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Abstract

A structural design agent program is presented which is based on a testbed information

infrastructure for supporting multi-institutional collaborative facility engineering, called a

Federation Architecture. Equipped with the ability to communicate with other design

agents, the structural design agent is able to carry out the design process in a collaborative

fashion. The Structural Engineering Vocabulary, a data model based on object-oriented

methodology, is described in details. Integration of several software modules, including a

graphical user interface, a knowledge-based inference engine, and an object-oriented data-

base management system, present major implementation issues for this project. Experi-

ence gained during the process of developing the structural agent is delineated. Finally,

two examples, one for cabin and the other for firestation design, are given to demonstrate

the capability of the structural agent and the overall collaborative framework. The last

chapter describes our experience with and requirements for a useful federation architec-

ture. Recommendations for improvements to the federation architecure are described in

details.

Thesis Supervisor: Robert D. Logcher
Title: Professor of Civil and Environmental Engineering
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Testing a Federation Architecture in Collaborative Design Process

Chapter 1

Introduction

1.1 Collaborative Engineering Design

Collaborative engineering design [18] is the systematic, intelligent generation and evalua-

tion of specifications for artifacts whose form and function achieve stated objectives and

satisfy specified constraints through sporadic work of engineers dispersed geographically

and working in distinct disciplines. The aid of computing and communication facilities is

essential to this process. The ultimate goal of collaborative design system developers is to

support interactions between teams of multiple engineers as they work on product devel-

opment activities. The problems arising in collaborative design are as diverse as the tech-

nologies and tools used for solving them. Some problems can be solved with simple

procedural models, others may require more sophisticated mathematical modeling; while

others require heuristic-based reasoning approaches. The ability to effectively integrate

and utilize heterogeneous design information - generated and consumed by multiple engi-

neering tasks - is vital for industrial improvement.

There are several characteristics of the collaborative design process:

* The integration of design and construction involves professionals from many differ-

ent disciplines, including architects, structural engineers, electrical and mechanical

engineers, developers, and interior designers. Each discipline represents a special-

ization that is often not well understood by the others. Variations in background,

education, and experience lead to discrepancies in terminology, attitude, style, and

organization of information.

* Each discipline has its own perspective of the building. For example, a structural
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engineer is interested in load distribution in the building and its translation to size

and location of beams and columns, whereas an architect is interested in the charac-

ter and expressiveness of the building as a whole, as well as in the function and

appearance of the spaces and enclosures. Attempting to maintain all views of the

building in a single representation, either on drawings or in a database, introduces

problems of redundancy and consistency of information.

* Currently, communication occurs verbally or through the media of blueprints and

written documentation. This tradition has resulted in limiting the data transferred

from one discipline to another to a description of the solution, typically including

only enough information for the contractor to construct the building. Intermediate

decisions and justification for decisions made during design or construction planning

are not communicated. Often the main medium is the drawings that the architects

and engineers generate.

* Each discipline uses computer programs to assist in their tasks. For example, archi-

tects use AutoCAD or Microstation systems to produce drawings and structural

engineers use finite element programs to analyze the walls, framing and slabs of the

building. Not only do the computer systems vary from discipline to discipline, but

the degree of automation varies from project to project. One group may make exten-

sive use of computer-based tools, including database management systems, graphic

exchange standards, CAD systems, etc., whereas another group may make limited

use of computers for very specific tasks. Typically, because of the need to pass infor-

mation from one group to another, the preparation of input data and interpretation of

output is done manually.
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* Each organization involved in design and/or construction make use of hardware and

software for its own purposes, and those tools may not be compatible with other

organizations. Even though there are efforts underway to use standard representa-

tions of design drawings, such as DXF or IGES, there are practical problems of

translation to other CAD systems and legal concerns when errors in the data occurs.

The lack of an automatic means of transferring data from one computer program to

another makes it difficult to use existing software within an integrated environment.

In order to resolve these limitations, the ACL project was proposed to develop a test-

bed for the exploration of integration and communication issues in the building design,

and the federation architecture was chosen as the information infrastructure for both com-

munication and information exchange management. The systems used in this testbed

include an architectural design system called SEED, a structural engineering environment

developed at MIT, an energy analysis environment provided by BLAST and ACE. The

owner (client) and project manager perspective is supported by ACE. In this section, we

discuss each of these systems.

The goal of this project is to determine the tasks and level of effort required to connect

the design systems in a collaborative design environment using a federation architecture

and then to exercise the environment in an exploratory fashion. Several questions are

being researched. How should the vocabulary (ontology) for different systems, which use

different internal data and knowledge representations, be expressed so that communica-

tion and translation can occur? What should the characteristics of an application program-

matic interface be so that systems can communicate with a facilitator, which can distribute

data among participants? What capabilities are required of each agent to be a participating

member of the federation? What does this mean in terms of software implementation?
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How should the facilitator approach the task of translating between system representations

and how much manual work is required. Is translation ultimately an n2 problem or are

there intermediate standards?

Figure 1.1: Relationships between the Agents

SEED (Software Environment to support the Early phases in building
Design)
SEED[22] is an architectural design environment that generates a complete architectural

program based on a rough project specification (e.g., building type, size, budget, site

description and other context-specific information). The architectural program consists of

the basic functional units needed for a building with the specified characteristics and

requirements (shape, performance) that a configuration of these units must satisfy. A

Elk
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major component of the SEED environment is SEED-Layout, which provides support for

the early phases in building design. SEED-Layout supports specifically the rapid genera-

tion of internal, computable design representations, including representations of concep-

tual alternatives and variants of such alternatives, so that the space of possibilities

available for a given project can be more systematically explored, especially if feedback

from other agents is received early before major commitments have been made. The effec-

tiveness of the generative capabilities of SEED-Layout rely on an explicit problem specifi-

cation, which can be edited interactively by designers and evolves as they gain more

experience with a specific project. This general outlook makes SEED-Layout particularly

suitable for collaborative design aiming at greater interactions between the teams involved

at the early, crucial stage, in order to overcome the traditional, linear decision sequence

that does not allow for iterations and the exploration of alternative designs and their trade-

offs.

In addition to these generative capabilities, SEED-Layout can retrieve functional pro-

grams for recurring building types from a database, which can then be edited like any

other problem specification. This gives SEED-Layout a programming capability that is

minimally sufficient to support the first task listed above. Tasks involving the display, gen-

eration and evaluation of three-dimensional spatial and physical components are concen-

trated in another module, which takes over once SEED-Layout has completed a

programming or layout task. SEED-Layout uses internally an object-oriented representa-

tion that is highly structured and rich in content. It relies specifically on two hierarchies:

(i) an inheritance hierarchy that allows objects in one class to inherit attributes and behav-

ior from a superclass, and (ii) a part-of or constituent hierarchy describing geometric

assemblies at various levels of abstraction.
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Agent Collaboration Environment (ACE)

The ACE is an implementation of a general purpose model of agent collaboration

called the Discourse Model. Simply put, ACE treats assertions by agents as opinions, and

provides functionality for agents to discuss those opinions. Historically, the roots of

ACE's development lie in the area of blackboard systems, although the traditional conven-

tion that agents not be aware of each is not enforced. The ACE model has four readily

identified parts. First, an agent model is defined that describes agents and their behavior.

Second, a workspace contains agents and modeling artifacts, including frames (classes),

semantic links (relation between classes), and constraints (enforceable relations between

attributes of frames, through which values may propagate). Third, a network communica-

tion model enables the workspaces of individuals to share their models, resulting in a Vir-

tual Workspace. Finally, a set of closely linked interfaces with CAD and databases links

ACE with legacy software.

ACE/Building Loads Analysis and System Thermodynamic (BLAST)

The primary objective of ACE/BLAST system is to conduct an analysis of the thermal

behavior of the building and recommend changes to improve comfort and reduce life

cycle cost. ACE/BLAST needs a description of the preliminary design of the building

geometry and other useful information for thermal simulation. BLAST is a comprehensive

computer program used for predicting energy consumption and energy systems perfor-

mance in buildings. It is currently used throughout the world as a stand-alone energy anal-

ysis tool. ACE facilitates an environment for the thermal engineering in providing an

interactive facility in specifying and configuring the thermal zones, in selecting the surface

types from the libraries by incorporating tools such as computer aided drafting systems,
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and in selecting appropriate fan systems and plant parameters for simulation. In addition,

ACE provides checklists for the subagents of the thermal analysis during preparation of

the BLAST input file for simulation.

The major processes, which constitute the task of energy analysis are: configuring the

thermal zone, identifying the surfaces in the thermal zone, translating the building infor-

mation into the BLAST objects and formulating scheduled loads in each thermal zone.

Then, BLAST generates building descriptions for the simulation and adjusts building

parameters for the optimal design. It selects surface and subsurface types from its libraries

or creates the surface type using materials from the materials library. Some of libraries for

surface types supported are walls, roofs, floors, doors and windows. Next, it translates the

building geometry to the BLAST building objects. It finally prepares schedule of loads in

each thermal zone using scheduled loads hints.

ACE/Owner/Project Manager

Owner and Project Manager agents have also been implemented in ACE. Their func-

tion is to establish the initial functional requirements for a building, situate the proposed

building on a site, and pass the information to the architectural design system (SEED).

They will also provide building visualization capabilities for a simulated human client

through ACE's interface with commercial CAD software.

Perspective of Structural Engineering Design

To illustrate the importance of representation in structural design, and the diversity of

representations that we actually use for artifacts and process representation, we present a

brief discussion of the typical structural engineering problem in design and development.
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A structural need is identified after reviewing the architectural requirements, whether

it is for a cabin or a firestation. A structural concept is chosen first, perhaps a simple steel

frame and steel roof truss for the cabin, something considerably more complex for the fir-

estation, and we move to preliminary design. In this stage we usually restrict our efforts to

preliminary sizing of the principal structural members, the object being to see whether the

type of structural system that we have selected is practically feasible. We then move on to

scoping out the structure by estimating the types and sizes of the remaining members (e.g.

in the cabin design, purlins for the roof truss and floor joists as needed). Then we zero in

on the final, detailed design in which we calculate actual dimensions and placements for

all members and their connections. In the final step we check to insure that our design

meets all the specification requirements, including both applicable building codes as well

as design codes such as that of the American Institute of Steel Construction (AISC) or

American Concrete Institute (ACI), which lay out performance specifications for members

and connections.

Let us now examine the kinds of design knowledge deployed in completing such as

structural design. Among the kinds of knowledge we apply are: classical mechanics (e.g.,

Newton's laws); structural mechanics (e.g., model of columns and beams); geometry of

structures (e.g., relating the geometry of members and assemblages of members to the ori-

entation of the loads that they are expected to carry); behavioral models (e.g., modeling

the stiffness of a complete frame); algorithmic models of structures (e.g., finite element

method (FEM) computer codes); structural design codes (e.g., AISC code); heuristic and

experimental knowledge, both derived from practice and encoded in specifications and

meta-knowledge about how and where to invoke the other kinds of knowledge. Much of

this knowledge is multilayered. For example, our understanding of the behavior of struc-

tural systems is realized at three distinct levels: spatial layout (e.g., where to place col-
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umns to achieve clear floor spans), functional (e.g., how to support different kinds of

loads), and behavioral (e.g., estimating the lateral stiffness of frames). Approximate meth-

ods of analysis plays an important role here.

And how do we represent these different kinds of structural design knowledge? In fact,

we use several kinds of representations of the knowledge itself, including: mathematical

models for classical and structural mechanics (e.g., partial differential equations, varia-

tional principles, etc.); case-specific analyses (e.g., buckling of slender columns); phe-

nomenological, approximate analysis (e.g., the beam-like response of tall buildings);

numerical programs (e.g., FEM codes); graphics and computer-aided design and drafting

(CADD) packages; rules in design codes (e.g., the AISC code); and heuristic knowledge

about structural behavior, analysis techniques, and so forth. Such qualitative knowledge is

often subjective and is frequently expressed in rules. Thus, we already employ several dif-

ferent representations or "languages" of knowledge, including verbal statements, sketches

and pictures, mathematical models, numerically based algorithms, and the heuristics and

rules of design codes. When we use these different languages now, we manage to choose

the right one at the right time, but in computational terms we should recognize that it

would be desirable to link these different representations or "languages" so that we could

model our design process in a seamless fashion. We should also recognize that we often

cast the same knowledge in different languages, depending on the immediate problem at

hand. For example, a statement (typical of that found in building codes) that the deflection

of a floor in a residential building should not exceed its length (in feet) divided by 360 is

actually a restatement of equilibrium for a bent beam. If we can externalize this kind of

design knowledge into rules embedded in a rule-based expert system, it would be very

beneficial for the maintenance and development of the knowledge base.
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Figure 1.2: Different Engineering Perspectives

1.2 Related Research

1.2.1 CMU Integrated Building Design Environment (IBDE)

IBDE[14] is a testbed for the exploration of integration and communication issues in

the building industry. It vertically integrates the various design and planning tasks in the

delivery of a constructed facility - from the initial architectural programming through

structural and foundation system synthesis and design, on to the planning and scheduling

of construction activities. Its major objective is purposely designed to be modular and

served as a testbed for the empirical evaluation and calibration of integrated design sup-
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port environments. There are two significant limitations to emphasize. First, IBDE is not a

prototype of a possible commercial building design system. IBDE was conceived as a

purely experimental, empirical testbed for the exploration of a host of issues in integration

and communication. Secondly, IBDE is not intended to serve as a normative, prescriptive

model of how building design "ought to be done." Rather, in the empirical spirit that char-

acterizes the entire project, it is intended to provide a means for arriving at generalizations

about the design process that are based on the experience and insights gained from experi-

ments with the system.

1.2.2 MIT Distributed and Integrated Computing Environment (DICE)

MIT DICE [17] project can be envisioned as a network of computers and users, where

the communication and coordination is archived, through a global database, by a control

mechanism. The definition of an agent in this framework is a combination of a user and a

computer. No specific role is assigned to the computer, thus a general approach that allows

multiple computer tools is assumed. DICE supplies interface modules that map the repre-

sentations used by the agents from and to the shared blackboard. In this framework, any of

the knowledge modules can make changes or request information from the Blackboard;

requests for information are logged with the objects representing the information, and

changes to the Blackboard may initiate either of the two actions: finding the implications

and notifying various knowledge modules, and entering into the negotiation process, if

two or more knowledge modules suggests conflicting changes.

1.2.3 UIUC System Workbench for Integrating and Facilitating Teams (SWIFT)

The SWIFT[25] project is targeted at managing large and complex engineering tasks

consisting of many inter-related subtasks whose solutions require a high degree of interac-

tion among people with diverse expertise. It is intended that SWIFT will break the disci-

plinary, time and geographical boundaries between people who need to work together to
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achieve a complex task. SWIFT can operate in either single-user mode or with the func-

tionalities provided by ObjectStore database management system. For its initial genera-

tion, the SWIFT system borrows this providing an additional proof-of-concept that this

architecture is indeed independent of a specific language and database application.

1.3 Roadmap of the Document

The first chapter of this report initiates the discussion of the collaborative engineering

design process. Related researches are also introduced and compared.

Chapter 2 is devoted to describing the federation architecture, which is the information

infrastructure employed in this research.

Chapter 3 outlines the ideas behind the MIT structural design agent as well as the

design scenario and process. Object-oriented concepts as well as the rationale and usage of

Object Modeling Language are also described.

Chapter 4 gives the detailed information and experience gained during the entire

development process, including the integration of the software modules involved.

Two examples, cabin and firestation design, are presented in Chapter 5 to demonstrate

the capabilities of the agent.

Conclusion and future research issues are summarized in Chapter 6.

Appendix A lists the structural design rules in CLIPS. The communication API speci-

fication, provided by Stanford CIFE, is listed in Appendix B. The BNF grammars of OML

and the associated Instance Manipulation Language are given in Appendix C and D,

respectively.
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Chapter 2

Federation Architecture

2.1 Introduction

Federation architecture [2] [3] is an information infrastructure that aims at integrating

design software by allowing better software interoperability. In this approach, various

types of software are viewed as agents that communicate their design information and

knowledge using a standard Agent Communication Language (ACL). Agent interaction is

assisted and coordinated through system programs called facilitators.

Figure 2.1: Federation Architecture

Agents and facilitators are linked together forming a federation architecture. In this

architecture, agents communicate only with the facilitators, and the facilitators communi-

cate with each other. In effect, the agents form a federation in which they surrender their

communication autonomy to the facilitators, hence the name of the architecture. One of

the primary advantages of the federation architecture is improved flexibility in integrating
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agents, which allows different agents to be ignorant about other existing agents in the

architecture.

Communication in the federation architecture is undirected. Agents communicate their

design information in the form of messages without specifying destinations or addresses

for those messages. They also specify interests to designate their desires for information

produced by other agents. It is the responsibility of the facilitators to determine the appro-

priate recipients of the messages based on these interests and forward the messages

accordingly. In performing this responsibility, facilitators handle a number of important

operations to facilitate communication and the exchange of design information and

knowledge among agents. They translate message, schedule the executions of different

agents, help to decompose the problems into sub-problems. and assist in relating different

design information.

It is important to note that the agent-based approach to software interoperability is

based on the idea of communication standards. While this idea has been the basis of many

specific application areas (e.g., mail standard SMTP for electronic mail, standard formats

like GIF for graphics), the novelty of this approach lies in the language used and in push-

ing the idea of communication standard to its limit to improve the interoperability of soft-

ware.

2.2 Agent Communication Language

In the federation architecture, agents communicate in a language called Agent Communi-

cation Language (ACL). This language provides a unified format by which agents unam-

biguously exchange complex expressions describing various aspects of design. This

language follows from the decisions of a series of meetings of project participants.

Besides, Object Modeling Language (OML) [20] has been chosen as the standard object-
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oriented representation language for this project.

2.2.1 Message Characteristics

Each message in ACL consists of a sequence of expression enclosed in parenthesis.

The first element in any sequence in the message type indicating the communication mode

(e.g. declarative, interrogative, imperative). Different communication modes are expres-

sion by different Knowledge Query Manipulation Language (KQML) message types.

These details have been encapsulated in the API developed by the Stanford team. By call-

ing this API, the specific design agent is able to communicate with the facilitator to trans-

mit and exchange the design information with other design agents.

2.2.2 Object Modeling Language

The second principal element in an ACL message consists of expressions in the Object

Modeling Language (OML) developed by Carnegie Mellon University team. OML is an

object-oriented language with high-level constructs and superior modeling semantics. The

details of OML is delineated in Section 4.2.

2.3 Agents

An agent is a software program capable of communicating with other software using

ACL. In principle, it is possible for an agent to interact directly with other agents. How-

ever, in a pure federation architecture, all communication takes place between an agent

and its local facilitator.

There are two phases in the operation of an agent - its initialization phase and its nor-

mal operation. During the initialization phase, the agent declares it existence and asserts

various aspects of its specification to its facilitator. The specification of an agent is a col-

lection of commands created in OML that describe the agent's interests and its perspec-
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tives, and characterize its behavior. The interests of an agent are those messages that the

agent desires to receive and to be informed about. The perspectives specify the formats in

which the agent would like to receive certain information. The behavioral part of an

agent's specification characterizes the agent's activity. For the purpose of agent-based

software engineering, the most important part of this activity is the agent's reaction to the

messages it receives.

Once the initialization phase is complete, the agent enters a normal operation. Within

an agent, typically, there is a loop that detects different events (e.g. mouse clicks, key

strokes) and handles them by calling appropriate event handlers. Message from the facili-

tator are treated as events of this sort. When a message is received by an agent, it is pro-

cessed by its message handler which invokes the associated callback function. Depending

on the agent's role, the agent may request further information or services or may generate

information and send it to the facilitator.

2.4 Facilitator

In the federation architecture, a facilitator can be viewed as a system program that pro-

vides services for agent collaboration. Agents are free to send messages without specify-

ing the destinations of these messages. It is the responsibility of the facilitator to

determine the appropriate recipients for undirected messages and translate the messages in

the language of the recipients and to forward the messages accordingly. This service is

based on the agents' interests.

Another important service provided by the facilitator is translation, which is the trans-

formation from one form to another. One of the important aspects of translation is vocabu-

lary translation. The need for vocabulary translation arises because of differences between
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the abstractions inherent in the implementation of agents. Other types of translation,

which involve deducing new design information (needed by some agents) based on other

information, may be necessary to support agent collaboration.

A third important service is the scheduling of agent activities based on their behavior.

Depending on the different agent's roles, scheduling can be viewed from different per-

spectives. In some cases, scheduling can merely be forwarding messages to different

agents in a priority order. In other cases, scheduling may include time allocation of jobs on

each processor. The facilitator is an agent that provides some services to other agents in an

environment and performs certain functions.

A facilitator accomplishes the tasks of performing domain-independent automated

reasoning for facilitating and coordinating the interactions of agents in an environment by

receiving and distributing appropriate messages to agents according to their interests,

scheduling agent activities and performing different types of vocabulary translations.

Most of the functions performed by the facilitator are based on agents' specifications com-

municated by agents at the registration phase. Other types of vocabulary translation are

performed to facilitate the execution of design tasks performed by autonomous design

agents. This translation is done by capturing domain-specific knowledge about different

facility design tasks and their interrelationships in the form of sets of KIF axioms consti-

tuting KIF theories. Provided with these theories, the facilitator performs reasoning to

infer implicit design information received from information received from design agents

and expresses it explicitly for the use of other agents. The facilitator also reasons about the

relationships among different level of design abstractions and different design models

describing the same physical entity. In this way, the facilitator is capable of identifying

appropriate design changes and of forwarding them to appropriate agents based on some

other changes.
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The operation of the facilitator in such an environment is continuous. At each point of

its operation, the facilitator checks for agent registration and for messages with already

registered agents. When the facilitator detects that an agent is requesting registration, it

executes its registration protocol for accepting such a registration. Upon registration, an

agent will typically send it specifications (including interests, its perspectives, and its

behaviors) to the facilitator so that it becomes identifiable in the environment. Once the

agent is registered with the facilitator, it can send messages and receive messages about

the evolving design according to its specifications.

Every message received by the facilitator is processed in an automated fashion and a

number of appropriate messages are forwarded to various registered agents. In processing

a message, the facilitator first identifies the message type and then performs a perspective

translation according to the agent's perspective of the information contained within the

message. Next, the facilitator reasons about this information to infer other appropriate

information. Then, the facilitator attempts to find agents interested in the information and

message types based on the agents' interests. Once all interested agents are identified, the

facilitator prioritizes the order in which messages will be forwarded to the interested

agents' behaviors. Finally, in the order determined, the facilitator performs a perspective

translation for every agent and forwards appropriate messages to it.

2.5 API Specification and Usage

The proposed API provides agents with two sets of methods that would enable them to

communicate with the facilitator in the form of ACL messages. The API hides the details

of ACL from programmers by providing an object oriented program interface. Using this

API, programmers deal with two classes that are used to send and receive messages from

the facilitator.
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Figure 2.2: Facilitator

The first class, Facilitator, provides a set of methods that can be used to deal with all

the connections, disconnections, message sending, and message receiving. The second

class, Message, provides a set of methods that can be used to interrogate the message

type, its class name, its object name, its slot name, its value, and its relation.

Agents communicate with the Facilitator by first creating a Facilitator object. Then,

agents must call connect as the first operation on this object. Following this operation, an

agent typically would communicate its interests by invoking the appropriate methods

associated with the Facilitator class. Agents would then be free to send different types of

u
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messages to the Facilitator by invoking methods on the Facilitator object. Agents would

also receive messages from the Facilitator according to the interests they communicated

to the facilitator in the form of Message objects. Agents can interrogate these message

objects to identify their types and contents to take the appropriate actions.

The API has restrictions on the different data types and object name convention. It is

important to note that the case of different names (e.g., class name, slot name, etc.) is not

maintained because of the underlying implementation of the facilitator. For this reason, all

names obtained by interrogating a message object will be upper case. In addition, the use

of colon ':' in any name is not permissible for the above mentioned reason. However,

colon ':' can certainly be used in a string value as discussed below.

The API supports different data types including integer, floating point, string, 2D

point, 3D point, interval, polygon, and matrix. Agents obtain slot values as a character

string by interrogating the message object. The character string will conform to the fol-

lowing grammar.

<value>:
<simple-value-list>

I <structured-value-list>

<structured-value>:
' {' <simple-value-list> '}'

I '[' <simple-value-list> ']'
I '{' <structured-value-list> '}'

ring will conform to the following grammar.
I '[' <structured-value-list>']'

<structured-value-list>:
<structured-value>

I <structured-value-list> <structured-value>
<simple-value-list>:
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<simple-value> I <simple-value-list> <simple-value>
<simple-value>:

<string> I <integer> I <real> I NIL I <variable>
Examples:

Integer value: 1
Floating point value: 1.0
String value: "Column"
2D-Point: { 0} { 0}
3D-Point: {0} {0) {0)
Polygon: [{1} {2} {3}] [{4} {5} {6}] [{7} {8} {9}]
2x2 Matrix: { { 1.0 2.0 } } { 3.0 4.0 } }
Interval: {1 4}

The methods embedded in facilitator and message object are outlined as follows.

Appendix C contains the full specification in details.

Facilitator Methods

bool Facilitator: :connect()
bool Facilitator::disconnect()
bool Facilitator::forget()
bool Facilitator::set_namespace()
char** Facilitator::get-connected agents()
char** Facilitator::getall agents()
bool Facilitator::message_waiting()
Message* Facilitator: :getmessage()
bool Facilitator::commit()
bool Facilitator::abort()
bool Facilitator::construct_instanceO
bool Facilitator::destruct_instanceO
bool Facilitator::add_valueO
bool Facilitator::modifyvalue()
bool Facilitator::delete_valueO
bool Facilitator::add_relationO
bool Facilitator: :delete_relation()
bool Facilitator::int_all()
bool Facilitator::intconstructinstanceO
bool Facilitator::intdestructinstanceO
bool Facilitator::intadd value()
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bool Facilitator::int_modify_value()
bool Facilitator::intdelete valueo
bool Facilitator::int add relationo
bool Facilitator::int deleterelationO

Facilitator Enumerated Types
enum int_action { kintjinsert, kintremove };
bool Facilitator::registercallback()

Message Methods
int Message::typeo
char* Message::msgsclass()
char* Message: :object()
char* Message::sloto
char* Message::value()
char* Message::child_class()
char* Message::childobject()

Example of Use
This is an example of an agent connecting to a facilitator, sending messages to

it, and then receiving messages and processing them.

#include "ACL.h"
int main()
Facilitator*f = new Facilitator; //create the facilitator object
f- >connect( "acl-facilitator", "acl-facilitator", "hpdce.stanford.edu ", 4010);

f-> construct _instance( "Column", "coll ");
f->addvalue( "Column", "coll ", "name", \'" columnl\" ");
f->addvalue("Column ", "coll", "x_coord", "0.0");
f->addvalue( "Column", "coll ", "y_coord", "0.0");
f->addvalue( "Column", "coll ", "z_coord", "0. 0");

f->commit();
while ( f->message_waitingO ) I

process _message(f->getmessageO);

1
f->disconnect();
return 0;

I
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Implications of this Design
Agents are responsible for doing any necessary mapping from names to classes,

objects, or slots. It is up to the receiving Agent, for example, to determine that a

class_name of "column", objectname of "Col-1", and a slot_name of "x_coord" refer

to the x coordinate of column object Col-1.

2.6 Advantages and Disadvantages

The major advantage of the capabilities of API is its simplicity. It is quite easy for the pro-

grammer to capture the gist for its usage. On the other hand, there are a set of limitation

that constrain the current API implementation and facilitator. The detailed discussion is

given in the last chapter.
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Chapter 3

Characteristics of Structural Design Agent

3.1 Introduction

In this chapter, the concepts behind the structural design agent are presented. These

includes object-oriented programming, structural engineering vocabulary, and design sce-

nario and process.

In our definition, a computer-aided structural design agent would organize, process,

manage, and communicate with other agents the design information associated with com-

plex design problems, manage the overall process, and make decisions whenever neces-

sary. The major difficulty in creating such systems is that the engineering design process is

not clearly understood and the complexity in communicating and negotiating with other

agents. The problems are (1) the structure of the process, (2) the tasks to be performed,

and (3) the information required to carry out these tasks are not well defined. In addition,

We lack a robust and versatile data structure which can seamlessly represent complex

design process as well as design artifact information. In order to address this difficulty, a

conceptual framework is needed to help formalize the design process.

In terms of structural engineering, the framework needed for computer integrated

design include (1) an organizational model for the design process, (2) a set of well-defined

design tasks, and (3) a set of formalisms for representing and processing the knowledge

required for these tasks. This chapter presents an object-oriented data model for structural

engineering design. The scope is limited to routine structural design in which conven-

tional structures are design using standard components (e.g., beam, column, truss, etc.)

and clearly defined design procedures such as those outlined in various design code.
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Design tasks ranging from the selection of structural concept through the completion of a

detailed design sizing are considered. From our perspective, the representation is the key

issue. It is not that problem solving and evaluation are less important; they are extremely

important, but they too must be expressed and implemented at an appropriate level of

abstraction. Thus, they are also inextricably bound up with concepts of representation.

Structural engineers involved in building design encounter a wide variety of building

types, which vary from one another in their topology, their construction material and in

their load resisting systems. They start their work defining minimum information as input

data so that any type of building can be designed. The computer model identifies, at a high

level of abstraction, the objects and their interrelations involved in the design of any struc-

ture. As design proceeds, increased detail is generated. The objects and relations are

derived directly from the modeling of a structural design, which is a necessary part of the

design process whether it is done manually or with the aid of a computer.

We begin with an outline of basic concepts involved in object-oriented methodology,

with emphasis on structural engineering, as well as the importance of information model-

ing. This is followed by the description of a proposed model for a generic structural engi-

neering vocabulary.

3.2 Object-Oriented Methodology [26] [27]

From the beginning, the design of the structural agent has been centered on object-ori-

ented concepts. Object-Oriented programming (OOP) is a method of implementation in

which programs are organized as cooperative collections of objects, each of which repre-

sents an instance of some class, and whose classes are all members of a hierarchy of

classes united via inheritance relationships.
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Figure 3.1: Structural Design Process

There are three important parts to this definitions: object-oriented programming (1)

uses object, not algorithms, as its fundamental logical building blocks (the "part of' hier-

archy); (2) each object is an instance of some class, (3) classes are related to one another

via inheritance relationships, and (4) objects have behavior so that functionality can be

directly associated with the class to which an object belong. A program may appear to be

object-oriented; but if any of these elements is missing; it is not an object-oriented pro-

gram. Specifically, programming without inheritance is distinctly not object-oriented.

Object-oriented design is a method of design encompassing the process of object-ori-

ented decomposition and a notation for depicting both logical and physical as well as

I -' -
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static and dynamic models of the system under design. There are two important parts to

the above definition of OOD.

* leads to an object-oriented decomposition

* uses different notations to express different models of the logical (class and

object structure) and physical (module and process architecture) design of a sys-

tem, in addition to the static and dynamic aspects of the system.

The support for object-oriented decomposition is what makes object-oriented design

quite different from structured design: the former uses class and object abstractions to log-

ically structure systems, and the latter uses algorithmic abstractions. The object-oriented

data model essentially supports the following two relationships between data types.

Aggregation relationship. Unlike the relational model, the object-oriented approach

allows the value of an attribute to refer to another class of objects. This permits the estab-

lishment of a directed graph structure for the classes in the data model. This relationship

allows the specification of complex objects by establishing "part-of" links between the

classes in the data model.

Generalization relationship. This relationship connects a class and its direct and

indirect subclasses. The generalization relationship establishes a class hierarchy that

describes the "is-a" type connections between the classes in the data model. The class

hierarchy establishes one mechanism for inheritance of attributes from superclasses.

The three major pillars of object-oriented technology are inheritance, polymorphism,

and information hiding. With these three mechanisms, the software development and

maintenance can be done with more robust framework and better integrity.
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3.3 Object Modeling Language (OML)

In order to simulate the semantic-rich design objects, the Object Modeling Language

[20] [21] is chosen as the standard representation and information modeling language for

different design agents. OML is defined and utilized in the context of satisfying the needs

of ACL project participants and taking advantage of rapidly growing object-oriented tech-

nology. In OML terminology, the computer tools that send, receive, and process data at the

different geographical sites trying to accomplish design tasks are usually called agents in

the collaborative design literature. These agents are implemented on machines with differ-

ent architectures, written in different programming languages, and based on different con-

ceptualizations of their respective domains, which include different assumptions about the

way in which they interact with users. During collaboration, these users may interact with

other users through their respective agents or directly through parallel communication

mechanisms such as telephone or video. Major technical and conceptual issues that have

to be resolved if this type of work setup are the following:

* The packaging and unpackaging of data reflecting heterogeneous machine architec-

tures.

* The syntax and semantics of the language in which data are transmitted. This will

require that the agents phrase and transmit their messages in terms of a shared

vocabulary or with the use of translators, which in turn, reflect shared notions and

concepts.

* A communication mechanism that allows new agents to be added with ease and pro-

vides selective (content-based) routing; that is, a message posted by one agent (for-

example, about a recent design change) is only sent to agents that are interested in

that type of change.
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Figure 3.2: Relationship of OML, API, and Application Programs

* Coordination between transmissions, for example, a request for a piece of informa-

tion or a design change must not only be received, but answered in a timely fashion

by the appropriate agent, which may actually operate in a different time zone. Com-

plexity is added to this exchange between agents if, at the same time, also the users

interface with each other, with their own agent, and through these, with the other

agents.

* The storage and retrieval of design information that are of interest to more than one

agent, including the management of different design versions.

A basic assumption underlying the ACL project is that the individual agents maintain

their own internal representations and generate from these the views most appropriate to

the tasks they execute. Most of the agents participating in the ACL project use an object-

centered representation of design information that is rich in content and highly structured;
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that is, relations between objects are of prime importance. These representations are con-

sistent with the vast majority of design representations that have been developed through-

out computer science, the engineering disciplines, and architecture.

Given such a distributed representation, the individual agents are responsible for cap-

turing design updates or changes made by other agents in their own internal representation

and for maintaining consistency with the other agents' representations. This configuration

reduces drastically the transaction and view problems that arise when agents share a com-

mon work space or global design representation.

However, it also raises several issues, some of which are addressed in this chapter. It is

first of all clear that each description of an object that is communicated between agents

must contain the class to which the object belongs: an agent simply has to know if an

object is a room, a column, etc. Furthermore, an agent has to know the superclasses to

which an object belongs. For example, if an agent want to design a connection between

two structural members and has received information about objects that belong to classes

like 'column' and 'beam', it has to know that all of these belong to the superclass 'linear

member' and can thus be connected together with only one joint. Furthermore, the class/

superclass relations must be shared consistently between agents. If we share this informa-

tion, we may as well share more general inheritance relations because this allows us to

inherit attributes, which greatly reduced the amount of data that have to be passed along in

object descriptions.

The information received by any agent must be interpreted by this agent so that it is

semantically consistent with the interpretation of the sending agent. Specifically, relation-

ships between objects that are not implied by inheritance must be communicated between

agents.
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Figure 3.3: Binding Object Relationships [20]

For example, if an object a is a part of an object b and the geometric attributes of a are

relative to a local origin established by b, the part of relationship cannot be recognizedby

an agent that did not create the objects and their relationships. A remote agent is then

unable to locate the object correctly in its own coordinate space; that is, this part-of rela-

tionship has to be communicated explicitly.

This may be advisable even for relationships that can, in principle, be rediscovered at

remote sites by reasoning with communicated attribute values (like geometric coordi-

nates) because it may reduce the computational loads on the agent at the remote site and,

more importantly, be an important indicator of the intent of the agent who created the rela-
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Object
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tionship. How else would we be able to distinguish between intended and accidental rela-

tionships? For example, more rooms are usually adjacent to each other on a floor than

required for functional reasons, and an agent trying to rearrange some of these rooms may

need to know which of the existing adjacencies can be ignored.
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Figure 3.4: OML Event Origination [20]

Furthermore, an understanding of the concepts and relationships needed at any specific

site is evolving and never stable: the attributes of an object may change, or new objects or

relationships may be introduced. This means that the translators between object represen-
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tations are also evolving, which creates the need to maintain semantic consistency

between these evolving translators across agents at all times. This suggests that the main-

tenance of the translators should not be left to the individual sites and manual procedures,

but be governed by a shared methodology that automates as much of the process as possi-

ble, including the automatic generation of parts of the translators using algorithms that are

known to produce correct results.
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Figure 3.5: OML Event Generated via an Application [20]

This section addresses these issues and proposes a methodology that resolves them.

We mention in passing some other problems that the ACL team has to face as a result of

the selected communication approach.

SIf a design elaboration or change made by one agent conflicts with the goals pursued

or requirements maintained by another agent, these agents must negotiate about how

to resolve the conflict.
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* It is not clear at any time which parts of the distributed representations constitute the

current version of the design or any other version; likewise, it is not immediately

clear when a design is finished. Manipulation of change and status is solely left to

each agent.

The OML is proposed under this circumstance, as a method for communication of

software objects and their relationships between agents and the syntax and semantics of

the communication language. OML provides a reasonably precise definition of an object

model specification language and its intended semantics. The language syntax is specified

in an BNF-style, which facilitates the development of translators for the language. For

example, specifications written in this language can be translated to object database

classes, C++ classes or to KIF sentences (first order logic). The grammar specification is

presented along with examples of how it is intended to be used.

The ACL project team members were determined to use the schema translation

method because they assumed from the start that a common vocabulary cannot be gener-

ated for this project and is in any case not desirable. The team members decided further-

more to use an augmented Federation Architecture for this project, where a facilitator

provides schema translation. These object models are based on a shared syntax and

semantics of schema definition, but each model needs to represent only what input it needs

(interests) and what outputs it can produce (capabilities). In addition, the object model

provides the mechanisms needed to bind objects in the model to a programming language

such as C++ or Lisp. An important advantage of this architecture is that it can be formally

specified in a computable model and therefore formally verified.
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Figure 3.6: Application Event Propagated to OML [20]

The object model contains both classes and instances. However, a language binding

can be developed that would not store instances in the model: only classes are stored,

while changes to instances are mapped directly to the bound language.

3.4 Structural Engineering Vocabulary [1] [12]

In the past, structural engineers used computers mainly for only analysis portion of the

detailed design process. Member sizing and conformance checking were done by hand,

and previous experience and design heuristics were relied upon heavily. As computers

became more prevalent, software become available which helped to reduce the drudgery

of code conformance checking and member sizing. Today there are software packages
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available which provide analysis, member sizing and conformance checking for particular

types of structures, e.g., steel or reinforced concrete frames. In addition, there are graphi-

cal routines for pre- and post-processing the data, thereby allowing engineers to verify

topology and loadings, and to view the structural response, such as moment and shear dia-

grams and deflected shapes.

Looking at the entire structural design process, we see data generated in increasing

detail during a process of hierarchical detailing. A rough conceptual design leads to the

identification of major components. When the configuration is accepted, these compo-

nents are further detailed, leading to components of components, and so on. This process

would normally lead to an explosion of detail if the designer performed a complete enu-

meration of objects. Designer, however, recognizes the economic need for repetition. Thus

they select typical components, and design these components for use within other compo-

nents multiple times. Then when those components are further detailed, only a single copy

of each is further disaggregated.

The Structural Engineering Vocabulary is proposed to satisfy these requirements. The

class Structsystem is the base class for all structural components. Each structural com-

ponent represents a physical object which can be designed and has associated with it a

local geometric description. This object maintains links to where the system is used, to a

material object, to a loading case object, and to its components. Its components may be the

same class or subclasses. Since the Structsystem class is recursively nested in both gen-

eralization and aggregation relationships, it can contain several Structsystem instances

(e.g., beam, column, truss) to form the hierarchy. For example, a bent has one truss, two

columns and two footings which are all Structsystem instances in this context.
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We can define and simulate behaviors of the Structsystem object through a set of

methods. For instance, if would like to know the stiffness of a column member, we can

define a methods as follows:

double Column::ComputeStiffness();

which returns the stiffness of the current column that the system is designing. Through the

information hiding and encapsulation, the designer can easily understand the state of the

structural component without looking up tables or computation.

More often than not, the structural engineer prefers to put a particular physical compo-

nent in two or several distinct locations if the loading conditions are about the same. This

data model is very suitable for supporting this function. The rationale behind this design is

to avoid the enumeration and duplicative detailing. Take the cabin design as an example,

two of the four bents used are exterior bents, while the other two are interior ones. In this

case, the engineer can simply design an interior bent and an external one, according to dif-

ferent loading criteria, and put each in two different locations. The major advantage of this

approach is no data redundancy or duplication so that the data management and consis-

tency are more robust than with an enumeration approach. As the number of design

objects grow, our approach proves to be a more efficient solution.

Furthermore, each object which can be designed has attached to it with a set of design

rules written in the CLIPS productions. During the design process, when the designer trig-

ger or notify the agent to perform the design tasks, the program will call an inference

engine and use each object's rules to automatically select components for an object and

walk down the hierarchy invoking the associated rules embedded within the component

objects to perform more detailed design.

If the designer feel that it is necessary to perform the redesign (e.g., the architect sends

some modifications or the structural engineer is requested to conform to specific kind of
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standard), he/she may modify, with the aid of object structure browser, the slot value of an

arbitrary object and the agent will perform the redesign of those objects below the current

node in the aggregation hierarchy. For example, if the designer changes certain values in

the Bent object, the agent will mark those objects contained (e.g., column, truss, and foot-

ing,) are required to be redesigned.

Figure 3.7: Object Relationships
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The hierarchical relationships between design objects and their geometric information

is displayed in the object structure browser (see Figure 3.7). According to the loading cri-

teria, there are two kinds of bent designs in this case: one is an interior bent, and an exte-

rior one. We associate each bent with two geometry objects, which means that we use the

same design in two different places to take advantage of the symmetric distribution of

loads. The same rules apply to the components contained in the bent object. The entire

framework provides a uniform representation of structural elements. Practical design

examples are presented in Chapter 5.

Structural Engineering Vocabulary in OML
// Domains

DECLARE DOMAIN double number(10,4) SINGLE;
DECLARE DOMAIN String char(256) SINGLE;
DECLARE DOMAIN int number(10) SINGLE;
DECLARE DOMAIN mm number(10,4) SINGLE;
DECLARE DOMAIN mm square number(10,4) SINGLE;
DECLARE DOMAIN StringList char(256) MANY;
DECLARE DOMAIN mpa number(10,4) SINGLE;
DECLARE DOMAIN kilograms number(10,4) SINGLE;
DECLARE DOMAIN newton_mm number(10,4) SINGLE;
DECLARE DOMAIN point-2d number(10,5) MANY;
DECLARE DOMAIN point-3d number(10,5) MANY;

DECLARE DOMAIN dimension number(10,5) MANY;
DECLARE DOMAIN direction number(10,5) MANY;
DECLARE DOMAIN restraint number(10,5) MANY;

// Relationships
DECLARE RELATIONTYPE has_a LINK;
DECLARE RELATIONTYPE hasmany VECTOR;
DECLARE SUBDOMAIN deg double RANGE 0.0 360.0;
DECLARE SUBDOMAIN material String ONEOF concrete steel timber;
DECLARE SUBDOMAIN loadtype String ONEOF point linear area;

DECLARE SUBDOMAIN slabtype String ONEOF waffle ribbed flat;
DECLARE SUBDOMAIN connect_type String ONEOF fixed hinge roller;



Testing a Federation Architecture in Collaborative Design Process

DECLARE SUBDOMAIN walltype String ONEOF brick rc;

// Geometric definition

DECLARE FORWARD CLASS Structsystem;
DECLARE CLASS Geometryloc I/O SUBCLASS OF Object (

VALUE name String, //name
VALUE origin_x double,
VALUE originy double,
VALUE origin_z double,
VALUE orient_x double,
VALUE orient_y double,
VALUE orient_z double,
RELATION parent has_a Struct_system, //point to parent structure
RELATION design hasa Struct system//use a particular design

II Design Description Classes

DECLARE CLASS Material I/O SUBCLASS OF Object (
VALUE name String, // steel concrete timber
VALUE elastic_modulus double,
VALUE poisson_ratio double,
VALUE weightdensity double,
VALUE mass_density double,
VALUE alpha double // coefficient of thermal expansion

DECLARE CLASS Loadingcondition INPUT SUBCLASS OF Object(
VALUE name String, //LC1, LC2,...
RELATION loads hasmany Load, //combination of various loads
VALUE numberofloads int//number of loads

DECLARE CLASS Load INPUT SUBCLASS OF Object(
VALUE name String, H/snow, live, dead, wind, earthquake

VALUE dimension dimension,
VALUE origin_x double, II relative to parent
VALUE originy double, // relative to parent

VALUE origin_z double, II relative to parent
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VALUE directionx double,
VALUE directiony double,
VALUE direction z double,
VALUE magnitude double,
VALUE unit-measure loadtype //point, line, area

DECLARE CLASS Structsystem I/O SUBCLASS OF Object (
VALUE name String,
RELATION structural_system hasmany Structsystem, // multiple structsys
RELATION components hasmany Geometryloc, // multiple components

RELATION parent has_a Struct_system, // point to parent structure

RELATION material hasmany material,
RELATION loading hasmany Loading-condition,
RELATION uses hasmany Geometryloc,
VALUE numberof_ loadingcondition int,
VALUE numberofstructural_system int,
VALUE numberofcomponents int, // number of components
VALUE dimen_x double,
VALUE dimeny double,
VALUE dimen_z double,
VALUE self_weight kilograms // self-weight of current structure

DECLARE CLASS Joint PRIVATE SUBCLASS OF Structsystem(
VALUE name String,
VALUE restraint restraint // 6-tuple array

DECLARE CLASS Linearmbr PRIVATE SUBCLASS OF Structsystem (
VALUE cross_section_area mmsquare

DECLARE CLASS Area_mbr PRIVATE SUBCLASS OF Structsystem (
VALUE cross_section_area mm_square

DECLARE CLASS Beam OUTPUT SUBCLASS OF Linear_mbr (
PRIVATE VALUE b_effective_depth mm,
PRIVATE VALUE b_moment newtonmm,
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VALUE b_reinforcement_area mmsquare,
VALUE b_sectiontype String, II AISC section types.

DECLARE CLASS Column OUTPUT SUBCLASS OF Linear_mbr (
PRIVATE VALUE ceffective_length mm,
PRIVATE VALUE c moment newton_mm,
VALUE c_reinforcement_area mmsquare,
VALUE c_steel_area mmsquare,
VALUE c_concrete_area mmnsquare,
VALUE c_sectiontype String, II AISC section types.

)DECLARE CLASS RectColumn OUTPUT SUBCLASS OF Column

DECLARE CLASS CirectColumn OUTPUT SUBCLASS OF Column (
DECLARE CLASS CirColumn OUTPUT SUBCLASS OF Column(

VALUE c_radius mm

DECLARE CLASS Slab OUTPUT SUBCLASS OF Areambr (
PRIVATE VALUE seffectivexspan mm,
PRIVATE VALUE seffective yspan mm,
PRIVATE VALUE seffectivedepth mm,
PRIVATE VALUE sbendingmoment mpa,
VALUE s_slabtype slabtype,
VALUE s_reinforcement_area mmsquare

DECLARE CLASS Waffle_slab OUTPUT SUBCLASS OF Slab
VALUE rib_width mm,
VALUE rib_depth mm,
VALUE ribspacing mm,
VALUE topping mm

DECLARE CLASS Ribbed_slab OUTPUT SUBCLASS OF Slab (
VALUE rib_width mm,
VALUE rib_depth mm,
VALUE topping mm
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DECLARE CLASS Wall OUTPUT SUBCLASS OF Area_mbr (
VALUE w_reinforcement_area mmsquare,
PRIVATE VALUE w_axial_load mpa,
PRIVATE VALUE w_bendingmoment mpa,
PRIVATE VALUE w_slenderness_ratio double

DECLARE CLASS Wall_opening OUTPUT SUBCLASS OF Areambr(
RELATION parent has_a Wall

DECLARE CLASS Wall_Footing OUTPUT SUBCLASS OF Footing (
RELATION wall has_a Wall

DECLARE CLASS Mat_found OUTPUT SUBCLASS OF Footing (
RELATION piers hasmany Column,
VALUE numberofpiers int

DECLARE CLASS Spread_found OUTPUT SUBCLASS OF Footing (
RELATION pier has_a Column

DECLARE CLASS Footing OUTPUT SUBCLASS OF Area_mbr
VALUE f_reinforcementarea mmsquare,
VALUE ftype String, //mat, spread, wall...
PRIVATE VALUE f_bearing_pressure mpa,
PRIVATE VALUE f_axial_load mpa,
PRIVATE VALUE f_momentload newton_mm

DECLARE CLASS Bent OUTPUT SUBCLASS OF StrucLsystem

DECLARE CLASS Cabin OUTPUT SUBCLASS OF Structsystem (
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DECLARE CLASS Truss OUTPUT SUBCLASS OF Structsystem (
VALUE span mm,
VALUE depth mm,
VALUE spandepthratio double,

3.5 Knowledge-based Expert System for Structural Design

3.5.1 Background

In the past, the conceptual design [24] [68] of an initial configuration of structural systems

has largely been done manually by the engineer, with little or no support from computer

programs. The development of a configuration and the initial sizing of components has

been based primarily on experience and available design tables. The computer was

thought to become useful only when a design configuration had been developed to a suffi-

cient level of detail to produce drawings and to perform a formal analysis.

The computertools commonly used focus on these two tasks: the production of draw-

ings using CAD systems and the analysis using finite element and matrix analysis pro-

grams. These tools can facilitate detailed structural system design through the

visualization of the geometry provided by CAD systems and of the behavior of the design

provided by analysis programs. However, they provide no assistance to the engineer in

producing an initial configuration and sizes of components.

The development of knowledge-based systems in engineering domains has provided

an opportunity to provide computer-based support for conceptual and preliminary design.

The representation and application of design experience as a knowledge base can be

usedto propose alternative configurations and initial component sizes. Much of the experi-

ence that engineers have developed through a career of solving design problems could be
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Object Model in OMT Notation

Figure 3.8: Object Model in OML

generalized and applied explicitly to new design problems. So far, the majority of knowl-

edge-based systems for conceptual and preliminary structural design have been developed

as research projects in universities.

One of the early knowledge-based systems for preliminary structural design of build-

ings is HI-RISE. In this system, alternative structural systems are configured by designing

lateral and gravity load-resisting systems. Components are sized using approximations of

load magnitudes and distribution, heuristics, or table lookup to provide dimensions and/or

selection designations. There are several expert system which have been developed for

preliminary structural design purpose. These various approaches have two common char-
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acteristics: (1) they are developed using a representation language such as Lisp or Prolog;

and (2) they rely on generalized design experience. Although none of these system have

been used in professional practice, their development has let to a better understanding of

what kinds of design knowledge can be used for conceptual design and how such knowl-

edge can be represented in a knowledge base.

3.5.2 Our Approach

The development of a preliminary design knowledge-base has frequently led to the

development of generalized representation of design knowledge. Frame, semantic net-

works, production rules, predicate logic, and the recent emergence of object-oriented pro-

gramming [37] are the most common solutions.

For our implementation, we chose the rule-based approach to organize the knowledge

base. We must be clear, however, that such an implementation involves more than pro-

gramming fundamental logic statements. In fact, we can use some of the structure of logic

to express problem-solving knowledge in terms of rules.

Rules are statements to the effect that we should perform a specified action in a given

situation. Typically written in sets of IF-THEN clauses, the left-hand (IF) sides of the rules

define the situations that must hold before a rule can be applied, while the right-hand

(THEN) sides of the rules define the actions to be taken. In design, rules are used to repre-

sent (1) design heuristics or rules of thumb and (2) design codes, such as the building

codes. For example,

IF a structural element has one dimension much thinner than the other two

AND it is loaded in that direction

THEN it will behave as a plate in bending
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In order to integrate the information of design process with each associated design

artifact, we embed these design rules into the design object as their attributes. That is, we

map the functional information to the representational form, see Figure 3.9.

Figure 3.9: Objects and Rules

Figure 3.10: Structural Agent Console
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3.6 Structural Design in the MIT Agent.

This section describes the role of the structural agent within the ACL project. In order

to conform to CMU's nomenclature, we refer to the agent as the structural agent (SA),

since it behaves in its interactive mode as a real-life structural engineer during the prelim-

inary building design phase.

Theoretically, the design process can progress in a linear fashion if no participants

have objections with the design decisions of others. Unfortunately, this scenario is rare

orderly. Evolving program requirements, budget realities, designers' preconceptions of

constraints that will be imposed by other agents, increased knowledge of site conditions

(such as subsoil problems), public agency reviews, and many other factors make it neces-

sary to go back and modify previous design decisions. Design moves forward, but rarely

in the straight sequence implied by the standard description of design.

Moreover, design rarely ends with the completion of design development. Most archi-

tects and engineers agree that design choices occur in every step of the process. In other

words, building design neither starts with conceptual design nor ends with the completion

of the detailed design phase. Therefore, how agents effectively resolve conflicts and intel-

ligently negotiate with one another is one of the central issues in this project.

There are important reasons for suggesting that planning for structural systems should

be introduced at the very earliest stages of the design process[15] [67]. These reasons are

derived from the need to construct buildings which support and enclose mechanical and

other environmental service subsystems, provide support for horizontal and vertical move-

ment of people and materials, as well as access for heating, ventilation, air-conditioning,

power, water, and waste disposal. In addition, provision for acoustical and lighting needs
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is often influenced by structural design. All of these systems interface with a building's

structure.

We also categorize the general functionalities of a structural agent into two parts: gen-

eration and communication. Interaction and information which flows between SA and

other agents is based on a predefined scenario.

3.6.1 Functionality

The SA is to provide at least the functionalities described in the following sections. We

divide the structural design into the following three tasks: conceptual, preliminary, and

detailed design phases. Normally, iterations are performed on the last step until the

response of the structure is deemed adequate and the assumed and computed component

forces are in agreement.

3.6.2 The Collaborative Design Process

The scenario of a three-phased structural design within the MIT agent, as well as the

collaborative design process with other agents, is outlined below.

Conceptual Design Phase

The purpose of the conceptual design phase is to determine the structural system and

its overall layout. Ideally, this stage should be performed in concert with the spatial con-

figuration design, so that concerns about structural performance can be meshed with con-

siderations of the overall 3-D geometry, the organization of circulation, and the allocation

of functions to the various levels of the building. Given the input from the owner agent

(OA), the project manager agent (PMA), and the architectural agent (AA), the SA willgen-

erate all feasible solutions and broadcast the results to all interested parties for approval.

The AA is expected to be most interested and his approval is sought first.
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Mechanical Architect
Engineer

Figure 3.11: Structural Agent's design process

INPUT

The OA provides the project name and number and types of buildings. The PMA pro-

vides an early project duration and soil classification. The major input data used for con-

figuration comes from the AA. Please refer to Architectural Agent Vocabulary (AAV) [20]

for a detailed description of the following objects.

Basically, the structural agent is interested in the project schedule and budget, geotech-

nical conditions of the site, occupancy and usage of the building, locations of rooms, sto-

ries, walls, openings, floor depth, and geometric locations of massing elements, if

I
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available. The OML of structural agent's interests describing input object classes and their

attributes is given as follows:

DECLARE DOMAIN
DECLARE DOMAIN
DECLARE DOMAIN
DECLARE DOMAIN
DECLARE DOMAIN
DECLARE DOMAIN
DECLARE DOMAIN
DECLARE DOMAIN
DECLARE DOMAIN
DECLARE DOMAIN
DECLARE DOMAIN
DECLARE DOMAIN
DECLARE DOMAIN

double number(10,4) SINGLE;
real number(10,3) SINGLE;
expr char(1000) EXPR real;

String char(256) SINGLE;
int number(10) SINGLE;
mm number(10,4) SINGLE; //length unit
mmsquare number(10,4) SINGLE; // area unit
coordinate number(10,3) MANY;
low_corner number(10,3) MANY;
high_corner number(10,3) MANY;
point TUPLE (x real, y real, z real);
angle number(10,3) SINGLE;
mpa number(10,4) SINGLE;

DECLARE DOMAIN kilograms number(10,4) SINGLE;
DECLARE DOMAIN newton_mm number(10,4) SINGLE;
DECLARE DOMAIN dollars number(10) SINGLE; //Relationships
DECLARE RELATIONTYPE has_a LINK;
DECLARE RELATIONTYPE hasmany VECTOR;
DECLARE CLASS CATEGORY MITAgent;
DECLARE SUBDOMAIN deg double RANGE 0.0 360.0;
DECLARE SUBDOMAIN material String ONEOF concrete steel timber;
DECLARE SUBDOMAIN loadtype String ONEOF point linear area;
DECLARE SUBDOMAIN slabtype String ONEOF waffle ribbed flat;
DECLARE SUBDOMAIN connect_type String ONEOF fixed hinge roller;
DECLARE SUBDOMAIN walltype String ONEOF brick rc;
DECLARE SUBDOMAIN occtype String ONEOF residential industrial;
DECLARE SUBDOMAIN direction String ONEOF North South East West;
DECLARE FORWARD CLASS Site; DECLARE FORWARD CLASS Owner;

DECLARE CLASS Rectangle INPUT SUBCLASS OF Object (
VALUE name String,
VALUE low_corner_x double,
VALUE low_cornery double,
VALUE low_corner_z double,
VALUE high_corner_x double,
VALUE highcorner_y double,
VALUE high_corner_z double
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DECLARE CLASS Triangular-Prism INPUT SUBCLASS OF Rectangle (
VALUE ridgeheight double,
VALUE ridge_orient_x double,
VALUE ridgeorienty double,
VALUE ridge_orient_z double,

I ;
DECLARE CLASS Project INPUT SUBCLASS OF Object (

RELATION located_at has_a Site,
RELATION ownedby has_a Owner,
VALUE name String,
VALUE budget dollars,
VALUE occ_type occtype

DECLARE CLASS Owner INPUT SUBCLASS OF Object (
VALUE name String,
VALUE title String,
VALUE address String,
VALUE city String,
VALUE area_code String,
VALUE telephone String,
VALUE fax String,
RELATION projects-owned has a Project

DECLARE CLASS Site INPUT SUBCLASS OF Object (
RELATION boundary has_a Rectangle,
RELATION hasproject has_a Project

DECLARE CLASS Occupancy INPUT SUBCLASS OF Object (
VALUE occ occtype,
VALUE load int

DECLARE CLASS Roof INPUT SUBCLASS of Object (
VALUE roofingtype String,
VALUE constrtype String

DECLARE CLASS Massingelement INPUT SUBCLASS OF Object (
RELATION geometry has_a Rectangle,
RELATION roof has_a Roof,
VALUE name String,
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VALUE origin_x double,
VALUE originy double,
VALUE origin_z double,
RELATION constituent hasmany Storey,
VALUE height mm

DECLARE CLASS Building INPUT SUBCLASS OF Object (
RELATION geometry has_a Rectangle,
RELATION roof has_many Roof,
VALUE name String,
VALUE origin_x double,
VALUE originy double,
VALUE origin_z double,
VALUE default_centerwall_thickness mm,
RELATION constituent hasmany Massing_element,
VALUE height mm

DECLARE CLASS Storey INPUT SUBCLASS OF Object (
RELATION geometry has_a Rectangle,
RELATION part_of has_a Building,
VALUE name String,
VALUE origin_x double,
VALUE originy double,
VALUE origin_z double,
RELATION parts hasmany Wall,
RELATION adjacentenclosure hasmany Wall,
RELATION constituents hasmany Room,
VALUE elevation mm,
RELATION storybelow has_a Storey,
RELATION storyabove has_a Storey,
RELATION occupied has_a Occupancy

DECLARE CLASS Room INPUT SUBCLASS OF Object (
RELATION partof hasa Storey,
RELATION geometry has_a Rectangle,
VALUE name String,
VALUE origin_x double,
VALUE originy double,
VALUE origin_z double,
VALUE constrtype String,
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RELATION adjacentenclosure hasmany Wall,
VALUE elevation mm,
RELATION occupied has_a Occupancy

DECLARE CLASS Wall INPUT SUBCLASS of Object (
RELATION partof hasa Storey,
RELATION parts hasmany Window,
RELATION geometry has_a Rectangle,
VALUE name String,
VALUE origin_x double,
VALUE originy double,
VALUE origin_z double,
VALUE constr _type String,
VALUE type String,
VALUE openperc double

DECLARE CLASS Opening INPUT SUBCLASS of Object (
VALUE origin_x double,
VALUE originy double,
VALUE origin_z double

DECLARE CLASS Door INPUT SUBCLASS of Opening (
RELATION geometry has_a Rectangle,
VALUE name String,
RELATION part_of has_a Wall

DECLARE CLASS Window INPUT SUBCLASS of Opening (
RELATION geometry has_a Rectangle,
VALUE name String,
RELATION part_of has_a Wall

OUTPUT

The output in this phase is comprised of a recommended structural system and an

alternate system. Each alternative is classified in terms of basic structural materials, col-

umn-beam-girder grid, truss type, location of shear walls, openings, and foundation type.

In this simple example, the structural agent produces two structural systems.
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Based on the input data from other agents, the structural agent employs the following

design rules to generate the conceptual design:

Sample Rules for Conceptual Design

* (rule (if rc_availability is yes and material is rc)
(then structural_system is bearing_wall with certainty 70.0

structural_system is frame with certainty 70.0))

* (rule (if soil is tight-sand)
(then footing is spreadfooting with certainty 70.0

structural_system is frame with certainty 80.0))

* (rule (if structuralsystem is frame and material is rc)
(then economicspandepthratio is 20 with certainty 80.0)
(then spacingheightrange is 16 to 40 with certainty 80.0))

These rules are used to create objects. The OML, as the following listing, describes

what object classes and attributes will be sent to other agents.

Sample output in OML

ADD FRAME Material;
SET RC TO $CURRENT;
ADD FRAME Structsystem;
SET Cabin TO $CURRENT;
ADD VALUE Cabin name { Cabin };
ADD RELATION Cabin material RC;
ADD FRAME Structsystem;
SET Frame_Structure TO $CURRENT;
ADD VALUE Frame_Structure name {FrameStructure 1;
ADD VALUE Frame_Structure dimenx {7200.000000};
ADD VALUE Frame_Structure dimeny { 3600.000000 };
ADD VALUE Frame_Structure dimenz { 3300.000000};
ADD FRAME Structsystem;
SET Bearing_Wall_Structure TO $CURRENT;
ADD VALUE BearingWall_Structure name {Bearing_Wall_Structure };
ADD VALUE BearingWall_Structure dimen_x {7200.000000};
ADD VALUE Bearing_WallStructure dimen_y {3600.000000};
ADD VALUE BearingWall_Structure dimen_z { 3300.000000 ;
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ADD RELATION Frame_Structure material RC;
ADD RELATION Bearing_Wall_Structure material RC;
ADD FRAME Geometryloc;
SET Frame_loc1 TO $CURRENT;

Frame_loc 1
Frame_locl
Frame_loc l
Frame_loc l
Frame_loc
Frame_locl
Frame_loc 1

name { Frame_loc 1 };
originx { 0.000000 };
origin_y { 0.000000 };
originz { 0.000000};
orientx { 1.000000 };
orient_y { 1.000000 };
orientz { 1.000000 };

ADD RELATION Frame_Structure components Frame_loc 1;
ADD RELATION Frame_loc I design Frame_Structure;
ADD FRAME Geometryloc;
SET Wall_loc 1 TO $CURRENT;

VALUE Wall_loc I
VALUE Wall_loc 1
VALUE Wall_loc I
VALUE Wall_loc 1
VALUE Wall_loc 1
VALUE Wall_loc 1
VALUE Wall_loc I

name {Wallloc) };
originx 10.000000 ;
originy { 0.000000 };
originz { 0.000000);
orientx { 1.000000 ;
orienty { 1.000000 };
orientz 1.000000);

ADD RELATION Bearing_Wall_Structure components Wall_loc 1;
ADD RELATION Wall_loc I design Bearing_Wall_Structure;
ADD RELATION Cabin structural_system Frame_Structure;
ADD RELATION Cabin structural_system Bearing_Wall_Structure;

Preliminary Design Phase
The major task in this phase is to compute the approximate size of structural compo-

nents. The SA will send the results to the AA for approval.

INPUT

A Notice to Proceed from the facilitator instructs the agent to advance to the next

phase.

ADD
ADD
ADD
ADD
ADD
ADD
ADD

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

ADD
ADD
ADD
ADD
ADD
ADD
ADD
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OUTPUT

The location of the lateral and gravity subsystems and the approximate size of the

structural components are the output of this design phase. For example, preliminary

sizings for slabs, beams, and columns. preliminary sizings for truss members. prelimi-

nary sizings for footings, shear walls, and so on.

Based on the output of the previous stage, the structural agent utilizes the following

rules to generate the preliminary sizing and locations of major structural components:

Sample Rules for Preliminary Design

* (rule (if structuralsystem is column)
(then unbracedlength is from 10 to 30 with certainty 80.0))

* (rule (if structural_system is column and material is rc)
(then economicspandepthratio is 20 with certainty 80.0)
(then spacing._heighLrange is 18 to 25 with certainty 80.0))

* (rule (if structuralsystem is truss and material is steel and type is triangular)
(then span is 30 to 150 with certainty 100.0)
(then spacing is 12 to 20 with certainty 100.0))

* (rule (if structuralsystem is truss and material is steel)
(then economic_.span_depthratio is 10 to 12 with certainty 80.0)
(then spacingheighLtrange is 20 to 25 with certainty 80.0))

* (rule (if structuralsystem is footing and material is concrete and type is column)
(then thickness is wall_thickness with certainty 80.0)
(then minimum_width is 3 with certainty 80.0)
(then width is 2.0 * wall_thickness with certainty 80.0))

These rules are used to generate objects for preliminary design. The OML, as the fol-

lowing listing, describes what object classes and attributes will be sent to other agents for

approval.
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Sample output in OML

ADD FRAME Material;
SET RC TO $CURRENT;
ADD FRAME Structsystem;
SET Cabin TO $CURRENT;
ADD RELATION Cabin material RC;
ADD FRAME Bent;
SET Bent 1 TO $CURRENT;
ADD VALUE Bent I dimenx 3600.000000 ;
ADD VALUE Bent1 dimen_y { 2400.000000);
ADD VALUE Bent 1 dimenz {20.000000);
ADD FRAME Bent;
SET Bent2 TO $CURRENT;
ADD VALUE Bent2 dimenx {3600.000000};
ADD VALUE Bent2 dimeny { 2400.000000);
ADD VALUE Bent2 dimenz 120.000000);
ADD FRAME GeometryJoc;
SET Bentl_loc TO $CURRENT;
ADD VALUE Bentl_loc originx {0.0000001;
ADD VALUE Bentl_loc originy {0.000000};
ADD VALUE Bentl_loc originz (0.000000 ;
ADD VALUE Bentl_loc orient_ x {0.000000 };
ADD VALUE Bentl_loc orient_y {0.000000};
ADD VALUE Bentl_loc orientz (0.000000);
ADD RELATION Bentl components Bentl_loc;
ADD RELATION Bentl_loc design Bentl;
ADD FRAME Geometryloc;
SET Bent4_loc TO $CURRENT;
ADD VALUE Bent4_loc originx 17200.000000};
ADD VALUE Bent4_loc originy {0.000000};
ADD VALUE Bent4_loc originz 0.0000001;
ADD VALUE Bent4_loc orientx { 0.000000 ;
ADD VALUE Bent4_loc orienty { 1.000000);
ADD VALUE Bent4_loc orientz (1.000000 ;
ADD RELATION Bentl components Bent4_loc;
ADD RELATION Bent4_loc design Bentl;
ADD FRAME Geometryloc;
SET Bent2_loc TO $CURRENT;
ADD VALUE Bent2_loc originx { 2400.0000001;
ADD VALUE Bent2_loc originy { 0.000000 };
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ADD VALUE Bent2_loc originz { 0.000000 };
ADD VALUE Bent2_loc orientx { 0.000000 };
ADD VALUE Bent2_loc orienty { 1.000000 };
ADD VALUE Bent2_loc orientz { 1.000000};
ADD RELATION Bent2 components Bent2_loc;
ADD RELATION Bent2_loc design Bent2;

Detailed Design Phase

This phase provides a detailed design of all structural components and verifies satis-

faction of design codes. Finite element structural analysis programs are employed to check

deflection and drifts, as well as the force resultants acting on the components. This analy-

sis will be updated if component characteristics change during this phase. After complet-

ing the negotiations with the AA, we proceed to the Phase III for detailed structural

component design. We can utilize reliable structural analysis programs such as SAP90,

GTSTRUDL, and ETABS to verify and optimize the design.

INPUT

A Notice to Proceed from the facilitator tells the agent move to the next phase.

OUTPUT

The final sizing of the structural components is presented in this phase.

3.6.3 Scenario

The following scenario describes interactions between the SA and other agents.

* Receive architectural plan from the Architecture Agent (AA).

* Generate data model for structural design.

* Produce several structural system alternatives.
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* Send two alternatives to the AA for approval.

* Receive the AA's response for structural system.

* Perform preliminary design.

* Send the preliminary component sizes to the AA.

* Receive notification for change (location or shape).

* Evaluate the feasibility of the change and the necessity of redesign.

* Negotiate with the AA.

* Send the updated change or redesign to the AA.

* Perform detailed design.

* Send the result of detailed design to the AA after negotiations are complete.

* Receive OK from AA.

Criteria for Redesign

The SA should be able to determine if a redesign is needed after she receives the AA's

request for a modification. For example, if the AA changes the boundary of a building or

the spacing of columns, then the SA should restart the structural design from Phase I. On

the other hand, if the AA requests a change in the depth of the slab for compatibility with

the HVAC system, then the SA need only restart the design from Phase II.

Structural Requirements

The SA is supposed to conform to these requirements and constraints.

Functional Requirements

* spatial function



Testing a Federation Architecture in Collaborative Design Process

* load carrying function

* serviceability requirement

* deflection

* vibration

Documentation requirements

The following documentations are required during the period of structural design

development [78]. The structural agent must be able to provide these documents at the

other agents' request.

* basic structural system and dimensions

* final structural design criteria

* foundation design criteria

* preliminary sizing of major structural components

* critical coordination clearances

* outline specifications or material lists
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Chapter 4

Implementation

4.1 Introduction

The MIT agent plays the role of structural design agent in this collaborative design

process. There are several software tools being employed and integrated to serve for this

particular purpose. The ObjectStore database management system [28] is utilized as the

foundation layer for information exchange between different software tools as well as the

data repository. The agent console is implemented in Tcl/Tk [79] which maintains the

communication channel with facilitator. A forward chaining rule-based language called

CLIPS [8] is employed and embedded within the system as an inference engine. ET++

[80] , a full-featured C++ class library, is used as the building blocks of graphical user

interface, including a customized object structure browser which is particularly suitable

for engineering design.

In addition, the agent is also equipped with the capabilities of communicating with

facilitator via a set of communication API, high-level object-oriented semantic modeling,

and object version management. All of these features are specially devised for assisting

the collaborative engineering design process. In order to take advantage of the communi-

cation API and OML, a set of translation routines are written to hide the details of directly

calling the API and avoid the possibility of hand coding.

The structure of the software system is shown in Figure 4.1. The system runs on a Sun

Sparcstation 10 with SunOS 4.1.3. C++ [10] [11] is the major programming language and,

of course, ANSI/C compilers are also needed to build some of the libraries. GNU gdb
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debugger is very helpful in finding programming errors. In terms of interactive computing,

the overall performance of this system is satisfactory.

Figure 4.1: Layered Architecture of Structural Agent

A tremendous amount of efforts have been devoted to the implementation of this struc-

tural design agent. The critical issue is how to find a way to integrate these heterogeneous

and independently developed software tools to work together in a seamless fashion. Some

decisions are made based on practical concerns, therefore, they may not be the most ele-

gant implementation strategies.

4.2 Object Modeling Language

The first task of implementing the design agent is to bind OML with C++. We have to

define the structural engineering vocabulary in OML at first, then run the language bind-

ing translator to translate the OML code to C/C++. Besides, the user of OML also have to

provide a set of maps to show the relationships of the OML construct and its C++ counter-

part. After successfully compiling the code generated by the translator, the user can gener-

I I II
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ate the executable program via combining the existing data structures, mapping functions,

and object model library.

Figure 4.2: Information Exchange of Structural Agent

Experience with OML

The ideas behind OML are to provide a high level object-oriented semantic modeling

language. Problems such as language binding, message routing, and user event dispatch-

ing are resolved in this conceptual framework. With this powerful tool, the designer can

Facilitator
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fully concentrate on development of domain knowledge and easily manipulate the design

objects. Due to the lack of standards in C++, the name mangling problem arises while the

programmer would like to link two libraries, which are compiled under different compil-

ers, to generate

Most of the OML code provided by CMU team is in C. It is pretty straightforward to

call C function from C++, and vice versa. As a result, except the interface code, most of

the OML code is compiled with standard ANSI/C compiler and then linked with the exist-

ing data structures which are essentially pure C++ code.

4.3 Tcl/Tk [79]

Tcl is an application-independent command language. It exists as a C library package that

can be used in many different programs. The Tcl library provides a parser for a simple but

fully programmable command language. The library also implements a collection of built-

in commands that provides general-purpose programming constructs such as variables,

lists, expressions, conditionals, looping, and procedures. Individual application programs

extend the basic Tcl language with application-specific commands. The Tcl library also

provides a set of utility routines to simplify the implementation of tool-specific com-

mands.

Tcl is unusual because it presents two different interfaces : a textual interface to users

who issues Tcl commands, and a procedural interface to the applications in which it is

embedded. Each of these interfaces must be simple, powerful and efficient. There were

four major features which make Tcl distinct from other programming languages:
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Figure 4.3: Basic Translation Process

SThe language is for commands.

Almost all Tel "programs" will be short, many only line long. Most programs will be

typed in, executed once or perhaps a few times, and then discarded. This suggests

that the language should have a simple syntax so that it is easy to type commands.

Most existing programming languages have complex syntax; the syntax is helpful

when writing long programs but would be clumsy if used for a command language.

SThe language should be programmable.

It should contain general programming constructs such as variables, procedures,

conditionals, and loops, so that user can extends the built-in command set by writing



Testing a Federation Architecture in Collaborative Design Process

Tcl procedures. Extensibility also argues for a simple syntax: this makes it easier for

Tcl programs to generate other Tel programs.

* The language must permit a simple and efficient interpreter.

For the Tel library to be included in many small programs, particularly on machines

without shared-library facilities, the interpreter must not occupy much memory. The

mechanism for interpreting Tel commands must be fast enough to be usable for

events that occur hundreds of times a second, such as mouse motion.

* The language must permit a simple interface to C applications.

It must be easy for C applications to invoke the interpreter and easy for them to

extend the built-in commands with application-specific commands.

Although the built-in Tel commands could conceivably be used as a stand-alone pro-

graming system. Tel is really intended to be embedded in application programs. An appli-

cation using Tel extends the built-in commands with a few additional commands related to

that particular application.

To use Tcl, an application creates an object called an interpreter, using the following

library procedure:

Tcl _Interp * Tcl_Createlnterp();

An interpreter consists of a set of commands, a set of variable bindings, and a com-

mand execution state. It is the basic unit manipulated by most of the Tcl library proce-

dures. Simple applications will use only a single interpreter, while more complex

applications may use multiple interpreters for different purposes. Once an application has

created an interpreter, it call the Tcl_createCommand procedure to extend the interpreter

with application-specific commands:
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typedef int (*Tcl_CmdProc)(ClientData clientData, TcInterp *interp, int

argc, char *argv[]);

Tcl_CreateCommand(TclInterp *interp, char *name, TclCmdProc proc, Cli-

entData clientData);

Tef LITifrary- .................... ................. A li&iation6fi
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Figure 4.4: Tcl Internal Structure

Each call to Tcl_CreateCommand associates a particular command name (name) with

a procedure that implements that command (proc) and an arbitrary single-word value to

pass to that procedure (clientData).

After creating application-specific commands, the application enters a main loop that

collects commands and passes them to the Tcl_Eval procedure for execution:

int Tcl_Eval(TclInterp *interp, char *cmd);

: ----------------------------- : : ---------------------------

1
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The TclEval procedure parses its cmd argument into fields, looks up the command

name in the table of those associated with the interpreter, and invokes the command proce-

dure associated with that command. All command procedures, whether built-in or applica-

tion specific, are called in the same way, as described in the typedef for Tcl_CmdProc

above.

For example, in order to integrate Tcl with ACL API, we can built a menu command

called Connect which establishes the communication channel from the design agent to the

facilitator. We can predefine the procedure and pass the command name to the interpreter.

The Tcl interpreter will invoke the associated function to execute the task.

Experience with Tcl/Tk

Tcl is an excellent glue language. A Tcl application can include many different library

packages, each of which provides an interesting set of Tcl commands. With Tk, the user

can construct sophisticated graphical user interface with a few lines of code. The scripting

feature of Tel makes it a genuinely rapid development tool. The major drawback of Tcl/Tk

is also its loose coupling and flat structure. It is apparently not suitable to adopt Tcl to

develop a browser for highly structured and closely related object relationships in struc-

tural engineering vocabulary.

4.4 Object-oriented Database Management System [36] [56] [57]

One of the principal challenges in information management in engineering design is the

integration of diverse, special-purpose application modules. As compared with traditional

relational database system, object-oriented database is particularly suitable for engineer-

ing design and modeling because it has superior semantic expressiveness and clearer map-

ping of conceptual images. Besides, object-oriented problem representation and
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encapsulation can help solve the complex design problem in a more organized and coordi-

nated manner. Every behavior of an object is managed within the object itself and its rela-

tions with other objects are carefully controlled and coordinated.

4.4.1 Features of ObjectStore Database Management System

The typical characteristics of object-oriented database management systems are out-

lined below:

* Object Model - The basic modeling primitive is object and objects can be cat-

egorized into types. The behavior of objects is defined by a set of operations

that can be executed on an object of the type.

* Object Definition Language - It is a specification language used to define the

interfaces to object types that conform to the Object Model.

* Object Query Language - It allows the user to query denotable object starting

from their names, which act as entry points into a database.

* Programming Bindings - It often binds with the object-oriented programming

language such as C++ or Smalltalk.

The exclusive features provided by ObjectStore are described as follow:

Distributed architecture

When considered in aggregate, dispersely located computers in either standalone or

networked configurations are by far the most powerful computing resource in an organiza-

tion. The challenge of scaling up in a distributed computing environment is to harness the

power of these computers by making it possible to do more of the processing on the work-

station rather than a centralized mainframe. ObjectStore's architecture represents a key

innovation in this area.
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Programming Support [38]

Object databases are also extremely efficient for interactive applications which use

complex structures and are highly compatible with many object-oriented development

tools as follows:

* Versatile Data Structures

In addition to the data definition and manipulation facilities provided by the host

language C++, ObjectStore provides support for accessing persistent data inside

transactions, a library of collection types, bidirectional relationships, an optimizing

query facility, and a version management facility to support collaborative work.

Tools supporting database schema design, database browsing, and application

compilation and debugging, are also provided.

Within the ObjecStore, the manipulation of data looks just like an ordinary C++

program, even though the objects are persistent. ObjectStore automatically sets

read and write locks, and automatically keeps track of what has been modified,

helping to protect the integrity of the database against the possibility of crash.

Access to persistent data is guaranteed to be transaction-consistent (i.e., all-or-

none update semantics), and recoverable in the event of system failure.

In ObjectStore, the relationships can be thought of as a pair of inverse pointers, so

that if one object points to another, the second object has an inverse pointer back to

the first. Relationships maintain the integrity of these pointers. One-to-one, one-to-

many, and many-to-many relationships are all supported.

* Version Management, Configurations, and Alternatives [35] [45] [46]

Objectstore provides facilities for multiple users to share data in a cooperative

fashion. With these facilities, a user can check out a version of an object or group
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of objects, make changes (perhaps entailing a long series of individual update

transactions), and then check changes back in to the main development project so

that they are visible to other members of the cooperating team. In the interim, other

users can continue to use the previous versions, and therefore are not impeded by

concurrency conflicts on their shared data, regardless of the duration of the ses-

sions involved. If other users want to make concurrent parallel changes, they can

check out alternative versions of the same object or group of objects, and work on

their versions in private. Again, the result is that there is not concurrency conflicts,

even though the users are operating on the same object. Alternative versions can

later be merged back together to reconcile differences resulting from this parallel

development.

Users can control exactly which versions to use, for each object or group of objects

of interest, by setting up private workspaces that specify the desired version. This

might be the most recent version, or a particular previous version, or even a ver-

sion on an alternative branch. Users can also use workspace to selectively share

their work in progress. Workspaces can inherit from other workspaces, so that one

designer could specify that his or her workspace should be default inherit from the

team's global workspace or could then add individual new versions as changes are

made, overriding the default. The versioning feature is very useful for assisting

the designer to keep track of the design change as well as alternatives.

4.5 Features of ET++ Graphical User Interface Application Framework

Constructing the graphical user interface [42] often requires considerable effort because

they must not only provide the functionality of conventional program, but also have to

show the data as well as manipulation concepts in a pictorial way. Handling commands
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from input devices in order to build an event-driven application complicates the program-

mer's task even more.

A promising solution is that of an object-oriented application framework [9] that

defines much of an applications's standard user interface, behavior, and operating environ-

ments so that the programmer can concentrate on implementing the application specific

parts. An application framework allows reusing the abstract design of an entire applica-

tion, modeling each major component with an abstract class. In a graphical application,

for example, these components are documents, windows, commands and the application

itself. While the framework approach is useful for the development of any software, it is

especially attractive if a standard user interface should be encouraged, for it is possible to

completely define the components that implement this standard and to provide these reus-

able components as building blocks to other developers. This is an advantage over the

toolbox approach where user interface are explained textually rather than being wired into

the software.

ET++ is a homogeneous object-oriented class library integrating user interface build-

ing elements, basic data structures, and support for object input/output with high level

application framework components. The main goals in designing ET++ have been the

desire to substantially ease the building of highly interactive applications with consistent

user interfaces following well-known desktop metaphor, and to combine all ET++ classes

into a seamless system structure.

The Model-View-Controller (MVC) paradigm [42] is an approach to modularize the

structure of a user interface. MVC strictly separates interactive behavior of an application

from the underlying data structure (model). The interactive behavior is split into rendering

a data structure (view) and reacting on user input (controller). The MVC paradigm was

used in ET++ primarily where different implementation of a data structure (model) should
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have the same interactive behavior. Most of the advanced application framework for user

interface design employ this approach.

Figure 4.5: ET++ Architecture

The backbone of ET++ architecture is a class hierarchy with about 234 classes and a

small device dependent layer mainly mapping an abstract window and operating system

interface to an underlying real system. The Basic Building Blocks contain the most impor-

tant abstract classes of the ET++ class hierarchy: the class Object, the root of the overall

class hierarchy, implements the common behavior for all ET++ classes; the class VObject

(visual object) implements the common behavior for all graphical classes, In addition, the

Programming Environment

ET++ Application Graphical
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Library Classes Blocks

Basic Building Blocks

Abstract OS Interface Abstract WS Interface

Interface Layer

OS (UNIX) X Windows System
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Basic Building Block define general useful basic data structures, like arrays, lists, sets, etc.

which are used heavily for the implementation of ET++ itself.

Interaction Classes

EventHandler

Application Framework Classes

Application
Document
Window

Visual Interaction Classes

User Interface Classes

Button, Dialog, Border,
ScrollBar, Slider

Views

View, CollectionView,
TextView, TreeView

Meta Information

Class

System Interface
System
WindowSystem

Figure 4.6: ET++ Class Hierarchy
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Application classes are high level abstract classes that factor out the common control

structure of application running in a graphic environment. They define the abstract model

of a typical ET++ application and together form a generic ET++ application.

The Graphical Building Blocks contain all graphical and interactive components

found in almost every user interface toolbox, such as menus, dialogs, scrollbars. In addi-

tion, it defines the framework to easily build new components from existing ones.

The System Interface Layer provides its own hierarchy of abstract classes for operat-

ing system services, window management, input handling, and drawing on various

devices. Subclasses exists for implementing the system interface layer's functionality for

various window systems and the UNIX operating system.

The Programming Environment part of ET++ system is a set of small set of ET++

applications that are automatically included in every ET++ application. They implement

tools for inspecting the running application and browsing through its source code to help

the developer understand the program.

One of the problems of C++ is that its run-time system does not provide any informa-

tion about the class structure and instance variables of an object. Consequently, an addi-

tional mechanism has to be introduced to gather this information in order to support an

IsKindOf method and for the object input/output facility. ET++ uses the approach of asso-

ciating with each class a special object describing its structure. These descriptors are

instances of the class Class which is itself a subclass of Object. In analogy to Smalltalk,

they are called metaclasses. Metaclasses store the following information about a class:

* the associated superclass

* the name of the class

* the size of an instance in bytes
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* the types of its instance variables, and

* a source code reference to the definition and implementation part of the class

The most important principle embodied in an application framework is to express an

abstract design for a particular kind of application with a collection of abstract classes.

These classes define the application's natural components and how they interact. This

interaction is the main difference between an application framework and a collection of

abstract but not strongly related classes. The former allows the factoring out of much of

the control flow into the class library, while the latter requires that the developer know

exactly when to call which method.

An abstract ET++ application consists of a single instance of the class Application

which controls the application as a whole and manages any number of Documents. A

Document is another abstract class that encapsulates the data structure or the model of an

application and knows how to open and close documents and how to save them on disk.

The implementation of opening and closing document is a very good example of factoring

out the common control flow: consider, for example, an end user who intends to open new

file without saving the old modified file to disk. The abstract class Document manages all

necessary dialogs to ask the user if and where to save the old file and what file to open

next. In addition, interactive applications have the notion of a current selection on which

some operation triggered by the user will be performed. The class View, another subclass

of VObject, represents an abstract and possibly arbitrarily large drawing surface. Its main

purpose is to factor out all control flow necessary to manage rendering and printing as well

as maintaining a current selection. A Document can have any number of Views, all show-

ing the same model in various representations. This closely corresponds to the MVC

model.
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Figure 4.7: ET++ Event Looping Path

First experience with ET++ have shown that providing a class library with rich func-

tionality considerably increases the learning time for programmers to fully exploit this

functionality. For this reason the design and implementation of a programming environ-

ment including browsers for ET++ was initiated. Browsers and browser-like tools make

inheritance more accessible and easy to use. ET++ programming environment includes a

L
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source code browser to access class definitions and their structure as well as an inspector

to view object structure at run-time. Every ET++ application has those tools automatically

built it; they execute in the application process. The browser or inspector can be invoked

either at startup time or at any time while the application is running by pressing a special

key combination.

Object Structure Browser

The Object Structure Browser visualizes runtime relationship between objects. It

shows an object's part-of hierarchy. For example, Figure 4.8 shows the part-of hierarchy

of the cabin design. A node represents an object and the thin lines connect the object with

it parts. The object structure browser can be invoked from the inspector on the inspected

object. Double clicking a node in the object structure browser shows the corresponding

object in the inspector.

With the object structure browser, the designer is able to visualize the relationships of

design components, check the result, and perform the redesign, if necessary. As a matter

of fact, it is quite sophisticated to construct such a browser. First of all, we have to keep

track of the meta-object information so that the browser knows the relationships between

objects at run-time. As compared with the class hierarchy browser, it is a dynamic process,

rather than static.

Experience with ET++/C++

The most interesting application of ET++ is certainly the ET++ programming environ-

ment whose user interface illustrates the high reusability of the ET++ classes. All of the

inspector's user interface components, the source code browser, and the hierarchy viewer

had already been part of the ET++ class library or were implemented as very simple sub-
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classes thereof. An object-oriented application framework transfers a lot of control flow

from client code into class library. This characteristic allows the addition of new function-

ality without any modifications in existing applications and with little programming effort.

Figure 4.8: Object Structure Browser

Working experience with C++ has shown that having information about the classes

and their structure available at run-time is not just convenient but even required. The

approach of building additional descriptor objects manually or with the help of some com-

plicated preprocessor macros is not very elegant. All of the information collected in such a
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metaclass object is in fact a subset of the C++ translator's compile time information 9e.g.,

its symbol table). As a logical consequence it would be very easy to automatically gener-

ate the necessary structures containing the meta-information. The difficult part is to agree

upon what information is really needed. But without a consensus every library builder will

most likely invent some new tricks and programming conventions making the exchange of

classes between libraries much more difficult.

Integration of ET++ and ObjectStore

In order to demonstrate the relationships between objects, we utilize the ET++ class

library for the construction of graphical user interface. The critical issue is to integrate the

ET++ class library with ObjectStore so that the persistent design objects can be visualized

on the screen. Besides, for the purpose of redesign and modification, the designer is also

allowed to modify the slot value of the object whenever necessary. The integration of

these two systems should take these issues into consideration.

Using ET++ and ObjectStore together is interesting because the combination of these

two systems offers advantages none of them can provide on its own. The integration of

ET++ and ObjectStore allows to easily to visualize the objects easily.

The goal of this work was to create a seamless integration of ET++ and ObjectStore.

This meant to make as few changes as possible to the implementation of ET++ and espe-

cially to the protocol of ET++. With these tools,

* new classes can be derived from the root class Object whose instances can be allo-

cated either in transient or persistent memory;

* the basic functionality of ET++ (runtime type information, change propagation,

object cloning, inputloutput of objects, inspector) is also provided for persistent



Testing a Federation Architecture in Collaborative Design Process

instances.

* the already existing collection classes of ET++ plus new ones with the same seman-

tics but an improved implementation are available for persistent usage.

* persistent classes work in read-only transaction as far as it is reasonable.

This is sufficient for writing new multi-user applications that store their data in an

ObjectStore database.

4.5.1 Persistence in ObjectStore

Persistence in Objectstore is orthogonal to the type system because each instance of a

class can reside in a different memory space, be it in the main memory or in one of several

databases. Whether an object is persistent or transient is determined at creation time. In

contrast, persistence is often inherited from a persistent root class. With ObjectStore, the

main difference in the interface is the introduction of a second new operator that allocates

the new object in a specified database.

Some points have to be considered when data structures for persistent usage are

designed because they could prevent the class from being used in persistent memory:

* At the end of transaction, no pointers must point from a persistent object to a tran-

sient object because these pointers can not be reattached to an object when the per-

sistent object is retrieved again. Some strategies on how to avoid them is described

below.

* Because persistence is orthogonal to the type system in ObjectStore, it introduces a

new dimension that has to be handled. Without persistence, all objects are created in

the same memory space and a give pointer always points into the single memory

space. With persistence, the programmer has to determine for each newly created
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object where it is to be allocated. A pointer can be used safely in a persistent object

unless it is made sure that it points to an address in the same memory space. If this

rule is violated, the program is likely to crash. For complex objects - objects consist-

ing of a root object and several subobjects - the general strategy should be to allocate

all subobjects in the same database segment as the root object.

* Objects can not have a partially transient and a partially persistent state. There are no

routines that are called when an object is retrieved from or stored in the database. So

objects cannot be converted on the fly between the two states. All objects that have

been allocated in the persistent memory must always be ready for persistent storage.

For example, they must not contain any pointers to transient addresses.

* Every access to persistent data takes place within a transaction. So, before retrieving

a root object in the database, a transaction must be started, and to make changes per-

sistent the transaction must be committed/ Because the address of the persistent

objects may change from transaction to transaction, the objects must be released at

the end of the transaction and retrieved again at the beginning of the next transac-

tion.

* It is desirable to perform read operations within read-only transactions to increase the

potential throughput. With the pessimistic lock management of ObjectStore, no two

transaction can modify the same object at the same time. It is not always easy to

make sure that an object will not be changed during a transaction. Often, a tempo-

rary object is needed and a pointer to it is stored in the persistent object. Several

strategies and techniques how to avoid such pointers are given below.

* ObjectStore uses the unix signal mechanism. In particular, it replaces the handler of
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the "segmentation violation" signal. Therefore, it is rather difficult to trace down

bugs that crash the application with the message "segmentation fault".

4.5.2 Implementation

To successfully use persistent ET++ objects, you have to do at least the following:

* Use PersistentMetaDef and PersistentMetaImpl macros.

* Use the extend new operator to allocate persistent objects in the desired database

segment.

* Introduce transactions to your application.

* Add the new types to the database schema

4.5.3 Run-time Information about classes

C++ is not able to provide information about the dynamic type of an object or about its

instance variables. ET++ requires this information for the object input/output facility and

the programming environment. In order to preserve enough information, the programmer

has to use the macros MetaDef, NewMetalmpl, etc., as is described in the ET++ docu-

mentation.

If the persistent objects of a class are to be created, a set of new macros must be used.

The macro PersistentMetaDef replaces MetaDef, and PersistentMetalmpl and

PersistentMetalmpl0 replace the macros NewMetaImpl and NewMetalmpl0. For

abstract classes and classes without persistent instances, the old macros can still be used.

If the new macros are used to provide the run-time information, we say the class is

persistent although "persistently usable" would be a more precise item. A persistent class

can still have transient instances, and static members are always transient. However, it

must be declared in the schema file and it is entered into the schema of the database.
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There is no drawback or performance penalty in declaring a class to be persistent. The

objects are still the same size and still behave the same. A few new methods have however

been added which support persistent allocation, persistent copying, etc.

The macro PersistentMetaDef is defined as follows,

#define _PersistentMetalmpl(name)

Object *name::NewObj(ossegment *seg) {

return new(seg, name::DBTypeSpecO)

name((_Objectdummy*)O, (_Objectdummy*)O); }

ostypespec *name: :GetDBTypeSpec() {return name::DBTypeSpecO; } \

4.5.4 Persistent Object Creation

A transient object is created as before:

coil = new OrdCollection(numberofelements);

For persistent object creation, an extended new operator is provided. It takes two addi-

tional arguments: a database segment where the object is to be allocated and an Object-

Store type specification.

void * Object::operator new (sizet sz, segment *seg, ostypespec *type);

The argument are the same as for the general new operator provided by ObjectStore.

Further information on these two arguments can be found in the ObjectStore manuals.

Arrays of ET++ object are not supported. A small but useful extension to the ObjectStore

semantics has been made: if either seg or type are null, the new object is created in tran-

sient memory and treated like a proper ET++ object i.e., entered in the object statistics etc.

In fact, the extended new operator calls the original ET++ new operator.

If a new object of type OrdCollectionis to be created in the same database segment as

the this-object, it is done as following:
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coll = new (DBSegmentO, OrdCollection::DBTypeSpecO) OrdCollec-

tion(numnberof _elements);

Because the new object is often allocated in the same database segment as an existing

one, a short-cut exists:

coll = DBNEW(OrdCollection)(number._of elements);

It only works in member functions because it relies on the this variable to determine

the database segment where the object resides and created the new object at the same

place. To use the macro DBNEW, the file OS-Types.h must be included. Beside being

much shorter and less error-prone, it works for transient and persistent objects, If the this-

object is in transient memory, the new object will also be allocated there.

4.5.5 Object Deletion

Persistent objects are deleted like transient objects:

delete coll;

The delete operator transparently handles the transient and persistent case, so the pro-

grammer does not have to care about persistence when deleting an object.

4.5.6 Changes to the class Object

Persistence introduces a new dimension. Each function that creates a new object, has

to explicitly specify where it is to be allocated. Therefore, the semantics of several func-

tions had to be extended and their implementation changed. Furthermore, to comfortably

and efficiently handle persistent objects, additional information is sometimes needed. This

is provided by some new member functions.

4.5.7 Inquiries about persistence

Although all functions uniformly work on transient and persistent objects, it is some-

times necessary to distinguish between transient and persistent objects:
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bool Object::IsPersistentO;

IsPersistent returns TRUE if the object has been allocated in persistent memory,

FALSE otherwise.

To exactly find out in which database or database segment an object was created,

DBase and DBSegment are used:

segment * Object::DBSegmentO;

database *Object::DBase();

If the objects reside in transient memory, null is returned, which is a legal parameter to

all functions that expect a database segment. The use of ossegment::of and

osdatabase::of is discouraged since they produce unexpected results if applied to tran-

sient objects.

4.5.8 ObjectStore schema information

For ObjectStore to work, it need the complete schema information of all persistent

objects. Since C++ cannot provide it, it must be provided by the programmer when an

object is created. The type of an object is specified as an argument of type ostypespec,

which is an ObjectStore data structure in transient memory.

To simplify the handling of the type information, two new member functions have

been added:

static os_typespec *Object. :DBTypeSpec();

virtual ostypespec *Object: :GetDBTypeSpec();

Both functions return an object of type ostypespec. The first one is a static function

and is mainly used for the creation of objects when the dynamic type is known but the

object does not yet exist. The second one is a virtual method. It is applied to already exist-

ing objects when the dynamic type is not known at compile time. The returned objects will
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be delete automatically. These routine only work for class for which PersistentMetaDef

and PersistentMetalmpl has been used.

4.5.9 Change Propagation

Change propagation works for both transient and persistent objects although the rela-

tionships are only temporary. They are temporary because they are always stored in tran-

sient memory, and they must be redefined in each transaction. This implementation is

sufficient to fully support an MVC structure. In a typical application, the model is persis-

tent while the viewers are transient objects.

4.6 Integration of CLIPS and ObjectStore

CLIPS (C Language Interface Programming System) is an rule-based programming envi-

ronment for building knowledge-based expert systems. This language is famous for its

high portability between different platforms and flexibility to add new application-depen-

dent functions.

4.6.1 Object-oriented CLIPS

The latest version of CLIPS has incorporated the object-oriented concepts into the lan-

guage itself. The motivation of this incorporation are as follows:

* Rules alone are insufficient when a deep understanding of the underlying principles

is required.

* Combination of rules and OOP constructs provides a versatile and natural method for

modeling states of a problem.

There are several feature in combining rules and objects. Object patterns are just like

template fact patterns, except:
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Figure 4.9: Predefined CLIPS class hierarchy

* Rules can match only on classes of objects which were defined (loaded) before the

rule. A class and any slots being matched against must be "reactive."

* CLIPS uses as much static information (slot existence, slot constraints, etc.) about

classes as possible to "preprocess" the pattern, i.e., restrict it to as few classes of

objects as possible a priori.

* Object patterns make use of inheritance, i.e., a pattern matching on a superclass can

match instances of a subclass unless specifically excluded in is-a constraint.
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* Unlike facts, slot changes are done in place. This is the largest performance benefit of

using objects with rules because object slot changes do not affect patterns which do

not explicitly match on the slot.

* Special restrictions are allowed (similar to slot patterns) for the class and name of an

object (is-a and name respectively).

4.6.2 User-defined Functions

The prorgrammer can define application-specific functions and embed them into

CLIPS easily. The DefineFunction2 function is used as follows:

DefineFunction2 Parameters:

* The name of the function in CLIPS.

* The return value type of the function (always use the most specific return type).

* A pointer to the function.

* The name of the corresponding C function (used by the constructs-to-c command).

* The argument restrictions used by the constraint checker (minimum number of

arguments, maximum number of arguments, default argument type, and specific

argument types).

4.6.3 Database-related Functions

A set of database-related functions have been defined to connect the CLIPS inference

engine with ObjectStore database management system.

* extern int dbopeno; I open the database

* exterm int dbcloseo; H close the database

* extern int dbmethod0; I invoke an method of an object

* extern int dbqueryo; I send a query string to database
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* extemrn int dbretrieveo; // retrieve an object from database

* extem int dbsaveO; // save the database

* extern int dbmake_instanceo; //create an instance on database

Experience with CLIPS

* For the purposes of memory management and garbage collection, symbols, strings,

and instance names are stored in a symbol table to prevent duplication and to keep

track of the number of references to each data value.

* Storing a permanent pointer to the string is dangerous because the string may later be

garbage collected invalidating the original pointer to the string.

* You can always change the type, value, begin, and end values of a "data object."

* Don't intersperse calls to functions like Reset and Run with calls that access string

arguments since these types of functions can cause garbage collection to occur.

* Don't forget to allocate memory for "data objects" when necessary.

Many programs unintentionally rely on the order of rule execution for correct results.

(defrule rule- 1

?f <- (a) =>

(retract ?f))

(defrule rule-2

(a) =>

(assert (b)))

In the preceding example, if rule-1 fires first, rule-2 will never be executed.

* In a robust rule-based system, the execution order of rules of equal salience should
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not matter. The ease of maintenance of a rule-based system is highly dependent upon

this assumption.

* Use the random conflict resolution strategy to vary the placement of rules of similar

salience on the agenda.

* The execution order of rules using the random conflict resolution strategy is repro-

ducible either by restarting CLIPS or using the seed function before a run.

Modules

* Use modules for execution control. Modules allow you to explicitly indicate control

relationships between rules.

* Use modules to limit the visibility of constructs and facts/instances that are not perti-

nent to other modules.

Always Use Constraints

* The use of ordered facts should be avoided. Always use deftemplates and defclasses

so that type and value constraints can be applied to the slots.

* Constraints help to detect typos, illegal slot values, illegal arguments to functions,

and unmatchable patterns.

* Dynamic constraint checking is generally only useful for testing purposes since there

is no recovery mechanism.

4.6.4 Where CLIPS Deviates from Pure OOP

* Not everything in CLIPS is an object, i.e., only the primitive types (symbol, integer,

etc.) and instances of user-defined classes are objects. Other data items, such as con-

structs (facts, rules, classes, etc.) must be manipulated in the traditional non-OOP

manner (i.e., through specialized functions, e.g., ppdefrule).
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* Instance-set queries and rules can read object attribute values directly (i.e., without

message-passing) thus compromising encapsulation to some degree to benefit per-

formance.

* Message-passing must still be used to manipulate bound instances on the RHS of

rules or the actions of instance-set queries.

* Encapsulation is provided by message-handlers. Instances must be manipulated with

messages. Only message-handlers may directly read (with the two exceptions

already noted) and write the slots of an instance. CLIPS can create default message-

handlers for the basic reading and writing of slots with the create-accessor slot facet

* An instance is created with the special function, make-instance, which sends the new

object the init message and places slot overrides with put- messages. The default

system init message-handler writes class default values for slots if no override was

provided.

* All reading/writing of slots and deletion of instances must be done with messages.

The structural design rules written in CLIPS is listed in Appendix A.
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Chapter 5

Examples

5.1 Cabin Design Example

This simple example demonstrates the design and decision-making process of the

structural agent. Figure 5.1 shows the cabin plan. First of all, the structural agent needs to

set up the environment before receiving any information needed to initiate the design pro-

cess from the facilitator, including create the database, setting up the workspace, connect-

ing to the facilitator, and register the agent's interests, see Figures 5.2 and 5.3.

The design process starts when the project manager agent and owner agent send their

information to the design agents. Basically, the structural agent receives information, such

as project budget and soil conditions at this point. The architectural agent (AA) starts to

generate the problem statement and an initial problem solution. After generating the initial

solution, the AA displays it graphically for inspection as a 3-D configuration and sends the

information to the facilitator.

The SA will be notified when certain information is received, translated, and for-

warded by the facilitator, see Figure 5.4. These messages will be queued automatically

and asynchronously without the user's intervention. In additions, they will not be incorpo-

rated into the agent's database until the designer issues the import object command from

the console's menubar, see Figure 5.5. Figure 5.6 shows the information received from

facilitator in OML syntax. The structural agent will create these objects as persistent

objects in the database. The designer can save these objects in the object database for

future use through committing a transaction.
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Figure 5.2: Setup the working environment

Figure 5.3: Declare agent's interests
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Figure 5.4: Notify the designer that data is being received.

Figure 5.5: Incorporate objects from message queue to database.
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Figure 5.6: Information received from facilitator

Figure 5.7: Starting conceptual design
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Conceptual Design Phase

Based on the input from OA, PMA, and AA, we start the conceptual phase for struc-

tural design. The SA will generate the configuration as shown in Figure 5.8. From this fig-

ure, we see there are two Structsystem alternatives generated. The structural agent will

send a recommended structural system, which is a frame structure, and an alternative one,

which is a bearing wall design, to the facilitator. Detailed attributes of these objects may

be seen by Inspector (see Figure 5.10). Presumably, the agent will pursue the recom-

mended system if the architect or project manager has no objection to this choice.

Figure 5.8: Conceptual configuration of Cabin.

Preliminary Design Phase

After AA approves the structural system, we proceed to Phase II for preliminary

design. For the design of steel structures, one must consider: the roof slope; the roof deck-
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ing material; the grade of steel to be used; the structural arrangement of the main support-

ing members; the roof framing plan; column design; and the bracing of the entire system.

The SA will generate a configuration as pictured Figure 5.9. From this figure, we see

two physical Bent objects being created. One is the interior bent, the other the exterior;

both are used in two distinct geometric locations. Each bent object contains physical Col-

umn, Footing, and Truss objects. These physical design objects are placed in different

geometric locations relative to their parent objects. The above system (Figure 5.9) will be

sent to AA for approval. The SA initiates negotiation with AA for any modification of

shape or location of structural components and determines if a redesign is required. Fig-

ures 5.10 and 5.11 shows the inspector, which gives the attribute values and also allows

the designer to access and modify the value.

There are two special attributes shown in Figure 5.12 which are included in each

design object. One is the modified_since_last_transmission whose value is 1 if any

attribute of the current object or any of its aggregation parent objects has been modified,

since this agent's last transmission of information to facilitator. If no modifications have

been made, the valie is 0. The other is modified_since_last_design whose value is 1 if any

attribute of the current object or parent objects has been modified, since the agent's last

design or redesign has been performed. If no attributes have been modified, the value is 0.

These two attributes are important for the designer to know if the current object's slot

value has been updated properly or not. In terms of collaborative design, the agent should

propagate the changes it makes to other parties. The design agent should realize the status

of the object in a global sense. That is, it should determine whether or not if the current

design is synchronous with others. This feature offers a solution to the problem.
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Figure 5.9: Preliminary Design for Cabin
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Figure 5.10: Inspector shows the attributes of Bent.

Figure 5.11: Instance Browser
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Figure 5.12: Modified Since Last Transmission and Design.
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Figure 5.13: Footing Object is also being marked modified.

5.2 Firestation

The second example given in this chapter is a firestation design, see Figure 5.14. As we

see from Figure 5.15, the architectural plan is more complicated than in the cabin exam-

ple. But from the structural engineering perspective, since it is also a single story building,

there is not too much difference between these two cases.
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Figure 5.14: One Company Firestation

There are three designs for a firestations in the specifications, including one-company

satellite; one-company headquarter; and two-company headquarter. In the following sec-

tions, we use the one-company headquarter design as the example. From an architectural

point of view, the headquarter is seen as a massing element, while the branch is regarded

as another massing element. The functionality of these two distinct massing element is

quite different.
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Figure 5.15: One Company Fire Station Plan

Conceptual Design Phase

The conceptual design phase is quite similar to the cabin case. After receiving the archi-

tectural requirements from the facilitator, the structural agent generates two conceptual

structural framework (one is recommended, the other alternative) and sends both schemes

to the facilitator. In this case, as seen in Figure 5.16, a conceptual structural scheme which

recommends a frame structural system will be generated in this phase. The other alterna-
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tive scheme is a bearing wall structure. Both systems will be sent to the facilitator for

approval from other agents.

Figure 5.16: Conceptual Configuration for Fire Station

Preliminary Design Phase

In this phase, the two branches of the firestation are identified as the same structural sys-

tem put into different locations due to the symmetry. Figure 5.18 shows the hierarchy of

the structural systems and components. The structural system for a one-company head-

quarter consists of two bents which intersect with each other at a right angle. The struc-

tural system for the branch contains 6 bents separated in equal distance. Each bent has two

columns, two footings, and a truss system. Basically, the design of the branch is quite sim-

ilar to the cabin design example.
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Figure 5.17: Preliminary Structural Configuration for Fire Station
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Figure 5.18: The structural system to be redesigned

Redesign

Through the Object Structure Browser, the user is allowed to access and modify the design

object and, whenever necessary, to perform the redesign. Take Figure 5.18 as an example:

If the designer would like to change the x-direction dimension of the structural system, he/

she can access the object through the inspector (Figure 5.19) and click on the attribute.
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The system will prompt an instance browser window, see Figure 5.20. Such a change will

propagate to the objects down the hierarchy. As we see in Figures 5.21 and 5.22, the bent

contained in the structural system is also marked "modified".

Figure 5.19: Inspector for Structural System 2
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Figure 5.20: Change Slot Value

Figure 5.21: The structural system marked "modified" after the change.
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Figure 5.22: Bent4 is marked "modified"

The designer is free to modify or redesign any other components and can trigger the

inference engine to perform the redesign from the highest level of the hierarchy. The struc-

tural agent will invoke the design rules associated with each object to check the validity of

the modification and perform the redesign, if necessary, see Figures 5.23 through 5.25.
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Figure 5.23: Text screen shows the rules fired.
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Figure 5.24: Column4 is also marked modified
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Figure 5.25: After redesign is done.

After the redesign is finished, the designer can transmit these changes to the facilitator.

As we see in Figure 5.25, after the message is sent, the inspector will set the attributes

modified_since_last_transmission and modified_since_last_design to 0. Figure 5.26

shows that the agent exports the modified data to the facilitator. Figure 5.27 shows that the

column has been redesigned to a new size.
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Figure 5.26: Export the modified data

Figure 5.27: Column4 after redesign.
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Figure 5.28: Detailed Design for Roof Truss

Detailed Design Phase

In this phase, a simple finite element program is utilized to analyze the structure. Figure

5.28 shows a simple truss under analysis. The designer can specify loading and bounrday

conditions, assign materials, and change the system configuration to verify different

design alternatives. The program computes stress under the user-specified constraints and
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displays the result graphically. The designer should manually and carefully check the

result to verify that the design conforms to building code. If it does, the design process can

come to a close. If not, the designer must either try another alternatives or return to the

previous design stage and look for another alternative. With the aid of this numerical anal-

ysis program, the designer can achieve a much more precise design.
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Chapter 6

Conclusion and Future Work

6.1 Current Status

This document describes the implementation of a structural design agent developed to be

used in collaborative, multidisciplinary design in a federation architecture. The central

idea is to understand the problems and processes associated with facilitating cooperation

with other design agents during an example process to complete the cabin and firestation

designs and to understand what is needed to streamline the whole process in a collabora-

tive fashion.

Object-oriented methodology is employed as the principal modeling technique in the

structural design agent. This agent performs design in a hierarchical fashion, from rough

parameters and concepts to detailed components passed to facilitators. Object-oriented

methodology proved to be a very successful solution to modeling complex relationships

between design objects. The Structural Engineering Vocabulary is proposed as a general

framework for modeling any kind of structural system. Enumeration and duplicative detail

are neatly avoided, and data consistency is enhanced.

The structural agent is built to simulate the real-life structural design process which is

essentially broken down into three phases in our implementation. Alternatives for the

overall structural system are chosen in the conceptual phase. Preliminary sizing of major

structural components are determined during the preliminary phase. Optimal sizing and

location of structural members are given during the final detailed design phase. Negotia-

tion and conflict resolution occur during and between phases. Iteration within and to ear-

lier phases is possible.
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Several software tools are integrated in the process of building the structural agents.

Visualization of relationships between design objects and support for redesign are two

main features for the user front-end. The integration of the object-oriented system with a

rule-based expert system proves to provide an elegant solution to harnessing the advan-

tages of both system paradigms. The expert system capabilities are embedded within indi-

vidual objects by associated a rule base with any object class.

6.2 Experience with the Federation Architecture

This project was conceived as a test of concepts and facilities of a federation architecture,

which is part of the Knowledge Sharing Initiative (KSI) project at Stanford University.

The objectives of the KSI project are to develop technology and methodologies that will

enable the sharing and reusing of knowledge bases. Many impediments must be overcome

to achieve these goals. Two central problems addressed in this project are the following:

* Heterogeneous Representation Languages: There is no single knowledge repre-

sentation that is best for all problems, nor is there likely to be one. The choice of one form

of knowledge representation over another can have a big impact on a system's perfor-

mance. Thus, in many cases, sharing and reusing knowledge will involve translating from

one representation to another. Tools are needed that can help automate the translation pro-

cess.

* Heterogeneous Ontologies: Even if the representation problems are resolved, it can

still be difficult to combine two knowledge bases or establish effective communications

between them. The absence of a shared vocabulary presents a further barrier, which could

be removed through the development of shared sets of explicitly defined terminology,

sometimes called ontologies. For such ontologies to be useful, the definitions provided
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must include declarative constraints that specify the semantics of the terms being defined,

and the ontology must provide procedural methods that enforce those constraints when the

terms are used in an application.

In particular, the objectives of the project are to develop technology and methodolo-

gies for building ontologies in a form that is translatable into the specialized representa-

tion languages of multiple application system environments, and interchanging the

reusable content of knowledge bases, including ontologies, among specialized representa-

tion languages.

The interlingua representation language being developed in the Knowledge-Sharing

Effort is called a Knowledge Interchange Format (KIF). KIF is intended to be a language

for communication (" literary publication" of knowledge) and is designed to make the

epistemological level content of a knowledge base clear to the reader, but not to support

automated reasoning in that form.

The problems involved in interchanging knowledge bases are not yet well understood,

and there is an open debate as to whether a generally useful interlingua can be specified. In

the KSI project, they are attempting to inform that debate by developing tools for translat-

ing knowledge bases into and out of KIF, and using those tools to conduct knowledge

interchange experiments that will substantially test the viability and adequacy of KIF as an

interlingua.

In this framework, the facilitator acts primarily as a message switching device, trans-

lating and routing messages on the basis of interests expressed by individual agents in

their own vocabulary. Messages handled by the facilitator can be basically categorized as

follows:

e construct and destruct instances
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* add, delete, and modify slot values

* add and delete relationships

* declare and forget interests

The agent has to establish a connection with the facilitator and register the communi-

cation process by declaring interests. Whenever the agent has certain information to

broadcast, it just sends all the messages to the facilitator without having to specify the des-

tination of messages. The facilitator takes the responsibility in routing those messages to

the destination based on agents' interests. The vocabulary translation is also performed by

the facilitator to transform one kind of data abstraction to another.

Our experience indicates that, as a collaborative design support system, the federation

architecture still has some shortcomings which must be improved. There are two major

requirements which the facilitator should satisfy for the structural design agent.

6.2.1 Translation between different schemas.

One basic assumption of the federation architecture is that the facilitator will perform

the translations between different data structures. In the current implementation, the facil-

itator fails to meet this requirement. For example, a beam object in the structural engineer-

ing vocabulary maps to two objects in the architectural vocabulary, see Figure 6.1. One is

a functional description object, the other a physical component. The facilitator should be

able to combine the two objects into a format that the structural agent can understand and

create a second object going the other way. Because the structural vocabulary is recur-

sively defined, the facilitator must deal with complicated relationships between objects to

perform the translation correctly. For example, data contained within a hierarchy of

objects must be used to construct a transformation matrix to determine the geometric loca-

tion of a basic object in the framework of another vocabulary. This creates the need for
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either memory in the translation process between messages, or queries for data needed in

the translation. The memory needs to relate geometric location recursively to compo-

nents, for example. According to our experience, to solve the problems of translation, the

facilitator should either memorize the relationships between those messages it sends and

receives, or provide the query capability between design agents. To be more precise,

before it began translating, the facilitator must first comprehend the multiple hierarchical

relationships between design objects in different schemas. Due to the recursive nature of

structural engineering vocabulary, one-to-one and one-to-two mapping will not succeed in

this context.

Let's take the col2 object in Figure 6.1 as an example. First of all, the facilitator must

recognize that this objects appears four lines in the structure, twice each in loc 1 and loc2.

For each copy, the facilitator would like to map the geometric location of this object to the

corresponding object in the architectural vocabulary, it has to add the coordinates relative

to the root object to obtain to absolute coordinates. Besides, the facilitator has to create the

second object, either the functional description or physical component object, so that the

Architectural Agent can understand and capture the information sent by the Structural

Agent. In this context, the facilitator must realize the whole relationship hierarchy in both

schemas so that the mapping can be done correctly. On the other hand, if the facilitator

wants to transform the geometric location from Architectural Agent to its counterpart in

Structural Agent, it has to combine both the physical and functional objects, which are

transmitted separately, to a single object so that the Structural Agent can understand the

information correctly. Therefore, the translation problem would become extremely diffi-

cult if the facilitator does not have memory or query capability.

6.2.2 Robust Communication Service.
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The current implementation of communications API and facilitator had some funda-

mental shortcomings, aside from the translation issues, which made message-based col-

laboration between design agents very difficult. We found the following problems:

Figure 6.1: Vocabulary Translation between Architectural and Structural Agents

* Message Order - The facilitator periodically failed to transmit the messages in their

original or logical sequence. Changing order can cause serious problems. For exam-

ple, if the ADD_VALUE to an object message arrives earlier than the
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CREATE_OBJECT message, the agent will find the former message invalid since it

can not retrieve the object and then change the slot value. Consequently, keeping the

messages sent and received in a logical order is essential in guaranteeing the success

of federation architecture.

* Dropping of Messages - Sometimes, the facilitator dropped the messages it

received. This is a serious fault, because incomplete information results in the

agent's malfunction.

* Case Sensitivity - Due to the nature and implementation of KIF and LISP, the API

was developed without the ability to distinguish between upper or lower case text.

But in C++, the major agent development language, case sensitivity is enforced. This

created fundamental incompatibilities . As a result, a set of conversion routines were

needed and were implemented to transform all uppercase API messages into a case-

sensitive message formats. Such an approach lacks generality.

* Requires Hand Coding - There is no message looping or high level language con-

structs provided by the API; therefore, extensive hand coding is required for the pro-

grammer to use the API. In our implementation, we take advantage of OML, which

provides generic message handling, to interface with the API. We had to provide a

set of translation functions to serve as a translator between these two utilities in

order to avoid hand coding all possible messages related to our interests or results.

The facilitator API provides only for message passing, while the OML was needed

to take the responsibility for internal object manipulation. This combination turns

out to be very useful and effective in communicating messages, as well as directly

manipulating design objects. Hand coding for each object class was thus avoided.
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But the API itself is inadequate.

These problems should be resolved to guarantee that the agent communicates cor-

rectly. The stability of the facilitator is also an important issue which cannot be ignored.

Our experience reflected that, even for a small collaborative project like cabin design, the

facilitator crashed frequently for unknown reasons.

6.3 Better API Support

The current implementation of API is straightforward, easy to understand and simple

to use. According to our experience, however, it still requires some enhancements in order

to support the design collaboration.

There are three primary goals for bettering the API support:

* Ease of integration with existing code.

* Ease of determining synchronization points.

* Ease of supporting queries.

The first requirement means that given existing source code, it should be easy to mod-

ify the program so that it can make use of the API. The second requirement means that it

should be easy to ensure that messages are sent out when objects are changed locally, and

remote changes are easily incorporated when they are received. The third requirement

means that the facilitator needs be able to support query in order to complete the transla-

tion. Furthermore, for supporting negotiations between agents, querying is apparently

shown to be an effective solution. If an application is going to participate in a federation

architecture, the API should be able to provide some support for queries.

The applications with which we are integrating use a number of objects to represent its

information. The API should not be required to access these object directly. Instead, the

135



Testing a Federation Architecture in Collaborative Design Process

API must be able to deal with object descriptions or embedded objects. An object descrip-

tion is a bridge between the API and the application being integrated. The object descrip-

tion is capable of performing the mapping between the information model of the API, and

the information model of the application. CMU group's Object Modeling Language

[20][21] provides an excellent example. The API should provide a compiler that takes

C++ object declarations and produces code for the corresponding object description. The

object description code is then compiled and linked with the application and the API bina-

ries. The result is an executable where both the application and the API can manipulate the

embedded object declarations. The API never directly modifies the application's "real" or

"concrete" objects. Therefore, the API can be written in such a way that it need not know

beforehand what an application's objects look like. This also allows the API to act as a

knowledge store on behalf of the application. Since the object descriptions know what the

concrete objects look like, they are able to answer questions about the object's data.

The object descriptions should support simple methods that correspond to KQML per-

formatives, like "create", "delete", "modify", etc. The API defers these actions to the

object description. The object description, having been created with knowledge of the

concrete object, in turn carries out the appropriate action. In the case of "assign", for

example, the object description is responsible for mapping between the slot name and the

actual C++ slot that will be modified.

There are three ways in which the object description can be associated with their cor-

responding concrete objects. The object description can be wrapped around the concrete

object. It can be a constituent of the concrete object. A third option is for the API to main-

tain a mapping between objects descriptions and concrete objects.

The API itself should be relatively simple. It would be responsible for sending mes-

sages to and from the network. It would parse the KQML message to determine the per-
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formative, and the object to which the performative should be applied. The API would

find the object descriptions in a hash table, and invoke the method that corresponds to the

performative. The object description itself would then modify the state of the concrete

object in the appropriate way. High-level programming constructs should be provided to

hide these low-level details from the programmer.

The handling of queries would work in much the same way. The API would never

need to interface with the application in order to respond to a query. The API would look

through its collection of object descriptions, and determine the response to the query by

considering each object description. The response would be formulated and sent back to

the facilitator without any input on behalf of the application itself.

Synchronization could be handled by the addition of access methods for the concrete

objects. If objects are only modified through the use of these methods, then the object

descriptions can be modified in the same place. This guarantees that a object description is

always synchronized with its concrete object.

6.4 Recommended Enhancements to the Structural Agent

At this point the Structural Agent will perform design for simple structures using its hier-

archical knowledge base, which embedding a realistically complex vocabulary, it contains

limited knowledge and design process management tools. In terms of enhancing structural

agent's capabilities, there are three goals to pursue.

6.4.1 Integration of Design Product and Process

The Structural Engineering Vocabulary proposed in this document does not include

the design process information. The synthesis of design product and process representa-

tion is an important feature in terms of providing a good design tool [81]. Through the
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object-oriented modeling, the vocabulary should provide methods to record the decision-

making process. This information can be very useful in the process of negotiating with

other agents.

6.4.2 Versioning Capability.

Versioning capability is needed in order to maintain design alternatives during the

design process. Versioning will enable the user to store gradual enhancements for an

object. In addition, it will help the user trace who makes each change to an object. In cur-

rent implementation, the object structure browser is not able to display versioning rela-

tionships. In addition, the successor to the OML [23] will support this functionality.

6.4.3 Better Visualization Support.

It would be good if we could visualize the 3D geometry relationships between design

components in a viewer and allow the designer to manipulate the object interactively.

Some programming tools like Open Inventor Graphics Library not only provide object-

oriented modeling capabilities and form a well-structured hierarchy of visual objects, but

also allow the user to manipulate the objects interactively.
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Appendix A

Structural Design Rules in CLIPS

Most structural rules of thumb are expressed as ratios, such as a truss that has a span to

depth ratio of 8. As long as depths and spans are in terms of feet, the relationship is easy to

perceive. In the truss example, for every 8 inch of span, the truss will be about 1 inch deep.

Most of these rules are compiled and collected from design code, textbook, and experi-

ence of structural engineers.

;;; MIT Agent Structural Design Knowledge Base in CLIPS

(defrule startup
(declare (salience 5000))

(printout t "Starting the rule-based structural design expert system" crlf))

System Routines

(defmodule MAIN (export ?ALL))

(deffunction MAIN::ask-question (?question ?allowed-values)
(printout t ?question)
(bind ?answer (read))

(if (lexemep ?answer) then (bind ?answer (lowcase ?answer)))
(while (not (member ?answer ?allowed-values)) do

(printout t ?question)
(bind ?answer (read))
(if (lexemep ?answer) then (bind ?answer (lowcase ?answer)))) ?answer
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(deftemplate MAIN: :attribute
(slot name)
(slot value)
(slot certainty (default 100.0)))

(defrule MAIN::startup
(declare (salience 1000))
(design_module ?class_name)

(set-fact-duplication TRUE)
(printout t "The global class_name variable is" ?class_name crlf)
(assert (designdone no))
(focus ?class_name)

(defrule MAIN::combine-certainties ""
(declare (salience 100))

;;; (auto-focus TRUE))
?reml <- (attribute (name ?rel) (value ?val) (certainty ?perl))
?rem2 <- (attribute (name ?rel) (value ?val) (certainty ?per2))
(test (neq ?reml ?rem2))

(retract ?reml)
(modify ?rem2 (certainty (I(- (* 100 (+ ?perl ?per2)) (* ?perl ?per2))

100))))

(defrule MAIN::determinestructLsystemframe
(*structsystem* -frame)

?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel structuralsystem)

(eq ?val frame)
(> ?cer 50.0)))

(printout t "The Frame system is selected" crlf)
(retract ?ss)
(assert (*struct system* frame))

(defrule MAIN::)determinestructsystemwall
(defrule MAIN: :determine...struct...system_wall
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(*structsystem* -wall)
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel structural -system)

(eq ?val bearing_wall)
(> ?cer 50.0)))

(printout t "The bearingwall system is selected" crlf)
(retract ?ss)
(assert (*struct_system* bearing_wall))
)

(defmodule QUESTIONS (import MAIN ?ALL)(export ?ALL))

(deftemplate QUESTIONS::question
(slot attribute (default ?NONE))
(slot the-question (default ?NONE))
(multislot valid-answers (default ?NONE))
(slot already-asked (default FALSE))
(multislot precursors (default ?DERIVE)))

(defrule QUESTIONS::ask-a-question
?f <- (question (already-asked FALSE)

(precursors)
(the-question ?the-question)
(attribute ?the-attribute)
(valid-answers $?valid-answers))

(modify ?f (already-asked TRUE))
(assert (attribute (name ?the-attribute)

(value (ask-question ?the-question ?valid-answers)))))

(defrule QUESTIONS::precursor-is-satisfied
?f <- (question (already-asked FALSE)

(precursors ?name is ?value $?rest))
(attribute (name ?name) (value ?value))

(if (eq (nth 1 ?rest) and)
then (modify ?f (precursors (rest$ ?rest)))
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else (modify ?f (precursors ?rest))))

(defrule QUESTIONS::precursor-is-not-satisfied
?f <- (question (already-asked FALSE)

(precursors ?name is-not ?value $?rest))
(attribute (name ?name) (value -?value))

(if (eq (nth 1 ?rest) and)
then (modify ?f (precursors (rest$ ?rest)))
else (modify ?f (precursors ?rest))))

(defmodule RULES (import MAIN ?ALL)(export ?ALL))
(deftemplate RULES::rule

(slot certainty (default 100.0))
(multislot if)
(multislot then))

(defrule RULES: :throw-away-ands-in-antecedent
?f <- (rule (if and $?rest))

(modify ?f (if ?rest)))
(defrule RULES::throw-away-ands-in-consequent

?f <- (rule (then and $?rest))

(modify ?f (then ?rest)))

(defrule RULES::remove-is-condition-when-satisfied
?f <- (rule (certainty ?cl)

(if ?attribute is ?value $?rest))
(attribute (name ?attribute)

(value ?value)
(certainty ?c2))

(modify ?f (certainty (min ?c 1 ?c2)) (if ?rest)))

(defrule RULES::remove-is-not-condition-when-satisfied
?f <- (rule (certainty ?cl)

(if ?attribute is-not ?value $?rest))
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(attribute (name ?attribute) (value -?value) (certainty ?c2))

(modify ?f (certainty (min ?c 1 ?c2)) (if ?rest)))

(defrule RULES::perform-rule-consequent-with-certainty
?f <- (rule (certainty ?c 1)

(if)
(then ?attribute is ?value with certainty ?c2 $?rest))

(modify ?f (then ?rest))
(assert (attribute (name ?attribute)

(value ?value)
(certainty (/ (* ?cl ?c2) 100)))))

(defrule RULES::perform-rule-consequent-without-certainty
?f <- (rule (certainty ?cl)

(if)
(then ?attribute is ?value $?rest))

(test (or (eq (length$ ?rest) 0)
(neq (nth 1 ?rest) with)))

(modify ?f (then ?rest))
(assert (attribute (name ?attribute) (value ?value) (certainty ?c 1))))

Design Rules for Conceptual Structural Systems

(defmodule StructsystemDESIGN (import RULES ?ALL))
(deffacts thesystem design_rules
;;;the design rules

(rule (if rc_availability is yes and material is steel)
(then structuralsystem is frame with certainty 80.0))

(rule (if rc_availability is no and material is wood)
(then structuralsystem is bearing_wall with certainty 80.0))

(rule (if rc_availability is yes and material is rc)
(then structuralsystem is bearing_wall with certainty 60.0
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structural_system is frame with certainty 60.0))

(rule (if soil is sand)
(then footing is mat_footing with certainty 50.0)

)
(rule (if soil is clay)

(then footing is combinedfooting with certainty 50.0))

(rule (if soil is tight-sand)
(then footing is spreadfooting with certainty 60.0)))

(rule (if structural_system is frame and material is steel)
(then economicspandepthratio is 20 with certainty 80.0)
(then spacingheightrange is 16 to 40 with certainty 80.0))

(rule (if structuralsystem is frame and material is concrete)
(then economicspandepthratio is 20 to 25 with certainty 80.0)

(then spacingheightrange is 16 to 40 with certainty 80.0))

(rule (if structuralsystem is frame and material is pc)
(then economic_span_depthjratio is 25 to 30 with certainty 80.0)
(then spacingheightrange is 16 to 40 with certainty 80.0))

(rule (if structural_system is frame and material is timber)
(then economic_ spandepthratio is 15 to 20 with certainty 80.0)
(then spacingheightrange is 16 to 40 with certainty 80.0))

(rule (if structuralsystem is frame and material is laminated_wood)
(then economic_ spandepth-ratio is 15 to 20 with certainty 80.0)
(then spacingheightrange is 16 to 40 with certainty 80.0))

(defrule Struct_systemDESIGN::startit
?done <- (designdone no)

(retract ?done)
(printout t "Starting the Structsystem Design..." crlf)
(load-facts "StructsystemDesignKnowledgeBase")
(focus RULES)
(assert (designdone yes))
)
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(defrule Struct_systemDESIGN::rulel
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel structuralsystem)

(eq ?val frame)
(> ?cer 50.0)))

(printout t "The frame structure system is selected. "crlf)
(dbmake_instance Structsystem)
)

(defrule Struct_systemDESIGN::rule2
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel structural_.system)

(eq ?val bearing_wall)
(> ?cer 50.0)))

(printout t "The bearing wall system is selected. "crlf)
(dbmake_instance Struct_system))

Design Rules for Column

(defmodule ColumnDESIGN (import RULES ?ALL))
(defrule Column_DESIGN::startit
?done <- (designdone no)

(retract ?done)
(printout t "Starting the Column Design..." crlf)
(load-facts "Column_DesignKnowledgeBase")
(focus RULES)
(assert (designdone yes)))

(defrule Column_DESIGN::rule l
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))

(test (and (eq ?rel selected_column)
(eq ?val col_type_l)
(> ?cer 50.0)))

(printout t "The column type 1 is selected. "crlf)
(dbmake_instance Column)
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(defrule Column_DESIGN::rule2
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel selected_column)

(eq ?val coltype_2)
(> ?cer 50.0)))

(printout t "The column type 2 is selected. "crlf)
(dbmake_instance Column)
)
(deffacts Column_DESIGN::the_columndesign_rules
;;; the design rules

(rule (material is rc and type is round)
(then minimum_size is 12 with certainty 80.0))

(rule (if material is rc and type is round)
(then minimum_size is 6 with certainty 80.0))

(rule (if material is rc and type is rect)
(then minimum_cross_section_area is 120 with certainty 80.0)
(then minimum_thickness is 8 with certainty 80.0))

(rule (if material is steel type is long)
(then maxunbracedheight is 20.0 * cross_section with certainty 80.0)

(rule (if material is reinforced_masonry)
(then min_dimension is 12.0 with certainty 80.0)
(then max_height is 20 * min_dimension with certainty 80.0))

(rule (if material is plainmasonry)
(then min_dimension is 12.0 with certainty 80.0)
(then max_height is 10 * min_dimension with certainty 80.0))

(rule (if material is solid_wood)
(then min_dimension is 16.0 with certainty 80.0)

(then max_height is 30 * min_dimension with certainty 80.0))

(rule (if material is compositewood)
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(then min_dimension is 20.0 with certainty 80.0)
(then max_height is 60 * min_dimension with certainty 80.0))

(rule (if structural_system is column)
(then unbracedlength is from 10 to 30 with certainty 80.0))

(rule (if structuralsystem is column and material is steel)
(then economicspandepthjratio is 40 with certainty 80.0)
(then spacingheightrange is 20 to 30 with certainty 80.0))

(rule (if structuralsystem is column and material is rc)
(then economic_span_depthjratio is 20 with certainty 80.0)
(then spacingheightrange is 18 to 25 with certainty 80.0))

(rule (if structural_system is column and material is precast)
(then economicspandepth ratio is 20 with certainty 80.0)
(then spacingheightrange is 20 to 30 with certainty 80.0))

(rule (if structuralsystem is column and material is timber)
(then economicspandepthratio is 20 with certainty 80.0)
(then spacingheightrange is 20 to 30 with certainty 80.0))

(rule (if structuralsystem is column and material is composite)
(then economicspan_depth ratio is 20 with certainty 80.0)
(then spacingheightrange is 25 to 30 with certainty 80.0))

Design Rules for Truss System

(defmodule Truss_DESIGN (import RULES ?ALL))

(defrule Truss_DESIGN::startit
?done <- (designdone no)

(retract ?done)
(printout t "Starting the Truss Design..." crlf)
(load-facts "Truss_Design_Knowledge.Base")
(focus RULES)
(assert (designdone yes)))
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(defrule Truss_DESIGN::rulel
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel selected_Truss)

(eq ?val trusstype_l)
(> ?cer 50.0)))

(printout t "The Truss type 1 is selected. "crlf)
(dbmake_instance Truss))

(defrule Truss_DESIGN::rule2
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel selected_Truss)

(eq ?val trusstype_2)
(> ?cer 50.0)))

(printout t "The Truss type 2 is selected. "crlf)
(dbmake_instance Truss))

(deffacts Truss_DESIGN::the_Truss_design_rules
;;; the design rules

(rule (if material is steel and type is flat)
(then span is 30 to 220 with certainty 100.0)
(then spacing is 12 to 20 with certainty 100.0)
(then economicspandepthratio is 12 with certainty 80.0))

(rule (if material is steel and type is triangular)
(then span is 30 to 150 with certainty 100.0)
(then spacing is 12 to 20 with certainty 100.0)
(then economic_spandepthratio is 7 to 8 with certainty 80.0))

(rule (if material is wood and type is flat)
(then span is 40 to 160 with certainty 100.0)
(then spacing is 12 to 20 with certainty 100.0)
(then economicspandepthratio is 8 to 10 with certainty 80.0))

(rule (if material is wood and type is tri)
(then span is 40 to 100 with certainty 100.0)
(then spacing is 12 to 20 with certainty 100.0)
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(then economic_span_depthratio is 10 with certainty 80.0))

(rule (if material is wood and type is hinged)
(then span is 20 to 150 with certainty 100.0)
(then spacing is 8 to 20 with certainty 100.0)
(then economicspandepthratio is 25 with certainty 80.0))

(rule (if structuralsystem is truss and material is steel)
(then economic_ span_depthratio is 10 to 12 with certainty 80.0)
(then spacingheightrange is 20 to 25 with certainty 80.0))

(rule (if structuralsystem is truss and material is timber)
(then economicspandepth_ratio is 6 to 10 with certainty 80.0)
(then spacing_.heightrange is 12 to 20 with certainty 80.0))

(rule (if structuralsystem is truss and material is pc)
(then economicspan_depthratio is 10 with certainty 80.0)
(then spacingheight_ range is 25 to 30 with certainty 80.0))

(rule (if type is truss)
(then economicspandepthratio is 4 to 12 with certainty 80.0))

Design Rules for Footing

(defmodule Footing-DESIGN (import RULES ?ALL))
(defrule FootingDESIGN::startit
?done <- (designdone no)

(retract ?done)
(printout t "Starting the Footing Design..." crlf)
(load-facts "FootingDesignKnowledgeBase")
(focus RULES)
(assert (designdone yes)))

(defrule FootingDESIGN::rule 1
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel selected_Footing)

(eq ?val footingtype_1)
(> ?cer 50.0)))
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(printout t "The Footing type 1 is selected. "crlf)
(dbmake_instance Footing))

(defrule Footing_DESIGN::rule2
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel selected_Footing)

(eq ?val footingtype_2)
(> ?cer 50.0)))

(printout t "The Footing type 2 is selected. "crlf)
(dbmake_instance Footing)
)

(deffacts FootingDESIGN::the_Footingdesignrules
;;; the design rules
(rule (if material is concrete)

(then thickness is wall_thickness with certainty 80.0))
(then width is 2.0 * wall_thickness with certainty 80.0))

(rule (if type is column)
(then minimum_width is 3 with certainty 80.0)

Design Rules for Structural Wall

(defmodule Wall_DESIGN (import RULES ?ALL))
(defrule Wall_DESIGN::startit
?done <- (designdone no)

(retract ?done)
(printout t "Starting the Wall Design..." crlf)
(load-facts "WallDesignKnowledgeBase")
(focus RULES)
(assert (designdone yes)))

(defrule Wall_DESIGN::rulel
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel selected_Wall)

(eq ?val Walltype_1)
(> ?cer 50.0)))
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(printout t "The Wall type 1 is selected. "crlf)
(dbmake_instance Wall)
)

(defrule Wall_DESIGN::rule2
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel selected_Wall)

(eq ?val Walltype_2)
(> ?cer 50.0)))

(printout t "The Wall type 2 is selected. "crlf)
(dbmake_instance Wall)
)
(deffacts Wall_DESIGN::the_Wall_design_rules
;;; the design rules
(rule (if structuralsystem is wall and material is rc)

(then minimum_thickness is 6 + (height-15)/25 with certainty 80.0))

(rule (if structuralsystem is wall and type is basement)
(then minimum_thickness is 8 with certainty 80.0))

(rule (if structuralsystem is wall and material is rc)
(then maxunbracedlength is 25 * thickness with certainty 80.0))

(rule (if structuralsystem is wall and material is plainconcrete)
(then minimum_thickness is 7 with certainty 80.0))

(rule (if structuralsystem is wall and material is plainconcrete)
(then maxunbracedlength is 22 * thickness with certainty 80.0))

(rule (if structuralsystem is wall and type is curtain)
(then minimum_thickness is 4 with certainty 80.0))

(rule (if type is wall and type is curtain)
(then maxunbracedlength is :30 * thickness with certainty 80.0))

(rule (if type is interior_wall and type is partition)
(then minimum_thickness is 2 with certainty 80.0))

(rule (if type is interior_wall and type is partition)
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(then max_unbraced_length is 48 * thickness with certainty 80.0))

(rule (if type is bearingwall and material is rc)
(then minimum_thickness is 6 with certainty 80.0))

(rule (if type is bearingwall and material is rc)
(then maxunbracedlength is 25 * thickness with certainty 80.0))

(rule (if type is bearingwall and material is masonry)
(then minimum_thickness is 8 with certainty 80.0))

(rule (if type is bearingwall and material is masonry)
(then maxunbracedlength is 20 * thickness with certainty 80.0))

(rule (if type is bearingwall and material is hollow_masonry)
(then max_unbraced_length is 18 * thickness with certainty 80.0))

(rule (if type is bearingwall and material is hollow_unit)
(then minimum_thickness is 6 with certainty 80.0))

(rule (if type is bearingwall and material is hollow_unit)
(then maxunbracedlength is 25 * thickness with certainty 80.0))

(rule (if type is bearingwall and material is masonrypanel)
(then minimum_thickness is 4 with certainty 80.0))

(rule (if type is bearingwall and material is masonry-panel)
(then max_unbraced_length is 30 * thickness with certainty 80.0))

(rule (if type is bearingwall and material is stone)
(then minimum_thickness is 16 with certainty 80.0))

(rule (if type is bearingwall and material is stone)
(then max_unbraced_length is 14 * thickness with certainty 80.0))

(rule (if type is non_bearingwall and material is stone)
(then minimum_thickness is 4 with certainty 80.0))

(rule (if type is non_bearingwall and material is stone)
(then maxunbracedlength is 18 * thickness with certainty 80.0))

160



Testing a Federation Architecture in Collaborative Design Process

(rule (if type is load_bearing_wall and material is rc)
(then max_unbraced_height is 25 with certainty 80.0))

(rule (if structural_system is load_bearingwall and material is brick)
(then economicspandepthratio is 18 to 22 with certainty 90.0))

(rule (if structuralsystem is load_bearingwall and material is concrete_block)
(then economicspandepthjratio is 18 to 22 with certainty 90.0))

(rule (if structural_system is load_bearingwall and material is brickblock)
(then economicspandepth ratio is 18 to 22 with certainty 90.0))

(rule (if structural_system is load_bearingwall and material is rc)
(then economicspandepthjratio is 25 with certainty 90.0))

(rule (if structuralsystem is load_bearing-wall and material is precast)
(then economicspandepthjratio is 25 with certainty 90.0))

(rule (if structural_system is loadbearing.wall and material is woodstud)
(then economicspandepthjratio is 25 with certainty 90.0))

Design Rules for Beam

(defmodule Beam_DESIGN (import RULES ?ALL))
(defrule Beam_DESIGN::startit
?done <- (designdone no)

(retract ?done)
(printout t "Starting the Beam Design..." crlf)
(load-facts "Beam_DesignKnowledgeBase")
(focus RULES)
(assert (design_done yes)))

(defrule Beam_DESIGN::rule 1
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel selected_Beam)

(eq ?val Beamtype_1)
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(> ?cer 50.0)))

(printout t "The Beam type 1 is selected. "crlf)
(dbmake_instance Beam)
)

(defrule Beam_DESIGN::rule2
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel selected_Beam)

(eq ?val Beamtype_2)
(> ?cer 50.0)))

(printout t "The Beam type 2 is selected. "crlf)
;;;(dbmake_instance Beam)
)
(deffacts Beam_DESIGN::the_Beamdesign_rules
;;; the design rules
(rule (if rc_availability is yes and Beam_material is rc)

(then selected_Beam is Beamtype_1 with certainty 80.0)
)

(rule (if rc_availability is no and Beam_material is wood)
(then selected_Beam is Beamtype_2 with certainty 80.0 )))

(rule (if structuralsystem is beam)
(then economicspandepthratio is 24 with certainty 80.0))

(rule (if type is beam and type cantilever)
(then economic_overhang is 0.33 with certainty 80.0))

(rule (if type is beam and material is rc)
(then typicalthickness is 8 to 12 with certainty 80.0)
(then economicspandepthratio is 12 to 16 with certainty 80.0))

(rule (if type is beam and type is continuous)
(then typicalthickness is 8 to 10 with certainty 80.0)
(then economic_span_depthWratio is 16 with certainty 80.0))

(rule (if type is beam and material is rc)
(then min_laterialsupport is 32 with certainty 80.0))
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(rule (if type is beam and material is pc and type is I)
(then thickness is 12 to 16 with certainty 80.0)
(then economic_span_depthratio is 20 to 25 with certainty 90.0))

(rule (if type is beam and material is pc and type is T)
(then flange_thickness is 8 to 10 with certainty 80.0)
(then web_thickness is 8 with certainty 100.0)
(then economic_span_depthratio is 30 with certainty 90.0))

(rule (if type is beam and material is steel)
(then spanrange is 10 to 60 with certainty 100.0)
(then total_baysize is 20 to 24 with certainty 80.0)
(then economicspandepth-ratio is 20 with certainty 80.0)
(then sectional_modulus is depth * weightperfoot with certainty 80.0))

(rule (if type is girder and material is steel)
(then spanrange is 20 to 80 with certainty 100.0)
(then economicspandepthjratio is 14 with certainty 80.0))

(rule (if type is beam and material is wood)
(then thicknessrange is 2 to 14 with certainty 100.0)
(then spanrange is 8 to 32 with certainty 100.0)
(then economicspandepthjratio is 16 to 20 with certainty 80.0))

(rule (if type is beam and material is gluedlaminated_wood)
(then thicknessrange is 3.25 tco 9 with certainty 100.0)
(then spanrange is 16 to 50 with certainty 100.0)
(then economicspan_depthjratio is 20 to 24 with certainty 80.0))

(rule (if type is joist and material is precast)
(then spacingrange is 3.25 to 9 with certainty 100.0)
(then spanrange is 20 to 45 with certainty 100.0)
(then economic_span_depth ratio is 20 to 24 with certainty 80.0)
(then depth is 4.0 * width of flange with certainty 80.0))

(rule (if type is joist and material is pc)
(then spacingrange is 3.25 to 9 with certainty 100.0)
(then spanrange is 40 to 60 with certainty 100.0)
(then economicspandepthratio is 32 with certainty 80.0)
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(then depth is 4.0 * width of flange with certainty 80.0))

(rule (if type is joist and material is steel and type is openweb)
(then spacingrange is 24 with certainty 100.0)
(then spanrange is 8 to 48 with certainty 100.0)
(then economic_span_depthratio is 20 to 24 with certainty 80.0)
(then depth is 4.0 * width of flange with certainty 80.0))

(rule (if type is joist and material is wood and type is floor)
(then spacingrange is 16 with certainty 100.0)
(then spanrange is 8 to 25 with certainty 100.0)
(then economicspan_ depthratio is 20 with certainty 80.0))

(rule (if structural_system is beam and material is steel)
(then economicspandepthratio is 20 to 25 with certainty 80.0)
(then spacing_heightrange is 20 to 40 with certainty 80.0))

(rule (if structural_system is beam and material is rc)
(then economic_ spandepthratio is 16 to 21 with certainty 80.0)
(then spacingheightrange is 20 to 40 with certainty 80.0))

(rule (if structural_.system is beam and material is pc)
(then economic_ span_depth_ratio is 10 to 20 with certainty 80.0)
(then spacingheightrange is 20 to 60 with certainty 80.0))

(rule (if structuralsystem is beam and material is timber)
(then economicspandepthratio is 20 to 30 with certainty 80.0)

(then spacingheightrange is 15 to 30 with certainty 80.0))

(rule (if structuralsystem is beam and material is laminated_wood)
(then economicspandepthratio is 20 to 30 with certainty 80.0)
(then spacingheightrange is 15 to 30 with certainty 80.0))

(rule (if structural_ system is beam and material is composite)
(then economicspan_depthratio is 24 with certainty 80.0)
(then spacingnheightrange is 20 to 40 with certainty 80.0))

(rule (if structuralsystem is beam and material is post .tension concrete)

(then economicspandepthratio is 26 to 35 with certainty 80.0)
(then spacingheightrange is 20 to 60 with certainty 80.0))

(rule (if structuralsystem is wall_beam and material is steel)
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(then economicspan_depthratio is 8 to 10 with certainty 80.0)
(then spacingheightrange is 12 to 24 with certainty 80.0))

(rule (if structuralsystem is wall_beam and material is concrete)
(then economicspandepthjratio is 8 to 10 with certainty 80.0)
(then spacingheightrange is 12 to 24 with certainty 80.0))

Design Rules for Slab

(defmodule Slab_DESIGN (import RULES ?ALL))
(defrule Slab_DESIGN::startit
?done <- (designdone no)

(retract ?done)
(printout t "Starting the Slab Design..." crlf)
(load-facts "SlabDesignKnowledgeBase")
(focus RULES)
(assert (designdone yes)))

(defrule Slab_DESIGN::rulel
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel selected_Slab)

(eq ?val Slabtype_1)
(> ?cer 50.0)))

(printout t "The Slab type 1 is selected. "crlf)
(dbmake_instance Slab)
)

(defrule Slab_DESIGN::rule2
?ss <- (attribute (name ?rel) (value ?val) (certainty ?cer))
(test (and (eq ?rel selected_Slab)

(eq ?val Slabtype_.2)
(> ?cer 50.0)))

(printout t "The Slab type 2 is selected. "crlf)
;;;(dbmake_instance Slab)
)
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(deffacts Slab_DESIGN: :the_Slab_design rules
;;; the design rules
(rule (if rc_availability is yes and Slab_material is rc)

(then selected_Slab is Slabtype_1 with certainty 80.0)
)
(rule (if type is slab and material is rc)

(then economic_span_depthjratio is 20 to 35 with certainty 80.0))

(rule (if type is slab and material is rc)
(then thicknessspanratio is 0.05 with certainty 80.0))

(rule (if structuralsystem is slab and material is rc)
(then max_steel_beam_spacing is 8 with certainty 70.0)
(then typical thickiness is 4 with certainty 80.0))

(rule (if structuralsystem is slab and material is rc and type is waffle)
(then span is 25 to 40 with certainty 80.0)
(then max_longtoshort_ratio is 1.33 with certainty 80.0)
(then economicspandepthratio is 25 with certainty 80.0))

(rule (if structuralsystem is slab and material is rc and type is flat)
(then span is 16 to 36 with certainty 80.0)
(then thickness is 6 to 12 with certainty 80.0)
(then max_longjtoshort_ratio is 1.33 with certainty 80.0)
(then economicspandepth ratio is 30 to 40 with certainty 80.0))
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Appendix B

ACL API Specification

class Facilitator methods

Function Name
Facilitator::Facilitator(void)

Description
Constructor for the Facilitator class.

Parameters
None

Return Value
None

Example of Use
Facilitator*fac = new Facilitator;
This creates a new instance of the Facilitator object. This will probably be called once
at the beginning of the program.

Function Name
bool Facilitator::connect(char* agentname, char* facilitator_name, char*
facilitator_address, int portnum)

Description
Called when an agent wants to make a connection to the facilitator. Sets up the net-
work connection. Called when an agent starts running, or after he has disconnected
and wishes to connect again.

Parameters
char* agent_name Hunique name by which other agents know the connecting agent.
char* facilitator_name Hunique name by which the facilitator is known.
char* facilitator_address lHthe facilitator address that the agent is trying to connect to.
int portnum lHthe port number of the facilitator that the agent is trying to connect to.

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->connect("stanford-agent", "dcepo", "hpdce.stanford.edu", 4010);
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This connects the agent named "stanford-agent" to the facilitator named "dcepo" to
port 4010 of "hpdce.stanford.edu"

Function Name
bool Facilitator::disconnect(void)

Description
Called when an agent temporarily no longer wishes to communicate with the facilita-
tor. Closes the network connection.

Parameters
None

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->disconnecto;
This disconnects the agent from the facilitator. The facilitator will remember the agent,
and will save messages for the agent until the next time the agent connects.

Function Name
bool Facilitator:: forget(void)

Description
Tells the facilitator to permanently forget all information about the calling agent. Used
if an agent wishes to leave the project entirely, or wants to start over for some reason.

Parameters
None

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->forgeto;
The facilitator will delete the information about the agent. No messages will be saved
for this agent.

Function Name
bool Facilitator::set_name_space(char* name_space)

Description
Sets the agent's namespace. Should be called after connect. Can be called only one
time per connection.
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Parameters
namespace

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->setname_ space("mit");
This sets the namespace to "stanford". All objects that the agent communicates about
will belong to this namespace.

Function Name
bool Facilitator::registercallback(void (*callback)(Message*))

Description
Registers a callback that will be called upon receipt of a message from the network.
When a message is received from the network, the API checks to see if the user has
registered a callback. If so, the Message is passed to this callback routine immediately.
Otherwise, the default action takes place: the Message is put in a queue to be retrieved
with Facilitator::getmessageo. After registering a callback, the user may remove the
callback by calling this method with NULL as the argument. This method was not a
part of the original specifications. It was unofficially incorporated into version 1.11 as
of 7/11/95.

Example of usage:
extern void mycallbackroutine(Message* msg);
facilitator->registercallback(mycallbackroutine);

Parameters
void (*callback)(Message*) Routine that will be called when a message is received
from the network. callback is a pointer to a function of return type void that takes a
pointer to a Message object as an argument. If this argument is NULL, it will have the
effect of removing a callback that had been previously registered.

Return Value
TRUE if successful, otherwise FALSE.

Function Name
char** Facilitator::get connected agents(void)

Description
Returns a NULL-terminated list of names of all agents currently connected.

Parameters
None

Return Value
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Returns a pointer to a list of character strings on success. The final character string is
NULL. Returns NULL on failure.

Example of Use
char** agentnames = fac->get connectedagentso;
while ( *agentnames != NULL) {

cout << *agent_names << endl;
agent_names++;

I
Prints out the names of the connected agents, one per line.

Function Name
char** Facilitator::get.allagents(void)

Description
Returns a NULL-terminated list of names of all of the agents that the facilitator has
knowledge of.

Parameters
None

Return Value
Returns a pointer to a list of character strings on success. The final character string is
NULL. Returns NULL on failure.

Example of Use
char** agentnames = fac->get_ all_agentso;
while ( *agentnames != NULL) {

cout << *agent_names << endl;
agent_names++;

I
Prints out the names of all agents, one per line.

Function Name
bool Facilitator::messagewaiting(void)

Description
Returns TRUE if there are messages waiting in the queue.

Parameters
None

Return Value
TRUE if there are messages waiting, otherwise FALSE.

Example of Use
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if ( fac->message_waitingo ) {
cout << "Message waiting!" << endl;

}
Prints a message if there is a message waiting. Usually followed by a call to

getmessage if there is a message waiting.

Function Name
Message* Facilitator: :getmessage(void)

Description
Returns the message that is at the head of the queue.

Parameters
None

Return Value
Returns the address of a Message object on success. Returns NULL on error or if there
is no message waiting.

Example of Use
Message* msg = fac->getmessageo;
Gets an incoming message from the facilitator. Usually preceeded by a call to
message_waiting.

Function Name
bool Facilitator::commit(void)

Description
Commits the current transaction. Sends the changes that the agent has been making to
the facilitator. Until this is called, all operations are buffered.

Parameters
None

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->commito;
All messages generated by calls to methods such as construct_instance will be sent to
the facilitator. Only messages that have been generated since the last call to commit or
abort are sent.
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bool Facilitator::abort(void)
Description

Aborts the current transaction. The pending changes will not be sent to the facilitator.
Parameters

None
Return Value

TRUE if successful, otherwise FALSE.
Example of Use

fac->aborto;
All messages generated by calls to methods such as construct_instance will be thrown
away. Only messages that have been generated since the last call to commit or abort
will be thrown away.

Function Name
bool Facilitator::construct_instance(char* classname, char* objectname)

Description
Signals to the facilitator that an instance has been created.

Parameters
char* class_name The name of the class that is being created. char* objectname The
name of the instance that is being created.

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->construct_instance("column", "col 1");
Constructs an instance of the column class called "coll".

Function Name
bool Facilitator::destruct_instance(char* class_name, char* objectname)

Description
Signals to the facilitator that an instance has been destroyed.

Parameters
char* classname; //The name of the class that is being created.
char* objectname; //The name of the instance that is being created.

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->destruct_instance("column", "coll");
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Destructs an instance of the column class called "col ".

Function Name
bool Facilitator::add_value(char* classname, char* object_name, char* slot_name,
char* value)

Description
Adds a slot to an object that has been created with construct_instance.

Parameters
char* classname; // The name of the class that is having a value added.
char* objectname // The name of the object that is having a value added.
char* slot_name // The name of the slot that is being added.
char* value // The value of the slot that is being added.
Conforms to the syntax described in the "Usage" section.

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->addvalue("column", "coll", "width", "1");
Adds the slot "width" to the column "col ", and sets its value to 1.

Function Name
void Facilitator::modifyvalue(char* class_name, char* objectname, char*
slot_name, char* value)

Description
Associates a new value with a slot of a class.

Parameters
char* classname; // The class of the object whose slot value is being modified.
char* objectname; // The name of the object whose slot value is being modified.
char* slot_name; // The name of the slot whose value is being modified.
char* value; // The value of the slot that is being modified.
Conforms to the syntax outlined in the "Usage" section.

Return Value
None

Example of Use
fac->modifyvalue("column", "coll", "width", "2");
Changes the slot "width" of the column "col 1" to 2.
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Function Name
bool Facilitator::delete_value(char* class_name, char* objectname, char*
slot_name)

Description
Removes a slot from a class.

Parameters
char* classname; //The class name of the object whose slot is being removed.
char* objectname; //The name of the object whose slot is being removed.
char* slotname; //The name of the slot that is being removed.

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->delete_value("column", "col 1", "width");
Deletes the slot "width" from the column "col 1".

Function Name
bool Facilitator::add_relation(char* relation_name, char* parent.class_name, char*
parentobjectname, char* child_classname, char* childobject name)

Description
Adds a relationship to a class.

Parameters
char* relation_name; // The name of the relationship to be added. eg, "has-a", "is-a".
char* parent_class_name; // The class name of the parent object.
char* parent classname; // The class name of the parent object.
char* child_class_name; // The class name of the child object.
char* child_objecLtname; //The name of the child object.

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->add_relation("has-a", "room", "rooml", "door", "doorl");
Adds a "has-a" relationship to room "rooml". This relation indicates that room
"rooml" has a door "doorl".

Function Name
bool Facilitator::delete_relation(char* relationname, char* parentclassname,
char* parentobjecLtname, char* child_class_name, char* child_object-name)

Description
Deletes a relationship from a class.
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Parameters
char* relation_name; // The name of the relation to be deleted. eg, "is-a", "has-a'.
char* parentclass_ name; // The class name of the parent object.
char* parentclass_ name; // The class name of the parent object.
char* child_class_name; // The class name of the child object.
char* childobject_name; //The name of the child object.

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->delete_relation("has-a", "room", "rooml", "door", "doorl");
Deletes the "has-a" relationship from room "rooml". This relation indicates that room
"rooml" has a door "doorl".

Facilitator Methods for Inserting / Removing Interests

Function Name
bool Facilitator::intall(char* class_name, char** slotnames, char**
relation_names, int_action action)

Description
Depending on the value of action, this method inserts / removes interests about all
operations for an object.

Parameters
char* classname; // The name of the class whose relation you're interested in.
char** slot_names; // NULL terminated list of slot names that the agent is interested

in. In general, this will be a list of all of the slot names of the class. If there is no
slot name for the class, pass NULL for this argument.

char** relation_name; //NULL terminated list of relation names that the agent is inter-
ested in. In general, this will be a list of all of the relation names that the class may
posess. If there is no relation name for the class, pass NULL for this argument.

int_action action The value for action is either k_int_insert ( for inserting the interests)
or k_int_remove ( for removing the interests).

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
char* slotnames[]= {"width", "height", "x", "y", NULL};
char* relation_names[] = {"has-a", "is-a", NULL};
fac->int_all("column", slot_names, relation_names, kint insert);
Specifies that the agent is interested in all actions that happen to column objects,
including actions that affect the slots "width", "height", "x" and "y", and the "is-a"
and "has-a" relations.
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Function Name
bool Facilitator::intconstructinstance(char* class_name, intaction action)

Description
Indicates to the facilitator that the agent is interested / uninterested (depending on the
value of action) in receiving messages about the construction of a certain class.

Parameters
char* classname; //The class that that the agent is interested / uninterested in.
int_action action; // The value for action is either k_int_insert ( for inserting the inter-

est ) or k_int_remove ( for removing the interest).
Return Value

TRUE if successful, otherwise FALSE.
Example of Use

fac->int_construct_instance("column", kintinsert);
Specifies that the agent is interested in column construction messages.

Function Name
bool Facilitator::intdestructinstance(char* classname, int_action action)

Description
Indicates to the facilitator that the agent is interested / uninterested (depending on the
value of action) in receiving messages about the destruction of a certain class.

Parameters
char* classname; // The class that that the agent is interested I uninterested in.
int_action action; // The value for action is either k_ int_insert ( for inserting the inter-
est ) or k_int_remove ( for removing the interest).

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->intdestructinstance("column", kintinsert);
Specifies that the agent is interested in column destruction messages.

Function Name
bool Facilitator::int_add_value(char* class_name, char* slot_name, int_action
action)

Description
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Indicates to the facilitator that the agent is interested / uninterested (depending on the
value of action) in receiving messages about adding values to a class.

Parameters
char* classname; //The class that that the agent is interested / uninterested in.
char* slot_name; l//the slot value that that the agent is interested / uninterested in.
int_action action The value for action is either k_intinsert ( for inserting the interest)

or k_int_remove ( for removing the interest).
Return Value

TRUE if successful, otherwise FALSE.
Example of Use

fac->intaddvalue("column", "width", k int insert);
Specifies that the agent is interested in messages that indicate that the slot value
"width" has been added to a column.

Function Name
bool Facilitator::intdeletevalue(char* class_name, char* slot_name, int_action
action)

Description
Indicates to the facilitator that the agent is interested / uninterested (depending on the
value of action) in receiving messages about deleting values from a class.

Parameters
char* classname; //the class that that the agent is interested / uninterested in.
char* slotname; llthe slot value that that the agent is interested /uninterested in.
int_action action; //The value for action is either kintinsert ( for inserting the interest
) or kint_remove ( for removing the interest).

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->intdelete_value("column", "width", k intinsert);
Specifies that the agent is interested in messages that indicate that the slot value
"width" has been deleted from a column.

Function Name
bool Facilitator::intmodify_value(char* classname, char* slotname, intaction
action)

Description
Indicates to the facilitator that the agent is interested / uninterested (depending on the
value of action) in receiving messages about changing slot values.
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Parameters
char* class_ name; // the class that that the agent is interested / uninterested in.
char* slotname; //the slot value that that the agent is interested / uninterested in.
int_action action The value for action is either k_int_insert ( for inserting the interest)

or k_int_remove ( for removing the interest).
Return Value

TRUE if successful, otherwise FALSE.
Example of Use

fac->intmodifyvalue("column", "width", kint insert);
Specifies that the agent is interested in messages that indicate that the slot value
"width" of a column has been modified.

Function Name
bool Facilitator::intaddrelation(char* class_name, char* relationname, int_action
action)

Description
Indicates to the facilitator that the agent is interested / uninterested (depending on the
value of action) in receiving messages about relations being added.

Parameters
char* classname; // the class name whose relation you're interested / uniterested in.
char* relation_name; // the name of the relation that you are interested / uniterested in.
int_action action; // the value for action is either k_int_insert ( for inserting the interest

) or k_int_remove ( for removing the interest).
Return Value

TRUE if successful, otherwise FALSE.
Example of Use

fac->intaddrelation("column", "has-a", k int insert);
Specifies that the agent is interested if a "has-a" relationship is added to a column.

Function Name
bool Facilitator::intdeleterelation(char* class_name, char* relationname,
int_action action)

Description
Indicates to the facilitator that the agent is interested / uninterested (depending on the
value of action) in receiving messages about relations being added.

Parameters
char* classname; // the class whose relation you're interested / uninterested in.
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char* relation_name; //the relation that you are interested / uninterested in. eg, "is-a",
"has-a".

int_action action; //The value for action is either kintinsert ( for inserting the interest
) or k_int_remove ( for removing the interest).

Return Value
TRUE if successful, otherwise FALSE.

Example of Use
fac->intdeleterelation("column", "has-a", kint insert);
Specifies that the agent is interested if a "has-a" relationship is deleted from a column.

class Message Methods

Function Name
int Message::type(void)

Description
Returns the type of the Message.

Parameters
None

Return Value
ACL_ObjectCreate, ACLObjectDestroy, ACL_AddValue, ACL_ModifyValue,
ACL_ModifyObject, ACLDeleteValue, ACLAddRelation, ACL_DeleteRelation

Function Name
char* Message::msgclass(void)

Description
Returns class that a message refers to.

Parameters
None

Return Value
NULL on failure. Returns the class name on success.

Function Name
char* Message::object(void)

Description
Returns the global name of the object that the message refers to.

Parameters
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None
Return Value

NULL on failure. Returns the object name on success.

Function Name
char* Message::slot(void)

Description
Returns the name of the slot that the message refers to.

Parameters
None

Return Value
NULL on failure. Returns the slot name on success.

Function Name
char* Message: :value(void) Description
Returns a character string that represents the value of the message. The character
string conforms to the grammar that is outlined in the "Usage" section.

Parameters
None

Return Value
NULL on failure. Returns the slot value on success.

Function Name
char* Message::childclass(void)

Description
Returns the class name of the child object that the message refers to.

Parameters
None.

Return Value
NULL on failure. Returns the class name on success.

Function Name
char* Message::child_object(void)

Description
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Returns the global name of the child object that the message refers to.
Parameters

None.
Return Value

NULL on failure. Returns the object name on success.

Function Name
bool Facilitator::requestattributevalue(Undetermined)

Description
Requests the value of an attribute of a specific object.

Parameters
Undetermined

Return Value
Undetermined

Function Name
bool Facilitator::requestrelationvalue(Undetermined)

Description
Requests the value of a relationship of a specific object.

Parameters
Undetermined

Return Value
Undetermined

Function Name
bool Facilitator::tellattribute_value(Undetermined)

Description
Announces the value of an attribute of a specific object.

Parameters
Undetermined

Return Value
Undetermined

Function Name
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bool Facilitator::tell_relationvalue(Undetermined)
Description

Announces the value of a relationship of a specific object.
Parameters

Undetermined
Return Value

Undetermined
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Appendix C

BNF Grammar of Object Modeling Language

Items which are italicized are grammar element names. Items in bold type are key-

words in the language. Items enclosed in single quotes are literal characters of the lan-

guage. Alternative right hand side clauses are separated by a vertical bar ( I ). Any

grammar clause name (for example <class-name>) which ends with "-name" is intended

to represent a character string for the name of an object. Grammar elements enclosed

within brackets (i.e. [ ] ) are optional elements within the clause.

D.1 Base Data Type

Base data types define the underlying representation of a value. The notation

described here is borrowed from SQL.

<base-data-type>:

number'(' <precision> [',' <decimals>] )' I

char'(' <length> ')' I

date

D.2 Aggregation

An aggregation defines constraints on a collection of base data type values. Matrix

and interval aggregations are defined for real numbers.

<aggregation> :

<base-data-type> RANGE <low-literal> <high-literal> I

<base-data-type> SET <literal-list> I

<base-data-type> ONEOF <literal-list> I

<base-data-type> CONST I
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<base-data-type> SINGLE I

<base-data-type> MANY I

<base-data-type> EXPR I

MATRIX <rows> <columns> I

INTERVAL <low-bound> <high-bound> I

VECTOR <domain> I

TUPLE '(' <element-list> ')'

D.3 Element List

<element-list>:

<element> I

<element-list> ',' <element>

<element>:

<attribute-name> <domain>

D.4 Domain

A domain is defined by a name and an aggregation. By naming a set of values,

other systems (e.g. a facilitator) can easily map values from one to another.

<domain> : DECLARE DOMAIN <domain-name> <aggregation> ';'

D.5 Subdomain

Subdomains refine a domain by adding additional constraints on the parent

domain. When a subdomain is declared, no relationship with the parent domain is

maintained.

<subdomain> :DECLARE SUBDOMAIN <sub-domain-name><domain-

name> [ <subaggregation> ] ';'

<subaggregation>: ONEOF <literal-list> I /* parent must be ONEOF */
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SET <literal-list> 1 /* parent must be SET or MANY */

RANGE <low-literal> <high-literal> /* low and high literal must be in the parent */

D.6 Class

A class defines a collection of attributes some of which can be inherited from a

parent class. A predefined class named Object always exists.

<class> :

DECLARE CLASS <class-name> <class-category-name> SUBCLASS OF

<class-name> '(' [ <attribute-list>] ')' ';'

D.7 Forward Class

Forward classes are used to break circular references of classes.

<forward-class>:

DECLARE FORWARD CLASS <class-name> ';'

D.8 Attribute List

<attribute-list>:

<attribute> I

<attribute-list> ',' <attribute>

D.9 Attribute

<attribute>:

[ <io-tag> ] [ DYNAMIC ] VALUE <attribute-name> <domain-name> [<struc-

tured-value> ] I

RELATION <attribute-name> <relationship-type-name> <class-name> I

TRIGGER <attribute-name> ON <trigger-action> "<expression(1)>"

<io-tag>:
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INPUT I OUTPUT I PRIVATE

D.10 Trigger Action

Triggers can be specified for the addition/deletion of a frame instance to/from an

instance network.

<trigger-action>:

ADD I DELETE

D.11 Literal List

<literal-list>:

<literal> I

<literal-list> ',' <literal>

D.12 Literal

<literal>:

<integer> I <real> I <string> I <date>I <argument> I NIL I MAXINT I MAX-

FLOAT

D.13 Argument

Arguments are automatically numbered by the runtime system starting at 1.

<argument>:

'$' <integer>

D.14 Variable

<variable>:

'$' <variable-name>

D.15 Relationship Type

<relationship-type>:
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DECLARE RELATIONTYPE <relationship-type-name> <container-type> ';'

D.16 Container Type

Container types specify the cardinality and duplication constraints on a relation-

ship. Link defines that a single value can exist in the container. Vector is an ordered

list. Set is an ordered list with no duplications.

<container-type>:

LINKI

VECTORI

SET

D.17 Expression

<expression>:

'( <expression>')' I

<expression> '+' <expression> I

<expression> '-' <expression> I

<expression> '*' <expression> I

<expression> '/' <expression> I

<expression> "^' <expression> I

<expression> ';' <expression> I

<builtin-function> <arg-list> I

this ':' <slot-name> [ <index>] <arg-list> I

this ':' <slot-name> [ <index>] ':=' <expression> I

<variable> ':' <slot-name> <arg-list> I

<relation-slot-name> ':' <slot-name> <arg-list> I
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<relation-slot-name> ':' <relation-index> ':=' <expression> I

<relation-slot-name> ':' <relation-index> I

<literal> I

<conditional-expression>

D.18 Index

<index>:

<indexElement> I

<index> <indexElement>

<memberlndex>:

<string> I

<argument>

<indexValue>:

<integer> I

<argument>

<indexElement>:

'{' <memberIndex>'}' I

'"[ <indexValue> ']'

D.19 Relation Index

<relation-index>:

'[' [ <indexValue>] ']'

D.20 Structured Value

<structured-value>:

<SimpleValueList> I
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<StructuredValueList>

<StructuredValue>:

'{' <SimpleValueList> '"}' I

'[ <SimpleValueList> ']' I

'{' <StructuredValueList> "}' I

'[' <StructuredValueList> ']'

<StructuredValueList>:

StructuredValue I

StructuredValueList StructuredValue

<SimpleValueList>:

SimpleValuel

SimpleValueList SimpleValue

<SimpleValue>:

<string> I <integer> I <real> I NIL I <variable>
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Appendix D

BNF Grammar of Instance Manipulation Language

In the section, we present the grammar for manipulating instances in the object model.

An object model of the instance network is shown in Figure E. The instance manipulation

language exists at the same level as the object declaration language. In other words, object

definitions and instance manipulation commands can be intermingled.

NETWORK

addFrame
removeFrame

-I

I FRAME
addValue
addRelation
removeValue
removeRelation

T
I A

has-instances

VALUE METAVALU E
has-instances

values
cache

-I I
has-values

has-retaions

contains-frames
p

RELATION
parentFrame

addUnk
removeLink

has-instances METARELATION

FIGURE 1. Instance Network in OMT Notation

E.1 Frame Action
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<frame-action>:

ADD I DELETE

E.2 Value Actions

<value-actions>:

ADD I MODIFY I DELETE ';'

E.3 Frame Commands

<frame-command>:

<frame-action> FRAME <class-name> ';'

E.4 Value Commands

<value-command>:

<value-action> VALUE <class-name> <slot-name> <instance> <value-list> ';' I

<value-action> VALUE '$' <variable-name>(3) <slot-name> <value-list> ;'

E.5 Relationship Commands

<relationship-command>:

<frame-action> RELATION <class-name> <slot-name> <class-name>

<instance> <instance> ';' I

<frame-action> RELATION '$' <variable-name> <slot-name> '$' <variable-

name> ';'

E.6 Variable Setting Command

Variables can be used to store object identities and used later. This can be used to

load and save a knowledge base without

referencing instance numbers. This scheme will work even when instances have a

circular reference. The most common use of this

command is to capture the object identity of CURRENT.
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<set-variable-command>:

SET '$' <variable-name> TO '$' <variable-name> I

SET '$' <variable-name> TO <class-name> <instance>

E.7 Evaluation Commands

When a slot is evaluated, arguments can be passed. Each argument is listed and is

numbered from 1 to n in the evaluated slot. The runtime environment must support

the notion of an argument stack similar to a programming language function call

stack.

<evaluation-command>:

EVAL VALUE <class-name> <slot-name> <instance> [ <value>] ';' I

EVAL VALUE '$' <variable-name> <slot-name> [<value>] ';'

E.8 Value

<value>:

<SimpleValueList> I

<StructuredValueList>

<StructuredValue>:

' {' <SimpleValueList> '}' I

'[ <SimpleValueList> ']' I

' {' <StructuredValueList> '}' I

'[' <StructuredValueList> ']'

<StructuredValueList>:

StructuredValue I

StructuredValueList StructuredValue
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