of its own.

Thus, an expression forDmax, the constant that bounds actual maximum clock skew,

may be expressed as

Dmax≥ max
i,j ∈1..n

{
Dij (tstart) + ad justi()

}
+ dr · dtsetmax.

In other words, the bound is established both by clock drift and by the maximum pos-

sible skew between any two nodes caused by adjustment of a clock.

The value ofdtsetmax is the same as that calculated for the two-node case in (4.14).

Specifically,

dtsetmax =
(
(1 + ρ)3 + (1 + ρ)

)
Dstartmax + (1 + ρ)2`max + dtcalcmax.

Additional work is required to find the maximum possible skew via clock adjustment,

since this factor was not relevant in the two-node case. There are two possible worst-case

contributors:

1. D1n(tsend1) = Dstartmax

110

D12(tsend1) ∈ [0,Dstartmax]

D2n(tsend1) = D1n(tsend1) − D12(tsend1)

ad just2() = −`min +
(

1
1+ρ

)
`max + D12(tsend1) + `assume

2. D1n(tsend1) = Dstartmax

D12(tsend1) = 0

ad just1() = −(1 + ρ)−2D12(tsend1) − (1 + ρ)−1`min + `assume

For the first case above,

Dmax ≥ max{D2n(tstart) + ad just2()} + dr · dtsetmax

⇒ Dmax ≥ Dstartmax − `min +

(
ρ

1 + ρ

)
`max + `assume+ dr · dtsetmax

For the second case,

Dmax ≥ max{D1n(tstart) + ad just1()} + dr · dtsetmax

⇒ Dmax ≥ Dstartmax − (1 + ρ)−1`min + `assume+ dr · dtsetmax

Comparing the two results shows that the first bound is strictly larger than the second,

and is thus the one of interest. Furthermore, note that by choosing`assume= `min, the bound

may be minimized. Thus, the achievable synchronization is

Dmax≥ Dstartmax +

(
ρ

1 + ρ

)
`max + dr · dtsetmax.

By substituting equation (4.14) fordtsetmax, the following expression can be obtained:

Dmax≥
(
1 + dr

(
(1 + ρ)3 + (1 + ρ)

))
Dstartmax +

(
ρ

1 + ρ

)
`max+ dr · (1+ ρ)2`max+ dr · dtcalcmax.

111

SubstitutingDstartmax = max
{∣∣∣Dij (t

(2)
start)

∣∣∣
}

from (4.17) yields

Dmax ≥
(
1 + dr

(
(1 + ρ)3 + (1 + ρ)

))
·
((

1 + ρ +

(
ρ

1 + ρ

))
`max− `min + dr · dtbetween

)

+

(
ρ

1 + ρ

)
`max + dr · (1 + ρ)2`max + dr · dtcalcmax. (4.18)

Determining timing constraints

As in the two-node case, the minimum time between synchronization rounds required for

correct execution is constrained by

∀ nodesi, j, t(2)
sendi

+ `min ≥ tsetj

∀ nodesi, T(2)
send ≥ Ci(tseti).

The first condition requires that no message sent in the next synchronization round

should reach a node before the node has completed adjusting its clock in the current round.

The second condition requires that no node must ever adjust its clock forward beyond the

next time at which it needs to send the next round of messages.

To satisfy the first condition for the case of three or more nodes, it is possible to reuse

(4.15), since the analysis is the same up to that point. The expression is reprinted here for

convenience:

dtbetween≥ (1 + ρ)Dstartmax +
(
(1 + ρ)3 + (1 + ρ)

)
Dstartmax + (1 + ρ)2`max + dtcalcmax − `min.

Substituting the new value forDstartmax calculated for the current case of three or more

112

nodes gives

dtbetween ≥
(
(1 + ρ)3 + 2(1+ ρ)

)
·
((

1 + ρ +

(
ρ

1 + ρ

))
`max− `min + dr · dtbetween

)

+(1 + ρ)2`max + dtcalcmax − `min.

Solving fordtbetweenfinally gives

dtbetween ≥
[(

(1 + ρ)3 + 2(1+ ρ)
) ((

1 + ρ +

(
ρ

1 + ρ

))
`max− `min

)

+(1 + ρ)2`max− `min + dtcalcmax

]

·
(
1− dr ·

(
(1 + ρ)3 + 2(1+ ρ)

))−1
. (4.19)

To satisfy the second condition, it is possible to reuse (4.16), since the analysis is the

same up to that point. The expression is reprinted here for convenience:

τbetween ≥
(
1 + (1 + ρ)2

)
Dstartmax + (1 + ρ)`max + τcalcmax − `min +

(
ρ

1 + ρ

)
`max + `assume.

Substituting forDstartmax gives

τbetween ≥
(
1 + (1 + ρ)2

) ((
1 + ρ +

(
ρ

1 + ρ

))
`max− `min + dr · dtbetween

)

+

(
1 + ρ +

ρ

1 + ρ

)
`max− `min + `assume+ τcalcmax.

Once again, the analysis has resulted in a lower bound onτbetweendescribed in terms of

113

dtbetween. Since a bound fordtbetweenhas already been determined from the first condition,

the bound forτbetweenmay be found by substitution.

4.4 Byzantine Resilient Algorithm

A Byzantine resilient algorithm is one that is executed by a group of nodes and can tol-

erate arbitrary incorrect actions by at least one member of the group. Algorithm 4.3.1 is

not Byzantine resilient. If a single node behaved incorrectly, such as sending messages at

different times to different nodes, different nodes may adjust their clocks according to in-

consistent information, and the correctness of the algorithm could no longer be preserved,

and no synchronization bounds could be guaranteed.

Description of Adversary

The adversary that the Byzantine resilient algorithm must cope with has the power to con-

trol the contents of whatever messages it sends, and it may also control when it sends its

messages to each other node, if it sends one at all. Since connections between nodes are

point-to-point, a message sent by the adversary to one node can never be seen by another

node, allowing the adversary more secrecy than if there were a common broadcast medium.

However, the point-to-point connection also prevents the adversary from pretending to be

another node. A receiving node always knows the source of a message because there is a

unique physical port associated with every other node. Only one adversary may exist in the

system at any time.

Description of Algorithm

114

The Byzantine resilient algorithm requires three communication rounds. The first com-

munication round requires no algorithm-specific data. It only requires that a message be

sent. From the arrival times of the first messages, each node infers the others’ relative clock

skew. The next two rounds involve each node broadcasting its calculated clock skew data

to all other nodes in a Byzantine resilient manner. The arrival times of the round 2 and

round 3 messages are not considered. Thus, after the third communication round, all hon-

est nodes are guaranteed to know the same information, i.e., every node’s reported clock

skew from every other node. Of course, a faulty node could report incorrect information,

but every other node will know the exact same incorrect information, allowing consistent

behavior among honest nodes. Once the nodes all have consistent information, they may

then analyze the data, recognize faults, and adjust their clocks forward appropriately.

Algorithm 4.4.1 augments algorithm 4.3.1 with Byzantine resilient properties. The

algorithm is split across pages in figures 4-3 and 4-4.

115

Algorithm 4.4.1: B-S()

Let N = {n1...nk} be a set of k participating nodes.
Let i ∈ {1...k} be the number of the node executing the instance of the algorithm.

global timestamps[k] ← {null, ..., null}
global deltas[k][k][k] ← {{0, ...0}, ...,{0, ...0}}

processR-M()
while Ci(t) < Tsend+ τwait

do
{

if mji received
then timestamps[j] = C-T()

while C(t) < T′send+ τ′wait

do

if m′ji received

then
{

deltasj = m′ji
deltas[i][j] = deltasj

while C(t) < T′′send+ τ′′wait

do

if m′ji received

then
{

deltasj = m′ji
deltas[j] = deltasj

procedureC-D(timestamp)
delta← timestamp− (Tsend+ `assume)
return (delta)

Figure 4-3: Part 1 of the Byzantine synchronization algorithm. Process Receive-Messages
timestamps messages that arrive in the first round, and stores information for node’s reported clock
skews that arrive in the second and third rounds.

116

processS-A-A()

if Ci(t) = Tsend

then

for j ← 1 to k, j , i
do

{
Send any messagemi j to nj .

while C(t) , Tsend+ τwait

do
{

Nothing.

for j ← 1 to k

do
{

if j , i
then deltas[i][i][j] ← C-D(timestamps[j])

if Ci(t) = T′send

then
{

for j ← 1 to k, j , i
do

{
Sendm′i j = deltas[i][i] to nj .

if Ci(t) = T′′send

then

for j ← 1 to k, j , i
do

{
Sendm′′i j = deltas[i] to nj .

while C(t) , T′′send+ τ′′wait

do
{

Nothing.

R-I(deltas)

S-T(C-T() − (deltas))

Figure 4-4:Part 2 of the Byzantine synchronization algorithm. Process Send-And-Adjust sends
out appropriate information in each round. At the end of round three, after all nodes have consistent
information, procedure Resolve-Inconsistencies uses consistency checks, described later, to recover
from a possible faulty node. The clock is then adjusted as necessary.

117

Fault Scenarios

This section describes the various ways an adversary may affect the system. Some fault

scenarios allow the honest nodes to identify the source of the failure. Others scenarios

make it impossible to pinpoint the source. The scenarios described below assume a total

of four nodes, three honest nodes and a single adversary. Note that the following scenarios

do not include an adversary deviating from the Byzantine exchange protocol in communi-

cation rounds 2 and 3.

1. The adversary sends no round 1 messages.No honest node receives any mes-

sages from the faulty node. This faulty node is easily identified and may be safely ignored.

2. The adversary sends a round 1 message to only one other node.Here, two

honest nodes believe the adversary to be faulty, and one honest node does not. Since the

naive node knows that two nodes cannot falsely accuse another node (due to the assumption

of one faulty node), it accepts that the adversary is faulty.

3. The adversary sends a round 1 message to only two nodes.In this case only

one honest node knows that the adversary is faulty, and the other two are naive. However,

the lone informed node cannot convince the others the adversary is faulty. The naive nodes

have no way to discern if the informed node is falsely accusing the adversary, and therefore

must proceed as if the adversary were behaving correctly. If the node that detected the fault

is to remain correctly synchronized, it must also proceed as if the adversary is behaving

correctly, but infer the adversary’s clock skew via the other nodes’ approximations.

Consider what would happen if the node that claims to detect the fault were trusted

unconditionally. If that node were actually lying and the node under scrutiny were actually

honest and ahead of the other nodes, synchronization would never be achieved. The two

118

naive, honest nodes would accept the lying node’s claim that the leading node was faulty,

and they would not adjust their clocks forward to meet the leading node. Since the leading

node may not adjust its clock backward, no synchronization could be maintained.

4. The adversary sends a round 1 message to all nodes simultaneously, but at a

time such that theDstartmax assumption is violated for all three honest nodes. For three

honest nodes1, 2 and3 and the adversary4,

|[D14]1| > Dstartmax + ε

|[D24]2| > Dstartmax + ε

|[D34]3| > Dstartmax + ε.

The adversary is easily identified and ignored, since all three honest nodes agree that4

is in violation of the synchronization assumption.

5. The adversary sends a round 1 message to all other nodes at the same time,

but at a time such that the Dstartmax assumption is violated for two of the three honest

nodes. In this case,

|[D14]1| > Dstartmax + ε

|[D24]2| > Dstartmax + ε

|[D34]3| <= Dstartmax + ε.

The adversary can be identified, since1 and2 both agree that4 is faulty. Since the naive

119

node3 knows that1 and2 could not both falsely implicate4, it accepts that4 is faulty.

6. The adversary sends a round 1 message to all other nodes at the same time, but

at a time such that theDstartmax assumption is violated for only one of the honest nodes.

For the three honest nodes1, 2, 3 and the adversary4,

|[D14]1| > Dstartmax + ε

|[D24]2| <= Dstartmax + ε

|[D34]3| <= Dstartmax + ε.

In this case, the adversary’s fault has only been noticed by a single honest node. From

the point of view of the two naive nodes,2 and3, either4 could have sent1 a message at an

inappropriate time or1 is misrepresenting when4 actually sent its message to1. Consider

the worst case,

[D14]1 = −2 ∗ (Dstartmax + ε
)

[D24]2 = −Dstartmax + ε

[D34]3 = −Dstartmax + ε.

In other words, nodes2 and3’s clocks are roughly the same,1’s is as far behind as

possible, and4, the adversary, sent its messages such that2 and3 believe it is as far ahead

as possible (and they are as far behind as possible) and1 knows4 is faulty. Nodes2 and3

can’t know for sure whether their own clocks ran fast or slow since the last synchronization,

so they cannot know whether it is correct for4 to be in front. Therefore, nodes2 and3

120

must accept4’s claim that it is ahead and set their clock forward appropriately, and node1,

knowing the action that2 and3 will take, must accordingly set its clock drastically ahead.

Note that if4 were incorrectly assumed to be faulty,2 and3 would not set their clocks

forward, and the clock skew between those nodes and4 would never be closed (since4

may not set its clock backward), and no synchronization guarantees could be made.

7. The adversary sends a round 1 message to each other node at very different

times. Honest nodes may determine whether a participant node sent all its round 1 mes-

sages at the same time. Each node may confirm its own approximation of another node’s

local clock by adding its approximation of a second node with that second node’s approx-

imation of the node in question. Let1, 2, 3 and4 be participating nodes. Node1 may

confirm its approximation of [D12]1 by checking that

[D12]1 ≈ [D13]1 + [D32]3

[D12]1 ≈ [D14]1 + [D42]4 .

Of course, the three different approximations will not be exact, due to varying message

latencies and processing times, but the checks do limit the flexibility of an adversary to

influence the behavior of the other nodes.

If both of those consistency checks fail, all honest nodes realize that2 must be the

culprit. Under the assumption that only one node may be faulty, the two nodes used to

confirm the skew approximation cannot both be misreporting their approximation of the

first node’s skew (or misrepresenting their own clock). Thus, the honest nodes may agree

that the adversary is faulty.

121

8. The adversary sends a round 1 message to two of the honest nodes at the same

time, and sends to the third honest node at a different time. As in the previous case,

the nodes will notice a fault because one of the consistency checks will fail. However,

since only a single check fails, the nodes will not be able to pinpoint the adversary. Thus,

the node that received faulty data about the adversary’s clock must instead adjust its clock

according an indirect approximation of the adversary. For example, if an adversary4 gave

consistent clock information to2 and3, but revealed a fault to node1, node1 would be

forced to calculate4’s advertised clock skew by

[D14]1(2) ≈ [D12]1 + [D24]2 .

9. The adversary misrepresents its relative clock skew with two or more nodes

by broadcasting incorrect values in round 2. All nodes behave honestly in round 1,

but the adversary lies in round 2, indicating that messages from two or more nodes were

received by him at different times than they actually were. The honest nodes can identify

this adversary because it affects two pieces of information that are independently verifiable.

Say nodes1, 2, and3 are honest, while4 has reported incorrect approximations of

[D42]4 and [D43]4. Since1, 2, and3 are honest, they report relative skews of the other

nodes such that

[D21]2 ≈ [D21]2(3) = [D23]2 + [D31]3

[D21]2 ≈ [D21]2(4) = [D24]2 + [D41]4

[D31]3 ≈ [D31]3(2) = [D32]3 + [D21]2

[D31]3 ≈ [D31]3(4) = [D34]3 + [D41]4

[D12]1 ≈ [D12]1(3) = [D13]1 + [D32]3

122

[D32]3 ≈ [D32]3(1) = [D31]3 + [D12]1

[D13]1 ≈ [D13]1(2) = [D12]1 + [D23]2

[D23]2 ≈ [D23]2(1) = [D21]2 + [D13]1 .

Since4 has been dishonest, the following approximations are not true, indicating a

fault:

[D12]1 0 [D12]1(4) = [D14]1 + [D42]4

[D32]3 0 [D32]3(4) = [D34]3 + [D42]4

[D13]1 0 [D13]1(4) = [D14]1 + [D43]4

[D23]2 0 [D23]2(4) = [D24]2 + [D43]4

[D24]2 0 − [D42]4

[D34]3 0 − [D43]4 .

Nodes1,2, and3may all determine that node4 is faulty. Nodes2and3are immediately

convinced of4’s fault from[D24]2 0 [D42]4 and[D34]3 0 [D43]4, respectively. Node1 must

combine two inconsistencies to be convinced of4’s fault. For example, from [D24]2 0

[D42]4, node1 knows that either2 or 4 is faulty. From [D34]3 0 [D43]4, 1 knows that either

3 or 4 is faulty. By intersecting the sets of possibly faulty nodes from both, it may conclude

that4 must be the faulty node.

123

10. The adversary misrepresents its relative clock skew with a single other node by

broadcasting a single incorrect value in round 2. All nodes behave honestly in round

1, but the adversary lies in round 2, indicating that a single message from another node was

received by him at a different time than it actually was. In this case, it is not possible for

the honest nodes to agree on which node is faulty.

Say nodes1, 2, and3 are honest, while4 has reported an incorrect approximation of

[D43]4. As a result, the following consistency checks fail:

[D13]1 0 [D13]1(4) = [D14]1 + [D43]4

[D23]2 0 [D23]2(4) = [D24]2 + [D43]4

[D34]3 0 [D43]4 .

Both node1 and node2 suspect either3 or 4 as faulty, and node3 knows for sure that

4 is faulty. However,3’s certainty is of no help to1 and2, since they already view3 as

suspicious. Thus, the honest nodes have no choice but to treat all other nodes as if they

could be honest and adjust their clocks forward as necessary.

11. A single node commits errors in multiple communication stages. If a single

node makes errors in multiple communication stages, and if it commits a grievous enough

fault at any single stage to be pinpointed as faulty, its actions from other stages may be

safely ignored.

Also, through a series of several faults in different stages, each honest node may be

able to pinpoint the source of the two faults. For example, say nodes1, 2, and3 are honest,

while 4 sent an early message to2 in round 1 and misrepresented its skew with node3 in

124

the exchange steps. Then, [D24]2 and [D43]4 are inconsistent with the rest of the data, and

the following checks would not hold:

[D13]1 0 [D13]1(4) = [D14]1 + [D43]4

[D23]2 0 [D23]2(4) = [D24]2 + [D43]4

[D14]1 0 [D14]1(2) = [D12]1 + [D24]2

[D34]3 0 [D34]3(2) = [D32]3 + [D24]2

[D24]2 0 − [D42]4

[D34]3 0 − [D43]4 .

Nodes1, 2 and3 may all determine4 as faulty, since4 is independently involved with

multiple inconsistencies.

Determining Consistency Checks

The previous descriptions of fault scenarios discussed how nodes might discover various

inconsistencies in skew data. The following sections characterize the consistency checks

the nodes may use to confirm proper operation of other nodes.

Pair Consistency

The pair consistency check involves verifying whether two nodes report approximately

the same relative clock skew from each other. Recall that the consistency check can only

125

be approximate due to unpredictable message latencies, varying processing times, and con-

tinual clock drift. Therefore, certain ranges of approximations indicate correct behavior by

the other nodes, while approximations outside those ranges indicate a fault.

Consider an honest node2 that sends a round 1 message to node1. Node1 can approx-

imate [D12]1 to within

[D12]1 ≤ D12(tsend2) + (1 + ρ)`max− `assume

[D12]1 ≥ D12(tsend2) + (1 + ρ)−1`min− `assume.

After communication rounds 2 and 3, node1 knows2’s announced value of [D21]2 and

may perform this consistency check:

[D12]1 + [D21]2 ≈ 0.

Since1 knows that a correct [D21]2 must be bounded by

[D21]2 ≤ D21(tsend1) + (1 + ρ)`max− `assume

[D21]2 ≥ D21(tsend1) + (1 + ρ)−1`min− `assume,

then the acceptable error for [D12]1 + [D21]2 is

126

[D12]1 + [D21]2 ≤ D12(tsend2) + D21(tsend1) + 2(1+ ρ)`max− 2 àssume

[D12]1 + [D21]2 ≥ D12(tsend2) + D21(tsend1) + 2(1+ ρ)−1`min− 2 àssume

[D12]1 + [D21]2 ≤ D12(tsend2) − D12(tsend1) + 2(1+ ρ)`max− 2 àssume

[D12]1 + [D21]2 ≥ D12(tsend2) − D12(tsend1) + 2(1+ ρ)−1`min− 2 àssume

[D12]1 + [D21]2 ≤ dr
∣∣∣tsend2 − tsend1

∣∣∣ + 2(1+ ρ)`max− 2 àssume

[D12]1 + [D21]2 ≥ −dr
∣∣∣tsend2 − tsend1

∣∣∣ + 2(1+ ρ)−1`min− 2 àssume.

Loose bounds on
∣∣∣tsend2 − tsend1

∣∣∣ can be provided by

∣∣∣tsend2 − tsend1

∣∣∣ ≤ (1 + ρ)Dstartmax

∣∣∣tsend2 − tsend1

∣∣∣ ≤ (1 + ρ)−1Dstartmax.

but stricter bounds on
∣∣∣tsend2 − tsend1

∣∣∣ are possible by inferring them from the information

provided by either [D12]1 or [D21]2 and using it to calculate a smaller acceptable range.

Given an approximation [D12]1, a node knows that the possible values ofD12(tsend2)

which produced it are bounded in terms of the [D12]1 by

127

[D12]1 ≤ D12(tsend2) + (1 + ρ)`max− `assume

[D12]1 ≥ D12(tsend2) + (1 + ρ)−1`min− `assume

D12(tsend2) ≤ [D12]1 − (1 + ρ)−1`min + `assume

D12(tsend2) ≥ [D12]1 − (1 + ρ)`max + `assume.

A node also knows that bounds on
∣∣∣tsend2 − tsend1

∣∣∣ can be provided by

∣∣∣tsend2 − tsend1

∣∣∣ ≤ (1 + ρ)
∣∣∣D12(tsend2)

∣∣∣
∣∣∣tsend2 − tsend1

∣∣∣ ≥ (1 + ρ)−1
∣∣∣D12(tsend2)

∣∣∣ .

and the following can be obtained:

∣∣∣tsend2 − tsend1

∣∣∣ ≤ (1 + ρ)max
{∣∣∣[D12]1 − (1 + ρ)−1`min + `assume

∣∣∣ , |[D12]1 − (1 + ρ)`max + `assume|
}

∣∣∣tsend2 − tsend1

∣∣∣ ≥ (1 + ρ)−1min
{∣∣∣[D12]1 − (1 + ρ)−1`min + `assume

∣∣∣ , |[D12]1 − (1 + ρ)`max + `assume|
}
.

Finally, bounds on [D12]1 + [D21]2 may be obtained by substituting the above:

128

[D12]1 + [D21]2 ≤ dr(1 + ρ)max
{∣∣∣[D12]1 − (1 + ρ)−1`min + `assume

∣∣∣ , |[D12]1 − (1 + ρ)`max + `assume|
}

+2(1+ ρ)`max− 2 àssume

[D12]1 + [D21]2 ≥ −dr(1 + ρ)−1min
{∣∣∣[D12]1 − (1 + ρ)−1`min + `assume

∣∣∣ , |[D12]1 − (1 + ρ)`max + `assume|
}

+2(1+ ρ)−1`min− 2 àssume.

Thus, if the sum [D12]1 + [D21]2 is outside the boundaries above, that indicates a fault

has taken place.

A node may similarly use [D21]2 in addition to [D12]1 by checking that

[D12]1 + [D21]2 ≤ dr(1 + ρ)max
{∣∣∣[D21]2 − (1 + ρ)−1`min + `assume

∣∣∣ , |[D21]2 − (1 + ρ)`max + `assume|
}

+2(1+ ρ)`max− 2 àssume

[D12]1 + [D21]2 ≥ −dr(1 + ρ)−1min
{∣∣∣[D21]2 − (1 + ρ)−1`min + `assume

∣∣∣ , |[D21]2 − (1 + ρ)`max + `assume|
}

+2(1+ ρ)−1`min− 2 àssume.

Maximum Skew Consistency

A central tenet of the algorithms described in this thesis is that the maximum clock skew

between any two nodes at the start of the algorithm must be equal to or less than a quantity

Dstartmax, the value of which depends on the physical properties of the system. Any node

that does not maintain this property must be faulty.

Consider two honest nodes1 and2 that begin the execution of the algorithm with

D12(tsend1) = Dstartmax.

129

Then, since the bounds of node2’s skew approximation of1 is bounded by

[D21]2 ≥ D21(tsend1) + (1 + ρ)−1`min− `assume,

then the smallest value of [D21]2 that node2 should ever report is

[D21]2 ≥ −Dstartmax + (1 + ρ)−1`min− `assume.

Also, since

[D12]2 ≤ D12(tsend2) + (1 + ρ)−1`min− `assume,

and

D12(tsend2) ≤ D12(tsend1) + dr(tsend2 − tsend1),

and

tsend2 − tsend1 ≤ (1 + ρ)D12(tsend1),

then the largest value of [D12]1 that node1 should ever report is

[D12]1 ≤ Dstartmax + dr(1 + ρ)Dstartmax + (1 + ρ)`max− `assume.

130

These bounds can generalize for the reported skew for any pair of nodes. For any two

nodesiand j, a reported skew
[
Dij

]
i
must be within

[
Dij

]
i
≤ Dstartmax + dr(1 + ρ)Dstartmax + (1 + ρ)`max− `assume

[
Dij

]
i
≥ −Dstartmax + (1 + ρ)−1`min− `assume.

If node i reports otherwise, either nodei or j must be faulty. Which one is faulty,

however, may be impossible to determine unless one of the nodes can be implicated by an

additional inconsistency.

Transitive Consistency

Transitive consistency involves verifying a node’s reported relative clock skew with a sec-

ond node by using reported clock skews between those nodes and a third, independent

node. Again, this consistency check can only be approximate.

Consider honest nodes1, 2 and3 exchanging messages. The reported skew [D13]1 may

be verified by checking

[D12]1 + [D23]2 ≈ [D13]1

⇒ [D12]1 + [D23]2 − [D13]1 ≈ 0.

The following bounds hold true for a system without faults:

[D13]1 ≤ D13(tsend3) + (1 + ρ)`max− `assume

[D13]1 ≥ D13(tsend3) + (1 + ρ)−1`min− `assume

131

[D12]1 ≤ D12(tsend2) + (1 + ρ)`max− `assume

[D12]1 ≥ D12(tsend2) + (1 + ρ)−1`min− `assume

[D23]2 ≤ D23(tsend3) + (1 + ρ)`max− `assume

[D23]2 ≥ D23(tsend3) + (1 + ρ)−1`min− `assume.

Therefore, the results of the consistency check should be bounded by

[D12]1 + [D23]2 − [D13]1 ≤ D12(tsend2) + D23(tsend3) − D13(tsend3)

+2(1+ ρ)`max− (1 + ρ)−1`min− `assume

[D12]1 + [D23]2 − [D13]1 ≥ D12(tsend2) + D23(tsend3) − D13(tsend3)

+2(1+ ρ)−1`min− (1 + ρ)`max− `assume

[D12]1 + [D23]2 − [D13]1 ≤ D12(tsend2) − D12(tsend3) + 2(1+ ρ)`max− (1 + ρ)−1`min− `assume

[D12]1 + [D23]2 − [D13]1 ≥ D12(tsend2) − D12(tsend3) + 2(1+ ρ)−1`min− (1 + ρ)`max− `assume

[D12]1 + [D23]2 − [D13]1 ≤ dr
∣∣∣tsend2 − tsend3

∣∣∣ + 2(1+ ρ)`max− (1 + ρ)−1`min− `assume

[D12]1 + [D23]2 − [D13]1 ≥ −dr
∣∣∣tsend2 − tsend3

∣∣∣ + 2(1+ ρ)−1`min− (1 + ρ)`max− `assume.

To find the bounds of
∣∣∣tsend2 − tsend3

∣∣∣, note that

132

[D23]2 ≤ D23(tsend3) + (1 + ρ)`max− `assume

[D23]1 ≥ D23(tsend3) + (1 + ρ)−1`min− `assume

D23(tsend3) ≤ [D23]2 − (1 + ρ)−1`min + `assume

D23(tsend3) ≥ [D23]2 − (1 + ρ)`max + `assume.

Also note that

∣∣∣tsend2 − tsend3

∣∣∣ ≤ (1 + ρ)
∣∣∣D23(tsend3)

∣∣∣
∣∣∣tsend2 − tsend3

∣∣∣ ≥ (1 + ρ)−1
∣∣∣D23(tsend3)

∣∣∣ ,

and the following can be obtained by substitution:

∣∣∣tsend2 − tsend3

∣∣∣ ≤ (1 + ρ)max
{∣∣∣[D23]2 − (1 + ρ)−1`min + `assume

∣∣∣ , |[D23]2 − (1 + ρ)`max + `assume|
}

∣∣∣tsend2 − tsend3

∣∣∣ ≥ (1 + ρ)−1min
{∣∣∣[D23]2 − (1 + ρ)−1`min + `assume

∣∣∣ , |[D23]2 − (1 + ρ)`max + `assume|
}
.

Finally, bounds on [D12]1 + [D23]2 − [D13]1 may be obtained by substituting the above:

133

[D12]1 + [D23]2 − [D13]1 ≤ dr(1 + ρ)

· max
{∣∣∣[D23]2 − (1 + ρ)−1`min + `assume

∣∣∣ , |[D23]2 − (1 + ρ)`max + `assume|
}

+2(1+ ρ)`max− 2 àssume

[D12]1 + [D23]2 − [D13]1 ≥ −dr(1 + ρ)−1

· min
{∣∣∣[D23]2 − (1 + ρ)−1`min + `assume

∣∣∣ , |[D23]2 − (1 + ρ)`max + `assume|
}

+2(1+ ρ)−1`min− 2 àssume.

Thus, if the sum [D12]1 + [D23]2− [D13]1 is outside the boundaries above, that indicates

a fault has taken place.

Analysis Incomplete

Unfortunately, that is all that analysis that has been completed for the Byzantine tolerant al-

gorithm. A complete analysis would finish the characterization of the transitive consistency

check, then proceed to characterize the synchronization capabilities using the consistency

checks.

134

Chapter 5

Experimental Application

A control system to balance an inverted pendulum was built to run on the SBFTC to demon-

strate its fault tolerant capabilities. The application provides control commands to a motor

that drives a horizontal, radial arm either clockwise or counterclockwise. The radial arm

may move freely in a full circle. The pendulum is attached to the end of the radial arm

and can swing freely in a full vertical circle, perpendicular to the radial arm. The job of

the controller is to balance the pendulum upright while keeping the radial arm in front and

centered. Appropriate control commands are determined by sensor data from two poten-

tiometers measuring the angle of the pendulum and the radial arm. Figure 5-1 depicts the

demonstration setup.

The experimental setup depicted in the figure is actually simulated by computer. A

Simulink simulation of the dynamic system runs on the ICP, accepting control commands,

updating the state of the system, and returning the new “sensor” data. Periodically, the

ICP forwards the current state of the system to a graphical display running on a Windows

machine. A user interface running on the Windows machine also allows a human to view

the state of each FCP, manually inject faults into the fault-tolerant system, and “bump”

the simulated pendulum. Implementing the demonstration as a simulation allowed the

135

Figure 5-1:The inverted pendulum sits atop a radial arm extending from the center of a base. The
pendulum should remain upright with the radial arm at the 0◦ mark unless disturbed by an external
force, after which the system should recover. The radial arm is controlled by a motor which can
push the arm in the clockwise and counterclockwise directions. Control is based on data from two
potentiometers, which measure the angles of the pendulum and radial arm. The ICP acts as the
interface to the motor and sensors, relaying information to and from the FCPs via its NE.

136

slowdown of time, which was necessary because the SBFTC proved unable to provide a

control loop with a sufficiently high frequency. Figure 5-2 depicts the physical setup of the

experiment and shows how software is distributed in the system. Figure 5-3 shows a screen

shot of the experiment.

The demonstration in an example of a closed control loop. Control commands are sent

from the FCPs to the simulated motor on the ICP, which drives the radial arm. In response,

the ICP sends new potentiometer data back to the FCPs. The FCPs evaluate the data in

preparation to issue the next command, closing the loop. The faster the data may travel

back and forth between the FCPs and the ICP, the better the system will be able to balance

the pendulum.

In the demonstration system, packets are sent between nodes every 8 ms, meaning that

a class 1 message takes 16 ms to travel to its destination in a fault-tolerant manner and a

class 2 message takes 8 ms. Since each cycle of the control loop requires a class 1 and

a class 2 message, a full loop requires at least 24 ms, assuming that a control message or

sensor message is ready to be sent at every communication cycle. Unfortunately, this is not

the case. The NE’s communication loop naively checks for messages from the FCP/ICPs

immediately after it sends data to them. Therefore, the communication loop only learns

about a response message in the following cycle, and the response can only be sent out in

the cycle after that. Thus, a cycle is wasted at each end of the control loop. This translates

to a control period of 40 ms and a frequency of 25 Hz. Figure 5-4 offers an approximate

timing diagram of single control cycle.

Unfortunately, 25 Hz is not enough to successfully balance an inverted pendulum sys-

tem with the specifications given earlier. In fact, to reliably balance the pendulum, it was

necessary to slow simulation time down by a factor of 6, in effect raising the control loop

frequency to 150 Hz.

The demonstration system used the failstop synchronization algorithm described in Sec-

137

Figure 5-2: The physical components of the experimental application. Each FCP executes the
control logic and sends the resulting motor commands to the ICP running the Simulink dynamic
simulation software. The simulation software updates the state of the simulation and produces the
next set of potentiometer readings, which are sent back to the FCPs. Periodically, the simulation
state information is sent by the ICP to the Windows machine, which renders a graphical depiction
of the pendulum. The Windows machine also runs a simple user interface, which allows a person to
interact with the system.

Figure 5-3:A screen shot of the SBFTC experimental application. The Pendulum Sim window
depicts the current state of the pendulum simulation running on the ICP. The SBFTC Status Window
panel allows a user to see the current state of the NE/FCPs, inject faults of varying severity into the
system, and bump the pendulum in either direction. In this particular demonstration, node 2 is
suffering from a “continuous” fault, meaning it is consistently corrupting the contents of messages
it sends to other NEs. The graphical renderer of the pendulum was created by David Chau.

138

Figure 5-4: Visualization of demonstration application timing. Not to scale. Arrows between
horizontal lines indicate messages being sent from one node to another. (a) NEs perform the 1st
step of class 2 exchange with motor control data. (2nd step not pictured) (b) After voting and other
processing, NE 1 sends control data to ICP. (c) After updating simulation state, ICP sends new
sensor data to NE 1. (d) After recognizing the arrival of the sensor data in the previous round, NE
1 initiates a class 1 exchange. (e) All NEs wait until next communication round, then complete
the class 1 message exchange. (f) After voting, each NE forwards sensor data to the FCP (on
the same node). (g) After processing, FCPs sends new command to its respective NE. (h) After
recognizing the arrival of the control data in the previous round, the NEs perform the 1st step of
a class2 exchange, repeating the cycle. The communication medium has approximately a 500µs
delay. Communication rounds occur approximately once every 8 ms. This diagram is slightly
misleading, since NEs do not all send their messages at the same time. In fact, the imperfect
synchronization is a large part of why communication rounds are so far apart.

139

tion 4.3, since the Byzantine resilient algorithm has not yet been developed sufficiently to

be correctly implemented.

140

Chapter 6

Results and Conclusions

The previous sections have described the design of the SBFTC, provided implementation

details, and described the experimental application built to demonstrate the system. This

section describes some tangible results that were achieved during that work and provides

an evaluation of the results and recommendations based on that work. The section ends

with a summary of the thesis and recommendations for future work in continuance of this

thesis.

6.1 Prototype and Experimental Results

The section begins by evaluating the current capabilities of the prototype SBFTC. Next, the

performance of the synchronization algorithms are discussed. Since the failstop algorithm

has been fully characterized, some theoretical and actual performance data is presented.

6.1.1 Current SBFTC Limitations

The prototype SBFTC handles only a limited number of fault scenarios. Most importantly,

it correctly handles any single FCP/NE which produces inconsistent output and/or corrupts

141

the message bodies from other NEs by detecting and eliminating the inconsistency via

voting. Corrupted message headers are recognized, but they are not handled in a consistent

way. It is assumed that only a single node is faulty at any one time.

The system does not currently handle omitted messages correctly. A node that does not

receive a message from another node at the expected time just assumes that the offending

node is faulty. The honest nodes do not communicate to make a consistent decision if a

node is faulty. If a node fails to send a message to only a subset of the other nodes, only a

subset of the correct nodes might believe the bad node is faulty, and inconsistent behavior

may result.

The SBFTC does not tolerate faulty nodes during startup. All four NEs are required to

be available for initialization. The SBFTC also does not handle reintegration of a manually-

reset node into a running system. Once a node has suffered a major fault, it cannot rejoin.

The SBFTC was designed with four NEs instead of five, like the X-38, since the goal is

to eventually implement a cryptographic signature scheme for messages. The SBFTC does

not currently implement such signatures. For research performed toward this goal, see [1].

There is currently a significant, intermittent bug that causes nodes to stop responding all

together until the power is cycled. The most likely cause of this bug is the implementation

of the synchronization algorithm, which timestamps UDP packets when they are received

by a node. Currently, the packets are timestamped by reading the system clock within the

interrupt routine that handles incoming packets, which may cause kernel-level deadlock.

6.1.2 Synchronization Algorithm Performance

The failstop synchronization algorithm presented in this thesis manages to achieve syn-

chronization smaller in magnitude than the maximum network latency. It manages to do

so by incorporating knowledge of the minimum network latency as well. The achievable

142

synchronization is largely a function of the spread between the minimum and maximum

network latencies.

Using equations (4.18) and (4.19) and reasonable values for the required constants,

the graphs in figures 6-1 and 6-2 emphasize that latency spread is the primary factor in

achievable synchronization.

The Byzantine resilient version of the algorithm, though still not fully developed, ap-

pears to be an interesting candidate. Like the failstop algorithm, it will still be highly

dependent on the predictability of the network latency, but in the controlled environment of

an embedded system running an RTOS, it appears that the network latency can be tightly

controlled, allowing the algorithm introduced in this paper to be used effectively.

Take note, however, that the achievableDmax for a Byzantine resilient implementation

will be much less favorable than that achievable for failstop implementation. In addition to

requiring a much longer period of time to execute, reducing possible synchronization, an

adversary may cause nodes to set their clocks unnaturally far forward, causing temporary

clock skews between nodes to be more than twice as large as possible without an adversary.

However, if network latency is sufficiently predictable, this limitation could be managed.

More development of the algorithm needs to be performed, not just to fully characterize

the Byzantine resilient algorithm, but also to describe how an initialization strategy might

work. The analysis done in this thesis assumes that all clocks begin with some bounded

skew, but it is difficult to make such an assurance on startup. Currently, the prototype imple-

mentation uses Optimal Clock Sync to reach an acceptable level of synchronization before

the algorithm described in this paper takes over to maintain the same synchronization.

143

Figure 6-1:Achievable synchronization withρ = 10−5, dtcalcmax = 50µs, anddtbetween= 1s. The
second graph corresponds to the thick line running up the slope in the first graph. Note that when the
minimum latency is close to the maximum latency, the achievable synchronization becomes very
small. The flat and level region is where`min > `max andDmax is undefined.

Figure 6-2: These graphs are taken from the same data as figure 6-1. The first emphasizes that
the achievable synchronization is largely a function of the latency spread rather than the actual
latency. The second graph corresponds to the thick line running perpendicular to the slope in the
first graph. It demonstrates the second order effect of absolute network latency in determining
achievable synchronization.

144

6.1.3 SBFTC Performance

The prototype SBFTC is not as successful as hoped, since it is unable to balance a simulated

inverted pendulum in real time. The most critical reason for the performance failure is

communication latency. As described in Chapter 5, messages are sent between NEs only

once every 8 ms, much too slowly. The long delay between messages ensures that every

NE has completed the work required in the previous communication loop before it must

send another message.

There are several reasons why a single communication loop takes so long, one of which

is the point-to-point latency. Of course, large latencies directly affect the communication

loop frequency, since messages may not be sent as quickly. However, large latencies also

indirectly affect the system in a more dramatic way by affecting the level of achievable syn-

chronization. As noted in Section 6.1.2, uncertain latency, not large latency, is the primary

factor in unfavorable clock synchronization. However, since the nodes share a common

network, there is much variation in the latency, and the variation is only aggravated by

large maximum latencies. Hence, the system suffers from poor synchronization. The far-

ther spread apart clocks are, the longer a node’s communication loop must wait to ensure

all other nodes have completed their own loop before continuing on to the next cycle.

One reason for the large latency is that the NE communication layers were built on top

of the UDP protocol. UDP is a transport-layer protocol, designed to move packets over a

large network with routes consisting of several hops. Since NE communication is point-to-

point, UDP gives no advantage over the lower-level, more efficient ethernet protocol that

runs at the link layer.

In the SBFTC prototype, UDP packets are approximately 1 KB in size. A one-way

trip of a 1 KB UDP packet over the prototype SBFTC’s empty network takes about 400

µs. Also recall that several communication layers were built on top of the UDP protocol

145

that also contribute to the time spent in the network stack. A message sent at the virtual

processor (VP) layer (NE-to-NE) takes approximately 500µs to travel one-way, about 100

µs longer than if the message were sent at the transport layer. Furthermore, a message sent

from an NE to an FCP on the same physical node takes approximately 250µs. These three

values imply that during a trip across the network, a packet spends 100µs in the SBFTC

network layers, 150µs in the lower communication layers, and 250µs on the actual wire.

These values are summarized in table 6.1.

Communication Layer(s) Typical Latency (µs)
Physical layer (wire) 250
Link, network, transport layers 150
SBFTC board, processor layers 100

Table 6.1: Latencies of Network Layers for a 1 KB Packet

More significant than the actual maximum network latency is the uncertainty in the

possible spread of network latencies. As demonstrated in Section 6.1.2, the possible syn-

chronization is more affected by the unpredictability of the network than by the absolute la-

tency of the network. Unfortunately, all the nodes of the prototype SBFTC share a common

network, and therefore the network latency is very unpredictable due to wire contention.

The message processing components of the communication loop take an encouragingly

short amount of time. Voting the different versions of a single class 1 or class 2 message,

which consists of three memory buffer comparisons of 128 bytes, takes approximately 30

µs, and the processing required to execute a single round of clock synchronization takes

approximately 50µs. The major time sink of the loop tends to be the overhead required by

the network stacks when sending and receiving messages to NEs, ICPs, and FCPs, which

may occur several times per loop. Table 6.2 lists the different functions performed by the

communication loop and the various associated execution times.

Clearly, the CPU time spent in the communication stack reading and writing messages

146

Function Approximate Execution
Time (µs)

Setup before sending. Examine messages table for
messages ready to be sent.

20

Send appropriate messages to other NEs. (3 1312
byte buffers)

1370

Wait to ensure messages from other NEs arrive.
(Pre-specified sleeping period)

3200

Read arrived NE messages from memory. (3 1312
byte buffers)

250

Parsie messages and update active messages table.500
Compare arrival time of messages and adjusting
clock. (periodic)

35

Vote a single group of messages versions. (3 128
byte buffer comparisons)

30

Forward appropriate messages to ICP/FCP 500
Receive messages from ICP/FCP 60

Table 6.2: Communication Loop Functions and Execution Times

takes up the majority of the time during the execution of a single cycle, although what parts

of the stack are time consuming is not immediately clear. If a method was found to slash

these times, the frequency of the communication loop could be increased substantially.

Why parsing messages and updating the active messages table takes so long has not been

analyzed, but it is likely that inefficient algorithms, like full table searches, are responsible.

Another problem with the communication loop is that the FCP/ICPs are polled for

messages at a rather poor time. When a message is sent from an FCP/ICP to an NE, the

message is received by the NE’s hardware and stored in a buffer. The NE chooses when to

poll that buffer for any waiting messages. In the current communication loop, the buffer is

polled only once per loop, directly after any voted messages are sent to the processor.

The FCP/ICP may receive a message from the NE, complete its processing, and send

a reply back to the NE in time for the next communication cycle. However, the NE will

not poll its buffer and discover the waiting message until theend of the next loop, after

147

that round’s messages have already been sent. As a result, that cycle is wasted and the

message is forwarded in the following cycle. A more intelligently timed poll (just before

NE messages are sent) could eliminate two wasted cycles and 16 ms from the control

period, increasing the control frequency by about 38%.

6.1.4 Design Alternatives

A critical design decision in this prototype SBFTC was to pass messages between NEs

only at pre-specified times. This decision was made because of the ease of implementation

and predictability. The major drawback is that message passing between virtual groups is

inefficient, since each step of the fault-tolerant algorithm requires a complete cycle of the

communication loop.

An alternative design would have been event driven, with NEs quickly reacting to mes-

sages arriving from their FCP/ICPs and other NEs and immediately forwarding or reflecting

them. Such a design would certainly reduce message latency across the fault-tolerant net-

work, but would likely be more difficult to correctly design and analyze. For example,

given that messages from FCPs should have the lowest latency possible, if an NE receives

a message to forward from its ICP, it needs to make a decision whether to forward it im-

mediately, wait for an expected FCP packet, defer to a synchronization routine that might

begin soon, etc. Careful scheduling would be required to make the system predictable.

One downside to event driven programming is that it is non-deterministic. There is

no way to predict exactly when a piece of code will be executed if it is triggered by an

external event. If a CPU intensive task were executed as the result of some unpredictable

event, that code might usurp another important task in a dangerous way. Thus, event driven

programming is typically ill-suited for critical applications.

An alternative to event driven programming is polling. While the current SBFTC pro-

148

totype already uses polling to determine whether messages have arrived from other NEs

or FCP/ICPs, in order to approach the response times of event driven programming, the

frequency of polling would need to be much higher. Unfortunately, polling is a CPU in-

tensive process. Since NEs and FCPs reside on the same node, a constantly polling NE

might starve the FCP of CPU time. Scheduling the FCP for the CPU between polling could

impose large overhead from context switches. Reducing the frequency of polling increases

available CPU, but decreases response times.

6.2 Discussion and Recommendations

This section discusses conclusions and recommendations arising from this thesis.

General Design

In general, the periodic, synchronized communication loop was an intuitive and easily

implemented design. It was chosen after a fellow student ran into difficulties designing an

event driven system. If the difficulties with large communication latencies are solved, this

design will become quite feasible.

The choice of putting the FCP on board with the NE in an interesting one, since it cut

communication latency between the NE and the FCP by about half. However, doing so

requires careful analysis of the execution time required by the FCP, since it no longer has

the full resources of its hardware available to it. Due to the time-partitioning offered by

Integrity, the FCP will never be unexpectedly starved, but the system designer must treat

the NE partition with priority (or else the system will fail), and the FCP may not get the

proper resources to complete in a timely manner. If communication latencies are slashed

and the communication loop runs at a much higher frequency, its possible that the NE

149

process will require all of the CPU to keep up. In this case, the FCP will be better moved

to a different node. Communication between the NE and FCP would be increased, but it

would be better than giving a 30µs FCP process only 10µs every 100µs to execute.

Software Design

During the development of the SBFTC prototype, not much care was taken to optimize

code paths and data structures. This choice turned out to be acceptable, since the majority

of execution time is spent during communication. However, once the high communication

time is solved, more attention should be paid to optimizing the actual message processing

routines.

Communication Network

This thesis has demonstrated that communication latency and predictability, both on the

wire and in the software stack, are the major limiting factors in the current SBFTC system.

Effort should be put into redesigning the existing physical layout to support point-to-point

NE communications and backplane communications with ICPs. Removing the network

and transport layers from the current communication stack, and optimizing the SBFTC

communication layers should be a priority.

Synchronization

The original synchronization algorithm suggested for this system was the Optimal Clock

Synchronization. However, given that minimal drift rate from real-time is not specified as

a requirement, algorithms like the one presented here, for which agreement properties de-

pend on latency variation rather than absolute latency, are attractive candidates, given the

150

potentially highly-predictable network.

The algorithm presented here may be substituted with the more efficient (and fully

analyzed) algorithm presented in [5], but care must be taken to correctly handle clocks that

are set backwards. One solution is to amortize the clock adjustment over a large period

of time, as discussed in [4], but this requires building a level of indirection to access the

corrected system clock.

The advantage of the algorithm presented here is that no such amortization is needed to

ensure that clocks are not set backwards. However, it should be noted that the large adjust-

ments forward may still require amortization to smooth the clock progression, depending

on how the SBFTC is implemented, and thus, the presented algorithm may not provide any

advantage over [5].

6.3 Summary and Future Work

This thesis described the design of a prototype software-based fault tolerant computer that

can mask errors that may arise during runtime. The ultimate goal of the project is to re-

place the X-38 fault tolerant computer, which requires proprietary hardware, in favor of a

software-based solution that may run on cheap, commercially-available hardware. The cur-

rent prototype implements a basic system of four nodes which can support a four-redundant

logical computer, synchronize each redundant processor, and handle input and output to and

from the redundant nodes in a Byzantine fault-tolerant way.

This thesis also analyzed a failstop synchronization algorithm that infers clock skews

based on the arrival times of expected messages from other nodes and guarantees that

clocks are never set backward. An extension to the algorithm to provide Byzantine fault-

tolerance is proposed and described, but the analysis is not complete. Both algorithms are

well-suited for embedded systems, since the achievable synchronization is heavily depen-

151

dent on the predictability of the communication network between the nodes. The non-fault-

tolerant algorithm was used by the prototype SBFTC.

A demonstration application was built that balanced a simulated inverted pendulum and

could handle corrupted messages produced by a single node. The demonstration was not a

complete success, since the prototype SBFTC proved incapable of supporting the control

frequency required to balance the pendulum unless the simulation was slowed by a factor

of six.

There are several results presented in this thesis that could be improved. First, the

prototype SBFTC needs to be completed. This includes extending the startup routine for

real-time virtual group configuration, extending fault handling to enforce consistent behav-

ior among honest nodes in the event of a fault, setting up true point-to-point communication

between the nodes, and relocating the ICP so that it no longer communicates with its NE

over the common network.

Beyond such major changes, the SBFTC may be improved in other ways. The com-

munication loop of the prototype SBFTC could be dramatically optimized. For example

data structures and associated code can be improved, particularly with regards to the active

message table. Also, the timing of message sending could be better analyzed to reduce

the amount of time each node waits for messages from other nodes. Another improvement

could be more intelligent scheduling of polling for messages from ICPs and FCPs.

The synchronization algorithms could be better developed. Clearly, the Byzantine-

resilient algorithm needs to be fully analyzed, but there are other needs as well. For ex-

ample, no initialization strategy to synchronize nodes at startup is presented in this thesis.

Also, no analysis is done on the rate of drift of the synchronized clocks from real time.

Clocks drift naturally from real time, however, the forward adjustment of the clocks as part

of the synchronization routine could cause the synchronized clocks to drift faster than the

natural rate. This effect should be better understood.

152

The synchronization algorithms might also be optimized. Currently, all nodes wait

for the arrival of other messages after they have sent their own. However, it might not be

necessary for the trailing node to wait at all. A trailing node would know it was last because

it already received messages from all other nodes before it sent its own. Thus the amount

of time required for the algorithm to complete would be reduced, increasing the achievable

synchronization.

Other future work might include removing the network and transport layers from the

SBFTC communication stack.

6.4 Acknowledgements

This research and development is being conducted at Charles Stark Draper Laboratory as

an internal research and development project under the supervision of Roger Racine, with

additional oversight by Professor Barbara Liskov of the MIT Computer Science and Artifi-

cial Intelligence Laboratory (CSAIL). The author would like thank both for their help and

guidance. In addition, the author would also like to thank Samuel Bailin of Draper Labo-

ratory for imparting his knowledge of the X-38 fault-tolerant computer. Finally, thanks is

most earned by David Chau, fellow Draper Fellow, MIT student and collaborator, for his

superior insight and hard work toward the successful completion of this thesis. The author

also wishes to thank his mommy.

153

THIS PAGE INTENTIONALLY LEFT BLANK

154

Bibliography

[1] David Chau. Authenticated messages for a fault-tolerant computer system. Master’s

thesis, Massachusetts Institute of Technology, Cambridge, MA, 2006.

[2] Danny Dolev, Joseph Y. Halpern, Barbara Simons, and Ray Strong. Dynamic fault-

tolerant clock synchronization.Journal of the Association for Computing Machinery,

42(1):143–185, 1995.

[3] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. InACM

Transactions on Programming Languages and Systems, volume 4, pages 382–401, July

1982.

[4] Leslie Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of

faults. Journal of the Association for Computing Machinery, 32(1):52–78, 1985.

[5] Jennifer Lundelius and Nancy Lynch. A new fault-tolerant algorithm for clock syn-

chronization. InPODC ’84: Proceedings of the third annual ACM symposium on

Principles of distributed computing, pages 75–88, New York, NY, USA, 1984. ACM

Press.

[6] Kevin Marzullo. Loosely-Coupled Distributed Services: A Distributed Time Service.

PhD thesis, Stanford University, Stanford, CA, 1983.

155

[7] David L. Mills. Computer Network Time Synchronization: the Network Time Protocol.

CRC Press, 2006.

[8] Roger Racine, Michael LeBlanc, and Samuel Beilin. Design of a fault-tolerant parallel

processor. InProceedings of the Digital Avionics System Conference, volume 2, pages

13D2–1–13D2–10, 2002.

[9] T. K. Srikanth and Sam Toueg. Optimal clock synchronization.Journal of the Associ-

ation for Computing Machinery, 34(3):627–645, July 1987.

156

