
Protocol Optimizations for the CRL Distributed Shared

Memory System

by

Sandeep K. Gupta

B.S., Electrical and Computer Engineering (1994)
B.A., Computer Science (1994)
B.A., Cognitive Sciences (1994)

Rice University

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1996

© Massachusetts Institute of Technology 1996. All rights reserved.

A uthor
Department ot Electrical Engineering and Computer Science

August 28, 1996

Certified by
M. Frans Kaashoek

Associt•e Professor of Computer Science and Engineering
Thesis Supervisor

- A

Accepted by... . Mo h

O)F .TEC rr..
OFT I:•(L.,;

OCT 1,5 1996
L!9BRAR•IES

Protocol Optimizations for the CRL Distributed Shared Memory System

by

Sandeep K. Gupta

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 1996, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Many optimizations and enhancements have been proposed for distributed shared memory (DSM)
systems. This thesis describes the design, implementation, and performance of a C Region Libra.ry
(CRL) port to the IBM SP/2 (CRL-SP/2). In addition, it discusses the design, implementation, and
evaluation of a Three-Message-Invalidation optimization for CRL-SP/2, and a Floating-Home-Node
optimization for CRL-SP/2. The experiments show that each optimization can provide applications
with a significant improvement in running times. The Three-Message-Invalidation protocol decreased
the 8-processor running time of the Traveling Salesman Problem by 30%, while the Floating-Home-
Node protocol decreased that of Barnes-Hut by 56%.

Thesis Supervisor: M. Frans Kaashoek
Title: Associate Professor of Computer Science and Engineering

Acknowledgments

Frans Kaashoek worked at least as hard as I did to complete this thesis. He helped me to find a

topic, and participated in almost every part of the thesis process. During the last weeks of this thesis,

Frans went out of his way to make sure I completed this thesis by the deadline. Thank you Frans

for all you have done.

Kirk Johnson wrote CRL version 1.0, and without it, none of the work presented in this thesis

could have been performed. Most of the figures and tables in this thesis are modified versions of those

from Kirk's thesis. Without Kirk's permission to use them, I would have spent days just learning

how to create them. Kirk was also very prompt in answering my CRL questions.

Thanks to the whole PDOS gang (Max, Greg, Dawson, Debby, Emmett, Josh, Anthony, David,

Eddie, Hector, Robert, Tom, Wilson, and Joe) for providing such stimulating discussions on topics

ranging from the sandboxing of code to the policies of nuclear disarmament.

A special thanks to Anthony for setting me up on my Thinkpad so that I could work on my thesis

whenever an idea popped into my head. Josh, I really appreciate all the assistance you provided in

formatting my thesis and finally in helping me overcome the last obstacle to my degree by printing

my thesis and turning it in for me.

To Alex Schiffer, Willy Zwaenepoel, Bart Sinclair, and my other professors from Rice University,

thank you for introducing me to research and giving me a great academic background.

I would like to thank the Office of Naval Research for awarding me with a fellowship to attend

graduate school.

To my closest friends for the past two years, Chandanbhai, Dhara, Rakhi, Srikant, Kanchanbhai,

Hemantibhabi, and the whole HSC, thank you for your support and encouragement in finishing this

thesis.

Thank you, God. I know this thesis and the results would not have been possible without one of

your miracles!

Mom, Dad, and Puneet, you have always been there for me. Whenever I needed your advice or I

just needed to talk to somebody, I could always call you up and have things straightened out. I love

you!

To my dearest Prabha, this thesis has been a part of our marriage since day one. Rather than

spending many hours with you, I have been working to finish this thesis. Still, you have been very

understanding and helped me by taking care of the rest of my life. Now the thesis is complete.

To Mom and Dad.

Contents

1 Introduction

1.1 Contributions of This Thesis

1.2 Background of Distributed Shared Memory

1.3 Thesis Outline

2 CRL Overview

2.1 Description of CRL

2.2 Goals of CRL

2.3 Programming with CRL .

3 CRL Applications

3.1 Traveling Salesman Problem

3.2 Blocked LU

3.3 Water-Nsquared

3.4 Barnes-Hut

4 An Implementation of CRL on the SP/2

4.1 The Message Passing Library

4.1.1 Overview of MPL Functions

4.1.2 Shortcomings of MPL

4.2 CRL Region Version Numbers

4.2.1 MsgRelease Messages

4.2.2 Multiple Read-Only Copies

4.3 SP/2 Specific Optimizations

4.3.1 Nonurgent Messages

4.3.2 Two Message Data Transfer

4.3.3 Simultaneous Data Transfers of a Region

4.4 CRL-SP/2 Performance

33

. 33

. 34

. 35

. 37

. 37

. 38

. 40

. 40

. 41

. 43

. 43

.............

4.4.1 MPL Round Trip Operations, Events and Base Operations.

4.4.2 Base CRL Operations

4.4.3 Application Performance

5 Three-Message-Invalidation Protocol

5.1 Protocol Description

5.2 Why the Protocol Decreases Execution Time

5.3 Protocol Implementation in CRL

5.3.1 Transferring Version Information

5.3.2 Three-Message-Invalidation Completion

5.3.3 Handling Flushes

5.4 Performance Results

5.4.1 Three-Message-Invalidation Benchmark

5.4.2 Base CRL Operations

5.4.3 Application Performance

6 Floating-Home-Node Protocol

6.1 Why the Protocol Decreases Execution Time

6.2 Protocol Implementation in CRL

6.3 Messages in Floating-Home-Node Protocol

6.3.1 Simultaneous Become-Home Requests

6.3.2 Number of Forwarded Messages

6.4 Performance Results

6.4.1 Floating-Home-Node Benchmark

6.4.2 Base CRL Operations

6.4.3 Barnes-Hut Performance

7 Related Work

8 Conclusion

A Raw Experimental Data

A.1 IBM Message Passing Library (MPL) versus Message Passing Interface (MPI) . .

A.2 CRL Operation Latencies

A.3 CRL and MPL Event Counts

A.3.1 CRL-SP/2 Application Events

A.3.2 Three-Message-Invalidation Application Events

A.3.3 Floating-Home-Node Application Events

.

.

B Implementation Details of the Three-Message-Invalidate Protocol 95

B.1 Protocol States and Events 95

B.2 Home-Side State Machine 97

B.3 Remote-Side State Machine 116

C Implementation Details of the Floating-Home-Node Protocol 129

C.1 Protocol States and Events 129

C.2 Home-Side State Machine 131

C.3 Remote-Side State Machine 155

List of Figures

4-1 Messages sent in the original (4 message) data transfer protocol.

4-2 Messages sent in the optimized (2 message) data transfer protocol.

5-1 Messages sent in the original (4 message) invalidation protocol.

5-2 Messages sent in the optimized (3 message) invalidation protocol.

6-1 Messages sent during a become home request. ..

HomeExclusive: state transition diagram......

HomeExclusiveRip: state transition diagram.

HomeExclusiveWip: state transition diagram .

HomeShared: state transition diagram

HomeSharedRip: state transition diagram.....

Homelip: state transition diagram

HomelipSpecial: state transition diagram..

Homeinvalid: state transition diagram

HomeThreeWaylipSpecial: state transition diagram.

Remoteinvalid: state transition diagram

RemotelnvalidReq: state transition diagram. . . .

RemoteShared: state transition diagram

RemoteSharedReq: state transition diagram .

RemoteSharedRip: state transition diagram .

RemoteModified: state transition diagram.....

RemoteModifiedRip: state transition diagram.

RemoteModifiedWip: state transition diagram.

C-1 HomeExclusive: state transition diagram. . . .

C-2 HomeExclusiveRip: state transition diagram..

C-3 HomeExclusiveWip: state transition diagram..

. 62

. 100

. 101

. 102

. 103

. 104

. 105

.. 106

.. 107

. 108

.. 117

. 118

.. 119

.. 120

.. 121

.. 122

. 123

. 124

.. 135

. 136

. 137

B-i

B-2

B-3

B-4

B-5

B-6

B-7

B-8

B-9

B-10

B-11

B-12

B-13

B-14

B-15

B-16

B-17

C-4

C-5

C-6

C-7

C-8

C-9

C-10

C-11

C-12

C-13

C-14

C-15

C-16

C-17

C-18

C-19

HomeShared: state transition diagram

HomeSharedRip: state transition diagram

Homelip: state transition diagram

HomelipSpecial: state transition diagram..

Homelnvalid: state transition diagram

HomeThreeWaylipSpecial: state transition diagram.

HomrneBecomingRemote: state transition diagram.

Remoteinvalid: state transition diagram

RemotelnvalidReq: state transition diagram

RemoteShared: state transition diagram

RemoteSharedReq: state transition diagram

RemoteSharedRip: state transition diagram

RemoteModified: state transition diagram

RemoteModifiedRip: state transition diagram.....

RemoteModifiedWip: state transition diagram

RemoteBecomeHomeReq: state transition diagram. .

............ 138

............ 139

. 140

. 141

. 142

. 143

. 144

............ 157

..... 158

............ 159

............ 160

. 161

. 162

. 163

............ 164

............ 165

List of Tables

4.1 Time to perform MPL round trip operations. 44

4.2 Time to perform base MPL events. 45

4.3 Measured CRL latencies, nodes polling, partial list. 45

4.4 Measured CRL latencies, nodes not polling, partial list. 47

4.5 Measured application execution time using CRL-SP/2. 48

4.6 Calculated application speedup using CRL-SP/2. 48

4.7 Expensive events per second using CRL-SP/2 on 8 processors. 48

5.1 Measured CRL latencies for Three-Message-Invalidation, nodes polling, partial list. . 57

5.2 Measured CRL latencies for Three-Message-Invalidation, nodes not polling, partial list. 57

5.3 Measured application execution time using Three-Message-Invalidation 57

5.4 Calculated application speedup using Three-Message-Invalidation 58

6.1 Comparison of measured Barnes-Hut execution times for each CRL-SP/2 version. .. 64

6.2 Comparison of calculated Barnes-Hut speedups for each CRL-SP/2 version. 65

A.1 Switch performance using MPL (user space, application space to application space) . 73

A.2 Switch performance using MPL (udp/IP, application space. to application space) .. 74

A.3 Preliminary switch performance using MPI (user space, application space to applica-

tion space) 74

A.4 Preliminary switch performance using MPI (udp/IP, application space to application

space) 74

A.5 Events measured by latency microbenchmark. 76

A.6 CRL-SP/2 latencies with nodes polling 77

A.7 CRL-SP/2 latencies with nodes not polling 77

A.8 Three-Message-Invalidation latencies with nodes polling 78

A.9 Three-Message-Invalidation latencies with nodes not polling 78

A.10 CRL and MPL event counts for Barnes-Hut on CRL-SP/2. 80

A.11 CRL and MPL event counts for Block LU on CRL-SP/2. 81

CRL and MPL event counts for TSP on CRL-SP/2..

CRL and MPL event counts for Water on CRL-SP/2..

CRL and MPL event counts for Barnes-Hut on Three-Message-Invalidation.

CRL and MPL event counts for Block LU on Three-Message-Invalidation .

A.16 CRL and MPL event counts for TSP on Three-Message-Invalidation.

CRL and MPL event counts for Water on Three-Message-Invalidation .

CRL and MPL event counts for Barnes-Hut on Floating-Home-Node.

CRL and MPL event counts for Blocked LU on Floating-Home-Node. .

CRL and MPL event counts for TSP on Floating-Home-Node

CRL and MPL event counts for Water on Floating-Home-Node

B.1 CRL home-side protocol states.

B.2 CRL remote-side protocol states.

B.3 CRL call events

B.4 CRL home-to-remote protocol messages

B.5 CRL remote-to-home protocol messages

B.6 CRL remote-to-requesting protocol messages

B.7 HomeExclusive: protocol events and actions

B.8 HomeExclusiveRip: protocol events and actions

B.9 HomeExclusiveWip: protocol events and actions

B.10 HomeShared: protocol events and actions

B.11 HomeSharedRip: protocol events and actions

B.12 Homelip: protocol events and actions

B.13 HomelipSpecial: protocol events and actions

B.14 Homelnvalid: protocol events and actions

B.15 Homeinvalid: protocol events and actions (continued).

B.16 HomeThreeWaylipSpecial: protocol events and actions.

B.17 Remoteinvalid: protocol events and actions..

B.18 RemotelnvalidReq: protocol events and actions

B.19 RemoteShared: protocol events and actions

B.20 RemoteSharedReq: protocol events and actions

B.21 RemoteSharedRip: protocol events and actions

B.22 RemoteModified: protocol events and actions

B.23 RemoteModifiedRip: protocol events and actions.

B.24 RemoteModifiedWip: protocol events and actions.

. 96

.... 96

... 97

.. 97

. 97

. 98

. 109

. 109

. 110

. 110

. 111

. 111

. 112

. 113

. 114

. 115

. 125

. 125

. 126

. 126

. 127

. 127

. 128

. 128

C.1 CRL home-side protocol states

A.12

A.13

A.14

A.15

A.17

A.18

A.19

A.20

A.21

130

C.2 CRL remote-side protocol states

C.3 CRL call events

C.4 CRL home-to-remote protocol messages

C.5 CRL remote-to-home protocol messages

C.6 CRL remote-to-requesting protocol messages

C.7 CRL original-home protocol messages

C.8 HomeExclusive: protocol events and actions

C.9 HomeExclusiveRip: protocol events and actions

C.10 HomeExclusiveWip: protocol events and actions

C.11 HomeShared: protocol events and actions

C.12 HomeShared: protocol events and actions (continued).

C.13 HomeSharedRip: protocol events and actions

C.14 Homelip: protocol events and actions

C.15 HomelipSpecial: protocol events and actions

C.16 Homelnvalid: protocol events and actions

C.17 Homelnvalid: protocol events and actions (continued)..

C.18 HomeThreeWaylipSpecial: protocol events and actions.

C.19 HomeBecomingRemote: protocol events and actions ..

C.20 Remoteinvalid: protocol events and actions..

C.21 RemotelnvalidReq: protocol events and actions

C.22 RemoteShared: protocol events and actions

C.23 RemoteSharedReq: protocol events and actions

C.24 RemoteSharedRip: protocol events and actions

C.25 RemoteModified: protocol events and actions

C.26 RemoteModifiedRip: protocol events and actions.....

C.27 RemoteModifiedWip: protocol events and actions.....

C.28 RemoteBecomeHomeReq: protocol events and actions. .

130

. 131

. 131

.. 131

. 132

. 132

. 145

. 146

. 146

. 147

. 148

. 148

. 149

. 150

. 151

. 152

. 153

. 154

. 166

. 167

.. 168

. 169

. 169

.. 170

. 170

. 171

Chapter 1

Introduction

We all would like our applications to run more quickly. One way to achieve this goal is to simply

buy a faster machine. However, the previous progress made in the hardware area will not continue

forever because we are reaching physical limits such as the speed of light, and such limitations will

hinder future progress in this area.

Instead of executing the application sequentially on a single machine, another solution is to run it

on multiple processors in parallel by simultaneously performing a fraction of the total computation

on each node, and then communicating to synchronize and/or combine the results of each part of

the computation. If little communication is necessary to perform the computation, or the movement

of data among processors is regular, then the communication can easily be performed by passing

messages among nodes. This form of communication is commonly known as Message Passing.

However, in complex systems with a large amount of communication or with communication that

cannot be determined before runtime, it is much easier to use a Distributed Shared Memory (DSM)

system.

During the past ten years, a lot of research has been performed to find ways to improve the

speedup of parallel programs, and to improve their ease of use [29]. In particular, DSM systems and

many of the tradeoffs involved in their implementations have been actively examined. This thesis

discusses the design, implementation, and evaluation of a C Region Library port to the IBM SP/2. In

addition, it discusses the design, implementation, and evaluation of two optimizations to the original

CRL protocol, a Three-Message-Invalidation protocol [26] and a Floating-Home-Node protocol [35].

1.1 Contributions of This Thesis

The C Region Library (CRL) [21] is an all-software region-based DSM system that provides ap-

plications with the ability to specialize the communication protocols used for synchronization, and

transfer of shared regions.

This thesis has a number of contributions. The first is a design, implementation, and evaluation

of CRL version 1.0 for the IBM SP/2. The evaluation specifically looks at how the message passing

performance of the SP/2 affects the speedup of CRL applications. Measurements show that the

message passing latency and the overhead of the IBM SP/2 is too great to allow for acceptable

application speedups. Optimizations, such as the two that follow, can significantly improve application

running times on the SP/2 implementation of CRL (CRL-SP/2).

The second contribution is an improvement in the performance of CRL-SP/2 by designing and

implementing a Three-Message-Invalidation protocol, which is a well-known optimization and en-

hancement [26]. Evaluation of the Three-Message-Invalidation protocol shows that it reduces the

number of messages in an invalidation. This enhancement reduces the number of messages sent by

up to 25% and thus improves application running times significantly on CRL-SP/2. The results show

that for some applications, this optimization reduces execution time by 30%.

The third is a design and implementation of a Floating-Home-Node protocol, and an evaluation of

the potential benefits of using this protocol. The Floating-Home-Node protocol provides the ability

to change the node responsible for the coherence of a region's data. A similar type of protocol where

data migrates is used in COMA machines [35]. The idea of examining such a protocol on CRL

appeared in [18]. The results in this thesis show that the Floating-Home-Node protocol decreases

the execution time of Barnes-Hut by over 50%.

1.2 Background of Distributed Shared Memory

This section describes why DSM is interesting and why it is worth exploring the possibilities of

improving it. There are some tradeoffs involved that help determine when message passing should

be used in parallelizing a program, and when DSM should be used.

An example where message passing is a clear win is the multiplication of dense matrices repres-

ented by two-dimensional arrays. If the problem is to multiply matrices A and B to produce matrix

C, then matrix C can be equally partitioned into rectangles, and each rectangle can be assigned to

a node participating in the computation. If the assigning of partitions is done statically by node

number, then the node(s) containing the elements of matrices A and B can directly send to each node

exactly that data that the node needs from A and B. After the multiplication is complete, then each

node can send exactly those elements of C that it calculated to the destination node(s) where the

result is to be kept.

However, many programs written today are much too complicated to precisely determine which

processor has a valid copy of a particular piece of data. Additionally, the bookkeeping involved in

irregular computations, such as multiplying two general sparse matrices, is too great a burden to

put on the programmer. Of course the processors could be allocated equally sized regions of the

sparse matrix product, but then the processors may not each do an equal amount of work and the

improvements from parallelizing the computation will be diminished.

Another good example of an irregular computation is a graph traversal where the values at a

node of the graph are updated to the value of functions of the values at the nodes adjacent to it.

In order to distribute this algorithm over a network of workstations, the programmer would have to

implement a mechanism for nodes to get the necessary data at the appropriate time. This would

involve nodes knowing who to ask for the data, and having the ability to have exclusive access to

the data during writes while at the same time allowing multiple readers during reads for efficiency.

Implementing these structures and protocols is very complicated and very time consuming in terms

of debugging time.

Another possible solution to this complex data management is to have a centralized server for the

shared data that would take care of all the bookkeeping. The problem here is that every node must

go through this server to access data and the server becomes a bottleneck. Normally, this server

would then be a more powerful machine, when compared with the client nodes. When this happens,

the system model has basically become a database. However in many networks, it is common to have

many machines of equivalent power. In such systems, it makes more sense to distribute the server

onto each client, and thus each machine is both a server and a client.

When the shared data is distributed in such fashion over all the clients, and the data can be

accessed in a way similar to local memory, then we have a DSM system. DSM systems handle all of

the data bookkeeping so that applications are able to access the data almost as if they are accessing

local data in their local memory. It is essentially an abstraction of a global shared memory. DSM

implementations that are mostly software are implemented over some message passing mechanism

[3, 21, 22, 33] while ones that are mostly hardware are usually implemented by using a fixed mapping

from global address to node number, and then storing the information at that node [2, 25].

In DSM systems, applications are not required to keep track of which processor has a valid copy

of the data, where the data is located locally in memory, and which processors are allowed to read

from/write to the data. Because the DSM system takes care of all this information and moreover

provides a coherency mechanism to keep the data consistent, it is widely accepted that it is much

easier to write an application in DSM style than it is to write one in message passing style. The

DSM paradigm saves programming and debugging time.

But if DSM is so great, why isn't everyone using this programming methodology? One reason

is that many programmers still do not have a choice. Implementations of DSM that use specialized

hardware cannot be used in a heterogeneous environment, and they tend to be expensive.

Most modern operating systems such as Windows/NT, SunOS, Solaris, and Ultrix come readily

available with message passing libraries. However, if one wants to use DSM, the DSM library needs

to be installed and added separately, at some inconvenience to the programmer. The most difficult

part about the installation is actually finding source or object files for the DSM system. And then,

after finding the source, it may have to be ported to the appropriate network, CPU hardware, and

OS combination.

TreadMarks [22] is one example of a DSM system that was written on standard UNIX systems,

such as SunOS and Ultrix, at user-level. Because it is at user-level, TreadMarks does not require any

modifications to the operating system. TreadMarks has a few differences though from CRL. Data

coherency is done on a virtual memory page granularity, which is a fixed size set by the operating

system virtual memory or hardware (set to 4 kbytes on many UNIX systems). If a shared data

item is smaller than this size and a data access miss occurs on the shared data item, then data for

other items may be sent in addition to the desired data, increasing access miss latency and using up

bandwidth. If a shared data item is larger than this size and a data access miss occurs on the shared

data item, then multiple data access misses will occur and the total overhead paid will be larger

than if only one access miss occurred. Another difference is that since TreadMarks uses expensive

operating system traps for maintaining data coherency, a lot of overhead is paid for each data access

miss.

The availability of message passing libraries that are available free of charge for a wide range of

operating systems and hardware platforms is much greater than the availability of such DSM libraries.

For example, PVM [36] and MPI [31] are two message passing libraries that are in wide spread

use on various operating systems and hardware platforms. PVM itself has thousands of users [32].

Also, PVM applications executing on different platforms can transfer messages to each other, and

any necessary data conversion involving byte order or data-type size is performed transparently to

the PVM user. So PVM is extremely useful and easy to use in a heterogeneous environment.

Another reason why DSM is not in widespread use, and possibly the reason why implementations

of DSM are difficult to find, is that DSM applications tend to be less efficient than optimized message

passing applications. In papers comparing the execution time of message passing programs to that

of DSM programs, message passing programs usually perform better [30, 28, 4].

One observation should be made explicitly clear: For a given platform, the absolute optimal

performance attainable by an all-software DSM system is inferior to that attainable by a message

passing system for the simple reason that the software DSM implementation will have to use the

underlying message passing system for communication among the nodes in the system.

There are some cases when DSM performs better than message passing though. For example

in Kevin Lew's master's thesis [27], for a particular problem size where there was little memory

contention, DSM performed better than message passing on the Alewife machine [1]. In this case the

better performance of the DSM application was attributed to the fact that the hardware platform had

hardware support for DSM when only a few nodes shared the data. In this scenario, when a request

arrived at a node for shared data, the request could be handled by a specialized processor in the node,

in parallel with the normal executing thread. However, if a request arrived via message passing, then

the executing thread would have to be interrupted for the request to be handled and some overhead

would be incurred. When more nodes shared the data, the message passing application performed

better than the DSM application, since in this case, DSM requests were also handled in software.

Even though implementations of DSM in software are less efficient than those in hardware, soft-

ware has some advantages over hardware. The foremost reason is that hardware is HARDware; it is

not malleable to the specific needs of an application, and cannot be ported. One can port software

DSMs to newer platforms quickly [21]. And once the initial development costs have been paid, the

incremental costs for updates and porting of a software DSM system is minimal. The costs for a

hardware system are quite high, and when the specialized hardware has been developed, it can only

be used on a particular CPU platform. Thus, software can also support heterogeneous environmel-ts

much more easily.

Most importantly, a software DSM system's protocols can be altered and optimized to the needs

of a particular application running on top of it [21, 9, 13, 5] without adding much complexity to

the DSM system. For example, it would be very difficult to add the Three-Message-Invalidation and

Floating-Home-Node optimizations to an existing hardware DSM system. In a software DSM system,

fixed policies such as prioritizing shared memory requests from nodes and determining which regions

should and should not be cached can be specialized with a few changes to the application running

on top of the DSM. One could even specialize to adaptable techniques that would examine access

patterns in the system and calculate how to set the policies for the system.

1.3 Thesis Outline

This thesis contains seven more chapters followed by three appendices. Chapter 2 contains a brief

overview of CRL and its usage. Chapter 3 contains a brief description of the applications used to

evaluate the performance of CRL. Chapter 4 describes the CRL port to the IBM SP/2 and contains

an analysis of CRL application speedup on the IBM SP/2. Chapter 5 provides a description and

analysis of the Three-Message-Invalidation protocol implemented for CRL. Chapter 6 contains a

description and analysis of CRL's Floating-Home-Node protocol implementation. A description of

work related to this thesis appears in Chapter 7. Chapter 8 is the conclusion of this thesis. Appendix

A contains the Raw Data used in the analysis. Appendix B describes the Three-Message-Invalidation

protocol implementation in great detail, including state diagrams and pseudocode. Appendix C

describes the Floating-Home-Node protocol implementation in great detail, including state diagrams

and pseudocode.

Chapter 2

CRL Overview

This chapter provides a brief overview of CRL, the C Region Library. Most of the following text

is taken directly from the CRL User Documentation [20]. For more information on CRL, consult

[19, 21, 18].

2.1 Description of CRL

The C Region Library (CRL) is an all-software distributed shared memory (DSM) system intended

for use on message-passing multicomputers and distributed systems. Parallel applications built on

top of CRL share data through regions. Each region is an arbitrarily sized, contiguous area of

memory. The programmer defines regions, and includes annotations to delimit accesses to those

regions. Regions are cached in the local memories of processors; cached copies are kept consistent

using a directory-based coherence protocol. Because coherence is provided at the granularity of

regions instead of memory pages, cache lines, or some other arbitrarily chosen fixed-size unit, CRL

avoids the concomitant problems of false sharing for coherence units that are too large or inefficient

use of bandwidth for coherence units that are too small.

Three key features distinguish CRL from other software DSM systems. First, CRL is system

and language-independent. Providing CRL functionally in programming languages other than C

should require little work. Second, CRL is portable. By employing a region-based approach, CRL

is implemented entirely as a library and requires no functionality from the underlying hardware,

compiler, or operating system beyond that necessary to send and receive messages. Third, CRL is

efficient. Very little software overhead is interposed between applications and the underlying message-

passing mechanisms. While these features have occurred in isolation or in tandem in other software

DSM systems, CRL is the first software DSM system to provide all three in a simple, coherent

package.

Because shared address space or shared memory programming environments like CRL provide

a uniform model for accessing all shared data, whether local or remote, they are relatively easy to

use. In contrast, message-passing environments burden programmers with the task of orchestrating

all interprocessor communication and synchronization through explicit message passing. While such

coordination can be managed without adversely affecting performance for relatively simple applica-

tions (e.g., those that communicate infrequently or have relatively simple communication patterns),

the task can be far more difficult for large, complex applications, particularly those in which data is

shared at a fine granularity or according to irregular, dynamic communication patterns.

In spite of this fact, message passing environments such as PVM [36, 10, 32] and MPI [31]

are often the de facto standards for programming multicomputers and networks of workstations. We

believe that this is primarily due to the fact that these systems require no special hardware, compiler,

or operating system support, thus enabling them to run entirely at user level on unmodified, "stock"

systems. Because CRL also requires minimal support from the underlying system, it should be

equally portable and easy to run on different platforms. As such, we believe that CRL should serve

as an excellent vehicle for applications requiring more expressive programming environments than

those provided by PVM or MPI.

2.2 Goals of CRL

Several major goals guided the development of CRL. First and foremost, we strove to preserve

the essential "feel" of the shared memory programming model without requiring undue limitations

on language features or, worse, an entirely new language. In particular, we were interested in

preserving the uniform access model for shared data, whether local or remote, that most DSM systems

have in common. Second, we were interested in a system that could be implemented efficiently in

an all software context and thus minimized what functionality was required from the underlying

hardware and operating system. Systems that take advantage of more complex hardware or operating

system functionality (e.g., page-based mostly software DSM systems) are worthy of study, but can

suffer a performance penalty because of inefficient interfaces for accessing such features. Finally, we

wanted a system that would be amenable to simple and lean implementations in which only a small

amount of software overhead sits between applications and the message-passing infrastructure used

for communication.

2.3 Programming with CRL

Applications using CRL can affect interprocessor communication and synchronization either through

a relatively typical set of global operations (barrier. broadcast, reduce) or through operations on

regions.

A region is an arbitrarily sized, contiguous area of memory identified by a unique region identifier.

A region identifier is a portable and stable name for a region; in order to access a region, a processor

node must know the region's region identifier. New regions can be created dynamically with a

function call similar to malloc(), and can later be removed when they are no longer needed. Blocks

of memory comprising distinct regions (those with different region identifiers) are nonoverlapping.

The operations on the regions are reading and writing. All accesses to shared region data must

be delimited by CRL function calls. These calls are used to indicate to CRL exactly which region

data is being accessed so that consistency for that region can be performed. The functions are:

* rgnstart_read, which is used before reading data.

* rgnend-read, which is used after reading data.

* rgn_startwrite, which is used before writing data.

* rgn_end-write, which is used after writing data.

If access has been granted for writing data, then the application also has permission to read the

data. Each of the above functions takes a region data pointer as the sole argument. Also, reads and

writes to shared data may be grouped such that only one start and end function call needs to be

performed for the whole group.

Chapter 3

CRL Applications

This chapter briefly describes the applications used to measure the performance of CRL-SP/2. The

applications are the Traveling Salesman Problem (TSP), Blocked LU (LU), Water-Nsquared (Water),

and Barnes-Hut (Barnes). LU, Water, and Barnes are taken from the SPLASH-2 parallel application

suite [38] and their descriptions are taken directly from [38]. Some of the text regarding the

communication and computation granularity of LU, Water, and Barnes was taken directly from [18].

3.1 Traveling Salesman Problem

The Traveling Salesman Problem solves the NP-complete problem of finding the shortest cyclic path

going through every node of a graph. In this implementation, one master node creates a job queue of

possible solutions, and the rest of the nodes become slaves. While the job queue still contains jobs,

the slaves continue to grab the next possible solution off of the queue and to explore that possible

solution. A shared counter is used to keep track of the next available job. This shared counter causes

99% of the communication in TSP and is the bottleneck for TSP.

TSP is an interesting application to measure because its computation granularity is relatively

course-grained, but at the same time TSP requires low latency access to the shared counter. The

results for TSP presented in this thesis are obtained for a problem size of 14 cities.

3.2 Blocked LU

The LU kernel factors a dense matrix into the product of a lower triangular and an upper triangular

matrix. The dense n x n matrix A is divided into an N x N array of B x B blocks (n = NB)

to exploit temporal locality on submatrix elements. To reduce communication, block ownership is

assigned using a 2-D scatter decomposition, with a block being updated by the processor that owns

it. Elements within a block are allocated contiguously to improve spatial locality benefits, and blocks

are allocated locally to processors that own them.

After the home node writes to a region, all the requests for that region are Shared Requests.

So no invalidations are ever sent in LU, and all requests can be responded to immediately. LU's

computation granularity is fairly large, so LU is very close to a best-case application.

The results for LU presented in this thesis are for a 1000x1000 matrix using 20x20 blocks.

3.3 Water-Nsquared

This application evaluates forces and potentials that occur over time in a system of water molecules.

The forces and potentials are computed using an O(n2) algorithm, and a predictor-corrector method

is used to integrate the motion of the water molecules over time. A process updates a local copy of

the particle accelerations as it computes them, and accumulates into the shared copy once at the end.

Applications like Water are typically run for tens or hundreds of iterations (time steps), so the

time per iteration in the "steady state" dominates any startup effects. Therefore, running time is

determined by running the application for three iterations and taking the average of the second and

third iteration times (thus eliminating timing variations due to startup transients that occur during

the first iteration). The computation granularity of Water is much smaller than that of LU, so it

provides a more challenging workload for CRL. The results for Water presented in this thesis are for

a problem size of 512 molecules.

3.4 Barnes-Hut

The Barnes application simulates the interaction of a system of bodies (galaxies or particles, for

example) in three dimensions over a number of time-steps, using the Barnes-Hut hierarchical N-body

method. It represents the computational domain as an octree with leaves containing information

on each body, and internal nodes representing space cells. Most of the time is spent in partial

traversals of the octree (one traversal per body) to compute the forces on individual bodies. The

communication patterns are dependent on the particle distribution and are quite unstructured. No

attempt is made at intelligent distribution of body data in main memory, since distribution is difficult

at page granularity and not very important to performance.

As was the case with Water, applications like Barnes-Hut are often run for a large number of

iterations, so the steady-state time per iteration is an appropriate measure of running time. Since the

startup transients in Barnes-Hut persist through the first two iterations, running time is determined

by running the application for four iterations and taking the average of the third and fourth iteration

times.

Barnes-Hut's computation granularity is even more fine-grained than Water's, providing even

more of a challenge for CRL. Moreover, the problem size used for this thesis (16384 bodies) causes

the CRL Unmapped Region Cache to overflow (cache size is 1024 regions for this thesis). The

overflowing cache results in much more communication caused by region flushes and start operation

misses.

Chapter 4

An Implementation of CRL on the

SP/2

The RS/6000 Scalable POWERparallel Systems 2 (SP/2) is IBM's general purpose scalable super-

computer [14]. The SP/2 connects up to 512 RS/6000 processors using IBM's low-latency (39.2

microseconds on a 66MHz processor) and high-bandwidth (35.6 megabytes per second point-to-point

on a 66MHz processor) SP Switch [8].

The SP/2 implementation of CRL (from now on called CRL-SP/2) uses IBM's Message Passing

Library (MPL) [17], which is part of the IBM AIX Parallel Environment [15]. Another message

passing library option available on the SP/2 is the Message Passing Interface (MPI) [31]. However,

the performance of MPL is superior to MPI [8] as can be seen in appendix Section A.1. Thus MPL

is used in lieu of MPI.

The following sections contain a brief description of MPL's functions and some of MPL's short-

comings, a description of the changes made to the assigning of region version numbers, a description

of the SP/2-specific optimizations for the implementation of CRL, and a performance evaluation of

CRL-SP/2.

4.1 The Message Passing Library

To better understand the specifics of CRL-SP/2, one needs to understand the precise semantics of the

key MPL functions used in the implementation. The following subsections contain a short description

of key MPL functions, and then explain how the semantics of those functions did not match with

what was desired.

The Message Passing Library (MPL) is IBM's message passing library for the SP/2. This library

includes functions that support point-to-point communication, creation and modification of task

groups, and collective communication within task groups.

MPI is another message passing library available on the IBM SP/2. However, on the version of

the IBM AIX Parallel Environment available for this research, the MPI library is written using the

MPL library, so the MPL library functions have higher data bandwidth and lower message latency.

On the SP/2 mailing lists, a message was sent indicating that a newer version of the MPL library

and AIX operating system were available and that the combination of both improved the performance

of applications using MPL. Unfortunately, the system used for this research is using AIX version 3.2

and does not have the newer versions installed. It would be interesting to examine the performance of

CRL and the CRL applications on these newer versions and to analyze if the implementation tradeoffs

differ between the older versions and the newer versions.

4.1.1 Overview of MPL Functions

This section contains a brief description of the key MPL functions. For a more in-depth description

of MPL, consult the IBM AIX Parallel Environment Parallel Programming Subroutine Reference

[16]. The key functions are mpc.send, mpc.recv, mpc.rcvncall, mpc.status, and mpc.wait.

int mpc.send(const void *outmsg, size-t msglen, int dest, int type,
int *msgid);

Asynchronous send.
outmsg specifies the output buffer.
msglen specifies the buffer length in bytes.
dest specifies the destination node for the message.
type specifies the application defined type for the message. The type can be used to determ-

ine what to do with the message.
after mpc.send has completed, msgid contains an identifier that can be used to query for the

current status of the send via mpcstatus, or can be used to postpone further execution
until the send has completed via mpc._wait.

int mpcrecv(void *inmsg, size_t msglen, int *source, int *type, int *msgid);
Asynchronous receive for a message matching a particular source and a particular type.
inmsg specifies the input buffer.
msglen specifies the buffer length in bytes.
source specifies which node the message should come from. source may also have the

wildcard value DONTCARE, in which case a message will be accepted from any node. After
the mpc.recv call completes, source will contain the actual sending node identifier.

type specifies which application defined type the incoming message should have. type may
also have the wildcard value DONTCARE, in which case a message of any type will be
accepted. After the mpc.recv call completes, type will contain the actual type of the
message.

after mpc.send has completed, msgid contains an identifier that can be used to query for
the current status of the receive via mpc-status, or can be used to postpone further
execution until the receive has completed via mpcwait.

int mpcrcvncall(void *inmsg, sizet msglen, int *source, int *type,
int *msgid, void (func*)());

Asynchronous receive for a message matching a particular source and a particular type.
When the message has arrived, the specified handler is called.

inmsg specifies the input buffer.
msglen specifies the buffer length in bytes.
source specifies which node the message should come from. source may also have the

wildcard value DONTCARE, in which case a message will be accepted from any node. After
the mpc.recv call completes, source will contain the actual sending node identifier.

type specifies which application defined type the incoming message should have. type may
also have the wildcard value DONTCARE, in which case a message of any type will be
accepted. After the mpc.recv call completes, type will contain the actual type of the
message.

func specifies which function to call after the message has arrived. The function is passed
the message identifier of the message.

after mpc send has completed, msgid contains an identifier that can be used to query for
the current status of the receive via mpc.status, or can be used to postpone further
execution until the receive has completed via mpcwait.

int mpcstatus(int msgid);
Query for message status.
msgid specifies the message for which the query is being performed.
The return code specifies whether the message has been sent/received, or is still pending.

int mpc.wait(int *msgid, size-t *nbytes);
Postpone further execution until message operation is complete.
msgid specifies the message for which the wait is being performed. msgid may also have the

wildcard value DONTCARE, in which case execution is postponed until any asynchronous
message operation completes. After the mpcwait call completes, msgid will contain the
actual message identifier for the message that completed.

after mpcwait has completed, if the message waited upon was a receive, then nbytes con-
tains the number of bytes received in the message.

4.1.2 Shortcomings of MPL

MPL has a few shortcomings that provided obstacles and challenges for the implementation of CRL-

SP/2. This section describes the following three shortcomings and explains what was done to over-

come the shortcomings:

1. When a message arrives and a message handler is called, the message handler's only argument

is a message identifier

2. No polling function exists that both accepts wildcards and is nonblocking

3. Every MPL function is uninterruptible, and thus messages arriving during MPL function calls

get blocked

Argument to Message Handlers

mpc.rcvncall, briefly described in Section 4.1.1, is the only function available for associating a

handler with a particular message type. When a message of the correct type arrives, the handler

executes. The only argument given to the handler is the message identifier of the message. This

message identifier matches the return value of the original mpc.rcvncall function call.

Only having the message identifier makes the job of the message handler more difficult since the

message handler must somehow determine where the message buffer is stored, based solely on the

message identifier. Many message passing systems, including Berkeley's Active Message Library

[37], provide for a user-settable one word argument to the message handler. This one word argument

may not sound like a better idea then the message identifier, but there are a couple of important

differences:

* The message identifier is set by the system, but the one word argument is assigned by the

application

* The message identifier does not provide any direct information about where the message is

stored or what kind of message has arrived. On the other hand, the one word argument can be

used to store the pointer to an application structure containing all the desired information.

A similar problem exists with mpc.recv and mpc.send. When one of those operations is complete

and an mpc-wait is called to wait for the next completed send or receive, only the message identifier

of the completed operation is given to the application.

The solution to this problem is to create a linked list hash table with the message id as the hash,

and a message information structure as an entry. This table contains entries for data sends, data

receives, barrier messages, and reduction messages. Luckily the solution is simple, but unfortunately,

machine cycles need to be used for a table lookup that would not be needed if an extra argument

could be provided to the application when the asynchronous message operation completed.

Polling Function Semantics

MPL does not provide any polling function that is both nonblocking and that accepts wildcards.

Such a polling function is particularly useful when a node is waiting for the next event to occur,

such as when the node is waiting for a response to its request. The functions that are closest to

these semantics in functionality are mpcstatus and mpcwait. The problem with mpc.status is

that a nonwildcard message identifier must be provided, so only a specific message can be checked.

mpc.wait does accept a wildcard as the message identifier, however, mpc.wait blocks and does not

return until a message is complete.

Another shortcoming in the semantics is that if a message is returned as complete by either

mpcstatus or mpcwait, then the handler corresponding to that message is not called. For example,

if a node is waiting for a response, then it will poll with mpc-wait until the response arrives. In the

meantime, if another message arrives, mpcwait will only return the message identifier of the arrived

message and from that identifier, the arrived message's handler must be determined. So a hash table

lookup on the message identifier is performed to determine which message handler to call.

Every MPL function Is Uninterruptible

An interrupt will never be called during the execution of an MPL function. So if a message arrives

during an MPL function call, the message blocks until the MPL function completes. In most cases,

the correctness of the application is not affected by delayed message delivery.

However, there is one case that can cause applications using CRL to hang. If a node calls any

of MPL's synchronization functions, then any requests from remote nodes that arrive during the

function execution are not handled. Since the remote node never gets a response to its request, the

requesting node never reaches the synchronization point.

Instead of using MPL's blocking send and receive functions, the asynchronous send and receive

functions are used, with some added complications as described previously. Also, MPL's synchron-

ization functions are reimplemented to make CRL's synchronization functions interruptible.

4.2 CRL Region Version Numbers

In order to fix a bug and allow CRL-SP/2 to send multiple read-only copies of a region's data, the

situations in which a region's version number is incremented has been changed. The bug occurs when

two particular messages become out-of-order and cause nodes to use old region data. To support

simultaneous data transfers (Section 4.3.3), it is necessary that the transfer arguments sent to each

node, including the region version number, are identical.

4.2.1 MsgRelease Messages

Remote nodes use MsgRelease messages as a response to Read Invalidate messages. MsgRelease

means that the remote node, which had an exclusive modified copy of the data, has kept a read-only

copy of the data for itself and has sent the modified data with the MsgRelease. In the original version

of CRL, the version number of the data at the remote node does not change throughout this process.

One bug, which occurs very rarely, is caused by messages becoming out of order. Suppose that

the remote node sends a MsgFlush right after sending the MsgRelease and that the MsgFlush reaches

the home node before the MsgRelease does. The information contained in that MsgFlush is identical

to a MsgFlush that could have been sent before the Read Invalidate was received by the remote node.

The home node has no way of telling whether the remote node sent the MsgFlush before or after

it received the Read Invalidate.

* If the MsgFlush was sent before the Read Invalidate was received, then the home node will be

able to end the invalidation process and proceed.

* If the MsgFlush was sent after the Read Invalidate was received, then the home node will have

to wait for the MsgRelease, which contains the data. Proceeding before the MsgRelease arrives

may cause stale data to be used.

To fix this bug, a remote node increments its region data version number by one when it sends a

MsgRelease. When a MsgFlush arrives at the home, the home can compare the version stamp on the

MsgFlush with what the home node had assigned earlier to the remote node. If the version numbers

match, then no MsgRelease was sent by the remote node. If the MsgFlush version number is one

greater, then a MsgRelease was sent but has not arrived yet and the home node must wait for the

MsgRelease to arrive.

4.2.2 Multiple Read-Only Copies

In the original CRL implementation, the version number for a particular region is incremented by

one every time a request for a region is handled. This increment policy guarantees that each copy of

the data received by a remote node has a unique region version number, and thus remote nodes can

detect and appropriately handle out-of-order invalidate messages [18].

In CRL-SP/2, a region's version number is not incremented for Shared-Requests handled when

other nodes are already sharing that particular region. It follows that if multiple nodes all have valid

shared copies of a region, then all nodes have the same version number for the region.

The reason for this change is not because of a change in protocol, but because of implementation

details in CRL-SP/2 discussed in Section 4.3.3. Section 5.3.1 contains a discussion on how this

change further assists in the implementation of the Three-Message-Invalidate protocol.

One concern with this change is whether remote nodes are still able to appropriately handle out-

of-order invalidate messages. For a discussion of out-of-order invalidate messages in the original

CRL, consult [18].

It is important that each node identify which invalidates are old and can be ignored, which

invalidates refer to the current version and must be processed, and which invalidates refer to a

requested version that has not arrived yet and must be saved. A brief explanation of how the

identification is performed follows.

If a remote node is currently not making a request on a region, and an invalidate arrives, then

there are two possibilities:

1. The invalidation's version number is less than the region data's version number. In this case,

the invalidate is old and can be ignored.

2. The invalidation's version number is equal to the region data's version number. In this case,

the invalidate pertains to the most recent version of the data owned by the remote node. The

invalidate is handled immediately, unless a region operation on the remote node conflicts with

the invalidation (such as in the case where a read-invalidation arrives during a write operation)

and delays the invalidation until the operation is complete.

Usually, when a node requests a region's data, the version number assigned to the region data is

greater than the version number assigned to any previous copy of the data owned by that node. It

is true except in the case where a node requests a read-only copy, flushes (and thus self-invalidates)

the copy, and then again requests a read-only copy. If no writable copy request arrives at the home

node between these two read requests, then both the data copies may have the same version number.

At first, it seems that the node cannot determine whether the invalidate refers to the first copy

and thus ignore the invalidate, or to the second copy and thus handle the invalidate. However, if the

invalidate refers to the first copy, then the invalidate can only be for a write request (a read request

does not cause invalidates to be sent to read-only copies of the data). Since write requests cause

a region data's version number to increase, the version of the second read-only copy would have to

be greater than that of the first read-only copy. Therefore the invalidate does not refer to the first

read-only copy, and it must refer to the second read-only copy. Of course, the invalidation cannot

refer to a future read-only request since the request has not been made yet.

The other case that needs to be taken care of is when an outstanding request has been sent by

the remote node, but the response has not arrived yet. This situation will be broken up into two

more cases: whether or not the remote node has a valid shared copy of the data when the invalidate

arrives.

First, assume that the remote node does not have a valid copy of the data. If the invalidation

version is less than the most recent data version, then the remote node just ignores the invalidation.

Otherwise, it stores the invalidation and waits for the home node to send its response. On arrival

of the response, the remote node compares the region version number contained in the response,

to the region version number contained in the invalidation. If they are equal, then the invalidation

corresponds to the most recent request and the remote node handles the invalidation after its operation

completes. In this case, a future version number cannot appear since a future request has not been

made.

Next, assume that the remote node does have a valid copy of the data. This case can only occur

if the node sent a request to the home node indicating that it wished to modify the region data.

Again, if the invalidation version is less than the most recent data version, then the remote node just

ignores the invalidation. If the invalidation version is equal to the valid region data version, then the

invalidation must correspond to the current version for two reasons:

1. As shown before, this invalidation message cannot corresponded to a previous copy of the data

2. The invalidation could not have been sent by the home after it sent the response since the

acknowledgment to a write request causes the region data version to increase by one.

If the invalidation version is greater than the valid region data version, then the invalidation must

have been sent by the home node after it had sent the modify acknowledgment. So the invalidation

is saved until after the remote node receives the acknowledgment and completes the operation.

4.3 SP/2 Specific Optimizations

A number of optimizations were added specifically to the SP/2 communication section of CRL:

* Nonurgent messages, which reduce the overhead of synchronization operations and decrease the

overall running time

* Two message data transfer, which half the number of messages required to transfer data and

reduce the overhead of transferring data

* Simultaneous data transfers of a region, which allow simultaneous data sends to occur and

reduce the response time for data requests

Some of these optimizations may also be implementable on other platforms, but because the under-

lying communication and synchronization for each platform is different and is specialized in CRL,

these were solely implemented for the SP/2 implementation. The following sections describe the

SP/2 specific optimizations in detail.

4.3.1 Nonurgent Messages

Some messages in CRL may not be crucial to the performance in the sense that they need not be

handled immediately in all situations. For example, when a node reaches a barrier, it sends "reached

barrier" messages. If the node receiving the message has not reached the barrier yet, then the

immediate handling of that message is not necessary. The message can instead be handled when the

receiving node reaches the barrier, or when the receiving node is polling for some other message.

Actually, if interrupts caused by message arrivals have a particularly expensive overhead, such

as 130 microseconds on the IBM SP/2, then it is highly desirable that nonurgent messages do not

interrupt the processor. The effect of this optimization is that nodes spend less time processing

interrupts and thus the overall running time is reduced.

In CRL-SP/2, handlers are not setup with mpc.xcvncall for any synchronization operations. In-

stead, receive buffers for synchronization operations are setup with mpcr.ecv to prevent an interrupt

from occurring when synchronization messages arrive. This change results in significant decreases

in execution time. In particular, the execution time of the water application (38] decreases by 15%.

4.3.2 Two Message Data Transfer

Because of the SP/2's very expensive interrupt overhead (130 microseconds) and high message latency

(55 microseconds), each message involved in data transfers dramatically increases the response time

for the data request. It was of utmost importance to reduce the total number of messages required

to send data from one node to another, thus reducing the overall running time.

When data needs to be transferred from one node to another, some sort of handshake protocol

may be needed. On the MIT Alewife machine [1], it is possible to write directly to an address on a

remote node using Alewife's builtin data transfer functions.

However on the SP/2, there is no such mechanism. The only way to transfer data is by using

message passing. The normal mechanism for transferring data, and the original CRL's handshake

protocol for transferring data from the home node to the remote node involved four messages (see

Figure 4-1):

time
8

Remote

Home

Figure 4-1: Messages sent in the original (4 message) data transfer protocol.

1. Request (such as Shared Request or Exclusive Request) from remote node to home node for

data.

2. A Ready-To-Send message from the home node to the remote node containing response type

and region version number information.

3. A Begin-Transfer message from the remote node to the home node containing information about

which virtual path to use to send the data. For example, on the CM-5 and TCP, the virtual

path is the port number, and on the SP/2, it is the message type.

4. The Data-Transfer from the home node to the remote node.

This protocol is not just limited to cases where the remote node requests data from the home node.

It is also used when the home node sends an invalidate message to a remote node, and the remote

node needs to send data back to the home node. For flushes, only three messages are needed since

the Ready-To-Send message is implied by the original Flush message from the remote node.

The key insight to this optimization is that before the requesting node sends a request, it can

determine whether it will receive data or not with the home node's response. If the requesting node

is going to receive data, then the node performs the necessary setup operations for its own side before

sending the request. Then as part of the initial request message, the requesting node sends the virtual

path information, and one of the messages has been removed.

In order to remove another message, it is necessary to combine the Ready-To-Send message and

the Data-Transfer message. The method for implementing this combination message depends on how

data transfer is performed on the architecture platform. On the SP/2, the only way to transfer

messages is via a general mechanism that accepts any size buffer.

Thus the protocol in CRL-SP/2 only involves two messages (see Figure 4-2):

time

Remote

Home

Figure 4-2: Messages sent in the optimized (2 message) data transfer protocol.

1. Request (such as Shared Request or Exclusive Request) from remote node to home node for

data. Message includes information regarding the virtual path that the data should take.

2. Response (such as Shared Acknowledge Data or Exclusive Acknowledge Data) from home node

to remote node with data.

This protocol works particularly well on the SP/2 since the virtual path information does not

have to be sent with the request. Instead, message types are used to set the virtual data paths. For

example, the message type of a message containing data for region number 1054 is 1054. On the

requesting side, a handler and buffer is setup for message type 1054, and the message is handled

appropriately.

On a benchmark where a region's data was ping-ponging among nodes, this optimization doubled

the throughput of the number of operations.

This optimization is not fundamentally specific to the SP/2, but the need to improve the data

transfer rate in the other implementations was not as necessary for reasonable performance.

4.3.3 Simultaneous Data Transfers of a Region

If multiple nodes request a read-only copy of a region's data, it is desirable that all of the data

transfers occur simultaneously to all of the requesting nodes. Simultaneous transfers will reduce the

latency of data requests.

As described in Section 4.3.2, when data is sent, the message arguments corresponding to the

data are sent with the data. Unfortunately, this combining causes problems when multiple data sends

of the same region occur simultaneously. This situation may occur, for example, if the home node

receives multiple Shared-Requests, and then sends data to satisfy the requests.

The problem is that the metadata portion of the region's data, which contains the arguments for

the data send, cannot be overwritten with the second send's arguments until the first send completes.

Two easy solutions to this problem are to wait until the first send completes before proceeding

with the second send, or to copy the data into a temporary buffer before sending it. Of course, both

of these methods are undesirable as they significantly increase the amount of time to respond to a

request.

Fortunately, the only time data sends need to occur simultaneously is when multiple remote nodes

request a read-only copy of the region data. The arguments contained in the response message are

"Shared Acknowledge with Data", the version number, and the actual data. Because of the change

in how version numbers are incremented, all of these arguments are identical for the simultaneous

data transfers.

4.4 CRL-SP/2 Performance

This section displays the results of numerous CRL experiments performed on the IBM SP/2. In

addition, the section contains an analysis of why the applications perform as poorly as they do on the

SP/2. First, measurements are performed on the MPL round trip operations, and on MPL events

and base operations. Next, the base CRL operations are examined. Finally, execution times of the

applications described in Chapter 3 are measured.

The SP/2 experimental platform was a twelve-node machine using IBM AIX version 3.2. Each

processing node was a Model 590 RS/6000 processor, which is a wide node running at 66MHz. Two

of the twelve nodes were reserved for development, so timing measurements could only be performed

on ten of the nodes. All tests were executed with interrupts on (via setting the MP.CSSINTERRUPT

environment variable to yes). The communication switch was used in dedicated (user space) mode,

which is the quicker of the SP/2's two communication modes.

Round-trip time with
receiver using: psec

mpcwait 124
mpc.status 251

mpc.rcvncall 255

Table 4.1: Time to perform MPL round trip operations. For each measurement, the receiver of the
first message uses a different method to receive the message.

Each application was executed four times and the execution time presented is an average of those

four runs. Sometimes one of the four execution times was more than 10% off of the other three

times. In those cases, the experiment was run once more to get a time closer to the other three. One

explanation for variances in execution time is that the tests were run on an AIX system, where other

processes were also running on the system. When measurements were taken, other user processes

were not executing, but system processes may have been active.

4.4.1 MPL Round Trip Operations, Events and Base Operations

To understand why CRL's operations perform as they do, it is necessary to examine the primitive or

base MPL operations and see how they perform. Micro-benchmarks were written and executed on

the SP/2. The results appear in Tables 4.1 and 4.2.

Table 4.1 deserves a bit of explanation. Suppose there are two nodes: a requesting node which

sends a request, and a responding node which responds to that request and sends a response to the

requesting node. In every test, the requesting node sends a request and waits for a response. The

responding node has three methods by which it may receive the request: mpc-wait, mpc.status, and

mpcrcvncall, all of which are described in Section 4.1.1.

In the mpc-wait case, the responding node calls mpc-wait and waits for a message to arrive. In

CRL-SP/2, a node uses mpc-wait only when it is waiting for a response to its request. mpc.status is

used by continuously checking to see if a particular message has arrived. This method is not used

to receive messages in CRL-SP/2 because it has a much higher overhead than the mpc.wait method,

and CRL never needs to check if a particular message has arrived. In the final case, the responding

node calls mpc rcvncall and then enters a busy loop. When a message arrives, an interrupt occurs

and a message handler is called. CRL nodes use this method to receive requests when they are not

waiting for their own responses.

The mpcwait test also measures the smallest possible round-trip time using MPL. So the base

application-space to application-space latency of a message is roughly 60 microseconds.

As can be seen from the times indicated in the table, the round-trip time to send a request and

get a response is greatly affected by what the responding node is doing when the request arrives.

event/operation I psec
mpciwait call 7.4

mpcstatus call 11.6
mpc_send call 20.5
mpc.recv call 39.3

mpc-rcvncall call 41.3
disable/enable
interrupts pair 3.16

interrupt overhead 131

Table 4.2: Time to perform base MPL events.

Event 16-byte region 512-byte region 16384-byte region
cycles]jsec pisec Asec

Start read hit 76 1.15 1.15 1.15
End read 84 1.27 1.30 1.29
Start read miss, no invalidations 9563 145 180 748
Start write miss, one invalidation 17681 268 305 879
Start write miss, six invalidations 64878 983 1019 1671

Table 4.3: Measured CRL latencies when all nodes are polling (in microseconds). This table is a
partial list. The complete table is in Table A.6.

In Section 4.4.3 the effect of interrupt processing overhead on application execution time will be

examined.

The time to perform the base MPL events is in Table 4.2. These measurements will be used in

the next section to make sure that the base CRL operation times are close to what is expected.

4.4.2 Base CRL Operations

This section examines the time to perform the base CRL operations on CRL-SP/2 by breaking up the

operations into their component MPL operations. Two sets of measurements were taken. In the first,

every node is polling while messages are arriving, so there is no interrupt overhead on any message.

In the second, no node is polling while messages are arriving, so there is an interrupt overhead on

every message. The idea is to get a best case and worst case scenario.

Table 4.3 contains several measurements obtained while the nodes are polling, meaning that none

of the CRL messages cause interrupts upon arrival. Each node is polling at a barrier. Table A.6

contains a complete set of the measurements.

The "Start read hit" entry measures the amount of time it takes to start a read operation when

the node has a valid cached copy, and the "End read" measures the amount of time to end the read

operation. As is to be expected, if the node already has a valid copy of the data, the amount of time

to start a read is independent of the region size. Both of these operations are relatively inexpensive

when compared to the read and write operations performed when there is no valid cached copy (i.e.

a miss), so they will not be examined any further.

When a node begins a read operation on a noncached region, it

1. Sets up an asynchronous receive (via mpc.recv) for the data.

2. Sends a message to the home node.

3. Waits for a response.

When the home node receives a read request and it has valid data, it

1. Examines a list for duplicate requesters.

2. Sends the data to the requesting node.

3. Inserts information about the requester into a list.

Therefore, the time for the "Start read miss" is the mpc.rcvncall setup time plus the round-trip

time for an mpc.vait. This sum results in a total of 165 psec, which is approximately the measured

amount of 145 psec.

When a node begins a write operation on a noncached region, it performs the same operations.

However, the home node now needs to send invalidate messages to any nodes that have valid cached

copies, and then needs to wait for invalidate acknowledgments before sending the data to the request-

ing node.

1. Examine a list for duplicate requesters.

2. Send invalidates to nodes with valid cached copies.

3. Wait for all invalidate acknowledgments.

4. Send the data to the requesting node.

5. Insert information about the requester into a list.

In practice, the home node does not block while waiting for invalidates. Normally, after sending the

invalidates, the home node will continue with its own computation. When an invalidate acknowledg-

ment arrives, the region's metadata is updated. When all of the invalidate acknowledgments have

arrived, the data is sent to the requesting node.

The latency time for the "Start write miss, one invalidation" should therefore be about one

mpc.Jait roundtrip (124 psec) more than the time for the "Start read miss", which is the case.

The arithmetic gets a little more complicated when six invalidations must be performed. Since

all of the invalidates are sent before any waiting is done for the invalidate acknowledgments, it seems

that some of the roundtrips would overlap and thus the overhead would be less than six times the

mpc.wait roundtrip time. However, there does not appear to be any savings for sending multiple

invalidations.

Event 16-byte region 512-byte region 16384-byte region
cycles Atsec pjsec gsec

Start read hit 78 1.18 1.09 1.10
End read 81 1.22 1.22 1.26
Start read miss, no invalidations 21945 333 357 896
Start write miss, one invalidation 55546 842 858 1401
Start write miss, six invalidations 72369 1097 1097 1646

Table 4.4: Measured CRL latencies when no node is polling (in microseconds). This table is a partial
list. The complete table is in Table A.7.

When sending data, the time difference among the columns is roughly constant, i.e. column 2

- column 1 = 36 psec, column 3 - column 1 = 620 jpsec. That roughly comes out to a bandwidth

of 13.8 MB/sec when sending 512 bytes, and 26.4 MB/sec when sending 16 kbytes. The reason for

greater bandwidth as more data is sent is that there is an initial startup overhead to send the data.

As the amount of data gets larger, this overhead becomes less significant to the overall cost of the

operation. As more data is sent in the message, a limit of 35.6 MB is approached.

The previous measurements are set so that all of the nodes are polling and the arrival of messages

do not cause an interrupt. However, in applications, nodes are normally performing some computa-

tion when messages arrive, and so an interrupt occurs. Table 4.4 contains measurements obtained

while the nodes are busy looping and thus not polling. The operations in this table are identical to

those in Table 4.3. A complete set of nonpolling measurements appears in Table A.7.

As expected, the time for "Start/End read hit" operations does not change with what remote

nodes are doing since there is no communication during these operations.

The "Start read miss, no invalidations" operation has become much more expensive because of the

interrupt processing overhead. The expected time for the operation is roughly an mpc.rcvncall setup

time and an mpcrcvncall roundtrip call plus some miscellaneous overhead, which totals 296 psec,

without the search overhead. This sum is close to the 333 psec measured.

The "Start write miss, one invalidation" operation is also much more expensive than it was in

Table 4.3 (about 575 psec more). Now this operation includes the overhead of three interrupts, which

accounts for 393 psec.

Surprisingly, the "Start write miss, six invalidations" is only 110 psec more expensive than it

was in Table 4.3. Here the invalidate round-trip messages are overlapping in time. The total time

should be approximately two round-trip mpcrcvncalls plus five interrupts, which totals to 1165

psec, which is close to the measured 1097 psec.

4.4.3 Application Performance

This section examines the execution time and speedup with the various applications described in

Chapter 3. Some analysis is performed to get an idea of why the application execution times are

Table 4.5: Measured application execution time using CRL-SP/2 (in seconds).

Table 4.6: Calculated application speedup using CRL-SP/2 (with 1 processor as the base execution
time).

what they are. Table 4.5 contains the execution time of the applications, running on 1, 2, 4, and 8

processors. Table 4.6 contains the speedup calculations for those measurements. The speedups are

calculated with respect to the one processor execution time.

The application speedups displayed in Table 4.6 are not even near the ideal of speedup equal

to the number of processors. Much of the problem is with the overhead of MPL function calls

and interrupts. Appendix Section A.3.1 has tables containing CRL and MPL event counts for each

application.

Even though TSP and Blocked LU speedups are not near perfect, their speedup values are still

respectable considering the high communication latency and interrupt costs of the SP/2. The reason

why Water and Barnes-Hut do not perform as well can be seen in Table 4.7. The "computation

time" is taken as the time for the 1 processor version divided by 8, giving the ideal running time for

8 processors if no messages are sent. Tables A.10 through A.13 contain the event count information.

Looking at one of the entries in Table 4.7 does not give conclusive evidence of communication

overhead being the problem, however, by looking at all three expensive events and their respective

rate of occurrences in all four applications results in a high degree of confidence. For example, the

number of interrupts handled per computation second of Barnes-Hut is 4748. So 4748 * 130ps =

Blocked LU Water Barnes-Hut TSP
(1000, 20) (512 molecules) (16384 bodies) (14 cities)

protocol messages 1019 7156 8908 1090
start operation misses 1034 2212 5715 273
interrupts handled 937 1150 4748 544

Table 4.7: The number of expensive CRL/MPL events per computation second using CRL-SP/2 on
8 processors.

Blocked LU Water Barnes-Hut TSP
(1000, 20) (512 molecules) (16384 bodies) (14 cities)

sec sec sec sec
1 proc 10.0 2.60 38.0 54.0
2 procs 6.28 1.84 51.5 54.0
4 procs 3.84 1.28 36.1 24.5
8 procs 2.53 0.94 22.2 14.2

617ms or approximately 60% of the time is spent in the operating system as interrupt overhead. It is

clear that Barnes-Hut is not performing well because its sharing pattern is too fine grained. Water

also has a large number of protocol messages, but does not cause nearly as many interrupts, which

is why its speedup is better than Barnes-Hut's.

Both TSP and Blocked LU have a similar amount of overhead, but Blocked LU's is slightly

better. Examining both applications and the types of messages sent during execution reveals why

the difference occurs. In TSP, almost all of the communication involves starting a write operation

on a shared counter. Moreover, this shared counter is never at the home node and exactly one

invalidation must be sent by the home node to handle the request. In Blocked LU, each message

is either a map or read request that the home node responds to without sending any invalidations.

So these requests have a lower response latency, and also the data for the responses may be sent in

parallel since multiple nodes are allowed to read simultaneously.

The application speedups presented in this section are not very impressive, but the next two

chapters describe two enhancements that improve the speedups by reducing communication among

the CRL nodes.

Chapter 5

Three-Message-Invalidation Protocol

As indicated previously, the primary reason for poor application performance on CRL-SP/2 is the

high overhead in the message passing functions and interrupt hlandling routines. The Three-Message-

Invalidation protocol attempts to reduce the number of messages sent to perform a CRL operation,

and thus decrease the overall running time of the application.

The Three-Message-Invalidation protocol is not a novel protocol. It has been implemented in

other DSM systems as well. Other implementations will be discussed further in the Related Work

chapter (Chapter 7).

The following sections describe the Three-Message-Invalidation protocol, explain why this pro-

tocol decreases application running time, describes the protocol implementation in CRL, and com-

pares application performance using the Three-Message-Invalidate protocol versus using the original

CRL-SP/2.

5.1 Protocol Description

In a system where a region has a home node, the most stra

operation request/acknowledgment pair that involves an inval

of the following four messages, as shown in Figure 5-1:

1. Start Operation Request from the requesting node to tl

2. Invalidation Request from the home node to the owner

3. Invalidation Acknowledgment from the owner node to t

4. Start Operation Acknowledgment from the home node

Of course, if multiple owners exist for a region, such a&

readers of the region, then additional invalidation request a:

ghtforward implementation of a start

dation of remote region copies consists

e home node.

lode.

le home node.

o the requesting node.

in the case of multiple simultaneous

Id acknowledgment pairs (messages 2

time

Requester

Home

Owner

Figure 5-1: Messages sent in the original (4 message) invalidation protocol.

and 3 in Figure 5-1) are involved in the process. Handling multiple simultaneous readers is a trivial

extension, and all the benefits obtained from the single remote owner case also hold for the multiple

remote owner case.

In this protocol, the latency from when the start operation request is sent to when the start

operation acknowledgment is received is four messages.

The messages sent in a Three-Message-Invalidation appear in Figure 5-2 and are listed below:

1. Start Operation Request from the requesting node to the home node.

2. Invalidation Request from the home node to the owner node.

3. Invalidation Acknowledgment from the owner node to the requesting node.

The primary difference is that the owner node sends the invalidation acknowledgment directly to the

requesting node, rather than to the home node.

For an in-depth explanation of the implementation of the Three-Message-Invalidation coherence

protocol, including state diagrams and pseudocode, please turn to Appendix Chapter B.

time

Requester

Home

Owner

0

Figure 5-2: Messages sent in the optimized (3 message) invalidation protocol.

5.2 Why the Protocol Decreases Execution Time

At first, since three messages are sent instead of the previous four messages, it seems that the message

latency will decrease from four messages to three messages, and thus this optimization will provide a

25% performance improvement. However, there are reasons why a greater performance improvement

may occur.

One reason is that the three message invalidation wins when transferring ownership of large

regions of data. Only one data transfer is in the critical path, whereas the four message version has

two data transfers: the data must first be sent by the current owner to the home node and then

forwarded by the home node to the requesting node.

Another reason is that if interrupts are used to signal the receiving of a message when a node is

not waiting for a message, then reducing messages sent to nodes not expecting a message can result

in significant performance improvement. In the common case, the number of interrupts is reduced

from three to two. For example, during a request operation where the region is owned by a third

node, the home node is just forwarding the invalidate and acknowledgment messages and, in general,

the thread of computation on the home node is busy. When the request arrives at the home node, the

processor has to interrupt the computation thread and pay some overhead. As measured in Section

4.4.1, the overhead incurred on the SP/2 is approximately 130 psec. When the Write-Invalidate

sent by the home node arrives at the remote node that owns a copy of the region, again it is most

likely that the thread on that node is busy and a second interrupt is incurred. In the four message

invalidate, the response to the invalidate message, which is sent back to the home node, causes another

interrupt. However, this is the interrupt that does not occur in the Three-Message-Invalidation. The

final message, which is a message to the requesting node. is the message that the requesting node will

be expecting, and moreover, the requesting node will not be performing any computation since the

node will be blocked on the operation that caused the initial request to be sent. On many machines,

such as the CM-5 and SP/2, the implementation of blocking the node can be to turn off interrupts

and poll for messages. Then when the message arrives, a much smaller overhead is incurred.

The improvements described above deal with the case where only one remote node needs to

receive an invalidation message. However, if many nodes are sharing a readable copy, then it may

be necessary for the home node to send an invalidation message to each of these sharing nodes, and

then for each sharing node to respond to the home node, which would most likely be performing

some computation as each message arrives. So as more nodes are sharing the region, the greater the

improvement in response time for the initial request.

Even if interrupts are turned off, and only polling is used to receive messages, the Three-Message-

Invalidation prevents a possible delay at the home node. For example, when the invalidate acknow-

ledgment message arrives at the home node, it will have to wait for the home node to poll the network

interface before it is handled. Again, the response time has a greater improvement if more nodes

need to be sent an invalidation message, however, the improvement will not be as dramatic as that

for interrupt-based message delivery.

Of course, the message latency, which is about 60ps on the SP/2 as measured in Section 4.4.1, is

also saved by not having to wait for an extra message.

Theoretically, it seems that this new protocol would always be superior to the original protocol.

However, there are some applications, such as Blocked LU, and Barnes-Hut that rarely take advant-

age of the Three-Message-Invalidation. Such applications may suffer a slight increase in execution

time (1%) since these applications will still need to pay overhead for updating the Three-Message-

Invalidation data structures when messages are sent.

5.3 Protocol Implementation in CRL

This section discusses several specific changes to CRL-SP/2 to create the Three-Message-Invalidate

protocol. First, the method used to transfer version information will be discussed. Next, an explan-

ation of how the Three-Message-Invalidation protocol completes is given. Then the method used to

handle flushes sent during a Three-Message-Invalidation will be discussed.

5.3.1 Transferring Version Information

As seen in Section 5.1, a region's home node does not respond directly to operation requests during

a Three-Message-Invalidation. Instead, it responds indirectly via other remote nodes, so the home

node also sends region information (such as the version number) via this indirect path.

For portability, especially with Active-Messages [37], each protocol message is limited to a size

of five words. Three words are needed to specify the remote message handler, the region, and the

message type (such as Shared Request). The remaining two words are used as arguments for the

message type's handler. When an invalidation message is sent, the two argument words are the

invalidation version number and the node to which the invalidation acknowledgment should be sent,

leaving no room for the requesting node's assigned region version number.

Because of the version number change described in Section 4.2, every node receiving an invalidate

message can calculate the version number for the requesting node. When a node receives an invalidate

message, it therefore can send the requesting node's assigned region version number without receiving

that version number from the home node.

5.3.2 Three-Message-Invalidation Completion

In the original invalidation protocol, while an invalidation is in progress, the home node queues all

requests for the region until all invalidation acknowledgments have arrived. In the Three-Message-

Invalidation protocol, if a request asks for write access and in alidates are sent, then the home node

does not receive any invalidation acknowledgments. So as far as the home node is concerned, the

whole Write Request process is over after sending all of the invalidations. If a request asks for read

access, then the home still receives a message from the current region data owner because the current

region data owner will send the data to both the requesting node and the home node. Thus, a Read

Request is still over after the home node receives a message from the current owner.

One concern is that before the requesting node receives a response from the current owner(s),

the home node may receive another request and send an invalidation to the previous requester. This

case is handled without any extra coding though, since this case is identical to what would happen

with out-of-order acknowledgment/invalidate messages in the original CRL protocol [18].

5.3.3 Handling Flushes

If a flush arrives at a home node during a Three-Message-Invalidation, it is possible that the remote

node sent the flush before receiving the invalidate message. In this case, an invalidate acknowledgment

must be sent to the requesting node on behalf of the flushing node. According to the previous section,

it is possible for multiple Three-Message-Invalidations to occur on the same region. Somehow the

home node needs to match the flush message with the corresponding Three-Message-Invalidation and

send the invalidate acknowledgment to the appropriate requester.

This problem is solved with a requesting structure list. When a write request arrives, the home

node first sends out the write invalidate message(s), and then stores information about the requester

into a data structure, which is then put into a list. When a flush arrives, the list is searched for the

structure corresponding to the flush's version number and an invalidate acknowledgment is then sent

to the correct requesting node on behalf of the flushing node.

5.4 Performance Results

This section compares the execution time of the sample applications running with the Three-Message-

Invalidation to CRL-SP/2 without the Three-Message-Invalidation protocol. First, the results of

a benchmark are provided. Next, the time for base CRL operations using the Three-Message-

Invalidation are compared with those using CRL-SP/2 without the Three-Message-Invalidation pro-

tocol. Then the application results with an analysis are given.

5.4.1 Three-Message-Invalidation Benchmark

The idea of the Three-Message-Invalidation benchmark is to determine the maximum amount of

execution time improvement obtainable by an application. The benchmark that is perfect for this

optimization is one where many nodes are each taking turns writing to a large region. This benchmark

requires the large region to ping-pong among the nodes, making the data transfer the bottleneck.

The benchmark is run with a region of size 65536 bytes and node 0 is the home node for this region.

Nodes 1 to 7 are each in a loop that writes to the region and then performs a computation not related

to the region. The average time for a write operation to start and complete is measured on each of

the nodes. The time using CRL-SP/2 is 32.1ms while the time using the Three-Message-Invalidate

is 16.2ms, resulting in an overall execution time savings of nearly 50%.

5.4.2 Base CRL Operations

A partial set of results for the CRL operations appear in Table 5.1 and Table 5.2. The complete

results are in Tables A.8 and A.9, respectively.

When nodes are polling, the latency from CRL-SP/2 without Three-Message-Invalidation de-

creases by as much as 40%. When nodes are busy doing some computation and interrupts must be

used for message delivery, the latency decreases by as much as 30%. The primary reasons for execu-

tion time savings when the home node must send invalidations is that in Three-Message-Invalidations,

the data is sent at most once per request, fewer messages are sent, and fewer interrupts are caused

when nodes are busy.

Table 5.1: Measured CRL latencies when all nodes are
partial list. The complete table is in Table A.8.

polling (in microseconds). This table is a

Event 16-byte region 512-byte region 16384-byte region
cycles psec psec jsec

Start read hit 71 1.08 107 1.08
End read 84 1.27 1.23 1.19
Start read miss, no invalidations 22136 335 363 847
Start write miss, one invalidation 39402 597 626 1166
Start write miss, six invalidations 66211 1003 1027 1393

Table 5.2: Measured CRL latencies when no node is polling (in microseconds). This table is a partial
list. The complete table is in Table A.9.

5.4.3 Application Performance

This section examines the execution time and speedup of the various applications described in Chapter

3 using the Three-Message-Invalidate protocol. In addition, an execution time comparison is done

with the results obtained using CRL-SP/2 without the Three-Message-Invalidation protocol. Table

5.3 contains the execution time of the applications, running on 1, 2, 4, and 8 processors. Table 5.4

contains the speedup calculations for those measurements. The speedups are calculated with respect

to the one processor execution time for CRL-SP/2 without the Three-Message-Invalidation protocol.

The Three-Message-Invalidation execution times of both Blocked LU and Barnes-Hut are almost

identical to those for CRL-SP/2 without the Three-Message-InValidation protocol. The reason can

be seen in the CRL and MPL event Tables A.15 and A.14, respectively.

Blocked LU does not take any advantage of Three-Message-Invalidation. In this application, the

prominent region access pattern is for the home node to write to the region, and then for other nodes

to read from that region. Thus the Blocked LU times are not changed significantly.

Table 5.3: Measured application execution time using Three-Message-Invalidation (in seconds).

Event 16-byte region 512-byte region 16384-byte region
cycles psec psec Itsec

Start read hit 72 1.09 1.07 1.04
End read 87 1.32 1.24 1.36
Start read miss, no invalidations 9913 150 182 745
Start write miss, one invalidation 13860 210 239 833
Start write miss, six invalidations 40201 609 635 985

Blocked LU Water Barnes-Hut TSP
(1000, 20) (512 molecules) (16384 bodies) (14 cities)

sec sec sec sec
1 proc 10.0 2.58 40.0 54.0
2 procs 6.31 1.84 50.2 54.0
4 procs 3.87 1.23 36.3 20.8
8 procs 2.55 0.88 22.1 9.53

Table 5.4: Calculated application speedup using Three-Message-Invalidation (with 1 processor CRL-
SP/2 as the base execution time).

The Barnes-Hut times did not change because it only uses Three-Message-Invalidation to a small

extent. On 4 processors, only 0.9% of all start operation misses use the Three-Message-Invalidation.

On 8 processors, Three-Message-Invalidation is used in only 2.8% of all start operation misses. Thus

start operations involving invalidations are not the bottleneck for Barnes-Hut.

Water uses Three-Message-Invalidation to a larger extent and thus decreases its 8 processor

running time by 6.4%. When using 4 processors, it uses Three-Message-Invalidation in 25% of start

operation misses, and when using 8 processors, Three-Message-Invalidation is used 35% of the time

(see Table A.17).

TSP has the largest running time improvement because it uses Three-Message-Invalidation almost

100% of the time (see Table A.16). Its 4 processor running time decreases by over 15%, and its 8

processor running time decreases by over 30%. TSP has a counter that is used as an index into

a job queue. A node increments the counter every time it takes a job from the job queue. The

ping-ponging of this counter is the bottleneck for TSP, and Three-Message-Invalidation is able to

reduce the invalidation latency.

Chapter 6

Floating-Home-Node Protocol

Many times, it is possible for an application programmer to determine which static set of nodes will

access a particular region. In this case, the programmer can choose a particular node as the home

node. However, in other cases, the set of nodes accessing a region changes in time, or it is not

possible to determine the set before execution. In these cases a Floating-Home-Node protocol can

be used to change the location of a region's home node.

The following sections explain why the Floating-Home-Node protocol decreases application run-

ning time, describe the protocol implementation in CRL, and compare application performance using

the Floating-Home-Node protocol versus using the Three-Message-Invalidation protocol (since the

Floating-Home-Node protocol changes were made using Three-Message-Invalidation as a base).

6.1 Why the Protocol Decreases Execution Time

In CRL, the home node of a region is the node that provides read/write access for that region. For

example, if a node does not have valid data for a particular region, the node sends a request to

the home node for the data. Also, the home node is responsible for sending out invalidations when

necessary. Thus the home node also needs to keep track of which other nodes have valid copies of

the data.

If only one particular node is accessing the data, then the choice of the home node is not important,

since after the first access, the data will be located on the accessing node. This case happens

infrequently though, since if only one node is accessing the data, then the region does not even have

to be allocated as shared.

However, if multiple nodes are reading and writing to a region, then the home node choice can

have a great effect on the performance of the system, and thus is extremely important. For instance,

if two nodes, 0 and 1, are reading and writing to a region, and neither is the home node, then a write

request from node 0 when node 1 had a modified copy would generate the following messages:

1. Node 0 == Home node, requesting exclusive access

2. Home node =, Node 1, requesting that an invalidate acknowledgment with data be sent to node

0

3. Node 1 = Node 0, acknowledging Node O's access request and allowing Node 0 to continue.

If Node 0 were the home node, then the following messages would be sent:

1. Node 0 = Node 1, requesting that an invalidate acknowledgment with data be sent to node 0

2. Node 1 = Node 0, acknowledging Node O's access request and allowing Node 0 to continue.

This change in the home node reduces the number of messages by a factor of 3. Moreover, it is

very likely that in the first case, the home node is performing some other computation and is not

expecting the message. In a polling system, processing of the request message would be delayed until

the home node polled. If the system was using interrupts, then the additional message would result

in wasted CPU time for processing the interrupt (which takes 130 microseconds on our SP/2). In

addition, it is clear that if Node 1 were the home node, then the same benefits would be achieved.

The original version of CRL defined a region's home node as the node where the region is first

created via rgn-create. In some cases, the access pattern for a region may be obvious and clear from

an application's code, and the home node can be chosen statically and independent of the application's

input.

However, sometimes the access pattern depends on the application's input. For example, the

distribution for a matrix multiplication would depend on the size of the matrices, and the number of

processors involved in the computation. Still, in many of these cases it is possible to determine an

expression that calculates the best home node for a region. The region can then be assigned to that

node at program initialization.

But there are also many applications for which better performance can be achieved. For instance,

in parallel FASTLINK [11], many iterations of a function evaluation are performed. During a single

execution, sometimes all of the nodes are working toward computing an iteration, and other times the

nodes are split into two groups that are each computing an iteration. When all nodes are working

together, it may make sense to assign a region to a particular home node. However, when the nodes

are split up into two groups, a different home node may be appropriate. In this case, the application

would benefit from a Floating-Home-Node protocol.

6.2 Protocol Implementation in CRL

This section talks about several specific changes made to the Three-Message-Invalidation code to

create the Floating-Home-Node protocol. First the messages involved in the protocol are shown.

Then the method for handling simultaneous Become-Home requests is explained. Finally, an upper

bound on the number of extra messages sent because a region's home node changes is calculated.

6.3 Messages in Floating-Home-Node Protocol

This section shows which messages are sent in the Floating-Home-Node protocol. First, to become

the home node for a region, a node calls rgn.becomehome. The messages sent during a Become-Home

request are very similar to the ones sent during a Write request, as displayed in Figure 6-1:

1. Requester sends Become-Home request to Original Home

2. Original Home node forwards request to Real Home

3. Real Home sends Write Invalidate(s) with New-Home-Information to nodes with a valid data

copy. Also, the Real Home node forwards any queued requests to the Requester.

4. nodes with a valid copy send Invalidate Acknowledgments to the Requester

5. Requester sends Become-Home-Done to Original Home

6. Original Home sends Become-Home-Done to Real Home.

The two new messages in this protocol are Become-Home-Done and New-Home-Information.

(There is also a Negative Acknowledgment message, but that will be discussed in Section 6.3.1.)

The Become-Home-Done message is used to indicate that the Become-Home request is complete and

data-structure cleanup can be done on the Original Home node and on the previous Home node.

New-Home-Information is used to transmit information about the new home node, including the

node number and address of the region on the new home node. During the Become-Home request,

this message is combined with a Write-Invalidate to update the information on all of the nodes that

currently own a valid copy of the data.

Also, when a previous home node receives a request, the request is forwarded to the Original

Home node, which then reforwards it to the Real Home node. When the Real Home node receives

such a forwarded message, it sends a New-Home-Information message to the requesting node.

For an in-depth explanation of the implementation of the Floating-Home-Node coherence protocol,

including state diagrams and pseudocode, please turn to Appendix Chapter C.

6.3.1 Simultaneous Become-Home Requests

When a Become-Home request arrives at the Original Home and begins, no other Become-Home

request on the same region can begin until the previous one has completed. If a Become-Home

request does arrive when another one is in progress, there are two ways to handle the second request.

time -10
Requester

Original Home

Real Home

Remote

Figure 6-1: Messages sent during a become home request.

The first is to queue the request, and the second is to send a Negative-Acknowledgment message

back to the second requester.

The second option was chosen for several reasons. First, the first option would further complicate

the region data structures since a queue would need to be added to the Original Home node for every

region. Second, the common case for Become-Home requests is that they occur rarely. An application

should not be changing the home node after every operation. In fact, a Negative-Acknowledgment

was never sent for the Barnes-Hut application evaluated for this protocol (see Table A.18). Third, by

sending a Negative-Acknowledgment back to the requester, the requester may decided not to become

the home node, as part of a heuristic.

6.3.2 Number of Forwarded Messages

One concern about moving a home node is that many requests may need to be forwarded from

previous home nodes to the new home node, increasing the latency for a response. There is actually

an upper bound of one forwarded request per node per Become-Home request. The reason a particular

node will not have two requests forwarded is that the first forwarded request will cause New-Home-

Information to be sent to the node, and the second request will go to the correct home node.

Also, if a node does not have any information regarding the region, then the node does not have

any messages forwarded. When this node calls rgnmap to get region information from the original

home node and maps the region, the original home node responds with information about the real

home node. So when this node sends a request, the request automatically goes to the real home node

and the message does not need to be forwarded.

6.4 Performance Results

This section compares the execution time of Barnes-Hut running with the Floating-Home-Node pro-

tocol to that running with just the Three-Message-Invalidation protocol. First, the results of a bench-

mark are provided. Next, the execution times of the base CRL operations are briefly discussed. Then

the Barnes-Hut results with an analysis are given.

6.4.1 Floating-Home-Node Benchmark

The Floating-Home-Node benchmark is similar to the one used in Section 5.4.1 for Three-Message-

Invalidation. A region also is being written to by a group of nodes. However, for this benchmark,

the region has a size of 4 bytes, only 2 nodes are writing to the region, and a rgnflush is performed

after every write operation. At the beginning of the benchmark, the region is created on Node 0, and

then Node 1 calls rgn-becomehome on the region.

This new benchmark is run on both CRL-SP/2 with the Three-Message-Invalidation protocol

and CRL-SP/2 with the Floating-Home-Node protocol. When running with the Three-Message-

Invalidation protocol, the rgnbecome-home call becomes a null call. The average time for a write

operation to start and complete is measured on each of the nodes. The time using Three-Message-

Invalidation is 1.41ms while the time using the Floating-Home-Node is 0.82ms, resulting in an overall

execution time savings of nearly 42%.

Table 6.1: Comparison of measured Barnes-Hut execution times for each CRL-SP/2 version (in
seconds).

6.4.2 Base CRL Operations

The base CRL operations are measured exactly like they were for CRL-SP/2 and for CRL-SP/2 with

the Three-Message-Invalidation protocol. All of the operation times are within 2% of the correspond-

ing Three-Message-Invalidation times in Section 5.4.2.

6.4.3 Barnes-Hut Performance

This section focuses on the performance of Barnes-Hut using the Floating-Home-Node protocol.

Other applications are not discussed here since they were not modified to use the rgn.become.home

call. Blocked LU and TSP are unlikely to benefit by any modifications since the initial placement of

regions is the best possible. Water may benefit by modifications, but because of time constraints, the

application is not examined thoroughly enough for regions that could benefit by the rgn.become.home

call. The execution times of all applications other than Barnes-Hut are remeasured with the Floating-

Home-Node protocol, and each time changes by at most 2% of its Three-Message-Invalidation meas-

urement.

Barnes-Hut was modified by changing the home node for some of the bodies in the simulation. In

the original Barnes-Hut, after each body's physical location in the simulation is updated, the bodies

are repartitioned among the nodes. As a high-level explanation to the algorithm, the bodies are

ordered linearly according to some algorithm involving their respective 3-dimensional positions in

the system. Then the linear list of bodies is partitioned into n lists of consecutive bodies such that

each partition involves roughly the same amount of "work", as measured in the program. After the

repartitioning, the modified Barnes-Hut calls rgn.become.home on every body-region assigned to it.

Table 6.1 contains the execution times for Barnes-Hut, running on 1, 2, 4, and 8 processors for

each type of CRL library running on the SP/2. Table 6.2 contains the speedup calculations for those

measurements. The speedups were calculated with respect to the one processor execution time for

the original CRL-SP/2.

As stated in Section 5.4.3, the Three-Message-Invalidation Barnes-Hut running times are close to

Barnes-Hut (16384 bodies)
Original Three-Message- Floating-

CRL-SP/2 Invalidate Home-Node
sec sec sec

1 proc 38.0 40.0 42.5
2 procs 51.5 50.2 20.3
4 procs 36.1 36.3 14.6
8 procs 22.2 22.1 9.68

Table 6.2: Comparison of calculated Barnes-Hut speedups for each CRL-SP/2 version (with 1 pro-
cessor CRL-SP/2 as the base execution time).

the original CRL-SP/2 Barnes-Hut running times. However there is over a factor of two improvement

from Three- Message-Invalidation to Floating-Home-Node.

The event counts for Barnes-Hut with Three-Message-Invalidation appear in Table A.14 and

those for Barnes-Hut with Floating-Home-Node appear in Table A.18. For a given problem size, the

total number of rgn.map, rgnstart_read, and rgn.start-write calls, summed up over every node, is

the same (actually within 1% because of some constant overhead). What the Floating-Home-Node

allows the application programmer to do is significantly decrease the number of operation misses,

which cause messages to be sent to other nodes.

One concern is that perhaps the regions are changing their respective home nodes on every

iteration of the simulation. However, examination of the event count tables shows otherwise. For

example, on the 8 processor execution, each processor has roughly 2048 bodies in its partition, yet

fewer than 20 rgn-become-home calls on these regions results in a new home for a region (i.e., the

other 2028 regions already have the current node as their home). Thus there is good body locality

in Barnes-Hut that can and is being exploited.

The good locality is one of the primary reasons for why misses are so low. Another reason is that

previously, most of the regions used by the nodes were remote and all of these regions would not fit

in CRL's region cache, which is set to 1024 regions for these experiments. When the cache becomes

full, flushes of regions in the cache are performed in order to make space for other regions. There are

two pieces of evidence that the cache elements were being flushed. First, the number of rgnflush calls

dropped dramatically from the Three-Message-Invalidation measurement to the Floating-Home-Node

measurement, indicating that the cache was not filling up nearly as much (note that the only time

Barnes-Hut flushes is when the cache is full). Second, the number of Three-Message-Invalidation

opportunities is much lower than the operation misses in Barnes-Hut, meaning that most of the

misses involve regions that the home node has a valid copy of. Since the home node has the only

valid copy, the node modifying the region is not able to keep the region in its cache.

One interesting comparison is the execution time of the 1 processor simulation (42.5 sec) to that

of the 2 processor simulation (20.3 sec). Here it seems that there is a speedup greater than two,

which should not be possible. In the two processor simulation, the number of operations performed

Barnes-Hut (16384 bodies)
Original Three-Message- Floating-

CRL-SP/2 Invalidate Home-Node
sec sec sec

1 proc 1.00 0.95 0.89
2 procs 0.74 0.76 1.87
4 procs 1.05 1.05 2.69
8 procs 1.71 1.72 3.93

by each node is half the number that is performed in the one processor simulation, as can be seen in

Table A.18. However, four times as many lookup iterations (45 million) into the region hash table

are performed in the one processor version because almost twice as many regions exist in its region

hash table. The lookups may be the reason why the one processor execution time is more than twice

that of the two processor execution time.

From the measurements performed, it is clear that the Floating-Home-Node protocol has the

ability to improve the execution time of some applications.

Chapter 7

Related Work

As described in Section 1.2, much research has been performed in the area of Distributed Shared

Memory. This section focuses on those research projects that have similarities with topics in this

thesis.

TreadMarks [22] is a mostly-software DSM system available on many standard UNIX operating

systems including SunOS, Ultrix, and AIX. This DSM is mostly-software (instead of all-software)

because although it is written at user-level and does not require any operating system modifications,

it does require some virtual memory support from the operating system. A version of TreadMarks

does exist for the IBM SP/2. However, performance measurements for that version could not be

found and thus a direct comparison could not be made between it and CRL-SP/2.

TreadMarks uses a three message protocol for obtaining locks. A Three-Message-Invalidation

and Floating-Home-Node protocol is not useful for data in TreadMarks because in TreadMarks,

data does not have a home node. The home node is not required since the data consistency model

in TreadMarks is release consistency, a weaker consistency model than sequential consistency that

allows multiple readers and writers. Instead, data is updated by examining processor time stamps

at each synchronization point and then sending out data requests when a processor accesses data

modified by other processors.

TreadMarks uses release consistency in order to reduce the number of messages sent in the

system. This goal was the same reason why the Three-Message-Invalidation and Floating-Home-

Node protocols were examined in this thesis.

Beng-Hong Lim also ported CRL to the IBM SP/2. However, instead of using MPL for com-

munication, he used an Active Message library written for the IBM SP/2 (SP-2 AM) [7, 6] which

bypassed MPL and is layered directly on top of the SP/2's network adapter. His measurements,

reported in a person communication, were the same or slightly better than the ones obtained in this

thesis. There are two reasons why Lim's results were better. First, SP-2 AM did not support inter-

rupt driven message delivery, and polling had to be used. The cost of handling an interrupt (130ps)

was much greater than the cost of an unsuccessful Active Message poll (1.3ps). Second, SP-2 AM

reduced the latency of small messages by 40%.

The Stanford DASH machine [25, 26] is a shared-memory multiprocessor with hardware cache

coherence. The coherence protocol has an optimization identical to the Three-Message-Invalidation

called Request Forwarding. This optimization forwards remote requests from the home cluster to

a third cluster that currently caches the requested memory block. The third cluster then responds

directly to the requesting cluster. It was determined that Request Forwarding could reduced the

average cache miss latency by 12% for real applications on their hardware platform. This thesis

showed that Three-Message-Invalidation could also significantly reduce cache miss latencies and

overall application execution time in an all-software DSM system.

The Stanford FLASH multiprocessor [24] was created after the Stanford DASH machine. [24]

states that the main difference between DASH's and FLASH's protocols is that in DASH each cluster

collects its own invalidation acknowledgments, whereas in FLASH invalidation acknowledgments are

collected at the home node, that is, the node where the directory data is stored for that block. It

seems that for some reason, the Request Forwarding has been removed, but unfortunately, no reason

is given for the removal in the paper.

With respect to application specific optimizations, FLASH has a programmable protocol processor

for each node in the system. Thus, the Three-Message-Invalidate and the Floating-Home-Node pro-

tocol should be relatively easily implementable on FLASH.

Falsafi et al. [9] describes some application specific protocol optimizations that can be imple-

mented on Blizzard to improve application performance. Barnes-Hut is the only application that is

examined in both this thesis and [9]. None of the optimizations mentioned in their research are sim-

ilar to the Three-Message-Invalidation or the Floating-Home-Node protocol. These two optimizations

complement the work done by Falsafi et al.

Much research has been done in Cache-Only Memory Architectures (COMA) [23, 12, 34, 35].

In COMAs, each processor contains a portion of the address space, however, the partition is not

fixed. Instead, the address space of a processor is like another level of cache. So COMA is similar

to the Floating-Home-Node idea that data is not bound to any particular processing node. Data in

COMA machines do not have home nodes. Thus a particular processing node is never responsible

for keeping a particular data item coherent. In reality, some COMA machines do have home nodes

for data items, but these nodes are only responsible for keeping a valid copy of the data if no other

node has a valid copy in its cache.

The Kendall Square Research KSR1 system [23, 34] is an example of a COMA machine. The

KSR1 processors are grouped into a hierarchy. 32 processing nodes are grouped together into a ring

called Ring:O. 32 Ring:Os grouped together make a Ring:1, and 32 Ring:1s grouped together make a

Ring:2. Instead of sending a request directly to a particular node, requesters broadcast the request

on their local Ring:O. If the request cannot be satisfied by any of these nodes, then the request is

broadcasted on Ring:1. If the request cannot be satisfied by any of these nodes, then the request

is broadcast on Ring:2, where the request must be satisfied since some node in the system must

have valid data to satisfy the request. Because nodes with valid copies of data respond directly to

requests, a Three-Message-Invalidation protocol is not useful in COMA architectures.

Chapter 8

Conclusion

This thesis discussed the design, implementation, and evaluation of a C Region Library port to the

IBM SP/2. In addition, it discussed the design, implementation, and evaluation of two optimizations

to the original CRL protocol, a Three-Message-Invalidation protocol, and a Floating-Home-Node

protocol.

The IBM SP/2 was the platform used for this thesis. The interrupt overhead and message latency

on the SP/2 were very large at 130ps, and 60ps, respectively. The cost of these two message passing

operation components on the SP/2 resulted in less than ideal speedup for the applications tested.

Speedups on 8 processors ranged from 1.71 for Barnes-Hut to 3.95 for Blocked LU.

The Three-Message-Invalidate protocol helps those applications that have a large number of in-

validate messages sent out to remote nodes in order to satisfy another remote node's request. This

is done by reducing the number of messages required for a one-node invalidation from four messages

to three messages. Improvements ranged from no improvement to a 30% reduction in applica-

tion running time on 8 processors. Specifically, Blocked LU, which does not use invalidations, and

Barnes-Hut, which uses invalidations for fewer than 3% of all requests, did not improve at all.

Water-Nsquared, which uses invalidations for 35% of all requests, had a 6% reduction in running

time. Finally, TSP, which uses invalidations almost 100% of the time, had a 30% reduction in running

time.

The Floating-Home-Node protocol provides the ability to move a region's home node to another

node, i.e. it provides the ability to change the node responsible for maintaining the coherency of

the region's data. The Floating-Home-Node protocol was shown to be very effective when used on

appropriate regions. It is best used by regions that are accessed by a set of nodes, where the set

changes during the execution of the application. Barnes-Hut took advantage of this protocol to reduce

its 8 processor running time by 56%. Specifically, the protocol was used to change the home node

for a simulation body whenever the responsibility for calculating that body's attributes was assigned

to another node.

Appendix A

Raw Experimental Data

This chapter contains the raw data used in the analysis in Chapters 4, 5, and 6. The sections compare

MPL and MPI on the IBM SP/2, display CRL operation latencies, and display CRL and MPL event

counts for each application.

A.1 IBM Message Passing Library (MPL) versus Message

Passing Interface (MPI)

This table was obtained from [8] and compares the performance of MPL and MPI.

Notes:

1. Exchange bandwidth is defined as a simultaneous send and receive data exchange between

nodes.

2. Megabytes are defined as 10**6 bytes.

Table A. 1: Switch performance using MPL (user space, application space to application space)

Node Type Latency Pt to Pt BW Exchange BW
66 MHz "Thin Node" 40.0 Microseconds 35.4 MB/Sec. 41.2 MB/Sec.

66 MHz "Thin Node 2" 39.0 Microseconds 35.7 MB/Sec. 48.3 MB/Sec.
66 MHz "Wide Node" 39.2 Microseconds 35.6 MB/Sec. 48.3 MB/Sec.

Node Type Latency Pt to Pt BW Exchange BW
66 MHz "Thin Node" 312.1 Microseconds 9.9 MB/Sec. 12.9 MB/Sec.

66 MHz "Thin Node 2" 270.4 Microseconds 12.0 MB/Sec. 15.8 MB/Sec.
66 MHz "Wide Node" 268.8 Microseconds 12.1 MB/Sec. 15.6 MB/Sec.

Table A.2: Switch performance using MPL (udp/IP, application space to application space)

Node Type Latency Pt to Pt BW Exchange BW
66 MHz "Wide Node" less than 45 greater than 35 MB/Sec. greater than 47 MB/Sec

Microseconds

Table A.3: Preliminary switch performance using MPI (user space, application space to application
space)

Node Type Latency Pt to Pt BW Exchange BW
66 MHz "Wide Node" less than 300 greater than 12 MB/Sec. greater than 16 MB/Sec.

Microseconds

Table A.4: Preliminary switch performance using MPI (udp/IP, application space to application
space)

A.2 CRL Operation Latencies

Kirk Johnson wrote a simple microbenchmark to measure the cost of various CRL events. A de-

scription of the microbenchmark from [18] follows:

64 regions are allocated on a selected home node. Situations corresponding to desired events

(e.g., a start write on a remote node that requires other remote read copies to be invalidated) are

constructed mechanically for some subset of the regions; the time it takes for yet another processor

to execute a simple loop calling the relevant CRL function for each of these regions is then measured.

The time for the event in question is then computed by repeating this process for all numbers of

regions between one and 64 and then computing the linear regression of the number of regions

against measured times; the slope thus obtained is taken to be the time per event.

Table A.5 (taken directly from [18]) describes the 26 different types of events measured by the

microbenchmark. This microbenchmark is executed twice, once with nonrequesting nodes polling

for messages, and once with nonrequesting nodes not polling for messages. The difference is that

in the second case, the arrival of messages causes an interrupt with an overhead of approximately

130,ps. Table A.6 contains the CRL-SP/2 latencies when the nonrequesting nodes are polling for

messages. Table A.7 contains the CRL-SP/2 latencies when the nonrequesting nodes are not polling

for messages. Table A.8 contains the Three-Message-Invalidation latencies when the nonrequesting

nodes are polling for messages. Table A.9 contains the Three-Message-Invalidation latencies when

the nonrequesting nodes are not polling for messages.

Event Description

Map miss Map a region that is not already mapped locally and not present in the URC
Map hit [a] Map a region that is not already mapped locally but is present in the URC
Map hit [b] Map a region that is already mapped locally
Unmap [c] Unmap a region that is mapped more than once locally
Unmap [d] Unmap a region that is only mapped once locally (and insert it into the URC)

Start read miss, 0 copies Initiate a read operation on a region in the Remoteinvalid state, only the home
node has a valid (exclusive) copy of the region data

Start read miss, 1 copies As above, but both the home node and one other remote region have valid
(shared) copies of the region data

Start read miss, 2 copies As above, but both the home node and two other remote regions have valid
(shared) copies of the region data

Start read miss, 3 copies As above, but both the home node and three other remote regions have valid
(shared) copies of the region data

Start read miss, 4 copies As above, but both the home node and four other remote regions have valid
(shared) copies of the region data

Start read miss, 5 copies As above, but both the home node and five other remote regions have valid
(shared) copies of the region data

Start read miss, 6 copies As above, but both the home node and six other remote regions have valid
(shared) copies of the region data

Start read hit [e] Initiate a read operation on a region in the RemoteShared state
Start read hit [f] Initiate a read operation on a region in the RemoteSharedRip state
End read [g] Terminate a read operation, leaving the region in the RemoteSharedRip state
End read [h] Terminate a read operation, leaving the region in the RemoteShared state

Start write miss, 0 inv Initiate a write operation on a region in the Remoteinvalid state, only the home
node has a valid (exclusive) copy of the region data

Start write miss, 1 inv As above, but both the home node and one other remote region have valid
(shared) copies of the region data

Start write miss, 2 inv As above, but both the home node and two other remote regions have valid
(shared) copies of the region data

Start write miss, 3 inv As above, but both the home node and three other remote regions have valid
(shared) copies of the region data

Start write miss, 4 inv As above, but both the home node and four other remote regions have valid
(shared) copies of the region data

Start write miss, 5 inv As above, but both the home node and five other remote regions have valid
(shared) copies of the region data

Start write miss, 6 inv As above, but both the home node and six other remote regions have valid
(shared) copies of the region data

Start write modify Initiate a write operation on a region in the RemoteShared state, no other remote
nodes have a valid copy of the region data

Start write hit Initiate a write operation on a region in the RemoteModified state
End write Terminate a write operation, leaving the region in the RemoteModified state

Table A.5: Events measured by latency microbenchmark.

Region Size (bytes)
16 512 16384

Event cycles [psec Issec jAsec
Map miss 10263 156 157 164
Map hit [a] 68 1.03 0.91 1.06
Map hit [b] 45 0.68 0.63 0.69
Unmap [c] 12 0.19 0.29 0.25
Unmap [d] 40 0.61 0.65 0.64
Start read miss, 0 copies 9563 145 180 748
Start read miss, 1 copies 9583 145 179 744
Start read miss, 2 copies 9629 146 182 749
Start read miss, 3 copies 9775 148 182 777
Start read miss, 4 copies 9629 146 180 750
Start read miss, 5 copies 9643 146 182 806
Start read miss, 6 copies 9616 146 181 842
Start read hit [e] 76 1.15 1.15 1.15
Start read hit [f] 80 1.21 1.17 1.21
End read [g] 86 1.30 1.25 1.28
End read [h] 84 1.26 1.30 1.29
Start write miss, 0 inv 9478 144 179 749
Start write miss, 1 inv 17681 268 305 879
Start write miss, 2 inv 28783 436 458 1023
Start write miss, 3 inv 37970 575 612 1196
Start write miss, 4 inv 49500 750 790 1335
Start write miss, 5 inv 58364 884 913 1525
Start write miss, 6 inv 64878 983 1019 1671
Start write modify 9471 144 145 142
Start write hit 81 1.22 1.22 1.07
End write 83 1.25 1.24 1.11

Table A.6: CRL-SP/2 latencies with nodes polling

Region Size (bytes)
16 512 16384

Event cycles jssec jtsec Assec
Map miss 20618 312 306 313
Map hit [a] 62 0.93 0.95 0.95
Map hit [b] 43 0.66 0.70 0.68
Unmap [c] 17 0.25 0.23 0.28
Unmap [d] 41 0.63 0.63 0.65
Start read miss, 0 copies 21945 333 357 896
Start read miss, 1 copies 22242 337 361 900
Start read miss, 2 copies 22328 338 359 904
Start read miss, 3 copies 22202 336 358 905
Start read miss, 4 copies 22169 336 360 902
Start read miss, 5 copies 22163 336 362 907
Start read miss, 6 copies 22189 336 360 903
Start read hit [e] 78 1.18 1.09 1.10
Start read hit [f] 71 1.07 1.07 1.11
End read [g] 77 1.17 1.16 1.20
End read [h] 81 1.22 1.22 1.26
Start write miss, 0 inv 22024 334 359 900
Start write miss, 1 inv 55546 842 858 1401
Start write miss, 2 inv 58483 886 902 1441
Start write miss, 3 inv 61552 933 942 1487
Start write miss, 4 inv 64449 977 990 1531
Start write miss, 5 inv 67848 1028 1042 1587
Start write miss, 6 inv 72369 1097 1097 1646
Start write modify 21648 328 324 327
Start write hit 71 1.08 1.08 1.09
End write 79 1.20 1.16 1.24

Table A.7: CRL-SP/2 latencies with nodes not polling

Region Size (bytes)
16 512 16384

Event cycles CIsec /ssec psec
Map miss 10256 155 155 159
Map hit [a] 61 0.92 0.87 0.93
Map hit [b] 44 0.66 0.65 0.63
Unmap [c] 17 0.27 0.31 0.24
Unmap [d] 43 0.66 0.65 0.69
Start read miss, 0 copies 9913 150 182 745
Start read miss, 1 copies 9689 147 183 741
Start read miss, 2 copies 9808 149 182 747
Start read miss, 3 copies 9847 149 182 775
Start read miss, 4 copies 9728 147 184 750
Start read miss, 5 copies 9788 148 184 798
Start read miss, 6 copies 9847 149 182 836
Start read hit [e] 72 1.09 1.07 1.04
Start read hit [f] 82 1.24 1.20 1.08
End read [g] 82 1.24 1.26 1.17
End read [h] 87 1.32 1.24 1.36
Start write miss, 0 inv 9689 147 182 748
Start write miss, 1 inv 13860 210 239 833
Start write miss, 2 inv 20665 313 296 834
Start write miss, 3 inv 27337 414 476 891
Start write miss, 4 inv 32248 489 542 922
Start write miss, 5 inv 36135 548 592 952
Start write miss, 6 inv 40201 609 635 985
Start write modify 9821 149 150 149
Start write hit 71 1.07 1.21 1.04
End write 80 1.21 1.23 1.15

Table A.8: Three-Message-Invalidation latencies with nodes polling

Region Size (bytes)
16 512 16384

Event cycles jisec Itsec Ctsec
Map miss 20368 309 307 314
Map hit [a] 63 0.95 0.93 0.96
Map hit [b] 45 0.68 0.69 0.70
Unmap [c] 16 0.24 0.26 0.28
Unmap [d] 41 0.62 0.65 0.64
Start read miss, 0 copies 22136 335 363 847
Start read miss, 1 copies 22645 343 366 901
Start read miss, 2 copies 22493 341 366 903
Start read miss, 3 copies 22526 341 370 903
Start read miss, 4 copies 22255 337 366 902
Start read miss, 5 copies 22506 341 366 903
Start read miss, 6 copies 22447 340 366 904
Start read hit [e] 71 1.08 1.07 1.08
Start read hit [f] 73 1.10 1.09 1.09
End read [g] 78 1.18 1.16 1.18
End read [h] 84 1.27 1.23 1.19
Start write miss, 0 inv 22143 336 366 901
Start write miss, 1 inv 39402 597 626 1166
Start write miss, 2 inv 44068 668 702 1209
Start write miss, 3 inv 52034 788 795 1264
Start write miss, 4 inv 58047 880 876 1317
Start write miss, 5 inv 62746 951 945 1353
Start write miss, 6 inv 66211 1003 1027 1393
Start write modify 21965 333 325 329
Start write hit 73 1.11 1.13 1.09
End write 76 1.15 1.16 1.18

Table A.9: Three-Message-Invalidation latencies with nodes not polling

A.3 CRL and MPL Event Counts

This section contains the raw data obtained with an instrumented version of the CRL library created

by Kirk Johnson.

The following, with parts taken from [18], explains the contents of each table:

The first section of the table indicates how many times rgnmap was called and, of those calls, how

many (1) referenced remote regions and (2) were misses. The second section of the table indicates

how many times rgn.start read was called and, of those calls, how many (1) reference remote

regions, (2) were misses, and (3) were invoked on a region in either the Homelip or HomelipSpecial

state. The third section of the table indicates how many times rgn.startwrite was called and,

like the previous section, provides further information about how many of the calls referenced remote

regions, could not be satisfied locally (missed), or were invoked on a home region in an 'lip' state.

The fourth section of the table indicates how many times rgn_flush was called, and how many times

rgn_becomehome was called, if applicable.

The fifth section of the table shows counts for the MsgRgnlnfoReq and MsgRgnlnfoAck messages

required when calls to rgn map cannot be satisfied locally. The sixth section of the table shows the

total number of protocol messages and, of those messages, how many were placed in the incoming

message queue upon arriving at their intended destination. The seventh section of the table provides

counts for protocol messages. The eighth section of the table shows the total number of region table

lookups performed, and how many iterations of the search loop were performed. The ninth section

of the table provides counts for the MPL functions. Finally, the tenth section of the table provides

counts for interrupt events, and Three-Message-Invalidate opportunities, if applicable.

The following sections contain tables for application execution on CRL-SP/2, Three-Message-

Invalidation, and Floating-Home-Node.

A.3.1 CRL-SP/2 Application Events

This section contains CRL and MPL event counts for each application running on CRL-SP/2. Table

A.10 contains the counts for Barnes-Hut. Table A.11 contains the counts for Blocked LU. Table A.12

contains the counts for TSP. Table A.13 contains the counts for Water.

Event 1 proc 2 procs 4 procs 8 procs
Map 4744745 2372382 1186207 593118

(remote) 0 694469 663045 412968
(miss) 0 23141 20355 12536

(unmap) 4744745 2372382 1186207 593118
Start read 4650895 2325457 1162745 581388

(remote) 0 679903 652153 406534
(miss) 0 14793 14230 9072
(block) 0 0 7 12
(end) 4650895 2325457 1162745 581388

Start write 128276 64165 66238 72846

(remote) 0 18711 48290 65138
(miss) 0 12476 9402 5539
(block) 0 0 1 0

(end) 128276 64165 66238 72846
Flush 0 23141 20355 12536
MsgRgnlnfoReq 0 23141 20355 12536

(ack) 0 23141 20355 12536
total protocol msgs 0 77614 67814 42316
(queued) 0 4194 3560 2053

MsgSharedReq 0 14754 14151 9017
MsgSharedAckData 0 14754 14151 9017
MsgExclusiveReq 0 8426 6331 3719
MsgExclusiveAckData 0 8426 6331 3719
MsgModifyReq 0 3985 2992 1773
MsgModifyAck 0 3984 2990 1771
MsgModifyAckData 0 1 2 3
MsgRinvalidate 0 39 179 268
MsgWinvalidate 0 65 203 292
MsglnvalidateAck 0 66 195 274
MsglnvalidateAckData 0 40 190 289
MsgRelease 0 0 0 0
MsgFlush 0 10705 10970 6977
MsgFlushData 0 12371 9133 5201
Region table lookup 4744745 2395604 1206929 606205
(iters) 22628546 5218946 1738467 633974
mpc-send 0 136350 117780 72733
mpc.recv 0 84 126 147
mpc.rcvncall 0 136268 117657 72589
mpc.status 0 145116 123909 76108
mpc._ait 0 127596 111669 69378
mpclockrnc 186 247256 214983 131864
interrupt handler 0 48425 39022 22554

Table A.10: CRL and MPL event counts for Barnes-Hut on CRL-SP/2; all values are per-processor
averages computed over four consecutive runs.

Event 1 proc 2 procs 4 procs 8 procs
Map 84576 42314 21489 10770
(remote) 0 10288 5476 4044
(miss) 0 638 650 656
(unmap) 84576 42314 21489 10770
Start read 41701 20876 10757 5392

(remote) 0 10288 5463 4025
(miss) 0 638 638 637
(block) 0 0 0 0
(end) 41701 20876 10757 5392
Start write 42925 21463 10731 5366
(remote) 0 0 0 0
(miss) 0 0 0 0
(block) 0 0 0 0
(end) 42925 21463 10731 5366
Flush 0 0 0 0
MsgRgnlnfoReq 0 638 650 656
(ack) 0 638 650 656

total protocol msgs 0 1275 1275 1274
(queued) 0 12 10 5

MsgSharedReq 0 638 638 637
MsgSharedAckData 0 638 638 637
MsgExclusiveReq 0 0 0 0
MsgExclusiveAckData 0 0 0 0
MsgModifyReq 0 0 0 0
MsgModifyAck 0 0 0 0
MsgModifyAckData 0 0 0 0
MsgRinvalidate 0 0 0 0
MsgWlnvalidate 0 0 0 0
MsglnvalidateAck 0 0 0 0
MsglnvalidateAckData 0 0 0 0
MsgRelease 0 0 0 0
MsgFlush 0 0 0 0
MsgFlushData 0 0 0 0
Region table lookup 84576 42950 22139 11425
(iters) 84576 49877 26391 10968
mpc.send 0 2844 3016 3100
mpc.recv 0 297 446 520
mpc-rcvncall 0 2550 2575 2586
mpc.status 0 2702 2802 2851
mpc.wait 0 3009 3264 3389
mpc.lockrnc 630 4479 4525 4534
interrupt handler 0 1272 1196 1172

Table A.11: CRL and MPL event counts for Blocked LU on CRL-SP/2; all values are per-processor
averages computed over four consecutive runs.

Event 1 proc 2 procs 4 procs 8 procs
Map 0 0 0 0
(remote) 0 0 0 0
(miss) 0 0 0 0
(unmap) 0 0 0 0

Start read 34323 10865615 1710160 376379
(remote) 0 23545 17504 14923
(miss) 0 3 7 9
(block) 0 0 0 0
(end) 34323 10865615 1710160 376379

Start write 17180 8590 4297 2150
(remote) 0 8589 4296 2150
(miss) 0 3 3387 1833
(block) 0 0 0 0
(end) 17180 8590 4297 2150
Flush 0 0 0 0
MsgRgnlnfoReq 0 0 0 0
(ack) 0 0 0 0

total protocol msgs 0 11 13564 7355
(queued) 0 2 3401 1843

MsgSharedReq 0 3 7 8
MsgSharedAckData 0 3 7 8
MsgExclusiveReq 0 2 3386 1832
MsgExclusiveAckData 0 2 3386 1832
MsgModifyReq 0 1 1 1
MsgModifyAck 0 1 1 0
MsgModifyAckData 0 0 0 0
MsgRinvalidate 0 1 2 1
MsgWInvalidate 0 1 3387 1835
MsglnvalidateAck 0 1 3 5
MsglnvalidateAckData 0 1 3386 1832
MsgRelease 0 0 0 0
MsgFlush 0 0 0 0
MsgFlushData 0 0 0 0
Region table lookup 0 1 3389 1837
(iters) 0 1 3389 1837
mpc-send 0 153 13777 7604
mpc.recv 0 145 218 254
mpc.rcvncall 0 11 13564 7355
mpc.status 0 87 17062 9330
mpc.wait 0 243 10526 5928
mpclockrnc 326 343 12124 6428
interrupt handler 0 5 6777 3673

Table A.12: CRL and MPL event counts for TSP on CRL-SP/2: all values are per-processor averages
computed over four consecutive runs.

Event 1 proc 2 procs 4 procs 8 procs
Map 0 0 0 0
(remote) 0 0 0 0
(miss) 0 0 0 0
(unmap) 0 0 0 0

Start read 263682 131842 65922 32962
(remote) 0 32769 24578 14338
(miss) 0 383 387 341
(block) 0 0 0 0
(end) 263682 131842 65922 32962

Start write 5640 3078 1669 965
(remote) 0 258 259 260
(miss) 0 637 482 379
(block) 0 0 0 1
(end) 5640 3078 1669 965
Flush 0 0 0 0
MsgRgnlnfoReq 0 0 0 0
(ack) 0 0 0 0

total protocol msgs 0 2040 2367 2326
(queued) 0 75 45 26

MsgSharedReq 0 381 385 340
MsgSharedAckData 0 381 385 340
MsgExclusiveReq 0 2 155 223
MsgExclusiveAckData 0 2 155 223
MsgModifyReq 0 256 103 35
MsgModifyAck 0 256 103 35
MsgModifyAckData 0 0 0 1
MsgRInvalidate 0 3 66 36
MsgWlnvalidate 0 380 475 529
MsglnvalidateAck 0 125 283 307
MsglnvalidateAckData 0 257 258 259
MsgRelease 0 0 0 0
MsgFlush 0 0 0 0
MsgFlushData 0 0 0 0
Region table lookup 0 382 540 564
(iters) 0 385 540 564
mpc.send 0 2117 2483 2462
mpcxrecv 0 79 119 138
mpc.rcvncall 0 2040 2367 2326
mpc.status 0 2081 2456 2443
mpc.zait 0 2165 2527 2501
mpc.lockrnc 176 2362 1982 1666
interrupt handler 0 510 448 375

Table A.13: CRL and MPL event counts for Water on CRL-SP/2; all values are per-processor
averages computed over four consecutive runs.

A.3.2 Three-Message-Invalidation Application Events

This section contains CRL and MPL event counts for each application running on Three-Message-

Invalidation. Table A.14 contains the counts for Barnes-Hut. Table A.15 contains the counts for

Blocked LU. Table A.16 contains the counts for TSP. Table A.17 contains the counts for Water.

Event 1 proc 2 procs 4 procs 8 procs
Map 4744745 2372382 1186207 593118

(remote) 0 694499 663189 412959
(miss) 0 23134 20341 12520

(unmap) 4744745 2372382 1186207 593118
Start read 4650895 2325457 1162745 581388

(remote) 0 679925 652297 406525
(miss) 0 14789 14213 9052
(block) 0 0 4 6
(end) 4650895 2325457 1162745 581388

Start write 128276 64138 65323 72754

(remote) 0 18692 47374 65042
(miss) 0 12449 9401 5538
(block) 0 0 0 0
(end) 128276 64138 65323 72754
Flush 0 23134 20341 12520
MsgRgnlnfoReq 0 23134 20341 12520

(ack) 0 23134 20341 12520
total protocol msgs 0 77568 67642 42045
(queued) 0 3913 3429 1987

MsgSharedReq 0 14746 14133 8995
MsgSharedAckData 0 14746 14037 8786
MsgExclusiveReq 0 8426 6331 3719
MsgExclusiveAckData 0 8426 6296 3655
MsgModifyReq 0 3986 2990 1770
MsgModifyAck 0 3985 2914 1640
MsgModifyAckData 0 1 1 0
MsgRinvalidate 0 43 176 267
MsgWInvalidate 0 37 201 288
MsglnvalidateAck 0 37 164 216
MsglnvalidateAckData 0 43 313 553
MsgRelease 0 0 0 0
MsgFlush 0 10725 10955 6961
MsgFlushData 0 12369 9134 5199
Region table lookup 4744745 2395577 1206909 606184
(iters) 22628546 5218660 1737465 634110

mpc.send 0 136288 117581 72429
mpc.recv 0 84 126 147
mpc.rcvncall 0 136206 117457 72284
mpc.status 0 145359 123797 75852
mpc.wait 0 127229 111382 69025
mpclockrnc 186 246629 214637 131605
interrupt handler 0 48482 38929 22553
three message inv 0 0 207 402

Table A.14: CRL and MPL event counts for Barnes-Hut on Three- Message-Invalidation; all values
are per-processor averages computed over four consecutive runs.

Event 1 proc 2 procs 4 procs 8 procs
Map 84576 42314 21489 10770
(remote) 0 10288 5476 4044
(miss) 0 638 650 656
(unmap) 84576 42314 21489 10770

Start read 41701 20876 10757 5392
(remote) 0 10288 5463 4025
(miss) 0 638 638 637
(block) 0 0 0 0
(end) 41701 20876 10757 5392

Start write 42925 21463 10731 5366
(remote) 0 0 0 0
(miss) 0 0 0 0
(block) 0 0 0 0
(end) 42925 21463 10731 5366
Flush 0 0 0 0
MsgRgnlnfoReq 0 638 650 656
(ack) 0 638 650 656
total protocol msgs 0 1275 1275 1274
(queued) 0 12 18 7
MsgSharedReq 0 638 638 637
MsgSharedAckData 0 638 638 637
MsgExclusiveReq 0 0 0 0
MsgExclusiveAckData 0 0 0 0
MsgModifyReq 0 0 0 0
MsgModifyAck 0 0 0 0
MsgModifyAckData 0 0 0 0
MsgRInvalidate 0 0 0 0
MsgWinvalidate 0 0 0 0
MsglnvalidateAck 0 0 0 0
MsglnvalidateAckData 0 0 0 0
MsgRelease 0 0 0 0
MsgFlush 0 0 0 0
MsgFlushData 0 0 0 0
Region table lookup 84576 42951 22139 11426
(iters) 84576 49877 26391 10967
mpc-send 0 2844 3016 3100
mpc.recv 0 297 446 520
mpcrcvncall 0 2550 2575 2586
mpcstatus 0 2702 2802 2851
mpc.zait 0 3009 3264 3389
mpc.lockrnc 630 4480 4537 4537
interrupt handler 0 1272 1199 1177
three message inv 0 0 0 0

Table A.15: CRL and MPL event counts for Blocked LU on Three-Message-Invalidation; all values
are per-processor averages computed over four consecutive runs.

Event 1 proc 2 procs 4 procs 8 procs
Map 0 0 0 0
(remote) 0 0 0 0
(miss) 0 0 0 0
(unmap) 0 0 0 0
Start read 34323 10866296 1718964 336227

(remote) 0 23499 17396 14774
(miss) 0 3 7 8
(block) 0 0 0 0
(end) 34323 10866296 1718964 336227

Start write 17180 8590 4297 2150
(remote) 0 8589 4296 2150
(miss) 0 3 2381 1618
(block) 0 0 0 0
(end) 17180 8590 4297 2150
Flush 0 0 0 0
MsgRgnlnfoReq 0 0 0 0
(ack) 0 0 0 0

total protocol msgs 0 11 7161 4880
(queued) 0 1 1209 689

MsgSharedReq 0 3 7 8
MsgSharedAckData 0 3 5 7
MsgExclusiveReq 0 2 2380 1618
MsgExclusiveAckData 0 2 1 0
MsgModifyReq 0 1 1 1
MsgModifyAck 0 1 0 0
MsgModifyAckData 0 0 0 0
MsgRinvalidate 0 1 2 1
MsgWinvalidate 0 1 2381 1621
MsglnvalidateAck 0 1 3 4
MsglnvalidateAckData 0 1 2382 1620
MsgRelease 0 0 0 0
MsgFlush 0 0 0 0
MsgFlushData 0 0 0 0
Region table lookup 0 1 2383 1622
(iters) 0 1 2383 1622

mpcs..end 0 153 7374 5128
mpc.recv 0 145 218 254
mpc.xcvncall 0 11 7161 4880
mpc-status 0 87 7329 5028
mpc.wait 0 243 7507 5284
mpclockrnc 326 341 8222 6196
interrupt handler 0 5 4228 2325
three message inv 0 0 2381 1619

Table A.16: CRL and MPL event counts for TSP on Three-Message-Invalidation; all values are
per-processor averages computed over four consecutive runs.

Event 1 proc 2 procs 4 procs 8 procs
Map 0 0 0 0
(remote) 0 0 0 0
(miss) 0 0 0 0
(unmap) 0 0 0 0

Start read 263682 131842 65922 32962
(remote) 0 32769 24578 14338
(miss) 0 383 390 371
(block) 0 0 0 0
(end) 263682 131842 65922 32962

Start write 5640 3078 1669 965

(remote) 0 258 259 260
(miss) 0 636 482 378
(block) 0 0 0 0
(end) 5640 3078 1669 965
Flush 0 0 0 0
MsgRgnlnfoReq 0 0 0 0
(ack) 0 0 0 0

total protocol msgs 0 2039 2219 2219
(queued) 0 66 37 25

MsgSharedReq 0 381 388 370
MsgSharedAckData 0 381 324 311
MsgExclusiveReq 0 2 155 207
MsgExclusiveAckData 0 2 36 26
MsgModifyReq 0 256 103 51
MsgModifyAck 0 256 64 29
MsgModifyAckData 0 0 0 0
MsgRinvalidate 0 3 66 60
MsgWinvalidate 0 379 477 522
MsglnvalidateAck 0 125 231 268
MsglnvalidateAckData 0 257 376 375
MsgRelease 0 0 0 0
MsgFlush 0 0 0 0
MsgFlushData 0 0 0 0
Region table lookup 0 382 543 583
(iters) 0 385 543 583

mpc.send 0 2117 2335 2355
mpc.recv 0 79 119 138
mpc.rcvncall 0 2039 2219 2219
mpc.status 0 2080 2291 2299
mpcwait 0 2164 2395 2430
mpc.lockrnc 176 2344 1981 1739
interrupt handler 0 509 409 327
three message inv 0 0 221 263

Table A.17: CRL and MPL event counts for Water on Three-Message-Invalidation; all values are
per-processor averages computed over four consecutive runs.

A.3.3 Floating-Home-Node Application Events

This section contains CRL and MPL event counts for each application running on Floating-Home-

Node. Table A.18 contains the counts for Barnes-Hut. Table A.19 contains the counts for Blocked

LU. Table A.20 contains the counts for TSP. Table A.21 contains the counts for Water.

Event 1 proc 2 procs 4 procs 8 procs
Map 4744745 2372382 1186207 593118

(remote) 0 594899 593802 373587
(miss) 0 1441 3924 3468

(unmap) 4744745 2372382 1186207 593118
Start read 4650895 2325457 1162745 581388

(remote) 0 598866 596693 375217
(miss) 0 2214 4743 3952
(block) 0 0 2 4

(end) 4650895 2325457 1162745 581388
Start write 128276 64138 33162 17256

(remote) 0 141 1413 1459
(miss) 0 1346 1346 1093
(block) 0 0 0 0
(end) 128276 64138 33162 17256
Flush 0 1979 4428 3639
Become Home 16384 8193 4098 2051
MsgRgnlnfoReq 0 1441 3924 3468
(ack) 0 1441 3924 3468

total protocol msgs 0 8018 15807 13401
(queued) 0 701 1347 934

MsgSharedReq 0 2197 4694 3917
MsgSharedAckData 0 2197 4689 3903
MsgExclusiveReq 0 11 41 33
MsgExclusiveAckData 0 11 40 30
MsgModifyReq 0 15 45 42
MsgModifyAck 0 13 35 22
MsgModifyAckData 0 1 1 1
MsgRInvalidate 0 17 54 49
MsgWinvalidate 0 1320 1408 1376
MsglnvalidateAck 0 1317 1395 1363
MsglnvalidateAckData 0 29 96 99
MsgRelease 0 0 1 0
MsgFlush 0 879 3260 2516
MsgFlushData 0 0 3 1
MsgBecomeHomeReq 0 9 23 20
MsgNewHomeinfoWInv 0 0 1 0
MsgNegativeAck 0 0 0 0
MsgBecomeHomeDone 0 0 13 16
forward to real home 0 0 12 16
Region table lookup 4744745 2375160 1191615 598039
(iters) 22628546 6181411 1875658 659096
mpc.send 0 10982 23782 20483
mpc.recv 0 84 126 147
mpc.rcvncall 0 10900 23658 20339
mpc.status 0 10943 23728 20422
mpc.wait 0 11033 23853 20565
mpclockrnc 186 18943 44343 37243

interrupt handler 0 5314 11184 8428
three message inv 0 0 16 37

Table A.18: CRL and MPL event counts for Barnes-Hut on Floating-Home-Node; all values are
per-processor averages computed over four consecutive runs.

Event 1 proc 2 procs 4 procs 8 procs

Map 84576 42314 21489 10770

(remote) 0 10288 5476 4044
(miss) 0 638 650 656

(unmap) 84576 42314 21489 10770
Start read 41701 20876 10757 5392

(remote) 0 10288 5463 4025
(miss) 0 638 638 637
(block) 0 0 0 0
(end) 41701 20876 10757 5392

Start write 42925 21463 10731 5366
(remote) 0 0 0 0
(miss) 0 0 0 0
(block) 0 0 0 0

(end) 42925 21463 10731 5366
Flush 0 0 0 0

MsgRgnlnfoReq 0 638 650 656
(ack) 0 638 650 656

total protocol msgs 0 1275 1275 1274
(queued) 0 9 14 5

MsgSharedReq 0 638 638 637
MsgSharedAckData 0 638 638 637
MsgExclusiveReq 0 0 0 0
MsgExclusiveAckData 0 0 0 0
MsgModifyReq 0 0 0 0
MsgModifyAck 0 0 0 0
MsgModifyAckData 0 0 0 0
MsgRInvalidate 0 0 0 0
MsgWinvalidate 0 0 0 0
MsglnvalidateAck 0 0 0 0
MsglnvalidateAckData 0 0 0 0
MsgRelease 0 0 0 0
MsgFlush 0 0 0 0
MsgFlushData 0 0 0 0
Region table lookup 84576 42951 22139 11426
(iters) 84576 49877 26391 10967
mpc.send 0 2844 3016 3100
mpc-recv 0 297 446 520
mpc.rcvncall 0 2550 2575 2586
mpc.status 0 2702 2802 2851
mpc..ait 0 3009 3264 3389
mpclockrnc 630 4473 4531 4534
interrupt handler 0 1272 1200 1176
three message inv 0 0 0 0

Table A.19: CRL and MPL event counts for Blocked LU on Floating-Home-Node; all values are
per-processor averages computed over four consecutive runs.

Event 1 proc 2 procs 4 procs 8 procs
Map 0 0 0 0
(remote) 0 0 0 0
(miss) 0 0 0 0
(unmap) 0 0 0 0
Start read 34323 10019050 1721496 337345

(remote) 0 23074 17439 14961
(miss) 0 3 7 8
(block) 0 0 0 0
(end) 34323 10019050 1721496 337345

Start write 17180 8590 4297 2150

(remote) 0 8589 4296 2150
(miss) 0 3 2390 1652
(block) 0 0 0 0
(end) 17180 8590 4297 2150
Flush 0 0 0 0
MsgRgnlnfoReq 0 0 0 0
(ack) 0 0 0 0

total protocol msgs 0 11 7189 4982
(queued) 0 2 1212 685
MsgSharedReq 0 3 7 8
MsgSharedAckData 0 3 5 7
MsgExclusiveReq 0 2 2389 1652
MsgExclusiveAckData 0 2 1 0
MsgModifyReq 0 1 1 0
MsgModifyAck 0 1 0 0
MsgModifyAckData 0 0 0 0
MsgRinvalidate 0 1 2 1
MsgWinvalidate 0 1 2390 1655
MsglnvalidateAck 0 1 3 4
MsglnvalidateAckData 0 1 2391 1653
MsgRelease 0 0 0 0
MsgFlush 0 0 0 0
MsgFlushData 0 0 0 0
Region table lookup 0 1 2392 1656
(iters) 0 1 2392 1656
mpc.send 0 153 7402 5230
mpc.recv 0 145 218 254
mpc.rcvncall 0 11 7189 4982
mpc.status 0 87 7319 5128
mpc.wait 0 243 7535 5385
mpclockrnc 326 343 8283 6352
interrupt handler 0 5 4246 2357
three message inv 0 0 2390 1652

Table A.20: CRL and MPL event counts for TSP on Floating-Home-Node; all values are per-
processor averages computed over four consecutive runs.

Event 1 proc 2 procs 4 procs 8 procs
Map 0 0 0 0
(remote) 0 0 0 0
(miss) 0 0 0 0
(unmap) 0 0 0 0

Start read 263682 131842 65922 32962
(remote) 0 32769 24578 14338
(miss) 0 384 389 375
(block) 0 0 0 0
(end) 263682 131842 65922 32962

Start write 5640 3078 1669 965
(remote) 0 258 259 260
(miss) 0 638 482 379
(block) 0 0 0 0
(end) 5640 3078 1669 965
Flush 0 0 0 0
MsgRgnlnfoReq 0 0 0 0
(ack) 0 0 0 0
total protocol msgs 0 2044 2217 2229
(queued) 0 70 43 26

MsgSharedReq 0 382 388 374
MsgSharedAckData 0 382 324 311
MsgExclusiveReq 0 2 153 202
MsgExclusiveAckData 0 2 38 29
MsgModifyReq 0 256 105 57
MsgModifyAck 0 256 64 28
MsgModifyAckData 0 0 0 0
MsgRInvalidate 0 2 66 64
MsgWInvalidate 0 381 475 519
MsglnvalidateAck 0 126 232 270
MsglnvalidateAckData 0 257 373 376
MsgRelease 0 0 0 0
MsgFlush 0 0 0 0
MsgFlushData 0 0 0 0
Region table lookup 0 383 541 582
(iters) 0 386 541 582
mpc.send 0 2122 2333 2364
mpc.recv 0 79 119 138
mpc.rcvncall 0 2044 2217 2229
mpc.status 0 2085 2291 2311
mpc.zait 0 2169 2392 2437
mpc.lockrnc 176 2357 1989 1750
interrupt handler 0 519 411 333
three message inv 0 0 220 264

Table A.21: CRL and MPL event counts for Water on Floating-Home-Node; all values are per-
processor averages computed over four consecutive runs.

Appendix B

Implementation Details of the

Three-Message-Invalidate Protocol

This appendix contains a more in-depth description of the Three-Message-Invalidate protocol than

was given in Chapter 5. The first section describes the protocol states and events. The second and

third sections describe the home- and remote-side protocol state machines, respectively. Since this

protocol's base was CRL's original protocol, which was described in [18], annotations and markings

appear in the state diagrams and pseudocode to indicate what was changed from this base. Readers

who are not interested in this level of detail may find that skimming this material (or skipping it

entirely) is more useful than a careful, detailed reading.

B.1 Protocol States and Events

The CRL Three-Message-Invalidate protocol uses a total of seventeen states, nine for the home-side

state machine and eight for the remote-side state machine. The original CRL protocol also uses

every one of these states, except for the new home state HomeThreeWaylipSpecial. These states are

described in Tables B.1 and B.2, respectively.

Transitions between protocol states are caused by events. Two kinds of events are possible: calls,

which correspond to user actions on the local processor (e.g., initiating and terminating operations),

and messages, which correspond to protocol messages sent by other processors. Table B.3 describes

the five types of call events used in CRL. In the original CRL implementation, protocol messages in

CRL were always either sent from a home node to a remote node (for a given region), or vice versa.

Protocol messages related to a particular region were never exchanged between remote nodes. The

Three-Message-Invalidate protocol requires the use of remote-to-remote messages in order to provide

better performance. Precisely, these messages are remote-to-requesting messages since remote nodes

State
Description

HomeExclusive
HomeExclusiveRip
HomeExclusiveWip
HomeShared

HomeSharedRip
Homelip

HomelipSpecial

Homelnvalid
HomeThreeWaylipSpecial

This node (the home node) has the only valid copy of the region
Like HomeExclusive, plus one or more read operations are in progress locally
Like HomeExclusive, plus a write operation is in progress locally
Both the home node and some number of remote nodes have a valid copies of
the region
Like HomeShared, plus one or more read operations are in progress locally
An invalidation of remote copies of the region is in progress (to obtain an
exclusive copy for the home node)
An invalidation of remote copies of the region is in progress (to obtain a shared
copy for the home node)
A single remote node has a valid copy of the region
An invalidation of remote copies of the region is in progress (to obtain a shared
copy for a remote node)

Table B.1: CRL home-side protocol states.

Table B.2: CRL remote-side protocol states.

State Description
Remoteinvalid This node does not have a valid copy of the region
RemotelnvalidReq Like Remoteinvalid, but a request to obtain a valid copy of the region has been

sent
RemoteShared This node, the home node, and possibly other remote nodes have valid copies

of the region
RemoteSharedReq Like RemoteShared, but a request to obtain an exclusive copy of the region has

been sent
RemoteSharedRip Like RemoteShared, plus one or more read operations are in progress locally
RemoteModified This node has the only valid copy of the region, and it has been modified
RemoteModifiedRip Like RemoteModified. plus one or more read operations are in progress locally
RemoteModifiedWip Like RemoteModified, plus a write operation is in progress locally

DescriptionState

Message Description
CallStartRead Initiate a read operation (corresponds to rgn.startread)
CallEndRead Terminate a read operation (corresponds to rgnendread)
CallStartWrite Initiate a write operation (corresponds to rgn.startwrite)
CallEndWrite Terminate a write operation (corresponds to rgn.end.write)
CallFlush Flush the region back to the home node (corresponds to rgn.flush)

Table B.3: CRL call events.

Message Description
MsgRlnvalidate Invalidate a remote copy of a region (to obtain a shared copy)
MsgWlnvalidate Invalidate a remote copy of a region (to obtain an exclusive copy)
MsgSharedAckData Acknowledge a request for a shared copy of a region (includes a copy of the

region data)
MsgExclusiveAckData Acknowledge a request for an exclusive copy of a region (includes a copy of the

region data)
MsgModifyAck Acknowledge a request to upgrade a remote copy of a region from shared to

exclusive (does not include a copy of the region data)
MsgModifyAckData Like MsgModifyAck, but includes a copy of the region data

Table B.4: CRL home-to-remote protocol messages.

send these messages to nodes requesting access, regardless of whether the requesting node is the home

node or a remote node. Two of the previous remote-to-home messages have become remote-to-request

messages.

Table B.4 describes the types of protocol messages sent from home nodes to remote nodes (six

types of messages); Table B.5 describes those sent from remote nodes to home nodes (six types of

messages). Table B.6 describes those sent from remote nodes to requesting nodes (two types of

messages).

B.2 Home-Side State Machine

Figures B-1 through B-9 show the state transition diagrams for the nine home-side protocol states.

In each figure, solid arrows indicate state transitions taken in response to protocol events; dashed

arrows indicate actions taken because of a "continuation" (the second phase of a two-phase event).

Message Description
MsgRelease Acknowledge a message invalidating the local copy of a region (leaves a shared

copy valid locally, includes a copy of the region data)
MsgSharedReq Request a shared copy of a region
MsgExclusiveReq Request an exclusive copy of a region
MsgModifyReq Request an upgrade of the local copy of a region from shared to exclusive
MsgFlush Inform the home node that the local copy of a region has been dropped (does

not include a copy of the region data)
MsgFlushData Inform the home node that the local copy of a region has been dropped (includes

a copy of the region data)

Table B.5: CRL remote-to-home protocol messages.

Message Description
MsglnvalidateAck Acknowledge a message invalidating the local copy of a region (leaves the local

copy invalid, does not include a copy of the region data)
MsglnvalidateAckData Acknowledge a message invalidating the local copy of a region (leaves the local

copy invalid, includes a copy of the region data)

Table B.6: CRL remote-to-requesting protocol messages.

Each arrow is labeled with the names of the protocol events which would cause the corresponding

state transition to take place; numbers in parentheses after an event name indicate one of multiple

possible actions which might happen in response to a protocol event. At the bottom of each figure,

two boxes (labeled Ignore and Queue) indicate which protocol events are either ignored (i.e., have

no effect) or queued for later processing. Any protocol events that are not shown in a particular

state transition diagram cause a protocol error if they occur; in practice this should only happen

if a user attempts an invalid sequence of operations on a region (e.g., a thread that already has a

read operation in progress on a particular region attempting to initiate a write operation on the same

region without first terminating the read operation). Note that the HomeThreeWaylipSpecial state

does not appear in every state transition diagram. In order to make the diagrams less cluttered, it

has only been added to Figures B-8 and B-9, which are the only two diagrams which make use of

the state.

Figures B-1 through B-9 show only the state transitions that occur in response to protocol events.

For other effects, such as manipulations of other protocol metadata or sending protocol messages to

other nodes, one should consult Tables B.7 through B.16. These tables provide pseudocode for the

actions taken in response to different protocol events for each of the nine home-side states. Any

events that are not listed for a particular state cause a protocol error if they occur (as in Figures B-1

through B-9).

Each of Tables B.7 through B.16 consists of three columns. The first and second columns contain

the names of the relevant protocol state and event types, respectively. The third column contains

pseudocode for the actions that should be taken when the corresponding event occurs in the corres-

ponding state.

Beyond the protocol state, several other components of the home-side protocol metadata associated

with each region are referenced in Tables B.7 through B.16. These components are summarized

below:

read.cnt: This field is used to count the number of local read operations in progress (simultaneously)

for the associated region.

num.ptrs: This field is used to count the number of invalidation messages that have not been

acknowledged yet.

tx.cont: This field is used to hold the "continuation" (a pointer to a procedure that implements

the second phase) of a two-phase set of actions (e.g., one in which some number of invalidation

messages are sent during the first phase, but the second phase cannot be run until all invalidations

have been acknowledged). This mechanism is only used in the HomeShared and Homeinvalid

states; a "cont:EventType" nomenclature is used to denote the continuation for events of type

EventType.

pointer set: The home-side metadata for a region contains a set of "pointers" to remote copies

(aka the directory for the region); CRL uses a singly-linked list to implement the pointer set.

Operations supported on pointer sets include insertion of a new pointer (insert pointer) and

deletion of an existing pointer (delete pointer).

message queue: The home-side metadata for a region contains a FIFO message queue that is used

to buffer protocol messages that cannot be processed immediately upon reception. Operations

supported on message queues include enqueuing a new message (queue message) and attempting

to drain the queue by retrying messages from the head of the queue until the queue is empty or

the message at the head of the queue cannot be processed (retry queued messages).

requesting structure list: In the Three-Message-Invalidate protocol, the home-side metadata for a

region contains a list of previous requesters for that region. The list is used to redirect flush

messages that were sent by remote nodes before those nodes received an invalidate message.

Operations supported on the requesting structure lists include insertion of a new structure (insert

requesting structure), looking up a structure within the list (get requesting structure for flushed

version) and deleting the whole list (delete requesting structure list).

As mentioned earlier, the Three-Message-Invalidate protocol was built using CRL's original pro-

tocol as the base. Similarly, the state diagrams and pseudocode from the original protocol were used

as a base for this appendix, and changes were marked as follows:

* Additions to the state diagram are bolded. This includes both the event names, and the arrows.

* Additions to the pseudocode are boxed.

* Deletions are crossed out.

Newly created regions (caused by calls to rgncreate) start in the HomeExclusive state.

CallStartRead

CallStartWrite

Figure B-1: HomeExclusive: state transition diagram.

100

MsgExclusive
MsgModifyR

Ignore

CallFlush
MsgRelease

----- ;-·- --- ;--- ---- I·--;·--;·~- ;··--

CallEndRead (1) 0)CallStartRead
CallEndRead (2)

MsgSharedReq

Figure B-2: HomeExclusiveRip: state transition diagram.

Ignore

CallFlush
MsgRelease

Queue

MsgExclusiveReq
MsgModifyReq

e**"ý

CallEndWrite

Figure B-3: HomeExclusiveWip: state transition diagram.

102

Ignore

CallFlush
MsgRelease

Queue

MsgSharedReq
MsgExclusiveReq

MsgModifyReq

~

Mz;EI acg a
M:;I.~71:if'Rz(2)

/CallStartRead

Figure B-4: HomeShared: state transition diagram.

103

IsgSharedReq
MsgFlush (2)

03
i
i

MsgFlush (1)

/CallEndRead (1)

CallStartReadD CallEndRead (2)
MsgSharedReq
MsgFlush (2)

Figure B-5: HomeSharedRip: state transition diagram.

104

Ignore

CallFlush
MsgRelease

Queue

MsgExclusiveReq
MsgModifyReq

__~_1_~__1____ __ ~__·__ ___

CallStartRead
CallStartWrite

MsglnvalidateAck
MsglnvalidateAckData

MsgFlush
MsgFlushData

C=

Figure B-6: Homelip: state transition diagram.

105

Queue

MsgSharedReq
MsgExclusiveReq

MsgModifyReq

__ _ _ i _ ; _r~ __^111_---111~11 la·~-111·--^-- --.-~--~.. ~- -- ~ _11 .._.1~~_~LILC

IIStartWrite

MsglnvalidateAck
MsglnvalidateAckData

MsgFlush
MsgFlushData
MsgRelease

Ignore Queue

MsgSharedReq
CallFlush MsgExclusiveReq

MsgModifyReq

Figure B-7: HomelipSpecial: state transition diagram.

106

-- -. ---- --- -------- m--~L~pblJIIIs~aeLa~---L--__ I II I

"

tSliT
tR

d

MsgSharedReq (1)

., MsgSharedReq (2)

MyShare, eq

MsgFlushData (2)
MsgExclusiveReq
MsgModi•eq
MsgFh

MsgFlush () /
MsgFlushData ()

/ CallStartRead (2)Caltrpa 2

CallStartWrite /

//
/

/
-7-
/ ~Msq~o~

/

)allStartRead (1)

//
/

Figure B-8: Homelnvalid: state transition diagram.

107

IIII

i
I
I
I
I

I

Ignore

CallFlush
MsgRelease

Queue

(none)

'I% *** 1%

f

h
f

CallStartRead
allStartWrite

MsglnvalidateAck
MsglnvalidateAckData

MsgFlush
MsgFlushData
MsgRelease

Figure B-9: HomeThreeWaylipSpecial: state transition diagram.

108

Ignore

CallFlush

Queue

MsgSharedReq
MsgExclusiveReq

MsgModifyReq

_ _ ____-__)_ ~_ i·;;___ _ ____ _~_ ~________~e

State Event Actions

HomeExclusive CallStartRead read.cnt = 1
state = HomeExclusiveRip

CallStartWrite state = HomeExclusiveWip
CallFlush do nothing
MsgSharedReq send MsgSharedAckData

insert pointer
state = HomeShared

MsgExclusiveReq send MsgExclusiveAckData
insert pointer
state = Homeinvalid

MsgModifyReq send MsgModifyAckData
insert pointer
state = Homelnvalid

MsgRelease do nothing

Table B.7: HomeExclusive: protocol events and actions.

State Event Actions

HomeExclusiveRip CallStartRead read.cnt += 1
CallEndRead read-cnt -= 1

if (read-cnt == 0)
state = HomeExclusive
retry queued messages

CallFlush do nothing
MsgSharedReq send MsgSharedAckData

insert pointer
state = HomeSharedRip

MsgExclusiveReq,
MsgModifyReq queue message
MsgRelease do nothing

Table B.8: HomeExclusiveRip: protocol events and actions.

109

State Event Actions

HomeExclusiveWip CallEndWrite state = HomeExclusive
retry queued messages

CallFlush do nothing
MsgSharedReq,
MsgExclusiveReq,
MsgModifyReq queue message
MsgRelease do nothing

Table B.9: HomeExclusiveWip: protocol events and actions.

Event/Continuation

CallStartRead

CallStartWrite

cont:CallStartWrite
CallFlush
MsgSharedReq

MsgExclusiveReq

Actions

readccnt = 1
state = HomeSharedRip
send MsgWlnvalidates to remote copies
num-ptrs = # of MsgWInvalidates sent
tx.cont = cont:CallStartWrite
state = Homelip
poll until tx.cont has been invoked
state = HomeExclusiveWip
do nothing
send MsgSharedAckData
insert pointer
send MsgWinvalidates to remote copies

ex_•v n -- ,,ct.;.MaJsx."asi.v•e•,

insert pointer

insert requesting structure

state = Homeinvalid
Per+1.4- -- w-e c Lt

insert-pointer

MsgModifyReq if (requesting node is the only pointer)
send MsgModifyAck
insert pointer
state = Homeinvalid

else
send MsgWlnvalidates to remote copies

..... •,i I'.~i

insert pointer

insert requesting structure

state = HomeInvalid

nsertppintter
..... - 1l,•',;-..liJ

MsgFlush delete pointer
if (no more pointers)

state = HomeExclusive
retry queued messages

MsgRelease do nothing

Table B.10: HomeShared: protocol events and actions.

110

State

HomeShared

State Event Actions

HomeSharedRip CallStartRead read.cnt += 1
CallEndRead read-cnt -= 1

if (read.cnt == 0)
state = HomeShared
retry queued messages

CallFlush do nothing
MsgSharedReq send MsgSharedAckData

insert pointer
MsgFlush delete pointer

if (no more pointers)
state = HomeExclusiveRip

retry queued messages
MsgExclusiveReq,
MsgModifyReq queue message
MsgRelease do nothing

Table B.11: HomeSharedRip: protocol events and actions.

State Event Actions
Homelip CallStartRead wait until state != Homelip

retry CallStartRead
CallStartWrite wait until state != Homelip

retry CallStartWrite
CallFlush do nothing
MsginvalidateAck, num.ptrs -= 1
MsglnvalidateAckData if (num.ptrs == 0)

delete requesting structure list
invoke tx.cont

MsgFlush, mm-Fts-
MsgFlushData if (mm.P•,s --)

if (flush for most recent version)

num.ptrs -= 1

if (num.ptrs == 0)

delete requesting structure list

invoke txcont

else
get requesting structure for flushed version

if (flushing node was sending data)

send MsglnvalidateAckData to requester

else

send MsglnvalidateAck to requester

MsgSharedReq,
MsgExclusiveReq,
MsgModifyReq queue message
MsgRelease do nothing

Table B.12: Homelip: protocol events and actions.

Table B.13: HomelipSpecial: protocol events and actions.

112

State Event Actions
HomelipSpecial CallStartRead wait until state != HomelipSpecial

retry CallStartRead
CallStartWrite wait until state != HomelipSpecial

retry CallStartWrite
CallFlush do nothing

MsgInvalidateAck, delete requesting structure list

MsglnvalidateAckData invoke tx.cont with an arg of 0
MsgFlush, if (flush sent after a MsgRelease)
MsgFlushData rcvd-flush I= OWNERFLUSH

else if (flush sent before a MsgRelease)

delete requesting structure list

invoke tx.cont with an arg of 0

else

get requesting structure for flushed version

if (flushing node was sending data)

send Msgl nvalidateAck Data to requester

else

send MsglnvalidateAck to requester
MsgRelease ..in. ...e ..a. ,..i.ll al .rg of.

if (MsgRelease is for most recent version)

delete requesting structure list

invoke tx.cont with an arg of 1
MsgSharedReq,
MsgExclusiveReq,
MsgModifyReq queue message

Table B.14: Homelnvalid: protocol events and actions.

113

State Event/Continuation Actions

HomeInvalid Homelnvalid: protocol events and actions
continued from Table B.14

MsgModifyReq send MsgWlnvalidate to remote copy

state- IIonm ip

insert pointer

insert requesting structure

MsgFlush, delete-pointer
MsgFlushData 9.. - I.....a..

if (most recent requester flushed)

delete requesting structure list

delete pointer

state = HomeExclusive

else

get requesting structure for flushed version

if (flushing node was sending data)

send MsgInvalidateAckData to requester

else

send MsglnvalidateAck to requester
MsgRelease do nothing

Table B.15: Homelnvalid: protocol events and actions (continued).

114

Event Actions

wait until state != HomeThreeWaylipSpecial

retry CallStartRead
wait until state != HomeThreeWaylipSpecial
retry CallStartWrite
do nothing
if ((rcvdflush & REQUESTERFLUSH) != 0)

insert pointer
delete requesting structure list
invoke txcont with an arg of 0
if (flush sent by previous owner after a MsgRelease)

rcvd-flush J= OWNERFLUSH
else if (flush sent by requester)

rcvd-flush I= REQUESTERFLUSH
else if (flush sent before a MsgRelease)

insert pointer
send MsgSharedAckData to requester
delete requesting structure list
invoke tx-cont with an arg of 0

else
get requesting structure for flushed version
if (flushing node was sending data)

send MsglnvalidateAckData to requester
else

send MsglnvalidateAck to requester
if (MsgRelease is for most recent version)

if ((rcvdiAush & OWNERFLUSH) != 0)
delete pointer

if ((rcvdflush & REQUESTERFLUSH) == 0)
insert pointer

delete requesting structure list
invoke tx.cont with an arg of 1

Table B.16: HomeThreeWaylipSpecial: protocol events and actions.

115

State

HomeThreeWaylipSpecial CallStartRead

CallStartWrite

CallFlush
MsglnvalidateAck,
MsglnvalidateAckData

MsgFlush,
MsgFlushData

MsgRelease

MsgSharedReq,
MsgExclusiveReq,
MsgModifyReq queue message

B.3 Remote-Side State Machine

Figures B-10 through B-17 show the state transition diagrams for the eight remote-side protocol

states. These figures are similar to those shown for the home-side state machine (Figures B-1 through

B-9), with one minor difference. Because the remote side of the CRL protocol only employs a limited

form of message queuing (setting a flag when an invalidation message was received at an inconvenient

time), the Queue box is instead labeled Set rcvdinv flag.

As was the case in Figures B-1 through B-9 (for the home-side state machine), Figures B-10

through B-17 show only the state transitions that occur in response to protocol events. A more

complete description of the remote-side state machine (in the form of pseudocode) can be found in

Tables B.17 through B.24.

Each of Tables B.17 through B.24 consists of three columns. The first and second columns

contain the names of the relevant protocol state and event types, respectively. The third column

contains pseudocode for the actions that should be taken when the corresponding event occurs in the

corresponding state.

Beyond the protocol state, three other components of the remote-side protocol metadata associated

with each region are referenced in Tables B.17 through B.24. These components are summarized

below:

readcnt: This field is used to count the number of local read operations in progress (simultaneously)

for the associated region.

rcvd_inv: This field is used to "buffer" an invalidation message that cannot be processed immedi-

ately upon reception because an operation is in progress on the corresponding region.

numinvalidate_acks: In the Three-Message-Invalidate protocol, this field is used to count the num-

ber of invalidate acknowledgment messages that will be arriving.

As mentioned earlier, the Three-Message-Invalidate protocol was built using CRL's original pro-

tocol as the base. Similarly, the state diagrams and pseudocode from the original protocol were used

as a base for this appendix, and changes were marked as follows:

* Additions to the state diagram are bolded. This includes both the event names, and the arrows.

* Additions to the pseudocode are boxed.

* Deletions are crossed out.

Newly allocated remote copies of regions (caused by calls to rgnmap that cannot be satisfied

locally) start in the Remoteinvalid state.

116

CallStartRead
CallStartWrite

CallStartWrite

CallStartRead

Figure B-10: Remoteinvalid: state transition diagram.

117

Ignore

CallFlush
MsgRInvalidate
MsgWlnvalidate

Set rcvd_inv flag

(none)

I-·-rr.*aa~AICRI~Ck~~;l ' - '~`~I 'I~ -"-~···IUT.-~LW-..I``~·· i_ Cc_?

e**,ý

-.

0 •00

MsgExclusiveAckData
MsgModifyAckData
MsgSharedAckData
MsglnvalidateAck
MsglnvalidateAckData

MagJwltisiveAslieft

Figure B-11: RemotelnvalidReq: state transition diagram.

118

Ignore

MsgRInvalidate
MsgWInvalidate

Set rcvd_inv flag

(none)

.01

, - -- r-%%FL.PGLLC

CallFlush.

CallStartWrite
;tartWrite

Figure B-12: RemoteShared: state transition diagram.

119

Ignore

MsgRinvalidate

Set rcvd_inv flag

(none)

---~r-. _ -~-~i~-lii _.. I-----l~-*~--i ..i.X-D.IIF---~---__ll·-~_ -tll;.Y-i 1)-

MsgWinvalidate
MsgRInvalidate

I.1:;tdi*#yA&MdM*

MAck
MsgModityAckData
MsglnvalidateAck

mmi A# lidt A kDr

Set rcvd_inv flag

(none) (none)

Figure B-13: RemoteSharedReq: state transition diagram.

120

Ignore

agnva ae c aa

;- -- I--·-·-~-- ~I·-~----- ·- I-~- -d -- -------- --- · ··--;-- ---- ·--

CallStartRead
CalllEndRead (3)

Figure B-14: RemoteSharedRip: state transition diagram.

Ignore

CallFlush

Set rcvd_inv flag

MsgWInvalidate

CallStartWrite

"I
tartRead\

CallFlush
MsgRInvalidate
MsgWlnvalidate

Figure B-15: RemoteModified: state transition diagram.

122

CallSt

Ignore

(none)

_L____~ _ __·_I_~;~I·*i ~ ~___ __ ~ ~___I__ __I__ _I___^____·_ _._C__-C_ ·-l~--·n~ZY?-~l 1--11-__= __1~·_1~

CallEndRead (2)

CallStartRead
CallEndRead (3

Figure B-16: RemoteModifiedRip: state transition diagram.

123

Ignore

CallFlush

Set rcvd_inv flag

MsgWlnvalidate

CallEndWrite (2)

I,

Figure B-17: RemoteModifiedWip: state transition diagram.

124

/

CallEndWrite (1)

Ignore

CallFlush

Set rcvd_inv flag

MsgRInvalidate
MsgWInvalidate

~W*-~-I~~-~--LL-I' C.-li-- iin~iy~-·i·U

j

State Event Actions
Remotelnvalid CallStartRead send MsgSharedReq to home

tx.cont = cont:CallStartRead
state = RemotelnvalidReq

poll until tx.cont has been invoked

cont:CallStartRead read.cnt = 1
state = RemoteSharedRip

CallStartWrite send MsgExclusiveReq to home

Itxcont = cont:CallStartWrite
state = RemotelnvalidReq

poll until tx-cont has been invoked

cont:CallStartWrite state = RemoteModifiedWip
CallFlush do nothing
MsgRinvalidate,
MsgWlnvalidate do nothing

Table B.17: Remoteinvalid: protocol events and actions.

State Event Actions
RemotelnvalidReq MsgSharedAckData,

MsgExclusiveAckData,
MsgModifyAckData invoke tx.cont

MsgInvalidateAck, if (numinvalidate.acks is unset)

MsgInvalidateAckData] numinvalidate.acks = # of MsglnvalidateAcks

expected
numinvalidate.acks -= 1
if (num-invalidate.acks == 0)

invoke tx.cont
MsgRInvalidate,
MsgWlnvalidate do nothing

Table B.18: RemotelnvalidReq: protocol events and actions.

125

Table B.19: RemoteShared: protocol events and actions.

Table B.20: RemoteSharedReq: protocol events and actions.

126

State Event Actions
RemoteShared CallStartRead read-cnt = 1

state = RemoteSharedRip
CallStartWrite send MsgModifyReq to home

tx.cont = cont:CallStartWrite
state = RemoteSharedReq

poll until tx.cont has been invoked

cont:CallStartWrite state = RemoteModifiedWip
CallFlush send MsgFlush to home

state = Remoteinvalid
MsgRInvalidate do nothing
MsgWInvalidate s - ",.' Ak t ,,

if (need to send data)

Isend MsglnvalidateAckData to requester

else

send MsglnvalidateAck to requester
state = Remoteinvalid

State Event Actions

RemoteSharedReq MsglnvalidateAck, if (numinvalidate-acks is unset)

MsginvalidateAckData num.invalidate.acks = # of MsglnvalidateAcks
expected

numinvalidate.acks -= 1
if (numinvalidate.acks == 0)

invoke tx.cont
MsgWlnvalidate, nd 9 1 ASwl...-alJ• . , .lus,

MsgRInvalidate if (need to send data)

send MsglnvalidateAckData to requester

else I

send MsglnvalidateAck to requester

state = RemoteinvalidReq
MsgModifyAck, stat- Re tMd'fie&',

MsgModifyAckData invoke txcont

State Event Actions

RemoteSharedRip CallStartRead readcnt += 1
CallEndRead read_cnt-= 1

if (readcnt == 0)
if (rcvd-inv == 0)

state = RemoteShared
else

if (need to send data)

send MsglnvalidateAckData to requester

else

send MsglnvalidateAck to requester

rcvdinv = 0
state = Remotelnvalid

CallFlush do nothing
MsgWlnvalidate rcvdinv = WInvalidate

Table B.21: RemoteSharedRip: protocol events and actions.

State Event Actions

RemoteModified CallStartRead readcnt = 1
state = RemoteModifiedRip

CallStartWrite state = RemoteModifiedWip
CallFlush send MsgFlushData to home

state = Remotelnvalid
MsgRInvalidate ... Idm•,.;J,,dt cLk t o lto

send MsgInvalidateAckData to requester

if (requester != home)

send MsglnvalidateAckData to home
state = Remoteinvalid

MsgWlnvalidate end Ms H. vn idalJeAckDBata t.

send MsglnvalidateAckData to requester
state = Remoteinvalid

Table B.22: RemoteModified: protocol events and actions.

Actions

RemoteModifiedRip CallStartRead
CallEndRead

CallFlush
MsgRInvalidate

MsgWInvalidate

read.cnt += 1
read.cnt -= 1

if (readcnt == 0)
if (rcvdJnv == 0)

state = RemoteModified
else

-nd M 'I,,va,:dateAckmata to iy.n..

send MsglnvalidateAckData to requester

if ((rcvdinv == RInvalidate) AND (requester != home))

send MsglnvalidateAckData to home

rcvd-inv = 0
state = Remoteinvalid

do nothing
send MsgRelease to home

if (requester != home)

send MsglnvalidateAckData to requester

state = RemoteSharedRip

Table B.23: RemoteModifiedRip: protocol events and actions.

State Event Actions

RemoteModifiedWip CallEndWrite if (rcvdinv == 0)
state = RemoteModified

else
d Mul•a'r 1 val'uidatlAckata C o ho mue.

send MsginvalidateAckData to requester

if ((rcvdinv == RInvalidate) AND (requester != home))

send MsglnvalidateAckData to home

rcvdinv = 0
state = Remoteinvalid

CallFlush do nothing
MsgRInvalidate rcvdinv = RInvalidate
MsgWlnvalidate rcvdjinv = WInvalidate

Table B.24: RemoteModifiedWip: protocol events and actions.

128

State Event

rcvd-inv = WInvalidate

Appendix C

Implementation Details of the

Floating-Home-Node Protocol

This appendix contains a more in-depth description- of the Floating-Home-Node protocol than was

given in Chapter 6. The first section describes the protocol states and events. The second and

third sections describe the home- and remote-side protocol state machines, respectively. Since this

protocol's base was the Three-Message-Invalidate protocol, which was described in Appendix Chapter

B, annotations and markings appear in the state diagrams and pseudocode to indicate what was

changed from this base. Readers that are not interested in this level of detail may find that skimming

this material (or skipping it entirely) is more useful than a careful, detailed reading.

C.1 Protocol States and Events

The CRL Floating-Home-Node protocol uses a total of nineteen states, ten for the home-side state

machine and nine for the remote-side state machine. The Three-Message-Invalidate CRL protocol

also uses every one of these states, except for the new home state HomeBecomingRemote and the new

remote state RemoteBecomeHomeReq. These states are described in Tables C.1 and C.2, respectively.

Transitions between protocol states are caused by events. Two kinds of events are possible: calls,

which correspond to user actions on the local processor (e.g., initiating and terminating operations),

and messages, which correspond to protocol messages sent by other processors. The only new call in

the Floating-Home-Node protocol is CallBecomeHome, which starts the process of making the calling

node the home node of a region. Table C.3 describes the six types of call events used in CRL.

Four new messages have been added to the Three-Message-Invalidation. MsgNewHomelnfo is the

new home-to-remote protocol message. The other three messages are original-home protocol messages

that are either sent from or sent to a region's original-home node, which is the node on which the

129

State
Description

HomeExclusive
HomeExclusiveRip
HomeExclusiveWip
HomeShared

HomeSharedRip
Homelip

HomelipSpecial

Homelnvalid
HomeThreeWaylipSpecial

HomeBecomingRemote

This node (the home node) has the only valid copy of the region
Like HomeExclusive, plus one or more read operations are in progress locally
Like HomeExclusive, plus a write operation is in progress locally
Both the home node and some number of remote nodes have a valid copies of
the region
Like HomeShared, plus one or more read operations are in progress locally
An invalidation of remote copies of the region is in progress (to obtain an
exclusive copy for the home node)
An invalidation of remote copies of the region is in progress (to obtain a shared
copy for the home node)
A single remote node has a valid copy of the region
An invalidation of remote copies of the region is in progress (to obtain a shared
copy for a remote node)
An invalidation of remote copies of the region is in progress (to change the
home node to some other node)

Table C.1: CRL home-side protocol states.

Table C.2: CRL remote-side protocol states.

130

State Description
Remotelnvalid This node does not have a valid copy of the region
RemotelnvalidReq Like Remotelnvalid, but a request to obtain a valid copy of the region has been

sent
RemoteShared This node, the home node, and possibly other remote nodes have valid copies

of the region
RemoteSharedReq Like RemoteShared, but a request to obtain an exclusive copy of the region has

been sent
RemoteSharedRip Like RemoteShared, plus one or more read operations are in progress locally
RemoteModified This node has the only valid copy of the region, and it has been modified
RemoteModifiedRip Like RemoteModified, plus one or more read operations are in progress locally
RemoteModifiedWip Like RemoteModified, plus a write operation is in progress locally
RemoteBecomeHomeReq This node has sent a request to become the home node and is waiting for

MsglnvalidateAcks

·
DescriptionState

Message Description
CallStartRead Initiate a read operation (corresponds to rgnstartread)
CallEndRead Terminate a read operation (corresponds to rgn.endread)
CallStartWrite Initiate a write operation (corresponds to rgnstartwrite)
CallEndWrite Terminate a write operation (corresponds to rgnendwrite)
CallFlush Flush the region back to the home node (corresponds to rgnflush)
CallBecomeHome Become the home node for a region (corresponds to rgn.becomehome)

Table C.3: CRL call events.

Message Description
MsgRInvalidate Invalidate a remote copy of a region (to obtain a shared copy)
MsgWinvalidate Invalidate a remote copy of a region (to obtain an exclusive copy)
MsgSharedAckData Acknowledge a request for a shared copy of a region (includes a copy of the

region data)
MsgExclusiveAckData Acknowledge a request for an exclusive copy of a region (includes a copy of the

region data)
MsgModifyAck Acknowledge a request to upgrade a remote copy of a region from shared to

exclusive (does not include a copy of the region data)
MsgModifyAckData Like MsgModifyAck, but includes a copy of the region data
MsgNewHomelnfo Update the home node information for this region on the destination node

Table C.4: CRL home-to-remote protocol messages.

region was originally created. The messages are MsgBecomeHomeReq, MsgBecomeHomeDone, and

MsgNegativeAck.

Table C.4 describes the types of protocol messages sent from home nodes to remote nodes (six

types of messages); Table C.5 describes those sent from remote nodes to home nodes (six types of

messages). Table C.6 describes those sent from remote nodes to requesting nodes (two types of

messages). Table C.7 describes those sent from or to a region's original home node (three types of

messages).

C.2 Home-Side State Machine

Figures C-1 through C-10 show the state transition diagrams for the ten home-side protocol states.

In each figure, solid arrows indicate state transitions taken in response to protocol events; dashed

Message Description
MsgRelease Acknowledge a message invalidating the local copy of a region (leaves a shared

copy valid locally, includes a copy of the region data)
MsgSharedReq Request a shared copy of a region
MsgExclusiveReq Request an exclusive copy of a region
MsgModifyReq Request an upgrade of the local copy of a region from shared to exclusive
MsgFlush Inform the home node that the local copy of a region has been dropped (does

not include a copy of the region data)
MsgFlushData Inform the home node that the local copy of a region has been dropped (includes

a copy of the region data)

Table C.5: CRL remote-to-home protocol messages.

131

Message Description
MsglnvalidateAck Acknowledge a message invalidating the local copy of a region (leaves the local

copy invalid, does not include a copy of the region data)
MsglnvalidateAckData Acknowledge a message invalidating the local copy of a region (leaves the local

copy invalid, includes a copy of the region data)

Table C.6: CRL remote-to-requesting protocol messages.

Message Description
MsgBecomeHomeReq Message sent to the original home requesting to become the home node for a

particular region
MsgBecomeHomeDone Message sent by new home node to the original home node and the previous

home node indicating that the become home operation is complete
MsgNegativeAck Message sent from the original home node in response to a MsgBecomeHome-

Req indicating that a become home operation is in progress and that the request
cannot be satisfied at this point

Table C.7: CRL original-home protocol messages.

arrows indicate actions taken because of a "continuation" (the second phase of a two-phase event).

Each arrow is labeled with the names of the protocol events which would cause the corresponding

state transition to take place; numbers in parentheses after an event name indicate one of multiple

possible actions which might happen in response to a protocol event. At the bottom of each figure,

two boxes (labeled Ignore and Queue) indicate which protocol events are either ignored (i.e., have

no effect) or queued for later processing. Any protocol events that are not shown in a particular

state transition diagram cause a protocol error if they occur; in practice this should only happen

if a user attempts an invalid sequence of operations on a region (e.g., a thread that already has a

read operation in progress on a particular region attempting to initiate a write operation on the same

region without first terminating the read operation). Note that the HomeThreeWaylipSpecial and

HomeBecomingRemote states do not appear in every state transition diagram. In order to make the

diagrams less cluttered, they have been added only to the figures in which they are used.

Figures C-1 through C-10 show only the state transitions that occur in response to protocol events.

For other effects, such as manipulations of other protocol metadata or sending protocol messages to

other nodes, one should consult Tables C.8 through C.19. These tables provide pseudocode for the

actions taken in response to different protocol events for each of the ten home-side states. Any events

that are not listed for a particular state cause a protocol error if they occur (as in Figures C-1 through

C-10).

Each of Tables C.8 through C. 19 consists of three columns. The first and second columns contain

the names of the relevant protocol state and event types, respectively. The third column contains

pseudocode for the actions that should be taken when the corresponding event occurs in the corres-

ponding state.

Beyond the protocol state, several other components of the home-side protocol metadata associated

132

with each region are referenced in Tables C.8 through C.19. These components are summarized

below:

read.cnt: This field is used to count the number of local read operations in progress (simultaneously)

for the associated region.

numptrs: This field is used to count the number of invalidation messages that have not been

acknowledged yet.

txcont: This field is used to hold the "continuation" (a pointer to a procedure that implements

the second phase) of a two-phase set of actions (e.g., one in which some number of invalidation

messages are sent during the first phase, but the second phase cannot be run until all invalidations

have been acknowledged). This mechanism is only used in the HomeShared and Homelnvalid

states; a "cont:EventType" nomenclature is used to denote the continuation for events of type

EventType.

pointer set: The home-side metadata for a region contains a set of "pointers" to remote copies

(aka the directory for the region); CRL uses a singly-linked list to implement the pointer set.

Operations supported on pointer sets include insertion of a new pointer (insert pointer) and

deletion of an existing pointer (delete pointer).

message queue: The home-side metadata for a region contains a FIFO message queue that is used

to buffer protocol messages that cannot be processed immediately upon reception. Operations

supported on message queues include enqueuing a new message (queue message) and attempting

to drain the queue by retrying messages from the head of the queue until the queue is empty or

the message at the head of the queue cannot be processed (retry queued messages).

requesting structure list: In the Three-Message-Invalidate protocol, the home-side metadata for a

region contains a list of previous requesters for that region. The list is used to redirect flush

messages that were sent by remote nodes before those nodes received an invalidate message.

Operations supported on the requesting structure lists include insertion of a new structure (insert

requesting structure), looking up a structure within the list (get requesting structure for flushed

version) and deleting the whole list (delete requesting structure list).

As mentioned earlier, the Floating-Home-Node protocol was built using the Three-Message-

Invalidation protocol as the base. Similarly, the state diagrams and pseudocode from the Three-

Message-Invalidation protocol were used as a base for this appendix, and changes were marked as

follows:

* Additions to the state diagram are bolded. This includes both the event names, and the arrows.

* Additions to the pseudocode are boxed.

* Deletions are crossed out.

133

A couple significant changes from the Three-Message-Invalidation should be noted. First, there

are now transitions from home states to remote states. These transitions are followed on completion

of a become home request. Second, home nodes can now receive stale invalidate messages. This

may occur if an invalidate was sent when a node was a remote node, but it was received after it had

become a home node. In these cases, the invalidate is just ignored.

Newly created regions (caused by calls to rgn_create) start in the HomeExclusive state.

134

MsgBecomeHomeReq

CallStartRead

MsgExclusive
MsgModifyR / CallStartWrite

Figure C-1: HomeExclusive: state transition diagram.

135

Ignore
CallFlush

CallBecomeHome
MsgRelease

MsgRinvalidate
MsgWInvalidate

Queue

(none)

--- -- ~---~-~ --------

CallEndRead (1) 0)CallStartRead
CallEndRead (2)

MsgSharedReq

Figure C-2: HomeExclusiveRip: state transition diagram.

136

Ignore
CallFlush

CallBecomeHome
MsgRelease

MsgRlnvalidate
MsgWlnvalidate

Queue

MsgExclusiveReq
MsgModifyReq

MsgBecomeHomeReq

--- ~-.a~·~·~pprrr;--· --------- r-C--~O1T~I*eirn~-rrrxu~-i~=--;-·;-·; ·~ -·^i- ·· · ·;^·.-C~·6Lllnl*aP1YI-

II~C~

CallEndWrite

Figure C-3: HomeExclusiveWip: state transition diagram.

137

Ignore
CallFlush

CallBecomeHome
MsgRelease

MsgRinvalidate
MsgWinvalidate

Queue

MsgSharedReq
MsgExclusiveReq

MsgModifyReq
MsgBecomeHomeReq

MsgBecomeHomeReq

MsgExclusive Re•,
MsgModifyReq

Req
2)

Figure C-4: HomeShared: state transition diagram.

138

Ignore
CallFlush

CallBecomeHome
MsgRelease

MsgRinvalidate
MsgWlnvalidate

Queue

(none)

MsgFlush (1)

/CallEndRead (1)

CallStartRead
CallEndRead (2)
MsgSharedReq
MsgFlush (2)

Figure C-5: HomeSharedRip: state transition diagram.

139

Queue

MsgExclusiveReq
MsgModifyReq

MsgBecomeHomeReq

_ _·_I ___C~

I

CallStartRead
CallStartWrite

MsglnvalidateAck
MsglnvalidateAckData

MsgFlush
MsgFlushData

C

Figure C-6: Homelip: state transition diagram.

140

Ignore
CallFlush

CallBecomeHome
MsgRelease

MsgRinvalidate
MsgWlnvalidate

Queue

MsgSharedReq
MsgExclusiveReq

MsgModifyReq
MsgBecomeHomeReq

____ __ ~ 1 _;;Er ~:laW~~_i _ I ____ i_ ~ ·_ ____ _ _ __ _ _ · ^_ · _

IlStartWrite

MsglnvalidateAck
MsglnvalidateAckData

MsgFlush
MsgFlushData
MsgRelease

Figure C-7: HomelipSpecial: state transition diagram.

141

Queue

MsgSharedReq
MsgExclusiveReq

MsgModifyReq
MsgBecomeHomeReq

C'allStartRead

MsgSharedReq (1)

MsgSharedReq (2) --

I
/

Figure C-8: Homelnvalid: state transition diagram.

142

N

N

Ignore
CallFlush

CallBecomeHome
MsgRelease

MsgRInvalidate
MsgWlnvalidate

Queue

(none)

CallStartRead
allStartWrite

MsglnvalidateAck
MsglnvalidateAckData

MsgFlush
MsgFlushData
MsgRelease

Figure C-9: HomeThreeWaylipSpecial: state transition diagram.

143

Ignore

CallFlush
CallBecomeHome
MsgRinvalidate
MsgWlnvalidate

Queue

MsgSharedReq
MsgExclusiveReq

MsgModifyReq
MsgBecomeHomeReq

MsgBecomeHom

MsgBecomeHomeReq
MsgFlush

ishData

Figure C-10: HomeBecomingRemote: state transition diagram.

144

Ignore

CallFlush
CallBecomeHome

MsgRlnvalidate
MsgWinvalidate

Queue

(none)

·I·_·L____ ~___;__^~___ LI___________Rr_;~___E -·~---- Il--ll^-C~-·li·· -- ~-~_*--__ ----~-~. -li--~--·-r- -·-----I_·IXII-IE--?·1. -.-· - -.-- ~ . ·___.~I__~ _

I -'-'-'" -'--"-7•-" "•--•::--" .- •------

Table C.8: HomeExclusive: protocol events and actions.

145

State Event Actions
HomeExclusive CallStartRead read.cnt = 1

state = HomeExclusiveRip
CallStartWrite state = HomeExclusiveWip
CallFlush,

CallBecomeHome do nothing

MsgSharedReq if(request was forwarded)

send MsgNewHomelnfo to requester

send MsgSharedAckData
insert pointer
state = HomeShared

MsgExclusiveReq if(request was forwarded)

send MsgNewHomelnfo to requester
send MsgExclusiveAckData
insert pointer
state = Homeinvalid

MsgModifyReq if(request was forwarded)

send MsgNewHomelnfo to requester
send MsgModifyAckData
insert pointer
state = Homeinvalid

MsgBecomeHomeReq send MsgInvalidateAckData
forward queued messages to requesting node
setup remote region structure
send MsgBecomeHomeDone to original home
state = Remotelnvalid

MsgRelease,

MsgRInvalidate,

MsgWinvalidate do nothing

State Event Actions
HomeExclusiveRip CallStartRead read.cnt += 1

CallEndRead readcnt - = 1
if (read.cnt == 0)

state = HomeExclusive
retry queued messages

CallFlush,

CallBecomeHome do nothing

MsgSharedReq if(request was forwarded)

send MsgNewHomelnfo to requester

send MsgSharedAckData
insert pointer
state = HomeSharedRip

MsgExclusiveReq,
MsgModifyReq,

I MsgBecomeHomeReq queue message
MsgRelease.

MsgRInvalidate,

MsgWinvalidate do nothing

Table C.9: HomeExclusiveRip: protocol events and actions.

State Event Actions

HomeExclusiveWip CallEndWrite state = HomeExclusive
retry queued messages

CallFlush,

CallBecomeHome do nothing
MsgSharedReq,
MsgExclusiveReq,
MsgModifyReq,

MsgBecomeHomeReq queue message
MsgRelease.

MsgRInvalidate,

MsgWinvalidate do nothing

Table C.10: HomeExclusiveWip: protocol events and actions.

146

State Event/Continuation Actions

CallStartRead

CallStartWrite

cont:CallStartWrite
CallFlush,

CallBecomeHome

MsgSharedReq

MsgExclusiveReq

MsgModifyReq

MsgFlush

HomeS h4

readccnt = 1
state = HomeSharedRip
send MsgWinvalidates to remote copies
num.ptrs = # of MsgWinvalidates sent
tx.cont = cont:CallStartWrite
state = Homelip
poll until tx.cont has been invoked
state = HomeExclusiveWip

do nothing

if(request was forwarded)

send MsgNewHomelnfo to requester

send MsgSharedAckData
insert pointer

if(request was forwarded)

send MsgNewHomelnfo to requester

send MsgWinvalidates to remote copies
insert pointer
insert requesting structure
state = Homeinvalid

if(request was forwarded)

send MsgNewHomelnfo to requester

if (requesting node is the only pointer)
send MsgModifyAck
insert pointer
state = Homelnvalid

else
send MsgWInvalidates to remote copies
insert pointer
insert requesting structure
state = Homelnvalid

delete pointer
if (no more pointers)

state = HomeExclusive
retry queued messages

ared: protocol events and actions
continues in Table C.12

Table C.11: HomeShared: protocol events and actions.

147

HomeShared

State Event/Continuation Actions

State Event/Continuation Actions

HomeShared HomeShared: protocol events and actions
continued from Table C.11

MsgBecomeHomeReq if (requesting node is the only pointer)
send MsglnvalidateAck
forward queued messages to requesting node
setup remote region structure
send MsgBecomeHomeDone to original home
state = Remoteinvalid

else
send MsgWinvalidates and MsgNewHomelnfos to remote copies
insert pointer
insert requesting structure
forward queued messages to requesting node
state = HomeBecomingRemote

MsgRelease,

MsgRInvalidate,

MsgWInvalidate do nothing

Table C.12: HomeShared: protocol events and actions (continued).

State Event [Actions
HomeSharedRip CallStartRead read.cnt += 1

CallEndRead read.cnt -= 1
if (read.cnt == 0)

state = HomeShared
retry queued messages

CallFlush.

CallBecomeHome do nothing

MsgSharedReq if(request was forwarded)

send MsgNewHomelnfo to requester
send MsgSharedAckData
insert pointer

MsgFlush delete pointer
if (no more pointers)

state = HomeExclusiveRip
retry queued messages

MsgExclusiveReq,
MsgModifyReq

MsgBecomeHomeReq queue message

MsgRelease.

MsgRInvalidate,

MsgWinvalidate do nothing

Table C.13: HomeSharedRip: protocol events and actions.

148

Table C.14: Homelip: protocol events and actions.

149

State Event _Actions

Homelip CallStartRead wait until state != Homelip
retry CallStartRead

CallStartWrite wait until state != Homelip
retry CallStartWrite

CallFlush,
CallBecomeHome do nothing

MsglnvalidateAck, numrptrs -= I
MsglnvalidateAckData if (num.ptrs == 0)

delete requesting structure list
invoke tx-cont

MsgFlush, if (flush for most recent version)
MsgFlushData numrptrs -= 1

if (num.ptrs == 0)
delete requesting structure list
invoke tx.cont

else
get requesting structure for flushed version
if (flushing node was sending data)

send MsglnvalidateAckData to requester
else

send MsglnvalidateAck to requester
MsgSharedReq,
MsgExclusiveReq,
MsgModifyReq
MsgBecomeHomeReq queue message

MsgRelease,
MsgRInvalidate,
MsgWinvalidate do nothing

Table C.15: HomelipSpecial: protocol events and actions.

150

State Event Actions
HomelipSpecial CallStartRead wait until state != HomelipSpecial

retry CallStartRead
CallStartWrite wait until state != HomelipSpecial

retry CallStartWrite
CallFlush,

CallBecomeHome do nothing
MsginvalidateAck, delete requesting structure list
MsglnvalidateAckData invoke tx.cont with an arg of 0
MsgFlush, if (flush sent after a MsgRelease)
MsgFlushData rcvdflush 1= OWNERFLUSH

else if (flush sent before a MsgRelease)
delete requesting structure list
invoke txcont with an arg of 0

else
get requesting structure for flushed version
if (flushing node was sending data)

send MsginvalidateAckData to requester
else

send MsglnvalidateAck to requester
MsgRelease if (MsgRelease is for most recent version)

delete requesting structure list
invoke tx cont with an arg of 1

MsgSharedReq,
MsgExclusiveReq,
MsgModifyReq

MsgBecomeHomeReq queue message

MsgRinvalidate,

MsgWinvalidate do nothing

Event/Continuation

CallStartRead

cont:CallStartRead

CallStartWrite

cont:CallStartWrite
CallFlush,

MCallBecomeHome

MsgSharedReq

cont:MsgSharedReq

MsgExclusiveReq

send MsgRInvalidate to remote copy
tx.cont = cont:CallStartRead
state = HomelipSpecial
poll until tx-cont has been invoked
if (tx.cont arg == 1)

state = HomeSharedRip
else

state = HomeExclusiveRip
read.cnt = 1
retry queued messages
send MsgWlnvalidate to remote copy
tx.cont = cont:CallStartWrite
state = Homelip
poll until tx-cont has been invoked
state = HomeExclusiveWip

do nothing

if(request was forwarded)

send MsgNewHomelnfo to requester

send MsgRinvalidate to remote copy
tx.cont = cont:MsgSharedReq
state = HomeThreeWaylipSpecial
if (num.ptrs > 0)

state = HomeShared
else

state = HomeExclusive

if(request was forwarded)

send MsgNewHomelnfo to requester

send MsgWInvalidate to remote copy
insert pointer
insert requesting structure

Homelnvalid: protocol events and actions
continues in Table C.17

Table C.16: Homelnvalid: protocol events and actions.

Homelnvalid

State Actions

Event/Continuation Actions

01710 DValid: protocol events and actions

oc ntinued from Table C.16

MsgModifyReq

MsgFlush,
MsgFlushData

MisgBecomeHomeReq

MsgRelease,
MsgRinvalidate,

MsgWinvalidate

if(request was forwarded)

send MsgNewHomelnfo to requester

send MsgWInvalidate to remote copy
insert pointer
insert requesting structure
if (most recent requester flushed)

delete requesting structure list
delete pointer
state = HomeExclusive

else
get requesting structure for flushed version
if (flushing node was sending data)

send MsgInvalidateAckData to requester
else

send MsginvalidateAck to requester

if (requesting node is the only pointer)

send MsglnvalidateAck
forward queued messages to requesting node
setup remote region structure
send MsgBecomeHomeDone to original home
state = Remotelnvalid

else
send MsgWlnvalidates and MsgNewHomelnfos to remote copies
insert requesting structure
forward queued messages to requesting node
state = HomeBecomingRemote

do nothing

Table C.17: HomeInvalid: protocol events and actions (continued).

152

Homeinvalid

State
Event/Continuation

]Actions

I

State

HomeThreeWaylipSpecial

Event

CallStartRead

CallStartWrite

CallFlush,

CallBecomeHome
MsglnvalidateAck,
MsglnvalidateAckData

MsgFlush,
MsgFlushData

MsgRelease

MsgSharedReq,
MsgExclusiveReq,
MsgModifyReq

MsgBecomeHomeReq
MsgRinvalidate.

MsgWinvalidate

Actions
wait until state != HomeThreeWaylipSpecial
retry CallStartRead
wait until state != HomeThreeWaylipSpecial
retry CallStartWrite

do nothing
if ((rcvdf/ush & REQUESTERFLUSH) != 0)

insert pointer
delete requesting structure list
invoke tx.cont with an arg of 0
if (flush sent by previous owner after a MsgRelease)

rcvdflush 1= OWNERFLUSH
else if (flush sent by requester)

rcvdflush 1= REQUESTERFLUSH
else if (flush sent before a MsgRelease)

insert pointer
send MsgSharedAckData to requester
delete requesting structure list
invoke tx.cont with an arg of 0

else
get requesting structure for flushed version
if (flushing node was sending data)

send MsgInvalidateAckData to requester
else

send MsglnvalidateAck to requester
if (MsgRelease is for most recent version)

if ((rcvd.flush & OWNERFLUSH) != 0)
delete pointer

if ((rcvd-lush & REQUESTERFLUSH) == 0)
insert pointer

delete requesting structure list
invoke tx-cont with an arg of 1

queue message

do nothing

Table C.18: HomeThreeWaylipSpecial: protocol events and actions.

Table C.19: HomeBecomingRemote: protocol events and actions.

154

State Event Actions

HomeBecomingRemote CallStartRead wait until state != HomeBecomingRemote
retry CallStartRead

CallStartWrite wait until state != HomeBecomingRemote
retry CallStartWrite

CallFlush,
CallBecomeHome do nothing
MsgSharedReq,
MsgExclusiveReq,
MsgModifyReq forward message to new home
MsgFlush, get requesting structure for flushed version
MsgFlushData if (flushing node was sending data)

send MsglnvalidateAckData to requester
else

send MsglnvalidateAck to requester
MsgBecomeHomeReq Send MsgNegativeAck to requester
MsgBecomeHomeDone setup remote region structure

state = Remotelnvalid
MsgRinvalidate,
MsgWinvalidate do nothing

C.3 Remote-Side State Machine

Figures C-11 through C-19 show the state transition diagrams for the nine remote-side protocol states.

These figures are similar to those shown for the home-side state machine (Figures C-1 through C-10),

with one minor difference. Because the remote side of the CRL protocol only employs a limited form

of message queuing (setting a flag when an invalidation message was received at an inconvenient

time), the Queue box is instead labeled Set rcvd_inv flag. This is true for every state except for the

RemoteBecomeHomeReq state which must queue messages as the node is becoming the new home

node for the region.

As was the case in Figures C-1 through C-10 (for the home-side state machine), Figures C-11

through C-19 show only the state transitions that occur in response to protocol events. A more

complete description of the remote-side state machine (in the form of pseudocode) can be found in

Tables C.20 through C.28.

Each of Tables C.20 through C.28 consists of three columns. The first and second columns

contain the names of the relevant protocol state and event types, respectively. The third column

contains pseudocode for the actions that should be taken when the corresponding event occurs in the

corresponding state.

Beyond the protocol state, three other components of the remote-side protocol metadata associated

with each region are referenced in Tables C.20 through C.28. These components are summarized

below:

read.cnt: This field is used to count the number of local read operations in progress (simultaneously)

for the associated region.

rcvdinv: This field is used to "buffer" an invalidation message that cannot be processed immedi-

ately upon reception because an operation is in progress on the corresponding region.

num-invalidate_acks: In the Three-Message-Invalidate protocol, this field is used to count the num-

ber of invalidate acknowledgment messages that will be arriving.

As mentioned earlier, the Floating-Home-Node protocol was built using the Three-Message-

Invalidation protocol as the base. Similarly, the state diagrams and pseudocode from the Three-

Message-Invalidation protocol were used as a base for this appendix, and changes were marked as

follows:

* Additions to the state diagram are bolded. This includes both the event names, and the arrows.

* Additions to the pseudocode are boxed.

* Deletions are crossed out.

A couple significant changes from the Three-Message-Invalidation should be noted. First, there

are now transitions from remote states to home states. These transitions are followed on completion

155

of a become home request. Second, remote nodes can now receive request messages. This may occur

if the request was sent by a node with stale region home information. In these cases, if the receiving

node is the original home node, then the message is forwarded to the current home node. If the

receiving node is some other previous home node, then the message is forwarded to the original home

node.

Newly allocated remote copies of regions (caused by calls to rgnmap that cannot be satisfied

locally) start in the Remoteinvalid state.

156

MsgSharedReq
MsgExclusiveReq

MsgModifyReq
MsgBecomeHomeReq

MsaBecomeHomeDone

f'sAI I mf fU

CallStartR
CallStartWV

CallStartWrite-.

ICallStartRead

I

Figure C-11: Remoteinvalid: state transition diagram.

157

Ignore

CallFlush
MsgRinvalidate
MsgWlnvalidate

Set rcvd_inv flag

(none)

c *c114

J#

(C

3(

MsgExclusiveAckData
MsgModifyAckData
MsgSharedAckData

;glnvalidateAck
;glnvalidateAckData

sgNewHomelnfo
sgSharedReq
sgExclReq
saModifvRea

MsgBecomeHomeReq

Figure C-12: RemotelnvalidReq: state transition diagram.

158

Ignore

MsgRInvalidate
MsgWlnvalidate

Set rcvd_inv flag

(none)

_ _~·_____ i·l_____ __~___ ___I___ 1~ I-i~--~LF--^~P-~-- -

CallBecomeHome

MsgWlnvalldate

lStartWdte
CallSta

Nk

Figure C-13: RemoteShared: state transition diagram.

159

leq

Ignore

MsgRInvalidate

Set rcvdinv flag

(none)

a A- -IA I :ý

IN. -

a

MsgWlnvalidate
MsgRInvalidate

MsgMoaiTyAcKuata
MsglnvalidateAck
MsglnvalidateAckData

MsgSharedReq
MsgExclusiveReq
MsgModifyReq
MsgBecomeHomeReq
MsgNewHomelnfo

Figure C-14: RemoteSharedReq: state transition diagram.

160

k

Ignore

(none)

_1_1___·~_~~·;= ___~1___ __~)______ ~__~_ _ _~·_ _)··

) CallStartRead
CalllEndRead (3)

MsgSharedReq
Msgrxclusiveneq
MsgModifyReq
MsaBecomeHomeRea

Figure C-15: RemoteSharedRip: state transition diagram.

Set rcvd_inv flag

MsgWinvalidate

v •

CallBecomeHome

Call

CallStartF

MsgSharedReq
MsgExclusiveReq

MsgModifyReq
MsgBecomeHomeReq \/

Ignore Set rcvd_inv flag

(none) (none)

Figure C-16: RemoteModified: state transition diagram.

162

I "Ww

CallEndRead (2)

MsgRInvalidate

CallEndR (1)

Figure C-17: RemoteModifiedRip: state transition diagram.

163

C
CallStartRead
CallEndRead (:
MsgSharedF
MsgExclusih
MsgModifyR
MsgBecome

Ignore

CallFlush

;'-. ------ ·----·--- ·---- - -- ;--·-·-- ~nr~crm~-aa·~n, - ;asTlz~nlr-·n-;--··- - ;·iire~~nulrCw-.

CallEndWrite (2)

MsgSharedReq
MsgExclusiveReq
MsgModifyReq
MsgBecomeHomeReq

NI'

ICallEndWrite (1)

Figure C-18: RemoteModifiedWip: state transition diagram.

164

Ignore

CallFlush

Set rcvd_inv flag

MsgRInvalidate
MsgWInvalidate

___;_. _·___~1____~ ; ~_ _*____in·nl_______Yj·____~_·_;l~_l _ · _ _ I;L ~I~___·

Msginvalidatei
MsglnvalldateAc

(2)
MsgWlnvalidate

Figure C-19: RemoteBecomeHomeReq:
state transition diagram.

165

Ignore

(none)

Queue

MsgSharedReq
MsgExclusiveReq

MsgModifyReq
MsgBecomeHomeReq

__~,--.I , ~Yr~·_---~i_~YU--LLYIi

_
--

x-

Event

CallStartRead

cont:CallStartRead

CallStartWrite

cont:CallStartWrite

CallBecomeHome

CallFlush

MsgSharedReq,

MsgExclusiveReq,

MsgModifyReq

I MsgBecomeHomeReq I

MsgBecomeHomeDone

MsgRinvalidate,
MsgWlnvalidate

State

do nothing

Table C.20: RemoteInvalid: protocol events and actions.

166

Remotelnvalid

Actions

if(this is original home AND

a become home request is in progress)

poll until become home request is complete

send MsgSharedReq to home
tx.cont = cont:CallStartRead
state = RemotelnvalidReq
poll until tx.cont has been invoked
read-cnt = 1
state = RemoteSharedRip

if(this is original home AND

a become home request is in progress)

poll until become home request is complete

send MsgExclusiveReq to home
tx.cont = cont:CallStartWrite
state = RemotelnvalidReq
poll until tx.cont has been invoked
state = RemoteModifiedWip

if(this is original home AND
a become home request is in progress)

poll until become home request is complete
setup home region structure
send MsgBecomeHomeReq to original home
state = RemoteBecomeHomeReq
poll until this is the home node
do nothing

if(this is the original home)

forward message to current home node

else

forward message to original home

if(become home request in progress)

send MsgNegativeAck
else

forward message to current home node

forward message to previous home

State

RemotelnvalidReq

Event

MsgSharedAckData,
MsgExclusiveAckData,

MsgModifyAckData

MsglnvalidateAck,
MsglnvalidateAckData

MsgSharedReq,

MsgExclusiveReq,

MsgModifyReq

MsgBecomeHomeReq

MsgNewHomelnfo

MsgRinvalidate,
MsgWInvalidate

Actions

if (numinvalidate.acks is unset)

numinvalidate.acks = # of MsglnvalidateAcks

expected
numinvalidateacks-= 1

if (numinvalidate.acks == 0)

I invoke tx.cont
if (numjnvalidate.acks is unset)

numinvalidate.acks = # of MsglnvalidateAcks
expected

numinvalidateacks -= 1
if (numinvalidate.acks == 0)

invoke tx.cont

if(this is the original home)

forward message to current home node

else

forward message to original home

if(become home request in progress)

send MsgNegativeAck
else

forward message to current home node

set region home information

if (numinvalidate.acks is unset)
numJnvalidateacks = # of MsglnvalidateAcks

expected
numinvalidate.acks -= 1
if (numjnvalidate.acks == 0)

invoke tx.cont

do nothing

Table C.21: RemotelnvalidReq: protocol events and actions.

167

Table C.22: RemoteShared: protocol events and actions.

168

State Event Actions
RemoteShared CallStartRead read-cnt = 1

state = RemoteSharedRip
CallStartWrite send MsgModifyReq to home

tx.cont = cont:CallStartWrite
state = RemoteSharedReq
poll until tx.cont has been invoked

cont:CallStartWrite state = RemoteModifiedWip
CallFlush send MsgFlush to home

state = Remoteinvalid

Ca llBecomeHome if(this is original home AND
a become home request is in progress)

poll until become home request is complete
setup home region structure
send MsgBecomeHomeReq to original home
state = RemoteBecomeHomeReq
poll until this is the home node

MsgSharedReq, if(this is the original home)

MsgExclusiveReq, forward message to current home node

MsgModifyReq else

forward message to original home

MsgBecomeHomeReq if(become home request in progress)
send MsgNegativeAck

else
forward message to current home node

MsgRinvalidate do nothing
MsgWlnvalidate if (need to send data)

send MsglnvalidateAckData to requester
else

send MsglnvalidateAck to requester
state = Remotelnvalid

State (Event Actions

RemoteSharedReq MsglnvalidateAck, if (numinvalidate-acks is unset)
MsglnvalidateAckData numinvalidate.acks = # of MsglnvalidateAcks

expected
numinvalidate.acks -= 1
if (numinvalidate.acks == 0)

invoke tx-cont
MsgWinvalidate, if (need to send data)
MsgRinvalidate send MsglnvalidateAckData to requester

else
send MsglnvalidateAck to requester

state = RemotelnvalidReq
MsgModifyAck,
MsgModifyAckData invoke tx.cont
MsgSharedReq, if(this is the original home)

MsgExclusiveReq, forward message to current home node

MsgModifyReq else
forward message to original home

MsgBecomeHomeReq if(become home request in progress)
send MsgNegativeAck

else
forward message to current home node

MsgNewHomeInfoj set region home information
if (numinvalidate.acks is unset)

numinvalidate-acks = # of MsglnvalidateAcks
expected

numinvalidate.acks -= 1
if (numinvalidate.acks == 0)

invoke tx.cont

Table C.23: RemoteSharedReq: protocol events and actions.

State Event Actions
RemoteSharedRip CallStartRead read.cnt += 1

CallEndRead read.cnt-= 1
if (read.cnt == 0)

if (rcvdcinv == 0)
state = RemoteShared

else
if (need to send data)

send MsglnvalidateAckData to requester
else

send MsglnvalidateAck to requester
rcvdinv = 0
state = Remoteinvalid

CallFlush do nothing
MsgWinvalidate rcvd-inv = WInvalidate
MsgSharedReq, if(this is the original home)

MsgExclusiveReq, forward message to current home node

MsgModifyReq else
forward message to original home

MsgBecomeHomeReq if(become home request in progress)
send MsgNegativeAck

else
forward message to current home node

Table C.24: RemoteSharedRip: protocol events and actions.

169

State Event Actions
RemoteModified CallStartRead read.cnt = 1

state = RemoteModifiedRip
CallStartWrite state = RemoteModifiedWip
CallFlush send MsgFlushData to home

state = Remotelnvalid
CallBecomeHome if(this is original home AND

a become home request is in progress)
poll until become home request is complete

setup home region structure
send MsgBecomeHomeReq to original home
state = RemoteBecomeHomeReq
poll until this is the home node

MsgRinvalidate send MsglnvalidateAckData to requester
if (requester != home)

send MsglnvalidateAckData to home
state = Remotelnvalid

MsgWInvalidate send MsglnvalidateAckData to requester
state = Remotelnvalid

MsgSharedReq, if(this is the original home)

MsgExclusiveReq, forward message to current home node

MsgModifyReq else
forward message to original home

MsgBecomeHomeReq if(become home request in progress)
send MsgNegativeAck

else
forward message to current home node

Table C.25: RemoteModified: protocol events and actions.

State Event Actions
RemoteModifiedRip CallStartRead read.cnt += 1

CallEndRead read.cnt -= 1
if (read.cnt == 0)

if (rcvd.inv == 0)
state = RemoteModified

else
send MsglnvalidateAckData to requester
if ((rcvd-inv == RInvalidate) AND (requester

!= home))
send MsglnvalidateAckData to home

rcvdinv = 0
state = Remoteinvalid

CallFlush do nothing
MsgRInvalidate send MsgRelease to home

if (requester != home)
send MsgInvalidateAckData to requester

state = RemoteSharedRip
MsgWinvalidate rcvdinv = WInvalidate
MsgSharedReq, if(this is the original home)

MsgExclusiveReq, forward message to current home node

MsgModifyReq else
forward message to original home

MsgBecomeHomeReq if(become home request in progress)
send MsgNegativeAck

else
forward message to current home node

Table C.26: RemoteModifiedRip: protocol events and actions.

170

State Event Actions
RemoteModifiedWip CallEndWrite if (rcvdinv == 0)

state = RemoteModified
else

send MsglnvalidateAckData to requester
if ((rcvdinv == RInvalidate) AND (requester != home))

send MsgInvalidateAckData to home
rcvd-inv = 0
state = Remoteinvalid

CallFlush do nothing
MsgRInvalidate rcvdinv = RInvalidate
MsgWinvalidate rcvdJnv = WInvalidate

MsgSharedReq, if(this is the original home)

MsgExclusiveReq, forward message to current home node

MsgModifyReq else
forward message to original home

MsgBecomeHomeReq if(become home request in progress)

send MsgNegativeAck
else

forward message to current home node

Table C.27: RemoteModifiedWip: protocol events and actions.

State

RemoteBecomeHomeReq

Event Actions

if (number of expected MsglnvalidateAcks is 0)

setup home region structure
state = HomeExclusive
retry queued messages

else
if (numinvalidate-acks is unset)

num-invalidate.acks = # of MsglnvalidateAcks
expected

num-invalidate.acks -= 1
if (numinvalidate.acks == 0)

invoke tx.cont
send MsgBecomeHomeDone to ordinal home
state = HomeExclusive
retry queued messages

if (need to send data)
send MsglnvalidateAckData to requester

else
send MsglnvalidateAck to requester

send MsgBecomeHomeReq to original home

Table C.28: RemoteBecomeHomeReq: protocol events and actions.

MsglnvalidateAck,
MsglnvalidateAckData

MsgWlnvalidate,
MsgRinvalidate

MsgNegativeAck
MsgSharedReq,
MsgExclusiveReq,
MsgModifyReq,
MsgBecomeHomeReq queue message

172

Bibliography

[1] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David Kranz, John Ku-
biatowicz, Beng-Hong Lim, Ken Mackenzie, and Donald Yeung. The MIT Alewife Machine:
Architecture and Performance. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 2-13, June 1995.

[2] Anant Agarwal, David Chaiken, Kirk Johnson, David Kranz, John Kubiatowicz, Kiyoshi Kuri-
hara, Beng-Hong Lim, Gino Maa, and Dan Nussbaum. The MIT Alewife Machine: A Large-Scale
Distributed-Memory Multiprocessor. Technical Report MIT/LCS/TM-454, MIT Laboratory for
Computer Science, June 1991.

[3] John B. Carter. Efficient Distributed Shared Memory Based On Multi-Protocol Release Con-
sistency. PhD thesis, Rice University, August 1993.

[4] Satish Chandra, James R. Larus, and Anne Rogers. Where is Time Spent in Message-Passing
and Shared-Memory Programs? In Proceedings of the Sixth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages 61-73, October
1994.

[5] Satish Chandra, Brad Richards, and James R. Larus. Teapot: Language Support for Writing
Memory Coherence Protocols. In Proceedings of Conference on Programming Language Design
and Implementation (PLDI), May 1996.

[6] Chi-Chao Chang, Grzegorz Czajkowski, Chris Hawblitzel, and Thorsten von Eicken. Low-
Latency Communication on the IBM RISC System/6000 SP. To appear in Proceedings of
Supercomputing '96, November 1996.

[7] Chi-Chao Chang, Grzegorz Czajkowski, and Thorsten von Eicken. Design and Performance of
Active Messages on the IBM SP-2. Technical Report CS-TR-96-1572, Cornell University, 1996.

[8] Comparison of MPL and MPI latency and bandwidth. Available on the World Wide Web at
URL http://www.rs6000.ibm.com/software/sp.products/performance/switch.html.

[9] Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, loannis Schoinas, Mark D. Hill, James R.
Larus, Anne Rogers, and David A. Wood. Application-Specific Protocols for User-Level Shared
Memory. In Proceedings of Supercomputing '94, pages 380-389, November 1994.

[10] A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam. PVM 3
User's Guide and Reference Manual. Technical Report ORNL/TM-12187, Oak Ridge National
Laboratory, May 1993.

[11] Sandeep K. Gupta, Alejandro A. Schiffer, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwae-
nepoel. Integrating Parallelization Strategies for Linkage Analysis. Computers and Biomedical
Research, 28:116-139, 1995.

[12] Erik Hagersten, Anders Landin, and Seif Haridi. DDM - a Cache-Only Memory Architecture.
IEEE Computer, pages 44-54, September 1992.

173

[13] Mark D. Hill, James R. Larus, and David A. Wood. Tempest: A Substrate for Portable Parallel
Programs. In Proceedings of COMPCON Spring 95, pages 327-332, March 1995.

[14] IBM SP/2 Home Page. Available on the World Wide Web at URL http://www.rs6000.ibm.com/.

[15] International Business Machines. IBM AIX Parallel Environment, Operation and Use, Release
2.0, June 1994.

[16] International Business Machines. IBM AIX Parallel Environment, Parallel Programming Sub-
routine Reference, Release 2.0, June 1994.

[17] International Business Machines. IBM AIX Parallel Environment, Programming Primer, Re-
lease 2.0, June 1994.

[18] Kirk L. Johnson. High-Performance All-Software Distributed Shared Memory. PhD thesis,
Massachusetts Institute of Technology, Laboratory for Computer Science, 1995.

[19] Kirk L. Johnson, Joseph Adler, and Sandeep K. Gupta. CRL 1.0 Software Distribution, August
1995. Available on the World Wide Web at URL http://www.pdos.lcs.mit.edu/crl/.

[20] Kirk L. Johnson, Joseph Adler, and Sandeep K. Gupta. CRL version 1.0 User Documentation,
August 1995. Available on the World Wide Web at URL http://www.pdos.lcs.mit.edu/crl/.

[21] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL: High-Performance All-
Software Distributed Shared Memory. In Proceedings of the Fifteenth Symposium on Operating
Systems Principles, pages 213-228, December 1995.

[22] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaenepoel. TreadMarks: Distributed
Shared Memory on Standard Workstations and Operating Systems. In Proceedings of the 1994
Winter Usenix Conference, pages 115-131, January 1994.

[23] Kendall Square Research. KSR-1 Technical Summary, 1992.

[24] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh Ghar-
achorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop Gupta, Mendel
Rosenblum, and John Hennessy. The Stanford FLASH Multiprocessor. In Proceedings of the
21st Annual International Symposium on Computer Architecture, pages 302-313, April 1994.

[25] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M. Horowitz, and
M. Lam. The Stanford Dash Multiprocessor. IEEE Computer, pages 63-79, March 1992.

[26] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy. The DASH
Prototype: Logic Overhead and Performance. IEEE Transactions on Parallel and Distributed
Systems, pages 41-61, January 1993.

[27] Kevin Lew. A Case Study of Shared Memory and Message Passing: The Triangle Puzzle.
Master's thesis, Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science, 1995.

[28] Kevin Lew, Kirk Johnson, and Frans Kaashoek. A Case Study of Shared-Memory and Message-
Passing Implementations of Parallel Breadth-First Search: The Triangle Problem. In Proceedings
of the Third DIMACS International Algorithm Implementation Challenge Workshop, October
1994.

[29] Kai Li. IVY: A Shared Virtual Memory System for Parallel Computing. In Proceedings of the
International Conference on Parallel Computing, pages 94-101, 1988.

[30] Honghui Lu, Sandhya Dwarkadas, Alan L. Cox. and Willy Zwaenepoel. Message Passing Versus
Distributed Shared Memory on Networks of Workstations. In Proceedings of Supercomputing
'95, December 1995.

174

[31] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Interna-
tional Journal of Supercomputer Applications and High Performance Computing, 8(3-4):169-
416, fall/winter 1994.

[32] PVM Home Page. Available on the World Wide Web at URL http://www.epm.ornl.gov/pvm/.

[33] Steve K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: User-Level
Shared Memory. In Proceedings of the 21st Annual International Symposium on Computer
Architecture, pages 325-336, April 1994.

[34] E. Rosti, E. Smirni, T.D. Wagner, A.W. Apon, and L.W. Dowdy. The KSR1: Experimentation
and Modeling of Poststore. In Proceedings of ACM SIGMETRICS '93, pages 74-85, May 1993.

[35] Ashley Saulsbury, Tim Wilkinson, John Carter, and Anders Landin. An Argument for Simple
COMA. In Proceedings of the First Symposium on High Performance Computer Architecture,
pages 276-285, January 1995.

[36] Vaidy Sunderam, Al Geist, Jack Dongarra, and Robert Mancheck. The PVM Concurrent
Computing System: Evolution, Experiences, and Trends. Parallel Computing, 20(4):531-545.

[37] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active
Messages: A Mechanism for Integrated Communication and Computation. In Proceedings of the
19th Annual International Symposium on Computer Architecture, pages 256-266, May 1992.

[38] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta.
The SPLASH-2 Programs: Characterization and Methodological Considerations. In Proceedings
of the 22nd Annual International Symposium on Computer Architecture, pages 24-36, June
1995.

175

