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ABSTRACT

This work investigates the application of hydrostatic bearings, particularly those of the

self-compensating type, to precision machine tool spindles. First, relations are developed

that can be used to calculate the hydraulic resistances of various bearing land flows in

tilted and untilted orientations. These relations are then applied to predicting the load-

carrying characteristics of several different types of hydrostatic bearings. The bearing

calculations are then integrated with shaft bending calculations to predict static spindle

stiffness. Relations are also presented to calculate the frictional and thermal characteristics

of the bearings at high speeds. The relations developed are compared to experimental

data collected on three prototype test spindles. These spindles were found to have

excellent qualities that represent a significant advance in machine tool spindle technology.

Finally, a design case study is presented that illustrates how the methods developed in this

work may be applied to practical spindle design.
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1. INTRODUCTION

The type of rotary motion bearings principally used in machine tool spindles today

are rolling element bearings. Hydrostatic fluid film bearings offer many advantages over

rolling element bearings in spindles for milling, drilling, grinding, and other applications.

In general, hydrostatic spindles have much higher precision, much higher damping, better

crash tolerance, and longer life than rolling element spindles. Higher precision is realized

because the fluid film eliminates mechanical contact between the shaft and housing and

creates an averaging of the rotational motion that helps to mitigate the effect of

manufacturing variations in the bearing geometry and the bearing clearance. High

damping is achieved by the squeeze-film effect that occurs in the fluid film. Better crash

tolerance is realized with hydrostatic bearings because the higher fluid damping increases

the dynamic stiffness of the spindle and enables it to absorb impacts with higher energy.

Longer life is achieved because, in the absence of machine crashes and the use of proper

filtering, there is no wear.

Other types of bearings that compete with hydrostatic bearings for use in machine

tool spindles include hydrodynamic bearings, aerostatic bearings, and magnetic bearings.

Hydrodynamic bearings generally cannot generate enough stiffness or load capacity for

machine tool applications, particularly when used at low and moderate speeds. The load

capacity of aerostatic bearings is also too low for most machine tool applications because

air can only be used safely in most industrial environments at pressures less than 200 psi.

Electromagnets generate load-supporting pressures no higher than air bearings, and so

magnetic bearings cannot generate sufficient load capacity to handle the high cutting loads



required for most machine tool applications. Magnetic spindles are also usually

prohibitively expensive.

Although hydrostatic bearings have many key advantages over other types of

bearings for machine tool spindles, they have not seen widespread use by the machine tool

industry over the past few decades. This is true primarily because of their high cost and

the ergonomic problems associated with their oil supply systems. In addition, hydrostatic

spindles have been limited to low speed applications because at high speeds, viscous

shearing of the oil creates excessive power consumption, heat generation, and thermal

growth errors. To alleviate these problems, new hydrostatic bearings are under

development (described herin) that enable water-based coolants to be used as the

lubricating fluid and are significantly more easy to manufacture. By pressurizing the

bearings with the same coolant that is used to cool the machining process, ergonomic

problems are eliminated, sealing the spindle is simplified, and the heat generated by

viscous shearing is substantially reduced. In addition, the new bearing methods

substantially simplifies the spindle fabrication, thereby reducing manufacturing costs.

The new bearing methods utilize a principle called self-compensation, in which

bearing lands integrated into the bearing construction are used to compensate the bearing

and enable it to achieve high stiffness without the need for orifices, capillaries, valves, or

other compensating devices. Eliminating the need for external compensation substantially

simplifies spindle fabrication and reduces spindle manufacturing costs. In addition, since

the compensation resistances and the pad resistances both change equally with changes in

the nominal clearance between the shaft and housing, the bearing load capacity is



independent of the bearing clearance. The tolerances on the bearing clearance can

therefore be increased, thereby reducing manufacturing costs even further. Self-

compensation also enables the bearing geometry to be readily manufactured on the outer

diameter of the shaft rather than on the inner diameter of the housing; this substantially

simplifies spindle fabrication since complex bearing geometries can be easily milled and

turned onto the surface of the shaft. Also, since all fluid resistances are formed as bearing

lands with moving adjacent surfaces, any sludge that forms in the fluid supply system and

passes into the bearing will be sheared apart upon entering the bearing. This advantage in

particular makes self-compensated bearings attractive because they can be supplied with

aqueous fluids such as machine tool coolants in which sludge forms readily with the

presence of light. Replacing the oil with coolant makes the bearing ergonomically more

attractive and reduces the viscous shearing power consumption of the bearings.

Conventionally, hydrostatic spindle design is accomplished by considering the

bearing performance and the overall spindle stiffness separately [1,2,3]. The bearings are

designed by considering the shaft to move eccentric but parallel to the bearing housing and

calculating the restoring force developed by the bearing. The stiffness of the bearings are

calculated in this way and optimized to provide maximum stiffnhess with acceptable

pumping power. Next, the shaft is modeled as a beam or series of connected beams

supported by springs. The stiffness of the springs used in the spindle calculations are the

stiffnesses of the radial bearings previously calculated. The design of the spindle is

optimized to provide maximum stiffness at the front face of the spindle or at the tool-

point. This is standard practice for hydrostatic machine tool spindle design.



The design procedure described above can often provide adequate spindle

performance. However, small changes in the bearing geometry can often significantly

increase the spindle stiffness. For example, decreasing the width of the bearing lands

nearest the front of the spindle can often significantly improve the spindle stiffness. These

design improvements are missed when the bearing design is disconnected from the spindle

design.

Integration of the bearing design and the spindle design is accomplished in this

work with the relations and methods developed in Chapters 2, 3 and 4. In Chapter 2,

relations are developed that can be used to calculate the hydraulic resistances of various

bearing land flows in tilted orientations. In Chapter 3, these relations are applied to

predicting the load-carrying characteristics of several different types of radial hydrostatic

bearings. In Chapter 4, the bearing calculations are integrated with shaft bending

calculations to predict static spindle deflections.

The performance of hydrostatic thrust bearings are considered in Chapter 5. Often

the axial stiffness and load capacity of a spindle are just as important as its radial stiffness

and load capacity. Relations are developed in Chapter 5 to design and optimize three

typical hydrostatic thrust bearings that provide excellent load-carrying performance.

The frictional and thermal characteristics of hydrostatic bearings are considered in

Chapter 6. Relations are developed that can be used to predict the viscous shearing power

consumption, heat generation, and temperature rise. The design of bearings for optimal

thermal performance is considered and several important conclusions are drawn.



Chapter 7 describes the tests performed at Setco Whitnon on three test spindles.

The tests performed on the primary test spindle were very successful. The radial stiffness

of the spindle was measured to be over 130,000 pounds per inch at a shaft location 4"

from the front of the air seal. The load capacity of the thrust bearing was tested and found

to about 1,100 pounds. The spindle was driven to 18,000 rpm and subjected to impact

hits on the end of the shaft exceeding 150 pounds while rotating at 10,000 rpm without

failure. Modal plots show that the spindle is very well damped with a dynamic stiffness of

about 73,000 pounds per inch at a resonant frequency of 550 Hz. In addition, the

temperature rise of the water flowing through the pockets was measured to be 4.20 C when

the shaft was rotating at 10,000 rpm, 12.5 0C when rotating at 18,000 rpm. All of these

results were predicted by the relations developed in this work within a reasonably close

margin, and the behavior of the spindle is believed to be well understood.

The tests performed on the secondary test spindles are also described in Chapter 7.

The new spindle configuration has grooves on the surface of the shaft to route the fluid

from the compensating lands to the load-supporting pockets. The spindle fabrication is

greatly simplified with this scheme. In addition, these spindles require substantially less

flow rate and pumping power to achieve the same stiffness. The goals of the tests were to

verify the static stiffnesses of the spindles and to verify their stability at high speeds. The

two spindles had excellent static stiffnesses that were comparable to that achieved with the

primary test spindle. Also, the four-pocket spindle was successfully driven to 20,000 rpm

and its stability was verified. These tests verified the basis of the design.



In Chapter 8, the design of a machine that drills clusters of holes in steel

components is presented. Hydrostatic spindles are found to to be clearly superior to

rolling element spindles this application. The use of hydrostatic bearings enabled the

diameter of the shafts to be increased, thereby greatly increasing the radial stiffness of the

spindles. It is expected that the new machine will be able to drill holes with fewer passes

than the existing machine, thereby reducing manufacturing costs.

There are three appendices attached to this thesis that are referred to throughout

the text. In Appendix A, the matrices of four-node isoparametric beam elements are

developed. In Appendix B, four fluid circuits commonly used to model the fluid flow of

hydrostatic bearings are described and relations to solve them are presented. In Appendix

C, criteria are developed for the flow on the lands of hydrostatic bearing to be laminar and

fully-developed. In Appendix D, relations are presented that can be used to calculate the

change in flow rate caused by the fluid pumping that occurs within some types of

hydrostatic bearings.



2. BEARING LAND FLOW

The load-carrying characteristics of a hydrostatic bearing are predominately

determined by the fluid flow across the bearing lands. The lands are used as hydraulic

resistances to control the fluid pressure within the bearing pockets such that it has load-

carrying capacity. Clearly, the bearing land flow must be well understood and analytically

predictable if a hydrostatic bearing is to be designed properly. In this chapter, the flow of

fluid across hydrostatic bearing lands is considered. Relations are developed that can be

used to calculate the pressure profiles across rectangular and circular lands. Secondary

effects such as tilting of the lands will also be considered. The relations developed in this

chapter will be used in Chapters 3 and 4 to predict the load-carrying characteristics of

many different types of hydrostatic bearings.

2.A. Rectangular Land Flow

2.A.i. Simple Untilted Rectangular Land Flow

Consider a land that has a width L and a uniform gap h. The resistance to flow

through the gap can be derived by considering the highly viscous fluid flow shown in

Figure 2.1. In the derivation, an assumption of fully-developed laminar flow will be used.

These assumptions are valid as long as both the supply pressure is sufficiently low and

shaft rotational speed is sufficiently low. Criteria are outlined in Appendix C that can be

used to determine whether the laminar, fully-developed assumptions used in this chapter

are valid for a operation condition.
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Figure 2.1. Schematic diagram of two-dimensional, fully-developed, highly viscous flow

over a flat land of uniform gap.

Consider the Navier-Stokes Equations in which the fluid properties, density and

viscosity, are constant. In the x-direction, the equation of motion is:

+ U + W -= +gx+ + + (2.1)01 & O p& p p 2 2P 4. 2

Since the flow is two-dimensional, w = 0 and derivatives with respect to z are negligible.

Since the flow is steady, 61 / 6 is zero. Body forces are neglected. If the flow is assumed

fully-developed, the terms corresponding to the derivatives x / & and 0u /2 are

negligible.

In addition to the equation of motion, consider the equation of mass conservation

for this incompressible fluid,

- + - = 0 (2.2)

Since & / & is equal to zero, & / e must also equal zero. Thus v must be a constant

vertically within the pocket. Since v must equal zero at the bottom of the pocket, it must

equal zero at every y within the pocket. If gravity forces are also neglected, Equation

(2.1) reduces to:



0=-- +uC2 (2.3)

Integrating twice with respect to y,

u(y) = C + C2Y + y2 (2.4)

where C1 and C2 are integration constants. The two boundary conditions that this

equation must satisfy are:

u(y = -h / 2)= 0

u(y = h / 2)= 0 (2.5)

Subject to these constraints, Equation (2.4) becomes:

U (= h 2y (2.6)

The average velocity can be found by integrating the velocity over the gap of the land:

I h/2u h2  p
u =- udy= (2.7)

-h/2

The resistance to flow is simply the pressure difference across the land divided by the flow

rate. Since the flow rate is given by Q = uhL,, where L2 is the length of the land in the z

direction,

Q= h (2.8)
12g ax

Since the flow is fully developed and unchanging along the x-direction, the pressure

gradient is constant and given by the pressure difference across the land divided by the

land width, L. The land resistance is then given by:



R = p _ 12 L• (2.9)
Q h3Lz

This resistance is a general result that will be used in the derivation of resistances in future

sections. It is important to emphasize that this equation is valid only for laminar and fully-

developed fluid flow across the land, and the criteria developed in Appendix C must be

satisfied.

2.A.ii. Tilted Rectangular Land Flow

Figure 2.2 below shows a schematic diagram of a rectangular land that is tilted due

to pad misalignment. The flow direction is out of the page. The land width in this

direction is L. The resistance of this land will be derived using the resistance relation

derived in previous section. An assumption of highly-viscous, fully-developed fluid flow

will again be used.

hl

Figure 2.2. Schematic diagram of a flat land that is tiled from pad misalignment. The

flow direction is out of the page.

The gap of the land in Figure 2.2 varies linear with z, and is given by:

h(x)= h,4 z sin(/P) (2.10)



The pressure gradient across the land is constant and given by the pressure difference

across the land divided by the land width L. Inserting this pressure gradient and Equation

(2.10) into Equation (2.8) and integrating over the length of the land,

1 Ap L cos(fi) 3
Q=1'° (h -z sin(P))3dz (2.11)

12p L Jo
Integrating and rearranging,

I Ap = 1- 1- L_ cos(f8)sin(f) (2.12)48p L sin() h,

The resistance is then given by:

R = 48puL sin(fi) 1
4 = (2.13)
S(1- 1 -_ cos(f) sin(f)(

hFor small angles, this reduces to:

For small angles, this reduces to:

48 pL
h4 (2.14)

An alternative approach to using Equation (2.14) for the tilted land resistance may be to

use the untilted land resistance, Equation (2.9), with a clearance value that results in an

equivalent resistance as that calculated using Equation (2.14). The equivalent clearance to

use in Equation (2.9) is given by:

hq = h 1 ý -1 (2.15)4 Ah h, i



where Ah = hi - h2. The equivalent z-direction location where this clearance occurs is

given by:

4 ' -1/3

Zeq hi 1 hi Ah16)
This parameter is plotted versus Ah n Fgure h2.3.

This parameter is plotted versus Ah/hlin Figure 2.3.

N

a-

N

-1 0 -.5 0 5 1.0

Ah/h 1

Figure 2.3. Location of the clearance for a tilted land that, when used in the untilted

relation of Equation (2.9), will result in the same resistance as that computed using

Equation (2.14).

1 .4 ______

O



2.A.iii. Converging Rectangular Land Flow

Figure 2.4 below shows a schematic diagram of a rectangular land whose gap is

converging due to pad misalignment. The resistance of this land will be derived using the

resistance relation derived in section 2.A.i. An assumption of highly-viscous, fully-

developed fluid flow will again be used.

Figure 2.4. Schematic diagram of fully-developed, highly viscous flow over a flat land

with a converging gap result from misalignment.

The gap of the land in

Inserting this gap relation into

Figure 2.4 varies linear with x, and is given by:

h(x)= h, - x sin(fp)

equation (2.8) and rearranging,

_p 12u Q
x (hk - x sin(f))3 L

Integrating with respect to x,

p = -6p + Const.
sin(fXh, - x sin(P)) 2 Li

The pressure is equal to Pl at x = 0:

(2.17)

(2.18)

(2.19)

L



61n
Ph sin(f8)

-1 (2.20)

Evaluating this relation at x = Lcos(P3) gives the pressure difference across the land. The

land resistance is the pressure difference divided by the flow rate:

R- Ap 6u

Q h/2 sin(,f)Lz
21 (2.21)

For small angles, this relation is given approximately by:

R Ap_ 6p
Q h2ipLz

- 1 (2.22)

An alternative approach to using Equation (2.22) for the tilted land resistance may be to

use the untilted land resistance, Equation (2.9), with a clearance value that results in an

equivalent resistance as that calculated using Equation (2.22). The equivalent clearance to

use in Equation (2.9) is given by:

he = h

2

1-1
11

hi

1/3

(2.23)



where Ah = hi - h2. The equivalent x-direction location where this clearance occurs is

given by:

Xeq

L Ah

2A
2--hih,1

-1

This parameter is plotted versus Ah/hlin Figure 2.5.

-,4 #-•

_J

a,xo"T
CD

I.)

.9

.8

.7

.6

.5

.4

.3

2

.1

n
-1.0 -.5 0 .5

Ah/h 1

Figure 2.5. Location of the clearance for a tilted land that, when used in the untilted

relation of Equation (2.9), will result in the same resistance as that computed using

Equation (2.22).

(2.24)



2.A.iv. Flow Over an Axial Land

The fluid flow between a land clearance of a shaft and housing is normally modeled

as flow between two flat plates. This approximation is good if the eccentricity of the shaft

is small or if the circumferential width of the land is small compared to the circumferential

length of the shaft diameter. However, at large eccentricities and large circumferential

land widths, the clearance varies significantly across the width of the land. The variation

in clearance can effect the resistance and pressure profile across the land. Relations will

be developed in this section in which these secondary effects are accounted for.

An axial land on a shaft that is displaced eccentrically is shown schematically in

Figure 2.7. The angle 0, corresponds to the angle between the point of minimum

clearance and the center of the axial land. The clearance between a housing and an

eccentric shaft is a function of the angle 0, and is given by:

h(x) = h[1 - e cos(98 + x / D)] (2.25)

where h0 is the nominal clearance between the shaft and housing. The eccentricity of the

shaft, e, is defined as:

e = -(2.26)ho

where 6 is the distance the shaft is displaced with respect to its concentric position.

Inserting the clearance given by Equation (2.25) into Equation (2.8),

12p Q= [ - Q (2.27)
S h31 - e cos(Oc + x / D)]3 L,



12p Q x dr'
h3 L -L/2 1-e cos(O,+x / D)]

(2.28)

This pressure distribution will be used to find the hydraulic resistance across the land and

the force generated by the pressure on the land.

Figure 2.7. Schematic diagram of the fluid flow across an axial land as the shaft is

displaced to an eccentric position.

The hydraulic resistance of the axial land is found by considering the total pressure

drop across the land:

12L Q /2
PI - P 2  •L 3' -1/1 - e cos(O, + L

I D
(2.29)

where ý = x/L. This makes the hydraulic resistance equal to:

I



12L 1/2 dý (2.30)
o _ 1- e cos(Oc + L k)

Figure 2.8 shows plots of the ratio of the resistance of an axial land computed using

Equation (2.30) divided by that computed using Equation (2.9) with the clearance

corresponding to that of Equation (2.25) with an angle of 0,. The ratio of land width to

shaft diameter used for this plot was L/D = 0.4.
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Figure 2.8. Ratio of the resistance of an axial land computed using Equation (2.30)

divided by that computed using Equation (2.9) with the clearance corresponding to that of

Equation (2.25) with an angle of 0e. The ratio of land width to shaft diameter used for this

plot was L/D = 0.4.



The closed-form solution to the integral of Equation (2.30) is complicated and

lengthy. A more compact solution can be obtained by integrating numerically using a 5-

point Simpson 1/3 Rule numerical integration:

Rxial 12!3 Z(e, L/D, 0,1/2) (2.31)
Lzho

a+1/2 1 4
Z(e, L / D, Oc, a)= +

12 [g,(eL/ D,G,-1/ /2) g,(e,L/D, O,9-1/2 +1/ 4(a +1/ 2))

2 4
+ +

g1(e,L/D,9•,-1/2+1/2(a+1/2)) g (eL/D,O ,-1/2+3/4(a+1/2))

g,(e, L /D, a) (2.32)

where:

g(e,L / D, Oc,)= [1-ecos(C + L) 3 (2.33)

Equations (2.31) through (2.33) may be used to approximately calculate the resistance of

Equation (2.30) with a maximum error of approximately 0.5%.

The force generated by the pressure across the axial land will be considered next.

Of interest is the net force directed radially toward the center of the shaft, originating from

the point corresponding to the angular position 0c. This force is found by integrating the

pressure over the land width times the cosine of the angle with respect to the center of the

land:

Fiai = LzLJ pcos 2.( dt (2.34)
-1/2

Inserting the pressure distribution given by Equation (2.28):



1/2d1/2 P L cos 2L
-,(• ... .,, . ,, 3

=p, sin +LzD D

L' -e COS + )j

For small eccentricities, the change in clearance across the width of the land is very small

with respect to the nominal clearance and so the net force developed by the pressure on

the land should limit to:

Fi = + sin L (2.36)
LzD 2 D

Several plots of the ratio of the force calculated using Equation (2.35) to that calculated

using Equation (2.36) are shown in Figure 2.9 for a ratio of land width to bearing diameter

L/D = 0.4. The pressures considered in this plot are p2 = 0.6 pi.

(2.35)
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Figure 2.9. Ratio of the force calculated using Equations (2.35) to that calculated using

Equation (2.36) are shown for a ratio of land width to bearing diameter L/D = 0.4. The

pressures considered in this plot are p2 = 0.6 pl.

The closed-form solution to the integral of Equation (2.35) is complicated and

lengthy. A more compact solution can be obtained by integrating numerically using a 5-

point Simpson 1/3 Rule numerical integration:

xial ;tp, sin- +

p2 -p 1 L 12 Pcos 2 (-1/ 2)Z(e, L / D, O•,-1 / 2 +
Z(e,L /D, O,1/ 2) D 12 D'

4 cos2 L (-1 / 4)Z(e,L / D, O,-1/4)) +Z(e,L /D,O,O)+

4o 2D



4 cos 2 (1 / 4)Z(e, L / D, 9,,1 / 4)) + cos(2 (1 / 2)Z(e, L / D, ,1 / 2) (2.37)

where Z(e,L/D,0,,a) and gl(e,L/D,0,,ý) are given by Equations (2.32) and (2.33).

Equation (2.37) may be used to approximately calculate the same value as Equation (2.35)

with a maximum error of approximately 2%.

For an axial bearing land that is tilting as a result of shaft bending, the eccentricity

varies along the length of the land. The effect of land tilt can be approximately accounted

for by combining the solution developed in this section with that developed in Section

2.A.ii. To do this, the equivalent clearance given by Equation (2.15) will be replaced with

an equivalent eccentricity. With the assumption that the clearance varies linearly in the

axial direction, the equivalent eccentricity of the land is given by:

(1- e, cos(O))4 - (i - e, cos(o))4 -1/3

eaxial - cos(0) (2.38)

where el and e2 are the eccentricites at the two ends of the axial land and 0 is the angle

from the point of minimum clearance to the circumferential center of the axial land. The

general function given by Equation (2.38) will be used in Equations (2.31) and (2.37) to

approximately account for the effect of tilting the axial land.

2.A.v. Flow Over a Circumferential Land

A circumferential land on a shaft that is displaced eccentrically is shown

schematically in Figure 2.10. The fluid flows in the direction into the page across the

length width L. The angle 0, corresponds to the angle between the point of minimum



clearance and the center of the circumferential land. Relations will be developed in this

section in which the variation in the circumferential direction is accounted for.

4VIV

Figure 2.10. Schematic diagram of the fluid flow across an circumferential land as the

shaft is displaced to an eccentric position.

The clearance between a housing and an eccentric shaft is a function of the angle

0, and is given by:

h(x)= h[ - ecos(60 + x / D)] (2.39)

where ho is the nominal clearance between the shaft and housing, and e is the eccentricity

of the shaft. The flow rate of fluid across the land is found by inserting the clearance

given by Equation (2.39) into Equation (2.8) and noting that the pressure gradient across

the land is constant:

Qh-L 0 - 2I [-ecos OC + L] 3 d12pi L _ 2 Dý (2.40)
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where ý = z/Lz. The resistance is therefore given by:

12p.L 1Rrcum h 121/2 1 (2.41)
mhoL z  1- e cos O + ý- dý

1/2

Shown in Figure 2.11 are several plots of the ratio of circumferential land resistance

calculated using Equation (2.41) divided by that calculated using Equation (2.9) with the

clearance corresponding to that of Equation (2.39) with an angle of 0,. The ratio of land

length to shaft diameter used for this plot was Lz/D = 0.5.
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Figure 2.11. Ratio of circumferential land resistance calculated using Equation (2.41)

divided by that calculated using Equation (2.9) with the clearance corresponding to that of

Equation (2.39) with an angle of 0,. The ratio of land length to shaft diameter used for

this plot was L,/D = 0.5.
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The closed-form solution to the integral of Equation (2.41) is complicated and

lengthy. A more compact solution can be obtained by integrating numerically using a 5-

point Simpson 1/3 Rule numerical integration:

12lpL 1R - 1L W (2.42)CRom hoL z W

W= 1g,(e,L,/D,0,-1/2)+4gL(e,Lz / D,c,-1/ 4)+

2g(e, L / D,,0)+4g(e, Lz / D,c,1 / 4)+ g(e, L / D,,1/2) (2.43)

where gl(e,L/D,o,,ý) is given by Equation (2.33). Equations (2.42) through (2.43) may be

used to approximately calculate the resistance of Equation (2.41) with a maximum error of

approximately 0.5%.

For a circumferential bearing land that is tilting as a result of shaft bending, the

eccentricity varies across the width of the land. The effect of land tilt can be

approximately accounted for by combining the solution developed in this section with that

developed in Section 2.A.iii. To do this, the equivalent clearance given by Equation

(2.23) will be replaced with an equivalent eccentricity. With the assumption that the

clearance varies linearly in the axial direction, the equivalent eccentricity of the land is

given by:

2(1 - e, cos(O))2( 2 - e 1)cos(e)( - el cos(O) 2

e- cos(1))

'circum cos(e)cos(6)

1/

1" AA\

1-



where el and e2 are the eccentricites at the two ends of the land and 0 is the angle from

the point of minimum clearance to the circumferential center of the land. The general

function given by Equation (2.44) will be used in Equation (2.42) to approximately

account for the effect of tilting the axial land.

2.B. Circular Land Flow

In this section, the case of fluid flow over a circular land will be considered.

Shown in Figure 2.12 is a circular bearing pad in which fluid enters a central pocket and

then flows out radially across a land which is at a tight clearance from a supporting

member. In all of the derivations that follow, it is assumed that the fluid flow is laminar

and fully-developed. The criteria for laminar, fully-developed flow given in Appendix C

should be considered before the equations developed in this section are used. Although

the criteria given in Appendix C were developed for rectangular land flow, they may be

used for circular land flow by considering the innermost radius, where the fluid velocity is

highest.



Figure 2.12. Schematic diagram of a circular bearing pad with highly viscous fluid

flowing out radially across the circular land.

2.B.i. Untilted Circular Land Flow

The nominal, no tilt circular land resistance will be derived first.

Equation (2.8), the flow rate per unit length circumferentially is given by:

Q h3'
LZ 12p 0

Modifying

(2.44)

Rearranging,

dp 12p Q

dr h3 L
(2.45)

Integrating around the entire circumference of the pad,



Q = rd0 =r hr tQJ7(LQZ 
6p cc

(2.46)

Rearranging,

6,uQ dr
dp = 7ah3 r

c

(2.47)

Integrating from the inner radius to the outer radius, the pressure difference from the

inside of the circular pad to the outside is given by:

Ap - 6 h 3 In (2.48)

The nominal circular pad resistance is thus given by:

Rnom - 6 p In(Ro
; r hc R)

2.B.ii. Tilted Circular Land Flow

Figure 2.13 below shows a schematic

pad misalignment. The resistance of this

rectangular lands of the previous sections

viscous, fully-developed fluid flow will again

(2.49)

diagram of a circular pad that is tilted due to

land will be derived similar to the titled

of this chapter. An assumption of highly-

be used.



Figure 2.13. Schematic diagram of a tilted circular bearing pad with highly viscous fluid

flowing out radially across the circular land.

The gap of the land in Figure X varies linearly with r and 0, and is given by:

h(x) = hC - r cos(0) sin(fi) (2.50)

Modifying Equation (2.8), the flow rate per unit length circumferentially is given by:

Q h] ,•Q-= - h (2.51)
L, 12p a

Rearranging,

dp_ 12p Q (2.52)

dr hc L,

Inserting Equation (2.50),

' = -12p 3  (2.53)
dr L (h - r cos(0) sin(fi)



Integrating from the inner radius to the outer radius, the pressure difference from the

inside of the circular pad to the outside is given by:

Ap = 12p (2.54)
Lpr= 1R2 (hk - r cos(0) sin(Pf))(

Rearranging to give the flow rate per unit length in the circumferential direction,

Q=_ 1 (2.55)
L, 12U RO. dr

LR (hk - r cos(O)sin(f))3

Integrating around the entire circumference of the pad,

Q AP dO (2.56)
12p 0o R dr

J r(h, - r cos(0) sin(p,))

The tilted circular pad resistance is now given by:

121uR = 12 (2.57)
f2 dO

r dr
JR r(hk - r cos(O) sin(f))3

When integrated, the analytical relation of Equation (2.57) is very long and cumbersome.

Therefore, the lower integral was evaluated analytically and a 5-point Simpson's 1/3 rule

numerical integration is used to approximate the upper integral. This results in:

R=1 (2.58)h ) 1 4 2 4 +
-- + ---- + ---- + + -

g(O)+ g(" / 4) + g(n / 2) g(31 / 4) g(n

where, using small-angle approximations,



'R.
P ' cos() - 1

R_ h_ 1/2 1/2

g(9) = I+n + -Ri P cos() - 1) cos(9) - 1 cos(0) -12k k 1), k 1)i
(2.59)+

cos(9 )- cos() - 1k k 1 B , 1
This solution was compared with a very rigorous numerical integration, and agreement

was found to be within lxl0 -3 % over all possible ranges of the variables.

Shown in Figure 2.14 is the reduction in circular pad resistance due to

misalignment for several radius ratios. Note that 3Ro/dh is physically constrained to less

than a value of I or touchdown will occur. As shown, for R/R, = 1.1, a reduction in pad

resistance of up to 60% can occur due to misalignment.
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Figure 2.14. Reduction in circular pad resistance resulting from tilt.



Equations (2.58) through (2.59) are cumbersome for simple calculations, and so an

excellent curve fit to the result is given by:

R _3 _ 2

R -- 2.323-0.859~ +0.0223 R
R h

-0.847 + 0.231 - 0.02 2 } (2.60)

where R&om is the nominal circular pad resistance, given by Equation (2.49). The curve fit

given by Equation (2.60) is accurate to within 5% for Ro/Ri < 4. If 3Ro/1h < 0.2, then

Equation (2.60) can be extrapolated up to Ro/Ri = 6.5 and will still be accurate to within

5%.

2.C. Standard Bearing Pad Land Flow

The flow of fluid across the lands of a standard bearing pad will be considered

next. The pad is flat, without any bearing curvature. Although this limits its usefulness

for modeling radial hydrostatic bearings, the effect of tilting the pad on its overall

hydraulic resistance is instructive. Also, a flat pad may be used as an approximate model

of a curved pad in a radial bearing if the pad circumferential width is small compared to

the circumferential length of the bearing diameter (i.e., it may be used to good

approximation if six or more pads are used). In all of the derivations that follow, it is

assumed that the fluid flow is laminar and fully-developed. The criteria for laminar, fully-

developed flow given in Appendix C should be considered before the equations developed

in this section are used.
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hpad I

Figure 2.15. Schematic diagram of a tilted bearing pad with highly viscous fluid flowing

out of the pocket. The lands form eight resistances in parallel.

2.C.i. Untilted Pad Land Flow

The nominal, no tilt total pad resistance will be determined first. The total

equivalent pad resistance is found by:

R= (2.61)
2 2 4

-- +--+-
R R2 R3

In this case:

R,12=L (2.62)

12jLtLR = h(L2- 2La -2RA)R2 3 12 (2.63)
h pad(L - 2L, - 2A.)

R324 p In (2.64)r haphpad

T



Inserting Equations (2.62) through (2.64) into Equation (2.61), the nominal pad resistance

is given by:

R 6p 1
noR h (L2 - 2La - 2R,) ( -2L, - 2R,)

La La In(R, + L
R,

(2.65)

2.c.ii. Tilted Pad Land Flow

A tilted bearing pad is shown schematically in Figure 2.16. The effect of pad

tilting on the overall hydraulic resistance of the pad will now be considered. It is again

emphasized that, in the derivations that follow, it is assumed that the fluid flowing over the

lands is laminar and fully-developed.

Figure 2.16. Schematic diagram of a tilted bearing pad with highly viscous fluid flowing

out of the pocket. The lands form eight resistances in parallel.

,I I.



The resistance of a tilted pad will now be found by assembling the individual tilted

resistances found in the previous sections. The total equivalent pad resistance is found by:

1
2 1

R, R2

1
+--

2 2
+ - 1+
R, R4

(2.66)

where R1 is the resistance of a side rectangular land:

48pLa sin(fl)
1

+ (L2 - 2L - 2R~)sin(,8)+2 2.

4 'V

L2 - 2La - 2R,
1hpad (L2 -2La -2R,)sin(J)
2

R2 is the resistance of converging rectangular land:

(L - 2La)sin(,f)

- 2La)sin(/,)) sin(fX)(L - 2La - 2R)

R3 is the resistance of the diverging rectangular land:

1

(Lh - 2La)sin(j

- 2La)sin(f))' sin(,)(8L - 2La - 2A)

R4 is the resistance of a quarter of a tilted circular land:

(hpad

·Ii
0) K7

1
2

R2 = 6p

hpad

1L
-- (L2

2

(2.68)

1) £~.

3 = 'UU

hpad + (L22

(2.69)

m J I I I t

1·
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12p

(hpa - (L2 -2La -2)sin(f )

r( 1 4 2 4 1_2- I +- + 48 +l(2 + 43/ + 1/
24 f, (0) f (r/8) f (r / 4) f, (3r / 8) f (r / 2)

(2.70)

fiR, cos(0) 1
, - (L - 21 - 2R)i)

hpa (L, - 2L, - 2R,)sin(f)2
fl(R, + L,) cos()
1-1

h,, - (L, - 2L. - 2R,)sin(f)
2

1/2! (R, + L,) cos(O)
1 - 2R

1/2

6R, cos(8)
hd 2(L, - 2L, - 2R, )sin(f)

(2.71)
SiR, cos(9)

hpad (L2 - 2L - 2R,)sin()2

/P(R, + L,) cos(O)
h -I (L, - 2L, - 2R,)sin(fl)

2

and R5 is the resistance of a quarter of a tilted circular land:

(h

12p

+-(L2 -2L -2R1 )sm(f)I 3

2

r 1 4 2 4 1
24(- fr2)+f(5;r8) + f + +-•/ -
24 /;(K/2) f;(5R/8) Aj(3K/4) f;(7rr/8) 1;(K)

where:

r
I / .cos(8)1 -1

h + -(L, - 2L, - 2RS)sin(,8)
fl(A +L,)c os(o)
1

h,. +2(L, - 2L. - 21~ )sin(8)

- 1 (Ri + L)cos(O)
hpad + I (L2 - 2La - 2R)sin(fl)

where:

(2.72)

~ac( c)(-)

I 22

fiRi cos()

hpad+ (L2 - 2La - 2Ri)sin(,6)

(2.73)-L



Shown in Figure 2.17 is the reduction in pad resistance resulting from tilt for La/Li = 1/6,

Ri/La = 1/2, and several ratios of L2/L1. Note that the solution for the tilted hydrostatic

bearing pad is subject to the constraints:

PL2 /2 <1 , L2 >2L, + 2R i , L I 22La+2Ri  (2.74)
h

The first constraint insures that touchdown does not occur. The second and third

constraints are simply variable definitions stating that the total pad length and width must

both exceed the length of the lands and corner radii.

0 .2 .4 .6

F3 (L2/2)/hpa d

Figure 2.17. Reduction in pad resistance resulting from tilt.
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Equations (2.66) through (2.73) are cumbersome for simple calculations, and so an

approximate curve fit to the result is given by:

2 3

R 1-13 L2 /2 fL2/2S- 1.3 + 0.7 5  2 / (2.75)
Rnom pad hpad )

where R.om is the nominal no-tilt pad resistance, given by Equation (2.65). The curve fit

given by Equation (2.75) is given only for a rough approximation of tilted pad resistance,

but is accurate to within about 15% over the following range of variables:

La 1 R.
0.05 < < 0.5 < < 1.5

SR, La2 1+
(2.76)

L2/2 < L2  3 LaI R,
0< <1 >3 +LLaI

hpad ' L1 L1 La·j



3. RADIAL BEARING DESIGN: STIFFNESS, LOAD CAPACITY,

AND FLOW RATE

The most important part of designing a hydrostatic machine tool spindle is

designing the radial bearings. The primary purpose of the radial bearings are to hold the

shaft rigidly in all radial directions while allowing for free angular rotation. This should be

accomplished with reasonably low flow rate and pumping power. Often the goals of high

stiffness and low pumping power are competing and the most adequate design will depend

upon the overall project objective. In some cases, achieving high spindle stiffness is the

most important goal and high pumping power is an acceptable cost if it yields higher

spindle stiffness. In other cases, the size and cost of the pump must be kept to a minimum,

even if that means realizing lower spindle stiffness. In the design of most machine tool

spindles, both goals of high stiffness and low pumping power are important and a well-

balanced bearing design is sought. Other important bearing attributes include the bearing

damping, shearing power consumption, and temperature rise. These factors will be

considered in future chapters. The focus of this chapter will be load-carrying capacity and

pumping power.

It should be clearly emphasized that, although it is important to design the radial

bearings with high stiffness, the overall goal of a spindle design is not to maximize the

bearing stiffness but to maximize the spindle stiffness. Other characteristics of the radial

bearings besides their stiffness have an impact on the stiffness of the spindle and must also

be considered. First, the effective load center of the bearing is important; how close the

effective load center of the front radial bearing is to the spindle nose often has a dramatic



impact on how stiff the spindle is. Second, how sensitive the front bearing is to shaft

displacement at the front of the spindle is very important. The front radial bearing can be

designed to have greater sensitivity to shaft deflection near the front of the spindle so that

higher spindle stiffness is achieved.

The purpose of this chapter is to appropriately model radial hydrostatic bearings so

that their stiffness can be calculated and their design can be integrated into the overall

design of the spindle. This is accomplished by calculating the restoring force that the

bearing generates when the shaft is moved eccentric and out of parallel with the bearing

housing. In other words, the eccentricity of the shaft is a linear function of the axial

location within the bearing. By modeling the tilting of the shaft, the effect of shaft bending

on the bearing stiffness can be accounted for. Shaft bending particularly affects the

stiffness characteristics of the front bearing and must be considered to accurately design

and optimize hydrostatic spindles. This will be discussed further in Chapter 4.

The relations developed in this chapter can be readily implemented into computer

programs to quickly design and optimize hydrostatic bearings for machine tool spindles.

In the derivations that follow, several important assumptions are made about the bearing

characteristics and the operating conditions. It is assumed that:

* The depressed areas of the bearings, including the pockets, supply grooves, and

drainage grooves, are at a depth sufficiently great that the pressure drop throughout

them is negligible compared to the pressure drop across the bearing land regions. This

assumption allows the depressed regions to be modeled as regions of constant pressure

and enables fluid circuit theory to be used to solve for the bearing pressures.



* The fluid is incompressible so that density changes caused by changes in the fluid

pressure or temperature are negligible as it passes through the bearing.

* The fluid has a constant dynamic viscosity as it passes through the bearing. This is a

good assumption if the temperature rise of the fluid from the bearing inlet to the

bearing outlet causes a negligible change in the fluid viscosity.

* The fluid flow on the land areas of the bearing are laminar and fully-developed, as

discussed in Chapter 2. In this case, the flow rate across a land is linearly proportional

to the pressure difference across it and so the resistances of the fluid circuit are

constant and linear fluid circuit theory can be used to solve for the flow rates and

pressures.

These assumptions must be considered before the methods and results generated in this

chapter are used in hydrostatic bearing design.

Twelve radial hydrostatic bearings are considered in this chapter. In order to

compare their relative merits and characteristics, some non-dimensional performance

parameters will now be defined. The most important attribute of a bearing is its load

carrying efficiency, which is the bearing restoring force divided by the supply pressure

times the cross-sectional area:

Fc = (3.1)
PDL

The load-carrying efficiency is a strong function of the bearing eccentricity; it is usually

fairly linear for deflections up to 50% of gap closure and then its slope decreases as the

shaft comes closer to touch-down. At touch-down, most hydrostatic bearings have load-

carrying efficiencies between 0.4 and 0.6. The load-carrying efficiency at 75% of gap



closure is usually a good indication of the load-capacity of the bearing, and will be used as

an indication of such in this chapter.

Perhaps more important than the load-carrying efficiency of a bearing is its

stiffness. The specific stiffness quantifies the bearing stiffness:

sp F (3.2)
e

Hydrostatic bearings behave non-linearly and so the specfic stiffness is a function of the

eccentricity. For applications where the cutting loads are low relative to the bearing load

capacity, the stiffness of the bearing at small eccentricities is usually the most important

consideration. Fortunately, the bearing stiffness is usually highest at small eccentricities.

The initial specific stiffness of a bearing generally corresponds to very low eccentricities (e

< 0.01), and usually ranges between 0.8 and 1.2 for most hydrostatic bearings, but can be

even higher.

The above bearing parameters describe the load-carrying performance of the

bearing. Another important consideration is the amount of flow rate that is needed to

achieve the load-carrying performance. A parameter that will be used to compare the flow

rates for different bearings is the specific flow rate, which is the supply flow rate divided

by the flow rate that would occur if the entire length of the bearing were used as a

hydraulic resistance:

S(3.3)P, tnDhQ,,CWO



The specific flow rate of hydrostatic bearings vary from as little as 5 to as much as 50.

The specific flow rate of a bearing is an indication of the pumping power required to

support it since the pumping power is the supply pressure times the flow rate.

Relations are developed in the following sections to predict the load-carrying

performance of twelve hydrostatic bearings. A representative bearing with a diameter of

80 mm and a length of 80 mm is considered in each case and its characteristics are

presented. Although the flow rate is considered when the dimensions of the bearing

geometries are chosen, the design in each case is primarily optimized to generate the

maximum initial specific stiffness. In addition, the dimensions of the bearing geometry are

chosen while considering manufacturing limitations. For example, the minimum groove

width used is 2 mm; this groove size can be generated fairly easily using conventional

machining methods. The minimum land width used is 3 mm; reducing the land width

further would make manufacturing variations become significant. Also, the land width

should be kept to at least 3 mm to keep the fluid flow across the lands laminar and fully-

developed when water is used at supply pressures over 500 psi. Using these limitations

and considerations, a representative bearing is designed and optimized for each bearing

type. In all cases, the bearing performance presented is that which occurs when the shaft

moves parallel to the bearing housing. Although the comparisons generated provide an

indication of the relative merits of the various bearings, they do not necessarily indicate

which bearings make the best spindles. The performance of spindles that utilize the twelve

bearings of this chapter will be demonstrated in Chapter 4.



3.A. Fixed-Compensated Bearing #1

The pad layout of a conventional, fixed-compensated hydrostatic bearing is shown

in Figure 3.1. Fluid enters each pocket through a fixed-resistance device such as a

capillary tube. It then flows throughout the pockets, represented by shaded regions, which

are at a depth significantly greater than the land clearances such that the fluid pressure

throughout each pocket is uniform. The fluid then crosses the lands and out of the bearing

to atmospheric pressure. The grooves that run between each successive pocket are used

to drain the fluid; they are also at a depth significantly greater than the land clearance such

that the fluid pressure throughout them is atmospheric pressure. Note the the lands that

run circumferentially on either end of the bearing are modeled as having different widths,

Lip and Llep. This allows the circumferential land nearest the front of the spindle to be

made with a somewhat shorter width than the other bearing lands so that the bearing has

higher sensitivity to deflections at the front of the spindle, thereby increasing the spindle

stiffness. This will be discussed further in Chapter 4.



Fluid

Fluid
Inlet

P2-

P3

Limp Llep

Lip

Ld
ME -PI R ; -.0.1 g% R;ý'gs M

*RR~k*M:;';*ý Z OR M

L. I

Figure 3.1. Schematic diagram of the pad layout of a conventional, fixed-compensated

hydrostatic bearing with drainage grooves between its pockets. The shaded regions

represent depressed regions.

3.A.i. Description of Calculations for Fixed-Compensated Bearing #1

Calculating the load-carrying capacity of a bearing is accomplished by moving the

shaft to an eccentric position and then calculating the resulting restoring force generated

by the bearing. Figure 3.2 shows a schematic diagram of an 8-pocket bearing with its
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shaft displaced to an eccentric position. The shaft is displaced in the y-direction toward

pocket #1, which has a pressure of pi. The angular coordinate, 0, begins from the center

of pocket #1.

P5

P7
P3

8

Figure 3.2. Schematic diagram of a shaft displaced to an eccentric position within an 8-

pocket bearing housing. The clearance is exaggerated for clarity.

Figure 3.3 shows a schematic diagram of a shaft displaced to an eccentric position

with respect to the bearing housing and also out of parallel with it. The clearance is

exaggerated for clarity. The shaft is modeled as straight with end eccentricities given by:

em = ee =- (3.1)
ho ho



where ho is the nominal, radial clearance between the shaft and the housing lands when the

shaft is in a concentric position.

V N-

fI/

56m 6

- Lmp - • Llep

Figure 3.3. Schematic diagram of a shaft displaced to an eccentric position with respect

to the bearing housing and also out of parallel with it. The clearance is exaggerated for

clarity.

The first step in calculating the restoring force generated by moving the shaft to an

eccentric position is to calculate the hydraulic resistance of each bearing land. For each

supporting pad, there are four lands over which fluid flows in parallel: the circumferential

land with a width Ll~p, the circumferential land with a width Lmp, and the two axial lands

with widths of Lip. The resistance of the two axial lands are given by:

R= R m ,ho,Ll, L-L I, -LI +L +Le,i + D , e+eL~ ,Ie, D (3.2)M D e' Y + D

c---



R 2, = R ,al hho,LPL-L mp-LLlp ++L +L, ,1, - -D -,eL- (eI,e 2,, LDLpDo (3.3)

where i is the pocket index, R.ial is the function given by Equation (2.31), eia~l is the

function given by Equation (2.38), and Oi is the angle to center of the ith pocket:

0, = 27t(i- 1)/ N i = 1,2...,N (3.4)

where N is the number of pockets. The eccentricities el and e2 are those corresponding to

the ends of the axial lands:

e, = em +(ee -em) IM (3.5)
L

e, = e + (em - ee) L '  (3.6)
L

The variables Lm* and L,* are added to the distance perpendicular to the direction of flow

to account for the small amount of spreading the fluid experiences near the two ends of

the axial land. Recommended relations for these terms are

Lm ; 0.4{min(Lmp, L,,ip) (3.7)

L' 0.4{min(L ~,, Lip)) (3.8)

As long as the land widths are small compared to the pocket axial length, the effect of the

fluid spreading is small and the exact magnitudes of these terms do not significantly affect

the predicted bearing performance. The resistance of the two circumferential lands are

given by:

R3,i = Rcm , ho,LMp, Lp - 2LI, +L' , 8i,ecim(em,ei,Oi)) (3.9)

R4,i = R ircum k, ho, Ll5,, Lp - 2LP + L',, ec9um(e2 (e, ,i)) (3.10)



The four resistances given by Equations (3.2), (3.3), (3.9), and (3.10) are evaluated N

times for each pocket of the bearing.

The next step is to calculate the equivalent hydraulic resistance of each pocket

corresponding to the resistances R&,i of Circuit #1 in Appendix B:

Rai= 1 1 1 (3.11)
-- +-- + -- +--

R11  R 21  R3,i R 4

The resistances Rc,i of Circuit #1 correspond to the inlet resistances used to compensate

the bearing. The value of these fixed resistances are chosen so that the resistance ratio y =

Rc,i/Ra,i is approximately equal to 1 when the shaft is concentric to the bearing housing.

Once the resistances of Circuit #1 have been calculated, the fluid circuit can be solved for

the N unknown pocket pressures, pi, and the supply volumetric flow rate, Q,.

Once the pocket pressures are known, the reaction force of the bearing is

calculated by multiplying the pressures times the appropriate areas. The net force

generated by pocket i in the direction of the bearing center is given by:

F1 = (L -L,,-L, -LLC - 2L (1
Fnet.i = L-L - Llep)D sin D (3.12)

The net force generated by pocket i in the y-direction is given by:

L - 2Lip
Fi L - L - Llep)si cP pi cos(0i) (3.13)

Similarly, the y-direction forces generated by the other bearing areas are given by:

F2 = DL, sn(L P- 2L ( cos() (3.14)



Fy = DLiep sin(P D- 2Lp. cos( 1) (3.15)

F4i = DL sin cosi + Lc D Lip (3.16)

F = DL, sincos LC P D Lip (3.17)

F6 =DLep in + Lp D LIP (3.18)

Fi = DLep in os Oi Lp LIP.) (3.19)

FyT~i = DL vsL --•L (•-)c,~s(0  L -L D (3.L9)
FY8 = F,, D, L - Llep -Lmp, Lip,pi,0, eai elei,e 2,Oi + cos " (3.20)

D -L L -L
F9 = F DL- Llep -LIm. LIp,0, ,e eee,0i - D cos o - D I (3.21)

where Faxial is the function given by Equation (2.35). The total y-direction bearing force is

calculated by summing the y-direction forces given by Equations (3.13) through (3.21) for

all of the N pockets.

In addition to the calculating the bearing load-carrying capability, the effective load

center of the bearing is needed to calculate the stiffness of the spindle. The effective

center of the bearing is found by summing the moments about the end of the bearing and

dividing by the bearing moment by the bearing force. The bearing moment is computed by

multiplying the forces of Equations (3.13) through (3.21) by the axial center of each area:

M,i = Lep L -LC - Le Fi (3.22)



M = (L- L / 2)F2,i (3.23)

My = Llep / 2)F3i (3.24)

= (L - L p / 2)FY4i (3.25)

M = (L - Lmp / 2)Fyi (3.26)

M 6 = (Le p / 2)F6, (3.27)

M (L,, / 2)FyF, (3.28)

M,= Lep + - L'F" (3.29)

M i = Lep + - -2 FJi (3.30)

The total y-direction bearing moment is calculated by summing the y-direction moments

given by Equations (3.22) through (3.30) for all of the N pockets. The effective bearing

load center is then given by:

M
Lcen = Y (3.31)Fy

The parameter Len/L is important because it gives an indication of how close the effective

load center of the front bearing can be placed to the front of the spindle.

3.A.ii. Representative Calculations for Fixed-Compensated Bearing #1

Table 3.1 shows the inputs and outputs for a representative 80 mm diameter, 80

mm long bearing. The land widths are 3 mm and the axial drainage groove width is 2 mm.



The resistance ratio is 1.5. As shown, the initial specific stiffness is 0.856, the load-

carrying efficiency at 75% of gap closure is 0.542, and the specific flow rate is 57.4.

Table 3.1

Operating Conditions
Supply Pressure (Pa,psi,atm)
Eccentricity Ratio em/ee
Eccentricity at End
Eccentricity at Middle End

Ps
lamda

ee
em

Fluid Properties
Dynamic Viscosity (N s/m) mu

4.17E+06
1

0.01
0.01

600 40.8

0.0013

Bearing Geometry
Diameter (m,mm,in)
Axial Length (m,mm,in)
Number of Pockets
Nominal Gap (m,l.m,in)
Nominal Resistance Ratio
Pocket Circumferential Land Width (m,mm,in)
Pocket End Axial Land Width (m,mm,in)
Pocket Middle Axial Land Width (m,mm,in)
Width of Drain Grooves (m,mm,in)
Pocket Circumferential Length (m,mm,in)

Bearing Stiffness and Load Capacity
Location of Effective Bearing Force
Pressure Difference / Pressure @ ec,ep above
Load Capacity (N,kN,Ibf) @ ec,ep given above
Load Carrying Efficiency @ ec,ep given above
Stiffness (N/p.m,lbf/p.in) @ ec,ep given above
Specific Stiffness @ ec,ep given above
Initial Specific Stiffness
Load Carrying Efficiency @ 75% of gap closure

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm)
Pumping Power (W,kW,hp)
Specific Flow Rate

Ratio of Specific Initial Stiffness to Specific
Flow Rate

D
L
N
ho

gamma
Lip

Limp
Llep
Ld
Lcp

Lcen L
DPP
Fy

Feff
Ky

Kspec
Kspec,o

Feff,0.75

Qsupply
Ppump
Qspec

0.08
0.08

6
0.000015

1.5
0.003
0.003
0.003

0.00200
0.03989

0.500
0.013

228
0.009
1522

0.856
0.856
0.542

1.62E-04
677

57.4

80 3.15
80 3.15

15 0.00059

3
3
3
2

39.9

0.118
0.118
0.118
0.079
1.570

0.23

8.690

9.75
0.677

2.58
0.908

K/Qspec 0.0149



The load-carrying efficiency of the bearing of Table 3.1 is shown in Figure 3.4 for

eccentricities ranging from 0 to 1. As shown, the response is nearly linear up to an

eccentricity of about 0.5. For higher eccentricities, however, the plots turns off to a

touch-down load-carrying efficiency of approximately 0.6. This response is typical of

hydrostatic bearings.
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.30
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Figure 3.4. Load-carrying efficiency of the 6-pocket, 80 mm diameter FC Bearing #1 of

Table 3.1.

The effect of the resistance ratio on the performance of the bearing of Table 3.1 is

shown in Figure 3.5. As shown, the optimimum resistance ratio that maximizes the initial

specific stiffness is 1; the stiffness falls off significantly for resistance ratios greater than



about 1.5. The load-carrying efficiency at 75% of gap closure has an optimum for a

resistance ratio of approximately 1.4 and remains relatively flat for higher resistance ratios.

The specific flow rate decreases dramatically for higher resistance ratios. It is for this

reason that bearings are often operated with a resistance ratio between 1.5 and 2.5.
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Figure 3.5. Effect of resistance

Table 3.1.

1.5 2.0

Resistance Ratio

ratio on the 6-pocket,

2.5 3.0

80 mm diameter FC Bearing #1 of

The effect of land width on the performance of the bearing of Table 3.1 is shown

in Figure 3.6. All three land widths, Lip, Ll,, and Llp, were changed equally. The

resistance ratio was kept constant at a value of 1.5. As shown, increasing the land width

reduces the specific stiffness and load-carrying efficiency somewhat because the pressure

is distrubuted over a lesser percentage of the total bearing area. The specific flow rate is



also dramatically reduced and wider land widths are sometimes warranted in order to

obtain lower pumping power.
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Figure 3.6. Effect

Table 3.1.
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of land width on the 6-pocket, 80 mm diameter FC Bearing #1 of

The effect of the number of pockets on the performance of the bearing of Table

3.1 is shown in Figure 3.7. All three land widths, Lip, LI,, and Limp, were kept constant at

3 mm as the number of pockets was changed. The width of the drainage grooves, Ld,

were held constant at 2 mm. As shown, the initial specific stiffness was increased

somewhat with more pockets until approximately 6 pockets; the addition of pockets

allows the bearing to more effectively utilize the the available area. For more than 8

pockets, however, the pocket area was reduced significantly with the addition of more



pockets and more drainage grooves. The number of pockets had a lesser effect on the

load-carrying efficiency of the bearing. The specific flow rate increased steadily with more

pockets as the drainage flow area was increased.
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Figure 3.7. Effect of the number of pockets on the 80 mm diameter FC Bearing #1 of

Table 3.1. The width of each land was 3 mm and the width of each drainage groove was 2

mm.

3.B. Fixed-Compensated Bearing #2

The pad layout of a second conventional, fixed-compensated hydrostatic bearing is

shown in Figure 3.8. Fluid enters each pocket through a fixed-resistance device such as a

capillary tube. It then flows throughout the pockets, represented by shaded regions, which

are at a depth significantly greater than the land clearances such that the fluid pressure



throughout each pocket is uniform. The fluid then crosses the circumferential lands and

out of the bearing to atmospheric pressure. The axial lands that run between the pockets

serve to isolate the pocket pressures and enable a pressure difference to exist between

them.
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Figure 3.8. Schematic diagram of the pad layout of a conventional, fixed-compensated

hydrostatic bearing without drainage grooves between its pockets. The shaded regions

represent depressed regions.
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3.B.i. Description of Calculations for Fixed-Compensated Bearing #2

Calculating the load-carrying capacity of a bearing is accomplished in the same

manner as the previous bearing; the shaft is moved to an eccentric position and the

resulting restoring force generated by the bearing is computed. The first step in

calculating the restoring force is to calculate the hydraulic resistance of each bearing land.

There are two pocket lands over which fluid flows in parallel: the circumferential land with

a width L1p, and the circumferential land with a width Llp. The resistance of the two

circumferential lands are given by:

RI,i = Rcircum ý, ho, +L'm,ei, ecircm(em,el, i)) (3.32)

R2,i = m •( , ho, L ,L,p L,,+ , ecircum(e2, e,,i) )  (3.33)

where REirn is the function given by Equation (2.42), i is the pocket index, and ei is the

angle to center of the ith pocket:

i = 20(i - 1)/ N i = 1,2...,N (3.34)

where N is the number of pockets. Note that the eccentricities em and e, are the same

bearing end eccentricities as those of FC Bearing #1, as illustrated in Figure 3.3. The

eccentricities el and e2 are those cooresponding to the ends of the axial lands:

L
el = em + (e, - em) P (3.35)

e2 = e, + (em - e) ll (3.36)



The variables LI* and LC* are added to the distance perpendicular to the direction of flow

to account for the small amount of spreading the fluid experiences near the two ends of

the axial land. A recommended relation for these terms are

L"m 0.8min(L p, Lclp) (3.37)

L 0.8{min(L,, Lclp) (3.38)

As long as the land widths are small compared to the pocket axial length, the effect of the

fluid spreading is small and the exact magnitudes of these terms do not significantly affect

the predicted bearing performance.

The next step is to calculate the equivalent hydraulic resistance of each pocket

corresponding to the resistances Ra,i of Circuit #2 in Appendix B:

Ra,= 1 1 (3.39)
-+

R1,i R2,1

The resistances Re,i of Circuit #2 correspond to the inlet resistances used to compensate

the bearing. The value of these fixed resistances are chosen so that the resistance ratio y =

R,i/R,i is approximately equal to 1 when the shaft is concentric to the bearing housing.

The remaining resistances of Circuit #2 are the leakage resistances, Rb,i. The

resistance of each axial land is given by:

Rb =RX g,hoL t,L-Lt -L, +LL',.,i "+L LL+ L ,eC ee2i L ) (3.40)DD 
,Ip pD e e +

where Ri,al is the function given by Equation (2.31), and eai,l is the function given by

Equation (2.38).



Once the resistances of Circuit #1 have been calculated, the fluid circuit can be

solved for the N unknown pocket pressures, pi, and the supply volumetric flow rate, Q,.

Once the pocket pressures are known, the reaction force of the bearing is calculated by

multiplying the pressures times the appropriate areas. The net force generated by pocket i

in the y-direction is given by:

FYi = D(L - LIP- Llp)sin cos(oi) (3.41)

Similarly, the y-direction forces generated by the other bearing areas are given by:

Fy=i = DLp sin(~ )  cos(Oi) (3.42)

F3,i = DLlep sin~ )(~-)Lcos( i) (3.43)

F 4 = DL sin i P, cos+ 1  L+ p + LCe (3.44)4 D

Fy = DLiep sin P' + p i+1 cos + L P (3.45)
4 D

F= Fa., D,L-L -Lp ,L P,piPi+ ,e~ e ,e2  L cos, + (3.46)

where Faxial is the function given by Equation (2.35). The total y-direction bearing force is

calculated by summing the y-direction forces for all of the N pockets.

In addition to the calculating the bearing load-carrying capability, the effective load

center of the bearing is needed to calculate the stiffness of the spindle. The effective

center of the bearing is found by summing the moments about the end of the bearing and



dividing the bearing moment by the bearing force. The bearing moment is computed by

multiplying the forces of Equations (3.41) through (3.46) by the axial center of each area:

= (Li + L - Lmp -I F'PF (3.47)

,i= (L- LmP / 2)Fi (3.48)

M, = (L,, / 2)F,i (3.49)

MW, = (L-L L• / 2)Fi (3.50)

W, = (L- Lmp / 2)F 1i (3.51)

6L- LM P - Llep  6
M i = Liep + 2- F6iF (3.52)

The total y-direction bearing moment is calculated by summing the y-direction moments

for all of the N pockets. The effective bearing load center is then computed using

Equation (3.31).

3.B.ii. Representative Calculations for Fixed-Compensated Bearing #2

Table 3.2 shows representative calculation results for a 80 mm diameter, 80 mm

long bearing. The circumferential land widths are 3 mm. The resistance ratio is 1.1.

There are 6 pockets. The axial land width is 0.58 times 7rD/N, which is 24.3 mm. This

land width was found to be result in approximately the maximum specific stiffness for this

bearing. As shown, the initial specific stiffness is 0.915, which is somewhat higher than

that of Fixed-Compensated Bearing #1. The load-carrying efficiency at 75% of gap

closure is 0.562, which is also higher than that of FC Bearing #1. Moreover, the specific



flow rate is 12.1, nearly 5 times less than that of FC Bearing #1. Clearly this bearing is

superior to that of FC Bearing #1 since the load-carrying capacity is higher and the

pumping power is lower. However, FC Bearing #1 might be more desirable than FC

Bearing #2 if a higher flow rate is desired; high-speed applications require more flow to

maintain low bearing temperature rise.

Table 3.2

Operating Conditions
Supply Pressure (Pa,psi,atm)
Eccentricity Ratio em/ee
Eccentricity at End
Eccentricity at Middle End

Ps
lamda

ee
em

4.17E+06
1

0.01
0.01

600 40.8

Fluid Properties
Dynamic Viscosity (N s/m)

Bearing Geometry
Diameter (m,mm,in)
Axial Length (m,mm,in)
Number of Pockets
Nominal Gap (m,p4m,in)
Nominal Resistance Ratio
Axial Land Width (m,mm,in)
Pocket End Land Width (m,mm,in)
Pocket Middle Land Width (m,mm,in)
Pocket Circumferential Length (m,mm,in)

Bearing Stiffness and Load Capacity
Location of Effective Bearing Force
Pressure Difference / Pressure @ ec,ep above
Load Capacity (N,kN,Ibf) @ ec,ep given above
Load Carrying Efficiency @ ec,ep given above
Stiffness (N/4Lm,lbf/in) @ ec,ep given above
Specific Stiffness @ ec,ep given above
Initial Specific Stiffness
Load Carrying Efficiency @ 75% of gap closure

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm)
Pumping Power (W,kW,hp)
Specific Flow Rate

Ratio of Specific Initial Stiffness to Specific
Flow Rate

mu 0.0013

D
L
N

ho
gamma

Lclp
Limp
Llep
Lcp

Lcen L
DPP
Fy

Feff
Ky

Kspec
Kspec,o

Feff,0.75

Qsupply
Ppump
Qspec

0.08
0.08

6
0.000015

1.1
0.024
0.003
0.003

0.01759

0.500
0.013

244
0.009
1626

0.915
0.915
0.562

3.43E-05
143

12.1

3.15
3.15

15 0.00059

24.3
3
3

17.6

0.956
0.118
0.118
0.693

0.24

9.287

2.06 0.54
0.143 0.192

K/Qspec 0.0755



The effect of changing the width of the axial land is shown in Figure 3.9. The

circumferential land widths, L•, and Lp,, were held constant at 3 mm. The resistance

ratio was also held constant at 1.1. As shown, the initial specific stiffness increases with

increasing axial land width because it reduces the circumferential leakage between the

pockets, thereby enabling a greater pressure difference to exist from one pocket to the

next. However, at a land width of about 20 mm, the initial specific stiffness levels off and

begins to decline. An important parameter that is qualitatively useful to consider to gain

an understanding of this effect is the ratio of the circumferential leakage rate between the

pockets to the axial flow rate out of the bearing; increasing the axial land width reduces

this parameter until the bearing supply flow rate becomes too low and the parameter

begins to rise again, thereby causing the behavior shown in Figure 3.9. The load-carrying

efficiency at 75% of gap closure shown in Figure 3.9 exhibits a similar behavior. The

specific flow rate is clearly reduced as the axial land width is increased. A land width of

25 mm is recommended in this case to achieve near-optimal stiffness and load capacity

with a low specific flow rate.



.9

n .8

0

S.7
LL

.6

5

20

15

10 5.0
10

5

15 20 25 30 35

Axial Land Width (mm)

Figure 3.9. Effect of the axial land width on the 6-pocket, 80 mm diameter FC Bearing

#2 of Table 3.2.

The effect of increasing the number of pockets of the bearing of Table 3.2 is

shown in Figure 3.10. The axial land width was held at a constant percentage of the

available length, 0.58 times t7D/N. The specific flow rate therefore remained constant. As

shown, increasing the number of pockets increases both the initial specific stiffness and the

load-carrying efficiency at 75% of gap closure because the pressure is more effectively

spread over the available bearing area. Recall that the stiffness of the Fixed-Compensated

Bearing #1 declined with the addition of too many pockets because the drain area reduced

the available bearing support area. FC Bearing #2, however, does not suffer from that

problem, and the stiffness increases asymptotically to an upper-bound value. Note that 6

to 8 pockets are sufficient to obtain the near-optimal bearing performance.
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Figure 3.10. Effect of the number of pockets on the load-carrying performance of the 80

mm diameter FC Bearing #2 of Table 3.2.

3.C. Self-Compensated Bearing #1

The pad layout of a self-compensated hydrostatic bearing is shown in Figure 3.11.

The shaded regions are at a depth significantly greater than the land clearances such that

the fluid pressure throughout each area is uniform. This bearing, unlike the previous two

bearings considered, does not require any capillaries or orifices for compensation.

Instead, small pads on the surface of the bearing are used as the compensation

resistances[4]. Fluid enters the fluid supply area, denoted in Figure 3.11 with P,, through

a hole located somewhere in that region. To the right of the supply pressure region is a

. I A



leakage land, of width Lleak, that prevents excessive leakage flow from the supply pressure

region to the drain groove which is at atmospheric pressure. Not shown to the left of the

bearing is another leakage land which prevents excessive flow from the supply pressure to

the exterior of the bearing; alternatively, a thrust bearing or a second radial bearing may be

located to the left of this bearing and supplied from the same high-pressure region. After

entering the supply pressure region, the fluid flows over the lands of the small

compensation pads to a fluid collector groove in the center of the compensators. The

fluid is then routed to the opposite side of the bearing to a bearing pocket. The fluid flows

throughout the pockets until it crosses the lands and out of the bearing to atmospheric

pressure. The axial grooves that run between the pockets serve to isolate the pocket

pressures and enable a pressure difference to exist between them. Note that the lands that

run circumferentially on either end of the bearing pockets are modeled as having different

widths, Lmp and LI,. This allows the circumferential land nearest the front of the spindle

to be made with a somewhat shorter width than the other bearing lands so that the bearing

has higher sensitivity to deflections at the front of the spindle, thereby increasing the

spindle stiffness. This will be discussed further in Chapter 4.
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Figure 3.11. Schematic diagram of the pad layout of

bearing with drainage grooves between its pockets and

supply area and its pockets. The shaded regions represent
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a self-compensated hydrostatic

a drainage groove between its

depressed regions.

A schematic diagram of two of the bearing pad/compensator pairs is shown in

Figure 3.12 to illustrate how the fluid is routed from the compensators to the supporting

pockets. The land geometry may either be located on the inner diameter of a bearing

housing, or it may be located on the outer diameter of a shaft located within a housing that

has a straight bore and a hole drilled through it leading to the fluid supply region.



P i+N/2 Supporting Pocket

Figure 3.12. Schematic diagram of two pad/compensator pairs of Self-Compensated

Bearing #1.. The hatched regions represent depressed regions.

3.C.i. Description of Calculations for Bearing #1

Calculating the load-carrying capacity of SC Bearing #1 is the same as that of the

previous bearings, except the resistance of the compensators must also be modeled. In the

developments that follow, the eccentricity at the edge of the bearing compensators is

denoted by e, and the eccentricity at the edge of the furthest pocket lands is denoted by ep.

The bearing clearance is assumed to vary linearly between these two extreme locations of

the bearing. The angular position of the pockets are again denoted by Oi; the first pocket,

corresponding to 01 = 0, occurs at the location of smallest clearance. The compensators

are out of phase with the pockets by N/2; the fluid that enters pocket i is fed from

compensator i+N/2.

The hydraulic resistances of the supporting-pocket lands will be considered first.

There are four pocket lands over which fluid flows in parallel: the circumferential land



with a width Lip, the circumferential land with a width Lmp, and the two axial lands with

widths of Lip. The resistance of the two axial lands are given by:

Rao., = R,,, h.ti,LL,L, -Lp - L, +L +L.,O, + De e,e, , + ' 2' D +

R2, ( = L, - ( , -_

Ra2,i =R ., .hL*,, Lw - Lp + +L7. + L;, , 9I ,eDid e1,e2.0, DLH

(3.53)

(3.54)

where i is the pocket index, Raxia is the function given by Equation (2.31), e.aai is the

function given by Equation (2.38), and 0i is the angle to center of the ith pocket:

0i = 27t(i - 1) / N i = 1,2..-,N (3.55)

where N is the number of pockets. The eccentricities el and e2 are those cooresponding to

the ends of the axial lands:

e, = e +(e -ep)Lap - L mp

e, = e +(e -e ) L
lep

P \ P

(3.56)

(3.57)

The variables Lm* and Le* are added to the distance perpendicular to the direction of flow

to account for the small amount of spreading the fluid experiences near the two ends of

the axial land. A recommended relation for these terms are

(3.58)

(3.59)

As long as the land widths are small compared to the pocket axial length, the effect of the

fluid spreading is small and the exact magnitudes of these terms do not significantly affect

L'. 0.4{min(Lmp, LP))

V' , 0.4{min(L,,P, LIP))



the predicted bearing performance. The resistance of the two circumferential lands are

given by:

Ra3, = R,.r (, ho,Lp, Lp - 2LI, + L,, 9,, er,,,(em, e, 9,)) (3.60)

Ra4, = Rdr,. (P, h,L., LeP - 2Lip + L:, 0,, ercum..(e 2, ep )) (3.61)

The eccentricities em corresponds to the end of the bearing pad:

em =e +(ec -e) ap (3.62)

The four resistances given by Equations (3.53), (3.54), (3.60), and (3.61) are evaluated N

times for each pocket of the bearing. Once all of the pocket land resistances have been

calculated, the equivalent hydraulic resistance of each pocket corresponding to the

resistances R.,i of Circuit #1 in Appendix B are given by:

1
Ra"= 1 1 1 1 (3.63)

-+-- +-+-
RaI, Ra2,i R 3,, Ra4,

The resistances R.,i of Circuit #1 correspond to the inlet resistances used to

compensate the bearing. The compensators are designed so that the value of these

resistances correspond to a resistance ratio y = R,i/Ri that is approximately equal to 1 to

2 when the shaft is concentric to the bearing housing. The resistances of the

compensators are calculated similarly to those of the pad resistances. The only difference

is the use of the circular land resistances:

R, = u,•,. R , ho,Lkc, L. - 2LI - 2Rac, O,+N2 + ,e1 e4, es,)0.m2 + (3.64)

R 2, =R u, k(,LkhL,La -2Lk -2Ra, •i,+2 - Lkeia, e4, es , + L- L)) (3.65)



Rc3,i = Rr,,,m(p, h, L, , , L - 2 Lc - 2 RM , O+N/2 ecir,,,(ec, e3, +N/2 ))

Rc4,i = Rcrcum(P, ho, Lic, L - 2 Ljc - 2Radc, 0i+N/2, ercum(e 6, e 7 , O+N/2))

(3.66)

(3.67)

Since the circular lands are small compared to the length of the bearing, they may be

evaluated using the relation for an untilted land, Equation (2.49), using the mean

eccentncities:

24p In LIC + Ra&
5" ;7h30 Radc

Rci 24p In L + R adc
Rc6i  adc

Rc5  24p In +Radc
Zrh h3 Rad

24p L + Rn

R Radc

e 6 C O S i+ N !2 cc - L ic 31- e3 cos Bi+N/2  
L cc  Ic 3

1

D

- e 6 COS Oi+N/2

e3= +e~ - e) IL

e4 = ec +(ep -e) L c + R a
L

e5 =ec +(ep-ec )Lac - - Ra

L -
e 6 e c + (e- ec) L a c L L IC

(3.68)

(3.69)

(3.70)

where:

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

L - L,



e7 = e +(e-e, ) L-  (3.76)

All eight compensation land resistances act in parallel to yield an overall compensation

resistance:

Rc~ (3.77)R•.;= 1 1 1 1 1 1 1 1

R,., Rc2,i Rc3., Rc4, R 5,, R 6., R 7,,. R83,i

Once the resistances of Circuit #1 have been calculated, the fluid circuit can be solved for

the N unknown pocket pressures, pi, and the primary supply flow rate, Qj. In addition to

the primary flow rate, the flow rate across the leakage land must be added to get the total

flow bearing supply flow rate:

Q, = Q,S + (3.78)
Rleakage

Rleak = 12Lh,• 1 (3.79);rDh° +3 e 2
2

where e8 is the eccentricity of the shaft at the leakage land:

es =ec +(ep-ec)Lac +Las+Lleak / 2 (3.80)

Once the pocket pressures are known, the reaction force of the bearing is

calculated by multiplying the pressures times the appropriate areas. The net force

generated by pocket i in the y-direction is given by:

IF' D(L -L , inL LP -2L P
= D(LaP - - LiD Pi cos(Ei) (3.81)

Similarly, the y-direction forces generated by the other bearing pad areas are given by:



Fyi = DLIP sin ( LC -2L -cos() COS(i)

F-3 = DL,, sin LcP 2L IP os(0i)
KDJ2

F4i = DL,, sini cos(,i

Fyi = DL,,m

F6 = DLl Sin Cos 0c +o

Fyi = DLie sin (D L cos(, -

Fy8, = Fa (D,Lap

F9, = Fa., D, L

-Liep -LIp, LI,p i ,O,e, (ee,,e,, i +

- Lep - LIM ,0,p i, e 1i ,e, i -

D L cos( 0 +

DL Jp cos(i -

where Faxai is the function given by Equation (2.35). Similarly, the forces generated by the

compensators are added.

Fyo = 2DLIC sin LC D- 2 Li•L cos(O,)

F,: = D(Lac - 2L)sin (Lc - 2 Llc Pi+N/2 COs(9i)

F 2 = F•,aD, D -Lac, - 2Lc,Lc,Pi+N,2,Oe 1 e4,esO, , + Lc, -L) cos O, + Lic-

(3.90)

(3.91)

(3.92)

(3.83)

+ Lp LI) (3.84)

(3.85)

(3.86)

Lep D L"p
LCp - Lip

D
Lop - LIP

D L (3.87)

L - L

D )

Lq - Lp
D )

(3.88)

(3.89)

(3.82)

sin cos °s -



SDL -2Lc,L,,,,,, ee - Lcc L o, L -L, ) (3.93)

= (R + Lic). - R

2 in (R a + {( R R + Li .J2 [2 In(R R _+ L Ji1] _ I I C (OS Lee - L ) (3.94)

F 2 =(R +Lk + L)2 R +

MRad _ Ra* + Lic 2
2 1n(Rad + Lc I + pi+N/2 COS8, L I - LJ_ (3.95)

2 In Ra + L Rad Radcl< RaL J

The total net bearing force in the y-direction is found by adding all of the pocket and

compensator forces. Note that the compensator pressures are out of phase with the load-

supporting pocket pressures by N/2. This means that the net force generated in the y-

direction by the compensators will be negative. The compensators tend to reduce the

load-capacity of the bearing and so their areas should be made as small as possible.

The effective load center of the bearing, the bearing moment divided by the bearing

force, is also needed to calculate the stiffness of the spindle. The bearing moment is

computed similarly to that of bearings of previous sections, and will not be given here.

The effective load center of SC Bearing #1 differs from that of previous bearings in that

the negative force contributed by the compensators tends to push the effective center of



the bearing further toward the end of the bearing. This is beneficial to the stiffness of the

spindle, and will be illustrated in Chapter 4.

3.C.ii. Representative Calculations for SC Bearing #1

Table 3.3 shows a representative 80 mm diameter, 80 mm long bearing. The

pocket land widths are 3 mm and the axial drainage groove width is 2 mm. The

compensator land widths are 3 mm and the collector groove width is 2 mm. The

compensator length is 0.95 times cD/N in order to make the resistance ratio as small as

possible; the realized resistance ratio is 2.22. It would be desirable to reduce the

resistance ratio further, but that would require reducing the compensator land width or

increasing the pocket land width. The land width of the compensator should be at least 3

mm for manufacturability and to keep the flow over its lands fully-developed. Increasing

the pocket land width reduces the effective pocket area and reduces the bearing stiffness.

Although the design has a high resistance ratio, it is certainly adequate and the

performance is representative of this type of bearing. As shown, the initial specific

stiffness is 1.001, the load-carrying efficiency at 75% of gap closure is 0.496, and the

specific flow rate is 50.5.

The leakage land width was set at 10 mm. This created 0.36 gpm of leakage flow

rate, which is small compared to 1.91 gpm of total flow rate. Reducing the land width

would enable more load-supporting area and therefore higher bearing stiffness. However,

the higher stiffhess would come with a penalty of higher flow rate and pumping power.



Table 3.3

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E +06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Eccentricity at Pocket End ep 0.01
Eccentricity at Compensator End ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.08 80 3.15
Number of Pockets N 6
Nominal Gap (m,C4m,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.9 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0398 39.8 1.567
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Compensator Corner Radii (m,mm,in) Radc 0.0007 0.7 0.026
Supply Groove Width (m,mm,in) Las 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.01 10 0.394
Pocket Circumferential Land Width (m,mm,in) Lip 0.003 3 0.118
Pocket End Axial Land Width (m,mm,in) Limp 0.003 3 0.118
Pocket Middle Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Width of Drain Grooves (m,mm,in) Ld 0.00200 2 0.079
Pocket Axial Length (m,mm,in) Lap 0.05800 58.0 2.283
Pocket Circumferential Length (m,mm,in) Lcp 0.03989 39.9 1.570
Nominal Resistance Ratio gamma 2.22

Bearing Stiffness and Load Capacity
Location of Effective Bearing Force Lcen_L 0.303
Pressure Difference / Pressure @ ec,ep above DPP 0.024
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 267 0.27 60
Load Carrying Efficiency @ ec,ep given above Feff 0.010
Stiffness (N/p.m,lbf/p.in) @ ec,ep given above Ky 1779 10.159
Specific Stiffness @ ec,ep given above Kspec 1.001
Initial Specific Stiffness Kspec,o 1.001
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.469

Flow Rate and Pumping Power
Leakage Flow Rate (m^3/s,lpm,gpm) Qleak 2.27E-05 1.36 0.36
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 1.20E-04 7.22 1.91
Pumping Power (W,kW,hp) Ppump 501 0.501 0.673
Specific Flow Rate Qspec 50.5

Ratio of Specific Initial Stiffness to Specific K/Qspec 0.0198
Flow Rate



Also note in Table 3.3 that the effective load center of the bearing, L,/L, is equal

to 0.303. The distance to the effective center is defined with respect to the pocket end of

the bearing, and so the effective center is biased toward the pocket end of the bearing. By

placing the front bearing pocket near the front of the spindle, the stiffness of the spindle

can be increased. This will be discussed further in Chapter 4.

Note that the load-carrying performance of SC Bearing #1 is superior to that of FC

Bearing #1. The initial specific stiffness of SCB #1 is 1.00, while that of FCB #1 is 0.856.

This is unexpected since the axial length of the load-supporting pockets of SCB #1 are

only Lap = 58 mm, compared to L = 80 mm for FCB #1. However, the stiffness of SCB

#1 is higher because of the enhanced feedback of the compensator resistances. As the

shaft is displaced toward pocket #1, the resistance of pocket #1 increases. The

compensator feeding pocket #1 is on the opposite side of the shaft, so its resistance

decreases. This creates a higher pressure in pocket #1 than if the compensator resistance

remained fixed. It is this enhanced feedback mechanism that causes SCB #1 to have

higher stiffness than FCB #1. This is summarized in Table 3.4. The difference in pressure

between the lower and upper pads, pl-p4, illustrates the enhanced feedback of SCB #1.

Note that the ratio of initial specific stiffness is 1.17, not (1.80)(0.725) = 1.31 expected.

Slightly lower stiffness of SCB #1 is realized because of the small negative stiffness

contributed by its compensators.

Table 3.4.

FC Bearing #1 SC Bearing #1 Ratio
Pad Length, L or Lap 80 mm 58 mm 0.725
(pI-p 4)/Ps @ e = 0.01 0.0133 0.0240 1.80

Kspee,o 0.856 1.00 1.17



3.D. Self-Compensated Bearing #2

The pad layout of Self-Compensated Bearing #2 is shown in Figure 3.13. The

shaded regions are at a depth significantly greater than the land clearances such that the

fluid pressure throughout each area is uniform. This bearing is identical to SC Bearing #1

except that it does not have drainage grooves between its pockets. Fluid enters the fluid

supply area, denoted in Figure 3.13 with P., through a hole located somewhere in that

region. To the right of the supply pressure region is a leakage land, of width Llcak, that

prevents excessive leakage flow from the supply pressure region to the drain groove.

After entering the supply pressure region, the fluid flows over the lands of the small

compensation pads to a fluid collector groove in the center of the compensators. The

fluid is then routed to the opposite side of the bearing to a pocket. The fluid flows

throughout the pockets until it crosses the lands and out of the bearing to atmospheric

pressure. The axial lands that run between the pockets serve to isolate the pocket

pressures and enable a pressure difference to exist between them.
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Figure 3.13. Schematic diagram of the pad layout of a self-compensated hydrostatic

bearing without drainage grooves between its pockets but with a drainage groove between

its supply area and its pockets. The shaded regions represent depressed regions.

The procedure for calculating the load-carrying capacity of SC Bearing #2 is

nearly identical to that of the previous bearing. The only difference is that the

circumferential leakage across the axial lands must be accounted for by setting up and

1 -0---



solving Circuit #2 of Appendix B. This was explained in detail for FC Bearing #2, and

will not be repeated here.

Table 3.5 shows a representative 80 mm diameter, 80 mm long bearing. The

pocket land widths are 3 mm. The compensator land widths are 3 mm and the collector

groove width is 2 mm. An axial land width of 25 mm was found to be approximately

optimal, providing maximum initial stiffness. The compensator length is 0.45 times itD/N

in order to make the resistance ratio approximately equal to 1. The performance shown is

representative of this type of bearing. The initial specific stiffness is 1.29, the load-

carrying efficiency at 75% of gap closure is 0.540, and the specific flow rate is 27.7.

The leakage land width was set at 10 mm. This created 0.36 gpm of leakage flow

rate, which is a significant percentage of the 0.88 gpm of total flow rate. Increasing the

land width further would reduce the leakage flow rate and the pumping power. However,

the lower flow rate would come with a penalty of lower bearing stiffness as less of the

available load-supporting area of the bearing is utilized.

The performance of SC Bearing #2 is clearly superior to that of SC Bearing #1

because it has higher initial stiffness, higher load capacity, and lower flow rate. These

results were expected since the performance of FC Bearing #2 was superior to that of FC

Bearing #1. SCB #2 is preferred over SCB #1 in all cases except where higher flow rate is

desired. At high rotational speeds, the heat generated by the bearing can be high and so a

greater flow rate is desired to remove the heat being generated and result in lower bearing

temperature rise. SCB #2 may be preferable in this case.



Table 3.5

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Eccentricity at Pocket End ep 0.01
Eccentricity at Compensator End ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.08 80 3.15
Number of Pockets N 6
Nominal Gap (m,jlm,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.9 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0188 18.8 0.742
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Compensator Corner Radii (m,mm,in) Radc 0.0007 0.7 0.026
Supply Groove Width (m,mm,in) Las 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.01 10 0.394
Pocket Middle Axial Land Width (m,mm,in) Limp 0.003 3 0.118
Pocket End Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Ratio 1.5
Pocket Circumferential Land Width (m,mm,in) Lclp 0.0251 25.1 0.989
Pocket Circumferential Length (m,mm,in) Lcp 0.0168 16.8 0.660
Width of Drain Grooves (m,mm,in) Ld 0.00200 2 0.079
Compensator Axial Width (m,mm,in) Lac 0.008 8.0 0.31
Pocket Axial Length (m,mm,in) Lap 0.058 58.0 2.28
Nominal Resistance Ratio gamma 1.02

Bearing Load Capacity
Location of Effective Bearing Force LcenL 0.339
Pressure Difference / Pressure @ ec,ep above DPP 0.027
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 344 0.34 77
Load Carrying Efficiency @ ec,ep given above Feff 0.013
Stiffness (N/pm,lbf,/Lin) @ ec,ep given above Ky 2296 13.11
Specific Stiffness @ ec,ep given above Kspec 1.292
Initial Specific Stiffness Kspec,o 1.292
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.540

Flow Rate and Pumping Power
Leakage Flow Rate (m^3/s,lpm,gpm) Qleak 2.27E-05 1.36 0.36
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 5.58E-05 3.35 0.88
Pumping Power (W,kW,hp) Ppump 233 0.233 0.312
Specific Flow Rate Qspec 27.7

Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.0466
Rate



3.E. Self-Compensated Bearing #3

The pad layout of Self-Compensated Bearing #3 is shown in Figure 3.14. This

bearing is nearly identical to SC Bearing #1 except that it does not have drainage grooves

between its supply pressure region and its pockets. Fluid enters the fluid supply area,

denoted in Figure 3.14 with Ps, through a hole located somewhere in that region. After

entering the supply pressure region, some of the fluid leaks across the leakage land to the

pockets, and some of the fluid flows over the lands of the small compensation pads to a

fluid collector groove in the center of the compensators. The fluid is then routed to the

opposite side of the bearing to the bearing pockets. The fluid flows throughout the

pockets until it crosses the lands and out of the bearing to atmospheric pressure. The axial

drainage grooves that run partially between the pockets serve to isolate the pocket

pressures and enable a pressure difference to exist between them. An axial land with a

width of Lelp runs the remainder of the pad length. It also serves to isolate the pockets and

enable a pressure difference to exist between them.
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Figure 3.14. Schematic diagram of the pad layout of a self-compensated hydrostatic

bearing with drainage grooves partially between its pockets and without a drainage groove

between its supply area and its pockets. The shaded regions represent depressed regions.

The procedure for calculating the load-carrying capacity of SC Bearing #3 is

nearly identical to that of the previous bearings except that the leakage flow between the

supply pressure area and the pockets must be accounted for. The resistance to leakage

flow to the ith pocket is given by:

--ý ý- Le - Liep

Lcp

PN

I I



Rf~., = R,. (,,P, ho, L,, Lep - 2LLP + r, 0 , ere,.,,,(e , e2,0) )  (3.96)

where the eccentricities el and e2 are given by:

e= ec + (ep - e) LL (3.97)

e2  ec + (ep L e LLap - Lk (3.98)

and L* is given approximately by:

OL 0.8Llp (3.99)

The leakage resistance of Equation (3.96) is combined in parallel with the compensation

resistance to the ith pocket, R&,i, to yield an overall equivalent compensation resistance:

1
Rceq ,= 1 1 (3.100)

R,1 Rwkj

This equivalent compensation resistance is used in place of REi to solve Fluid Circuit #2 of

Appendix B.

Table 3.6 shows the results of representative calculations for a 80 mm diameter, 80

mm long bearing. The pocket land widths are 3 mm. The compensator land widths are 3

mm and the collector groove width is 2 mm. The compensator length is 0.95 times irD/N

in order to make the resistance ratio approximately equal to 1. A leakage land width of 14

mm was found to approximately maximize the initial specific stiffness of the bearing. The

performance shown is representative of this type of bearing. The initial specific stiffness is

1.16, the load-carrying efficiency at 75% of gap closure is 0.487, and the specific flow rate

is 26.6.



Table 3.6

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Compensator eccentricity ec 0.01
Pocket eccentricity ep 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.08 80 3.15
Number of Pockets N 6
Nominal Gap (m,4m,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.9 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0398 39.8 1.567
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Compensator Corner Radii (m,mm,in) Radc 0.0007 0.7 0.026
Supply Groove Width (m,mm,in) Las 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.014 14 0.551
Pocket Circumferential Land Width (m,mm,in) Lip 0.003 3 0.118
Pocket End Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Width of Drain Grooves (m,mm,in) Ld 0.00200 2 0.079
Pad Rib Axial Length (m,mm,in) Lad 0.03000 30 1.181
Pad Axial Length (m,mm,in) Lap 0.05600 56.0 2.205
Pad Circumferential Length (m,mm,in) Lcp 0.03989 39.9 1.570
Nominal Resistance Ratio gamma 1.06

Bearing Load Capacity
Location of Effective Bearing Force Lcen L 0.382
Pressure Difference / Pressure @ ec,ep above DPP 0.025
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 308 0.308 69.3
Load Carrying Efficiency @ ec,ep given above Feff 0.012
Stiffness (N/lým,lbf/pin) @ ec,ep given above Ky 2054 11.73
Specific Stiffness @ ec,ep given above Kspec 1.156
Initial Specific Stiffness Kspec,o 1.156
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.487

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 7.54E-05 4.52 1.19
Pumping Power (W,kW,hp) Ppump 314 0.314 0.421
Specific Flow Rate Qspec 26.6

Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.0434
Rate



The leakage land width in Table 3.6 was set at 14 mm. This was found to be the

near-optimal width of this land that maximized the bearing stiffness, as shown in Figure

3.15. As the width of the leakage land is increased, the effect of the leakage flow between

the supply pressure to the pockets is reduced; however, increasing the leakage land width

reduces the area of the bearing that is utilized for load-carrying capacity. An optimal

leakage land width therefore exists that maximizes the stiffness of the bearing. Increasing

the leakage land width reduces the flow rate somewhat, and so a leakage land width

somewhat greater than optimal is desired.

7 9 11 13 15

Leakage Land Width (mm)

Figure 3.15. Effect of the leakage land width on the 6-pocket,

Bearing #3 of Table 3.6.
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3.F. Self-Compensated Bearing #4

The pad layout of Self-Compensated Bearing #4 is shown in Figure 3.16. This

bearing is nearly identical to SC Bearing #3 except that it does not have drainage grooves

between its pockets.
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Figure 3.16. Schematic diagram of the pad layout of a self-compensated hydrostatic

bearing without drainage grooves between its pockets and without a drainage groove

between its supply area and its pockets. The shaded regions represent depressed regions.



The procedure for calculating the load-carrying capacity of SC Bearing #4 is

nearly identical to that of the previous bearings, and will not be repeated here.

Table 3.7 shows input and output values for a representative 80 mm diameter, 80

mm long bearing. The pocket land widths are 3 mm. The compensator land widths are 3

mm and the collector groove width is 2 mm. The compensator length is 0.3 times 7tD/N in

order to make the resistance ratio approximately equal to 0.8; this value was found to

approximately optimize the initial specific stiffness of the bearing. The width of the axial

lands between the pockets was also optimized; its value is approximately 25 mm. The

performance shown in Table 3.7 is representative of the performance of this type of

bearing. The initial specific stiffness is 1.01, the load-carrying efficiency at 75% of gap

closure is 0.425, and the specific flow rate is 7.3.

The effect of leakage from the supply pressure region to the pockets can be

studied by comparing SC Bearing #4 to SC Bearing #2. The load-supporting pads of the

two bearings are nearly identical. However, the specific stiffhess of SCB #2 is 1.29, while

that of SCB #4 is 1.01. The leakage flow between the supply pressure region and the

pockets therefore reduces the bearing stiffness by about 22%. However, the specific flow

rate of SCB #2 is 27.7, which is approximately 4 times higher than that of SCB #4.

Therefore, in most applications SCB #4 is preferred over SCB #2 because it achieves

nearly-equal stiffness and much lower flow rate.



Table 3.7

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E+06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Eccentricity at Pocket End ep 0.01
Eccentricity at Compensator End ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.08 80 3.15
Number of Pockets N 6
Nominal Gap (m,Wlm,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.9 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0126 12.6 0.495
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Compensator Corner Radii (m,mm,in) Radc 0.0007 0.7 0.026
Supply Groove Width (m,mm,in) Las 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.015 15 0.591
Pocket End Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Ratio 1.5
Pocket Circumferential Land Width (m,mm,in) Lclp 0.0251 25.1 0.989
Pocket Circumferential Length (m,mm,in) Lcp 0.0168 16.8 0.660
Compensator Axial Width (m,mm,in) Lac 0.008 8.0 0.31
Pocket Axial Length (m,mm,in) Lap 0.055 55.0 2.17
Nominal Resistance Ratio gamma 0.84
Resistance Factor resfactor 0.8

Bearing Load Capacity
Location of Effective Bearing Force Lcen L 0.347
Pressure Difference / Pressure @ ec,ep above DPP 0.020
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 268 0.27 60
Load Carrying Efficiency @ ec,ep given above Feff 0.010
Stiffness (N/4m,lbf/4Lin) @ ec,ep given above Ky 1787 10.20
Specific Stiffness @ ec,ep given above Kspec 1.005
Initial Specific Stiffness Kspec,o 1.005
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.425

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 2.07E-05 1.24 0.33
Pumping Power (W,kW,hp) Ppump 86 0.086 0.116
Specific Flow Rate Qspec 7.3

Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.1377
Rate



3.G. Self-Compensated Bearing #5

The pad layout of Self-Compensated Bearing #5 is shown in Figure 3.17. This

bearing differs from the previous self-compensated bearings in that the compensator is no

longer completely isolated from the pockets and drains. Fluid enters the bearing at supply

pressure, P,, at the left edge of the bearing. It then crosses the compensation lands to the

fluid collection grooves. Some of the fluid then leaks to the drain groove, which is at

atmospheric pressure. The rest of the fluid is routed to a pocket on the opposite side of

the bearing where it crosses the pocket lands to atmospheric pressure.
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Figure 3.17. Schematic diagram of the pad layout of a self-compensated hydrostatic

bearing with compensators that are not completely surrounded by supply pressure. The

shaded regions represent depressed regions.
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The procedure for calculating the load-carrying capacity of SC Bearing #5 is

nearly identical to that for the previous bearings, except the leakage that occurs between

the compensators and from the compensators to the drain groove must be accounted for.

The resistance of the ith compensators is given by:

R,, = Rcrm,,,(t, ho, L1,i, L + l, Oi,+N/2, e~r,,m(e, e3, Oi+N/2)) (3.101)

where:

/ 0.8LIc (3.102)

e3  c +(e - ec) L  (3.103)

The resistance of the ith land between the compensators is given by:

12p(rD / N - L(3) 1
R = (3.104)

h0(Lcg +L;) (1-eCos('0 +±ý
D

where:

L* & 0.8LIc (3.105)

e4  e + p(e -e) L + /2 (3.106)

The leakage resistances are given by:

Rj = Rcircum((, , lk ) Lcc ,, EL i+N /2 ecircum (e4, es,Bi+N/2)) (3.107)

where:

/• - 0.8{min(L , rD / N - Lc,) (3.108)



Le4e+ eep Lc+c L *(3.109)

L (3.110)

The leakage resistance of Equation (3.107) is combined in parallel with the resistance to

the ith pocket, Ra,i, to yield an overall equivalent outlet resistance:

1
Ra= 1 1 (3.111)

-+
Ra., R•e,

This equivalent resistance is used in place of Rl,i to solve Fluid Circuit #2 of Appendix B.

Table 3.8 shows the results of calculations for a representative 80 mm diameter, 80

mm long bearing. The compensator land widths are 3 mm and the collector groove width

is 2 mm. The compensator length is 0.95 times lD/N in order to make the resistance ratio

as small as possible; the realized resistance ratio was 3.05. The pocket land widths are 5

mm; although reducing them to 3mm increases the available load-supporting area, it also

increases the resistance ratio and the stiffness is reduced. The performance shown is

representative of this type of bearing. The initial specific stiffness is 0.729, the load-

carrying efficiency at 75% of gap closure is 0.323, and the specific flow rate is 20.2.

The primary problem with SC Bearing #5 is that it is difficult to design the bearing

with an adequately low resistance ratio. The width of the pocket lands must inevitably be

increased to increase the resistance of the pads. However, as the width of the pocket

lands are increased, a lesser percentage of the available load-supporting area is utilized.

This bearing has low stiffness and high flow rate and is not recommended in any

applications.



Table 3.8

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E+06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Eccentricity at Pocket End ep 0.01
Eccentricity at Compensator End ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.08 80 3.15
Number of Pockets N 6
Nominal Gap (m,jm,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.9 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0398 39.8 1.567
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.008 8 0.315
Pocket Circumferential Land Width (m,mm,in) Lip 0.005 5 0.197
Pocket End Axial Land Width (m,mm,in) Limp 0.005 5 0.197
Pocket Middle Axial Land Width (m,mm,in) Llep 0.005 5 0.197
Width of Drain Grooves (m,mm,in) Ld 0.00200 2 0.079
Pocket Axial Length (m,mm,in) Lap 0.06500 65.0 2.559
Pocket Circumferential Length (m,mm,in) Lcp 0.03989 39.9 1.570
Nominal Resistance Ratio gamma 3.05

Bearing Stiffness and Load Capacity
Location of Effective Bearing Force Lcen L 0.316
Pressure Difference / Pressure @ ec,ep above DPP 0.018
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 194 0.19 44
Load Carrying Efficiency @ ec,ep given above Feff 0.007
Stiffness (N/ýpm,lbf,/in) @ ec,ep given above Ky 1296 7.400
Specific Stiffness @ ec,ep given above Kspec 0.729
Initial Specific Stiffness Kspec,o 0.729
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.323

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 5.73E-05 3.44 0.91
Pumping Power (W,kW,hp) Ppump 239 0.239 0.320
Specific Flow Rate Qspec 20.2

Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.0360
Rate
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3.H. Self-Compensated Bearing #6

The pad layout of Self-Compensated Bearing #6 is shown in Figure 3.18. This

bearing differs from SC Bearing #5 in that there are no drain grooves between its pockets.
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Figure 3.18. Schematic diagram of the pad layout of a self-compensated hydrostatic

bearing with compensators that are not completely surrounded by supply pressure. The

shaded regions represent depressed regions.
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The procedure for calculating the load-carrying capacity of SC Bearing #6 is

nearly identical to that for the SC Bearing #5, except the leakage that occurs between the

pockets must be accounted for. This was illustrated for FC Bearing #2 and will not be

repeated here.

Table 3.9 shows the results of calculations for a representative 80 mm diameter, 80

mm long bearing. The pocket land widths are 3 mm. The compensator land widths are 3

mm and the collector groove width is 2 mm. The compensator length is 0.75 times 7tD/N

in order to make the resistance ratio approximately equal to 1.6; this configuration was

found to approximately maximize the bearing stiffness. The width of the axial lands that

separate the pockets is approximately 22 mm; this was found to approximately achieve the

maximum stiffness. The performance shown is representative of this type of bearing. The

initial specific stiffness is 0.934, the load-carrying efficiency at 75% of gap closure is

0.392, and the specific flow rate is 13.6.

The load-carrying performance of SC Bearing #6 is much better than that of SC

Bearing #5. The resistance of the supporting pads has been increased by eliminating the

drainage grooves between the pockets. A respectable resistance ratio can now be

achieved with small pocket land widths. The specific stiffness is now competetive with the

self-compensated bearings that have supply pressure completely surrounding their

compensators.

102



Table 3.9

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Eccentricity at Pocket End ep 0.01
Eccentricity at Compensator End ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.08 80 3.15
Number of Pockets N 6
Nominal Gap (m,ILm,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.89 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0314 31.4 1.237
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.009 9 0.354
Pocket Middle Axial Land Width (m,mm,in) LImp 0.003 3 0.118
Pocket End Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Ratio 1.1
Pocket Circumferential Land Width (m,mm,in) Lclp 0.0219 21.9 0.864
Pocket Circumferential Length (m,mm,in) Lcp 0.0199 19.9 0.785
Width of Drain Grooves (m,mm,in) Ld 0.00200 2 0.079
Pocket Axial Length (m,mm,in) Lap 0.064 64.0 2.52
Nominal Resistance Ratio gamma 1.63

Bearing Load Capacity
Location of Effective Bearing Force Lcen_L 0.319
Pressure Difference / Pressure @ ec,ep above DPP 0.020
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 249 0.25 56
Load Carrying Efficiency @ ec,ep given above Feff 0.009
Stiffness (N/Ipm,lbf/p.in) @ ec,ep given above Ky 1660 9.48
Specific Stiffness @ ec,ep given above Kspec 0.934
Initial Specific Stiffness Kspec,o 0.934
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.392

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 3.84E-05 2.30 0.61
Pumping Power (W,kW,hp) Ppump 160 0.160 0.215
Specific Flow Rate Qspec 13.6

Ratio of Specific Initial Stiffness to Specific Flow K/Ospec 0.0689
Rate
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3.1. Self-Compensated Bearing #7

The pad layout of Self-Compensated Bearing #7 is shown in Figure 3.19. This

bearing differs from SC Bearing #5 only in that there is no drain grooves between its

compensators and its pockets.
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Figure 3.19. Schematic diagram of the pad layout of a self-compensated hydrostatic

bearing with compensators that are not completely surrounded by supply pressure. The

shaded regions represent depressed regions.



The procedure for calculating the load-carrying capacity of SC Bearing #7 is

nearly identical to that for the SC Bearing #6, except the leakage that occurs between the

compensators and the pockets must be accounted for. The resistance of the ith

compensator is given by:

Rc, = Rcircu.m(P(l, ho, Li, Lc +L , Oi+N2 5ecirc c,, •e 4, 4i+N/2) (3.112)

where:

0.8L, (3.113)

e4 = e + - ec) (3.114)

The resistance of the ith land between the compensators is given by:

12u(7rD / N- L ) 1 (3.115)R = (3.115)
S h (Lc, + L) D+ N

where:

L 0.8LIC (3.116)

e = ec +(e ec +L /2 (3.117)L

The resistance of the ith land between the pockets is given by:

R, i = RL-,,, hLlL,-L,, + -2LI '+LaP +I LL 1-2L (3.118)
RPP'i = R ut,ho,,L Ip,Lad - Ld>, Oi cp D e d c2, e3,(O +1 8

where:

e2 = e +(ec-e)Lap L Lad  (3.119),~=~,(.-,, 4·L
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e3 =e, +e -e) (3.120)

The resistances &RE,i and Rpp,~ act in parallel. An equivalent resistance to be used as R1 ,, in

Circuit #3 of Appendix B is given by:

Rbeqi= 1 1 (3.121)
-__ +
R, Rp,,

The resistance of the land between the compensator and the ith pocket is used for Rd,j in

Circuit #3 of Appendix B, and is given by:

Rd, = Rcrcum(j,ho,Lea, , Lzz , 0 , ecrcum(e 3 e4, 0i)) (3.122)

where:

L, min(Lc,LLp -2Lip) (3.123)

e4= ec +(e, - ec) L I + Lc (3.124)

The last resistances needed for Circuit #3 of Appendix B is R,~,. These are found by

combining the three pocket land resistances in parallel, as described in previous sections.

Once Circuit #3 has been solved for the flow rates and pressures, the net bearing force is

calculated as described in previous sections.

Table 3.10 shows the results of calculations for a representative 80 mm diameter,

80 mm long bearing. The pocket land widths are 3 mm. The compensator land widths are

3 mm and the collector groove width is 2 mm. The compensator length is 0.95 times

itD/N in order to make the resistance ratio approximately equal to 1.3. The performance
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shown is representative of this type of bearing. The initial specific stiffness is 1.03, the

load-carrying efficiency at 75% of gap closure is 0.453, and the specific flow rate is 15.6.

Table 3.10

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Compensator eccentricity ec 0.01
Pocket eccentricity ep 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.08 80 3.15
Number of Pockets N 6
Nominal Gap (m,jLm,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.9 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0398 39.8 1.567
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.012 12 0.472
Pocket Circumferential Land Width (m,mm,in) Lip 0.003 3 0.118
Pocket End Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Width of Drain Grooves (m,mm,in) Ld 0.00200 2 0.079
Pad Rib Axial Length (m,mm,in) Lad 0.05000 50 1.969
Pad Axial Length (m,mm,in) Lap 0.06300 63.0 2.480
Pad Circumferential Length (m,mm,in) Lcp 0.03989 39.9 1.570
Nominal Resistance Ratio gamma 1.31

0.01
Bearing Load Capacity
Location of Effective Bearing Force Lcen_L 0.374
Pressure Difference / Pressure @ ec,ep above DPP 0.019
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 274 0.274 61.6
Load Carrying Efficiency @ ec,ep given above Feff 0.010
Stiffness (N/p.m,Ibf/p.in) @ ec,ep given above Ky 1828 10.44
Specific Stiffness @ ec,ep given above Kspec 1.028
Initial Specific Stiffness Kspec,o 1.029
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.453

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 4.42E-05 2.65 0.70
Pumping Power (W,kW,hp) Ppump 184 0.184 0.247
Specific Flow Rate Qspec 15.6

Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.0658
Rate
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3.J. Self-Compensated Bearing #8

The pad layout of Self-Compensated Bearing #8 is shown in Figure 3.20. This

bearing differs from SC Bearing #7 only in that there is no drain grooves between its

pockets.
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Figure 3.20. Schematic diagram of the pad layout of a self-compensated hydrostatic

bearing with compensators that are not completely surrounded by supply pressure. The

shaded regions represent depressed regions.
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The procedure for calculating the load-carrying capacity of SC Bearing #8 is

nearly identical to that for the SC Bearing #7, and will not be described here.

Table 3.11 shows the results of calculations for a representative 80 mm diameter,

80 mm long bearing. The pocket land width is 3 mm. The compensator land width is also

3 mm and the collector groove width is 2 mm. The compensator length is 0.65 times

rtD/N in order to make the resistance ratio approximately equal to 0.75. This

configuration was found to approximately maximize the initial stiffness of the bearing.

The performance shown is representative of this type of bearing. The initial specific

stiffness is 1.03, the load-carrying efficiency at 75% of gap closure is 0.450, and the

specific flow rate is 8.1.

Self-Compensated Bearing #8 is an excellent bearing. It has exceptional

performance and is easier to manufacture than any of the self-compensated bearings

previously considered. Its combined qualities of high stiffness, low flow rate, and ease of

construction make it attractive in a wide variety of spindle applications.
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Table 3.11

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E+06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Eccentricity at Pocket End ep 0.01
Eccentricity at Compensator End ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.08 80 3.15
Number of Pockets N 6
Nominal Gap (m,ýim,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.89 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0272 27.2 1.072
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.012 12 0.472
Pocket End Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Ratio 1.1
Pocket Circumferential Land Width (m,mm,in) Lclp 0.0219 21.9 0.864
Pocket Circumferential Length (m,mm,in) Lcp 0.0199 19.9 0.785
Pocket Axial Length (m,mm,in) Lap 0.063 63.0 2.48
Nominal Resistance Ratio gamma 0.75

Bearing Load Capacity
Location of Effective Bearing Force Lcen L 0.368
Pressure Difference / Pressure @ ec,ep above DPP 0.019
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 275 0.28 62
Load Carrying Efficiency @ ec,ep given above Feff 0.010
Stiffness (N/ýlm,lbf/4in) @ ec,ep given above Ky 1837 10.49
Specific Stiffness @ ec,ep given above Kspec 1.033
Initial Specific Stiffness Kspec,o 1.034
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.450

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 2.30E-05 1.38 0.36
Pumping Power (W,kW,hp) Ppump 96 0.096 0.128
Specific Flow Rate Qspec 8.1

Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.1275
Rate
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3.K. Self-Compensated Bearing #9

The pad layout of Self-Compensated Bearing #9 is shown in Figure 3.21. This

bearing differs significantly from the previously described self-compensating bearings.

Fluid enters the bearing at the left side, which is at supply pressure, Ps, as indicated in

Figure 3.21. The fluid then flows axially down grooves which are at a depth dc. The

depth of the grooves is typically 2 to 3 times the bearing clearance, ho. As the fluid flows

axially down these grooves, some of it leaks circumferentially across the axial lands which

separate them. These lands help to reduce circumferential leakage of fluid around the

bearing and increase the load-carrying capacity of the bearing. At the end of the grooves,

the fluid transitions back to the bearing clearance, ho, and across the outlet lands to

atmospheric pressure.

It will be shown in this section this bearing exhibits very poor performance

compared to the other bearings considered in this chapter. Also, its load capacity is

sensitive to the ratio of two tight clearances, d,/ho, which makes its it difficult to

manufacture. However, this bearing is used in many commercial aerostatic spindles

because it does not experience pneumatic hammer instability when a compressible fluid

such as air is used [5]. Also, it will be shown in Chapter 4 that, although the bearing itself

has low stiffness, it can be used to build spindles with relatively high stiffness.
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Figure 3.21. Schematic diagram of the pad layout of a step-compensated hydrostatic

bearing with axial lands between its compensating pockets. The shaded regions represent

regions that are at a depth of dc. The magnitude of both clearances are exxagerated for

clarity.

The procedure for calculating the load-carrying capacity of SC Bearing #9 is

significantly different than that of the other bearings considered in this chapter. The

method is more complicated because the pressure in the grooves varies along the length of

the compensation grooves. To account for this effect, the groove region of the bearing is
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broken up into M sections, as shown in Figure 3.22. The incremental groove resistances

and axial land resistances will be considered as the fluid leaks circumferentially between

successive grooves and flows axially down the length of the grooves. The fluid circuit

used to model this fluid flow representation is Fluid Circuit #4 of Appendix B. The

resistances used to set up this circuit will be developed in this section.
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Figure 3.22. Schematic diagram of SC Bearing #9. The shaded regions represent regions

that are at a depth of d,. The magnitude of both clearances are exagerated for clarity.
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The resistances for Fluid Circuit #4 of Appendix B will now be developed. The jth

groove section resistance of the ith groove is given by:

R =,i,j = Rcircu•m( , h + d,, c, b,, e1 c,,e e 1, e,+,8

i-
el- =

ad>

e1+e=

(3.126)
eC + (e, - e, 0 -1)L

1+ d

ec + ep -ec )[( -1) L + L
1+ d

(3.127)

The resistance of the jth section of the ither circumferential land is given by:

Rcb,i,j = Rl ( i,ho br L-- i°' M'
+ ,e i e 2 ,

D ij ij

2- I= \F . Le /M L c/2/M ]

e =e+ .L/M Le/2/M

., P-· Ij L L I

The final leakage land resistance is given by:

L / L 2 b, + b (
Rbi = R ,o, + LD, + T ,e •  ei e4eeM D '"' '

br +b g~
+ Dg) ) (3.128)

(3.129)

(3.130)

bD +b g
+ (3.131)

where:

L = 0.4La (3.132)

114

(3.125)

where:



(3.133)

(3.134)

e3 = (e (e,)- [ LC -LI /2/M

e 4= e + (e - e )L]

The outlet land resistances are given by:

Ra,i = Rcc~(. ho , L,, b + L;',, 0e , (e4, ep, i0

where:

IL ; 0.8(min(La, br))

(3.135)

(3.136)

Now that all of the resistances of Circuit #4 of Appendix B have been developed, the

circuit may be solved for the flow rates and the pressures.

The next step is to calculate the net bearing force generated by those pressures as

described in previous sections. First the groove and land areas nearest the inlet are

considered:

F9'i, = D sin~- + Pi' COS(0i)

,a L_. +C*P,+pi., P,+. +Fyi., = F, D, ,b, 2 2(M 2 2 + 0,iho)
b +bY

+ Cos OiD
b+ +br,+D

D

(3.137)

(3.138)

The forces generated by the jth section of the bearing are given by:

Fygr = D sin ( 'Pibj-j + Pi. cos(0i)

F. = F., D, , b, PJ- + Pi.j P+1  +- i j (, + ,P -+ i l d+ e,+ b, + )b, )
= . M 2 2 ee ho), +j O + D ) co Oi + bz+b)

where j = 2,3 ... M. The forces generated by the final sections of the bearing are given by:

115

(3.139)

(3.140)
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FYM+I =D-' D MsiPn l cos(e) (3.141)

FI , = D sin cos P i + br b) (3.142)

The total net bearing force in the y-direction is found by summing all of these forces for all

N grooves and M sections.

Table 3.12 shows the results of calculations for a representative 80 mm diameter,

80 mm long bearing. The number of compensator sections used in the calculations was M

= 5; this was found to be adequate since the calculated stiffness changed by less than 1%

going from M = 4 to M = 5. The outlet land width is 3 mm. A rib ratio, b,/bg, of 0.85 was

found to maximize the initial bearing stiffness. A clearance ratio, ddho, of 2.5 was found

to maximize the inital bearing stiffness. The performance shown is representative of this

type of bearing. The initial specific stiffness is 0.27, the load-carrying efficiency at 75% of

gap closure is 0.18, and the specific flow rate is 9.6.

The performance of SC Bearing #9 exhibits very good performance compared to

the other bearings considered in this chapter. However, this bearing is used in many

commercial aerostatic spindles because it does not experience pneumatic hammer

instability when a compressible fluid such as air is used.
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Table 3.12

Operating Conditions
Supply Pressure (Pa,psi,atm)
Eccentricity Ratio ec/ep
Pocket Outlet Land Eccentricity
Compensator Eccentricity

Fluid Properties
Dynamic Viscosity (N s/m)

Bearing Geometry
Diameter (m,mm,in)
Axial Length (m,mm,in)
Number of Grooves
Rib Ratio
Groove Rib Width (m,mm,in)
Groove Width (m,mm,in)
Nominal Gap (m,l±m,in)
Compensator Gap Ratio
Compensator Depth (m,4m,in)
Compensator Land Length (m,mm,in)
Axial Land Length (m,mm,in)
Resistance Ratio

Bearing Load Capacity
Location of Effective Bearing Force
Pressure Difference / Pressure @ ec, ep above
Vertical Force (N,kN,Ibf) @ ec, ep given above
Load Carrying Efficiency @ ec, ep given above
Initial Specific Stiffness
Load Carrying Efficiency @ 75% of gap closure

Flow Rate and Pumping Power
Flow Rate (m^3/s,lpm,gpm)
Pumping Power (W,kW,hp)
Specific Flow Rate

Ratio of Specific Initial Stiffness to Specific Flow

D
L
N

br
bg
ho

dc
Lc
La

Lcen L
DPP
Fy

Feff
Kspec,o

Feff,0.75

Qsupply
Ppump
Qspec

K/Qspec

0.08
0.08

6
0.85

0.0192
0.0226

0.000015
2.5

0.0000375
0.0770

0.003
0.66

0.351
0.010

73.0
0.003
0.274
0.182

2.72E-05
113.1

9.6

0.0286

There is an optimum ratio, ddho, that maximizes the bearing stiffness. As shown in

Figure 3.23, the six-pocket bearing of Table 3.12 has an optimal clearance ratio of

approximately 2.5 that maximizes the initial stiffness of the bearing. Although the optimal

clearance ratio for maximum bearing load capacity is approximately 2.0, the bearing

stiffness is nearly optimal for a clearance ratio of 2.5.
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19.2
22.6

15

37.5
77.0

3

0.073

1.63
0.113

3.1496
3.1496

0.758
0.891

0.00059

0.00148
3.031
0.118

16.4

0.43
0.152

4165467
1

0.01
0.01

600 40.8

0.0013
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Figure 3.23. Effect of the groove clearance ratio on the 6-pocket, 80 mm diameter SC

Bearing #9 of Table 3.12.

3.L. Self-Compensated Bearing #10

The pad layout of Self-Compensated Bearing #10 is shown in Figure 3.24. This

bearing differs significantly from the previously described self-compensating bearings.

Fluid enters the bearing at the left side, which is at supply pressure, P,, as indicated in

Figure 3.24. The fluid then flows across compensation lands and down grooves which

twist circumferentially to the load-supporting pockets. The fluid then flows across the

pocket lands to atmospheric pressure. The lands that separate the grooves and the

pockets serve to enable a pressure difference to exist between them. This bearing has the

advantage that all of the fluid routing is done on the bearing surface [6], thereby

simplifying the spindle manufacture.
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Figure 3.24. Schematic diagram of the pad layout of a self-compensated hydrostatic

bearing in which the fluid is routed from the compensation resistances to the supporting

pockets via grooves machined into the surface of the bearing itself The shaded regions

represent regions that are at a depth of d,.
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The procedure for calculating the load-carrying capacity of SC Bearing #10 is

similar to that of the other bearings considered in this chapter, except that the slanting of

the lands and grooves must be considered. The fluid circuit used to model this fluid flow

representation is Fluid Circuit #2 of Appendix B. The compensation resistances are

broken up into three parts:

( b r  b + b b (3.143)b
Ri= Riru ,hoL+ 2 (-,b,,Li ++ -b,e a ee) ez +I (3.143)

2 tan (P) DD

Rc2,i = R rc(, ho,LC,bg,, +,e ,,(e, e,,8, +)) (3.144)

Rc3 i = RrC ,hoL ,L1,0 i +4 + K-,eCi e,• e• + J (3.145)

where:

ei = ec + (e - ec)L (3.146)

L: 0.4br (1 -P (3.147)

The three compensation resistances act in parallel, so the overall compensation resistance

to use in Circuit #2 of Appendix B is:

1
RCi 1 1 1 (3.148)

1 + I +
Rcl,i Rc2,i R c3,

Next consider the lands over which fluid leaks from groove to groove and pocket to

pocket. The slating lands are broken up into four parts, as shown in Figure 3.24. The first

region may be neglected, but its resistance is given conservatively by:
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cos(P)D 12p b,
bli - 3

0

*

tl

(3.149)
S b +bj 3

- e 2 C o s 0 i  + + + ------- 3

D

t; ; 0.8b, sin(13)

ti b sin(O)
2

- e Le +t, cos(3)

The resistance of the second slanted region is given approximately by:

R•= 12p b, cos(3)
R,

ho ~2 (

£2 = L + j 2

e 3 = ec + (ep

Si 

b j + br 3

2 D

- 2 sin(P)

L +L2

-ec) L 2

The resistance of the third slanted region is given approximately by:

12t br cos(P3)

bg bp -bg
D D

b, sin(f)cos(If)l>
D

Lbp - bg

ec) 2 tan(P)

where:

e 2 = e. + (e,

(3.150)

(3.151)

Db,I

(3.152)

(3.153)

(3.154)

(3.155)

h~ ~

- e4co( i+

e4 ec +(ep -

(3.156)

(3.157)
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bp - b8
sin(13)

The fourth region may be omitted but its resistance is given conservatively by:

_ 12cp b, cos(3)
Rb4i - 3S ho 64 (3.159)

(1- e4 cosi +

b -bg bg t3
t4 "• 2 " sin() --2 tan(3) 2

(3.160)

The resistance of the land between the pockets is given by:

Rb5,i = Ral (, ho,b, 5 - + t;, i + - ,e ea4,es, 0 i D g-

b -b
E, = L- L - L - Ld p bg

tan(3)

; bd

e5 = e + (ec - P L

(3.161)

(3.162)

(3.163)

(3.164)

The leakage resistances are combined in parallel to form the overall leakage resistance to

use in Circuit #2 of Appendix B:

Rb,i =
- + -
Rbl,i Rb2,i

1
+-

Rb 3,i

1
+ -+

Rb 4,i

(3.165)

Rb5,i

There are four outlet land resistances. The two circumferential land resistances are given

by:

RaI,i = Rr n(L,ho,La,bg + ,0i,ec (e 6 ,ep,i)) (3.166)
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where:



Ra2 i = Rrm •L,ho,L,b P - b, +,Oi - ( eep, i (3.167)

where:

e6 = ep + (e - e,)La (3.168)

t; = 0.4 min (La,, La (3.169)

The axial land resistances are given by:

Ra3 i = R~a, 4.,hoL.CLd - La + ,,0i + -- ,ea s, es,e6,0i  (3.170)

R&4j = RaJ ,ho,LaC, Ld -L. +1;D,, (e,,e,,6i -

I' z 0.8L8, (3.172)

The outlet resistances are combined in parallel to form the overall outlet resistance to use

in Circuit #2 of Appendix B:

1
Ra= 1 1 1 1 (3.173)

-+ +--+-
Rali Ra2,i Ra3,i Ra4,i

Now that all of the resistances of Circuit #2 of Appendix B have been developed, the

circuit may be solved for the flow rates and the pressures.

The next step is to calculate the net bearing force generated by those pressures as

described in previous sections. The net force in the y-direction of each portion of the

bearing are given by:

F' = LaD sin cos(e 1) (3.174)
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Fy, = LaD sinb - b ( cos)Oi -
D)

F , LaD sinl cOS(0

F,4 = LaDsin (kl (PD cos O -

+ b +Lac
D

2(b, -bg)

D

F,> = (Ld - La)D

F,6> = (Ld -

sin(iýL (R

La)D sin-l a -cXl cos 0iD 2 )

cos0, + b +Lac

bg 2(bp - bg)

D D

Fy, = (L- L - Lt- La)Dsin (pI)cos(O)

L -L, -La D sin( D p cos O -

K=(b -b b Di b bg 2(bp -bg)'
F = Da sin 

2(b( cos b,)

2tan(p) Djl D 3D

Fy, =F D,• Pi,,p +l ,e e,, 4,e,6, +-

Fyo b = pb, -b( Dsin b, rb
Fl ta(p) )2D

D D,

P1 +Pi'+- cos 6i

bg +
D

D

F41, = (Lt)Dsin- 2) (P1)cos O1 +

(CA 
2)

Lac

(3.176)

(3.177)

(3.178)

(3.179)
LacL
D

FI = L-

(3.180)

(3.181)

(3.182)

(3.183)

(3.184)

(3.185)

(3.175)



F2 = (Lt)Dsin i Pi * Pi + bg + (3.186)( D 2 D D

Fi3 = (Lj)Dsin ( cos(i +)) (3.187)

F 4 = (Lj)Dsin 2Ps + pi + p+ cos 1 + + i-+ (3.188)
y,i 4 D

The net force in the y-direction is found by summing all components of force, i = 1,2 .. N.

Unlike the bearings previously considered, an x-direction force is also created by the

twisted grooves. The x-direction restoring force is computed exactly as the y-direction

force, except the cosine term is replace by a sine term. For example:

Fn)i = -LaDsin sin(0) (3.189)

The negative sign is used so that the direction corresponds to that of Figure 3.2. The

other x-direction force components are developed in the same way from the y-direction

force components, and will not be given here. The resultant bearing force is then given

by:

Fr = VF + F (3.190)

The angle between the direction of displacement and the direction of the resultant bearing

force, called the angle of incidence, is given by:

Ors = tan-'- F (3.191)

125



If the angle of incidence is equal to zero then the bearing moves in a direction coincident

with the direction of applied radial force, and the bearing is stable at all rotational speeds.

However, if the angle of incidence is not equal to zero, then a critical speed will exist at

which bearing instability causes a failure. For this reason, the bearing should be designed

with an angle of incidence less than approximately 450. This will be discussed further later

in this thesis.

Table 3.13 shows the results of calculations for a representative 80 mm diameter,

80 mm long bearing. The bearing was designed with maximum initial stiffness while

keeping the angle of incidence less than 450. The compensator land width is 3 mm. The

outlet land width is 3 mm. The drain groove is 2 mm wide and 10 mm long. A groove rib

ratio, b,/bs, of 1.4 and a pocket rib ratio, b./bp, of 0.85 was found to provide excellent

bearing performance for this configuration. The The performance shown is representative

of this type of bearing. The initial specific stiffness is 1.02, the load-carrying efficiency at

75% of gap closure is 0.337, and the specific flow rate is 9.8.
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Table 3.13

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Pocket Outlet Land Eccentricity ep 0.01
Compensator Eccentricity ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.08 80 3.15
Number of Grooves N 6
Groove Rib Ratio 1.4
Pocket Rib Ratio 0.85
Groove Rib Width (m,mm,in) br 0.0244 24.4 0.962
Groove Width (m,mm,in) bg 0.0175 17.5 0.687
Pocket Rib Width (m,mm,in) brp 0.0192 19.2 0.758
Pocket Width (m,mm,in) bp 0.0226 22.6 0.891
Nominal Gap (m,gm,in) ho 0.000015 15 0.00059
Compensator Land Length (m,mm,in) Lc 0.003 3 0.118
Axial Land Length (m,mm,in) La 0.003 3 0.118
Drain Groove Circumferential Width (m,mm,in) bd 0.002 2 0.079
Drain Groove Axial Length (m,mm,in) Ld 0.01 10 0.394
Pocket Circumferential Land Width (m,mm,in) Lac 0.0086 8.6 0.339
Twist Angle (radians,degrees) phi 2.44 140
Lt/(maximum Lt) 0.35
Twist Ratio 0.265
Twist Length (m,mm,in) Lt 0.0259 25.9 1.02C
Groove Skew Angle (radians,degrees) 1.312 75.2
Actual Groove Width at Skew (m,mm,in) 0.00447 4.47 0.17E
Resistance Ratio 1.00

Bearing Load Capacity
Location of Effective Bearing Force Lcen_L 0.429
Pressure Difference / Pressure @ ec, ep above DPP 0.013
Horizontal Force (N,kN,Ibf) @ ec, ep above Fx -136.4 -0.136 -30.7
Vertical Force (N,kN,Ibf) @ ec, ep given above Fy 137.2 0.137 30.E
Resultant Force (N,kN,Ibf) @ ec, ep above Fres 193.5 0.193 43.E
Angle of Resultant from Vertical (degrees) theta 44.8
Load Carrying Efficiency @ ec, ep given above Feff 0.007
Specific Stiffness @ ec, ep given above Kspec 1.023
Initial Specific Stiffness Kspec,o 1.023
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.337

Flow Rate and Pumping Power
Flow Rate (m^ 3/s,lpm,gpm) Qsupply 2.77E-05 1.66 0.44
Pumping Power (W,kW,hp) Ppump 115.5 0.116 0.155
Specific Flow Rate Qspec 9.8
Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.104
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3.L. Comparison of Twelve Radial Hydrostatic Bearings

Twelve radial hydrostatic bearing configurations were considered in this chapter.

For each case, a representative bearing with a diameter of 80 mm and a length of 80 mm

was designed with approximately optimal initial stiffness while adhering to certain

practical constraints. These constraints included a minimum groove width of 2 mm and a

minimum land with of 3 mm. The performance of each bearing is summarized in Table

3.14. As shown, some bearings provide high stiffness and load capacity, but also require

high flow rates. Other bearings provide low flow rates but only low or moderate stiffness

and load capacity. Other bearings, such as Bearings #4, #8, and #10, provide both high

stiffness and low flow rates. The proper selection of the radial bearing depends strongly

on the application. In low speed applications, a bearing with a low flow rate is desirable;

however, in high speed applications it is often desirable to have a higher bearing flow rate

in order to keep the bearing temperature rise to an acceptable level.

It should be clearly emphasized that other characteristics of radial bearings besides

their stiffness have an impact on the stiffness of the spindle. First, the effective load center

of the bearing is important; how close the effective load center of the front radial bearing

is to the spindle nose often has a dramatic impact on how stiff the spindle is. The effective

load centers shown in Table 3.14 were not considered when the bearing geometry was

designed. Second, how sensitive the front bearing is to shaft displacement at the front of

the spindle is very important. The front radial bearing can be designed to have greater

sensitivity to shaft deflection near the front of the spindle so that higher spindle stiffness is

achieved. This
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The bearing performances illustrated in Table 3.14 were developed by considering

the shaft to move parallel to the bearing housing. However, this is often not a very good

approximation to a bearing of a machine tool spindle; when a radial force is applied to the

front of the spindle, the shaft tilts within the bearing housing and often a substantially

different bearing performance is realized. Therefore, the performance parameters shown

in Table 3.14 do not adequately reflect the relative performance of each bearing when

implemented into a machine tool spindle; although one bearing may have higher stiffness

than another, it may not necessarily yield a spindle with a higher stiffness. In order to

evaluate the true merits of the different bearings, they will be implemented into a

representative spindle in the next chapter and the stiffness of the different spindles will be

compared.
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Table 3.14

Bearing K,,o Fo.75 Q K,,JQ, Lc.iL

FC #1 0.856 0.542 57.4 0.0149 0.500

FC #2 0.915 0.562 12.1 0.0756 0.500

SC #1 1.00 0.469 50.5 0.0198 0.303

SC #2 1.29 0.540 27.7 0.0466 0.339

SC #3 1.16 0.487 26.6 0.0436 0.382

SC #4 1.01 0.425 7.3 0.138 0.347

SC #5 0.729 0.323 20.2 0.0361 0.316

SC #6 0.934 0.392 13.6 0.0687 0.319

SC #7 1.03 0.453 15.6 0.0660 0.374

SC#8 1.03 0.450 8.1 0.127 0.368

SC #9 0.274 0.182 9.6 0.0285 0.351

SC #10 1.02 0.337 9.8 0.104 0.429
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4. STATIC SPINDLE RADIAL STIFFNESS

For most applications, the most important characteristic of a machine tool spindle

is its static radial stiffness. A spindle with high stiffness can be used to machine with high

accuracy even when significant machining forces are placed on the spindle. The focus of

this chapter is to develop methods and relations to accurately predict the radial stiffness of

hydrostatic spindles.

The bearings of commercial machine tool spindles are usually so stiff that the

flexibility of the spindle is dominated by the bending of the shaft. In nearly all

applications, the flexibility of the shaft must be considered when computing the spindle

stiffness. Adequate modeling of shaft bending in hydrostatic spindle systems is

complicated by several factors. First, the shaft of a hydrostatic spindle may be

complicated in geometry; the cross-section may change several times over the length of

the shaft. Second, the length of the shaft is often not very long compared to its diameter,

making shear deformations non-negligible. Finally, the tilting of the shaft often has a

significant effect on the load-carrying characteristics of the front radial hydrostatic

bearing; this complicates the solution procedure because the system must be solved

iteratively while updating the bearing reaction. All of these effects are considered in this

chapter.

Some simple relations are developed in the first section of this chapter using

classical beam theory. A simple model of a constant cross-section spindle held by two

bearings is considered. The relations developed for this simple model are often adequate

for quick designs, but more accurate methods are needed for detailed design and
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optimization. For this purpose, finite element methods are developed to model shafts of

varying cross-section. The four-node isoparametric beam elements include the effect of

shear deformations, yet they are much more efficient than three-dimensional finite

elements. In all cases, the effect of shaft bending on the bearing performance is

incorporated into the analysis.

4.A. Simple Model of a Constant Cross-Section Spindle Using Classical Beam
Theory

Figure 4.1 shows a simple model of a constant cross-section spindle with a force

placed on its end while held by two bearings. The shaft has an elastic modulus E, and a

cross-sectional moment of inertia, I. The front bearing has a stiffness of Kf, and the rear

bearing has a stiffness of K,. For this simplified analysis, the shaft is long and slender such

that shear deformations are negligible and classical beam theory is applicable. When this

assumption is adequate will be discussed in a future section of this chapter.

--- L >i< L2  >2

Fend Kf Kr

EI

Figure 4.1. Simple model of a constant cross-section spindle with a force placed on its

end while held by two bearings.

132



4.A.i. Calculated Spindle Stiffness

The stiffness of the spindle is found by dividing the applied force by the deflection

of the end of the spindle. This simple derivation can be found in numerous publications

[7], and will not be repeated here. The stiffness of the spindle is given by:

EI

KS2 (4.1)Ks 21 1 L EIlL El L L+1-+ + + 2 +1)
3 3 L, KL 2 L 2

The spindle stiffness decreases with the cube of the distance between the front of the

spindle and the front bearing; this distance should minimized as much as possible. The

bearing spacing must also be considered. Increasing the distance between the bearings

increases the bearing moment capability, thereby reducing the forces applied to the

bearings (thereby reducing the bearing deflections); however, spacing them further apart

causes the shaft to bend more. For any spindle, there is an optimum spacing ratio, L1/L2,

that maximizes the spindle stiffness. The optimal ratio is found by taking the derivative of

the stiffness given by Equation 4.1 with respect to L1/L2 and setting it equal to zero. This

results in the following relation:

(E +  [ ' 6f+LJ =0 (4.2)

L2

This relation can be easily solved numerically for the optimal spacing ratio, given the two

non-dimensional bearing stiffness parameters.

Figure 4.2 shows the effect of bearing stiffnesses on an 80 mm diameter steel

spindle with L, = 120 mm. The bearing spacing, L2, was optimized for each point on the
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plots. As shown, the spindle stiffness increases sharply as the front bearing stiffness is

increased but then levels off to an asymptotic limit that is a function of the rear bearing

stiffness. The plots clearly indicate that the front bearing stiffness has a more dramatic

impact on the spindle stiffness than the rear bearing stiffness. It is for this reason that

spindles are often designed with rear bearings that are less stiff than the front bearings.

240

E

Z

42- 180(v,

C
C,

120

c-
C_03

0 1000 2000 3000 4000

Front Bearing Stiffness, Kf (N/p m)

Figure 4.2. Effect of bearing stiffnesses on the stiffness of a 80 mm diameter steel spindle

with L 1 = 120 mm. The bearing spacing, L2, was optimized for each point on the plots.

The theoretical maximum spindle stiffness that could be achieved if the bearings

were infinitely stiff can be obtained by setting the bearing stiffnesses of Equation 4.1 equal

to infininity to yield:
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Km = / (4.3)

-+I
3 3

The optimal bearing spacing for this case is clearly L2 << L. In this case, the maximum

spindle stiffness is given by:

3EI
K X - (4.4)

This is the same relation as that for the stiffness of a cantilevered beam. It is often useful

to compare the stiffness of a spindle to the theoretical maximum stiffness given by

Equation 4.4.

4.A.ii. Incorporation of the Effect of Shaft Tilting into the Calculated Spindle

Stiffness

The bearing stiffnesses that are used in Equation 4.1 will now be considered. In

Chapter 3, the stiffness of a radial bearing was calculated by moving the shaft eccentric to

the bearing housing and then calculating the restoring force. Although the representative

calculations were performed for a uniform eccentricity, the relations were developed such

that the shaft could be tilted out of parallel with the bearing housing such that the

eccentricity was a linear function of the axial position within the bearing. The bearing

restoring force was then a function of the two eccentricities at the ends of the bearing.

This extension of the model enables the bearing characterstics to be integrated into the

design of the spindle. Figure 4.3 illustrates a shaft that is supported by two hydrostatic

bearings. As a force is placed on the front end of the spindle, the shaft bends within the

bearings. The eccentricity of the shaft in the front bearing is a strong function of the axial
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location within the housing. Most hydrostatic bearings are sufficiently short that the shaft

eccentricity can be approximately modeled as a linear function of axial position; this

approximation is usually adequate if L/D is less than approximately 1.5. A procedure will

developed in this section to integrate the effect of shaft tilting into the spindle stiffness

calculation.

Front Bearing Rear Bearing

3
1 Fend

4- -Lcen,f

h
I< L L

Figure 4.3. Schematic diagram of a shaft held by two hydrostatic bearings while a force is

placed on its end.

In order to incorporate the effect of shaft tilting on the bearing stiffness, the

eccentricity at each end of the bearing must be calculated as the force is applied to the end

of the shaft. The classical beam theory used to derive Equation 4.1 can be used to

calculate the shaft deflection at any location x from the front end of the spindle. If x < LI,

then the deflection is given by:

u(x)= u, +O,L, + 3(u2 u,)(02L, 3,L,)-3,1 2
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(4.5)

I 3

13(02L, - O,L,)- 6(u2 ,u,)+60, x

Ifx > LI, then the deflection is given by:

u(x)= u2 +0 2L2 x L +[3(u 3- u2)- (03 L2 - 02L 2)

2

-32L2 12

S t3[3(
3(03L2- O2L2)-6(u - u2)+ 60 2L 2 I)

where the three nodal deflections and rotations are given by:

1L 2' ( El L,•2
+ 3, + , L),-)3 L3 KiL:2

L
+C1

k+ + L2 +1KL 2 T2

F•d (L, +L
SKf L2

U -= Fe n d L

K, 2

01 = -Fd LL2[L1 3EI
L_ 1 LI

L2Kf KrL 2 2EIj

[L,L, L, 1 L,
0= nd + + I +L
3El L22K KL, K L2LK,

3 = -F ,d 2 1  L+ I+
6EI L.Kf KfL 2  LK,1

A procedure will now be outlined to calculate the stiffness of the spindle:
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1. Calculate Kf, K, from the bearing characteristics with uniform, small bearing

eccentricities of approximately 0.001.

2. Calculate the optimal bearing spacing, L2, using Equation 4.2.

3. Calculate the spindle stiffness using Equation 4.1.

4. Calculate the shaft deflections at both ends of the bearings, using Equations 4.5 and

4.6 and the current bearing stiffiness values.

5. Calculate updated bearing stiffnesses based on the eccentricities from Step #4.

6. Return to Step #2 and repeat until the calculated spindle stiffness converges.

Convergence can be judged by noting when the calculated spindle stiffness changes by

less than 1% from one iteration to the next.

4.A.iii. Representative Calculations

A representative spindle will now be considered to illustrate the methods

developed. A solid steel (E = 2x10' Pa) spindle with a diameter of 80 mm and an

overhang length, Lh, of 100 mm will be considered. Self-Compensated Bearing #1 will be

used to support the spindle. For simplicity, the front and rear bearings used will be

identical. A bearing with the parameters given in Table 3.3 will be used. Recall that the

geometry was optimized for maximum initial specific stiffness, with the shaft displaced

parallel to the bearing housing. A supply pressure of 600 psig is used to support the

spindle. Table 4.1 shows the calculated spindle stiffness for four configurations

corresponding to different locations of the bearing compensators. As shown, the location

of the rear bearing compensator has little effect on the spindle stiffness; this is because the

shaft is nearly parallel with the rear bearing housing for an optimized bearing spacing
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configuration. However, the location of the front bearing compensator has a substantial

effect on the spindle stiffness; placing the compensators in the rear location places the

effective bearing center nearer to the front of the spindle, thereby increasing the spindle

stiffniess.

Table 4.1

Front Bearing Rear Bearing Spindle Stiffness
Compensator Compensator (N/p.m)

Location Location
Front Front 139
Front Rear 141
Rear Front 150
Rear Rear 151

For illustrative purposes, the stiffness of the spindle described above was

computed without accounting for the effect of shaft tilting on the bearing stiffnesses. The

compensator configuration used was "Rear/Rear." The computed spindle stiffhess was

174 N/p.m, which is approximately 15% higher than the 151 N/ýpm predicted when

accounting for the effect of shaft bending on the bearing stiffnesses. This is a typical error

incurred when calculating the stiffness of a spindle that uses self-compensated bearings

without accounting for the effect of shaft tilting on the bearing characteristics.

4.B. Modeling Spindle Stiffness using Finite Element Methods

The relations presented in the previous section were developed using classical

beam theory that neglects shear deformations. Also, they were developed for a shaft of

uniform cross-section. However, machine tool spindles are often designed with a shaft

that is short compared to its diameter such that shear deformations are not negligible, and
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with many changes in cross-section. Methods will be developed in this section to

accomodate both of these effects.

Three-dimensional finite element models are complicated to implement and

computationally-intensive to execute. More efficient methods are therefore developed in

this section to predict shaft bending and tool-point stiffness in spindle systems using more

simple finite element methods. Four-node isoparametric beam elements (elements with

cubic displacement interpolations) are used to model shaft bending and predict static

spindle deflections. Shown in Figure 4.4 is a representative spindle modeled with an

assembly of seven beam elements. The use of beam elements is a very simple and

powerful way to model complex spindle deflections.

Rear
Fs Bearing

1 23 4 5 6 rT--,

tzizE ILJIEJ ~·

7
Front

Bearing

Figure 4.4. A shaft held by two radial hydrostatic bearings and subjected to a radial force

at the spindle face.

The stiffnhess matrix for a four-node isoparametric beam element is developed in

Appendix A. The development is complete except for the equivalent shear strain of the

beam cross-section. In the development, it was assumed that the cross-section remained

straight during shaft bending. The shear strain in an actual shaft will vary across its cross-

section, being largest in magnitude along the neutral axis and smallest in magnitude near

the upper and lower edges. To accommodate the assumption of a straight cross-section,
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an equivalent constant shear strain was defined such that, acting over an equivalent shear

area A,, the resulting shear strain energy is the same as that in the actual shaft:

z VS - (4.13)
G GA S

where t is the shear stress, G is the shear modulus, and V is the shear force. As a matter

of convenience, the equivalent shear area is replaced with a shear correction factor,

k = A (4.14)
A

The value of the shear correction factor has been computed for hollow and solid shafts

and is available in the literature [8]. However, a general relation for k is not available for a

hollow shaft with an inner diameter Di, and an outer diameter Do. In order to include the

effect of shear deformations, a general relation for the effective shear area of a hollow

shaft is developed in this chapter using three-dimensional finite-element computations.

Simple benchmark cases are considered first, and the elements are found to agree closely

with classical beam theory for cases where shear deformations are negligible. The

elements are then combined to predict more complex spindle deflections.

4.B.i. Benchmark Validation of the Finite Element Model for a "Long" Cylinder

The finite element equations developed in the appendices will be tested in this

section against classical beam theory for the simple cantilevered cylinder shown in Figure

4.5 in the limit that its length is much greater than its diameter.
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Figure 4.5. Schematic diagram of a cantilevered shaft. The shaft is modeled with a single

four-node beam element.

Classical beam theory can be used to approximate the shaft deflection if the shaft is

long and slender and deflections caused by shear forces are negligible. The resulting

deflection is given by [8]:

F
6(x) =- (3L - x)x 2  (4.15)

6EI

Figure 4.6 below shows a comparison of the deflection predicted using a single 4-node

beam element and that by beam theory, Equation (4.15). In the examples used, the ratio

of D/L was equal to 1/100, and so shear deformations were negligible. The finite element

results agree with the analytical solution within 0.005%.

-1

__J

S-2
CIO

-. 3

A
0 .2 .4 .6 .8 1.0

x/L



Figure 4.6. Static deflection of a cantilevered solid shaft with a uniform cross-section and

D/L = 1/100. The deflections predicted using a single four-node beam element agree with

classical beam theory within 0.005%.

As illustrated by Equation 4.15, the deflection obtained from classical beam theory

is cubic. Since the interpolation functions used in the finite element solution were cubic

interpolations, the finite element solution is exact. Thus, the finite elements used in this

work provide adequate accuracy in modeling bending even when few elements are used.

In addition, they provide ample functionality in that they allow the effects of shear forces

to be accounted for in a straightforward manner, and elements can be easily combined to

model beams with changes in cross-section and/or material properties.

4.B.ii. Shaft Bending with Non-Negligible Shear Deformations

The cantilivered beam shown in Figure 4.5 is again considered, but it is now

allowed to be short and have non-negligible shear deformations. The stiffness matrices of

the 4-node beam element, Equations A.32 and A.33, are used to determine the deflection

of the beam at its free end. Eliminating the first two degrees of freedom, the deflection

and rotation at the base, and applying a force at the free end yields the following system of

equations:
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This system of equations is solved to obtain u4 = 6, the deflection at the free end:

6El 1 El= - + (4.17)
FL3  3 GAkL2

Replacing the shear modulus with Young's modulus and Poisson's ratio,

SEI 1 2(1+ v)I= - + (4.18)
FL3  3 AkL2

The added term of Equation 4.18 is the deflection caused by shear forces. In the next

section, three-dimensional finite element computations will be used to investigate the

effect of shear forces on short cylindrical shafts and to develop a general relation for the

shear correction factor, k.

4.B.iii. Development of the Shear Correction Factor for a General Hollow Shaft

using Three-Dimensional Finite Element Computations
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Three-dimensional finite-element computations were made in order to determine

an approximate relation for k = f(D, / Do). Half of a shaft was meshed as shown in

Figure 4.7. To approximate a simple cantilevered shaft, all nodes were held rigidly at one

end, and a uniform traction was applied to the face of the other end. A symmetry

boundary condition was used along the centerline.

Figure 4.7. A typical mesh used in the three-dimensional finite element computations. All

nodes are held rigidly at one end, and a uniform traction is applied to the face of the other

end. A symmetry boundary condition was used along the centerline.

Computations were first made for a shaft with L = 0.25 m, Do = 0.1 m, E = 200

MPa, v = 0.3, and various Di. The resulting center-line deflections at the free end are

shown in Figure 4.8. These deflections were used to compute the shear correction factor

for each case using Equation 4.18 and are plotted along with an approximate curve fit,

k = 0.74 - 0.16 tan-' [6.3_i _ 2.6] (4.19)
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in Figure 4.8.
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Figure 4.8. Shear correction factor, k, as a function of Di/Do.

element simulations were made of a cantilevered shaft with L =

200 MPa, v = 0.3, and various Di.

.8 .9 1.0

Three-dimensional finite

0.25 m, Do = 0.1 m, E =

The end-point deflections predicted using Equations 4.18 and 4.19 are compared

with the finite-element results in Figure 4.9. As shown, the agreement is excellent.
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Figure 4.9. Deflection of the free end of a cantilevered shaft of varying cross-section.

Three-dimensional finite element simulations were made with L = 0.25 m, Do = 0.1 m, E =

200 MPa, v = 0.3, and various Di.

All of the data used to curve fit the functional relation for k were for a fixed shaft

aspect ratio, L/Do = 2.5. More simulations were made, this time for Di/Do = 0.5, and

various L/Do. The resulting end-point deflections, shown in Figure 4.10, are compared

with those predicted using Equations 4.18 and 4.19. Note that a cantilevered circular

shaft with L/Do = 1 has an end-point deflection about twice that predicted using classical

beam theory which neglects shear deformations. For L/Do = 0.5, the deflection is almost 5

times higher.
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Figure 4.10. Deflection of the free end of a cantilevered shaft of constant cross-section

and varying length. Three-dimensional finite element simulations were made with Do = 0.1

m, Di = 0.05 m, E = 200 MPa, v = 0.3, and various L.

4.B.iv. Formation of the Global Stiffness Matrix

As shown in Figure 4.4, a hydrostatic spindle is composed of several regions. Two

of these regions are constrained by hydrostatic bearings. Each region may have a different

cross-section. To appropriately model the shaft, seven beam elements will be combined

and solved together to obtain the overall shaft deformation. In Appendix A, the stiffness

matrix of a general 4-node beam element was derived. In this section, methods will be

developed to combine seven stiffness matrices will be combined into one global stiffness

matrix.
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A complete shaft is constructed by attaching seven beams together in series. Since

the beams are 4-node elements, a total of 28 nodal displacements and 28 nodal rotations

are solved for. However, beams attached to each other share common displacements and

rotations at their end points. Figure 4.11 illustrates the interconnectivity of the beam

elements. The displacement and rotation of the preceding and following beams are equal.

Thus, the number degrees of freedom is equal to 2(3N,+1) where Ne is the number of

elements. In the present work 7 elements are combined, and so there are 44 degrees of

freedom.

Element N+1

V·

Figure 4.11. Diagram showing the interconnectivity of the beam elements. Nodal

Displacements and nodal rotations are equated at element connections.

The global stiffness matrix is constructed by eliminating one pair of displacements

which are shared by connected beams. Equation below shows the global stiffness matrix

of two beams connected in series. The stiffness matrix corresponding to the first beam is

denoted by K', and that of the second by K2 . The places in the matrix which are not
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filled contain zeroes. By examining equation , one can easily see how the global stiffness

matrix for seven beams connected in series would be constructed.

K4

K,

K 6KK d

KI
K

K17

K17

K

K17
K,

K51

KK', +K 2

7K 1K' +KV7 21K211

KK41K2
K 6.

K211

K'

K,'
K18

K6

K'8+K

K + K 2

K2

K2

K2

82

(4.20)

4.B.v. Boundary Conditions

Consider a general situation in which a shaft is held by front and rear radial

hydrostatic bearings. As a radial force is applied to the spindle face, restoring pressures

are established in the bearings, shown schematically in Figure 4.12. The distances La and

Lb are the distances from the applied force at the spindle face to the centers of pressure of

the front and rear bearings, respectively. The magnitudes of the bearing pressures can be

calculated by summing the forces and moments and setting them equal to zero:

IF=O: faa =F, + fbeb (4.21)

M ool-pom = 0: fa•eaLa = fb bLb (4.22)
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where f is the force per unit length in the axial direction developed by the bearings.

Solving these two equations for the two unknown bearing pressures:

F
fa = (4.23)e,, La

Lb

fb = 1  (4.24)
f b Lb -1

La

These pressures (forces per unit length), applied to their respective bearing areas, ensure

that the shaft is in a state of static equilibrium.

Fs eb

Figure 4.12. Schematic diagram of a shaft held by two radial hydrostatic bearings and

subjected to a radial force at the spindle face. The hydrostatic bearings are modeled as

areas of uniform pressure.

Once the pressures developed by the two hydrostatic bearings are known, the

deflections of the shaft's neutral axis at the two bearing locations are also known from

bearing stiffness calculations. The shaft deflections at the effective centers of the front and

rear bearings are given by:
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45 = fa (4.25)
Ka

b = fbb (4.26)
Kb

where K, and KI are the bearing stiffnesses which may be calculated using the methods

developed in Chapter 3. In general, the bearing stiffnesses are a function of the shaft

bending and must be solved for iteratively, as described in section 4.A.

4.B.vi. Formation of the Global Load Vector

In this work, a shaft is loaded with pressures over two bearing areas, and with a

singular force at the end of the shaft. A schematic diagram of the arrangement is shown in

Figure 13. Seven elements are combined in series to model the shaft. Note that the last

section of shaft behind the rear bearing is not modeled since this is not necessary.

Fs A 5 fb
t V , • .

SO 0 0 0S I
7

fa

Figure 4.13. A shaft held by two radial hydrostatic bearings and subjected to a radial

force at the spindle face. The shaft is modeled with seven elements connected in series.

The global load vector for the configuration of Figure 4.13 is found by summing

the forces on the appropriate nodes into a total vector. The pressures exerted on the two

bearing areas are implemented using Equation A.34. The force on the shaft tool-point is
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simply added to the first nodal position in the matrix. Sign convention is positive forces

up, negative forces down. The global load vector for this arrangement is thus given by:

R

0

0

0

0

0
1
-fL,
8
3
- f.L,8
- foL,8

o- fbLb8
0

0

fbLb8
3

-8 f L,83 r Lb
8

4.B.vii. Imposition of Boundary Conditions

Two boundary conditions must be imposed on the shaft: the displacement at the

front bearing, and the displacement at the rear bearing. The two boundary conditions are

easily applied using the "big number" approach. The approach is to simply add a very

large positive number (much larger than the other terms in the matrix) to the global

stiffness matrix in the diagonal location corresponding to the node to be constrained. The
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same big number, multiplied by the nodal deflection, is added to the load vector in the

location corresponding to the same node. This effectively acts to make the other terms in

the corresponding equation negligible, forcing the nodal displacement to the desired value.

An example of the big number approach will be applied to a three-equation system:

5 9 -1 1x 1

3 0.5 3 x2 5 (4.28)

-2 6.5 2.3 x3  -10

Suppose that a boundary condition of x2 = 3.2 was to be imposed on this system of

equations. This could be done using the big number approach as follows:

5 9 -11 x 1

39 0.5 ±+ 1x0 3 x2 =5 + (3.2)(Ix10Io) (4.29)
-2 6.5 2.3 _x -10

The other terms of the second equation become negligible, and x2 is forced to a value of

.3.2.

4.B.vii. Representative Calculations

The same representative spindle considered in section 4.A.iii will now be

considered to illustrate the methods developed in this section. The shaft is solid steel (E =

2x10" Pa) with a diameter of 80 mm and an overhang length, Lh, of 100 mm. Self-

Compensated Bearing #1 will be used to support the spindle. A supply pressure of 600

psig will again be used. For simplicity, the front and rear bearings used will be identical.

A bearing with the parameters given in Table 3.3 will again be used. Recall that the

geometry was optimized for maximum initial specific stiffness, with the shaft displaced
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parallel to the bearing housing. A supply pressure of 600 psig is used to support the

spindle. Both compensators were oriented toward the rear of the spindle. The resulting

spindle stiffness was calculated to be 129 N/pm. This is approximately 17% lower than

the 151 N/ptm spindle stiffness calculated with methods that neglect the effect of shear

deformations. This is a typicall error incurred for spindles with LM/D of 1 to 1.5 For

shorter spindles, the error can be significantly larger.

4.C. Comparison of Spindle Stiffness Using the Twelve Radial Hydrostatic Bearings
of Chapter 3

The twelve radial hydrostatic bearings of Chapter 3 will now each be integrated

into a simple two-bearing spindle and their stiffnesses will be evaluated. For simplicity,

bearings of identical geometry will be used for both the front and rear radial bearings;

although in practice the two bearings may be different, the rear bearing generally has a

small impact on the stiffness of the spindle and so using identical bearings is warranted for

this comparison study. In each case, the solid steel (E = 2x10" Pa) shaft will have a

diameter of 80 mm and an overhang length, Lh, of 120 mm. The spindle stiffness will be

calculated using the finite element methods developed in section 4.B. The effect of shaft

tilting on the bearing performance will be included. The finite element model also includes

the effect of shear formations on the shaft bending. Although this model will be used to

calculate the spindle stiffness, the bearing spacing distance, L2, will be optimized in each

case according to the more simple analysis developed in section 4.A; Equation (4.2) will

be used to calculate the optimal bearing spacing. This is approach is adequate to provide

approximately maximum spindle stiffness.
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4.C.i. Fixed-Compensated Bearing #1

First, the Fixed-Compensated Bearing #1 with a geometry of Table 3.1 was

integrated into a complete two-bearing spindle. The resulting spindle stiffness was 99.6

N/gtm. Next, the geometry of the bearing was optimized for maximum spindle stiffness.

First, the length of the bearing was increased to 90 mm; doing so increases the bearing

stiffness, however, increasing the length of the bearing also places the effective load center

of the front bearing further away to the front of the spindle. There is therefore an optimal

bearing length that provides maximum spindle stiffness. In this case, the optimal bearing

length was 90 mm. Second, the width of the bearing circumferential land furthest from the

front of the spindle, Lnp, was increased from 3 mm to 41 mm; although doing so reduces

the bearing stiffness, it makes the spindle more sensitive the fluid flowing over the other

circumferential land, L1p, which is closer to the front of the spindle and increases the

spindle stiffness. Increasing the width of the axial lands, Lip, was found to decrease the

load-supporting area too much and the spindle stiffness was reduced, so its width was left

at 3 mm. A comparison of the new and old spindle stiffness, bearing stiffness, and bearing

flow rate is shown in Table 4.1. Although the bearing stiffness was considerably reduced,

the spindle stiffness was increased by approximately 8%. As a bonus, the bearing flow

rate was reduced considerably. The parameters of the bearing optimized for maximum

spindle stiffness are shown in Table 4.2.

Table 4.1

Bearing Bearing Spindle
Stiffness Flow Rate Stiffness
(N/gm) (gpm) (N/pm)

Bearing Optimized 1520 2.58 99.6
Spindle Optimized 1330 1.92 108
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Table 4.2.

Operating Conditions
Supply Pressure (Pa,psi,atm)
Eccentricity Ratio em/ee
Eccentricity at End
Eccentricity at Middle End

Fluid Properties
Dynamic Viscosity (N s/m)

Bearing Geometry
Diameter (m,mm,in)
Axial Length (m,mm,in)
Number of Pockets
Nominal Gap (m,p4m,in)
Nominal Resistance Ratio
Pocket Circumferential Land Width (m,mm,in)
Pocket End Axial Land Width (m,mm,in)
Pocket Middle Axial Land Width (m,mm,in)
Width of Drain Grooves (m,mm,in)
Pocket Circumferential Length (m,mm,in)

Bearing Stiffness and Load Capacity
Location of Effective Bearing Force
Pressure Difference / Pressure @ ec,ep above
Load Capacity (N,kN,Ibf) @ ec,ep given above
Load Carrying Efficiency @ ec,ep given above
Stiffness (N/4m,lbf/p.in) @ ec,ep given above
Specific Stiffness @ ec,ep given above
Initial Specific Stiffness
Load Carrying Efficiency @ 75% of gap closure

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm)
Pumping Power (W,kW,hp)
Specific Flow Rate

Ratio of Specific Initial Stiffness to Specific
Flow Rate

Ps
lamda

ee
em

mu

D
L
N

ho
gamma

Lip
Limp
Llep
Ld

Lcp

Lcen L
DPP
Fy

Feff
Ky

Kspec
Kspec,o

Feff,0.75

Qsupply
Ppump
Qspec

4.17E+06
1

0.01
0.01

0.0013

0.08
0.09

6
0.000015

1.5
0.003
0.041
0.003

0.00200
0.03989.

0.429
0.013

200
0.007
1332

0.666
0.666
0.421

1.21 E-04
506

48.2

3.15
3.54

15 0.00059

0.20

7.608

7.28
0.506

K/Qspec 0.0138
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600 40.8

3
41

3
2

39.9

0.118
1.614
0.118
0.079
1.570

1.92
0.679
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4.C.ii. Fixed-Compensated Bearing #2

First, the Fixed-Compensated Bearing #2 with a geometry of Table 3.2 was

integrated into a complete two-bearing spindle. The resulting spindle stiffness was 102

N/ým. Next, the geometry of the bearing optimized for maximum spindle stiffness. First,

the length of the bearing was increased to 84 mm. Second, the width of the bearing

circumferential land furthest from the front of the spindle, LI, was increased from 3 mm

to 28 mm; although doing so reduces the bearing stiffness, it makes the spindle more

sensitive the fluid flowing over the other circumferential land, Llp, which is closer to the

front of the spindle. A comparison of the new and old spindle stiffness, bearing stiffness,

and bearing flow rate is shown in Table 4.3. Although the bearing stiffness was

considerably reduced, the spindle stiffness was increased by approximately 14%. As a

bonus, the bearing flow rate was reduced considerably. The parameter of the bearing

optimized for maximum spindle stiffness are shown in Table 4.4.

Table 4.3

Bearing Bearing Spindle
Stiffness Flow Rate Stiffness
(N/tm) (gpm) (N/Im)

Bearing Optimized 1630 0.54 102
Spindle Optimized 1400 0.46 116
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Table 4.4.

Operating Conditions
Supply Pressure (Pa,psi,atm)
Eccentricity Ratio em/ee
Eccentricity at End
Eccentricity at Middle End

Fluid Properties
Dynamic Viscosity (N s/m)

Ps
lamda

ee
em

mu

Bearing Geometry
Diameter (m,mm,in)
Axial Length (m,mm,in)
Number of Pockets
Nominal Gap (m,Lm,in)
Nominal Resistance Ratio
Axial Land Width (m,mm,in)
Pocket End Land Width (m,mm,in)
Pocket Middle Land Width (m,mm,in)
Pocket Circumferential Length (m,mm,in)

Bearing Stiffness and Load Capacity
Location of Effective Bearing Force
Pressure Difference / Pressure @ ec,ep above
Load Capacity (N,kN,Ibf) @ ec,ep given above
Load Carrying Efficiency @ ec,ep given above
Stiffness (N/p~m,lbf,/in) @ ec,ep given above
Specific Stiffness @ ec,ep given above
Initial Specific Stiffness
Load Carrying Efficiency @ 75% of gap closure

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm)
Pumping Power (W,kW,hp)
Specific Flow Rate

Ratio of Specific Initial Stiffness to Specific
Flow Rate

D
L
N

ho
gamma

Lclp
Limp
Llep
Lcp

Lcen L
DPP
Fy

Feff
Ky

Kspec
Kspec,o

Feff,0.75

4.17E +06
1

0.01
0.01

0.0013

0.08
0.084

6
0.000015

1.1
0.016
0.028
0.003

0.02589

0.442
0.012

209
0.007
1395

0.748
0.748
0.469

600

3.15
3.31

15 0.00059

16.0
28

3
25.9

0.21

7.965

Osupply 2.87E-05 1.72
Ppump
Qspec

120
10.7

0.120 0.161

K/Qspec 0.0702
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40.8

0.630
1.102
0.118
1.019

0.46



4.C.iii. Self-Compensated Bearing #1

First, the Self-Compensated Bearing #2 with a geometry of Table 3.3 was

integrated into a complete two-bearing spindle. The configuration used was the front

compensator oriented toward the rear and the rear compensator oriented toward the front.

The resulting spindle stiffness was 102 N/ýpm. Next, the geometry of the bearing

optimized for maximum spindle stiffness. The length of the bearing was unchanged since a

bearing length of 80 mm was found to be approximately optimal. The width of the

bearing pad circumferential land furthest from the front of the spindle, Lmp, was increased

from 3 mm to 18 mm; although doing so reduces the bearing stiffness, it makes the spindle

more sensitive the fluid flowing over the other circumferential land, L1 p, which is closer to

the front of the spindle and increases the spindle stiffness. Increasing the width of the

axial lands, Lip, from 3mm to 4.5 mm was also found to increase the spindle stiffhess for

the same reason. A comparison of the new and old spindle stiffness, bearing stiffness, and

bearing flow rate is shown in Table 4.5. Although the bearing stiffness was considerably

reduced, the spindle stiffness was increased by approximately 6%. As a bonus, the bearing

flow rate was reduced somewhat. The parameter of the bearing optimized for maximum

spindle stiffness are shown in Table 4.6.

Table 4.5

Bearing Bearing Spindle
Stiffness Flow Rate Stiffness
(N/gm) (gpm) (N/tm)

Bearing Optimized 1880 1.91 102
Spindle Optimized 1760 1.62 108
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Table 4.6.

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Eccentricity at Pocket End ep 0.01
Eccentricity at Compensator End ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.08 80 3.15
Number of Pockets N 6
Nominal Gap (m,pLm,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.9 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0398 39.8 1.567
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Compensator Corner Radii (m,mm,in) Radc 0.0007 0.7 0.026
Supply Groove Width (m,mm,in) Las 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.009 9 0.354
Pocket Circumferential Land Width (m,mm,in) Lip 0.0045 4.5 0.177
Pocket End Axial Land Width (m,mm,in) Limp 0.018 18 0.709
Pocket Middle Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Width of Drain Grooves (m,mm,in) Ld 0.00200 2 0.079
Pocket Axial Length (m,mm,in) Lap 0.05900 59.0 2.323
Pocket Circumferential Length (m,mm,in) Lcp 0.03989 39.9 1.57C
Nominal Resistance Ratio gamma 1.16

Bearing Stiffness and Load Capacity
Location of Effective Bearing Force Lcen_L 0.257
Pressure Difference / Pressure @ ec,ep above DPP 0.028
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 263 0.26 59
Load Carrying Efficiency @ ec,ep given above Feff 0.010
Stiffness (N/ýpm,lbf/p.in) @ ec,ep given above Ky 1755 10.020
Specific Stiffness @ ec,ep given above Kspec 0.987
Initial Specific Stiffness Kspec,o 0.988
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.408

Flow Rate and Pumping Power
Leakage Flow Rate (m^3/s,lpm,gpm) Qleak 2.52E-05 1.51 0.4C
Total Flow Rate (m^ 3/s,lpm,gpm) Qsupply 1.02E-04 6.12 1.62
Pumping Power (W,kW,hp) Ppump 425 0.425 0.57C
Specific Flow Rate Qspec 44.9

Ratio of Specific Initial Stiffness to Specific K/Qspec 0.0220
Flow Rate
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4.C.iv. Self-Compensated Bearing #2

First, the Self-Compensated Bearing #2 with a geometry of Table 3.4 was

integrated into a complete two-bearing spindle. The resulting spindle stiffness was 109

N/tm. Next, the geometry of the bearing optimized for maximum spindle stiffness. First,

the length of the bearing was reduced slightly to 77 mm; although doing so reduces the

bearing stiffness, it also places the effective load center of the front bearing closer to the

front of the spindle and increases the spindle stiffness. Second, the width of the bearing

pad circumferential land furthest from the front of the spindle, Limp, was increased from 3

mm to 11 mm; although doing so reduces the bearing stiffness, it makes the spindle more

sensitive to the fluid flowing over the other circumferential land, L1,, which is closer to

the front of the spindle, thereby increasing the spindle stiffness. A comparison of the new

and old spindle stiffness, bearing stiffness, and bearing flow rate is shown in Table 4.7.

Although the bearing stiffness was reduced, the spindle stiffness was increased by

approximately 3%. As a bonus, the bearing flow rate was reduced somewhat. The

parameters of the bearing optimized for maximum spindle stiffness are shown in Table 4.8.

Table 4.7

Bearing Bearing Spindle
Stiffness Flow Rate Stiffness
(N/gm) (gpm) (N/gm)

Bearing Optimized 2300 0.88 109
Spindle Optimized 1980 0.79 112

162



Table 4.8.

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Eccentricity at Pocket End ep 0.01
Eccentricity at Compensator End ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.077 77 3.03
Number of Pockets N 6
Nominal Gap (m,.Lm,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.9 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0176 17.6 0.693
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Compensator Corner Radii (m,mm,in) Radc 0.0007 0.7 0.026
Supply Groove Width (m,mm,in) Las 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.01 10 0.394
Pocket Middle Axial Land Width (m,mm,in) Limp 0.011 11 0.433
Pocket End Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Ratio 1.35
Pocket Circumferential Land Width (m,mm,in) Lclp 0.0241 24.1 0.947
Pocket Circumferential Length (m,mm,in) Lcp 0.0178 17.8 0.702
Width of Drain Grooves (m,mm,in) Ld 0.00200 2 0.079
Compensator Axial Width (m,mm,in) Lac 0.008 8.0 0.31
Pocket Axial Length (m,mm,in) Lap 0.055 55.0 2.17
Nominal Resistance Ratio gamma 0.79

Bearing Load Capacity
Location of Effective Bearing Force Lcen_L 0.309
Pressure Difference / Pressure @ ec,ep above DPP 0.027
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 297 0.30 67
Load Carrying Efficiency @ ec,ep given above Feff 0.012
Stiffness (N/p.m,lbf/p.in) @ ec,ep given above Ky 1980 11.30
Specific Stiffness @ ec,ep given above Kspec 1.157
Initial Specific Stiffness Kspec,o 1.158
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.487

Flow Rate and Pumping Power
Leakage Flow Rate (m^3/s,lpm,gpm) Qleak 2.27E-05 1.36 0.36
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 4.96E-05 2.98 0.79
Pumping Power (W,kW,hp) Ppump 207 0.207 0.27E
Specific Flow Rate Qspec 24.6

Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.0471
Rate
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4.C.v. Self-Compensated Bearing #3

First, the Self-Compensated Bearing #3 with a geometry of Table 3.6 was

integrated into a complete two-bearing spindle. The resulting spindle stiffness was 114

N/ýtm. Next, the geometry of the bearing optimized for maximum spindle stiffness. For

this case, the optimized bearing geometry also provided the optimum spindle stiffness. A

comparison of the new and old spindle stiffness, bearing stiffness, and bearing flow rate is

shown in Table 4.9. The parameters of the bearing are shown in Table 4.10.

Table 4.9

Bearing Bearing Spindle
Stiffness Flow Rate Stiffness
(N/im) (gpm) (N/tm)

Bearing Optimized 2050 1.19 114
Spindle Optimized 2050 1.19 114
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Table 4.10.

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Compensator eccentricity ec 0.01
Pocket eccentricity ep 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu' 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.08 80 3.15
Number of Pockets N 6
Nominal Gap (m,Cjm,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.9 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0398 39.8 1.567
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Compensator Corner Radii (m,mm,in) Radc 0.0007 0.7 0.026
Supply Groove Width (m,mm,in) Las 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.014 14 0.551
Pocket Circumferential Land Width (m,mm,in) Lip 0.003 3 0.118
Pocket End Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Width of Drain Grooves (m,mm,in) Ld 0.00200 2 0.079
Pad Rib Axial Length (m,mm,in) Lad 0.03000 30 1.181
Pad Axial Length (m,mm,in) Lap 0.05600 56.0 2.205
Pad Circumferential Length (m,mm,in) Lcp 0.03989 39.9 1.570
Nominal Resistance Ratio gamma 1.06
Resistance Factor resfactor 0.8

Bearing Load Capacity
Location of Effective Bearing Force Lcen_L 0.382
Pressure Difference / Pressure @ ec,ep above DPP 0.025
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 308 0.308 69.3
Load Carrying Efficiency @ ec,ep given above Feff 0.012
Stiffness (N/pLm,lbf/4in) @ ec,ep given above Ky 2054 11.73
Specific Stiffness @ ec,ep given above Kspec 1.156
Initial Specific Stiffness Kspec,o 1.156
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.487

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 7.54E-05 4.52 1.19
Pumping Power (W,kW,hp) Ppump 314 0.314 0.421
Specific Flow Rate Ospec 26.6

Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.0434
Rate
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4.C.vi. Self-Compensated Bearing #4

First, the Self-Compensated Bearing #4 with a geometry of Table 3.7 was

integrated into a complete two-bearing spindle. The optimal configuration was found to

be with both compensators towards the rear of the spindle. The resulting spindle stiffness

was 117 N/ým. Next, the geometry of the bearing was optimized for maximum spindle

stiffness. The length of the bearing was increased to 97 mm. A comparison of the new

and old spindle stiffniess, bearing stiffness, and bearing flow rate is shown in Table 4.11.

As shown, the configuration that was optimized for bearing stiffness is nearly equivalent to

that optimized for spindle stiffness for this case. The parameters of the bearing optimized

for maximum spindle stiffness are shown in Table 4.12.

Table 4.11

Bearing Bearing Spindle
Stiffness Flow Rate Stiffness
(N/tm) (gpm) (N/lm)

Bearing Optimized 1790 0.33 117
Spindle Optimized 2200 0.34 120
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Table 4.12.

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Eccentricity at Pocket End ep 0.01
Eccentricity at Compensator End ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.097 97 3.82
Number of Pockets N 6
Nominal Gap (m,gLm,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.9 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0126 12.6 0.495
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Compensator Corner Radii (m,mm,in) Radc 0.0007 0.7 0.026
Supply Groove Width (m,mm,in) Las 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.01 10 0.394
Pocket End Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Ratio 1.5
Pocket Circumferential Land Width (m,mm,in) Lclp 0.0251 25.1 0.989
Pocket Circumferential Length (m,mm,in) Lcp 0.0168 16.8 0.660
Compensator Axial Width (m,mm,in) Lac 0.008 8.0 0.31
Pocket Axial Length (m,mm,in) Lap 0.077 77.0 3.03
Nominal Resistance Ratio gamma 0.84
Resistance Factor resfactor 0.8

Bearing Load Capacity
Location of Effective Bearing Force Lcen_L 0.393
Pressure Difference / Pressure @ ec,ep above DPP 0.018
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 330 0.33 74
Load Carrying Efficiency @ ec,ep given above Feff 0.010
Stiffness (N/lpm,lbf/4in) @ ec,ep given above Ky 2201 12.57
Specific Stiffness @ ec,ep given above Kspec 1.021
Initial Specific Stiffness Kspec,o 1.021
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.440

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 2.11E-05 1.27 0.34
Pumping Power (W,kW,hp) Ppump 88 0.088 0.11
Specific Flow Rate Qspec 9.1

Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.1128
Rate
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4.C.vii. Self-Compensated Bearing #5

First, the Self-Compensated Bearing #5 with a geometry of Table 3.8 was

integrated into a complete two-bearing spindle. The optimal configuration was found to

be with both compensators towards the rear of the spindle. The resulting spindle stiffness

was 87.6 N/ým. Next, the geometry of the bearing was optimized for maximum spindle

stiffness. Second, the width of the bearing pad circumferential land furthest from the front

of the spindle, Limp, was increased from 5 mm to 12 mm; although doing so reduces the

bearing stiffness, it makes the spindle more sensitive the fluid flowing over the other

circumferential land, Liep, which is closer to the front of the spindle. The width of the axial

lands, L1,, was reduced to 3 mm for the same reason. A comparison of the new and old

spindle stiffness, bearing stiffness, and bearing flow rate is shown in Table 4.13. The

parameters of the bearing optimized for maximum spindle stiffness are shown in Table

4.14.

Table 4.13

Bearing Bearing Spindle
Stiffness Flow Rate Stiffness
(N/jm) (gpm) (N/im)

Bearing Optimized 1300 0.91 87.6
Spindle Optimized 1210 0.88 90.4
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Table 4.14.

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Eccentricity at Pocket End ep 0.01
Eccentricity at Compensator End ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.08 80 3.15
Number of Pockets N 6
Nominal Gap (m,Rm,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.9 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0398 39.8 1.567
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.01 10 0.394
Pocket Circumferential Land Width (m,mm,in) Lip 0.0055 5.5 0.217
Pocket End Axial Land Width (m,mm,in) Limp 0.012 12 0.472
Pocket Middle Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Width of Drain Grooves (m,mm,in) Ld 0.00200 2 0.079
Pocket Axial Length (m,mm,in) Lap 0.06300 63.0 2.480
Pocket Circumferential Length (m,mm,in) Lcp 0.03989 39.9 1.570
Nominal Resistance Ratio gamma 2.72

Bearing Stiffness and Load Capacity
Location of Effective Bearing Force Lcen_L 0.247
Pressure Difference / Pressure @ ec,ep above DPP 0.019
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 182 0.18 41
Load Carrying Efficiency @ ec,ep given above Feff 0.007
Stiffness (N/Clm,lbf/p~in) @ ec,ep given above Ky 1211 6.914
Specific Stiffness @ ec,ep given above Kspec 0.681
Initial Specific Stiffness Kspec,o 0.681
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.299

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 5.56E-05 3.34 0.8E
Pumping Power (W,kW,hp) Ppump 232 0.232 0.311
Specific Flow Rate Qspec 19.6

Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.0347
Rate
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4.C.viii. Self-Compensated Bearing #6

First, the Self-Compensated Bearing #6 with a geometry of Table 3.9 was

integrated into a complete two-bearing spindle. The optimal configuration was found to

be with both compensators towards the rear of the spindle. The resulting spindle stiffness

was 88.1 N/ptm. Next, the geometry of the bearing was optimized for maximum spindle

stiffness. The width of the bearing pad circumferential land furthest from the front of the

spindle, Lp,, was increased from 3 mm to 8 mm; although doing so reduces the bearing

stiffness, it makes the spindle more sensitive the fluid flowing over the other

circumferential land, Lp,, which is closer to the front of the spindle. A comparison of the

new and old spindle stiffness, bearing stiffness, and bearing flow rate is shown in Table

4.15. The parameters of the bearing optimized for maximum spindle stiffness are shown in

Table 4.16

Table 4.15

Bearing Bearing Spindle
Stiffness Flow Rate Stiffness
(N/jm) (gpm) (N/gm)

Bearing Optimized 1660 0.61 88.1
Spindle Optimized 1600 0.54 93.0
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Table 4.16

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Eccentricity at Pocket End ep 0.01
Eccentricity at Compensator End ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.084 84 3.31
Number of Pockets N 6
Nominal Gap (m,ILm,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.89 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0314 31.4 1.237
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.012 12 0.472
Pocket Middle Axial Land Width (m,mm,in) LImp 0.008 8 0.315
Pocket End Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Ratio 1.1
Pocket Circumferential Land Width (m,mm,in) LcIp 0.0219 21.9 0.864
Pocket Circumferential Length (m,mm,in) Lcp 0.0199 19.9 0.785
Width of Drain Grooves (m,mm,in) Ld 0.00200 2 0.079
Pocket Axial Length (m,mm,in) Lap 0.065 65.0 2.56
Nominal Resistance Ratio gamma 1.20

Bearing Load Capacity
Location of Effective Bearing Force Lcen_L 0.269
Pressure Difference / Pressure @ ec,ep above DPP 0.020
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 239 0.24 54
Load Carrying Efficiency @ ec,ep given above Feff 0.009
Stiffness (N/C4m,Ibf/4lin) @ ec,ep given above Ky 1594 9.10
Specific Stiffness @ ec,ep given above Kspec 0.854
Initial Specific Stiffness Kspec,o 0.854
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.367

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 3.39E-05 2.04 0.54
Pumping Power (W,kW,hp) Ppump 141 0.141 0.190
Specific Flow Rate Qspec 12.6

Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.0679
Rate
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4.C.ix. Self-Compensated Bearing #7

First, the Self-Compensated Bearing #7 with a geometry of Table 3.10 was

integrated into a complete two-bearing spindle. The optimal configuration was found to

be with both compensators towards the rear of the spindle. The resulting spindle stiffness

was 109 N/ýpm. Next, the geometry of the bearing was optimized for maximum spindle

stiffness. First, the length of the bearing was reduced to 77 mm; although doing so

reduces the bearing stiffness, it also places the effective load center of the front bearing

closer to the front of the spindle and increases the spindle stiffness. Next, the leakage land

width was increased to 15.5 mm. A comparison of the new and old spindle stiffness,

bearing stiffness, and bearing flow rate is shown in Table 4.16. As shown, the

configuration that was optimized for bearing stiffness is nearly equivalent to that

optimized for spindle stiffness for this case. The parameters of the bearing optimized for

maximum spindle stiffness are shown in Table 4.17.

Table 4.16

Bearing Bearing Spindle
Stiffness Flow Rate Stiffness
(N/p.m) (gpm) (N/p.m)

Bearing Optimized 1830 0.70 109
Spindle Optimized 1730 0.60 110
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Table 4.17

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Compensator eccentricity ec 0.01
Pocket eccentricity ep 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.077 77 3.03
Number of Pockets N 6
Nominal Gap (m,pgm,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.9 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0398 39.8 1.567
Compensator Collector Groove Width Lcg 0.002 2 0.079
(m,mm,in)
Leakage Land Length (m,mm,in) Lleak 0.0155 15.5 0.610
Pocket Circumferential Land Width (m,mm,in) Lip 0.00375 3.75 0.148
Pocket End Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Width of Drain Grooves (m,mm,in) Ld 0.00200 2 0.079
Pad Rib Axial Length (m,mm,in) Lad 0.05000 50 1.969
Pad Axial Length (m,mm,in) Lap 0.05650 56.5 2.224
Pad Circumferential Length (m,mm,in) Lcp 0.03989 39.9 1.570
Nominal Resistance Ratio gamma 0.95

0.0035
Bearing Load Capacity
Location of Effective Bearing Force LcenL 0.339
Pressure Difference / Pressure @ ec,ep above DPP 0.020
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 259 0.259 58.3
Load Carrying Efficiency @ ec,ep given above Feff 0.010
Stiffness (N/p.m,lbf/p.in) @ ec,ep given above Ky 1729 9.87
Specific Stiffness @ ec,ep given above Kspec 1.011
Initial Specific Stiffness Kspec,o 1.011
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.437

Flow Rate and Pumping Power
Total Flow Rate (m^ 3/s,lpm,gpm) Qsupply 3.81E-05 2.28 0.60
Pumping Power (W,kW,hp) Ppump 159 0.159 0.213
Specific Flow Rate Ospec 12.9

Ratio of Specific Initial Stiffness to Specific K/Qspec 0.0781
Flow Rate
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4.C.x. Self-Compensated Bearing #8

First, the Self-Compensated Bearing #8 with a geometry of Table 3.11 was

integrated into a complete two-bearing spindle. The optimal configuration was found to

be with both compensators towards the rear of the spindle. The resulting spindle stiffness

was 110 N/gpm. Next, the geometry of the bearing was optimized for maximum spindle

stiffness. First, the length of the bearing was increased to 84 mm. Next, the width of the

leakage land, Lleak, was increased to 15 mm; although doing so decreases the effective

supporting area of the bearing, it also pushes the effective bearing center closer to the

front of the spindle and reduces leakage between the compensators and the pockets. A

comparison of the new and old spindle stiffness, bearing stiffness, and bearing flow rate is

shown in Table 4.18. The parameters of the bearing optimized for maximum spindle

stiffness are shown in Table 4.19.

Table 4.18

Bearing Bearing Spindle
Stiffness Flow Rate Stiffness
(N/gm) (gpm) (N/.m)

Bearing Optimized 1840 0.36 110
Spindle Optimized 1950 0.36 111
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Table 4.19

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Eccentricity at Pocket End ep 0.01
Eccentricity at Compensator End ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.15
Axial Length (m,mm,in) L 0.084 84 3.31
Number of Pockets N 6
Nominal Gap (m,4m,in) ho 0.000015 15 0.00059
Compensator Land Width (m,mm,in) LIc 0.003 3 0.118
Max Compensator Circumf. Length (m,mm,in) max Lcc 0.0419 41.89 1.649
Compensator Circumf. Length (m,mm,in) Lcc 0.0272 27.2 1.072
Compensator Collector Groove Width (m,mm,in) Lcg 0.002 2 0.079
Leakage Land Length (m,mm,in) Lleak 0.015 15 0.591
Pocket End Axial Land Width (m,mm,in) Llep 0.003 3 0.118
Ratio 1.1
Pocket Circumferential Land Width (m,mm,in) Lclp 0.0219 21.9 0.864
Pocket Circumferential Length (m,mm,in) Lcp 0.0199 19.9 0.785
Pocket Axial Length (m,mm,in) Lap 0.064 64.0 2.52
Nominal Resistance Ratio gamma 0.75

Bearing Load Capacity
Location of Effective Bearing Force Lcen_L 0.355
Pressure Difference / Pressure @ ec,ep above DPP 0.020
Load Capacity (N,kN,Ibf) @ ec,ep given above Fy 292 0.29 66
Load Carrying Efficiency @ ec,ep given above Feff 0.010
Stiffness (N/4m,lbf/pin) @ ec,ep given above Ky 1947 11.12
Specific Stiffness @ ec,ep given above Kspec 1.043
Initial Specific Stiffness Kspec,o 1.044
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.454

Flow Rate and Pumping Power
Total Flow Rate (m^3/s,lpm,gpm) Qsupply 2.30E-05 1.38 0.36
Pumping Power (W,kW,hp) Ppump 96 0.096 0.128
Specific Flow Rate Qspec 8.5

Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.1226
Rate
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4.C.xi. Self-Compensated Bearing #9

First, the Self-Compensated Bearing #9 with a geometry of Table 3.12 was

integrated into a complete two-bearing spindle. The optimal configuration was found to

be with both compensators towards the rear of the spindle. The resulting spindle stiffness

was 104 N/pm. Although SC Bearing #9 has considerably lower stiffness than the other

bearings considered in this section, it provides comparable spindle stiffness. This is

understood by realizing that as the shaft bends at the front bearing, the compensating

region remains at relatively small eccentricity while the outlet land is displaced to a large

eccentricity. The front bearing therefore behaves similar to a fixed-compensated bearing

when the shaft bends.

Next, the geometry of the bearing was optimized for maximum spindle stiffness.

First, the length of the bearing was increased to 90 mm; although doing so reduces the

distance between the effective load center of the front bearing and the front of the spindle,

it enhances the effect described above. A comparison of the new and old spindle stiffness,

bearing stiffness, and bearing flow rate is shown in Table 4.20. The parameters of the

bearing optimized for maximum spindle stiffness are shown in Table 4.21.

Table 4.20

Bearing Bearing Spindle
Stiffness Flow Rate Stiffness
(N/jm) (gpm) (N/gm)

Bearing Optimized 487 0.43 104
Spindle Optimized 550 0.41 108
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Table 4.21

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4165467 600 40.8
Eccentricity Ratio ec/ep lamda 1
Pocket Outlet Land Eccentricity ep 0.01
Compensator Eccentricity ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.1496
Axial Length (m,mm,in) L 0.09 90 3.5433
Number of Grooves N 6
Rib Ratio 0.85
Groove Rib Width (m,mm,in) br 0.0192 19.2 0.758
Groove Width (m,mm,in) bg 0.0226 22.6 0.891
Nominal Gap (m,pLm,in) ho 0.000015 15 0.00059
Compensator Gap Ratio 2.5
Compensator Depth (m,p.m,in) dc 0.000038 37.5 0.0015
Compensator Land Length (m,mm,in) Lc 0.087 87.0 3.425
Axial Land Length (m,mm,in) La 0.003 3 0.118
Resistance Ratio 0.75

Bearing Load Capacity
Location of Effective Bearing Force Lcen_L 0.349
Pressure Difference / Pressure @ ec, ep above DPP 0.010
Vertical Force (N,kN,Ibf) @ ec, ep given above Fy 82.3 0.082 18.5
Load Carrying Efficiency @ ec, ep given above Feff 0.003
Specific Stiffness @ ec, ep given above Kspec 0.274
Initial Specific Stiffness Kspec,o 0.274
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.185

Flow Rate and Pumping Power
Flow Rate (m^3/s,lpm,gpm) Qsupply 2.58E-05 1.55 0.41
Pumping Power (W,kW,hp) Ppump 107.6 0.108 0.144
Specific Flow Rate Ospec 10.3

Ratio of Specific Initial Stiffness to Specific Flow K/Qspec 0.0267
Rate
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4.C.xii. Self-Compensated Bearing #10

First, the Self-Compensated Bearing #10 with a geometry of Table 3.13 was

integrated into a complete two-bearing spindle. Note that this bearing was designed with

a length of 80 mm; radial hydrostatic bearings are commonly designed with their length

equal to their diameter. The spindle stiffness using this bearing geometry was 99.9 N/ýIm.

Next, the bearing geometry was optimized for maximum spindle stiffness. The optimal

bearing length that produced the maximum spindle stiffness was 94 mm. A comparison of

the new and old spindle stiffness, bearing stiffness, and bearing flow rate is shown in Table

4.21. The parameters of the bearing optimized for maximum spindle stiffness are shown in

Table 4.23.

Table 4.22

Bearing Bearing Spindle
Stiffness Flow Rate Stiffness
(N/gm) (gpm) (N/pm)

Bearing Optimized 1930 0.44 99.9
Spindle Optimized 2520 0.40 108
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Table 4.23

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Eccentricity Ratio ec/ep lamda 1
Pocket Outlet Land Eccentricity ep 0.01
Compensator Eccentricity ec 0.01

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.1496
Axial Length (m,mm,in) L 0.094 94 3.7008
Number of Grooves N 6
Groove Rib Ratio 2.1
Pocket Rib Ratio 0.59
Groove Rib Width (m,mm,in) br 0.0284 28.4 1.117
Groove Width (m,mm,in) bg 0.0135 13.5 0.532
Pocket Rib Width (m,mm,in) brp 0.0155 15.5 0.612
Pocket Width (m,mm,in) bp 0.0263 26.3 1.037
Nominal Gap (m,pLm,in) ho 0.000015 15 0.00059
Compensator Land Length (m,mm,in) Lc 0.003 3 0.118
Axial Land Length (m,mm,in) La 0.003 3 0.118
Drain Groove Circumferential Width (m,mm,in) bd 0.002 2 0.079
Drain Groove Axial Length (m,mm,in) Ld 0 0 0.000
Pocket Circumferential Land Width (m,mm,in) Lac 0.0068 6.8 0.267
Twist Angle (radians,degrees) phi 2.23 128
Lt/(maximum Lt) 0.33
Twist Ratio 0.325
Twist Length (m,mm,in) Lt 0.029 29.04 1.143
Groove Skew Angle (radians,degrees) 1.26 72.0
Actual Groove Width at Skew (m,mm,in) 0.00418 4.18 0.164
Resistance Ratio 1.07

Bearing Load Capacity
Location of Effective Bearing Force Lcen_L 0.408
Pressure Difference / Pressure @ ec, ep above DPP 0.012
Horizontal Force (N,kN,Ibf) @ ec, ep given above Fx -188.8 -0.189 -42.4
Vertical Force (N,kN,Ibf) @ ec, ep given above Fy 185.9 0.186 41.8
Resultant Force (N,kN,Ibf) @ ec, ep given above Fres 265.0 0.265 59.6
Angle of Resultant from Vertical (degrees) theta 45.4
Load Carrying Efficiency @ ec, ep given above Feff 0.008
Specific Stiffness @ ec, ep given above Kspec 1.206
Initial Specific Stiffness Kspec,o 1.206
Load Carrying Efficiency @ 75% of gap closure Feff,0.75 0.407

Flow Rate and Pumping Power
Flow Rate (m^3/s,lpm,gpm) Qsupply 2.51E-05 1.50 0.40
Pumping Power (W,kW,hp) Ppump 104.5 0.104 0.140
Specific Flow Rate Qspec 10.4

Ratio of Specific Stiffness to Specific Flow Rate K/Qspec 0.1159
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4.C.xiii. Summary of Spindle Stiffness for Twelve Radial Bearings

In the preceding sections, the twelve radial hydrostatic bearings of Chapter 3 were

each integrated into a simple two-bearing spindle and their stiffnesses were evaluated. A

summary of their performances is shown in Table 4.24.
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5. THRUST BEARING DESIGN: STIFFNESS, LOAD CAPACITY,

AND FLOW RATE

The stiffness and load capacity of a machine tool spindle in the axial direction is

usually just as important as its stiffness and load capacity in the radial direction. The

primary purpose of the thrust bearings are to hold the shaft rigidly in the axial direction

while allowing for free angular rotation. This should be accomplished with reasonably low

flow rate and pumping power. Often the goals of high stiffness and low pumping power

are competing and the most adequate design will depend upon the overall project

objective. In some cases, achieving high spindle stiffness is the most important goal and

high pumping power is an acceptable cost if it yields higher spindle stiffness. In other

cases, the size and cost of the pump must be kept to a minimum, even if that means

realizing lower axial stiffness. In the design of most machine tool spindles, both goals of

high stiffness and low pumping power are important and a well-balanced bearing design is

sought. Other important bearing attributes include the bearing damping, shearing power

consumption, and temperature rise. These factors will be considered in future chapters.

The focus of this chapter will be load-carrying capacity and pumping power.

The purpose of this chapter is to appropriately model hydrostatic thrust bearings

so that their stiffness can be calculated and their design can be integrated into the overall

design of the spindle. This is accomplished by calculating the restoring force that the

bearing generates when the shaft is displaced from its equilibrium position. Fortunately, in

nearly all cases the axial compliance of the shaft is much less than that of the thrust bearing

and so the axial stiffness of the spindle is simply equal to the stiffness of its thrust bearing.
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Some hydrostatic thrust bearings used in machine tool spindles contain more than

one pocket per side. These bearings are located at the front of the spindle so that they

provide restoring moments to the shaft when a radial load is placed onto its nose, thereby

increasing the radial stiffness of the spindle. However, the size of the thrust bearing must

often be made large in order to contribute significantly to radial spindle stiffness. In this

chapter, only bearings with a single pocket on each side are considered. It should be

clearly emphasized that these bearings provide only axial support for the shaft.

The relations developed in this chapter can be readily implemented into computer

programs to quickly design and optimize hydrostatic thrust bearings for machine tool

spindles. In the derivations that follow, several important assumptions are made about the

bearing characteristics and the operating conditions. It is assumed that:

* The depressed areas of the bearings, including the pockets, supply grooves, and

drainage grooves, are at a depth sufficiently great that the pressure drop throughout

them is negligible compared to the pressure drop across the bearing land regions. This

assumption allows the depressed regions to be modeled as regions of constant pressure

and enables fluid circuit theory to be used to solve for the bearing pressures.

* The fluid is incompressible so that density changes caused by changes in the fluid

pressure or temperature are negligible as it passes through the bearing.

* The fluid has a constant dynamic viscosity as it passes through the bearing. This is a

good assumption if the temperature rise of the fluid from the bearing inlet to the

bearing outlet causes a negligible change in the fluid viscosity.
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* The fluid flow on the land areas of the bearing are laminar and fully-developed, as

discussed in Chapter 2. In this case, the flow rate across a land is linearly proportional

to the pressure difference across it and so the resistances of the fluid circuit are

constant and linear fluid circuit theory can be used to solve for the flow rates and

pressures.

These assumptions must be considered before the methods and results generated in this

chapter are used in hydrostatic bearing design.

Three hydrostatic thrust bearings are considered in this chapter. In order to

compare their relative merits and characteristics, some non-dimensional performance

parameters will now be defined. The most important attribute of a bearing is its load

carrying efficiency, which is the bearing restoring force divided by the supply pressure

times the projected bearing area:

F- F (5.1)
Psa(Ro - R)

where F is the applied load, P, is the supply pressure, Ri is the inner diameter of the thrust

area, and Ro is the outer diameter of the thrust area. The load-carrying efficiency is a

strong function of the displacement; it is usually fairly linear for deflections up to 50% of

gap closure and then its slope decreases as the shaft comes closer to touch-down. At

touch-down, most hydrostatic bearings have load-carrying efficiencies between 0.4 and

0.6. The load-carrying efficiency at 75% of gap closure is usually a good indication of the

load-capacity of the bearing, and will be used as an indication of such in this chapter.

Perhaps more important than the load-carrying efficiency of a bearing is its

stiffness. The specific stiffness quantifies the bearing stiffness:



spec (5.2)
6

where E = 8/ho, 8 is the displacement, and h. is the nominal axial clearance per side.

Hydrostatic bearings behave non-linearly and so the specfic stiffness is a function of the

displacement. For applications where the cutting loads are low relative to the bearing load

capacity, the stiffness of the bearing at small displacements is usually the most important

consideration. Fortunately, the bearing stiffness is usually highest at small displacements.

The initial specific stiffness of a bearing generally corresponds to very low displacements

(F < 0.01), and usually ranges between 0.8 and 1.2 for most hydrostatic bearings, but can

be even higher.

The above bearing parameters describe the load-carrying performance of the

bearing. Another important consideration is the amount of flow rate that is needed to

achieve the load-carrying performance. A parameter that will be used to compare the flow

rates for different bearings is the specific flow rate, which is the supply flow rate divided

by the flow rate that would occur if the entire length of the bearing were used as a

hydraulic resistance:

Qspec (5.3)

3piln(Ro /Ri).

The specific flow rate of hydrostatic thrust bearings vary from as little as 2 to as much as

20. The specific flow rate of a bearing is an indication of the pumping power required to

support it since the pumping power is the supply pressure times the flow rate.
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Relations are developed in the following sections to predict the load-carrying

performance of three hydrostatic thrust bearings. A representative bearing with an outer

diameter of 100 mm and an inner diameter of 80 mm is considered in each case and its

characteristics are presented. Although the flow rate is considered when the dimensions

of the bearing geometries are chosen, the design in each case is primarily optimized to

generate the maximum initial specific stiffness. In addition, the dimensions of the bearing

geometry are chosen while considering manufacturing limitations. For example, the

minimum groove width used is 2 mm; this groove size can be generated fairly easily using

conventional machining methods. The minimum land width used is 3 mm; reducing the

land width further would make manufacturing variations become significant. Also, the

land width should be kept to at least 3 mm to keep the fluid flow across the lands laminar

and fully-developed when water is used at supply pressures over 500 psi. Using these

limitations and considerations, a representative bearing is designed and optimized for each

bearing type.

5.A. Thrust Bearing #1

A schematic diagram of Thrust Bearing #1 is shown in Figure 5.1. This bearing is

a conventional, fixed-compensated thrust bearing. Fluid at supply pressure, P,, is supplied

across inlet compensation resistances to the pockets. It then flows radially across the

outlet resistances, which are at a clearance ho, and to drainage grooves at atmospheric

pressure, Pa. Note that the pockets shown in Figure 5.1 have been machined into the

surface of the shaft flange; they may be equivalently machined into the housing member.
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Figure 5.1. Schematic diagram of Thrust Bearing #1. The two axial clearances, denoted

with a magnitude ho, are exagerated for clarity.

5.A.i. Description of Calculations for Thrust Bearing #1

To calculate the characteristics of this thrust bearing, the resistance of each bearing

land is needed. The resistance of the inner lands are given by:

R = 7h( 16C) InR  (5.4)

6pg (RR = h In (5.5)

where the shaft is displaced such that the clearance at pocket 1 decreases. The resistance

of the outer lands are given by:

R2 = 3 n(5.6)
ith (1 - 2
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R = 6pt In(Ro (5.7)

The overall pocket resistances are given by:

1
R 1 (5.8)

ill R

1
Req2 (5.9)

R2 RR

The compenation resistances are chosen such the ratio of a compensation resistance to a

nominal equivalent resistance is equal to some value, y. The resistances of Circuit #1 of

Appendix B are now known. The solution for the pocket pressures is given by:

1 1

P -Pp (1 - E) 3  (1 + e) 3
Pi - =- (-3 (5.10)

p 1 1

(1- )3 (1+ )3

The bearing restoring force is this pressure difference times the "effective pocket area."

The effective pocket area is that area which, when multiplied by the pocket pressure,

results in the same force as if the detailed pressure profiles on the lands were considered.

The effective area of a pocket is given by:

n R22-R2 R2 -R2A, = 0 2 _n ) - {)' (5.11)

The bearing restoring force is then given by:

F = A,(p, - P2) (5.12)
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In addition to the bearing load-carrying capability, the supply flow rate is needed. The

supply flow rate is typically evaluated for small displacements, s = 0, since it varies only

slightly with small displacements. The supply flow rate is simply the supply pressure

divided by the overall resistance of both pockets. Nominally, both pocket resistances are

equal, so the supply flow rate is given by:

2Ps 1 2Ps 1
Q 1+y R +Y (5.13)R'q 1+ R 1+y

where the resistances are evaluated with s = 0.

The bearing performance is clearly a function of the resistance ratio, y. The

resistance ratio that provides maximum bearing load capacity can be found by taking the

derivative of Equation (5.10) with respect to y and setting it equal to zero. This yields the

following relation for the optimal resistance ratio:

1- s 3/2

6( 3 (1P3Sopt ,3/2 (5.14)
1-,•/ .

1+6)/

A plot of the optimal resistance ratio versus the displacement ratio is shown in Figure 5.2.

As shown, a resistance ratio of 1 should be used to maximize the initial stiffness of the

bearing; however, a value of approximately 3.5 should be used to maximize the bearing

load capacity.
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Figure 5.2. Optimal resistance ratio that provides maximum load-carrying

function of the bearing displacement.
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efficiency as a

5.A.ii. Representative Calculations for Thrust Bearing #1

Table 5.1 shows the input and output values for a representative bearing with an

outer diameter of 100 mm, an inner diameter of 80 mm, and a nominal clearance of 15 pLm

per side. The land widths are all 3 mm. The resistance ratio is 1, which provides

maximum initial stiffness. As shown, the initial specific stiffness is 1.05, the load-carrying

efficiency at 75% of gap closure is 0.579, and the specific flow rate is 3.35.
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Table 5.1

5.B. Thrust Bearing #2

A schematic diagram of Thrust Bearing #2 is shown in Figure 5.3. This bearing

differs from Thrust Bearing #1 in that no external compensation resistances are needed

[9]. The Fluid is supplied at supply pressure, P,, into the supply region. It then flows

axially across the compensating lands, which are at a clearance h, to the pockets. It then

flows radially across the outlet lands, which are at a clearance ho, to drainage grooves at

Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Percentage of Gap Closure pct 0.1

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Outer Thrust Diameter (m,mm,in) Do 0.1 100 3.937
Inner Thrust Diameter (m,mm,in) Di 0.08 80 3.150
Inner Land Width (m,mm,in) bi 0.003 3 0.118
Diameter to Inner Land (m,mm,in) D1 0.086 86 3.386
Outer Land Width (m,mm,in) bo 0.003 3 0.118
Diameter to Outer Land (m,mm,in) D2 0.094 94 3.701
Nominal Clearance per Side (m,pm,in) ho 0.000015 15 0.00059
Nominal Resistance Ratio gamma 1
Effective Load-Supporting Area (m2,mm2,in 2)  Aeff 0.00198 1979 3.07

Bearing Load Capacity
Pressure Difference / Pressure DPP 0.149
Load Capacity (N,kN,Ibf) F 1231
Load Carrying Efficiency @ pct above Feff 0.105
Specific Stiffness @ pct above Kspec 1.046
Initial Specific Stiffness Kspec,o 1.050
Load Carrying Efficiency @ pct = 0.75 Feff,0.75 0.579

Flow Rate and Pumping Power
Equivalent Pad Resistance Req 2.45E + 10
Supply Flow Rate (m^3/s,lpm,gpm) Qsupply 1.70E-04 10.19 2.69
Specific Flow Rate Qspec 3.35
Pumping Power (W,kW,hp) Ppump 707 0.71 0.95



atmospheric pressure, Pa. Note that the pockets shown in Figure 5.3 have been machined

into the surface of the shaft flange; they may be equivalently machined into the housing

member. Also note that the compensation lands have been placed at the outer diameter of

the thrust bearing; they may also be placed at the inner diameter by placing the bearing

lands at the bearing outer diameter.

R1
R i  1

-~~~ ~--------------------- I -----------

Figure 5.3. Schematic diagram of Thrust Bearing #2. The two axial clearances, denoted

by ho, and the two radial clearances, denoted by h,, are exagerated for clarity.

5.B.i. Description of Calculations for Thrust Bearing #2

To calculate the characteristics of this thrust bearing, the resistance of each bearing

land is needed. The resistance of the inner lands are given by:

R= 6 lnR (5.15)P h 7(h o••1 _)3 R,
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R2 (1+ )3  R (5.16)
h 1+ 8)K (1Ri+6

The resistance of the compensation lands are given by:

R' = R = 12Lc (5.17)
'•D oh

Note that it has been assumed that the radial eccentricity of the shaft is equal to zero. The

compenation resistances are chosen such the ratio of a compensation resistance to a

nominal equivalent resistance is equal to some value, y. The resistances of Circuit #1 of

Appendix B are now known. The solution for the pocket pressures is given by:

1 1

p, - (1- (1+23S- (5.18)
P, 1 1 +y

(1-)e (1+ )3

Note that this equation is the same as Equation (5.10), the pressure difference for Thrust

Bearing #1. The bearing restoring force is this pressure difference times the effective

pocket area. The effective area of a pocket is given by:

f 2 In(R1 /R) (5.19)

The bearing restoring force is then given by:

F = Ae(pI - P2) (5.20)

In addition to the bearing load-carrying capability, the supply flow rate is needed. The

supply flow rate is typically evaluated for small displacements, e = 0, since it varies only

slightly with small displacements. The supply flow rate is simply the supply pressure
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divided by the overall resistance of both pockets. Nominally, both pocket resistances are

equal, so the supply flow rate is given by:

2PS 1 _2Ps 1
Q R' (5.21)Rp l+y Rp l+y

where the resistances are evaluated with e = 0.

The optimal resistance ratio that can be used to maximize the bearing load capacity

is the same as that for Thrust Bearing #1; Equation (5.14) is applicable for this bearing as

well.

With the use of Equation (5.17), it was assumed that the radial eccentricity of the

the shaft is zero. Consider the shaft to have an eccentricity e, such that the actual

clearance is a function of the angular coordinate, 0:

he(0) = h ,[I - e cos(0)] (5.22)

The actual resistance of a compensation land is given by:

12pCLR= 12p, (5.23)

0

Inserting Equation (5.22) and integrating,

R 12pL, _ 12pLc 1 (5.24)

S ho 1- ecos(3))(d Dohc.o 1+ e2
0

Dividing Equation (5.24) by Equation (5.17), the actual resistance ratio of the bearing

becomes:

Y actual 3 (5.25)

2
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Figure 5.4 shows the effect of radial eccentricity on the initial stiffness of bearings with

various designed resistance ratios. As shown, the bearing should be designed with a

resistance ratio somewhat greater than 1 to ensure near-optimal performance.

0 .2 .4 .6 .8 1.0

Radial Eccentricity

Figure 5.4. Effect of radial eccentricity on the initial stiffness of the Thrust Bearing #2,

for several different nominal resistance ratios.

A drawback of Thrust Bearing #2 is that its performance depends upon the ratio of

two tight clearances, hJho. Figure 5.5 shows the effect of variations in the compensaiton

land clearance on the initial stiffness of the bearing. The plot is for a constant axial

clearance, ho. As shown, the nominal resistance ratio should be chosen to be
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approximately 1 to 1.25 to minimize the effect of manufacturing variations of the

clearances.

-25 -20 -15 -10 -5 0 5

Variation in hc (%)

Figure 5.5. Effect of variation in the compensating land

Thrust Bearing #2.

10 15 20 25

clearance on the stiffness of

5.B.ii. Representative Calculations for Thrust Bearing #2

Table 5.2 shows the input and output values for a representative bearing with an

outer diameter of 100 mm, an inner diameter of 80 mm, and a nominal clearance of 15 jtm

per side. The bearing land widths are 3 mm. The resistance ratio is 1.25, which provides

nearly maximum initial bearing stiffness. As shown, the initial specific stiffness is 1.28, the

load-carrying efficiency at 75% of gap closure is 0.736, and the specific flow rate is 1.37.
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Table 5.2
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Operating Conditions
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8
Percentage of Gap Closure pct 0.1

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.0013

Bearing Geometry
Outer Thrust Diameter (m,mm,in) Do 0.1 100 3.937
Inner Thrust Diameter (m,mm,in) Di 0.08 80 3.150
Inner Land Width (m,mm,in) bi 0.003 3 0.118
Diameter to Inner Land (m,mm,in) D1 0.086 86 3.386
Nominal Clearance per Side (m,jm,in) ho 0.000015 15 0.00059
Nominal Resistance Ratio gamma 1.25
Radial Clearance of Compenation Land (m,mm,in) hc 0.000015 15 0.00059
Compenation Land Width (m,mm,in) Lc 0.00452 4.52 0.178
Effective Load-Supporting Area (m2,mm2,in 2) Aeff 0.00245 2446 3.79

Bearing Load Capacity
Pressure Difference / Pressure DPP 0.148
Load Capacity (N,kN,Ibf) F 1506
Load Carrying Efficiency @ pct above Feff 0.128
Specific Stiffness @ pct above Kspec 1.279
Initial Specific Stiffness Kspec,o 1.281
Load Carrying Efficiency @ pct = 0.75 Feff,0.75 0.736

Flow Rate and Pumping Power
Equivalent Pad Resistance Rp 5.32E + 10
Supply Flow Rate (m^3/s,lpm,gpm) Qsupply 6.96E-05 4.18 1.10
Specific Flow Rate Qspec 1.37
Pumping Power (W,kW,hp) Ppump 290 0.29 0.39



5.C. Thrust Bearing #3

A schematic diagram of Thrust Bearing #3 is shown in Figure 5.6. This bearing

differs from the previous thrust bearings in that one side of the thrust bearing is larger than

the other. This configuration enables the thrust bearing to have preferential load capacity

in a one direction, a characteristic which is especially desirable in drilling applications [10].

The fluid is supplied at supply pressure, P., into the supply region. It then flows radially

across the secondary thrust face land, which is at a clearance ho,, to the pocket. Note that

the groove that channels the fluid axially to the pocket has a clearance much greater than

the bearing clearances such that the pressure drop across it is negligible. One the fluid has

reached the pocket, it then flows radially across the outlet land, which is at a clearance hop,

to drainage grooves at atmospheric pressure, Pa. Note that the pockets shown in Figure

5.6 have been machined into the surface of the shaft flange; they may be equivalently

machined into the housing member.

Figure 5.6. Schematic diagram of Thrust Bearing #3. The two axial clearances denoted

by ho, and hop are exaggerated for clarity.
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5.C.i. Description of Calculations for Thrust Bearing #3

To calculate the characteristics of this thrust bearing, the resistance of each bearing

land is needed. The resistance of the secondary thrust face land is given by:

R = t (h +) lnL (5.26)

The resistance of the pocket land is given by:

Rl - 6 In (5.27)

The resistances of Circuit #1 of Appendix B are now known. The solution for the pocket

pressure is given by:

Pl Rp 1P1 - R 3 (5.28)
Ps Rp +Rs In(R1 / R) hop R- 3

ln(R /R 3) hR h+56

where the equilibrium clearances, hop and ho,, will be determined from a force balance.

The force exerted by the primary thrust face is given by:

F = Ro-_ - tR2 P (5.29)

The force exerted by the secondary thrust face is given by:

R 2  2

F, = R P, - ln(R, RR - )( -p i)  (5.30)

At equilibrium, these two opposing forces must equal each other. Solving for the

equilibrium pocket pressure,
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R__ R2 - R2

plie 2 2 In(R / Ri)
2 -(5.31)P, n R -R c( R -R

2 In(R 3 2 In(R,/ Ri)

Once the equilibrium pocket pressure has been evaluated, the equilibrium clearance ratio

can be determined by substuting 6 = 0 into Equation (5.28):

-P1/3
hop I ln(Ro / R3) (5.32)
hos , eq 1,eq In(R, / R i)

Now that the equilibrium clearance ratio is known, the pocket pressure can be determined

for any deflection, d, using Equation (5.28). The net bearing force is then found by

substracting Equation (5.30) from Equation (5.29).

The nominal bearing flow rate is found by combining the resistances given by

Equations (5.26) and (5.27):

Q, = n +,6 (5.33)

hos h op

5.C.ii. Representative Calculations for Thrust Bearing #3

Table 5.3 shows the input and output values for a representative bearing with an

outer diameter of 100 mm, an inner diameter of 80 mm, and a secondary face outer

diameter of 87 mm. The tota nominal clearance, hop + ho., is 30 ýlm. The bearing land

width is 3 mm. The supply groove width is 2 mm. As shown, the initial specific stiffness

is 1.07, the primary direction load-carrying efficiency at 75% of gap closure is 0.508, the
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secondary direction load-carrying efficiency at 75% of gap closure is 0.256, and the

specific flow rate is 1.04.

Table 5.3

Operating Conditions
Supply Pressure (Pa,psi,atm)
Deflection from Equilibrium (m,4m,in)

Fluid Properties
Dynamic Viscosity (N s/m)

Bearing Geometry
Outer Thrust Diameter (m,mm,in)
Inner Thrust Diameter (m,mm,in)
Secondary Face Outer Diameter (m,mm,in)
Primary Face Land Width (m,mm,in)
Diameter to Primary Land (m,mm,in)
Supply Groove Width (m,mm,in)
Outer Diameter of Secondary Land (m,mm,in)
Total Clearance (hos + hop) (m,p.m,in)
Equilibrium Pocket Pressure Ratio
Equilibrium Clearance Ratio
Nominal Primary Clearance (m,pLm,in)
Nominal Secondary Clearance (m,Jlm,in)

Bearing Load Capacity
Pocket Pressure / Supply Pressure @ 8 above
Load Capacity (N,kN,Ibf) @ 8 above
Load Carrying Efficiency @ 8 above
Specific Stiffness @ 8 above
Initial Specific Stiffness
Primary Load Carrying Efficiency @ pct = 0.75
Secondary Load Carrying Efficiency @ pct = 0.75

Flow Rate and Pumping Power
Overall Bearing Resistance
Supply Flow Rate (m^3/s,lpm,gpm)
Specific Flow Rate
Pumping Power (W,kW,hp)

4.17E +06
5.00E-06

600 40.8
5.00 0.00020

mu 0.0013

Do
Di
D2
bo
D3
bs
D1

htot
peq_Ps

hop hos
hop
hos

plPs
F

Feff
Kspec

Kspec,o
Feff,0.75
Feff,-0.75

Rbear
Qsupply
Qspec
Ppump

0.1
0.08

0.087
0.003
0.094
0.002
0.083

0.00003
0.336
1.493

1.80E-05
1.20E-05

0.792
4129
0.351
1.052
1.071
0.508

-0.256

7.89E+ 10
5.28E-05

1.04
220

100 3.937
80 3.150
87 3.425

3 0.118
94 3.701

2 0.079
83 3.268
30 0.00118

17.967 0.00071
12.033 0.00047

3.17

0.22

0.84

0.29

201



6. FRICTIONAL AND THERMAL CHARACTERISTICS

The power consumed by viscous shearing of the fluid within hydrostatic bearings

should be minimized as much as possible for two reasons. First, reducing viscous shearing

power leaves more of the available motor power to be used for machining. Adding a

larger motor to the spindle to compensate for bearing drag increases the cost of the

machine and the cost of its operation. Second, the viscous power consumed by the

bearings is equal to the heat generated within the bearings. This heat generation causes a

temperature rise of the shaft and the housing, resulting in unwanted thermal growth errors.

Excessive shearing power is the reason why hydrostatic bearings have been limited

to low speed machine tool applications over the past few decades. The recent

implementation of water-based coolants as the lubricant has substantially extended their

speed capability, but shearing power consumption still remains a principal consideration.

Even if water is used as the bearing lubricant, hydrostatic spindles usually have higher

viscous shearing power than rolling element spindles at speeds greater than 1 million DN.

It is important for a spindle designer to be able to readily predict the power

consumed by hydrostatic bearings of various geometries. The shearing power of a bearing

can be approximately modeled by breaking the bearing up into pocket, groove, and land

regions and summing the shearing powers generated by each region. Figure 6.1 shows a

schematic diagram of the pockets of a hydrostatic bearing with axial lands separating

them. The axial lands effectively act to create a pressure gradient inside the pocket as the

shaft rotates, resulting in a recirculation of the fluid within the pockets. The depth of the

pockets, hp, is usually much greater than the bearing land clearance, h. In this case, the
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fluid flow within the pockets does not depend upon the fluid flow over the lands, and the

two regions may be considered separately. The fluid flow within the pockets may be

modeled as simple cavity flow for the purpose of shearing power calculations. Also,

centrifugal effects caused by curvature of the pockets are usually negligible unless they

extend for a significant distance around the circumference of the shaft and they are deep

compared to the radius of the bearing. The cavity flow used to approximate the pocket

shear power will be considered in the second section of this chapter.

h

Figure 6.1. Velocity profiles developed in hydrostatic bearings. The lands tend to dam

up the pocket flow and cause it to recirculate.

The other bearing regions which must be considered for shearing power

calculations are the bearing lands. The flow over the axial and circumferential lands can

usually be adequately modeled as uninterupted flow between concentric cylinders with

zero pressure gradient. The assumption of uninterrupted flow is valid as long as the "entry

length" of the flow is small compared to the circumferential length being considered. This

is true if either (1) the flow is laminar and fully-developed on the land as described in

Appendix C, or (2) the flow is turbulent. The assumption of zero pressure gradient

circumferentially is valid as long as the pressure gradient within the fluid film times the

radial clearance of the fluid film is much less than the shear stress on the wall. This is true

203



for nearly all lands of hydrostatic bearings, as long as the assumptions given above are

adequate.

The first thing that must be considered when the bearing friction in a particular

region of the bearing is calculated is whether the flow is laminar or turbulent in that

region. Although the flow between the shaft and lands of a hydrostatic bearing generally

remains laminar for most operating speeds, the flow within the pockets and grooves

usually becomes turbulent even at moderate operating speeds. For typical water bearings

with deep pockets, transition in the pockets occurs at low operating speeds, as shown in

Table 6.1. However, for applications in which radial space requirements are critical and

the bearing pockets are made very shallow, transition in the pockets may not occur until

the bearing is taken to moderate operating speeds. The flow on the lands of hydrostatic

bearings typically remains laminar over most operating speeds.

Table 6.1.

Bearing Region DN
Deep Pocket, hp = Imm 0.02 million

Shallow Pocket, hp = 100 p.m 0.2 million
Lands, ha = 20 mm 1.5 million

Approximate formulations for the bearing friction at laminar and turbulent speeds

were developed by prior researchers and the relations will be summarized in this chapter.

In each case, the relations will be presented in the form of a skin friction factor, which is a

common way to express the shear stress non-dimensionally:

C, = 1 (6.1)

pV 2

2
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where c is the shear stress, p is the fluid density, and V is the surface velocity of the

rotating shaft. This definition will be used throughout this chapter as the frictional

relations for each bearing region are presented. The friction factor is a function of the

Reynolds number as well as another flow parameter such as a non-dimensional spacing

ratio. Once the friction factor is computed for a given bearing region at a given flow

condition, the viscous shearing power of that region may be computed by the following

relation:

1
S= C pV'A, (6.2)

where A. is the shear area of the region.

6.A. Bearing Land and Circumferential Groove Flow

The flow over the lands that results from shaft rotation will be discussed in this

section. The analysis is also applicable to circumferential drainage grooves which run

completely around the circumference of the bearing. This flow is modeled as uninterupted

flow between two concentric cylinders with no pressure gradient. Since the cylinders are

considered concentric, the relations presented are only valid when the eccentricity of the

shaft is small (less than about 0.1); however, this is the case in all spindles except those

which are loaded with heavy forces.

The fluid flow on the lands of hydrostatic bearings usually remains laminar up to

fairly high operating speeds. However, the circumferential drainage grooves of typical

hydrostatic bearings can become turbulent at moderate operating speeds, and at very high
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operating speeds, even the lands can become turbulent. Both laminar and turbulent

regimes will therefore be considered in this section.

Consider two concentric cylinders rotating with fluid contained between them.

The inner cylinder has a radius Ri and rotates with a speed o. The radial clearance

between the two cylinders is h. The fluid has a density p and a dynamic viscosity p.

Correlations have been made to experimental data that can be used to approximately

calculate the friction factor for this case [ 11]:

0 < NTa < 41 Cf= 2 (1+h/Ri)2

Re 1+ 0.5(h / R)

C 0.1 1(NTa)• 0.
854

C, R = Re
41 < NTa < 63

63 < NTa < (NTa)V-T

NTa > (NTa)V-T

Cf- 0.476(NTa ) 5

Re

(1+h/R,) n Re C2 8.58
L2 2C(1 + 0.5(h / R)}) 2(1 + h/R ) - 8.58 =

where Re = phCoRi/4 is the characteristic Reynolds number, and NTa = Re(h/Ri)O. is the

Taylor number. (NTa)V-T is the value of the Taylor number at transition from vortex-

dominant flow to turbulence-dominant flow. Its value depends on the clearance ratio h/Ri.

Which equation to use can be determined by (1) calculating the value of Cf using Equation

(6.5), (2) calculating the value of Cf using Equation (6.6), and (3) using the value of Cf

which is highest.

The value of Cf calculated using Equation (6.3) through (6.6) is plotted versus the

Taylor number for several different clearance ratios in Figure 6.2. For low Taylor

numbers, NTa < 41, the flow is laminar. For very low clearance ratios, the value of CfRe is

equal to a constant. However, for significant clearance ratios, the value of CfRe increases
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as the clearance ratio is increased because the vortices generated by the fluid centrifugal

forces cause higher shear stress on the cylinder than that if the vortices did not occur. For

41 < NTa < 63, the flow is transitional. For 63 < NTa < (NTa)v-T, the flow is vortex-

dominated flow and the value of CfRe is independent of the clearance ratio for a given

Taylor number. Once the speed of the cylinder is increased to a Taylor number

corresponding to (NTa)v-T, the flow becomes turbulence-dominated and the vortices

generated by the fluid centrifugal forces have a negligible effect on the wall friction. The

transitions between flow regimes shown in Figure 6.2 are distinct; however, in reality the

transitions are gradual and the relations given by Equation (6.3) through (6.6) are only

approximate in these regions.

1000

100

1

101

0.05
0.1
0.2

102 103  104  105

Taylor Number, NTa

Figure 6.2. The skin friction factor for flow between two concentric cylinders for several

different clearance ratios.
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Sample calculations are now performed on a 90 mm diameter inner cylinder, using

a water-based coolant with p = 1000 kg/m3 and p. = 0.0013 Nm/s as the fluid. Figure 6.3

shows the calculated shearing power for a 10 mm long cylinder for several different

clearances. As expected, the shearing power increases as the clearance is decreased.

However, there is one exception; for speeds greater than about 13,000 rpm, the friction

developed using a clearance of 20 ýpm is less than that developed using a clearance of 50

p.m. Using a smaller clearance causes less shear power at these speeds because the flow

has not made the transition to turbulence-dominated flow. This transition will occur at

41,000 rpm, at which point using a 50 ptm clearance generates less friction. Also note in

Figure 6.3 that increasing the clearance from 1 mm to 10 mm decreases the shearing

power by only a small amount. Increasing the clearance past 10 mm has no effect.

I.25

1.00

a- .75

0

- .50
a
_c
co

.25

0
0 5 10 15

Shaft Speed (thousands of rpm)

Figure 6.3. Shearing power produce by a 10 mm long circumferential groove which

contains a water-based coolant with p = 1000 kg/m3 and pt = 0.0013 Nm/s. The shaft

diameter is 90 mm.
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The clearance between the lands of hydrostatic bearings are very small compared

to the bearing diameter, such that the clearance ratio h/Ri is nearly always very small. In

these cases, an adequate model of the fluid flow is that of Couette flow, and the following

relations may be used [12]:

2
0 <Re< 1600 C Re (6.7)

1600 < Re < 2400 Cf= 0.00125 (6.8)

0.182
Re > 2400 logi(Re/4) (6.9)

where again Re = phcoRi/p is the characteristic Reynolds number. The simplified relations

given by Equations (6.7) through (6.9) give nearly the same results as those of Equations

(6.3) through (6.6) for small clearance ratios.

6.A. Bearing Pocket and Axial Groove Flow

As previously described, the fluid flow within the pockets and axial grooves of

hydrostatic bearings can be modeled as simple cavity flow if the pocket depth or groove

depth is at least approximately ten times greater than the bearing clearance. A schematic

representation of this fluid flow is shown in Figure 6.4. The upper wall moves with a

surface speed, V, and causes the fluid to continuously recirculate within the pocket.

Although the flow on the lands is usually laminar over the entire range of bearing

operating speeds, the flow in the pockets of hydrostatic bearings usually becomes

turbulent at even low operating speeds. Both laminar and turbulent regimes will therefore

be considered in this section.
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X

--n -1

Figure 6.4. Model used to approximate the flow within the pockets and axial grooves of

hydrostatic bearing with deep pockets and grooves.

Research previously done [13] illustrates that turbulence in the pockets of

hydrostatic bearings begins at a Reynolds number of about 1,000 based on the pocket

depth. This transition Reynolds number was shown to be approximately true for pocket

aspect ratios of 15 < Lp/hp < 240. For lack of other data, this transitional Reynolds

number can be approximately used for other aspect ratios. Relations for the friction factor

for laminar and turbulent cavity flow are given by [14]:

0 < Rep < 1000

1000 < Rep < 2000

Rep > 2000

Cf = 1 + 2.76 h1 I + 0.00135 Re.09 h 0.21

Cf = 0.0088 1+ In 1+ 2.71 Re 34  51Re

C, = 0.047Re-0226 1+In 1+2.71Re134( 3.5Re-0o 131
where Rep = pVh1p/ is the pocket Reynolds number, h/L, is the pocket aspect ratio, and

V is the surface speed of the shaft.
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The value of Cf calculated using Equations (6.10) through (6.12) is plotted versus

the Reynolds number for several different pocket aspect ratios in Figure 6.5. As shown,

the friction of a pocket increases as the pocket aspect ratio decreases for both laminar and

turbulent speeds. This is true because the end regions of the pocket where the flow turns

around contributes more and more as the pocket aspect ratio is decreased. This effect is

more dramatic for laminar speeds than for turbulent speeds because the wall friction is

determined primarily by the boundary layer on the wall for turbulent fluid flow. The

transitions between flow regimes shown in Figure 6.5 are distinct; however, in reality the

transitions are gradual and the relations given by Equation (6.10) through (6.12) are only

approximate in these regions.

.1

.01

.001

Rep

Figure 6.5. The skin friction factor for flow in a hydrostatic pocket for several different

pocket aspect ratios.
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Sample calculations are now performed on a pocket with a circumferential length

of 42 mm and an axial length of 10 mm. The pocket contains a water-based coolant with

p = 1000 kg/m3 and t = 0.0013 Nm/s. The shaft diameter is 90 mm. Figure 6.6 shows

the calculated shearing power for several different pocket depths. As expected, the

shearing power decreases as the pocket depth is increased. However, increasing the

pocket depth greater than approximately 10 mm decreases the frictional power only

slightly.

0a,
o2

-C

0
0 5 10 15

Shaft Speed (thousands of rpm)

Figure 6.6. Shearing power produce by a pocket with a circumferential length of 42 mm

and an axial length of 10 mm. The pocket contains a water-based coolant with p = 1000

kg/m3 and p = 0.0013 Nm/s. The shaft diameter is 90 mm.
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6.C. Temperature Rise

Integrally related to the shearing power consumption of a hydrostatic bearing is its

fluid temperature rise. The thermal behavior of a bearing is often equally important as its

frictional behavior. In fact, the two are often coupled by a temperature-dependent

viscosity. This coupling can be neglected if the temperature rise of the bearing is small,

but often for high speeds the coupling is important. Both cases are considered in this

chapter.

In addition to changes in viscosity, there can also be a significant change in the

bearing clearance if the temperature rise of the bearing is high. The thermal expansion of

the rotor can become a problem if the shaft diameter grows much faster than the inner

diameter of the bearing housing. In practice, the speed of the shaft should be increased

slow enough to allow the housing temperature to rise with the temperature of the shaft.

Also, schemes to actively cool the bearings by passing coolant through the housing should

be carefully considered because the growth of the housing bore will be inhibited while the

shaft continues to grow and the bearing clearance can become dangerously tight. A better

scheme to cool the bearings is to simply pre-chill the bearing lubricant before it enters the

bearing such that the average fluid temperature within the bearing is approximately room

temperature. Another method that is often used in conjunction with through-the-tool

cooling is to pass coolant through the center of the shaft.
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6.C.i. Constant-Viscosity Model

At steady state, the shaft of a hydrostatic bearing is approximately adiabatic. This

is true because the conduction of heat axially to a cooler part of the shaft is nearly always

small compared to the overall heat being generated in the bearings. If the shaft is

adiabatic, the power generated by viscous shearing within the bearing must either leave

with the leaking fluid or be conducted radially through the housing. For a nearly uniform

lubricant temperature Tbulk, a one-dimensional heat balance on the bearing results in:

Os = UAi(Tbulk - Tou )+ pcpQ ,p(Tb& - Tsup ply ) (6.13)

where P, is the total shearing power generated, Qpply is the volume flow rate of lubricant

through the bearing, pc, is the lubricant heat capacity per unit volume, T,ply is the

lubricant supply temperature, Tout, is the sleeve outer temperature, U is the overall heat

transfer coefficient to Tout and Ai is the projected area of the inner sleeve 27trLi. Note

that, since the flow within the pockets is well-mixed, Tb• k Tshaf,. A one-dimensional

approximation for U is:

U - 1 +kseee InC.Di (6.14)

where r, is the mean inner sleeve radius, ro is the outer sleeve radius, and k,av., is the

sleeve thermal conductivity. The heat transfer coefficient in this expression is a function

of bearing geometry, shaft rotation rate, and lubricant properties. The heat transfer

coefficient can be evaluated numerically usually commercial computational fluid dynamics

software packages. However, doing so is almost never necessary, as discussed next.
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Consider the outer housing temperature, T.o. In some machine tool applications,

the spindle is an integral part of a machine. Thus, the machine would act as a heat sink to

which the heat generated by the spindle would be conducted. In other applications, the

outer edge of the bearing sleeve might be cooled convectively by a coolant. Still another

boundary condition occurs when the bearing housing is exposed to ambient air. In this

case, the heat rate from the bearing housing by natural convection is usually small

compared with that removed by the leaking fluid, and may possibly be neglected.

Consider first the situation in which convection from the sleeve is negligible. In

this case Toulr Tshaft. Equation (6.13) therefore reduces to:

(Tshaf Tsupply (6.15)
cpQsupply

Although this expression neglects any heat that may be convected or conducted from the

bearing other than that carried away with the lubricant, it is usually an excellent

approximation of the bearing temperature rise, especially in situations where the leakage

rate is high.

Consider next a situation in which the bearing housing is actively cooled using the

coolant supply to such a degree that Tou, r Tupp. For this case, Equation (6.13) reduces

to:

=aft Tsupply UA + (6.16)UA,Ise + PCpQSUppIY

For cases in which the inner sleeve heat transfer coefficient is high, the thermal resistance

of the sleeve dominates and the overall heat transfer coefficient given by Equation (6.14)

can be approximated as:
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U = r Ini (6.17)

Use of this equation greatly simplifies bearing thermal predictions. It is usually valid for

water bearings at moderately high rotation rates, low sleeve conductivities, or large sleeve

thicknesses. Neglecting curvature of the sleeve, a suitable criterion for which Equation

(6.17) is valid is:

kslev <<1 (6.18)
h( r -

The use of Equation (6.15) is recommended for nearly all cases. Unless the

bearing is active cooled, the heat conducted through the bearing housing is very small

compared the heat leaving with the leaking fluid. For the case of an actively cooled

bearing housing, Equation (6.17) is recommended for almost all cases since the criterion

given by Equation (6.18) is usually valid.

Next consider the temperature rise of the fluid that results from the pressure driven

flow. As the fluid is passed through the bearing, it is sheared by the restrictions of the

bearing lands. The temperature rise caused by the fluid pumping is simply the pumping

power, OP = (Pupply)(Qspply), divided by the flow rates times the heat capacity:

AT= PSUPP
AT = (6.19)

pc,

This temperature rise is often small compared to the temperature rise caused by the heat

generated from shaft rotation. For example, the temperature rise of water caused by

pumping it from 600 psig is approximately P1C.
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6.C.ii. A Simple Model to Account for Temperature-Dependent Viscosity

The relations developed in Chapter 3 to predict the bearing load-carrying

characteristics and the bearing flow rate, as well as those developed in the previous section

to predict the bearing shearing power, were all developed assuming that the fluid

properties were constant within the bearing. This approximation is good if the

temperature rise through the bearing is low enough that the change in viscosity from the

bearing inlet to the bearing outlet is negligible. However, when the bearings are used at

high speeds, the isothermal model is often not adequate.

Consider a fluid with a temperature-dependent viscosity that obeys the following

empirical relation:

S= i (6.20)

where T is the absolute temperature of the fluid, Ti is the absolute temperature of the fluid

at the bearing inlet, Lit is the viscosity of the fluid at the bearing inlet, and n is an exponent

that is characteristic of a fluid. The relation given by Equation (6.19) can be used as an

excellent curve fit to the viscosity curve of most lubricants, such as water and oil, over a

wide range of temperatures. For example, the viscosity of pure water is 8.665x10-4 Nm/s

at 300K, and an exponent of -6.72 provides agreement within about 1% for a temperature

range of 290 K to 320 K.

In order to develop a simplifed model that accounts for the temperature-dependent

viscosity, a simplifed relation for the shearing power is needed. For many bearings, most

of the heat generated is caused by the bearing land flow. For nearly all operating speeds,
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this flow can be approximately modeled as laminar Couette flow. If the entire bearing area

is modeled as such, the shearing power per unit length is given by:

- V2  (6.21)
L h

where V is the surface velocity of the shaft, and h is the clearance between the shaft and

housing.

Consider the flow of fluid from one side of a bearing to the other, as shown in

Figure 6.7. The fluid enters at a temperature Ti, and is heated to a temperature of To as it

leaves the bearing. As the fluid is heated, its viscosity changes according to Equation

(6.20). The local shearing power per unit length changes as the the fluid passes through

the bearing because its viscosity changes.

dx

Ti Tx  Tx+dx

(Ti) tp(Tx) t(Tx+dx) (T)

< L

Figure 6.7. Schematic diagram of a hydrostatic bearing with the fluid heated as it passes

through it.
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A local energy balance can be made on the small fluid element, dx, by considering

all of the heat generated as removed with the leaking fluid:

W.dx
Tx+dx - Tx = x (6.22)

Qpcp

As the size of the fluid element becomes very small,

dT - (L (6.23)
dx Qpcp

Inserting Equation (6.21) for the power generation:

dT V2iD
dT= (T) (6.24)
dx Qpch

Rearranging this relation,

dT V2nDdT V dx (6.25)
ji(T) Qpch

Inserting the viscosity relation given by Equation (6.19),

dT V2__D
- dx (6.26)

TItw Qpch

It will be assumed at this point that the bearing clearance, h, is a constant. By integrating

this relation and rearranging its terms, the following formula is obtained:

T=T,+' T,+ (n +1) (6.27)
Q,pcph c6.27
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The supply flow rate, Q., also depends on the temperature change that occurs within the

bearing. For most bearings, the supply flow rate is a function of the inlet and outlet

resistance only. The resistance of the inlet land depends upon the inlet temperature, Ti,

and the outlet resistance depends upon the outlet temperature, To. If the bearing has a

ratio of inlet to outlet resistance, y, it can be shown that its actual flow rate will be given

by:

n)

Q1 = Q •' (6.28)
1+y

where Q* is the flow rate computed using a constant viscosity of pji. Its value can be

computed using the methods developed in Chapter 3. Inserting Equation (6.28) into

Equation (6.27):

n+1

Si V2 irDL 1 1 + y
T = Ti•+1 Ti + (n + 1) • (6.29)L h QPC LTo

The term that represents the total bearing friction evaluated with the inlet fluid viscosity,

.it, will be replaced with the actual power calculated with the more complete methods

developed in the previous sections of this chapter, also evaluated with the inlet fluid

viscosity:
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n+1

T = T T, + (n + 1) (6.30)

The outlet temperature is therefore given by:

1

n
To =T 'n 1 T, +(n +l) (6.31)

This implicit relation can be used to solve iteratively for the actual outlet bearing

temperature, To. The temperature rise of the fluid caused by the fluid pumping can be

approximately accounted for by simply calculating this component using Equation (6.19)

and adding it to the outlet temperature found using Equation (6.31). Once the outlet

temperature is known, the actual outlet flow rate can be calculated using Equation (6.28).

The actual shearing power can be approximately evaluated by considering the average

viscosity within the bearing:

To T -n
dT

- , = (6.32)

P+ To - T

S V T (6.33)0-= (To - T)T-n (n- 1)

The simple model developed in this section can be used to approximately account for

temperature-dependent fluid viscosity for bearings whose shearing power is predominantly

determined by the laminar bearing land flow. It is also approximately valid for other
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bearings, since the actual power used in the equations is calculated with the more detailed

methods of this chapter.

6.D. Thermal and Frictional Design of a Hydrostatic Bearing

The frictional relations presented in the previous sections can be used to study the

relative shear stress of the different bearing areas in order to optimize the bearing design

for minimal shearing power consumption. In sections 6.A and 6.B, a 90 mm diameter

bearing was considered and the shearing power developed by the lands and the pockets of

the bearing were calculated. Figure 6.8 shows the friction developed on a land with a

clearance of 20 ptm to that in a pocket with a depth of 2 mm using fluids of various

dynamic viscosities. A viscosity of 0.0013 Nm/scorresponds to that of a water-based

coolant at room temperature. A viscosity of 0.0008 Nm/s corresponds to that of a water-

based coolant at approximately 400 C; this temperature might exist in a bearing operating

at high speeds, greater than 12,000 rpm. As shown, the frictional shear stress on the lands

is lower than that in the pockets for speeds greater than 5,000 to 8,000 rpm. This can be

understood by recognizing that the flow in the pockets is very turbulent while the the flow

on the lands remains laminar for all speeds shown. Also shown in Figure 6.8, a viscosity

of 0.005 Nm/s corresponds to that of a very light-weight spindle oil at 400 C. As shown,

the shear stress on the lands remains greater than that in the pockets for speeds up to

15,000 rpm. Although the flow within the pocket is turbulent, the shear stress on the

lands is very high because the viscosity is high.
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Figure 6.8. Comparison of the friction developed on a land with a clearance of 20 ýLm to

that in a pocket with a depth of 2 mm using fluids of various dynamic viscosities. The

bearing diameter is 90 mm.

Figure 6.8 clearly shows that, when using a water-based coolant as the bearing

lubricant, the friction is higher in the pockets than on the lands when the bearing is

operated at high speeds. Since friction is usually only a concern at high speeds, it appears

that as much of the bearing area should be land area as possible. Increasing the land area

is also desirable to achieve higher bearing damping. Figure 6.9 illustrates how the land

area of Self-Compensated Bearing #10 can be increased. Figure 6.9(a) shows the

theoretical configuration used in the bearing model of Chapter 3, and Figure 6.9(b) shows
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the actual manufactured configuration. The raised areas in the center of the pockets serve

to increase the bearing damping and reduce the bearing friction.

GrOOVes
Machined
with a
Ball-Nose
End Mill

bm

Figure 6.9. Illustratation of the pad lay-out of SC Bearing #10, including (a) the

theoretical configuration used in the bearing model, and (b) the actual manufactured

configuration. The shaded areas represent depressed regions. The raised areas in the

center of the pockets serve to increase the bearing damping and reduce the bearing

friction.
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The frictional and thermal characteristics of a radial bearing will now be

considered. The bearing is a SC Bearing #10 with a diameter of 80 mm and a length of 80

mm. A water-based coolant is used that a viscosity approximately 30% higher than that of

water at all temperatures. The bearing is manufactured with an end mill, as shown in

Figure 6.9. The width of the grooves, bi, is 3 mm. Their average depth is 0.75 mm.

Table 6.2 shows the resulting shearing power consumption of the bearing is approximately

2.7 kW at 10,000 rpm. In this analysis, a constant clearance of 20 pm was used. This is

approximately valid if the housing bore has sufficient time to grow as the shaft grows due

to thermal expansion. The change in clearance due to centrifugal forces for a steel shaft at

this speed is approximately 0.48 gtm, and so this effect is not considered. At 15,000 rpm,

the shaft will grow radially by approximately 1.08 gm, and this effect starts to become

more important.

Table 6.2 also shows that the total temperature rise of the fluid passing through the

bearing is approximately 9.60C at 10,000 rpm. The flow rate has increased from 1.08 gpm

to 1.20 gpm due to the decrease in fluid viscosity with the temperature temperature. Note

that the effect of fluid pumping by the grooves has been neglected in the analysis; the

actual flow rate may be somewhat higher or lower, depending on which way the grooves

are oriented.
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Table 6.2

Operating Conditions
Shaft Speed (rad/s,rpm) w 1047 10,000
Supply Pressure (Pa,psi,atm) Ps 4.17E + 06 600 40.8

Fluid Properties
Dynamic Viscosity (N s/m) mu 0.00126
Bearing Inlet Temperature (K,oC,oF) Tmu 295
Viscosity-Temperature Exponent nmu 6.69
Density (kg/m^ 3) rho 1000
Specific Heat Capacity (J/kg/oC) Cp 4180

Bearing Geometry
Diameter (m,mm,in) D 0.08 80 3.150
Axial Length (m,mm,in) L 0.08 80 3.150
Number of Grooves N 6
Groove Rib Ratio 1.4
Pocket Rib Ratio 0.85
Groove Rib Width (m,mm,in) br 0.0244 24.4 0.962
Groove Width (m,mm,in) bg 0.0175 17.5 0.687
Pocket Rib Width (m,mm,in) brp 0.0192 19.2 0.758
Pocket Width (m,mm,in) bp 0.0226 22.6 0.891
Nominal Gap (m,±m,in) ho 0.00002 20 0.00079
Compensator Land Length (m,mm,in) Lc 0.003 3 0.118
Axial Land Length (m,mm,in) La 0.003 3 0.118
Drain Groove Circumferential Width (m,mm,in) bd 0.003 3 0.118
Drain Groove Axial Length (m,mm,in) Ld 0.01 10 0.394
Pocket Circumferential Land Width (m,mm,in) Lac 0.0081 8.1 0.320
Twist Angle (radians,degrees) phi 2.44 140
Twist Ratio 0.2650
Twist Length (m,mm,in) Lt 0.0259 25.9 1.020
Groove Skew Angle (radians,degrees) Beta 1.31 75.2
Theoretical Groove Width at Skew (m,mm,in) 0.0045 4.47 0.176
End Mill Width (m,mm,in) bm 0.003 3 0.118
End Mill Average Depth (m,mm,in) bmd 0.00075 0.75 0.030
Resistance Ratio gamma 1.0

Supply Flow Rate and Pumping Power
Specific Flow Rate Qspec 9.8
Isothermal Supply Flow Rate (m^ 3/s,lpm,gpm) Q* 6.79E-05 4.07 1.08
Actual Supply Flow Rate (m^ 3/s,lpm,gpm) Qsupply 7.6E-05 4.56 1.20
Pumping Power (W,kW,hp) Ppump 316.6 0.317 0.425

Power Consumption and Temperature Rise
Isothermal Bearing Power Consumption (W,kW,hp) 3029 3.03 4.06
Actual Bearing Power Consumption (W,kW,hp) 2724 2.72 3.65
Pumping Temperature Rise (oC,oF) 1.0 1.8
Total Temperature Rise (oC,oF) 9.6 17.3
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Figure 6.10 shows the bearing shearing power consumption as a function of shaft

speed. The power increases approximately with the cube of the shaft speed until the

temperature-dependence of the fluid viscosity becomes important, and then levels off

somewhat.
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Figure 6.10. Shearing power consumption of the bearing with the parameters shown in

Table 6.2. The analysis includes the effect of a temperature-dependent fluid viscosity.
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Figure 6.11 shows the temperature rise of the fluid through the bearing as a

function of shaft speed. The P1C temperature rise at 0 rpm corresponds to the

temperature rise from the pumping of the fluid from a pressure of 600 psig to a pressure of

0 psig. As the shaft speed is increased, the temperature rise of the fluid increases as it

absorbs more shearing power generated within the bearing. The temperature rise

increases approximately with the cube of the shaft speed until the temperature-dependence

of the fluid viscosity becomes important; at speeds greater than approximately 12,000

rpm, it increases almost linearly with the shaft speed.

Figure 6.11.

in Table 6.2.

0 5 10 15

Shaft Speed (thousands of rpm)

Temperature rise of the fluid through the bearing with the parameters shown

The analysis includes the effect of a temperature-dependent fluid viscosity.
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Figure 6.12 shows the volumetric flow rate of fluid through the bearing as a

function of shaft speed. The increased flow rate is due solely to the decrease in fluid

viscosity with increase temperature. The effect of fluid pumping by the grooves has been

neglected in the analysis; the actual flow rate may be somewhat higher or lower,

depending on which way the grooves are oriented.
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Figure 6.12. Supply flow rate of fluid through the bearing with the parameters shown in

Table 6.2. The analysis includes the effect of a temperature-dependent fluid viscosity.
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7. EXPERIMENTAL TESTING: THREE PROTOTYPE SPINDLES

This chapter describes the tests performed at Setco Whitnon on the three fluid film

test spindles. The primary test spindle was built with SC Bearing #1, and the two

secondary test spindles were built with SC Bearing #10. The three spindles were each

evaluated for use in a machine that can be used to drill clusters of holes in steel

components. The design of a 4-cluster machine is described in Chapter 8.

The tests performed on the primary test spindle were successful. The radial

stiffness of the spindle was measured to be over 130,000 pounds per inch at a shaft

location 4" from the front of the air seal. The load capacity of the thrust bearing was

tested and found to about 1,100 pounds. The spindle was driven to 18,000 rpm and

subjected to impact hits on the end of the shaft exceeding 150 pounds while rotating at

10,000 rpm without failure. Modal plots show that the spindle is very well damped with a

dynamic stiffhess of about 73,000 pounds per inch at a resonant frequency of 550 Hz. In

addition, the temperature rise of the water flowing through the pockets was measured to

be 4.20C when the shaft is rotating at 10,000 rpm, 12.5°C when rotating at 18,000 rpm.

All of these results were predicted within a reasonably close margin, and the behavior of

the spindle is believed to be well understood. The test results indicate that the prototype

spindle has exceptional qualities that meet or exceed the intended project goals.

The tests performed on the secondary test spindles were also very successful. The

new spindle configuration has grooves on the surface of the shaft to route the fluid from

the compensating lands to the load-supporting pockets. With this scheme the need to

cross-drill through the shaft is eliminated and the spindle fabrication is greatly simplified.
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In addition, these spindles require substantially less flow rate and pumping power to

achieve the same stiffness. The goals of the tests were to verify the static stiffnesses of the

spindles and to verify their stability at high speeds. The two spindles had excellent static

stiffnesses that were comparable to that achieved with the primary test spindle. Also, the

four-pocket spindle was sucessfully driven to 20,000 rpm and its stability was verified.

These tests verify the basis of the design.

7.A. Primary Self-Compensated Test Spindle

The primary fluid film test spindle is shown in Figure 7.1. Four-pocket self-

compensated hydrostatic bearings are used for the front and rear radial bearings. A

smaller bearing on the pulley drive shaft is used to provide substantial belt load capability

and effectively isolate the noise of the pulley drive system from the rest of the spindle. A

striking characterstic of the spindle of Figure 7.1 is that all of the bearing detail is

machined into the surface of the shaft itself, grooves machined into the shaft with a ball

end-mill are used to create the bearing "pockets" and integral compensators. This method

of hydrostatic spindle construction, which greatly simplifies spindle fabrication, is enabled

by the use of self-compensation. With this technique the compensation resistances can be

placed on the surface of the shaft and made to rotate at the same rate as the pockets.
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Pulley-Drive

Pulley-Drive Support Bearing

Rear Bearing Through-the-Tool
Compensator Coolant Supply

Channel

Figure 7.1. Layout of the primary test spindle. The radial bearings are self-compensated

bearings with feed holes cross-drilled through the shaft.

Also shown in the test spindle of Figure 7.1 are air seals on the front and rear of

the spindle. These seals are non-contact seals that are pressurized with normal shop air to

prevent any leakage of the coolant used to pressurize the bearings. The seals were added

to the spindle for ergonomics and to minimize the routine maintenance of refilling the

coolant reservoir. Also shown in Figure 7.1 is a unique method to supply through-the-

tool coolant. Coolant is supplied to the groove in the center of the spindle and then

routed through holes drilled radially to the center of the shaft and then to the front face of

the spindle. The thrust bearing, another unique characteristic of this spindle, is designed

with one thrust face larger than the other to provide preferential load capacity in the

pushing direction for this drilling application.
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As mentioned previously, the bearings of the primary prototype spindle are self-

compensated bearings that have features on the surface of the shaft itself to provide

compensation to the bearings. In the primary test spindle, the fluid is routed from the

compensators to the pockets on the opposite side of the shaft through holes that are cross-

drilled through the shaft, as illustrated in Figure 7.2 and shown in Figure 7.3. The holes

reduce the stiffness of the shaft only negligibly and provide a convenient means to route

the fluid. Since the fluid is nearly incompressible and the holes begin and end at the same

radius, fluid inertia forces induced by shaft rotation do not affect the bearing performance.

This method of cross-drilling through the shaft is an effective manufacturing method.

However, a new method in which the fluid is routed on the surface of the shaft itself

simplifies fabrication and reduces the flow rate of fluid required to pressurize the bearings.

Two test spindles were also fabricated with this method, and tests of these spindles will be

described later in this chapter. Tests of the cross-drilled spindle will be described first.

Cross-Drillei
Hole

Figure 7.2. Illustration of the holes cross-drilled through the shaft from the compensators

to the pockets on the opposite side of the shaft.
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Figure 7.3. Picture of the shaft of the Phase I test spindle showing the holes that are

cross-drilled through the shaft from the compensators to the load-supporting pockets.

7.A.i. Static Radial Stiffness

The static stiffness of the spindle was measured by hanging a dead weight of 25

pounds from its end and measuring the deflection with a Starrett indicator. The resolution

of the indicator was 0.00001" and its accuracy was verified by testing it against the

positioning lead of a capacitance probe. The positions on the spindle where the weight

was suspended and the displacement was measured are shown in Figure 7.4. With a

supply pressure of 590 psi and a back pressure of 11 psi (about 580 psi pressure

difference), the deflection of the spindle loaded with 25 pounds was 0.000190 inches.

This yields a static stiffness of 131,500 pounds per inch. Since the shaft material in this

test was steel, it is apparent that we can meet our goal stiffness of 250,000 pounds per
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inch using a carbide shaft with an elastic modulus of 60x10 6 psi. This is discussed further

below.

Figure 7.4. Schematic diagram showing the axial locations of the indicator and the

applied weight that were used in the static stiffness tests.

A goal of the spindle testing was to verify the theory of the spreadsheets so that

the next generation spindle could be optimally designed with confidence. A comparison

will therefore be made between the measured stiffness and the predicted stiffness for this

configuration. Figure 7.5 shows a schematic diagram of the rotor illustrating the finite

elements and boundary conditions used to model the shaft bending. Pressures were

applied at the appropriate bearing locations with magnitudes corresponding to the

predicted bearing stiffnesses. Table 7.1 shows the values of the parameters used in the

analysis. In addition, the clearances used on the front and rear radial bearings were 15.5

gm and 15.4 ptm, respectively. Figure 7.6 shows the predicted centerline deflection of the

spindle subjected to a force of 25 pounds on its front end and no belt pressure on its rear
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end. The predicted stiffness is 131,700 lb/in. Although an accuracy of about 10% is

expected, the exceptional agreement between the predicted stiffness of 131,700 lb/in with

the measured stifness of 131,500 lb/in is most likely coincidental.

z

Belt
Tension

1 2 4 5 6

Front
Bearing

78:g Ifx
9 10 11121314

Rear Belt-Drive
Bearing Bearing

Figure 7.5. Schematic diagram of the rotor illustrating elements and boundary conditions

used to model the shaft bending.

Table 7.1.

Section Elastic Length Outer Inner Poisson
Modulus (m) Diameter Diameter Ratio

(Pa) (m) (m)
1 2x10" 0.1271 0.056 0.01 0.3
2 2x10" 0.038 0.056 0.006 0.3
3 2x10" 0.06 0.056 0.006 0.3
4 2x10" 0.0175 0.056 0.006 0.3
5 2x10" 0.019 0.053 0.006 0.3
6 2x10 11  0.0175 0.056 0 0.3
7 2x10" 0.06 0.056 0 0.3
8 2x10" 0.032 0.056 0 0.3
9 2x10" 0.01 0.024 0.009 0.3
10 2x10" 0.019 0.034 0.009 0.3
11 2x10" 0.029 0.034 0.009 0.3
12 2x10" 0.022 0.032 0.013 0.3
13 2x101" 0.0254 0.025 0.013 0.3
14 2x10" 0.0254 0.025 0.013 0.3
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Figure 7.6. Predicted deflection of the spindle subjected to a force of 25 pounds on the

nose of the spindle. The dark circles indicate the positions of the bearing pads.

The original goal stiffness of the project was 250,000 lb/in at a location 4" from

the front of the housing using a carbide shaft. The calculations previously described were

repeated using a carbide shaft with an elastic modulus of 60x10 6 psi, and the predicted

stiffness of this configuration is 236,000 lb/in. This calculation indicates that, with a few

modifications of the spindle design based on knowledge gained from the spindle testing

(e.g., the orientation of the bearing pads), we can meet our project goal stiffness of

250,000 lb/in using a carbide shaft if it is deemed necessary.

In addition to the primary stiffness test, a second spindle configuration was also

tested for static stiffness. In this test the fluid drains which lead from the pocket isolation

channels were closed off. The function of the pocket isolation channels are to eliminate

leakage from the fluid supply regions of the bearing to the bearing pockets. With the

drains from the isolation channels closed, both the stiffness of the bearings and the overall
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flow rate of the spindle decrease. With the drains leading from the isolation channels

closed off and a supply pressure of 590 psi, a back pressure of 0 psi, the deflection of the

spindle loaded with 25 pounds was 0.000210 inches. This yields a static stiffness of about

119,000 pounds per inch. Although the stiffness of this configuration is about 10% lower

than that with the drains open, the flow rate through the spindle and the required pumping

power are reduced 30% from about 4.8 gpm to about 3.7 gpm as discussed in the section

of this report on flow rate.

In addition to the front spindle stiffness tests, the rear belt drive extension of the

spindle was also tested for static stiffness. The stiffhess was measured by hanging a dead

weight of 25 pounds from the rear end of the belt drive extension and measuring the

deflection with a Starrett indicator with a resolution of 0.00001". The position on the

spindle where the weight was suspended and where the displacement was measured are

shown in Figure 7.7. With a supply pressure of 590 psi and no back pressure, the

deflection of the spindle loaded with 25 pounds was 0.0005 inches. This yields a static

stiffness of about 50,000 pounds per inch.

Indicator I 90 ,
RntcirC

Housing

25

Figure 7.7. Schematic diagram showing the axial locations of the indicator and the

applied weight that were used in the static stiffness tests on the rear of the spindle.
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A comparison will again be made between the measured stiffness and the predicted

stiffness of the spindle for this configuration. In this case a point force is applied to the

rear end of the spindle and no force is applied to the front end. The parameters used in the

calculations are again those of Table 7.1. The clearance used on the rear pulley bearing

was 14 pm. Figure 7.8 shows the predicted centerline deflection of the spindle subjected

to a force of 25 pounds on its rear end. The predicted stiffness is 60,000 lb/in, which

agrees with the measured stiffness of 50,000 lb/in within about 20%. The reason why the

rear stiffness is slightly lower than expected may be the compliance of the interface

between the rear belt-drive extension and the main front shaft. The difference is small,

however, and the rear extension will certainly serve its intended purpose of supporting the

shaft under a belt load. Note also that in this test the stiffness was measured on the very

end of the pulley drive extension. In operation the belt will be applied to the center of the

pulley drive extension where the stiffness will be significantly higher.
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Figure 7.8. Predicted deflection of the spindle subjected to a force of 25 pounds on the

rear end of the spindle. The dark circles indicate the positions of the bearing pads.

Note in Figure 7.8 that when 25 pounds of forces is applied to the rear belt drive

extention that the predicted deflection of the front spindle face is only about 0.00002

inches. This observation indicates that the belt system used to drive the spindle is

effectively isolated from the front of the spindle where the tool is held. This observation

was confirmed with TIR measurements that illustrate that the runout at the front face of

the spindle is only marginally affected by whether the spindle is driven with a belt drive or

with an in-line drive.

7.A.ii. Dynamic Radial Stiffness

In addition to the static stiffness tests performed on the stationary shaft, dynamic

radial stiffness tests were performed with and without the shaft rotating. For these tests

the spindle was excited with a load cell hammer and its resulting displacment was
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measured with a capacitance probe. Both the force and displacement measurements were

made at a location on the shaft approximately 4 inches from the front of the air seal. In all

of the dynamic tests the spindle was connected on its rear belt drive extension to the

torque sensor using a flexible coupling. Also, in all of the dynamic tests the drains leading

from the pocket isolation grooves were closed. Note that this configuration had a lower

static stiffness than that with the pocket isolation drains open.

The capacitance probe was mounted with the use of a magnetic holder onto an

angle-iron that was bolted down to the same table to which the spindle housing was

bolted. This configuration was found to be the best configuration possible given the

limited fixturing available at the time of testing. A better configuration would be obtained

if the capacitance probe were mounted directly to the spindle housing. This would

eliminate the effects of vibrations of the angle iron, vibrations between the angle iron and

the table, and vibrations between the spindle housing and the table. Although the tests

performed with the limited fixturing are probably adequate, if more accurate results are

needed then a more suitable mounting structure should be fabricated and the tests should

be repeated with the capacitance probe mounted directly to the spindle housing.

Dynamic tests were performed first with the shaft not rotating. For these tests a

light hammer with a sensitivity of 10 mV/lb was used with hits in the range of 10 to 30

pounds. A five-sample averaging scheme was used to reduce the effect of noise and

obtain a cleaner plot. The resulting frequency response spectrum is shown in Figure 7.9.

The natural frequency of the spindle is about 550 Hz, with a dynamic stiffness at this peak
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of about 73,000 lb/in. This high magnitude of dynamic stiffness is expected of a well-

damped hydrostatic spindle.
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Figure 7.9. Measured dynamic response of the unrotating spindle measured at a point 4"

front the front of the air seal. Note the noise spike less then 200 Hz due to the pump.

Note the noise spike of Figure 7.9 that occured at a frequency less then 200 Hz.

This noise was isolated by measuring the spectral power density of the capacitance probe

output with and without the pump running. This test proved that the noise in Figure 7.9

less than about 200 Hz was attributable to the pump. Note also that the stiffness of the

spindle as the frequency becomes small in Figure 7.9 limits to about 115,000 lb/in, which

is close to the static stiffness of 119,000 lb/in measured for this spindle configuration.

This observation adds to our confidence that the dynamic measurements made are

accurate.
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The dynamic tests were next repeated with the shaft rotating up to 10,000 rpm. In

these tests, the electrical noise emitted by the drive motor tended to drown out the

measurements made using the light hammer. This noise was confirmed to be electrical by

noting that even with the shaft unrotating the noise was excessive with the motor turned

on. A heavier hammer with a sensitivity of 0.9 mV/lb was therefore used with hits on the

end of the shaft in the range of 50 to 150 pounds. These heavy hits tended to excite other

components of the test set-up, including the angle-iron to which the capacitance probe

was mounted. The response spectrum of the shaft rotating at 10,000 rpm is shown in

Figure 7.10. Note that the peak at about 100 Hz is thought to be attributable to the

vibration of the angle iron. The peak at 550Hz found in the previous measurements made

with the shaft unrotating is not evident in Figure 7.10. This peak was likely drowned out

by the excessive electrical noise as well as other structural noise resulting from the heavy

hits. The data is therefore unreliable as a means to measure the dynamic stiffness of the

rotating shaft, and it will be necessary to eliminate the electrical noise emitted by the drive

motor before accurate data can be obtained. The data presented here is useful data,

however, in that it illustrates that no excessive resonances were witnessed with the shaft

rotating at high speed. Perhaps the most useful product of these tests is that the spindle

absorbed hits on its end up to 150 pounds while rotating at 10,000 rpm without failure.
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Figure 7.10. Measured dynamic response of the spindle measured at a point 4" front the

front of the air seal. The speed of the spindle was 10,000 rpm.

7.A.iii. Static Thrust Stiffness and Load Capacity

In addition to the radial stiffness tests, tests were also performed to determine the

static thrust stiffness and load capacity of the spindle. These tests indicate that the thrust

bearing is not performing according to its expected behavior. Although the load capacity

of the thrust bearing is close to what was expected, the stiffness of the thrust bearing is

about half that predicted by the spreadsheets. This behavior was found to be the result of

excessive housing compliance.

The total clearance of the two thrust gaps was measured first by moving the

unpressurized spindle forward and rearward until contact was made with the housing. An

overall displacement of about 0.0013 inches was measured during this test. Next the

spindle was pushed all the way forward so that the primary thrust face was in contact with
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the housing. The spindle was pressurized and the displacement back to equilibrium was

measured to be about 0.0007 inches. This is consistent with the equilibrium position of

0.00074 inches predicted by the spreadsheets (note that the two faces of the thrust bearing

have unequal areas and so at no-load conditions the spindle rests about 15% off-center).

Once the clearances of the thrust bearing had been measured, the thrust tests were

conducted by loading the front face of the spindle axially using a hydraulic cylinder and

measuring the applied force with transducers placed between the cylinder and the shaft.

The displacement was measured with two Starrett indicators; the first indicator had a

resolution of 0.00001 inches and the second one 0.0001 inches. The indicator used for

higher applied forces had a lower accuracy because the required travel for these tests was

higher. The measured forces and displacements of the thrust test are tabulated in Table

7.2 and plotted in Figure 7.11. The shaft was found to bottom out at an applied load of

approximately 1,100 pounds, which is about 10% less than the touch-down load capacity

of 1,200 pounds predicted by the spreadsheets. Touchdown was determined by turning

the rotor by hand at each applied load to feel for friction between the thrust face and the

housing. Although the touch-down load capacity of the thrust bearing was close to

expected, the overall deflection of the shaft at this load was about twice that expected. As

shown in Figure 7.11, the displacement of the shaft from equilibrium was measured to be

about 0.0011 inches at touch-down. This displacement is greater than the 0.0007 inches

of measured clearance in this direction, indicating that there is excessive housing

compliance that is causing the stiffness to be lower than expected. The stiffness of the

thrust bearing with the current housing design is about 1,000,000 lb/in. This stiffness
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could be doubled by designing a stiffer housing member to hold the shaft under thrust

loads. However, this may not be necessary to meet the intended goals of the project.

Table 7.2.

Force Deflection Indicator
(pounds) (inches) Resolution

(inches)
-75 -0.00016 0.00001
-50 -0.00011 0.00001
-25 -0.00005 0.00001
25 0.000025 0.00001
50 0.00005 0.00001

449.6 0.0005 0.0001
562 0.0006 0.0001

674.4 0.0008 0.0001
899.2 0.0009 0.0001
1011.6 0.00097 0.0001
1079 0.0011 0.0001

o Measured
Predicted

1250

1000

750

500

250

0

-209
-.6 -.4 -.2 0 .2 .4 .6 .8 1.0 1.2

Deflection from Equilibrium (thousandths of an inch)

Figure 7.11. Measured and predicted load performances of the thrust bearing. The

disagreement is thought to be the result of compliance in the spindle housing.
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7.A.iv. Description of the Thrust Bearing "Failure"

A goal of the test was to drive the prototype spindle to a speed of 20,000 rpm

while measuring the torque required to turn the shaft and the temperature rise of the

coolant. Although a speed of 18,000 rpm was successfully reached, the spindle seized

when the shaft speed was increased from 18,000 rpm to 19,000 rpm. Upon removing the

shaft from the housing, there were pick-ups on the secondary face of the thrust bearing

and on the front-most leakage land of the front radial bearing. There was no pick-up on

the primary face of the thrust bearing. From this evidence it was concluded that

centrifugal forces on the fluid in the primary thrust face recess caused the shaft to move

forward to such an extent that the secondary thrust face touched down on the housing and

caused the seizure. Although the thrust design used in this application has an upper speed

limitation, it is clearly adequate for the 10,000 rpm maximum spindle speed for which it

was designed.

To understand the speed limitation of the thrust bearing, a brief description of the

thrust bearing will be given here. The thrust bearing of the prototype spindle is illustrated

in Figure 7.12. It is of the type Thrust Bearing #3 illustrated in Chapter 5. Fluid at supply

pressure is routed to the supply channel via a hole drilled through the housing. This hole

is not shown in Figure 7.12. Upon entering the supply channel, it crosses the secondary

thrust land which is at a tight axial clearance (about 0.0006") from the housing. Upon

exiting the secondary thrust land, the fluid is at a pressure of about half the supply

pressure. It then flows through the feed clearance to the thrust recess which is machined

into the primary face of the thrust bearing. The fluid flows radially outward through the
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thrust recess to the primary thrust land which is at a tight axial clearance (about 0.0007")

from the housing. The fluid crosses the primary thrust land and exits to the drainage

channel, which is at a pressure of approximately atmospheric pressure. The fluid is routed

out of the drainage channel through a hole that is not shown in Figure 7.12.

Drainage
Channel

Supr
Char

Secondz
Thrust
Land

imary
irust
and

Thrust
Recess

Feed
Channel

Figure 7.12. Illustration of the thrust bearing used in the prototype spindle.
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At low speeds, the two faces of the thrust bearing work together to keep the

spindle centered axially such that the clearance of the primary thrust land is approximately

equal to the clearance of the secondary thrust land. As the shaft is turned, centrifugal

forces acting on the fluid in the primary thrust recess cause an increase in the average

recess pressure. Centrifugal forces also act on the fluid in the land clearances, but to a

lesser extent. There is therefore a net force imbalance resulting from the increase in

primary thrust recess pressure that causes the shaft to move forward until a new bearing

equilibrium is reached. As the speed is increased, the shaft moves further and further

forward axially. At some critical speed, the shaft has moved forward 0.0006" and the

secondary thrust land touches down on the housing. This critical speed is the maximum

speed at which the bearing can operate. For the Phase I fluid film test spindle, this speed

was somewhere between 18,000 rpm and 19,000 rpm. This speed capability is certainly

adequate for the cluster spindle project, since the maximum speed with which the spindles

will operate is 3,000 rpm.

7.A.v. Flow Rate

The flow rate of water through the spindle was found to depend only on the

pressure difference across it and the temperature of the bearing lands, not on the shaft

rotation speed. This important result was expected but verification was needed from the

spindle tests.

The flow rate of water through the spindle was measured first with the drain lines

leading from the pocket isolation channels closed. Three Omega rotameter water flow

meters with accuracies of 0.07 gpm were used to measure the flow rates through the three
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supply lines. The first one led to the front radial bearing, the second one led to the rear

radial bearing, and the third one led to both the thrust bearing and the belt-supporting

radial bearing. The three supply flow rates were each found to increase proportionately

with the pressure difference across the spindle, the supply pressure minus the back

pressure. As the shaft speed was increased to low speeds (less than about 5,000 rpm), the

flow rate remained constant. As the shaft speed was increased further to 10,000 rpm, the

flow rate was found to increase by about 5%. However, this increased flow rate was

found to be the result of the increased temperature of the bearing lands from 24°C to

about 280C and resulting decrease in the viscosity of the water flowing over them. This

was verified by stopping the spindle from 10,000 rpm and noting that the flow rate

through the spindle remained constant until the shaft was cooled back to its original

temperature where the flow rate was lower. The flow rates measured at 600 psi supply

pressure and no back pressure are shown in Table 7.3. A separate test performed

indicates that approximately 0.2 gpm of the flow rate to the rearest supply line flows to

the rear pulley bearing, and the rest flows to the thrust bearing.

Table 7.3

Time Speed Inlet Drainage Front Rear Thrust Bearing and
(min.) (rpm) Temp. Temp. Radial Radial Belt-Supporting

Bearing Bearing Radial Bearing
0 0 230C 240C 1.40 gpm 1.38 gpm 0.98 gpm

30 10,000 230C 280C 1.47 gpm 1.43 gpm 1.05 gpm
30 0 230C 28 0C 1.47 gpm 1.43 gpm 1.05 gpm
60 0 23 0C 240C 1.40 gpm 1.38 gpm 0.98 gpm
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The flow rate measurements were repeated with the drain lines leading from the

pocket isolation channels open. The flow rates to the front and rear radial bearings were

each found to increase by about 0.55 gpm. The total flow rate therefore increased from

3.7 gpm to 4.8 gpm, an increase of about 30%. As discussed in a previous section, the

pocket isolation channels effectively act to eliminate leakage from the fluid supply regions

of the bearing to the bearing pockets. With the drains from the isolation channels open,

the stiffness of the bearings are increased although it is paid for with a higher flow rate

(and therefore a higher required pumping power).

The flow rates predicted by the spreadsheets were found to agree with the

measured flow rates only if the clearances between the shaft and housing were chosen to

do so. A clearance of 15.5 jtm (0.000610") was used on the front bearing and a clearance

of 15.4 jtm (0.000606") was used on the rear bearing. The clearance used on the rear

pulley bearing was 14 4im (0.00055"). The actual bearing clearances were measured by

three different independent companies: Setco/Whitnon, Edmunds Gage, and

Setco/Cincinatti. The shaft and housing diameters were measured in four places, as shown

in Figure 7.13. The measured diameters are tabulated in Table 7.4. As shown, the

measured clearances varied between the three sets of measurements. Since the flow rate

varies with the cube of the bearing clearance, the measured flow rate probably yields the

most accurate indication of the actual bearing clearance.
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Figure 7.13. Schematic diagram illustrating the locations on the (a) housing and (b) shaft

where the diameters were measured.

Table 7.4.

Measured By Housing Diameter Shaft Diameter Clearance per Side
(inches) (inches) (inches)

Ha = 2.2055 Sa = 2.2046 0.00045
Setco/Whitnon Hb = 2.2055 Sb = 2.2046 0.00045

I- = 2.2055 S, = 2.2046 0.00045

Hd = 2.2055 Sd = 2 .2 0 4 6  0.00045

Ha = 2.20559 S, = 2.20446 0.00056
Edmunds Gage Hb = 2.20555 Sb = 2 .2 0 4 4 8  0.00053

HI = 2.20564 S, = 2.20452 0.00056
Hd = 2.20555 Sd = 2 .2 04 5 3  0.00051

Ha = 2.2057 Sa = 2.2045 0.0006
Setco/Cincinatti Hb = 2.2059 Sb = 2.2045 0.0007

H- = 2.2056 S, = 2.2045 0.00055

Hd = 2.2057 Sd = 2.2045 0.0006
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Flow rates were also tested to determine the effect of feeding the fluid radially or

tangentially at a 450 angle to the pressure grooves on the bearing surface. The flow rate

tests performed with the fluid fed to the bearing at a 450 angle were repeated with the

supply fluid fed perpendicular to the shaft. With the shaft unrotating, the measured flow

rates were found to be equal to within the accuracy of the flow meters for the two

configurations. The spindle was rotated up to 10,000 rpm and again there was no

noticable difference in the measured flow rates, the measured torque, or the measured

temperature rise between the two configurations. It is therefore concluded that it is not

necessary to feed the fluid into the bearing at an angle for this spindle. The reason why

this technique is not important in this case is because the dynamic head of the fluid caused

by the shaft rotating at 10,000 rpm is about one-tenth of the supply pressure of 600 psi.

In higher speed bearings where the dynamic head of the rotating fluid becomes a

significant portion of the supply pressure, there is a chance that the supply flow rate to the

bearing may be reduced somewhat. This is not the case in this application and the fluid

may simply be fed radially to the bearing, perpendicular to the surface of the shaft.

The flow rate of coolant through the spindle was next measured at speeds up to

18,000 rpm. The flow rates measured using 600 psig supply pressure are shown in Figure

7.14. As the spindle speed was increased, the flow rate through each bearing also

increased. The increased flow rate is the result of the increased temperature of the bearing

lands and resulting decrease in the viscosity of the coolant flowing over them.
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Figure 7.14. Measured flow rates of coolant supplied to the three supply ports of the

spindle as a function of shaft speed, using a fixed supply pressure of 600 psig.

7.A.vi. Coolant Supply Flow

A method was provided in the prototype spindle to supply a flow of coolant to the

center of the shaft to facilitate the use of a through-the-tool coolant system. As shown in

Figure 7.15, the fluid is first routed to a fluid collection channel located on the outer edge

of the shaft. Axial leakage lands with tight clearances are provided on both sides of the

fluid collection channel to prevent excessive leakage flow. Although a small flow of the

coolant leaks off over these lands, the rest of it flows through holes drilled radially inward

to the center of the shaft. A hole drilled axially through the center of the shaft is used to

route the coolant to the front of the spindle where it can be used to cool the tool. This
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method is an excellent way in which to route fluid to the tool without making contact with

the rotating shaft.

Coolant

I1.
Coolant-

Coolant

Leakage Lands

Figure 7.15. Drawing of the rotor illustrating the scheme used to route coolant to the

center of the shaft so that it may be used for through-the-tool cooling.

Measurements were made to determine the added pressure required to overcome

the centripetal forces exerted outward on the fluid caused by shaft rotation. This pressure

can be calculated by setting the outward pressure gradient in the radial holes equal to the

body force exerted on the fluid:

dp= p 2r (7.1)
dr

where p is the pressure, p is the fluid density, co is the shaft rotational speed, and r is the

radial coordinate. Integrating with respect to r, the pressure difference from the outer

edge to the shaft center is given by:

Pouter - Pinner = p ( ter - Rier) (7.2)

where Rout is the outer radius where the fluid enters the radial holes and RI., is the inner

radius where the fluid exits the radial holes.
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The pressure required to pump coolant to the center of the shaft was measured

over a shaft speed range from 0 to 10,000 rpm. At 0 rpm, the supply pressure required to

pump the fluid at 1.5 gpm was 7.6 psi. This pressure drop was the frictional component

required to pump the coolant through the radial holes, through the central supply hole, and

through the hose back to the coolant supply tank. As the shaft speed was increased, the

supply pressure required to pump the coolant increased as shown in Figure 7.16. Also

shown in Figure 7.16 is the predicted supply pressure required to pump the coolant at 1.5

gpm. Note that 7.6 psi was added to account for the friction pressure drop.

(0
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L
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n
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Speed (thousands of rpm)

Figure 7.16. Supply pressures required to pump coolant to the center of the shaft,

through a hose, and back to the coolant supply tank at 1.5 gpm.
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In addition to the primary coolant supply flow, the flow of coolant across the

leakage lands which surround the fluid collection channel was also evaluated. The flow

rate of coolant to the outer collection groove and that from the central rotor coolant

channel were simultaneously measured and were found to be equal to within the accuracy

of the flow meters (+0.07 gpm) at all shaft speeds. This is consistent with the 0.043 gpm

of leakage flow predicted by the spreadsheets for a coolant supply pressure of 70 psi.

7.A.vii. Torque and Shearing Power

The torque required to drive the spindle was measured using a dynamic torque

sensor connected in-line between the drive motor and the spindle. The torque meter used

had a measurable torque range of 0 to 500 in-lb. Although the torque expected to turn the

spindle was less than 20 in-lb, the 500 in-lb meter was used because it was the only torque

sensor available at the time of the testing. The measured torque required to turn the

spindle up to 10,000 rpm is shown in Figure 7.17. The torque shown in this plot is the

measured torque minus the hysteresis of the torque sensor, which was found to be about 5

in-lb. This value was obtained by adjusting the curve of Figure 7.17 until the torque

limited to a value of zero at zero rpm. The torque predicted by the spreadsheets for a

speed of 10,000 rpm is about 19.0 in-lb, which is about 25% higher than the 15.1 in-lb

measured torque at this speed. However, the accuracy of the torque meter in this range is

certainly greater than ± 5 in-lb (1% of full-scale reading), and so the agreement is

adequate. The measured torque data presented here is only ball-park and is not an

accurate recording of the spindle torque.
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Figure 7.17. Measured torque required to drive the spindle up to 10,000 rpm.

The drive power consumed by the spindle is found by multiplying the measured

torque of Figure 7.17 by the shaft speed. The measured shearing power curve of Figure

7.18 is again presented only as a ball-park indicator of the bearing power consumption and

is not an accurate recording of this data.
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Figure 7.18. Measured shearing speed required to turn the spindle up to 10,000 rpm.

The measured torque required to turn the spindle up to 18,000 rpm is shown in

Figure 7.19. The torque predicted by the spreadsheets for a speed of 18,000 rpm is about

38.4 in-lb, which is about 35% higher than the 28.2 in-lb measured torque at this speed.

The measured torque data presented here is only ball-park and is not an accurate recording

of the spindle torque.
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Figure 7.19. Measured torque required to drive the spindle up to 18,000 rpm.

The drive power consumed by the spindle is found by multiplying the measured

torque of Figure 7.19 by the shaft speed. The measured shearing power curve of Figure

7.20 is again presented only as a ball-park indicator of the bearing power consumption and

is not an accurate recording of this data. The predicted shear power is thought to be quite

accurate because the temperature rise of the coolant calculated using this power agreed

well with the measured temperature rise, as discussed in the next section.
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Figure 7.20. Measured shearing power required to turn the spindle up to 18,000 rpm.

7.A.viii. Temperature Rise

The temperature rise of the spindle was measured using thermistors which have an

accuracy of less than ± 0. 10C. A considerable amount of electrical noise was added to the

system by the drive motor, however, and filtering of the data was needed after the testing.

The thermistors used to measure the supply fluid and the drain fluids were positioned such

that they were in direct contact with the fluid to obtain the most accurate reading. An

additional thermistor was positioned down into a hole drilled radially through the housing

to within about 1/4" of the bearing surface. The hole was positioned axially such that it

was in the center of the spindle housing, mid-way between the two radial bearings. Figure

7.21 shows the measured temperatures of the supply fluid, the drain fluids, and the
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housing as the spindle speed was increased from 0 to 9,000 rpm. A periodic cycle of the

temperature is visible because the period of the chiller was about 5 minutes. Note that

although the system was not quite at equilibrium during the 12 minute test period, the

temperature differences (the temperatures minus the supply temperature) remained

constant after only a few minutes. This was typical of all of the tests at all of the shaft

speeds.

Housing

Rear Pocket Drain
Front Pocket Drain

Front Leakage Drain
Rear Leakage Drain
Rearest Drain

Supply

0 3 6 9 12

Time (minutes)

Figure 7.21. Measured temperatures of the spindle supply fluid, housing, and drains as it

was warmed up at 9,000 rpm.

The temperature differences measured for each shaft speed are plotted in Figure

7.22. At zero shaft speed, the temperature rise of the fluid through the pocket leakage

drains is about 0.950 C. This is very close to the P1C temperature rise that is expected for
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water crossing a resistance with a pressure drop of 600 psi. This component of

temperature rise remains fixed as the shaft speed is increased. The remainder of the

temperature rises of Figure 7.22 are caused by the viscous shearing of the fluid in the

bearings due to the rotational motion of the shaft.

Housing

Rear Pocket Drain
Front Pocket Drain

Front Leakage Drain
Rearest Drain
Rear Leakage Drain

2 4 6 8 10

Shaft Speed (thousands of rpm)

Figure 7.22. Measured temperature differences across the spindle

rpm.

at speeds up to 10,000

Note in Figure 7.22 that the the drains from the front and rear radial pockets are

nearly the same temperature at all speeds; although the shearing power was nearly the

same for the two bearings the rear drain temperature was slightly higher because the flow

rate was lower due to the slightly tighter gap on this end of the spindle. Also note that the

rear leakage drain is significantly cooler than the front leakage drain. The flow added to
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this drain from the thrust bearing acts to cool this fluid and cause a lower overall

temperature rise. The most evident attribute of Figure 7.22 is that the housing

temperature was significantly warmer than the fluid leaving the bearing drains. The

housing temperature was higher than the other temperatures because there was no fluid

being fed to the coolant supply channel near the housing temperature reading during the

testing. Under normal operating conditions, coolant will be fed to this channel in order to

route it to the center of the shaft. Therefore, under normal operating conditions this

central housing temperature will be significantly cooler than the drain temperatures and the

rest of the bearing. The 4.20 C temperature rise of the fluid flowing through the

compensators and pockets of the two main radial bearings therefore represents the

maximum temperature rise that will occur in the spindle in its normal mode of operation at

a speed of 10,000 rpm.

A comparison will now be made between the temperature rises of Figure 7.22 and

that predicted by the spreadsheets. The temperature of the fluid leaving the front pocket

drain provides a characteristic test of whether the spreadsheets are adequately predicting

the heat generated in the bearings. This flow absorbs shearing power generated in the

lands and pockets of the compensators as well as the lands and pockets of the radial

bearing pads. Figure 7.23 shows a comparison of the predicted and measured temperature

rise of this fluid with shaft speeds ranging from 0 to 10,000 rpm. The temperature rise at

low speeds is simply that generated from pumping the fluid from 600 psi over the lands

and out to atmospheric pressure. As the speed is increased, the flow begins to absorb

more and more heat generated in the bearings due to the viscous shearing of the fluid
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caused by the shaft rotation. Although the flow over the lands is still laminar at a speed of

10,000 rpm, the flow through the pockets and drainage grooves are turbulent with a

Reynolds number of about 18,000. As shown, the agreement between the predicted and

measured temperature rise is very good.

0 2 4 6 8 10

Shaft Speed (thousands of rpm)

Figure 7.23. Comparison of the measured and predicted temperature rise of the fluid

flowing through the compensators and pockets of the front radial bearing.

In a separate test, the primary prototype spindle was taken up to higher speed.

The temperature rise of the spindle was measured in this test using thermocouples which

have an accuracy of about ± 0.5 0 C. The thermocouples were again positioned such that

they were in direct contact with the fluid to obtain the most accurate reading, one in the

265



coolant entering the spindle and one in the coolant leaving the spindle from the rear radial

bearing drain port. The difference between these two temperatures is plotted for shaft

speeds up to 18,000 rpm in Figure 7.24. At zero shaft speed, the temperature rise of the

fluid through the pocket leakage drain is about 0.70C. This is very close to the °PC

temperature rise that is expected for water crossing a resistance with a pressure drop of

600 psi. The maximum temperature rise of the coolant was 12.5 0 C at 18,000 rpm. This

value is very close to the 120C temperature rise computed using the shear power predicted

by the spreadsheets and the measured flow rates of Figure 7.14.
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Figure 7.24. Comparison of the measured and predicted temperature rise of the fluid

flowing through the compensators and pockets of the rear radial bearing.
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7.A.ix. Spindle Error Motion

The error motion of the spindle was measured by a representative of Lyon Inc., a

manufacturer of error motion instrumentation. The set-up that was used for this testing is

shown in Figure 7.25. Capacitance probes were mounted off of a small steel ball which

was mounted to the front nose of the spindle [15]. The ball was displaced from the

centerline of the spindle by a radial distance of 50 ptin, enabling the computer to track the

rotational speed of the spindle. Error motions were measured first with the spindle drive

off (no rotation) and the pump supplying the bearings with a full pressure of 600 psig.

The radial and axial displacement were both found to be equal to 30.0 ptin. This

contribution to the spindle error motion, which remains approximately constant as the

spindle speed is increased, is the result of pressure fluctuations in the bearing supply fluid

caused by the noisy axial piston pump used in these tests. With the use of a more quiet

pump such as a screw pump, this displacement could be substantially reduced.

Accumulators can also be used to reduce the effect of pressure fluctuations on the error

motion of the spindle.

Figure 7.25. Picture of the test set-up used to measure the error motion of the spindle.
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The radial error motion of the spindle was next measured at various spindle

rotation rates. The spindle was first driven with a ball bearing drive spindle connected in-

line to the test spindle with flexible couplings. Table 7.5 shows that a maximum total

radial runout of 76.5 pin was experienced at a rotational speed of 7,000 rpm. The total

runout was 67.0 pin at 10,000 rpm. A radial runout this low would be extremely difficult

to achieve with a comparably sized rolling element spindle. The shaft of a hydrostatic

spindle makes no mechanical contact with the housing, and the fluid film tends to average

variations in the fluid gap. Any minor perturbations that are induced on the shaft are

substantially dampened by squeeze-film effects in the bearings. These qualities make fluid

film bearings unparalleled in terms of spindle accuracy. With proper attention to the fluid

system and bearing geometry, the error motion could be reduced to less than 10 pin.

Although this level of accuracy is not necessary in this drilling application, it makes

hydrostatic spindles extremely attractive for grinding applications.

Table 7.5.

Speed Asynchronous Average Total
(rpm) Runout Runout Runout

(pin) (pin) (pin)
1000 18.3 14.9 29.0
1010 22.9 13.7 25.6
1010 19.4 14.5 25.7
2000 22.5 17.6 31.2
2000 28.2 14.1 34.4
5000 27.5 23.0 36.2
7000 61.2 47.7 76.5
10000 54.0 40.6 67.0
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The spindle was next driven with a belt drive system as shown in Figure 7.26.

Two tests were done with different belt tensions. The measured radial runout of the

spindle using a belt tension of 50 N (11.2 lbf) is shown in Table 7.6. A maximum total

radial runout of 44.2 prin was experienced at a rotational speed of 5,000 rpm. This is only

marginally higher than the 44.2 gpin of run-out measured at this speed with the in-line drive

system. This fact illustrates the effectiveness of the rear pulley shaft in isolating the noisy

belt drive from the rest of the spindle. The measured radial runout of the spindle using a

belt tension of 69 N (15.5 lbf) is shown in Table 7.7. A maximum total radial runout of

39.3 pin was experienced at a rotational speed of 5,000 rpm.

Figure 7.26. Picture of belt-drive system used to drive the spindle during the error

motion tests.
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Table 7.6.

Speed Asynchronous Average Total
(rpm) Runout Runout Runout

(gin) (pin) (pin)
1000 26.2 13.0 31.6
1000 25.3 13.7 29.9
2000 27.1 14.6 30.9
2800 24.0 16.0 31.2
4050 29.3 24.1 35.7
4625 24.8 24.2 38.3
4990 23.7 20.9 44.2

Table 7.7.

Speed Asynchronous Average Total
(rpm) Runout Runout Runout

(pin) (pin) (pin)
920 27.8 16.5 32.7
1052 24.8 14.4 32.6
2729 25.5 22.8 38.6
2729 24.6 23.4 37.5
2844 35.2 22.8 39.2
4995 24.9 22.3 39.3

7.B. Twisted-Groove Spindle #1: Eight-Pocket Spindle

To this point, this chapter has presented measurements made on the primary Phase

I fluid film test spindle, which is a self-compensated spindle with the fluid routed from the

compensators to the pockets through holes cross-drilled through the shaft. The results

clearly shown that this method can produce an excellent machine tool spindle with

superior qualities. However, a new method in which the fluid is routed on the surface of

the shaft itself simplifies fabrication and reduces the flow rate of fluid required to

pressurize the bearings. Two test spindles were fabricated with this method, one with
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eight-pocket bearings and one with four-pocket bearings, and tests of these spindles will

be presented next.

The eight-pocket secondary test spindle is shown in Figure 7.27. The shaft

diameter is 56 mm. A picture of the shaft pulled part-way out of the housing is shown in

Figure 7.28. In this spindle, coolant is supplied to the central supply channel at about 600

psig. It then flows axially across compensating lands and enters grooves which route it

part-way around the shaft to the pockets. The pockets serve as the primary load-

supporting area of the bearing. The fluid then flows axially across outlet lands to a drain

groove which in this spindle is exterior to the housing. No provision was made to seal the

fluid at the ends of the spindle and keep it from spraying outward since this spindle was

intended only for simplified testing purposes. Note that this spindle has no thrust bearing

and so the shaft is free to float axially in the housing. This spindle was only intended for

simplified testing and so no thrust capacity was provided.

Front Bearing Rear Bearing
Drive Shaft

/ /
Drain Supply Channel Drain

Figure 7.27. Layout of the eight-pocket secondary Phase I test spindle.
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Figure 7.28. Picture of the eight-pocket secondary Phase I test spindle. The shaft is

pulled part-way out of the housing to show it off.

The experimental spindle shown in Figures 7.27 and 7.28 was fabricated for

testing. After fabrication, the inner diameter of the housing and the outer diameter of the

shaft were measured. The shaft had a relatively uniform diameter of 2.2045"; its diameter

was constant to within the measuring accuracy of the indicator, which was approximately

0.00005". The inner diameter of the bore, however, varied significantly. There was found

to be a large amount of "bell mouth" at both ends of the bore. In the inner regions of the

bore, it had a relatively uniform diameter of 2.2056". At 0.5" from its end, however, its

diameter was measured to be 2.2059". This makes the clearance 0.00055" (14.0 jtm) in

the inner regions of the bearings, and 0.00065" (16.5 jim) at a location 0.5" from the end

of the housing. The outlet lands of the bearings extended to within approximately 0.085"

from the end of the housing. The bell-mouth was thought to be much higher at this

location, although it was not measured. Although this amount of clearance variation is not

acceptable for a production spindle, the experimental spindle was tested nevertheless. The
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performance of the spindle was found to be adequate in every respect except for its flow

rate. The flow rate through both bearings was found to be approximately 1.76 gpm at a

supply pressure of 600 psig, using a water-based coolant with a viscosity approximately

30% greater than that of water. This corresponds to approximately 0.88 gpm per bearing.

This is much more than expected. For example, for a uniform clearance of 16.5 mm, the

flow rate through one bearing should only be about 0.4 gpm. The high flow rate through

the bearing indicates that the housing bore had substantial bell-mouth.

The static stiffness of the eight-pocket test spindle was measured by hanging a 25

pound weight from the front of the spindle and measuring the displacement with a Starrett

indicator. The positions on the spindle where the weight was suspended and the

displacement was measured are shown in Figure 7.29. With a supply pressure of 600 psig,

the deflection of the spindle loaded with 25 pounds was 0.000105 inches. This yields a

static stiffness of 238,100 pounds per inch. This is much higher than the static stiffness of

the cross-drilled spindle presented previously. However, the front pad of the eight-pocket

surface routing spindle is closer to nose of the spindle by 1.5 inches.

.31

b

Figure 7.29. Schematic diagram showing the axial locations of the indicator and the

applied weight that were used in the static stiffness tests. Dimensions are in inches.
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The static stiffness of the spindle was next simulated with the methods developed

in Chapter 4. The bearing characteristics are tabulated in Table 7.8. The bearing

clearance used in the calculations was 16.5 pm. Although the clearance was thought to be

much greater at the bearing exit lands as described above, the calculation with a uniform

clearance of 16.5 gpm is given here for comparison purposes. The calculated stiffness of

the spindle is 246,000 lbfin. Given the uncertainity in the bearing clearance, the

agreement with the 238,000 lbjin measured stiffness is adequate.
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Table 7.8

Operating Conditions
Supply Pressure (Pa,psi,atm)
Eccentricity Ratio ec/ep
Pocket Outlet Land Eccentricity
Compensator Eccentricity

Fluid Properties
Dynamic Viscosity (N s/m)

Ps
lamda

ep
ec

mu

Bearing Geometry
Diameter (m,mm,in)
Axial Length (m,mm,in)
Number of Grooves
Groove Rib Ratio
Pocket Rib Ratio
Groove Rib Width (m,mm,in)
Groove Width (m,mm,in)
Pocket Rib Width (m,mm,in)
Pocket Width (m,mm,in)
Nominal Gap (m,4pm,in)
Compensator Land Length (m,mm,in)
Axial Land Length (m,mm,in)
Drain Groove Circumferential Width (m,mm,in)
Drain Groove Axial Length (m,mm,in)
Pocket Circumferential Land Width (m,mm,in)
Twist Angle (radians,degrees)
Lt/(maximum Lt)
Twist Ratio
Twist Length (m,mm,in)
Groove Skew Angle (radians,degrees)
Actual Groove Width at Skew (m,mm,in)
Resistance Ratio

Bearing Load Capacity
Location of Effective Bearing Force
Horizontal Force (N,kN,Ibf) @ ec, ep given above
Vertical Force (N,kN,Ibf) @ ec, ep given above
Resultant Force (N,kN,Ibf) @ ec, ep given above
Angle of Resultant from Vertical (degrees)
Load Carrying Efficiency @ ec, ep given above
Specific Stiffness @ ec, ep given above
Initial Specific Stiffness
Load Carrying Efficiency @ 75% of gap closure

Flow Rate and Pumping Power
Flow Rate (m^3/s,lpm,gpm)
Pumping Power (W,kW,hp)
Specific Flow Rate

Ratio of Specific Initial Stiffness to Specific Flow
Rate

D
L
N

br
bg
brp
bp
ho
Lc
La
bd
Ld

Lac
phi

Lt

Lcen L
Fx
Fy

Fres
theta
Feff

Kspec
Kspec,o

Feff,0.75

Qsupply
Ppump
Qspec

K/Qspec

4.17E+06
1

0.01
0.01

600 40.8

0.0013

0.056
0.089

8
1.443
1.443

0.0130
0.0090
0.0130
0.0090

0.0000165
0.002
0.003
0.003

0
0.0050

2.27
0.375

0.4958
0.0315
1.1105
0.0040

0.49

0.432
-119.5
105.7
159.5
48.5

0.008
1.159
1.159
0.395

2.45E-05
101.9

10.3

56
89

13.0
9.0

13.0
9.0

16.5
2
3
3
0

5.0
130

31.5
63.6
4.00

-0.119
0.106
0.160

1.47
0.102

2.2047
3.5039

0.511
0.354
0.511
0.354

0.00065
0.079
0.118
0.118
0.000
0.197

1.240

0.157

-26.9
23.8
35.9

0.39
0.137

0.1124
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The eight-pocket test spindle was next rotated at high speed to test its stability and

thermal characteristics. During the test, the chiller used to cool the bearing supply fluid

did not operate properly. Nevertheless, the spindle was driven to 13,000 rpm with an in-

line drive using a flexible coupling. The inlet and outlet temperatures of the fluid were

measured with thermocouples that had accuracies of approximately 0.25 0F. Shown in

Table 7.9 are the measured steady-state inlet and outlet fluid temperatures. Also shown is

the bearing supply flow rate, which decreased with increasing shaft speed. The flow rate

decreased because the bearing grooves were oriented such that the fluid was pumped from

the pockets back toward the compensators as the shaft was rotated. The supply flow rate

is also plotted in Figure 7.30. Note that, if the grooves were oriented in the opposite

direction, the flow rate through the spindle would increase with increasing shaft speed.

Table 7.9

Speed Inlet Temp. Outlet Temp. Flow Rate
(rpm) (OF) (oF) gpm)

0 77.2 77.7 2.05
1,000 78.6 79.9 2.03
2,000 82.2 83.5 1.98
3,000 85.3 86.9 2
4,000 84.4 86.7 1.97
5,000 87.7 90.7 1.95
6,000 82.8 86.7 1.93
7,000 85.1 89.5 1.88
8,000 90 95.3 1.83
9,000 94.9 101.5 1.79
10,000 91.1 100.6 1.77
11,000 91.3 102.5 1.72
12,000 90.3 103.5 1.63
13,000 100 115.5 1.5
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2.0

E
1.5
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S1.0

.5

nL

0 4 8 12 16

Shaft Speed (thousands of rpm)

Figure 7.30. Measured flow rate of coolant supplied to the eight-pocket test spindle

versus operating speed.

As shown in Figure 7.30, the pumping effect of the grooves of SC Bearing #10

plays a large role in determining the flow rate through the bearing. For this reason, a

separate test was done to isolate the change in flow rate caused pumping effect from the

change in flow rate caused by the temperature-dependent viscosity. An attempt was made

to measure the flow rate of the bearing at different speeds but the same fluid inlet

temperature. The data collected is shown in Table 7.10. As shown, the inlet temperature

was approximately 870F for each case. The supply pressure was also approximately 665

psig for each case. Neglecting the change in viscosity caused by the temperature rise

across the bearing, AQ/Qo in Table 7.10 represents the decrease in flow rate that was

caused by the pumping effect of the grooves.
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Table 7.10

Speed (rpm) Inlet Temp. (oF) Supply Pressure Measured Flow AQ/Qo
(psig) Rate (gpm)

0 87.1 660 2.0 0
5,000 87.3 664 1.92 0.04
7,000 85.1 676 1.88 0.06
8,000 90.0 672 1.83 0.085
10,000 87.3 672 1.78 0.11

Next, the change in flow rate was calculated using the methods of Appendix D.

The viscosity used was that of the coolant at 870 F, which is 0.00105 Nm/s, and the fluid

density was 995 kg/m 3. The value of Lp = be / cos(13) = (3mm)/cos(63.6 0) = 6.75 mm.

The value of Lp* used was 70 mm, which is the circumferential distance of the groove

extending from the compensating land to the pocket exit land. The value of the groove

depth used was 0.4 mm; this is the approximate average depth of the groove, as shown in

Figure 7.31. The calculated change in flow rate is compared with the measured change in

flow rate in Figure 7.32. As shown, the agreement is surprisingly good.

- 4 mm Diameter Ball

0.4 mm Average Depth
3 mm

Figure 7.31. Schematic diagram illustrating the ball of the end mill used to machine the

grooves in the experimental test spindle.
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Figure 7.32. Comparison of the predicted and measured reduction in flow rate caused by

the fluid pumping within the grooves of the experimental test spindle.

7.C. Twisted-Groove Spindle #2

Tests performed on the four-pocket test spindle with SC Bearing #10 will be

presented next. This spindle is illustrated Figure 7.33. A picture of the grooves on the

surface of the shaft is shown in Figure 7.34. The lay-out of this spindle is identical to that

of the spindle of Figure 7.27. Coolant is supplied to the central supply channel at about

600 psig. It then flows axially across compensating lands and enters grooves which route

it part-way around the shaft to the pockets. The fluid then flows axially across outlet

lands to a drain groove which in this spindle is exterior to the housing. The housing used

for the 4-pocket spindle was the same as that used for the 8-pocket spindle described in
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the previous section. Although the housing had substantial bell-mouth at its ends, it was

nevertheless used for testing purposes.

Front Bearing Rear Bearing

Drain Supply Channel

Figure 7.33. Layout of the four-pocket second

Drain

ary Phase I test spindle.

Figure 7.34. Picture of the four-pocket secondary Phase I test shaft.

The static stiffness of the eight-pocket test spindle was measured first. This was

again found by hanging a 25 pound weight from the front of the spindle and measuring the
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displacement with a Starrett indicator. The positions on the spindle where the weight was

suspended and the displacement was measured are shown in Figure 7.35. With a supply

pressure of 600 psig, the deflection of the spindle loaded with 25 pounds was 0.00011

inches. This yields a static stiffness of 227,300 pounds per inch. This is slightly lower

than that of the eight-pocket spindle.

.1

Figure 7.35. Schematic diagram showing the axial locations of the indicator and the

applied weight that were used in the static stiffhess tests. Dimensions are in inches.

The static stiffness of the spindle was next simulated with the methods developed

in Chapter 4. The bearing characteristics are tabulated in Table 7.11. The bearing

clearance used in the calculations was 16.5 ýtm. Although the clearance was thought to be

much greater at the bearing exit lands as described above, the calculation with a uniform

clearance of 16.5 jtm is given here for comparison purposes. The calculated stiffness of

the spindle is 229,000 lbf/in. Given the uncertainity in the bearing clearance, the

agreement with the 227,000 lbf/in measured stiffness is certainly adequate.
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Table 7.11

Operating Conditions
Supply Pressure (Pa,psi,atm)
Eccentricity Ratio ec/ep
Pocket Outlet Land Eccentricity
Compensator Eccentricity

Fluid Properties
Dynamic Viscosity (N s/m)

Bearing Geometry
Diameter (m,mm,in)
Axial Length (m,mm,in)
Number of Grooves
Groove Rib Ratio
Pocket Rib Ratio
Groove Rib Width (m,mm,in)
Groove Width (m,mm,in)
Pocket Rib Width (m,mm,in)
Pocket Width (m,mm,in)
Nominal Gap (m,jm,in)
Compensator Land Length (m,mm,in)
Axial Land Length (m,mm,in)
Drain Groove Circumferential Width (m,mm,in)
Drain Groove Axial Length (m,mm,in)
Pocket Circumferential Land Width (m,mm,in)
Twist Angle (radians,degrees)
Lt/(maximum Lt)
Twist Ratio
Twist Length (m,mm,in)
Groove Skew Angle (radians,degrees)
Actual Groove Width at Skew (m,mm,in)
Resistance Ratio

Bearing Load Capacity
Location of Effective Bearing Force
Horizontal Force (N,kN,Ibf) @ ec, ep given above
Vertical Force (N,kN,Ibf) @ ec, ep given above
Resultant Force (N,kN,Ibf) @ ec, ep given above
Angle of Resultant from Vertical (degrees)
Load Carrying Efficiency @ ec, ep given above
Specific Stiffness @ ec, ep given above
Initial Specific Stiffness
Load Carrying Efficiency @ 75% of gap closure

Flow Rate and Pumping Power
Flow Rate (m^3/s,lpm,gpm)
Pumping Power (W,kW,hp)
Specific Flow Rate

Ratio of Specific Initial Stiffness to Specific Flow
Rate

Ps
lamda

ep
ec

mu

D
L
N

br
bg
brp
bp
ho
Lc
La
bd
Ld

Lac
phi

Lt

Lcen L
Fx
Fy

Fres
theta
Feff

Kspec
Kspec,o

Feff,0.75

Qsupply
Ppump
Qspec

K/Qspec

4.17E+06
1

0.01
0.01

0.0013

0.056
0.089

4
1.5706
1.5706
0.0269
0.0171
0.0269
0.0171

0.0000165
0.002
0.003
0.003

0
0.0119

2.443461
0.3971

0.4875462
0.0334

1.12
0.0075

0.49

0.422
-95.8
90.6

131.9
46.6

0.006
0.925
0.925
0.329

2.09E-05
87.2

8.8

0.1048
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600

56
89

26.9
17.1
26.9
17.1
16.5

2
3
3
0

11.9
140

33.4
64.0
7.50

-0.096
0.091
0.132

1.26
0.087

40.8

2.2047
3.5039

1.058
0.674
1.058
0.674

0.000650
0.079
0.118
0.118
0.000
0.470

1.313

0.295

-21.5
20.4
29.7

0.33
0.117



The four-pocket cross-routed spindle of Figures 7.33 and 7.34 was sucessfully

driven to 20,000 rpm. However, the thermocouple used to measure the inlet temperature

of the coolant was corrupted by noise from the drive spindle. Also, the flow rate through

the spindle was off of the scale of the only flow meter available at the time of the tests.

The torque and outlet temperature were therefore the only measurements sucessfully

recorded during the high-speed test.

The torque required to drive the spindle up to 20,000 rpm was measured using a

dynamic torque sensor connected in-line between the drive motor and the spindle with the

use of flexible couplings. The torque meter used had a measurable torque range of 0 to

500 in-lb. Although the torque expected to turn the spindle was less than 40 in-lb, the 500

in-lb meter was used because it was the only torque sensor available at the time of the

testing. The measured torque required to turn the spindle up to 20,000 rpm is shown in

Figure 7.36. The torque predicted by the spreadsheets is in good agreement with the

measured torque at all speeds. The measured torque data presented here is only ball-park

and is not an accurate recording of the spindle torque.
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Figure 7.36. Torque required to turn the four-pocket surface routed spindle up to 20,000

rpm.

Note that at 20,000 rpm, the Reynolds number of the flow on the tight-clearance

lands is approximately 800, and so the flow is laminar even at this speed of 1.1 million

DN. The Reynolds number of the flow in the grooves at 20,000 rpm is approximately

24,000, and so the flow is turbulent even at this speed. As the speed is increased from 0

to 20,000 rpm, the power consumed by the turbulent flow in the grooves becomes a

greater portion of the total shear power. The slope of the torque curve of Figure 7.36

therefore increases as the speed is increased. If the speed were increased further, this

trend would continue up to about 2.5 million DN. At a speed of 3 million DN the flow on

the lands would be fully turbulent, and the slope of the torque curve would increase

somewhat sharply.
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The drive power consumed by the spindle is found by multiplying the measured

torque of Figure 7.36 by the shaft speed. The measured shearing power curve of Figure

7.37 is again presented only as a ball-park indicator of the bearing power consumption and

is not an accurate recording of this data.

0 5 10 15

Shaft Speed (thousands of rpm)

Figure 7.37. Measured shearing power required to turn the four-pocket

spindle up to 20,000 rpm.

20

surface routed
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8. CLUSTER DRILLING MACHINE

Although the prototype spindles tested in the previous chapters provided valuable

information about hydrostatic spindles in general, they were designed with a specific

application in mind. The spindles will be integrated into an assembly that is capable of

drilling a cluster of four tightly spaced holes into steel components. Spindles that are

currently used in this application are built with rolling element bearings. The stiffness of

these spindles are very low because the bearings take up a substantial amount of the

available radial space between the centerlines, resulting in spindles with small shaft

diameters. Because the spindles have low radial stiffness, the holes must be drilled with

multiple passes using tools of increasing diameter in order to limit the loads placed on the

spindles. Having to make multiple passes and to make tool changes substantially increases

the cost of the parts being manufactured. An improved machine with higher radial

stiffness is very desirable in this application.

8.A. The Cluster Spindle Assembly

Figure 8.1 shows the cluster spindle assembly developed in this project. The four

spindles are supported by self-compensating hydrostatic bearings with the bearing

geometries machined into the surface of the shafts. This configuration greatly simplifies

the spindle manufacture and enables the shaft diameters to be increased. The centerline

distance between the spindle centers is 61.02 mm. The shafts each have a diameter of 56

mm. This configuration has substantially increased radial stiffness compared to the rolling

element spindle assembly it is designed to replace.

286



25 HP
900 rpm
Motor

Bel
Dri
Sys

Futura
- Tool-Holder

61.02 mm

Figure 8.1. Four-spindle assembly that drills clusters of holes in a single pass. The novel

hydrostatic bearings developed in this work support the spindles.
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Other features of the spindle assembly shown in Figure 8.1 include:

* The radial bearings are each of the Self-Compensating Bearing #10 type described in

Chapter 3. The grooves are oriented in a direction to pump more fluid through the

bearings with increasing shaft speed, thereby reducing the temperature rise of the

spindles.

* The thrust bearing is of the Thrust Bearing #3 type described in Chapter 5. This thrust

bearing is designed to handle over 1,000 pounds of force in the pushing direction and

200 pounds of force in the pulling direction when supplied with 600 psig.

* A small bearing in the rear of each spindle helps to provide substantial belt load

capability and to reduce the effect of the vibrations from the belt drive system on the

error motion of the spindles.

* Through-the-tool cooling is provided with the non-contact coupling described in

Chapter 7.

* The spindles are pressurized with TECH COOL1, a water-based coolant.

* The spindle can use both Futura and Hydra-Lock tool holders.

* The motor is 10-hp, 900-rpm. With the belt drive system, the spindle speed can be

varied between 1,000 and 3,000 rpm.

* Non-contact air seals are used to seal the front and rear of the spindles.

The geometry of the bearings and their performance will be described next.

' Chemical Technologies Incorporated, Jackson, MI 49203.
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The front radial bearing is shown in Figure 8.2. Note that the rear bearing is

identical in geometry to the first. The shaft diameter is 56 mm, the bearing pad length is

89.5 mm. The bearing is a Self-Compensated Bearing #10, as described in Chapter 3,

with 6 pockets. The performance of the bearing shown in Figure 8.2 is illustrated in Table

8.1. As shown, the bearing has an initial specific stiffness of 1.22, and a specific flow rate

of 14. 1.

Figure 8.2. Pad layout of the front and rear radial bearings of the cluster spindles.
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Table 8.1

Operating Conditions
Supply Pressure (Pa,psi,atm)
Eccentricity Ratio ec/ep
Pocket Outlet Land Eccentricity
Compensator Eccentricity

Fluid Properties
Dynamic Viscosity (N s/m)

Ps
lamda

ep
ec

mu

4.17E+06
1

0.01
0.01

600 40.8

0.0013

Bearing Geometry
Diameter (m,mm,in)
Axial Length (m,mm,in)
Number of Grooves
Groove Rib Ratio
Pocket Rib Ratio
Groove Rib Width (m,mm,in)
Groove Width (m,mm,in)
Pocket Rib Width (m,mm,in)
Pocket Width (m,mm,in)
Nominal Gap (m,jm,in)
Compensator Land Length (m,mm,in)
Axial Land Length (m,mm,in)
Drain Groove Circumferential Width (m,mm,in)
Drain Groove Axial Length (m,mm,in)
Pocket Circumferential Land Width (m,mm,in)
Twist Angle (radians,degrees)
Lt/(maximum Lt)
Twist Ratio
Twist Length (m,mm,in)
Groove Skew Angle (radians,degrees)
Actual Groove Width at Skew (m,mm,in)
Resistance Ratio

Bearing Load Capacity
Location of Effective Bearing Force
Pressure Difference / Pressure @ ec, ep above
Horizontal Force (N,kN,Ibf) @ ec, ep given above
Vertical Force (N,kN,Ibf) @ ec, ep given above
Resultant Force (N,kN,Ibf) @ ec, ep given above
Angle of Resultant from Vertical (degrees)
Load Carrying Efficiency @ ec, ep given above
Specific Stiffness @ ec, ep given above
Initial Specific Stiffness
Load Carrying Efficiency @ 75% of gap closure

Flow Rate and Pumping Power
Flow Rate (m^3/s,lpm,gpm)
Pumping Power (W,kW,hp)
Specific Flow Rate

D 0.056
L 0.08953
N 6

1.57
1.57

br 0.0179
bg 0.0114
brp 0.0179
bp 0.0114
ho 0.0000127
Lc 0.0025
La 0.003
bd 0.003
Ld 0.025

Lac 0.0075
phi 2.444

0.394
0.484

Lt 0.03317
1.1201011

0.00497
1.35

Lcen L
DPP
Fx
Fy

Fres
theta
Feff

Kspec
Kspec,o

Feff,0.75

Qsupply
Ppump
Qspec

0.472
0.016

-125.2
102.2
161.6

50.8
0.008
1.223
1.224
0.353

1.51 E-05
62.9
14.1

56 2.2047
89.53 3.5248

17.9
11.4
17.9
11.4
12.7
2.5

3
3

25
7.5
140

33.1
64.2
4.97

-0.125
0.102
0.162

0.91
0.063

0.705
0.449
0.705
0.449

0.00050
0.098
0.118
0.118
0.984
0.294

1.303

0.196

-28.1
23.C
36.3

0.24
0.084
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The small pulley-support bearing is shown in Figure 8.3. The dimater of the shaft

is 34 mm, the length of the bearing pad is 46.5 mm. The bearing is a Self-Compensated

Bearing #10, as described in Chapter 3, with 4 pockets. The performance of the bearing

shown in Figure 8.2 is illustrated in Table 8.2. As shown, the bearing has a load-carrying

efficiency of 0.277, and a specific flow rate of 8.1.

Figure 8.3. Pad layout of the pulley-support radial bearing of the cluster spindles.
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Table 8.2.

Operating Conditions
Supply Pressure (Pa,psi,atm)
Eccentricity Ratio ec/ep
Pocket Outlet Land Eccentricity
Compensator Eccentricity

Fluid Properties
Dynamic Viscosity (N s/m)

Bearing Geometry
Diameter (m,mm,in)
Axial Length (m,mm,in)
Number of Grooves
Groove Rib Ratio
Pocket Rib Ratio
Groove Rib Width (m,mm,in)
Groove Width (m,mm,in)
Pocket Rib Width (m,mm,in)
Pocket Width (m,mm,in)
Nominal Gap (m,Lm,in)
Compensator Land Length (m,mm,in)
Axial Land Length (m,mm,in)
Drain Groove Circumferential Width (m,mm,in)
Drain Groove Axial Length (m,mm,in)
Pocket Circumferential Land Width (m,mm,in)
Twist Angle (radians,degrees)
Lt/(maximum Lt)
Twist Ratio
Twist Length (m,mm,in)
Groove Skew Angle (radians,degrees)
Actual Groove Width at Skew (m,mm,in)
Resistance Ratio

Bearing Load Capacity
Location of Effective Bearing Force
Horizontal Force (N,kN,Ibf) @ ec, ep given above
Vertical Force (N,kN,Ibf) @ ec, ep given above
Resultant Force (N,kN,Ibf) @ ec, ep given above
Angle of Resultant from Vertical (degrees)
Load Carrying Efficiency @ ec, ep given above
Specific Stiffness @ ec, ep given above
Initial Specific Stiffness
Load Carrying Efficiency @ 75% of gap closure

Flow Rate and Pumping Power
Flow Rate (m^3/s,lpm,gpm)
Pumping Power (W,kW,hp)
Specific Flow Rate

Ps
lamda

ep
ec

4.17E+06
1

0.01
0.01

600 40.8

mu 0.0013

D
L
N

br
bg
brp
bp
ho
Lc
La
bd
Ld
Lac
phi

Lt

Lcen L
Fx
Fy

Fres
theta
Feff

Kspec
Kspec,o

Feff,0.75

Qsupply
Ppump
QsPec

0.034
0.0465

4
1
1

0.0134
0.0134
0.0134
0.0134

1.40E-05
0.0025

0.003
0.003
0.015

0.0052
2.443
0.37

0.365
0.015
1.221
0.005

1.21

0.451
-27.3
21.6
34.9
51.6

0.005
0.853
0.853
0.277

1.36E-05
56.7

8.1

34 1.3386
46.48 1.8299

13.4
13.4
13.4
13.4

13.97
2.5

3
3

15
5.2
140

15.163
69.9
4.58

-0.027
0.022
0.035

0.82
0.057

0.526
0.526
0.526
0.526

0.00055
0.098
0.118
0.118
0.591
0.204

0.597

0.180

-6.1
4.9
7.8

0.22
0.07(
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The thrust bearings of the spindles are developed using the pulley-support shafts,

as shown in Figure 8.4. The thrust bearing is of the type Thrust Bearing #3 described in

Chapter 5. The dimensional detail and the performance of the bearing are shown in Table

8.3. The thrust bearing is capable of supporting approximately 1150 pounds in the

pushing direciton and 240 pounds in the pulling direction when supplied with a pressure of

600 psig. The stiffness is 952,000 lbdin using 600 psig. The flow rated requied for the

thrust bearing at this pressure is 0.28 gpm when a total clearance of 33 gm is used.

Primary
Thrust Face

Secondary
Thrust Face

Figure 8.4. View of the rear of the cluster spindle assembly, illustrating the thrust bearing

system developed using the rear pulley-support shafts.
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Table 8.3

Operating Conditions
Supply Pressure (Pa,psi,atm)
Deflection from Equilibrium (m,p.m,in)

Fluid Properties
Dynamic Viscosity (N s/m)

Bearing Geometry
Outer Thrust Diameter (m,mm,in)
Inner Thrust Diameter (m,mm,in)
Secondary Face Outer Diameter (m,mm,in)
Primary Face Land Width (m,mm,in)
Diameter to Primary Land (m,mm,in)
Supply Groove Width (m,mm,in)
Outer Diameter of Secondary Land (m,mm,in)
Total Clearance (hos + hop) (m,pgm,in)
Equilibrium Pocket Pressure Ratio
Equilibrium Clearance Ratio
Nominal Primary Clearance (m,4m,in)
Nominal Secondary Clearance (m,pgm,in)

Bearing Load Capacity
Pocket Pressure / Supply Pressure @ 6 above
Load Capacity (N,kN,Ibf) @ 6 above
Load Carrying Efficiency @ 8 above
Specific Stiffness @ 6 above
Initial Specific Stiffness
Primary Load Carrying Efficiency @ pct = 0.7
Secondary Load Carrying Efficiency @ pct =

Ps
d

mu

5
0.75

Flow Rate and Pumping Power
Overall Bearing Resistance
Supply Flow Rate (m^3/s,lpm,gpm)
Specific Flow Rate
Pumping Power (W,kW,hp)

Do
Di
D2
bo
D3
bs
D1

htot
peq_Ps

hop_hos
hop
hos

pl Ps
F

Feff
Kspec

Kspec,o
Feff,0.75
Feff,-0.75

Rbear
Qsupply
Qspec
Ppump

4.17E +06
1.00E-06

600
1.00

40.8
0.00004

0.0013

0.055
0.025
0.034

0.0025
0.05

0.00076
0.03248

0.000033
0.173
1.202

1.80E-05
1.50E-05

55
25
34

2.5
50

0.76
32.48

33

2.165
0.984
1.339
0.098
1.969
0.030
1.279

0.00130

18.0 0.00071
14.98 0.00059

0.232
371

0.047
0.779
0.700
0.657

-0.139

2.337E + 11
1.78E-05

0.93
74

1.07 0.28

0.07

Consider the effect of supply pressure on the spindle performance. Table 8.4 lists

the radial stiffhess, thrust capacity, temperature rise, and flow rate as a function of supply

pressure. All calculations were performed using the mean radial clearance of 0.00055"

(with tolerance, the clearance will be 0.0005" to 0.0006"). The shaft is steel. The first
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radial stiffness shown is that which would occur if the 56 mm diameter shaft were

extended 4 inches from the front of the air seal. Although this configuration unrealistic,

applying a force at this location applies the same moment to the spindle that would occur

if a force were applied at the tool-point. The second spindle stiffness shown is that at the

front face of the Hydra-Lock tool-holder, which is at a location 1.25" from the front of the

air seal. As shown, increasing the supply pressure from 400 psig to 600 psig increases the

radial spindle stiffness by only about 15%. However, 1,000 pounds of thrust capacity is

needed for this application, so a supply pressure of 600 psig is required. As shown, the

temperature rise is quite low at 3,000 rpm, the maximum operating speed of the spindle.

The total flow rate to the spindle assembly at this mean clearance is 4.76 gpm at 600 psig;

this represents only 1.25 kW of pumping power.

Table 8.4

Supply Spindle Spindle Pushing Pulling Temp. Rise 4-Spindle
Pressure Stiffness Stiffness @ Load Load @ 3,000 Flow Rate

(psig) @ 4" ext. tool-holder Capacity Capacity rpm (gpm)
(lbpin) (lbdin) (lbf) (lbf) (oC)

300 138,000 399,000 580 120 2.9 2.44
400 149,000 450,000 770 160 2.5 3.20
500 158,000 491,000 960 200 2.3 3.96
600 164,000 522,000 1150 240 2.3 4.76
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8.B. Comparison with the Rolling Element Spindle

A comparison will now be made between the radial stiffness of the existing rolling-

element spindles used in this application with that of the hydrostatic spindles used in the

new cluster machine. The shaft of the rolling element spindle is shown in Figure 8.5. For

comparison purposes, the spindle was extended outward by 4 inches from the front face of

its housing, which is a location corresponding to the tool-point. The diameter used in this

extension was 1.97 inches, which is the diameter of the spindle at its tool-holder. The

stiffness of the front bearing are each 145 N/ýtm. The stiffness of the rear bearings are

each 102 N/pm. The simulated shaft bending is shown in Figure 8.6. The spindle stiffness

is 68,400 lbW/in. The stiffness of the hydrostatic spindle was shown in Table 8.4 to be

164,000 lbf/in using the designed supply pressure of 600 psig. The hydrostatic spindle is

therefore 2.4 times more stiff than the rolling element spindle it will replace.

-971 1.33 - [-1,181

- 4 . --- 74- 0

32
7 66

Figure 8.5. Configuration of one of the rolling element spindles of the prior cluster

machine. The front diameter of the spindle is extended outward by 4" from the front

spindle face for comparison purposes. Dimensions are in inches.
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5 10 15

Axial Position (inches)

Figure 8.6.

Figure 8.5.

Computed deflection of the shaft of the rolling element spindle shown in
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9. CONCLUSION

This work investigated the application of hydrostatic bearings, particularly those of

the self-compensating type, to precision machine tool spindles. First, relations were

developed to calculate the hydraulic resistances of various bearing land flows in tilted and

untilted orientations. These relations were then applied to predicting the load-carrying

characteristics of twelve different radial hydrostatic bearings. The bearing calculations

were then integrated with shaft bending calculations to predict static spindle stiffness. By

integrating the bearing design with the spindle design, the geometry was optimized to

provide maximum spindle stiffness. It was found that even small changes in the bearing

geometry can often significantly increase the spindle stiffness. For example, decreasing

the width of the lands nearest the front of the spindle can often significantly improve the

spindle stiffness. These design improvements are missed when the bearing design is

disconnected from the spindle design.

The design of three different hydrostatic thrust bearings were considered next.

Self-compensating thrust bearings were found to provide higher stiffness and load

capacity, as well as lower flow rates, than thrust bearings that use fixed-compensation.

The self-compensating thrust bearings can also be readily supplied with aqueous fluids

such as water-based coolants without potential clogging problems.

Methods were also developed to calculate the frictional and thermal characteristics

of hydrostatic bearings. Relations were presented to calculate the viscous shearing power

consumed by the land, pocket, and groove flow. It was determined that, when water or

water-based coolants are used at moderate operating speeds, the friction developed by the

298



laminar flow on the lands is often significantly lower than that developed by the turbulent

flow within the pockets. Thus, as much of the bearing area should be made land area as

possible in order to reduce drag as well as to increase bearing damping.

The effect of the temperature dependence of the fluid viscosity on the frictional

and thermal characteristics of the bearings was considered next. A simple model was

developed that can be used to account for the change in the viscosity of the fluid as its

temperature increases while flowing through the bearing. It was found that, at moderate

and high operating speeds, the change in viscosity caused by bearing temperature rise can

have a significant effect on the bearing performance.

The relations developed in the thesis were compared to experimental data collected

on three prototype test spindles. These spindles were found to have excellent qualities

that represent a significant advance in machine tool spindle technology. The models

developed in this work were found to agree with the experimental results within a

reasonably close margin.

Finally, the design of a machine that drills clusters of holes in steel components

was presented. Hydrostatic spindles were found to to be clearly superior to rolling

element spindles this application. The use of hydrostatic bearings enabled the diameter of

the shafts to be increased, thereby greatly increasing the radial stiffness of the spindles. It

is expected that the new machine will be able to drill holes with fewer passes than the old

machine, thereby reducing manufacturing costs.
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NOMENCLATURE

A area
Cf skin friction factor
D shaft diameter; bearing diameter
e eccentricity of shaft with respect to bearing housing
E elastic modulus
F force
f force per unit length
G shear modulus
h land clearance; pocket depth
I cross-sectional moment of innertia
K stiffness
k shear correction factor; thermal conductivity
L land width; groove length
n fluid viscosity-temperature exponent
NTa Taylor number

p pressure
01 power

Q volumetric flow rate
R hydraulic resistance; bearing radius
r radial coordinate
Re Reynolds number
u x-direction fluid velocity
v y-direction fluid velocity
V shaft surface velocity
w z-direciton fluid velocity
x principal direction

y principal direction
z principal direction

P land tilt angle; groove skew angle
6 deflection

y resistance ratio; shear strain

IA fluid dynamic viscosity
v fluid kinematic viscosity; Poisson's ratio
0 angular coordinate

p fluid density
t shear stress
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Subscripts

a atmospheric
b bottom

c compensator
cen effective center

d drain

e end
eff efficiency
m middle

o nominal; equilibrium

p pocket
s supply; shear

spec specific

t top
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APPENDIX A: BEAM THEORY AND DEVELOPMENT OF THE
FINITE ELEMENT MATRICES

In order to develop an adequate model which is readily usable in spindle design

practice, certain simplifying assumptions about the bending of the shaft must be made.

Beam theory that includes shear deformations will be employed to solve for the deflection

of the neutral axis of the shaft as a function of axial position, w(x). In the development of

this analysis, the following assumptions will be made:

1. A normal to the neutral axis of the shaft remains straight during deformation.

2. The shaft material is isotropic and homogeneous.

3. The shaft material remains in the elastic region.

4. Shaft strains are small enough such that the response is linear (i.e., the deflection at

any point on the shaft is linearly proportional to the applied load).

The first assumption is illustrated in Figure A. 1. The dark line represents a cross-

section of the shaft, initially perpendicular to the neutral axis, which remains straight

during shaft deformation. If the shaft is long and slender and the effects of shear forces

are negligible, then the cross-section will remain perpendicular to the neutral axis after

deformation. However, the presence of a shear strain, y, results in a total rotation of the

cross-section given by:

dw
0= - y (A.1)

dr
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dw
0 = x- -

Figure A.1. Deformation of a shaft cross-section, illustrating the relationship between the

shaft slope, dw/dx, the effective shear strain, y, and the total rotation of the shaft cross-

section, p.

Note that the shear strain used in Equation (A.1) and illustrated geometrically in

Figure A. 1 is an equivalent shear strain of the cross-section. The shear strain in an actual

shaft will vary across its cross-section, being largest in magnitude along the neutral axis

and smallest in magnitude near the upper and lower edges. To accommodate the

assumption of a straight cross-section, an equivalent constant shear strain is defined such

that, acting over an equivalent shear area As, the resulting shear strain energy will be the

same as that in the actual shaft:

r V
7 (A.2)
G GA,

where r is the shear stress, G is the shear modulus, and V is the shear force. As a matter

of convenience, the equivalent shear area is replaced with a shear correction factor,
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k = As  (A.3)
A

the value of which has been computed for hollow and solid shafts and is available in the

literature [8]. A general relation for k is developed in this work for a hollow shaft with an

inner diameter D,, and an outer diameter Do (see Chapter 4). Using the shear correction

factor, the equivalent shear strain now becomes:

V
S= (A.4)

GAk

and the total rotation of the shaft cross-section in Equation (A. 1) can now be adequately

computed.

Consider a beam of length L, moment of inertia I, bulk modulus E, shear modulus

G, and shear correction factor k. The beam is loaded with applied moments, m, and forces

per unit length, f Summing up the potential energies caused by bending deformations and

shear deformations, plus those of the external loads, the total potential energy of the beam

is given by [16]:

El! dO 2  GAk dw 2 L L

nH = 2 + 0 - - ffw* - ml (A.5)

The static equilibrium displacement of the shaft can be found by minimizing the total

potential energy in the beam. This is accomplished by using the stationarity condition

Il = 0,

EI j dx A-+ GAk _ -_) dx - f dx - dx = 0 (A.6)
o x 0 0

and solving this equation for the displacements.
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Finite element methods will now be used to implement the beam theory and solve

Equation (A.6) for the shaft deflections. Four-node beam elements illustrated

schematically in Figure A.2 will be used in this work. The continuous deflection and

rotation of the beam is approximated with four nodal translations and four nodal rotations.

z

1 2 03 04

Figure A.2. Schematic diagram of a four-node beam element. Shown are the four nodal

translations and the fur nodal rotations.

The displacements shown in Figure A.2 are discrete nodal displacements.

Interpolation functions are needed in order to approximate the continuous deformations of

the element when the total potential energy is minimized. The continuous and discrete

deflections and rotations are related to each other with interpolation functions:

4

w= = h,w, (A.7)
i=1

4

0 = ho, (A.8)
i=1

where h, are the four interpolation functions, w and 0 are the continuous deflections and

rotations of the element, and wi and O, are the discrete nodal deflections and rotations of

the element. For the four-node element used in this analysis, the interpolation functions

are cubic:
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4 =- x' +9 - +1 (A.9)
2,L L 2 L

h3--27 + - (A. 11)
2

9 X3 9 (X)2 + 9(x)

h4 =~ 2 + (A. 12)

These functions were derived such that they equal 1 at their corresponding node and equal

zero at all other nodes in the element. For example, hi is equal to 1 at x/L = 0, which is

the location of the first node, and equal to zero at x/L = 1/3, 2/3, 1, which are the

locations of nodes two, three, and four, respectively. The derivatives of the interpolation

function will also be needed:

C f 2 ----- L+18 L (2L (A.13)
a 2 L L LYL 2L

c7J 8 1x 1 +91 (A.14)
h - 45 + 9 (.14)& 2 (T) L L

-k 2&3 81 x 1 1 9 1
h; = -- 1+3 6 191 (A.15)

&c 2 LL L 2L

S 27 X1 x1 1h' - 4 2- 9 - +-L  (A.16)
& 2 L L L

In matrix form, the continuous and discrete deformations and their derivatives are

represented by:

w = Hw, (A. 17)

V=B~ (A.18)
dx
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(A.19)

-- = B (A.20)

where:

W = 1 0Wl1 W2 2 M 3 03 W4 4 (A.21)

H. = [h 0 h 0 h3 0 h4 0] (A.22)

He = [O0 / 2 0 0 h4] (A.23)

(A.24)

B = 0 A 0 01 Oh ded 0 (A.25)

The beam deformations and their derivatives have now been properly interpolated from

their nodal values. Substituting these relations into Equation (A.6), the condition for

stationarity becomes:

HTmdx = 0 (A1.26)
L L o

This equation is commonly represented by a stiffness maxtrix, K, and a load vector, R:

Ki = R (A.27)

where:

K = K, + K2

L

K =El BT B Bdr
0

L

K =GAk ((Bw -_ H) T (
0

(A.28)

(A.29)

(A.30)
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L L

R=H T fdC + fH mdC (A.31)
0 0

The stiffness matrix, K, is assembled by substituting the interpolation matrices, Equations

(A.22) through (A.25), into Equations (A.29) and (A.30) and integrating over the length

of the element. This procedure results in the following matrices:

0 0 0

18940
40

0 297

40

0 0

54
5

310

0 0

37
10

El
L

0 0

13
0

40

0 0

27
20

0 0

189
40

0 0symmetric

(A.32)
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K 2 = GAkI

37 1 1 189 1 57 27 1 3 13 1 7

10L 2 40 L 80 20L 10 40L 80

8 57 33 3 3L 7 19
-L --L - - L
105 80 560 10 140 80 1680

54 1 297 1 81 27 1 3

5 L 40 L 80 20L 10

27L  81 27 L  3 - 3 L

70 80 560 10 140

54 1 189 1 57
5 L 40 L 80

27 57 33
-L L
70 80 560

37 1 1
symmetric-

10 L 2

8-L
105

The right-hand-side load vector is similarly assembled by substituting Equations (A.22)

and (A.23) into Equation (A.31) and integrating over the length of the element. In this

work, no applied moments will be used. However, applied pressures will be used on the

elements corresponding to the bearing areas. For an element with an applied force per

unit length, f

R= L

1/8

0

3/8

0

3/8

0

1/8

0

(A.34)
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The problem has now been reduced to solving a matrix system of equations, K~ = R, to

obtain the discrete nodal point deflections and rotations, z .
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APPENDIX B: SOLUTIONS TO FLUID CIRCUITS OF
HYDROSTATIC BEARINGS

The solutions to four fluid circuits commonly encountered in hydrostatic bearing

design will be presented in this Appendix. The first circuit is a simple circuit used to

model bearings with no leakage between their pockets. The second circuit is used to

model bearings with leakage between their pockets and/or compensators. The third circuit

is used to model bearings that have leakage between their pockets and/or compensators,

as well as leakage between their pockets and compensators. The fourth circuit is used to

model so-called step-compensated bearing that have leakage along the lengths of their

compensating lands, as well as leakage between their pockets. In all of the derivations, it

is assumed that the resistances are not dependent upon the flow rate of fluid through them.

B.1. Fluid Circuit #1

The first fluid circuit is shown in Figure B. 1. Fluid is pumped at supply pressure,

Ps, across the compensating resistances, Rc(i), and across the outlet resistances Ra(i) to

atmospheric pressure, Pa. The flow rate through each compensator is equal to the flow

rate through its corresponding pockets, and is given by:

Ps - Pa
Q(i) Ps i= 1,2...N (B.1)

Rc(i) + Ra(i)

where N is the number of pockets. The supply flow rate is found by summing all of the

pocket flow:
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Qs Q(i) = (Ps - Pa) R()
i=1 = Rc(i)+ Ra(i)

The corresponding pockets pressures are given by:

P(i) = Pa + ( Ra(i) (Ps-Rc(i) + Ra(i) (P-Pa i = 1,2... N

(B.2)

(B.3)

P(3)

r3K

P(1)

P(N)

P(N-1)

Figure B.1. Fluid circuit of a hydrostatic bearing with N pockets and no leakage between

its compensators or its pockets.
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B.2. Fluid Circuit #2

The second fluid circuit is shown in Figure B.2. Fluid is pumped at supply

pressure, Ps, across the compensating resistances, Rc(i), to the pockets. Some of the fluid

then leaks between the pockets across the leakage resistances Rb(i) before it passes across

the outlet resistances Ra(i) to atmospheric pressure, Pa. This circuit is more complicated

than the first circuit because requires the solution of a systems of equations. These

equations will be derived and then an algorithm to set up the matrices will be presented.

Pa
1)

P(N-I)

Figure B.2. Fluid circuit of a hydrostatic bearing with N pockets and leakage between its

pockets and/or compensators.
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A brief derivation of the equations needed to solve the circuit will first be

presented. A set of 3N equations are required to solve for the 3N unknown flow rates.

The first N equations are determined by noting that the sum of the pressure drops around

the innermost loops must equal zero:

Q(i)Rc(i) + Q(i + N)Rb(i)- Q(i + 1)Rc(i + 1) = 0 i = 1,2...N (B.4)

The next set of N equations are determined by noting that the sum of the flow rates into

each central node must equal zero:

Q(i)- Q(2N+i)- Q(N+i)+Q(N+i-1)= 0 i = 1,2...N (B.5)

The third set of N equations are determined by setting the pressure drop across the

compensators and pockets equal to the bearing supply pressure difference:

Q(i)Rc(i) + Q(2N + i)Ra(i) = Ps - Pa i = 1,2...N (B.6)

These set of 3N equations can then be solved for the 3N unknown flow rates. Once the

flow rates are known, the N pocket pressures can then be computed.

The following algorithm, written in BASIC, can be used to solve Equations B.4,

B.5, and B.6 for the unknown flow rates. First a 3N by 3N resistance matrix, RR(i,j), will

be set up:

For i = 1 To 3 * N
Forj = 1 To 3 * N

RR(i, j) = 0
Next j

Next i
For i= 1 To N

RR(i, i) = Rc(i)
RR(i, ip(i, N)) = -Rc(ip(i, N))
RR(i, i + N) = Rb(i)

Next i
For i= 1 To N

RR(i + N, i) = 1
RR(i + N, i + N)= -1
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RR(i + N, im(i, N) + N) = 1
RR(i + N, i + 2 * N)= -1

Next i
For i= 1 To N

RR(i + 2 * N, i) = Rc(i)
RR(i + 2 * N, i + 2 * N) = Ra(i)

Next I

where im(i,N) and ip(i,N) and are the following functions:

Function im(i, N)
If i = 1 Then

im = N
Else

im = i - 1
End If

End Function
Function ip(i, N)

If i = N Then
ip = 1

Else
ip = i + 1

End If
End Function

Next a 1 by 3N pressure matrix, PP(i), is created:

For i = 1 To 2 * N
PP(i) = 0

Next i
For i = 2 * N + 1 To 3 * N

PP(i) = Ps-Pa
Next i

The systems of equations, RR(ij)Q(i)=PP(i), can be solved from the unknown flow rates,

Q(i) using any standard matrix solution algorithm. The supply flow rate is calculated by:

N

Qs = Q(i) (B.7)
i=l

The pocket pressures are calculated by:

P(i) = Pa + Q(2N + i)Ra(i) i = 1,2...N (B.8)
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B.3. Fluid Circuit #3

The third fluid circuit is shown in Figure B.3. Fluid is pumped at supply pressure,

Ps, across the compensating resistances, Rc(i), to the pockets. Some of the fluid then

leaks across the leakage resistances Rb(i) and Rd(i) before it passes across the outlet

resistances Ra(i) to atmospheric pressure, Pa. The equations used to solve for the system

of flow rates will be derived and then an algorithm to set up the matrices will be presented.

Rd(N)

i;'2
<'

I

PfN 2'

P(2 4N/2)

Figure B.3. Fluid circuit of a hydrostatic bearing with N pockets and leakage between its

pockets and/or compensators, as well as leakage between its compensators and its

pockets.
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A brief derivation of the equations needed to solve the circuit will first be

presented. A set of 4N equations are required to solve for the 4N unknown flow rates.

The first N equations are determined by noting that the sum of the pressure drops around

the innermost loops must equal zero:

Q(i)Rc(i)+ Q(i + N)Rb(i)- Q(i + 1)Rc(i + 1) = 0 i = 1,2...N (B.9)

The next set of N equations are determined by setting the sum of the pressure drops

around the outer loops equal to zero:

Q(2N + i)Rd(i) - Q(N + i)Rb(i)...-Q(3N / 2 + i - I)Rb(N / 2 + i - 1) = 0 i = 12...N (B.10)

The next set of N equations are determined by noting that the sum of the flow rates into

each central node must equal zero:

Q(i)- Q(3N +i)- Q(N + i)+Q(N +i- 1)+ Q(5N / 2 +i)- Q(2N + i) = 0 i = 1,2...N (B.11)

The fourth set of N equations are determined by setting the pressure drop across the

compensators and pockets equal to the supply pressure and the outlet pressure:

Q(i)Rc(i) + Q(3N + i)Ra(i) = Ps - Pa i = 1,2... N (B. 12)

These set of 4N equations can then be solved for the 4N unknown flow rates. Once the

flow rates are known, the N pocket pressures can then be computed.

The following algorithm, written in BASIC, can be used to solve Equations B.9,

B.10, B. 11, and B.12 for the unknown flow rates. First a 4N by 4N resistance matrix,

RR(ij), will be set up:

For i = 1 To 4 * N
Forj = 1 To 4 * N

RR(i, j) = 0
Next j

Next i
For i= 1 To N

RR(i, i) = Rc(i)
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RR(i, ip(i, N)) = -Rc(ip(i, N))
RR(i, i + N) = Rb(i)

Next i
For i = 1 To N

For j = i To iN_2(im(i, N), N)
RR(i + N, j + N) = -Rb(j)

Next j
RR(i + N, i + 2 * N) = Rd(i)

Next i
For i= 1 To N

RR(i + 2 * N,
RR(i + 2 * N,
RR(i + 2 * N,
RR(i + 2 * N,
RR(i + 2 * N,
RR(i + 2 * N,

Next i
For i = 1 To N

RR(i + 3 * N,
RR(i + 3 * N,

Next i

i) = 1
i+3 *N)= -1
i + N)=-1
im(i, N) + N) = 1
i+ 2 * N)= -1
iN_2(i, N) + 2 * N) = 1

i) = Rc(i)
i + 3 * N) = Ra(i)

where im(i,N), ip(i,N), and iN_2(i,N) are functions that satisfy the following conditions:

Function im(i, N)
If i = 1 Then

im = N
Else

im =i - 1
End If

End Function
Function ip(i, N)

If i = N Then
ip = 1

Else
ip = i + 1

End If
End Function
Function iN_2(i, N)

Ifi <N / 2 Or i = N / 2 Then
iN 2= i+N/2

Else
iN 2=i-N/2

End If
End Function
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Next a 1 by 4N pressure matrix, PP(i), is created:

For i = 1 To 3 * N
PP(i) = 0

Next i
For i = 3 * N + 1 To 4 * N

PP(i) = Ps-Pa
Next i

The systems of equations, RR(ij)Q(i)=PP(i), can be solved to obtain the unknown flow

rates, Q(i) using any standard matrix solution algorithm. The supply flow rate is then

calculated by:

N

Qs = Q(i) (B.13)
i=l

The pocket pressures are calculated by:

P(i) = Pa + Q(3N + i)Ra(i) i = 1,2...N (B.14)

B.4. Fluid Circuit #4

The fourth fluid circuit is shown in Figure B.4. Fluid is pumped at supply

pressure, Ps, across the compensating resistances, Rc(ij), to the pockets. The

compensating lands are broken up into M divisions along their length. As the fluid crosses

the compensating resistances, some of it leaks across the leakage resistances Rcb(ij).

After reaching the pockets, some of the fluid also leaks across the leakage resistances

Rb(i) before it passes across the outlet resistances Ra(i) to atmospheric pressure, Pa. The

equations used to solve for the system of flow rates will be derived and then an algorithm

to set up the matrices will be presented.
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P(N-1

P(N- 1,•

Figure B.4. Fluid circuit of a hydrostatic bearing with N pockets and leakage between its

compensators along M divisions of their length, as well as leakage between the pockets.
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A brief derivation of the equations needed to solve the circuit will now be

presented. A mesh-current method of circuit solution [ ] will be employed. This method

is used because it is excellent for solving circuits with large numbers of degrees of

freedom. Much fewer equations result using the mesh-current method and so the solution

is much faster. Note that (M+2)N mesh currents (or mesh flow rates) have been

designated in Figure B.4. Since the circuit is essentially a three-dimensional circuit, N

more mesh currents were needed to account for the supply loop. These currents, which

will be designed as Q(i,M+2) with i = 1 ... N, are envisioned to begin at the nodes

corresponding to atmospheric pressure, loop back to the pump, and connect to the nodes

corresponding to supply pressure.

A set of (M+2)N equations are required to solve for the (M+2)N unknown flow

rates. The first N equations are determined by noting that the sum of the pressure drops

around the innermost loops must equal zero:

[Q(i,1) - Q(i - 1,1) + Q(i, M + 2)]Rc(i,1) + [Q(i,1) - Q(i,2)]Rcb(i,1) +

[Q(i,1)- Q(i + 1,1)- Q(i + 1,M + 2)]Rc(i + 1,1) = 0 i = 1,2...N (B.15)

The next set of equations are determined by setting the sum of the pressure drops around

the inner loops equal to zero:

[Q(i, j) - Q(i - 1, j) + Q(i, M + 2)]Rc(i, j) + [Q(i, j) - Q(i, j + 1)]Rcb(i, j) +

[Q(i,j) - Q(i + 1, j)- Q(i + 1,M + 2)]Rc(i + 1,j) + [Q(i, j)- Q(i,j - 1)]Rcb(i,j- 1) = 0

i = 1,2...N j = 2,3...M -1 (B.16)

The next set of equations are determined by setting the sum of the pressure drops around

the next inner loops equal to zero:
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[Q(i, M) - Q(i - L M) + Q(i, M + 2)]Rc(i, M) + [Q(i, M) - Q(i,M + 1)]Rb(i) +

[Q(i, M) - Q(i + 1, M)- Q(i + 1, M + 2)]Rc(i + 1, M) + [Q(i, M)- Q(i, M - 1)]Rcb(i, M - 1) = 0

i=1,2...N (B.17)

The next set of equations are determined by setting the sum of the pressure drops around

the next outermost loops equal to zero:

[Q(i, M + 1)- Q(i- 1, M + 1) + Q(i, M + 2)]Ra(i)+

[Q(i, M + 1)- Q(i + 1, M + 1) - Q(i + 1, M + 2)]Ra(i + 1) + [Q(i, M + 1)- Q(i, M)]Rb(i) = 0

i = 1,2...N (B. 18)

The last set of equations are determined by setting the sum of the pressure drops across

each leg of the circuit (from supply pressure to atmospheric pressure) equal to the supply

pressure difference:

[Q(i,1) - Q(i - 1,1) + Q(i, M + 2)]Rc(i,1)+...+[Q(i, M) - Q(i - 1, M) + Q(i, M + 2)]Rc(i, M) +

[Q(i,M + 1)- Q(i - 1,M + 1) + Q(i,M + 2)]Ra(i) = Ps- Pa i = 1,2...N (B.19)

This set of (M+2)N equations are required to solve for the (M+2)N unknown flow rates.

Once the flow rates are known, the pocket pressures can then be computed.

The following algorithm, written in BASIC, can be used to solve Equations B. 15,

B.16, B.17, B.18, and B.19 for the unknown flow rates. First a (M+2)N by (M+2)N

resistance matrix, RR(i,j), will be set up:

For i = 1 To (M+ 2) * N
Forj = 1 To (M + 2) * N

RR(i, j) = 0
Next j

Next i
For i= 1 To N

RR(i, i) = Rc(i, 1) + Rcb(i, 1) + Rc(ip(i, N), 1)
RR(i, im(i, N)) = -Rc(i, 1)
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RR(i, i + N) = -Rcb(i, 1)
RR(i, ip(i, N)) = -Rc(ip(i, N), 1)
RR(i, i + (MI + 2 - 1) * N) = Rc(i, 1) - Rc(ip(i, N), 1)

Next i
For i = 1 To N

Forj =2 ToM- 1
RR(i + (j - 1) * N, i + (j - 1) * N) = Rc(i, j) + Rcb(i, j) + Rc(ip(i, N), j) + Rcb(i, j - 1)
RR(i + (j - 1) * N, im(i, N) + (j - 1) * N) = -Rc(i, j)
RR(i + (j - 1) * N, i + (j + 1 - 1) * N) = -Rcb(i, j)
RR(i + (j - 1) * N, ip(i, N) + (j - 1) * N) = -Rc(ip(i, N), j)
RR(i + (j - 1) * N, i + (j - 1 - 1) * N) = -Rcb(i, j - 1)
RR(i + (j - 1) * N, i + (M + 2 - 1) * N) = Rc(i, j) - Rc(ip(i, N), j)

Next j
Next I

For i= 1 To N
RR(i + (M - 1) * N, i + (M - 1) * N) = Rc(i, M) + Rb(i) + Rc(ip(i, N), M) + Rcb(i, M - 1)
RR(i + (M - 1) * N, im(i, N) + (M - 1) * N) = -Rc(i, M)
RR(i + (M - 1) * N, i + (M + 1 - 1) * N) = -Rb(i)
RR(i + (M - 1) * N, ip(i, N) + (M - 1) * N) = -Rc(ip(i, N), M)
RR(i + (M - 1) * N, i + (M - 1 - 1) * N) -Rcb(i, M - 1)
RR(i + (M - 1) * N, i + (M + 2 - 1) * N) = Rc(i, M) - Rc(ip(i, N), M)

Next i
For i = 1 To N

RR(i + (M + 1 - 1) * N, i + (M + 1 - 1) * N) = Ra(i) + Ra(ip(i, N)) + Rb(i)
RR(i + (M + 1 - 1) * N, im(i, N) + (M + 1 - 1) * N)= -Ra(i)
RR(i + (M + 1 - 1) * N, ip(i, N) + (M + 1 - 1) * N)= -Ra(ip(i, N))
RR(i + (M + 1 - 1) * N, i + (M - 1) * N) = -Rb(i)
RR(i + (M + 1 - 1) * N, i + (M + 2 - 1) * N) = Ra(i) - Ra(ip(i, N))

Next i
For i= 1 To N

sum = 0
Forj = 1 To M

RR(i + (M + 2 - 1) * N, i + (j - 1) * N) = Rc(i, j)
RR(i + (M + 2 - 1) * N, im(i, N) + (j - 1) * N) = -Rc(i, j)
sum = sum+ Rc(i, j)

Next j
sum = sum + Ra(i)
RR(i+(M+2- 1) *N, i+(M+2- 1)* N)= sum
RR(i + (M + 2 - 1) * N, i + (M + 1 - 1) * N) = Ra(i)
RR(i + (M + 2 - 1) * N, im(i, N) + (M + 1 - 1) * N) = -Ra(i)

Next i

where im(i,N), ip(i,N), and iN_2(i,N) are functions that satisfy the following conditions:

Function im(i, N)
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If i = 1 Then
im = N

Else
im = i - 1

End If
End Function
Function ip(i, N)

If i = N Then
ip= 1

Else
ip = i + 1

End If
End Function

Next a 1 by (M+2)*N pressure matrix, PP(i), is created:

Fori= 1 To (M+ 1)* N
PP(i) = 0

Next i
For i = (M + 1) * N + 1 To (M +2) * N

PP(i) = Ps-Pa
Next i

The systems of equations, RR(i,j)Q(i)=PP(i), can be solved from the unknown flow rates,

Q(i) using any standard matrix solution algorithm. The supply flow rate is then calculated

by:

N

Qs = ( {Q(i) - Q(im(i, N)) + Q(i + (M +1)* N)} (B.20)
i=1

The first N pressures are calculated by:

P(i,1) = Ps -(Q(i)-Q(im(i, N))+ Q(i+ (M+2-1)*N))*Rc(i,1) i = 1,2...N (B.21)

The remaining pressures are calculated by:

P(i,j) = P(i, j - 1) - (Q(i + (j- 1)*N)- Q(im(i,N)+ (j - 1)*N)+ Q(i +(M + 2 - 1)*N))* Rc(i,j)

i= 1,2...N j = 2,3...M (B.22)
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APPENDIX C: CRITERIA FOR LAMINAR AND FULLY-
DEVELOPED LAND FLOW

In the derivation of the hydraulic resistances of the bearing land flows given in

Chapter 2, several important assumptions were made, including:

* The fluid flow resulting from the driving pressure difference across the land is laminar

and fully-developed.

* The fluid flow resulting from shaft rotation is laminar and fully-developed.

If the bearing is operated at low speeds and low supply pressures, then both the flow

induced by pressurization and the flow induced by shaft rotation are fully-developed fluid

flows and the nonlinear terms of the governing equations are negligible. In this case, the

combined fluid flow solution may be obtained by simply adding the two solutions

considered separately. This is called the "principle of superposition." Therefore, the

hydrostatic load-carrying characteristics of the bearing are not affected by the rotation of

the shaft and may be determined by considering only the fluid flow resulting from

pressurization. If either of the two combined fluid flows are not laminar and fully-

developed, then convective effects must be considered and the analysis becomes far more

complicated. This thesis has developed relations to predict the load-carrying

characteristics of bearings that are operated at low speeds and low pressures such that the

fluid flow across the lands remains laminar and fully-developed. Careful consideration

must be given to the criteria developed in this appendix to ensure that the relations

developed in Chapter 2 are applicable.
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Consider the developing laminar land flow shown in Figure C.1. The fluid is

visualized as entering the clearance with a uniform velocity. As it proceeds to flow across

the width of the land, it develops into a parabolic velocity profile that is characteristic of

fully-developed viscous flow between parallel plates. The distance required for the flow

to reach 99% of its fully-developed profile is called the "entrance length" of the flow. The

relations given in Chapter 2 were developed assuming that the entrance length of the flow

was much shorter than the width of the land. This is a good approximation if the fluid is

very viscous, the land is very long with the respect to the clearance, or the flow rate is

very low. However, for less viscous fluids, shorter land widths, or high flow rates, the

assumption is not good and the entrance length can be a significant portion of the land

width. Criteria will be developed in this appendix that must be satisfied for the pressure-

induced flow to be laminar and fully-developed, so that the relations developed in Chapter

2 can be used to predict the bearing performance.

•------ x •

Figure C.1. Schematic diagram of developing laminar fluid flow over a flat land of

uniform clearance.

A criterion will first be considered to determine whether the pressure-induced flow

across a land is laminar. Generally, pressure-driven fluid flow through a channel remains
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laminar for Reynolds numbers based on the hydraulic diameter less than about 2300 [17].

This Reynolds number is defined as:

Re = pDh (C.1)

where Dh = 2h is the hydraulic diameter of the clearance and i is the average velocity

given by:

-Qu= (C.2)
Lzh

where Q is the volumetric flow rate across the land and L, is the length of the land in the

direction into the page. If the flow is fully-developed, then the flow rate can be

determined from Equation (2.9). In this case, the critical pressure difference at which the

flow is no longer laminar is then given by:

p2 LApnt a 13800 L(C.3)

The criterion of Equation (C.3) is conservative because the flow rate will be less if the

flow is not fully-developed. Figure C.2 illustrates the critical pressure difference for a

water-based coolant with a dynamic viscosity of 0.0013 N s/m and a density of 995 kg/m3,

using various land widths and clearances. Note that for a 3 mm wide land with a clearance

of 20 pim, the flow will no longer be laminar if the pressure difference is greater than

approximately 1250 psid. Note that for most applications, the pressure drop across a land

is approximately half of the supply pressure difference. This means that the flow over a 3

mm wide land with a clearance of 20 ýtm will remain laminar up to a bearing supply

pressure of approximately 2500 psig.
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Figure C.2. Critical pressure difference for a rectangular land with a water-based coolant

flowing over it. Below the critical pressure, the flow remains laminar.

The assumption of fully-developed pressure flow will be considered next. Note in

the schematic diagram of Figure C. 1 that the derivative of the velocity with respect to y at

the wall is greater while the flow is developing than it is when it is fully-developed. This

means that, for a given flow rate, the pressure drop across the land will be greater than

that predicted using the fully-developed relations of Chapter 2. An approximate

correlation for the pressure drop in developing laminar channel flow is given by Shah [18].

The pressure difference required to drive the fluid at a mean velocity iI is given by:

1 2 4L
Ap = -pui2 (fpp Re) (C.4)

2 Dh Re,
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K(oo) 3.4424 +
3.44 4L'  •7

fapp Re, = 4 + 4 r (C.5)
+ 1+ 0.000029(L') 2

LL' = (C.6)
Dh Re,

The value of K(oo) has not yet been determined experimentally, but a value recommended

by Shah is 0.66; he recommends this value based on theoretical work done by others. The

entry length of the flow (the distance required for the flow to become 99% fully

developed) is approximately L+ = 0.011.

Shown in Figure C.3 is the ratio of flow rate calculated using Equations (C.4)

through (C.6) divided by that predicted using the fully-developed relation, Equation (2.9),

for several different clearances and a land width of 3 mm. The fluid is a water-based

coolant with a dynamic viscosity of 0.0013 N s/m and a density of 995 kg/m3. As shown,

the predicted flow rate is approximately 0.96 times that for fully-developed flow for a

clearance of 20 jtm and a pressure difference of 300 psid. Note that this corresponds to a

bearing supply pressure of 600 psig. The curves of Figure C.3 are all for a land width of 3

mm; reducing the land width causes convective effects to become more important, and

increasing the land width causes the convective effects to become less important.
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Figure C.3. Ratio of the flow rate across a land divided by that predicted using Equation

(2.9), which was developed assuming fully-developed flow. The fluid is a water-based

coolant. The different curves correspond to different clearances. The land width is 3 mm.

The hydrodynamic entry length will be considered next. The distance over the land

at which the flow reaches 99% of its fully developed velocity distribution is approximately

L' = 0.011. Shown in Figure C.4 is the ratio of L required to reach 99% of developed

flow divided by L' corresponding to the entire 3 mm width of the land. The fluid is again

a water-based coolant with a dynamic viscosity of 0.0013 N s/m and a density of 995

kg/m3. As shown, for a pressure difference of 300 psid (corresponding to a bearing with a

supply pressure of approximately 600 psig) and a land clearance of 20 pm, the flow

reaches 99% of its fully-developed state at a location of approximately 7% of the width of
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the land. In this case the entry region is negligible. However, for higher pressures, larger

clearances, or shorter land widths, the entry region can be significant.

.4
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o)
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+j
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0'

0 500 1000 1500

Pressure Difference (psid)

Figure C.4. Ratio of L' corresponding to the entire land width divided by L+ required to

reach 99% of fully-developed flow. The fluid is a water-based coolant. The different

curves correspond to different clearances. The land width is 3 mm.

Next consider the fluid flow over the lands that is caused by shaft rotation. Fluid

flow that enters a land is shown schematically in figure C.5. The fluid is visualized as

entering the land clearance with a uniform velocity. As the fluid is dragged across the

width of the land, it develops into the linear velocity profile characteristic of Couette fluid

flow. The relations given in Chapter 2 were developed assuming that the entrance length

of the flow was much shorter than the width of the land. This is a good approximation if
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the fluid is very viscous, the land is very long with the respect to the clearance, or the shaft

rotational speed is very low. However, for less viscous fluids, shorter land widths, or high

speeds, the assumption is not good and the entrance length can be a significant portion of

the land width. Criteria will be developed in this appendix that must be satisfied for the

pressure-induced flow to be laminar and fully-developed, so that the relations developed in

Chapter 2 can be used to predict the bearing performance. It is important to note that not

all bearing lands have an entrance region caused by shaft rotation; some lands are

uninterrupted circumferentially. Only those lands that are interuppted circumferentially

by pockets or grooves must be considered

y

L

Figure C.5. Schematic diagram of developing laminar Couette flow over a flat land of

uniform clearance.

A criterion will first be considered to determine whether the Couette flow across a

land is laminar. Generally, the land fluid flow induced by shaft rotation remains laminar

for Reynolds numbers based on the clearance dimension less than about 1600 [12]. This

Reynolds number is defined as:

Re = (C.7)4t
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where V is the surface speed of the shaft and h is the clearance between the land and the

housing. Rearranging, the critical shaft speed at which the fluid flow induced by shaft

rotation is no longer laminar is given by:

(C.8)o), = 3200 p 1
p hD

where D is the shaft diameter. Consider a water-based coolant with a dynamic viscosity of

0.0013 N s/m and a density of 995 kg/m3. The critical speed at which the flow is no

longer laminar is shown in Figure C.5 for several different land clearances and shaft

diameters.

70

E
4-
o

a
C,
- 30

0
-cD0

60 80 100 120

Figure C.5.

rotation is no

Shaft Diameter (mrm)

Critical shaft speed above which the flow over the lands induced by shaft

longer laminar. The fluid is a water-based coolant.
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The speed at which the fluid flow induced by shaft rotation is no longer fully-

developed will be considered next. An entry-region solution for Couette flow could not

be found in the literature. However, an order-of-magnitude consideration will be given

here. Consider the governing equation of motion, Equation (2.1). For the convective

terms to be negligible,

au au 82uu -- + v - << (C.9)
ax &y p y2

An order-of-magnitude analysis can be performed by recognizing that, for the land flow at

laminar speeds, u ~ V, x ~ L, and y ~ h. By substituting into Equation (2.2), continuity

yields a characteristic y-velocity scale:
h

v ~ - V (C. 10)
L

Substituting into Equation (),
V (V h / L )  B V

V + V << (C.11)
L h ph 2

V2  V
-- << V (C. 12)
L h2

Vh h
-- «<<1 (C.13)

vL
h

Re << 1 (C. 14)
L

Although this criterion accurately represents the scaling required for the flow to be fully-

developed, it is only an order-of-magnitude estimate of the condition required for the land

flow induced by shaft rotation to be fully-developed.
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APPENDIX D: MODEL FOR THE POCKET PRESSURE GRADIENT

Relations are presented in this appendix that can be used to approximately

calculate the pressure gradient within the pockets or grooves of hydrostatic bearings at

speeds sufficiently high such that the flow is highly turbulent (Rep = pVhp/b > 1x104).

These relations were developed by Wasson [14]. Once the pressure gradient is known, it

can be used to calculate the change in flow rate caused by fluid pumping within the

grooves of Self-Compensated Bearing #10, presented in Chapter 3. First, a "fully-

developed" pressure gradient is calculated. Next, a correction factor is added to

approximately account for the effect of turning the fluid around within the pocket. Note

that the "walls" inside hydrostatic bearings are typically smooth and surface roughness was

neglected.

A relation between the pressure gradient and the wall friction within the pocket

was derived by Wasson by considering a small circumferential fluid element dx, as shown

in Figure D. 1. The fluid is considered "fully-developed," meaning that the velocity profile

is unchaning along the length of the pocket. Equating the forces on this fluid element,

'tdx +t bdx = [(p +dp)- p]h (D.1)

dp rt +b U2 + u b
p - ~ (D.2)

dx hp hp

Letting n = ub/ut,

dp u (n 2 + 1) (D.3)
dx hp
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where ut = / , ub = / p, t is the top (shaft) wall shear stress, 'Cb is the bottom

(sleeve) wall shear stress, and p is the fluid density.

Shaft 't 'V

Figure D.1. Small circumferential fluid element within the pocket.

Using an eddy-viscosity model to account for the turbulence, the following

relations were derived to relate the top wall friction factor to the shear stress ratio [14]:

( f- -n 3 +3n2 +n n +1 (1-2n2)In Re 2n2 6nCC C - In(n) (D.4)

12 ( 2n2 6nC

= C(1- n)-+ -n Re, In(n) + + - (D.5)
Cf, K 2 nm 2C,

where Cf = 't / (pV 2 / 2) and Re = Vh, / v, K is von Karmann's constant (= 0.42), C is

the log-law constant (= 5.43), and Cc is a constant that was determined empirically to be

equal to -0.17. These two relations can be solved simultaneously for the friction factor,

Cf, and the shear stress ratio, n. Once the values of n and Cf are found, they can be

substituted into Equation (D.3) to calculate the fully-developed pressure gradient.
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The relation presented above was derived assuming that the fluid flow profile

within the pocket is fully-developed. To account for effect of the fluid turning at the

leading and trailing edge of the pocket, the following relation may be used [14]:

= -dop1 + In1 + 2.71 Re-oi3 h 3.5'Re'31 (D.6)

Note that the length, Lp, to use in Equation (D.6) is the approximate length in which the

fluid completely turns around. In a conventional pocket, this would simply be the pocket

circumferential length. However, in a slanted groove, the approximate distance is shown

in Figure D.2. The pressure difference from one end of the groove to the other is given

by:

A= x p  (D.7)

where Lp* is the circumferential length from the beginning to the end of the groove, as

shown in Figure D.2.

Shaft K
Rotation

L

LL

Figure D.2. Schematic diagram of a slanted groove. The top lid of the groove is moved

at high speed in the direction shown, while the fluid recirculates within the length L.
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