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Abstract

Vessels in the body are elastic and collapse when the transmural pressure becomes

sufficiently negative. Once collapse and subsequent flow limitation occur, these vessels

often exhibit self-excited, flow-induced oscillations, commonly referred to as flutter. The

exact mechanism behind this phenomenon is not well understood.

Solid mechanics capability was added to the computational fluid dynamics package

NEKTON, making possible simulation of general fluid-structure interactions. Continuum

spectral elements were used for the solid; the capability of Arbitrary-Eulerian-Lagrangian

(ALE) Formulation in NEKTON was used to track both fluid and solid elements. Using

the segregated approach to couple the two domains, the completed code was able to

simulate two-dimensional fluid-structure interactions by solving the full Navier-Stokes

equation coupled with full structural equations for the solid wall with geometric

nonlinearities taken into account. This is a significant improvement over other models

which rely on several simplifying assumptions concerning the fluid dynamics (e.g., one-

dimensional flow or lubrication theory) and/or the structural mechanics (e.g., tube law,

membrane or thin plate theory), leaving uncertainty as to the realism of their predictions.

The results are presented for both steady and unsteady flow in a two-dimensional

channel with a compliant segment on one wall, similar to the geometry recently used by

Pedley and colleagues. The results reproduce the membrane solutions of Luo and Pedley.

The flow limitation simulations suggest that wave speed limitation can be established for

both tension-dominant and bending-dominant regimes. The dispersion relations predict the

limiting flow rate well when the wavelength is taken to be the length of the collapsible



segment. The unsteady results suggest that this segregated approach, in which the solution

is alternately obtained for the fluid and solid, may not be capable of simulating unsteady

flows in which the boundary motions arise from interactions with the fluid. The approach

works well, however, for situations in which the fluid is responding to motion of the

boundary. For the case of flow-induced wall motions, it may be necessary to resort to

solution of the fully-coupled equations. There appear to be no such constraint, however,

on the solution of steady flows.
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Chapter 1

Introduction

Virtually all of the vessels in the body are elastic and collapse when the transmural (internal

minus external) pressure becomes sufficiently negative. Figure 1.1 shows the behavior of

flow rate in a typical collapsible tube setting. With the upstream transmural pressure fixed,

the reduction in the downstream pressure produces the initial increase in the flow rate.

During this process, the tube continues to collapse into an elliptic shape. As the

downstream pressure continues to decrease, there exists a critical pressure at which the

flow rate ceases to increase. This phenomenon is referred to as flow limitation. Once flow

limitation occurs, these vessels often exhibit self-excited, flow-induced oscillations

(referred to as flutter) which are manifested as audible sounds, medically referred to as

Korotkoff sounds in blood flow or wheezing in the lungs [49, 63]. Physiologically,

examples of these phenomena include blood flow in arteries and veins, air flow in the lungs

during a forced expiration and coughing, and uretheral flow dynamics [28, 49, 70].

This phenomenon has been realized in many different experimental settings. A

typical laboratory experimental setup is referred to as Starling Resistor and shown in Figure

1.2. The collapsible tubing is surrounded by a sealed chamber in which the external

pressure can be independently adjusted. Incompressible fluid flows along the tube from a

constant-head reservoir, and the flow rate can be controlled by adjusting the resistances of

the rigid parts of the system upstream and downstream of the collapsible segment. Bertram



[8, 9, 10, 11, 12] , in particular, has revealed many different types of oscillations (both

periodic and chaotic) and has demoflstrated that the oscillations are characteristic of a highly

nonlinear system of great complexity. Many experiments are performed with variety of

parameter settings to mimic the actual physiological situations. The general observation is

that there are at least two types of oscillation. One is of a relatively large amplitude with

low frequency (milking) and is dependent on external conditions (both upstream and

downstream of the collapsed region). The choke point (the narrowest portion of the tube)

tends to move upstream, opens, and then reforms downstream of the tube. The other,

flutter, is localized (choke point does not move upstream) and generally of a much higher

frequency. Gavriely et al. [30] observed that flutter only occurred in the presence of flow

limitation. This observation suggests that two phenomena are intrinsically related and

better examinations are required to understand the physics behind these phenomena.

Flow
ions

d)

Pu- Pd

Figure 1.1 The behavior of a collapsible tube when downstream
pressure is continuously decreased while flow and pressure drop are
monitored. Both flow limitation and oscillations are witnessed.
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'I
Figure 1.2 Experimental arrangement for studying flow through a
collapsible tube (from Pedley [63]). This setup is often referred to as a
Starling Resistor.

1.1 Theoretical Models

Numerous theoretical models have been developed to better understand both flow limitation

and the flutter mechanism, but no model is free of approximations. Many earlier theoretical

models can be categorized as either lumped-parameter or one-dimensional models. In

lumped-parameter models [9, 21, 47], the parameters of interest are represented by simple

time-dependent variables. These models are composed of nonlinear ordinary differential

equations which can be easily integrated, but they are severely limited due to their

simplicity. Many real effects are missing, including the inability to incorporate wave

propagation, and the flutter phenomenon cannot be modeled. Nevertheless they

contributed to the basic understanding of the intrinsic coupling between the behavior of the

collapsible segment and the conditions elsewhere in the system, especially during unsteady

flow [15, 49].

In contrast, the contribution from one-dimensional models has been more

significant. In these models, the flow variables (the fluid pressure, the cross-sectional

area, and the cross-sectionally averaged velocity) are taken to be functions of time and
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longitudinal distance. The flow variables are determined through equations of continuity,

momentum, and the tube law. The last equation relates the transmural pressure to the local

cross-sectional area, neglecting the effects of wall mass, axial bending stiffness, membrane

tension, and viscoelasticity. The most notable work was done by Shapiro [48, 70] , who

was able to characterize collapsible flow phenomena for both steady and unsteady cases.

He and others [14, 22, 23, 24, 25, 60, 71, 72] have contributed to the understanding of

flow limitation, which occurs when the flow reaches the speed of propagation of small-

amplitude pressure waves. The wave speed is given by:

2 Ac d(p-p) (1.1)

Pf dA

where Ac is the cross-sectional area of the tube, and pf signifies the fluid density, and the

derivative is the slope of the tube law relationship. When the local wave speed (c) reaches

the flow velocity (U), waves can no longer propagate upstream to further accelerate the

flow, and therefore upstream flow condition cannot be altered. Thus flow is "choked"

when S = U/c = 1. This criterion is analogous to the Mach number in compressible flow or

the Froude number in open channel flow approaching unity. This explanation is the

foundation of "traditional" theory for flow limitation.

These preliminary works also demonstrated the possibility of supercritical flows

and spontaneous deceleration to a subcritical speed some distance downstream [43, 50,

59]. This transition is termed the "elastic jump", which is analogous to a shock wave in

gas dynamics or a hydraulic jump in free surface flows.

Despite contributions to the understanding of flow limitation, these one-dimensional

models with simplified wall mechanics cannot simulate subsequent oscillations realistically.

Most notable among the deficiencies of these models are: the assumption of one-

dimensional flow which fails to account for such phenomena as flow separation; and
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neglect of longitudinal tension, bending stiffness, wall inertia, and viscoelasticity in the

equation describing wall motion. The importance of these effects has already been

demonstrated by a number of previous studies [30, 34, 35, 37]. Hence it is essential that

the theoretical models be multi-dimensional and incorporate realistic wall characteristics

even though such models require substantial computational effort.

'An effort has been made to overcome the limitations of the above models by

incorporating important features of the real system such as viscous energy loss and

longitudinal tension in the wall [15, 44, 64]. These studies emphasized understanding of

the actual oscillations and they showed that the dynamics of oscillations are dominated by

longitudinal movement of the point of flow separation [15].- Specifically, energy loss and

pressure recovery downstream of the choke point are required to sustain oscillations.

While these models are capable of reproducing the experimental observations qualitatively,

they still rely on several simplifying assumptions [15] and contain ad-hoc formulations that

are subject to uncertainty [44, 45, 46].

A notable set of theoretical works was developed by Grotberg et al. [32, 33, 34,

35, 36, 37] who combined 2-D fluid flow with the one-dimensional Von Karman plate

theory for the solid [52]. Their analysis was limited initially to small amplitude (small

perturbation from the undeformed state) wall deflection since linear stability analysis was

performed, but their works contributed to the understanding of flutter by identifying the

key parameters (ratio of fluid to wall damping, mass ratio, and ratio of bending stiffness to

elastance) associated with the critical flutter speed. Their initial work is characterized by

potential flow theory, but they later used Darcy's law to represent the resistance of the

fluid. One of the key findings was that flow limitation can occur without flow being

choked (S = 0.3 instead of S = 1). This is shown experimentally by Gavriely et al. [29,

30] and later predicted theoretically by Grotberg and Reiss [33, 34]. This raises the key

question of whether the steady wave limitation theory is appropriate in predicting flow
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limitation when unsteadiness and wall inertia are involved. Equation 1.1 is based on the

tube law and therefore wall density is completely ignored. The tube law may be inadequate

to account for the actual elastic wave speed in the highly unsteady flow situation. Another

key finding by Grotberg and Reiss [34] is that fluid viscous damping is required to predict

flutter. Otherwise, only static divergence instability (continuous decrease of the cross-

sectional area), similar to theoretical analysis of Weaver & Paidoussis [74] and Matsuzaki

et al. [57, 58], is predicted. This finding settled the ongoing contradiction between the

theoretical prediction (which takes into account of solid damping only) and the experimental

observation in which flutter was witnessed.

More recently, Grotberg and Shee [35] showed that having Darcy friction is

equivalent to solving the Orr-Sommerfeld system and the same conclusion about fluid

damping requirement was reached. Currently, there is no complete theoretical study

involving the full Orr-Sommerfeld system pertaining to the flow in flexible channels. More

careful analysis, similar to studies in panel flutter aeroelasticity [7, 18, 19, 20, 51, 54], is

required for better understanding of the complex coupling behavior of the two domains.

1.2 Recent Developments

In recent years, the trend has been to abandon the use of tube law and model the compliant

wall as a thin elastic membrane [53, 55, 56, 67, 73]. Pedley [64] examined low Reynolds

number flow using lubrication theory. However, as the longitudinal tension in the wall

became small, the slope at the downstream end became ever steeper, resulting in an

inconsistency in the approximation used. This is the same limitation of Heil [38, 39] , who

also examined steady lubrication theory with three-dimensional shell equations for the

solid. Using the full Navier-Stokes solver for the fluid, Luo and Pedley [55, 56] solved

for steady and unsteady cases but kept the wall as an elastic membrane. Since the bending
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stiffness plays an important role during large deformation, more exact models of the

compliant boundary (preferably a two-dimensional beam or in three dimensions as a shell)

would give more insight into flutter phenomena.

In summary, full understanding of flow through a collapsible tube is not available

despite the existence of many different theoretical models. The understanding of flow

limitation based on the steady wave speed theory may not be adequate. Flow-induced

flutter involves a complex interaction between the fluid and solid, and a coupling of the two

domains is essential to the understanding of the phenomena. The need for a better model,

which can simulate the coupling effect in the absence of these assumptions and

simplifications is clearly evident.

1.3 Overview of Fluid-Structure Interactions

Problems involving fluid-structure interactions occur in a wide variety of engineering

problems and therefore have attracted the interest of many investigators from different

engineering disciplines. As a result, much effort has gone into the development of general

computational methods for fluid-structure systems. It is important to realize that our

computational approach is yet another attempt to understand this complex coupled system.

The fluid-structure interaction involves two physically different domains in relative

motion and can be broadly classified into three Categories as shown in Figure 1.3.

Category (A) includes problems with large relative motion such as in flutter of aircraft

wings or oscillations of a suspension bridge. Compressibility effects are usually not

important in these situations. Category (B) includes problems with limited flow

displacement for short duration. The examples are explosion or impact; compressibility

plays an important role. Category (C) includes problems with limited flow displacement
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but of long duration. Here, such phenomenon as periodic response of offshore structures

to waves, acoustic vibrations or ship motions are considered [61, 76].

CATEW" A

... .. ,~ a/ #7i:" ---·
1, C

(.,·

Figure 1.3 Three category classifications for problems in fluid-
structure interactions (from Zienkiewicz and Bettess [76]).

The key distinction in above classifications is the fluid behavior. Traditional

computational methods have concentrated (with great success) on Categories (B) and (C) in

which fluid motion remains small while substantial interaction occurs. These are easier to

deal with since considerable simplifications are possible in analyzing the fluid motion. In

this limit, velocities are small enough for the convective term to be omitted. Hence fluid

can be treated as an elastic solid with a negligible shear modulus. Some investigators

introduced the pressure as primary unknowns (field variables) in the fluid and

displacements in the solid [4, 6]. There are other variations as primary fluid unknowns

(such as fluid potential, hydrostatic pressure etc.) exist in the literature and the results are

I_ _ -- . .



quite satisfactory in the simulations involving these categories. (see Olson [61] for more

detail).

Only recently have Category (A) cases been pursued extensively. Some of the

models are already explained in the previous section. In all cases, there are self-imposed

limitations (an either the fluid and/or solid modeling) to ensure feasibility in computational

analysis. To the best of our knowledge, there is no computational code robust enough to

handle general situations in Category (A). The current model attempts to remove many of

the assumptions of other models. The scope is limited to flow through a collapsible

channel for now since this problem provided the motivation for our current research. Due

to the generality of our approach, however, this model is also capable of simulating many

other types of fluid-structure interaction problems included in Categories (A), (B), and (C).

1.4 Problem Statement

The main objective of this thesis is to develop a computational approach to simulate flows

through compliant structures. This will be accomplished by developing the numerical tools

necessary for analyzing the two-dimensional fluid-structure interactions between a viscous

fluid and a solid elastic wall. Once these are completed, emphasis shifts to understanding

flow limitation and the mechanism of flutter using a new model which eliminates many

assumptions and simplifications of previous models. As a consequence, the most accurate

model, compared to other currently existing models, will be operational. Validation of this

computational code is accomplished through the analysis of simple two-dimensional flows

past compliant boundaries for which analytical or numerical results currently exist in the

literature [3, 55, 56]. Once the validation is completed, the conditions which give rise to

flow limitation in a two-dimensional channel with a collapsible segment are then sought.

This allows one to examine the wave speed flow limitation hypothesis (see section 4.1) in
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both tension-dominant and bending-dominant regimes. While it would be desirable to

perform simulations in three-dimensions, due to the severe computational requirements,

this is an unrealistic goal at present, and we limit the present simulations to the case of a

two-dimensional channel with a collapsible segment, similar to Luo and Pedley [55, 56].

The ultimate goal of this work is to better understand the behavior of flow-induced

oscillations in collapsible tubes by identifying the physical mechanisms responsible for

flutter and the conditions under which it occurs. The more immediate objective is to

develop a time-dependent solver for simulating transient fluid-structure interactions. This

thesis develops one such approach in which the fluid and solid domains are computed

iteratively. While the applicability of this approach to the simulation of flutter is found to

be somewhat limited, the method is adequate for a variety of other fluid-structure

interaction problems. For example, a wide variety of biological systems which undergo

large wall deformations are ideal candidates for solution using the methods proposed here.

The success and limitation are described in detail.



Chapter 2

Analysis

The fluid dynamic simulation used, NEKTON, is an advanced computational fluid

dynamics package based on the spectral element method. In its current form, NEKTON

lacks the capability of incorporating the mechanisms associated with elastic boundaries and

therefore cannot address questions concerning fluid-structure interactions. The numerical

code will be modified by the addition of a solid solver to match the fluid elements in the

current code. This process occurred in steps to make coding manageable, beginning with

the case of linear geometry and linearly elastic material, then proceeding to eliminate several

of these assumptions one at a time. In this chapter, the steps involved in this enhancement

are described in detail.

2.1 Numerical Strategy

The first stage involved analyzing the requirements and tools necessary to achieve our goal.

In this section, the initial survey of requirements, along with possible alternatives, is

discussed.

The first option was to utilize the existing capability of free surface simulation in

NEKTON as a crude approximation of the real wall. Free surface analysis turns out to be

inadequate since the no-slip boundary condition at the fluid-structure interface cannot be



satisfied. Even with modification of the boundary condition, the result will miss the key

behaviors of solid mechanics including bending stiffness and inertia effects.

NEKTON's "moving wall" capability was then examined. NEKTON can handle

the active wall motion by a user-specified function of time and space. The motion

determines the new boundary for the fluid domain and fluid solutions are obtained in the

new configuration accordingly. We are interested in passive wall motion in which the

motion either results from or is influenced by the fluid forces acting on the wall. Only by

allowing for a real solid wall will the simulation of passive motion be possible. This step

requires significant computational effort, but in exchange, it provides total control over the

modeling of the wall. Alternatively, the solid wall can be approximated by system in which

the key solid characteristics are represented by discrete masses, springs, and dampers.

This method has been tried [9, 75], and repeating it would not likely yield any further

insights. We desire a more dedicated solver to study the complex phenomenon of fluid-

structure interaction.

The wall can also be modeled using a one-dimensional Von Karman plate theory

[52] as many of previous researchers have done. If we do so, however, we are faced with

the same constraints as others. First, the plate must be thin so that rotary inertia and shear

deformations are neglected. Second, the wall is limited to small departure from

equilibrium. This ensures constant thickness, and therefore only small deformations

compared to the thickness can be considered. These requirements place restrictions on the

general wall motions, and therefore we chose to avoid this approach completely.

The idea of linking with, or directly using, the already-existing solid mechanics

solvers such as ABAQUS or ADINA was considered. This plan was abandoned since no

commercial software is general enough to solve flutter (to best of our knowledge).

Furthermore, the lack of access to source codes would inevitably limit the scope and

flexibility of simulations. Numerically, the issue of compatibility must be considered when
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coupling with NEKTON. This may lead to artificial modes that can be either numerical or

physical in origin, and therefore interpretation of the obtained results will be extremely

difficult to interpret.

The initial survey suggested that coding a new solid solver that is in accord with

NEKTON is a key to accomplishing our goal. Along with this decision, additional issues

had to be resolved. Computationally, the solid elements will be defined as continuum

elements such that the rotational degree of freedom does not have to be introduced as is the

case with structural elements (plate or shell elements). This is a reasonable approximation

as long as the wall is thick enough such that numerical difficulties associated with an ill-

conditioned stiffness matrix will not be encountered. Though finite elements are adequate

to describe solid mechanics and will result in smaller bandwidth of the stiffness matrix,

higher-order spectral elements are used for the wall. Since NEKTON will be used for

fluid, there would be a boundary mismatch at the interface if finite elements were used for

the solid. This would once again lead to artificial waves that are numerical in nature. Due

to this compatibility issue, spectral elements that are consistent with existing fluid elements

will be used.

The last issue considered was the complexity of the wall. We want to stay as

simple as possible, yet complex enough to capture the real physics. To this end,

complexity will be added on later. The solid solver was created with sufficient flexibility

such that complexity can be added on easily when the need arises.

2.2 Fluid Solver

NEKTON is chosen as the means to solve the fluid domain, and an understanding of the

fundamentals behind the spectral element method is required to increase the numerical

efficiency. The general properties of NEKTON are summarized here without giving the
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complete description; rather only the major differences with the traditional finite element

formulation, which is well documented [5, 68, 77, 78], are emphasized. More complete

description of NEKTON can be found in Ronquist [69].

2.2.1 Spectral Element Method (SEM)

There are many different computational techniques available to solve incompressible fluid

flow. The methods can be generally classified into two distinct groups. The first group is

based on discretizing the "strong" form (differential equations); methods such as finite

difference method (FDM) and finite volume method (FVM) belongs to this group. These

methods have long historical foundation and are still quite popular in aerospace

applications, where high speed simulations with discontinuities (shocks) are of great

interest [2, 26, 27].

The second group is based on method of weighed residuals. They start with the

"weak" form of the differential equations (variational form); finite element methods (FEM)

and spectral methods belong to this group. FEM started as a popular method for solid and

structural mechanics analysis, but now its geometric flexibility advantages have promoted

wide use in low speed fluid mechanics simulations [68]. What distinguishes the spectral

method from the FEM is the use of the shape (also referred to as trial or basis) function. In

spectral methods, shape functions are infinitely differentiable ( such as Chebyshev or

Legendre polynomials), and therefore exponential convergence is expected. But this

method is very difficult to apply to any complex geometry of engineering interest since

domain discretization is not involved [16]. On the other hand, traditional FEMs (linear or

quadratic shape functions) are flexible in geometry since the computational domain is

discretized first by dividing up to many small elements. In exchange, only the linear or

quadratic convergence rate is expected.
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There are many variations to the FEM. Deviating from traditional displacement-

based FEMs, there are numerous mixed formulations in which the objective is to relax the

conditions to be satisfied by the solution variables (i.e. compatibility conditions) and

enlarge the number of solution variables (i.e. displacements, strains, and stresses)

simultaneously. Hybrid types are also widely used. In these formulations, some field

variables are eliminated on the element level prior to the assemblage process to increase

computational efficiency. These variational formulations are effective for the special

circumstances such as incompressible solid simulations, plates, shells, and fracture type

problems (see [5] for more detail).

Spectral element methods are high-order weighed-residual techniques for the

solution of partial differential equations. They combine high-order accuracy of p-type

spectral techniques while maintaining the geometric flexibility associated with the low order

(h-Type) Finite Element Methods [69]. For this reason, the convergence rate is exponential

for the smooth solutions (such as incompressible fluid flow) instead of quadratic (or

linear), as seen with the h-type finite element methods. In short, the SEM is the natural

extension to take advantage of two different, but similar, methods. The SEM has been

chosen for the present analysis largely for its rapid convergence rate, but also because the

geometries of interest (e.g. a collapsible channel) are sufficiently simple that the large

spectral elements are appropriate.

2.2.2 NEKTON Capability

NEKTON is capable of simulating both steady and unsteady incompressible fluid flow and

heat transfer. This means the governing equations of interest are:

Mass conservation: V - ii = 0 (2.1)
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Momentum: p(dii + (ii V)ii) = -Vp + V [(V + (Vi))] - T + p (2.2)

Energy: pcP[dtT+ (ii- V)T] = V . (kVT)+ qvo, (2.3)

subject to appropriate initial and boundary conditions. Note that ii is the velocity vector, p

is the density, 1u is the dynamic viscosity, / is the effective thermal expansion

coefficient, k is the unit vector in the direction of the acceleration of gravity, f is the body

force per unit mass, pc, is the volumetric specific heat, k is the thermal conductivity, and

qv,, is the volumetric heat generation. Depending on the problem of interest, the subsets of

above equations are solved.

The computational domain is represented as a set of macro-elements with the

solution and geometry being approximated by high-order tensor-product polynomial

expansions (5th through 15th order) within each macro-element. Within each element, a

local Cartesian mesh is constructed corresponding to N by N tensor-product Gauss-

Lobatto-Legendre collocation points. They are clustered near boundaries for accuracy,

interpolation, and quadrature properties. Since the mesh points are unevenly spaced, all the

quantities based on area (volume) must be calculated with care. This means weighting

must be done when calculating quantities such as spatial norms. Once the collocation

points are determined, Lagrangian interpolants are used to approximate dependent variables

within each elements. The favorable properties of interpolant functions and the description

of solution methods can be found in Ronquist [69].

This technique is very similar to p-type and h-p-type finite element methods used in

solid mechanics. This means that variational projection operators and Gauss numerical

quadrature are used to generate the discrete equations, which are efficiently solved by

iterative procedures based on tensor-product sum-factorization techniques. Previous
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studies have shown that SEMs are capable of accurate and efficient solution of a wide range

of fluid flow and heat transfer problems [69].

2.2.3 Tensor-Product Form

The key difference with the traditional FEM is that NEKTON uses the tensor-product form

of the interpolation function. This form reduces NEKTON's memory requirement; without

it, the high-order interpolations functions are too costly due to the greater coupling with

neighboring collocation points An example is shown here for illustrative purposes.

In two-dimensional analysis, the regular interpolation functions used in FEM are

such that dependent variables (D) are expressed by:

1a(r,s) = hq (r,s)Ctpq (2.4)

where (r, s) signifies the natural coordinate system and (p, q) represents the collocation

points. When the derivative is required,

-r (r,s) = hp(r, s),p
dr dr

(2.5)

cr pq

where the manipulation requires - O(N 4) for 2D and - O(N6 ) for 3D analysis since the

resulting matrix is full and the required matrix-vector multiplication is costly. The tensor-

product form reduces the cost by splitting the interpolant dependence:

(r, s) = hp(r)hq(s)Dpqp (2.6)
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the differentiation is given by

r (r,s) = "h,(r)h (s),

d( r(2.7)
d mn mp nq pq

D rpCDpn

where D is the derivative matrix and (m, n) specify the location of derivative and (p, q) are

neighboring collocation points. Differentiating in this way, the cost is - O(N3 ) for 2D and

- O(N 4) for 3D analysis. It is obvious that significant computational savings can be

achieved especially in 3D analysis.

2.2.4 Arbitrary-Lagrangian-Eulerian (ALE) Method

One of the strengths of NEKTON is its capability to solve many different types of moving

boundary problems including free surface analysis, multi-fluid layers, and phase

boundaries [40]. The use of Arbitrary-Lagrangian-Eulerian (ALE) method allows for

accurate representation of moving boundaries and a brief description is given here. More

detailed description can be found in Ho [40].

Generally, the purely Lagrangian description suffers from excessive mesh

distortion since mesh points are required to follow the motion of the corresponding fluid

particles. Rezoning is often required to overcome the distortion of the mesh. The ALE

method is based on the concept that the computational domain can deform independently of

the fluid motion. Thus the mesh velocity is independent of the fluid velocity except at the

moving boundaries where appropriate kinematic conditions must be satisfied [40]. Mesh

velocity is defined at each collocation point to characterize the deformation, and once the
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new boundary is determined, the elastostatic (elliptic) solver in NEKTON is used to solve

the resulting boundary value problem. The new geometry is then computed by integrating

the mesh velocity explicitly in time and updating the nodal coordinates of the collocation

points. Note that geometry is updated using a Pth order (1,2, or 3) Adams-Bashforth

multistep scheme.

With ALE capability already existing for the fluid solver, only the solid solver must

adjust to the deformed geometry. Since the Lagrangian description is adequate and more

natural for solids, ALE formulation was not required for the solid solver. With a boundary

clearly identified, the same elastostatic solver is used to rearrange the collocation points in a

new geometry.

2.3 Solid Solver

The creation of the solid solver was the central component of this thesis and the major

coding effort. In this section, the different aspects of the solid solver, which had to be

created entirely from scratch, are explained in detail.

In all of the equations, the summation convention of tensor notation is implied. In

terms of notation, the left superscript represents the current configuration and left subscript

represents the configuration for which the quantity is measured. If the left subscript is not

given, it implies that quantities are measured in the current configuration. The notation

follows Bathe [5] closely, and the main idea is borrowed from this reference.

2.3.1 Nonlinear Formulation

For linear analysis, the implicit assumption is that the displacements of the body are

infinitesimally small and the material is linearly elastic. Consequently, the displacement is a

linear function of the applied load. In nonlinear analysis, this is no longer valid. In this



section, the formulation of nonlinear analysis is described in detail to point out the

difficulties associated with this type of analysis.

When the body undergoes large displacements and large strains, its volume, surface

area, mass density, stresses and strains are changing continuously. This means that the

equilibrium equation at t+At cannot be satisfied and the reference configuration must be

considered. Note that this is a significant difference from the linear analysis in which small

displacement assumption allows numerical integration to be performed over the original

volume of the element.

The variational statement of equilibrium requires that

I t+At ij t+,tjt+AtdV=t+AtRv+ALV (2.8)

where the t+atij are the Cartesian components of the Cauchy stress tensor and 3,,,e,i are

variation in the Cartesian components of the strain tensor. Note that 6 ,,e,1 can be thought

of as virtual strain, and therefore equation 2.8 represents the virtual work balance at time

t+At. The corresponding external virtual work 't+AR is given by

tAR = u +AfS5u +AdA + J +Alp t +AfISui'+ tdV (2.9)
I+t S  t+t V

where +A,"fs and +"fIb are the components of applied surface traction per unit area and

body forces per unit mass, respectively, Su, is a variation in the current displacement

components t'du i , and `p is the density. The surface forces are due to the viscous

stresses and pressure on the sides of the control surface. They can be represented as:

t+At rs t+At'
, = on:ii (2.10)

Chapter Two Numerical Methods 31



where nj is the outward unit normal vector. For Newtonian fluid, the viscous stresses are

proportional to the element strain rates and the coefficient of viscosity. Thus, the

knowledge of the velocity components and pressure are enough to calculate the surface

forces using equation 2.10. The actual components are shown in Appendix A.

It is important to keep in mind that the configuration of the body at time t+At is

unknown. This is a very important difference compared to linear analysis, in which the

displacements are infinitesimally small so that the original configuration does not change.

For this reason, equation 2.8 cannot be solved directly and one must refer back to any one

of the previously determined equilibrium configurations for an approximate solution. This

solution can then be improved by iteration.

2.3.2 General Incremental Formulations

In practice, the most commonly used reference configurations are: initial configuration at

time 0 of the body [Total Lagrangian (T.L.) formulation] or configuration at time t

[Updated Lagrangian (U.L.) formulation]. Note that the only difference between the two

formulations lies in the choice of the reference configurations for the kinematic and static

variables. This means numerical efficiency will dictate the use of one over the other. Since

our interest lies on small strain cases, the U.L. formulation is chosen for our analysis. Its

advantage will become clear.

Referring back to time t, equation 2.8 is transformed to

tSo5d ti 'dV=''^R (2.11)
'V

t+At
where "'S, are Cartesian components of the 2nd Piola-Kirchhoff stress tensor and tEij

are Cartesian components of the Green-Lagrange strain tensor. These tensors are based on
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the change from time t to time t + At and referred back to the configuration at time t. By

definition, they are given by:

t+•t p +' tX t+A t t (2.12)
I- =t+At t+ t+Atis sr AtXjr

t+tut

t+At = x= + ( t+At -,jxt+At (2.13)

t ij tu tU i+t+A tUki k.j) (2.13)

where ,,x, are the components of the deformation gradient [5].

These quantities can be thought of as auxiliary stress and strain measures such that

the incremental decomposition of the stresses and strains can be performed effectively.

They are symmetric and objective (i.e. do not change in rigid body rotation). Note that the

left-hand-side of equations 2.8 and 2.11 are equal but are defined with respect to the

different configurations. Mathematically, they are energetically conjugate to each other.

Performing the incremental decomposition, stresses and strains become

,+AtS•=,-Z+,S (,S-='rj) (2.14 ab)

t+Ate=,=,ee+ , rT (2.15)

where the linear component of the increment strain is given by ,eij = ½(,ui,+,ui, i) and the

nonlinear increment component is 77,j =1,ukitukj. The decomposition is allowed since all

stresses and strains are referred to the same configuration at time t. Finally, the constitutive

relationship between stress and strain increments is given as:

tS=Ct Cijrst rs
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where tCij,, is the incremental material (elastic) property tensor at time t referred to the

configuration at time t. Substituting equations 2.14 to 2.16 into equation 2.11 gives the

new form of the equilibrium equation (variational statement):

J tCijrstErs•tEijtdV + I I t ijt'1 ij tdV=tAtR - tij8teij'dV (2.17)
tV  tV  tV

Note that no assumption has been made so far; equation 2.11 has merely been rewritten

with respect to another configuration. The solutions of equation 2.17 cannot be calculated

directly since they are nonlinear in the displacement increments. The nonlinearity comes
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balance virtual work", the right-hand-side of equation 2.19, is zero. In reality, this means

that iteration is continued until the equilibrium equation at time t+At is satisfied for a

required tolerance. In terms of the increments, the resulting equation at iteration k is

StijrsAters teitdV + f 'tij8 At' j dV=+AtR R- J tti-8te(t-l)rdtV tV tV
(2.20)

and the displacements are updated as

t+Atu (k) t+U (k-1) + Au(k)ti -- t i
t+At i(O) t Ui (2.21 ab)

In dynamic analysis, the inertia forces must be considered as the applied body

means that in addition to the right-hand-side of equation 2.20, there exists an

given as

tpLt+Atii8ui tdV

forces. This

inertial term

(2.22)

Other than the introduction of the inertial term, nothing else changes in going from static to

dynamic. In other words, dynamic analysis is in fact a static analysis including inertia

effects.

2.3.3 Newmark Method

For time integration, the integration operators are broadly characterized as either explicit or

implicit. Explicit schemes obtain values for quantities at t+At based entirely on available

values at time t or before. The explicit methods require that the time step At be smaller than

a critical At, and therefore they are conditionally stable. In contrast, implicit schemes solve

for quantities at time t+At based not only on values at t, but also on these same quantities at
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t+At . They are unconditionally stable such that the size of At is only limited by accuracy

considerations, and therefore the values of At used for the implicit methods are generally

much larger than their counterparts in explicit methods. Also, this implies that the

convergence is always achieved provided At is small enough.

Among different implicit methods, the Newmark method is the most robust and

does not require any special starting procedure. The Newmark integration scheme uses the

assumption that:

'+A('='O + [(1 - S)'U +3 t+"~ ]At (2.23)

'*U='U+'lAt + [(- a)' t +a't+At]At2 (2.24)

The Newmark integration method is based on the assumption that the acceleration varies

linearly between two instants of time. The parameters a and 6 indicate the relative

weighting between the acceleration at the end of the interval and acceleration at the

beginning, in terms of their influence on the velocity and displacement equations at the end

of the interval At. For unconditional stability, 8 = 1/2 and a = 1/4 (this particular choice is

equivalent to the trapezoidal rule) leading to constant-average-acceleration method. Note

that equations 2.23 and 2.24 can be rewritten as:

t+Atj = ao( t+U- U)- a2 t(J - a3 U (2.25)

't+A='O + a6' + a7 ',"+A (2.26)

where ao0 = , a2 a ', a3 =a - 1, a6 =t(l-3), 7 = At are constants

resulting from the time marching. At time t+At, we can solve for accelerations from
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equation 2.25 and then velocities from equation 2.26 in terms of unknown displacements

and known values at time t only.

It is important to note that unless 5 is taken as 1/2, spurious damping is introduced

proportional to (8 -1/2). If 8 is taken as zero, negative damping results. Similarly, if 8 is

greater than 1/2, positive damping is introduced reducing the magnitude of the response

even in the absence of real damping in the problem [66].

2.3.4 Equilibrium Equation

Section 2.3.2 explained the incremental formulation in terms of integrals and the

importance of iteration is emphasized for the nonlinear analysis. The spectral element

equations can be obtained when the variational principle is evoked at each collocation point.

Once discretized, equation 2.20 results in the following matrix form.

Mt+tO(k) + ( t+KL,+ t+tKNt)AU(k)='t+•Rt+AtF(k-1) (2.27)

and the displacements are updated by

t+AtU(k)=t+AtU(k-l1) + AU(k) (2.28)

with the initial conditions

'+atU(O)=tU; 'CtF(O)='F (2.29)

M is the mass matrix, K is the stiffness matrix, and 'AtF(k-1) gives the nodal point forces

that correspond to the element stresses in this configuration. The object is to find the state

of equilibrium of the body corresponding to the applied loads at time t + At by referring
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back to the configuration at time t. It is emphasized here that the global coefficient matrices

(M, K, etc.) are used as a convenient means to describe the governing equations. In

reality, the global matrices are never assembled for the fast iterative solvers such as

preconditioned conjugate gradient iteration (see section 2.3.5). Instead, the matrix-vector

product is obtained at the element level.

Note that latest estimates for the nodal point displacements are used to evaluate the

corresponding element stresses and nodal point forces t+AF(k-l). This means that the right-

hand-side of equation 2.27 represents the unbalanced load that still must be balanced by the

element stresses. Incrementing the displacement continues until the unbalanced load is

balanced and the increment in displacement effectively drops below required convergence.

Only then, can we say that the new equilibrium position is determined.

When the actual motion of the solid is considered, our aim is to evaluate the

equilibrium positions of the solid body at the discrete time points which will completely

describe the solution path. Using equations 2.25 and 2.26, equation 2.27 transforms to

(Mao+t+AKL+t+'KNL )AU(k) =
(2.30)t+AtR + + ot Ma2  + Ma3

tU - ( +AtFk- + Ma 0 t+Atu(k-1)

where a0 = ~ a2 = , a = -- 1 are constants resulting from time marching.

In summary, note that the iteration loop is performed for each equilibrium time

starting from time 0. At each time step, equation 2.30 is satisfied and then the solution is

allowed to move to the next time step. The solution process described above is repeated for

the next equilibrium position until the complete solution path has been solved. The

importance of iteration is emphasized here again since any error admitted in the incremental

solution at the particular time directly affects the solution at any subsequent time. This is

more true for dynamic analysis in which path dependence may be an issue. In order to
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minimize error accumulation, one minor adjustment was made in the calculations. Instead

of using equation 2.28, the displacements are calculated by:

k
t+AtU(k)=rU + I Au(q) (2.31)

q=1

Note that equation 2.28 and 2.31 are identical mathematically. Substituting equation 2.31

into equation 2.30, we obtain the following equilibrium equation. This is the actual form

used in the simulation.

(Mao•+t+AtKL +t+AtK~K)AU(k)

IV I ao--k-1 (2.32)t+A'R + Ma2t + Ma3
t  t+AtF(k-1) +JMaoAU(q)

q=1

The mass matrix is geometry dependent and therefore must be included inside of the

summation in equation 2.32. This would ensure a consistent mass matrix to be used in

evaluating the summation term. Note that other global coefficient matrices and vectors are

also geometry dependent since they are continuously updated during the iteration. For

other simulations using direct solvers, the stiffness matrices are constructed at time t and

used during the whole iteration process (or limited update) instead of being updated

regularly at every iteration. This is necessary since the major computational cost comes

from the construction of stiffness matrices and factorization. This approximation is often

referred to as the "tangent stiffness" assumption in modified Newton method. In our

solver, the stiffness matrices are never explicitly formed (see section 2.3.5), and therefore

the cost is minimal to update during the iterations. This implies that our solution should

converge faster due to the accurate representation of the stiffness.



Looking back at equation 2.20, note that we are involved with Cauchy stresses

which are always referred to the configuration in which they occur. If the T.L. formulation

was used, 2nd Piola-Kirchhoff stresses, which have no physical meaning, would have to

be used. Thus equation 2.12 is required for physical interpretation at every step. In

summary, any formulation based on continuum mechanics principle with nonlinear effects

should give the same results if consistent material descriptions are used. For convenience

and numerical effectiveness, U.L. formulation is used in our simulations.

2.3.5 Equation Solver

The preconditioned conjugate gradient method is chosen to solve the resulting system of

equations. This method is well documented [31], and is often the method of choice for

iterative solvers. For symmetric and positive-definite matrices, the preconditioned

conjugate gradient iteration is efficient and robust and convergence is extremely fast with

minimal storage requirements. However, this method has its own inherent drawbacks. It

is important to note both the advantages and disadvantages involved in using this method

compared to direct solvers such as Gaussian elimination.

The major disadvantage of direct methods is the memory requirement since a global

coefficient (stiffness) matrix must be assembled. On the other hand, the iterative methods

do not explicitly create a global coefficient (stiffness) matrix since the stiffness matrix is

formed at the element level [69]. This ensures minimal storage requirements. Note that

convergence is not guaranteed for the iterative solvers. Furthermore, the resulting matrix

must be well-conditioned to expect rapid convergence. The issue of accuracy must also be

dealt with. Direct solvers are accurate up to machine precision while indirect solvers are

only accurate up to the specified tolerance. This means that care must be exercised in

choosing the acceptable convergence requirement for solution accuracy when the iterative

solver is used.
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NEKTON is a higher order method which increases coupling of collocation values

compared with low order methods. This means that the resulting matrices are usually

asymmetric with significant memory requirements. In 3-D, the cost is even greater. We

decided to pursue the preconditioned conjugate gradient solver since it is characterized by

minimal memory requirement (order of number of collocation points in the mesh), but there

exists a requirement that the resulting matrices must be well conditioned. If not,

convergence problems may arise. In this particular instance, the iterative solver worked

well in solving for solid displacement increments because the stiffness matrix is both

symmetric and positive-definite. Convergence is often achieved in less than 10 iteration

loops.

2.3.6 Convergence Criterion

At the end of each iteration, the solution must be checked to see whether it has converged

within the user-specified tolerances or whether it is diverging. In order to obtain an

accurate solution, the tolerance must be tight; numerical experimentation is needed to

determine the required tolerance. It is noted here that if the tolerance is too tight, too much

computational effort is required; if too loose, an erroneous solution can result.

The displacement convergence check is given by:

U < TOL = 0.0001 (2.33)
11 + U(k) 12

This means we are comparing the increment in displacement to the approximated total

displacement at time t + At. When this ratio falls below the required tolerance, we assume

that the new equilibrium position is correctly determined (up to the convergence tolerance).

This criterion was a logical choice since the incremental correction in displacement

approaches zero near the new equilibrium configuration. Note that in some analyses (e.g.
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elastic-plastic analysis), the actual solution may still be far from the value obtained when

convergence is measured using equation 2.33. This is the case when the calculated

displacements (i.e. denominator) change only slightly in each iteration. In reality, some

researchers include the force (right-hand-side out-of-balance load vector) convergence

along with internal energy convergence [5]. All three convergence requirements were

monitored during simulations. In most of the runs performed, tolerance (TOL) of 0.0001

was sufficient using equation 2.33 to ensure an accurate solution.

2.3.7 Solver Capabilities

The incorporation of the solid solver to NEKTON was implemented in stages to ensure that

the programming was correct and manageable. First, the capability to simulate a steady,

linear solid was incorporated. This step set the groundwork for further complexities.

Secondly, the dynamic simulation capabilities were incorporated. Thirdly, geometric

nonlinearlities were included allowing for large displacements. The resulting formulation is

general enough that extensions to the code can be easily added. The completed model can

handle either plane stress or plane strain analysis, and the capabilities of thermal strains,

body forces, user-specified forces, initial displacements, material nonlinearities, and

internal dampings are allowed.

Solid boundary conditions can be free, fixed, sliding, fluid solid interface,

elemental, or imposed traction both locally and globally. The hinged wall, capable of

simulating the pinned condition, was also incorporated. In POSTNEK (post-processor of

NEKTON), a modification was made to show both x and y displacements in place of

velocity components and one stress components (user-decided) instead of pressure. This

allows for easier analysis and interpretation of the results.
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2.3.8 Structure of the Solid Solver

The components of completed solid solver are described next in outline form (Table 2.1).

The emphasis here is on coding flexibility so that extensions can easily be made. The key

point to note here is the calculation of stresses. Since we are using the incremental

formulation in displacements, updating the stresses (thus strains) incrementally is a natural

extension and more consistent from the geometric perspective. This is similar to the

hypoelastic model in which incremental stresses are calculated from the incremental strains.

At every iteration, stresses are updated by:

Z, ) = t(k-1)+ CAe (k) (2.34)

instead of basing on the total displacements at every increment.

During the equilibrium iteration, there are several quantities that require special care.

The F matrix of equation 2.32 must be based on the latest geometry since it represents the

current internal forces resulting from the displacements. Without the proper geometry

update, F does not change, and therefore new equilibrium cannot be approached. Only

when the right-hand-side of equation 2.32 approaches zero, convergence is achieved. For

proper geometry update, all the geometric quantities (local derivatives, Jacobian matrix)

must be updated consistently with the current geometry.
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1) Introduce

2) Introduce

3) Calculate

4) Solve for

5) If dynami

all user-specified and body forces in the original geometry configuration.

§ If dynamic, include inertia effects as part of body forces.

all displacement boundary conditions.

boundary traction forces by:

§ Identify the fluid-solid interface.

§ Calculate surface traction forces from known stresses and pressure

(see Appendix B).

§ Transfer over to solid face as a external force node-by-node fashion.

new equilibrium position subject to above external forces:

§ Gather components of stress-strain (C) matrix.

§ Compute thermal strains.

§ Calculate incremental strains based on incremental displacements.

§ Calculate the incremental stresses and update the overall stresses.

§ Create F vector and obtain effective right-hand-side force vector

(see equation 2.32).

§ Create the stiffness matrices (both linear and nonlinear) elementally.

§ Calculate the new increment in displacement via conjugate gradient solver.

§ Update displacements and solid geometry.

§ Check for convergence using equation 2.33.

If not converged, return to 4)

c, calculate solid velocity and acceleration.

Outline of the steps involved in the solid solver.
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2.4 Segregated Approach

The last programming issue to consider is the actual coupling between two domains. There

are basically two ways to solve the resulting fluid and solid equations. The first method

requires solving both fluid and solid domain simultaneously, generating a coupled

coefficient matrix with both solid and fluid parameters as unknowns while satisfying the

interfacial quantifies such as displacements, velocities, and accelerations. There are several

drawbacks to this approach. The resulting matrix is large, especially for the spectral

element method which is higher-order and therefore contains much more coupling among

collocation points. The resulting matrix has a large bandwidth and computational cost

would be significant for its direct inversion. Theoretically, we can use indirect solvers

utilizing methods like a conjugate gradient solver. Mathematically we know that indirect

solvers work well for symmetric and positive-definite matrices. Since the resulting matrix

will be denser and may no longer be symmetric and/or positive-definite, convergence may

be slow or the solution may not converge at all. Furthermore, this step requires the total

restructuring of NEKTON to accommodate solid parameters and will require significant

coding effort.

For these reasons, we decided to pursue the segregated approach. In this case, the

coupling occurs only at the interface; consequently, the solid solver is independent from the

fluid solver. This means the solid only feels the resulting traction forces from the fluid

domain. As for the fluid domain, the existence of the solid solver will result in a moving

boundary problem since the no-slip condition at the interface is always enforced. The key

to the segregated approach is the proper geometry update to ensure that the interface is

always consistent for both domains. Otherwise, overlapping or gaps will inevitably result

in convergence problems.
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It is noted that the iterative approach employed here is often referred to as Picard

iteration in the literature. This method is effectively used in solving for Navier-Stokes

equations since iteration can be used to isolate the nonlinear (convective) term as a linear

term based on previous value of velocities [17]. The term Picard iteration has been loosely

used in recent years for all types of iteration approaches to the solution method. To our

knowledge, no one has successfully used Picard iteration to solve both fluid and solid

domains, and thus it is difficult to validate our code (see Chapter 3).

2.4.1 Geometry Update

The issue of geometric update is crucial during the geometrically nonlinear analysis. When

the solid domain responds to the applied forces from the fluid, the geometry must readjust

from the interface so that no gaps will form between domains. Note that all geometric

quantities, including Jacobian matrix components and local derivatives, must be updated

also. This will ensure that all geometric quantities are consistent respect to the new

geometry.

NEKTON uses the Arbitrary-Lagrangian-Eulerian (ALE) Method to ensure that the

moving fronts are tracked with minimum distortion. The solid is in Lagrangian form to

begin with. For solid mechanics, the Lagrangian form is the description of choice since it

represents a more natural and effective analysis approach. Only in special circumstances,

such as analysis of rubber elasticity, do the elements become unacceptably distorted and

require rezoning. For this reason, we will use the Lagrangian description for the solid.

When significant distortion is encountered, the meshes are refined instead of rezoned

during the calculation process.
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2.5 Model Limitations

It is important to realize the foundation behind our solid solver and its limitations

concerning the types of analysis possible. The resulting solver does allow for large

displacements and large rotations, but only small strains. This does not impose any

restriction on the stress-strain relation which maybe linear or nonlinear. Most of the results

here employ linear elasticity, but material nonlinearity can be introduced using appropriate

material descriptions. Elasticity implies that stress is a function of strain only and follows

same stress path on loading and unloading [5]. This means only the actual straining of the

material will yield an increase in the components of the stress tensor. Linearity implies that

the material matrix C in equation 2.16 stays constant independent of strain locally. As long

as the stresses are small, this is not a bad approximation for many physical materials. This

is equivalent to using generalized Hooke's law for an isotropic material in a small strain

analysis. The material matrix C is given by:

tCijrs = A••s3rs + (5ir is + isjr,,) (2.35)

where A~ and u are Lam6 constants and 3,, are Kronecker delta. These constants are

given by:

Eva = (2.36a)
(1 + v)(1 - 2 v)

E
S2(1 + ) (2.36b)2(1 + v)
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Restricting ourselves to two dimensions only, the solid solver can solve two types

of stress-strain relationships. The first type consists of plane stress elements which are

employed to model membranes, the in-plane actions of beams and plates. This means tzz,

txz, and Tyz are equal to zero. Plane strain elements are used to represent a slice of the

structure in which ezz, Yxz, and Yyz are set to zero. The actual stress-strain matrices are

given in APPENDIX B.

In practice, there are many other types of materials that can be modeled including

hyperelastic model for rubbers and hypoelastic model for concretes. For hyperelastic

materials, stresses are calculated from a strain energy function W which depends on strain

tensor invariants and must be determined by experiment. More complex material

descriptions exist for elastic-plastic behavior and creep. Again, experiments are required to

properly describe the material behavior.
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Chapter 3

Verification of Numerical Approach

3.1 Solid Only Comparison

Once the solid solver was completed, many simple test cases in solid analysis were

performed for verification. As an ultimate check, the published results of Bathe, Ramm,

and Wilson [3] were chosen to verify the completed solid solver. In their paper, they

examined the nonlinear analysis for both Updated Lagrangian (U.L) and Total Lagrangian

(T.L.) formulations for large deformations and emphasized the importance of equilibrium

iterations within the solid solver. This analysis was comparable to our simulations since

essentially the same nonlinear formulations were used. The test case - the large motion of

cantilever beam subjected to the uniformly distributed load - is shown in Figure 3.1, while

parameter values are shown in Table 3.1.

lOP SIIUPAC P12 b/lia

-- ,--.-.------ D---. --- I
P12

.i 1 m l ,% 1bX / m'"

belire ,

Figure 3.1 The large deformation of a cantilever beam subjected to a
uniformly distributed load (from Bathe, Ramm, and Wilson [3]).
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Length L = 10 in

I Thicknessl h= 1 inl
i1 Widthl b= 1 ini

Poisson's Ratio v= 0.2

Young's Modulus E = 1.2 x 106 lb/in2 1

Density p = 10-6 lb*sec2 /in4

Table 3.1 The parameter values used in cantilever analysis.

3.1.1 Load Step Increments

For large values of the applied force, the resulting displacements may be so large as to

cause problems in the convergence of the solution. For this reason, the "ramping" or

"restart" technique is very important in static analysis. This technique involves an

incremental increase in loading. Intermediate converged solutions are obtained for each

increment. Larger loading is "restarted" from the previously determined equilibrium and

therefore requires far fewer steps to converge. In short, ramping makes it possible to

obtain converged solutions even for large loading cases.

3.1.2 Static Comparison

Figures 3.2 and 3.3 show the comparison between static results. Bathe, Ramm, and

Wilson [3] used five 8-node plane stress elements while we used five standard 25-node

elements. The results are presented in terms of the deflection ratio (ratio of tip deflection to

length) for different values of the load parameter K which is defined by:
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PL
K =f (3.1)

El

where P is the applied distributed load. For the linear case, the maximum deflection of the

beam is well documented for various boundary and loading conditions [65]. Here, it is

given by:

PL4
max = 1.25P = 1.25K (3.2)8E1

The results from both simulations indicate that linear solutions are reproduced according to

equation 3.2. For nonlinear simulations, Figure 3.2 shows Bathe's result for four different

formulations (explanation of Jaumann stress rate can be found in [3, 5]). The center curve

of Figure 3.2 shows that nonlinearity cannot be correctly captured without the equilibrium

iterations. We can see that the cantilever is stiffer for larger load parameters due to

nonlinearities in the stiffness matrix associated with large deformations. The stiffening

behavior of the cantilever is well captured in both simulations and agrees well with the

analytical result reported by Holden [42].

The ramping technique was very important in obtaining solutions for large K.

Without it, convergence difficulties started around K = 4; solutions for larger K were not

possible. Twenty appeared to be an optimal number of increment steps, and only required

about 3 equilibrium iterations. The importance of "restarting" will be emphasized again in

the context of other static simulations. Note that if the number of increment steps

approaches infinity, the nonlinear curve should be reproduced without any equilibrium

iterations. This is possible since the linearization about small increments is done along the

loading path. Table 3.2 shows the effect of increasing the load increment. With the load
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LOAD PARAMETER K - .

Figure 3.2 The large deflection analysis of a cantilever beam under a
uniformly distributed load (from Bathe, Ramm, and Wilson [3])

I

Load Paameter K

Figure 3.3 The corresponding cantilever simulations using the solid
solver.
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increment of twenty without equilibrium iterations, the solution overshoots the actual

nonlinear solution by as much as 7%. As the number of load increment increases, the error

in deflection is quickly controlled and approaches the correct value. The correct trend of

behavior further shows the accuracy of the code and also the importance behind the load

incrementing procedure.

Load Increment Deflection Ratio (W/L)

20 0.76555

100 0.74184

250 0.73847

500 0.73735

1000 0.73680

Actual 0.714067

Table 3.2 The effect of increasing the load increment without
performing the equilibrium iterations.

3.1.3 Dynamic Comparison

The dynamic results are shown in Figures 3.4 and 3.5. To study the dynamic behavior, an

impulse load was applied at t = 0 with a magnitude of 2.85 lb/in. For lateral forcing, the

period can be easily determined [13, 66]. The fundamental modes are given by:

f 2 iL m (3.3)
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where ki is a dimensionless parameter which is a function of the boundary conditions

applied to the beam, L is the length of the beam, m is the mass per unit length of the beam,

E is the Young's modulus, and I is the moment of inertia. For the fundamental mode, X1 =

1.875104 for one fixed end and one free end. The parameter values give the period (Tf) to

be about 57.3 x 10-4 sec; this is witnessed in the actual simulation. Knowing the period of

the beam, it is important to have small enough At to resolve the oscillation accurately. Two

time steps: Atl = 0.45 x 10
-4 sec which is roughly Tf/126 and At2 = 3 x Atl are examined.

In both cases, the Newmark Method is employed with = 1/4 and 8 = 1/2. Since this

method is an unconditionally stable, the time step must only be small enough to ensure

accuracy.

Figure 3.4 indicates that the correct amplitude is not captured in the linear analysis

since the additional stiffness due to nonlinearity is not taken into account. For the nonlinear

case, Bathe, Ramm, and Wilson again showed the importance of equilibrium iterations by

showing the over-reduction in the amplitude (see dashed curve in Figure 3.4). With

equilibrium iterations, the use of two different time steps did not seem to affect the

solution. Note that they used the T.L. formulation in generating these solutions.

For linear solution, the results obtained with our spectral element method are

essentially identical to the result of Figure 3.4, but for nonlinear analysis, this was not quite

true. For our simulation, the smaller time step (Atl) reproduces their result, but our result

from the larger time step (At2) suffered from a slight reduction in amplitude and period.

When we used smaller time steps than Atl, the results are indistinguishable from the results

with Atl suggesting that accuracy requirement is met. The source of the difference in

behavior between Bathe et al. and our results is not clear beyond the fact that different

formulations (T.L. vs U.L.) are used. In the limit in which the time step approaches zero,
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Figure 3.4 Large displacement dynamic response of a cantilever
under a uniformly distributed load (from Bathe, Ramm, and Wilson
[3]).
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The corresponding dynamic simulations using the solid

55



Chapter Three Verification of Numerical Approach 56

the correct results are obtained. This, along with the accuracy in simulation obtained from

other simple analysis, confirmed that our completed solid solver is correct. As a final

check, the solid density was set to zero. This means the inertia effects would disappear in

the analysis. As expected, the displacement quickly rose to the corresponding static

deflection ratio and maintained its value thereafter.

In summary, this section shows that the newly created solid solver can effectively

handle large displacements of a solid, both steady and unsteady, by properly taking into

account geometric nonlinearities associated with large deformation. Now, the task is to

properly link the solid solver with the fluid solver and consider fluid-structure interactions.

3.2 Steady Fluid-Structure Interaction

Experimental results exist from our laboratory which examine the effect of the tapered wall

thickness on flutter phenomena [1, 62]. The tapering localizes the oscillation to the center

of the tube and therefore succeeds in minimizing the end-effects and perhaps is a better

representation of the real physiological situations. It would be ideal to compare

computational results with experimental observations. But , as will be shown, direct

comparison to these results is difficult since the experiments typically lie in the fully

turbulent regime. Furthermore, these experiments have been performed with tubes, not a

2-D configuration. However, Grotberg[33, 34] has shown that flow oscillation can be

generated without the presence of turbulence and in the 2-D configuration. Our objective is

to study the oscillation mechanism rather than reproducing the experimental results so we

consider, as did Grotberg, 2-D laminar flows.
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3.2.1 Numerical Technique

In order to reduce the problem setup time, all the runs are performed with the minimum

number of elements to describe the geometry (with proper boundary and initial conditions).

Once the solution of the initial coarse mesh is available, further refinement is added to

provide sufficient resolution. For example, high resolution is required for the region of

flow separation and of high Re simulations. Otherwise, divergence of the solution can

occur in the fluid domain due to lack of resolution.

For moving geometry problems, the physics of the problem may result in large

mesh distortion and runs may terminate prematurely. High resolution of the mesh, in the

region of expected large distortion, is required to keep the aspect ratio of each element

reasonable. Note that for spectral elements, the accuracy can be improved by increasing the

order of interpolants (NORDER) instead. For most of the runs, mesh refinement was used

instead of increasing NORDER varying NORDER does not reduce the extent of distortion.

Unless specified, simulations were performed with NORDER of five (i.e. 25 collocation

points) and NORDER was increased to seven for a check for accuracy only. It appears that

the advantage of using spectral method might be lost, but, the number of required elements

is much less compared to the traditional finite elements (see [69] for more detail).

3.2.2 Convergence of the Two Domains

Figure 3.6 shows the actual steps involved in simulating steady fluid-structure interactions.

Note again that the two domains are independent of each other. First, the Navier-Stokes

equations are solved in the fluid domain. Once the components of velocity and pressure are

known, the traction forces are calculated (see Appendix A). Then the solid solver

determines the new equilibrium condition corresponding to these "external" forces. The
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transfer of the traction forces are done in a node-by-node manner. This is possible since

the same collocation points are used and therefore no ambiguity exists during the transfer

process. The convergence requirement is chosen such that ratio of maximum displacement

(since last iteration) to a characteristic length (usually chosen to be the thickness) falls

within a required tolerance. This is similar to the convergence criterion used in free surface

analysis [40]. If the convergence condition is not met, then the whole process repeats after

the new mesh locations are determined to ensure compatibility of two domains. In practice,

tolerance of 0.001 was enough to have a converged solution. the first iteration is where the

most displacement would occur. Subsequent iterations are minor modifications to the final

configuration and this means that the rate of convergence rapidly slows as the iteration

counter increases. The required iteration was often less than 10. Cases that require more

than 100 iterations never converged. Thus maximum iteration counter (MXGEOM) was

set at this value; when reached the run stops.

Note that the direct solver is used for the fluid solver. This is because the Navier-

Stokes equations result in an asymmetric global matrix due to the nonlinear convection

term. The convergence difficulties expected for an iterative solver, and NEKTON's direct

solver, which involves Newton-like iterations, was used to solve the fluid domain. Since

we limited the simulations to two dimensions, the memory requirement was manageable,

and the runs proceeded without any difficulties from the fluid solver.
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* Direct solver is used to
obtain u and P

* Iterate until new equilibrium
corresponding to applied traction forces.

* Convergence Check

* Mesh Update

* Iterate until MXGEOM is reached

Figure 3.6 The computational path showing the steps involved in
steady fluid-structure interactions.

3.2.3 Membrane Simulations

The results of Luo and Pedley [55] are chosen for comparison with the steady fluid-

structure interaction simulations. Luo and Pedley used the Navier-Stokes Solver FIDAP

for their fluid domain but their wall was limited to the membrane assumptions. Their study

examined the required initial tension to obtain converged solution for Reynolds numbers

(Re) between 1 and 600.

Figure 3.7 shows the computational domain used by Luo and Pedley. Boundary

conditions on velocity are those of no-slip at the side walls (segments ED, CB, and OFA)

and a parabolic velocity profile at the entrance (EO). Parallel outflow is assumed (BA),

implying that the vertical component of velocity is zero and normal stress is constant at the

outflow boundary. This condition is referred to as "outflow normal" (ON) in NEKTON,

and it is a fair approximation if the downstream length is long enough to ensure that the

parallel flow condition prevails at the flow exit.
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STEADY FLOW IN A 2-D COLLAPSIBLE CHANNEL

E CB

x F

Figure 3.7 The computational domain used by Luo and Pedley [55].

The parameter values used in Luo and Pedley simulation are shown in Table 3.3.

The working fluid is water and the parameter values correspond to the previous work [53]

for comparison purposes. We adopted identical values; additional required parameters

were set to be: E = 10 Pa, v = 0.2, and the thickness of the wall (h) is chosen to be 10% of

the channel width. This means the aspect ratio of the wall is 50:1 and approximates the thin

wall reasonably well.

Note that membrane simulations of Luo and Pedley and others [53, 55, 56, 67]

faced difficulty in identifying the location of mesh points. For the membrane (elastic

boundary), the location of mesh points is not known since a membrane equation is used to

describe the wall mechanics and individual mesh points are not tracked as in our

simulation. They make an assumption that mesh points always move in the direction

normal to its surface. Furthermore, the fluid mesh points that lie under the elastic boundary

are not precisely tracked since the ALE method is not used. They assumed that mesh

points lie along a splines which emanate from a fixed origin outside of the elastic boundary.

The solid solver presented here does not suffer from these limitations and bypasses the

arbitrary procedures for allocating mesh points of Luo and Pedley.

Luo and Pedley used a parameter 1, which can be thought of the scaling factor from

the original tension specified in the wall. This means that if 1 = 35, T = To/35 acts on the
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wall. Higher 0 implies lower initial tension in the wall and that the wall will be subject to

greater deformation.

Table 3.3 The parameter values used by Luo and Pedley [55].

3.2.4 Criteria for Comparison

The membrane assumption implies that the wall is a thin, uniformly elastic sheet which can

support only tensile loads in its own plane. Hence bending rigidity does not exist.

Membranes deflect purely due to the pressure difference across the membrane. Since our

treatment of the wall is different, the exact one-to-one comparison is not possible.

Specifically, E, v, and h must be adjusted to have a valid comparison. Fair comparison is

still possible if we can satisfy the condition derived below.

Fluid Density p = 1000 kg/m 3

Fluid Viscosity 4 = 0.001 Pa*s

Channel Width D = 0.01 m

Collapsible Length L = 0.05 m

Upstream Length Lu = 0.02 m

Downstream Length Ld = 0.07 m

Initial Tension To = 1.610245 N/m

External Pressure Pe = 0.93 Pa
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We must ensure that the tension contribution is dominant over the bending

contribution that exists due to the finite thickness of the wall. Estimating from the Von

Karman plate equation [52], we know that:

Eh3
Bending Stiffness: DW. = 2- 2 W

12(1- v2)

Longitudinal Tension: TW, = chW,

where a indicates the tensile stress existing in the wall. The implicit assumption is that

initial tension dominates over the additional tension resulting from the deformation.

Requiring tension to be much greater than bending effects, we obtain the following

relationship for required initial stress:

& >> EV h) (3.4)
12(1- 2)(L

As long as h is small with respect to L, the requirement can be easily satisfied. The above

condition must be satisfied at all times for our validation to be meaningful. For the Luo and

Pedley geometry, this requirement is easy to satisfy for large tensions (i.e. small P) but

becomes difficult when the tension is low (i.e. large 3).

3.2.5 Initial Tension Effect

The initial tension, which contributes to the stiffness, is required to sustain the lateral

forcing for membranes. Numerically, the stiffness matrix is singular without initial

tension, and therefore finite initial tension must be employed. For a real solid, the bending

stiffness effects can allow the solid to limit the deflection so that stiffness in lateral forcing

Chapter Three Verification of Numerical Approach 62



is present even without the initial tension contribution. The initial tension increases the

stiffness via KNL (nonlinear stiffness component), which scales as P/L, where P stands

for the total force acting within, including the initial tension. This is the only mechanism to

resist lateral forcing for membrane walls. Note that the specified thickness of the wall is

the post-stretched thickness. The clarification is required since a real solid cannot maintain

the same thickness if the initial tension is removed. Both strains and stresses are defined

respect to this thickness.

Since the applied initial tension is always axial in the local coordinate system,

transformation to the global coordinate system is required to properly take it into account.

The coordinate transformation (in 2-D about the z-axis) is described in Appendix C. The

initial tension capability was incorporated into the solid solver and verified with ABAQUS

in two stages. The first case is the cantilever is subjected to uniform pull with initial

tension applied. The second test was the lateral forcing to ensure that angle calculation is

properly taken into account. Figure 3.8 shows the first test case and Table 3.4 shows the

parameter values used for the simulations. The external forcing (R) is varied and the

corresponding tip displacement and internal axial stress were monitored. Note that

standard eight-node elements were used in ABAQUS and standard five-by-five spectral

elements were used for our solid solver. Total of five elements were used in both cases.

I - L

Figure 3.8 The test case: a solid subjected to uni-axial pull with
initial tension specified.
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Young's Modulus 10 Pa

Poisson's Ratio 0.0

Thickness 1.0 m

Length 10 m

Initial Stress 10 Pa

Table 3.4 The parameter values used for uni-axial test case for the
initial tension effect.

Table 3.5 shows the comparison between the solid solver and ABAQUS for three

different values of axial pull. The first thing to note is that when the pulling load equals the

initial tension, no displacement occurs. This means R must be greater than RI (initial

tension) to have a positive displacement. Since the precise formulation used in ABAQUS

is not known, identical magnitudes are not expected. Nevertheless the solid solver is

capable of reproducing the simple hand-calculated solution, and the comparison to

ABAQUS is yet another check to ensure that initial tension effect is properly taken into

account.

The next testing case is shown in Figure 3.9. This time, lateral forcing was

introduced to ensure that the angle transformation is correctly performel_ R = -1 Pa',,as

used in the simulations and the comparisons are shown for a variety of values of Young's

modulus in Table 3.6. Note that there exists a cross-over value of E at which ABAQUS

solution gives larger deflection than the solid solver. Again, the precise formulation behind

ABAQUS is not known, and therefore exact comparison was not possible. Nevertheless,

ABAQUS solutions were useful comparison beyond what could be done by simple hand

calculation.
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R (Pa) Tip Displacement (m) Axial Stress (Pa)
8 A) -0.2154 7.829

B) -0.1963 8.001

10 A) 0.0 10.0

B) 0.0 10.0

12 A) 0.2293 12.270

B) 0.2037 12.000

Table 3.5 The uni-axial comparisons for tip displacement and the
axial stress between A) ABAQUS and B) the solid solver for R = 8, 10,
12 Pa.

L
Figure 3.9 The test case: a solid subject to lateral forcing with initial
tension specified.
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E (Pa) ABAQUS (m) Solid Solver(m)

75 -1.616 -1.700

100 -1.600 -1.639

150 -1.576 -1.564

200 -1.556 -1.515

300 -1.522 -1.448

Table 3.6 The comparison between ABAQUS and the solid solver
for a solid subject to lateral forcing. The results are for various values
of Young's modulus.

Another numerical modification was the under-relaxation technique to ensure that

collapsed wall does not touch the other side of wall prematurely. The overshoot is

minimized by ensuring that if the new displacement is greater than the channel width, only

a small fraction of the total displacement is taken to be the actual displacement. A similar

technique was used by Luo and Pedley [55]. Note that as the equilibrium configuration is

approached, the modification on displacement is small and under-relaxation is no longer

invoked. Hence, it was most crucial for the first update when the largest change in

displacement is seen. Mathematically, this means that coordinate updates are done by:

X"n+ = X" + Vy, AU (3.5)

where V is the coefficient to ensure that wall deformation is less than the channel width.

This ensures that distortion of geometry is minimized. Note that the implicit assumption is

that the converged solution exists and that it is less than the channel width. If these
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conditions do not hold, the solution will fail with or without under-relaxation. Care must

be taken in calculating the quantities that are based on geometry such as geometric

derivatives and the F vector. They must be based on the under-relaxed geometry, not the

actual geometry.

3.2.6 Results and Discussion

For steady simulations, the runs were performed using the "restart" technique. This means

that higher Re runs were started with the result of the lower Re solution as the initial

condition of the simulation. This speeds up the convergence of the solution and also makes

convergence possible for runs that would otherwise be unstable; this is analogous to the

"ramping" done in the solid verification stage (see section 3.1). In steady simulation, this

is a perfectly acceptable procedure since the path through which the convergence is

achieved is irrelevant to the final converged solution.

Figures 3.10 and 3.11 show the result for Re = 1. The results of Luo and Pedley

are well-reproduced by this simulation. To ensure the tension-dominant inequality of

equation 3.4, E = 10 Pa was used in the simulation. Note that if E is increased, the wall is

stiffer, and therefore, the solution can be obtained for larger 13 than Luo and Pedley

solutions.

For the solid boundary condition, both fixed and hinged wall cases were attempted.

A hinged wall is more similar to the membrane since bending effects at the ends of the

membrane are minimized. Computationally, the hinged wall ran into difficulties since the

collapse was always too severe. Even with under-relaxation technique in deflection, the

difficulties persisted. For this reason, the runs were simulated using the fixed wall while

ensuring that the criterion given by equation 3.4 is satisfied always. Bending effects are

inevitable near the boundary ends but these effects were localized and did not seem to affect

the overall solution.
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0.

2 2.5 3 3

Figure 3.10 The wall sha
1 and 0 = 1,15, 30, 45, 65.

.5 4 4.5 5 5.5 6 6.5 7
X/H

pes obtained from the solid solver for Re =

X/H

Figure 3.11 The wall shapes obtained from the numerical calculations
for Re = 1 and T = To/3 where P = 1,15, 30, 45, 64, 65 (from Luo and
Pedley [55] ).
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Note that Luo and Pedley assumed constant tension during the deflection process.

This is not true, of course, during collapse, when deformation of the wall and the viscous

force that acts on it result in variation of the tension in the wall. Our calculations show that

tension can vary up to about 6% for 3 = 65 and Re = 1. Furthermore, the elastic

membrane model used for the compliant wall neglects the effects of bending stiffness since

it assumes that the wall is thin. Although this is reasonable when the wall tension is large,

bending stiffness becomes increasingly important as the tension becomes very low,

providing an additional mechanism for the wall force balance. Thus their results cannot

capture the importance of the bending effects.

Our limitation lies in the fact that the small strain assumption is maintained during

the deformation process (see section 2.5). Since both ends are fixed, this is inevitably not

true during the large collapsing process. Our estimation shows about 4% straining for half-

channel collapse and as much as 7% during the full collapse. As a check, initially-

deformed geometry with longer initial length was tried. These results indicated that

converged wall shapes do not change much whether starting from the undeformed or

deformed geometry. Both models have limitations but this should not hinder our validation

process.

Figures 3.12 and 3.13 show the corresponding result for Re = 100. Note that at 3

= 75, collapse is seen to be asymmetric. Further increase in P results in greater asymmetry;

also, convergence difficulties are seen due to the formation of a steep slope in the wall at

the downstream end. Increasing E helps compensate for this effect, but causes the solution

to deviate from the tension-dominant limit, and diminishes the asymmetric collapse. The

membrane bulging, observed at the upstream end in the membrane simulations for large Re

[55, 67], was not seen in our simulation. This is consistent with the experiments of

Bertram [8, 9, 10] in which bulging was never witnessed. Since Bertram used thick walls,
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2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
X/H

Figure 3.12
100 with p =

The wall shapes obtained from the
1, 25, 50, 75.

solid solver for Re =

XJH

Figure 3.13 The wall shapes obtained from the numerical calculations
of Re = 100 and T = To/p, where 3 = 1, 25, 50, 75, 100, 129, 130
(from Luo and Pedley [55]).
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the inertia and bending effects may have prevented the tube from bulging out. This

suggests that our wall may not be thin enough to capture the bulging effect.

Figures 3.14 and 3.15 shows the converged fluid solution of the case with Re =

100 and 3 = 75. The flow speeds up significantly under the region of minimum cross-

sectional area and flow separation occurs behind the region of the collapsible segment. The

flow appears to be well-developed at the downstream end. Similar behavior was reported

by Luo and Pedley [55].

0.010

Y/D 0.000
-0.010

Speed

0.0388216
0.0357159
0.0326101
0.0295044
0.0263987
0.023293
0.0201872
0.0170815
0.0139758
0.0108701
0.00776433
0.0046586
0.00155287

F -

0.00 0.05 0.10 0.15
X/D

Figure 3.14 The speed contours and the wall shape for Re = 100 and

P =75.
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Figure 3.15 The speed contours with velocity vectors and streamlines
for Re = 100 and p = 75.

3.2.7 Tensioned Web Boundary Condition

It is worth noting here that Ho [41] incorporated new tensioned web boundary conditions

into NEKTON to simulate the membrane solutions of Luo and Pedley [55]. The

modification was made to the free surface analysis by satisfying the no-slip condition at the

interface with initial tension capability. He was able to reproduce all the cases of Re = 1

presented in Figure 3.11. At Re = 100, he obtained stable solutions for cases that Luo and

Pedley were not able to run. Figure 3.16 shows the result obtained with tensioned web

option in NEKTON. 3 = 300 was used for the simulation, and it appears lowering the

membrane tension cannot completely shut down the collapsible channel. The singularity

associated with the upstream end was not encountered, and two distinct recirculating zones

were formed. These results suggest that the convergence limitations that Luo and Pedley
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observed are maybe numerical limitations rather than physical ones. More cases must be

examined to solidify this claim.

Figure 3.16 The tensioned web simulation using NEKTON with Re
= 100 and P3 = 300 (from Ho [41]).

3.2.8 The Effect of Young's Modulus and Reynolds Number

Numerical experimentation has shown that increasing E or Re result in stabilization of the

wall deflection. Figure 3.17 shows the effect of raising Re while other conditions

remained fixed. We can see that the point of maximum collapse does shift as Re increases

and more asymmetric collapse occurs. This is also observed in the results of Luo and

Pedley. Figure 3.18 shows the effect of increasing E while other parameters remain fixed.

Since higher E implies a stiffer wall, we expect to see less collapse as E is increased. For

higher E, more symmetric collapse was witnessed.

In conclusion, the completed solver was successfully interfaced with the existing

fluid solver and validation was accomplished by examining solid simulations alone and

then verifying the steady fluid-structure interactions problems of Luo and Pedley. We

decided to stay with a 2-D channel with a collapsible segment for computational efficiency.

With the foundation complete, we can now explore our original goal of understanding flow

limitation and flutter.
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X/H

Figure 3.17 The effect of Reynolds number with E = 10, v = 0.2,
and 03 = 30. The deflection decreases as Re increases.
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X/H

Figure 3.18 The effect of Young's modulus with Re = 500, v = 0.2,
and p = 30. The wall deflection decreases as E increases.
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Chapter 4

Steady Simulations

4.1 Flow Limitation

Many laboratory experiments have been conducted to investigate the properties of fluid

flow through partially collapsed tubes. A typical setup includes a section of compliant

tubing, mounted horizontally between two rigid tubes and sealed within a pressurized

chamber. This configuration called, a Starling Resistor, allows for variation of the

longitudinal tension, external pressure (Pe), flow rate (Q), and upstream and downstream

pressures (P1, P2 respectively) to mimic particular physiological situations. In all cases,

the behavior shown in Figure 4.1 is witnessed. When the difference between Pe and P1

(upstream transmural pressure) is held constant, almost a linear increase in Q is witnessed

with a increase in the pressure drop (P1-P2). Eventually Q becomes limited (reaches a

plateau) as the pressure drop P1-P2 continues to rise. Clinically, this situation is relevant

to forced expiration or venous return [49, 80]. The initial objective of this chapter was to

examine flow limitation in the same geometry used by Luo and Pedley with tension-

dominant. Later, the case in which bending stiffness dominates will also be considered.
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Q
P1-Pe=C

P1-P2
Figure 4.1 The experimental behavior of flow limitation. The flow
rate and the pressure drop are monitored while upstream transmural
pressure is fixed at a constant value.

4.2 Theoretical Formulation

Because of the complex coupling between fluid and solid, rigorous theoretical solutions

are no longer available. For this reason, we will make simplifications to ensure a

manageable analysis and also to gain insights into the dominant physical features of the

problem. Note that if we analyze the actual elasticity equation instead of the tube law, the

wave speed becomes dispersive. This means equation 1.1, the validity of which was

already questioned in section 1.1, is no longer valid. Wave speed now depends on the

wavelength, and therefore precise wave speed for flow limitation cannot be determined. In

this section, the dispersive relation based on the plate equation will be analyzed to examine

flow limitation in the 2-D collapsible channel. The assumptions and limitations are detailed

below.
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4.2.1 Wave Speed Limitation:

The dispersion relation for area waves due to longitudinal bending and tension is developed

for 2-D channel flow. Establishing the theoretical foundation of flow limitation, we can

make quantitative comparisons with the observed numerical solutions. We will follow an

analysis similar to that of McClurken et al. [59]. The major difference is that we are not

dealing with the tube law; instead, the coupling of the two domains is represented by the

simple plate equation, which takes into account the effects of both axial bending and

tension.

We start from the simple equations that govern the actual fluid-structure

interactions. The simplified plate equation is:

dYx2  dX 4  (4.1)

where I = _2) is the moment of inertia. With the small displacement assumption, we

can assume that tension T is given by T = Ti,iti,,, + EEh. In reality, T varies along the wall

because of skin friction. Since the variation is small, we assume that T is constant in the

analysis. Note that nonlinear components of tension and bending are ignored.

Furthermore, the assumption is that the two effects act independently. This equation

shows that the transmural pressures are opposed by the above two components. Equation

4.1 is a good representation of the wall for small deformations.

The 1-D continuity and inviscid momentum equations are given by:

y+- (uy ) = 0

dt dx (4.2)
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du du- +uTdt dx1 dP
p+ Tp dx (4.3)

First we nondimensionalize above equations with following parameters.

YOTJ
3!0

x

Yo

tCO

Yo

E
Co =-,p

Vp

uco-,
Co

P-PP

where yo represents the channel height in the original undeformed geometry.

Equations 4.1-4.3 can be rewritten as:

T d2 I7 Ild 417
(= +

Eyo o 2 y3 d5 4

E SW+ =0
pC) d4

Combining equations 4.4 and 4.6 gives:

dS dS El 5d77
dT +dpCoy'd4

T 77

pC,' yo a 3
(4.7)

With the assumption that all dependent variable can be represented by a constant term and a

small disturbance term, we can perform linearized analysis. The result gives information

concerning wave propagation in the system.

Letting 1 = - + 77'(, T) and S = S + S'((, r) into equations 4.5 and 4.7, we

have

ar+ S-

dS
dzr

aS
S

(4.4)

(4.5)

(4.6)
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dS' -d S' El d% r' T d377''
--- + S + =0 (4.8)

7r d C pCoYo dy 5  pCo2yo a43

dif' di7' dS'
r+ +7 4 =0 (4.9)

Note that only terms of first order in the primed quantities and their derivatives are retained;

higher-order terms are discarded. Differentiating and combining above two equations

gives:

2 T El7+ 2S, + 7 +PCo r 3 =0 (4.10)

In order to investigate wavelike behavior, consider the elementary wavelike solutions given

by setting 77' = ie7e = fe '(• where 7i is a real amplitude; w is real and equal to

the circular frequency; k is the complex wave number. For inviscid flow, we know that k

should be purely real. Note that k = -., c = & (A~ is the wavelength and c is the phase

speed). The inviscid dispersion relation can be obtained by setting S = 0 and relating

phase velocity to wavelength. The resulting equation is:

2 4Eh3y07r4  4 r2To
c2 = 30+ )r

3(1- v2 4 pA (4.11)

cB + c2

Above equation shows that the phase speed is composed of two parts: one is due to axial

tension and the second results from the axial bending stiffness. Letting y represent the

relative importance of the two terms, we obtain



c-2 3T(1- v )A2

'B = , Eh3T(- 2  (4.12)
cB Eh3 r2

Now consider the potential for flow limitation. Based on the wave speed flow limitation

theory, for non-dispersive systems, we might expect flow in this dispersive system to

behave similarly. In that case, two limits can be considered based on y. If tension

dominates ( y>> 1) the maximal flow rate is determined by:

Qmax = YCr =2 -yi ) (4.13)

If bending dominates, ( y << 1) holds, and

2 2 3 Eh3 (4.14)
Qe yc= Y= -- 3(1- y2) (4.14)

With the above analysis, we now can determine whether flow limitation can be established

in a two-dimensional channel with a compliant segment.

4.3 Results and Discussion

With the above theoretical foundation, an attempt was made to examine whether flow

limitation in a 2-D channel or any system dominated by axial bending or tension, is indeed

due to wave speed limitation. Two extreme scenarios were examined to isolate each

contribution.
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4.3.1 Tension-Dominant Case

Figure 4.2 shows the computational domain used for the simulation. Total of 91 elements

and 5th order interpolants were used for these simulations The parameters are essentially

the same as those of Luo and Pedley with some modifications.

W W

W

Figure 4.2 The computational domain used for tension-dominant
simulations.

Compared to the original Luo and Pedley geometry, the downstream length is

increased further to ensure that outflow normal (ON) condition will not contaminate the

solution in the vicinity of the complaint segment. The key parameter to be controlled is P1

(actually P1 - Pe), which can be difficult to control if the velocity profile is specified at the

inlet. One way to overcome this dilemma is by noting that for variational methods,

pressure is determined up to the constant value. Numerically, this means that pressure is

the Lagrange multiplier of the resulting equilibrium equation. Furthermore, the final steady

solution is irrelevant to the solution path taken. With these facts, we can simulate a

parabolic profile at the inlet and ON at the exit. Once P1 is obtained, we can scale the

whole fluid domain by AP to keep P1-Pe at the constant value as desired. Hence we are

effectively adjusting the downstream pressure P2 to maintain upstream transmural pressure

constant while the simulations are carried out. As a consequence, different transmural
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pressure acts on the solid and further iterations are required between the two domains to

determine the equilibrium solution. Note that P1 is the average pressure in the fluid domain

at the beginning of the collapsible region and P2 is similarly at the downstream of the

collapsible region. These locations are monitored in accordance with the actual

experimental setting.

In addition to parameters listed in Table 3.3, solid parameters used in the tension-

dominant simulations are listed in Table 4.1. The thickness of the solid again is the post-

stretched length. The tension-dominant requirement (see equation 4.12) is easily satisfied

with these parameter values . Figure 4.3 shows the typical flow limitation simulations

(referred to as standard cases). The results are shown for three different values of Pl - Pe

(AP). In all cases, restart was done from the solution of lower Re and continued until it

was no longer possible to obtain a converged solution. Typically 7 to 10 runs were

obtained before convergence failed The task is to examine the theoretically predicted flow

rates from the dispersive analysis above with what is observed in the numerical

simulations.

Table 4.1 The additional solid parameters in conjunction with Table
3.3 used in the tension-dominant simulations.

Note that in equation 4.13, the wavelength (k) must be specified. The exact value

of X cannot be exactly known and as a first approximation, we assumed that it is roughly

same as L, which is the total length of the collapsible region. Note that by setting X = L,

Initial Tension T = 50 N/m

Young's Modulus E = 20 Pa

Poisson's Ratio v = 0.2
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the longest wave that can exist in this channel, we are insuring that waves of all possible

lengths can propagate upstream since shorter waves travel faster. Table 4.2 shows the

theoretical predictions compared with the numerical results. Note that last four cases were

performed with AP = 0 Pa and one variable in the equation 4.13 was varied while other

parameters remained the same compared to standard cases.

0 I iNf~
OUU

S400

0

100

P -P 2 [x10 -3 Pa]1 2

200

The flow limitation simulations for the standard cases.
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Qnum (x 10-4 3/s) theor (x 10-4 m3/s)

Standard Ap = 0.0 Pa 7.0 8.5

Ap = -0.25 Pa 6.0 5.5

Ap = -0.50 Pa 4.0 4.1

Ap = -0.75 Pa 3.0 2.7

p x 2 = 2000 kg/m 3  6.5 6.0

T/2 = 0.025 N/m 6.0 5.4

L x 2 = 0.05 m 3.5 4.4

g x 30 = 0.03 kg/m*s 2.0 2.7

Table 4.2 The comparison
rates.

between predicted and observed flow

Figure 4.4 shows the wall shapes for the case with AP = -0.5 Pa. A continuous

decrease in channel height was seen as Re was increased. The point of maximal collapse

moved downstream creating an increase in the degree of asymmetry during this process.

This result is similar in nature to Figure 3.17. Note that there exists a difference in

boundary conditions applied that accounts for the difference in behavior. Figure 4.5 shows

the pressure contours in the collapsed region. Note that the legend indicates the pressure

values before the actual adjustments. In the actual simulation, the pressure at the beginning

of the collapsible region is adjusted to maintain a constant AP with respect to the external

pressure. This means that all pressures must be scaled by this amount. Figure 4.5 also

indicates that at each cross-section, pressure maintains almost a constant value. Figure 4.6
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shows the corresponding speed contours. The flow increases significantly under the

collapse region; flow separation was not present for this particular case.

In conclusion, the comparison of Table 4.2 suggests that the Q computed from the

numerical analysis is in good agreement with the Q predicted from the dispersion analysis

for X = L. We expected to see an order of magnitude match, but the agreement was much

better than this. This suggests that flow is indeed wave speed limited. The other extreme

(bending-dominant case) must now be examined.

0

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

X/D

Figure 4.4 The wall shapes of the tension-dominant simulations for
AP = -0.50 Pa with Re = 5, 50, 100, 200, and 400.
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Figure 4.5 The pressure contours for the
simulation case with Re = 100 and AP = -0.50 Pa.
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Figure 4.6 The speed contours for the tension-dominant simulation
case with Re = 100 and AP = -0.50 Pa.
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4.3.2 Bending-Dominant Case

For the bending-dominant case, the computational domain was modified (as shown in

Figure 4.4) by the addition of solid elements downstream. Additional elements increased

the number of elements to 97. These elements were allowed to slide horizontally to

minimize the axial tension buildup during the deflection process. This modification

therefore ensured that deflection is resisted purely by bending effects alone. For left end,

the boundary condition remained to be fixed. In order to satisfy bending dominance

(equation 4.12), the initial tension was set to zero for these simulations. Boundary

conditions were otherwise unchanged from the tension-dominant case (Figure 4.2).

wW

Figure 4.7 The computational domain used for bending-dominant
simulations.

Figure 4.8 shows the results of flow rate (Q) plotted against the pressure drop (Pl -

P2) for four different values of E. The solid lines on the figure indicate the predicted Q

based on equation 4.14. Note that these predictions were calculated with the undeformed

width (yo). Interesting phenomena were witnessed as Q was increased in the system. For

low values of Q, the deflections were minimal and a linear relationship between Q and Pl -

P2 was witnessed irrespective of the values of E. This is why all four curves lie on top of

one another initially. Once predicted Qs were reached, the walls started to deflect
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noticeably from the undeformed geometry-causing additional pressure drop while Q

increased only slightly. This occurrence was witnessed for all four values of Young's

modulus and is shown in Figure 4.9. Note the slopes at the ends are different compared to

the tension-dominant cases (see Figure 4.4). Since the wall is allowed to slide, the collapse

is dominated by bending effects, not axial tension. Therefore, symmetric collapse was

maintained. Speed contours with velocity vectors are shown for a typical case in Figure

4.10. Since Re = 1750, the velocity profile is very blunt characterized by a sharp drop in

velocity magnitude from the core to the wall. Flow separation was not seen in these cases

even though the Re is relatively high. This finding suggests that sharp corners present in

the tension-dominated cases but not when bending dominates, is responsible for flow

separation.

U,

E
Cf,

x
L-j

CY

1.5

7.5

P 1- P2 [x 10-1 Pa]1 2

Figure 4.8 The bending-dominant results for A) E = 2 x 105 Pa, B)
1 x 105 Pa, C) 5 x 104 Pa, and D) 5 x 103 Pa with P1 - Pe = 0 Pa.
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XID

Figure 4.9 The wall shapes of bending-dominant simulations with E
= 1 x 105 Pa and P1 - Pe = 0 Pa.
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Figure 4.10 The speed contours with velocity vectors for the
bending-dominant simulation with Re = 1750, E = 1 x 105 Pa and Pi -
Pe = 0 Pa.
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As in tension-dominant cases, the theoretically predicted flow limiting values matched the

computational simulation reasonably well. This further supports the fact that our

prediction, which is still highly simplified, works well once we take the wavelength to be

the length of the collapsible region for 2D collapsible channels.

4.3.3 Breakdown of the Numerical Solution

During these simulations, three types of solution breakdown were witnessed. The first

type was characterized by a gradually increasing wall deflection that never satisfied the

convergence criterion. Eventually, the deflection was no longer numerically feasible (due

to extreme distortion of solid meshes or because it caused extreme distortion of the fluid

meshes) and the run terminated. The second type of breakdown was characterized by

significant convergence with the first few steps followed by a period in which the error

remained nearly constant so that the tolerance criterion was never reached. The third type

was similar to the second case, but a distinct "jump" to new deflection shape was

witnessed. Often times, this jump involved "touching" the other side of the wall, causing

incompatibility of the two domains.

In all of the steady runs, the simulations were carried out until no converged

solutions were found. This procedure required much fine-tuning as the convergence

difficulties became more prevalent at higher Q. At this point, it is difficult to conclude

whether solution breakdowns are physical or numerical. It is naive to infer physical

breakdown from the failure of a converged solution. Furthermore, the existence of the

converged solutions does not imply that they can be observed in reality (i.e. the solutions

may be dynamically unstable). In all cases, unsteady (time-dependent) runs are required to

examine the instability associated with the flow through collapsible channels. Only by

allowing for this capability, can we examine instabilities and possibly understand flutter.

This is the subject of the next chapter.
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Chapter 5

Unsteady Simulations

Figure 5.1 shows the steps involved in unsteady fluid-structure simulations. The key

difference, compared to steady simulations, is the presence of two distinct loops: (1) An

inner loop that ensures the convergence between two domains at every particular time step;

(2) An outer loop that exists to march in time. As stated before, the dynamic analysis is

basically a static analysis with inertia at each particular time step (see section 2.3). For the

inner loop, the same convergence criterion was used as in the steady simulations.

In reality, the effect of the inner loop was minimal. This is because of the fact that

if the time step is small enough, the corresponding displacements are small and the inner

loop is exited without further alternating between two domains (see section 3.2.2). It only

affects the cases that are unstable. In these cases, the inner loop minimizes the

incompatibility between two domains. If successful, solutions of questionable accuracy

maybe obtained (by reaching the maximum iteration counter), but often the loop cannot

overcome inherent instabilities.

The solid velocity components, instead of displacements, must be extracted at the

interface to ensure no-slip boundary conditions of the fluid domain. This is a crucial

difference compared to the steady simulations. Once extracted, the velocity components

must be integrated using the ALE method to give the proper mesh update for the fluid



domain . This step ensures that no gaps or overlapping of the two domains occur at the

interface. The fluid domain is solved just as in any other moving boundary problem.

* Mesh Update

* Satisfy No-Slip BC
* Solve N-S to obtain u and P

* Extract and P

* Calculate corresponding traction forces

* Iterate until convergence in displacement

* Calculate fluid mesh velocity

Figure 5.1 The computational steps involved in unsteady fluid-
structure interaction simulations. An inner loop ensures the
compatibility of two domains at a particular time, and an outer loop
exists to march in time.

Verification was difficult due to the fact that no similar comparison cases can be

found either from experiment or numerical analysis. Luo and Pedley [56] were able to run

unsteady cases with their membrane under tension, but the wall inertia was completely

absent from their simulations. Wall inertia plays an important role during unsteady motion,

and therefore direct comparison was not possible. Furthermore, Luo and Pedley

abandoned the segregated approach for the unsteady simulations and constructed a coupled

coefficient matrix instead. This made comparison practically impossible. Unlike the steady

simulations, their results did not lend any insight to our numerical strategy.
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During the initial stage of numerical experimentation, great difficulties were

encountered in any feasible fluid-structure interaction situations. The instability was

characterized by the buildup of pressure forces (i.e. vertical traction force) that eventually

caused the solid solver to crash. A reduction in time step alone did not stabilize the system.

The instability was more dependent on the number of iterations between the two domains

than on time step size. In an effort to minimize the sudden increase in the traction forces,

the ramping technique was tried for velocity inlet condition. This method only delayed the

inevitable instability. Without a clear verification case, a more systematic approach to

unsteady runs was required.

5.1 Passive Fluid

We turned our attention to the simplest case possible with known behavior. Figure 5.2

shows the test case which consists of the solid domain with given initial velocity interacting

with the fluid domain that is at rest initially. We refer to this situation as a "passive fluid"

since the solid motion gives rise to the fluid motion. This can be distinguished from an

"active fluid" in which the fluid motion excites the wall motion. The test case is equivalent

to a vibrating solid submerged in a fluid. We expect a decay of solid displacements since

the fluid is "passive", implying that the fluid acts to damp the solid motion. This means

that developed shear stresses from the fluid domain oppose the motion of the solid and

eventually cause it to die out completely.
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Figure 5.2 The computational domain used to simulate passive fluid
simulations. This case is equivalent to a vibrating solid submerged in a
fluid that is at rest initially.

For the solid, fixed boundary conditions were used at both ends. The initial solid

velocity is defined with a maximum amplitude of one at the center of the solid that falls

parabolically to zero at both ends. For the fluid domain, periodic boundary conditions at

the two sides were specified, while the bottom center allowed outflow. This was required

to overcome the incompressibility requirement of the fluid. The parameter values used in

the simulation are listed in Table 5.1. Note that no units were specified for the values since

this was a generic test case. Any consistent set of units can be used to represent these

parameters.
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Table 5.1 The parameter values
interactions with a passive fluid.

used to simulate fluid-structure

The results are shown in Figure 5.3. The location monitored is the center line

interface point of the two domains; results are presented for the deflection of the solid and

the vertical velocity component of the fluid. The plot clearly shows that the motion of the

solid decays due to fluid damping. Typically, only one or two equilibrium iterations were

required for the solid, and the results were the same with or without the inner loop. For

fluid velocity, a slight instability was witnessed but quickly disappeared due to the damping

effect. When the fluid viscosity was increased, the decay rate was much faster since the

damping effect is greater in this situation.

Fluid domain height H = 12

Fluid domain width W = 10

Solid length L = 8

Solid thickness h = 1

Fluid viscosity g=5

Fluid density Pf = 0.01

Solid Density Ps = 10.0

Young's Modulus E = 200,000

Poisson's ratio v = 0.2

Time step At = 0.005
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Figure 5.3 The simulation of a solid with a passive fluid. a) The
vertical deflection of the solid at the centerline interface. b) The vertical
component of the fluid velocity at the centerline interface.

As explained in section 1.3, many passive fluid type (Category (C)) simulations exist in the

literature. Despite this, our attempts to locate a comparable case were unsuccessful since

most simulations were limited to acoustic or mode analysis. Among the actual flow

simulations, solutions were available for axisymmetric or 3-D cases only. Furthermore,

the theoretical prediction of the decay rate was not obtainable. This left us with the

empirical approach to the problem at hand.

The effect of the time step was examined. For time steps smaller than the time step

used here (At = 0.005), all the runs were stable (but costly) and essentially reproduced the

curves shown in Figure 5.3. When At = 0.5 is used, although the solution was stable, a

decay in amplitude was not witnessed, indicating that the time step was too large for an
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accurate solution. The effect of Young's modulus (E) was examined next. Figure 5.4

shows the wall deflection for three values of E. We know that the vibration frequency of a

solid varies as the square root of E. Furthermore, a stiffer wall should result in a smaller

deflection. The results show both expected behaviors, providing some degree of

confidence in the simulations.

5

0

-5

x10 3

0
x 10

0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5x -3
x 10

0 0.5 1 1.5 2 2.5
Time

Figure 5.4 The effect of changing Young's modulus on passive
fluid simulations. a) E = 1 x 105, b)E = 2 x 105 , c) E = 4 x 10.

Defining DR as the ratio between the solid density and the fluid density, note that

the above simulations are performed with DR = 1000. This was found to be a critical

factor in the ability to perform stable simulations. For this particular situation, DR > 100

was required to run stably. If DR is lowered further, the solution was found to be

I I I IVV \11
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unstable. This phenomenon is independent of the time step taken and is discussed further

later in this chapter.

Before going further, we want to establish some type of verification for the code

before actually examining the unsteady fluid-structure interactions. As stated before, no

clear verification can be found in the literature. For this reason, we chose to examine the

"added mass" effect that is relevant to the passive fluid situations.

5.2 Added Mass Effect

It is well known both theoretically and experimentally that if the fluid density is much less

than the solid density, the effect of a surrounding fluid on the natural frequencies and mode

shapes of a structure is not ordinally significant. However, this is no longer true when the

densities are comparable. The natural frequency of vibrations in the presence of added

fluid mass is lower than that which would be observed in a vacuum; this is an important

consideration for marine structures such as ships and pipes which are surrounded by water.

Simple analysis shows that the additional mass of fluid, entrained by a moving

structure as it vibrates in a fluid, must be taken into account. The magnitude of this "added

mass" is well documented for many simple one- and two-dimensional structures [13].

Using a potential flow analysis, it can be shown that the added mass affects the natural

frequency according to:

ffluid - 1 1Yleo = fluid (5.1)
fu (1+ (1+n)i
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where A is the added mass and M is the mass of the structure. It is important to realize that

added mass always decreases the natural frequency of the structure, more so if the densities

of two mediums are comparable.

For slender beams, "Strip theory" gives an accurate approximation of added mass

[13]. The basic assumptions are: (1) The flow is two-dimensional and inviscid over the

beam and (2) the interaction between adjacent strips is negligible. For our test case, this

means

S 2 = 21rp (5.2)
4p,Lh p,

where pf and p, are fluid density and solid density, respectively.

Figure 5.5 shows the effect of density ratio (DR) on the wall deflection. As DR is

reduced, a decrease in both the amplitude and the frequency is clearly seen. Note that for

DR = 50, the numerical instability starts to affect the solution as time progresses. Table 5.2

shows a comparison between the numerical result and the theoretical prediction given by

equation 5.1. For the vacuum case, the fluid densities were lowered such that DR was

about 100,000. Since the fluid viscosity remained the same, a decay in wall deflection was

seen. From theoretical prediction, a decrease of about 3% (for DR = 100) and 5% (for DR

= 50) are expected. The numerical results indicate that this is well predicted. It is

unfortunate that lower density ratio cases, for which we expect to see significant reduction

in the natural frequency, were not obtainable. For example, if the densities were identical,

we would expect to see 63% reduction in the natural frequency according to equation 5.1.

Numerically, lowering DR resulted in a quick failure of the code that was not even able to

reproduce a one full period. Nevertheless, this was the useful check to show that the

simulation is capable of showing the expected results. Without any verification cases, this

test raises the confidence in the accuracy of the unsteady fluid-structure interactions.
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E

E

x 10- 3

0 0.5

Figure 5.5 The effect of
fluid simulations. a) DR =
50 (dash-dot).

Table 5.2
simulations.

1 1.5
Time

changing DR on wall deflection for passive
1000 (solid), b) DR = 100 (dash), c) DR =

The effect of added mass on the frequency of passive fluid

fnum (Hz) Ynum Ytheor

DR--->Vac 3.534 1.000 1.000

DR = 100 3.42 0.969 0.970

DR = 50 3.33 0.942 0.942
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5.3 Rayleigh Damping

Damping is the ability of a structure to absorb vibrational energy. Damping can be

generated within the material of the structure (material damping), by the fluid surrounding

the structure (fluid damping), or by the impact and scraping at joints (structural damping)

[13]. So far in the analysis, damping mechanisms other than fluid damping are completely

absent from the analysis. Damping was included in the solid solver to: (1) possibly

eliminate the instability that grows at the interface; (2) remove high frequency noise that

may contaminate the physical solution.

The existing equilibrium equation can be easily extended to incorporate damping

effects, but the problem lies in the determination of the damping matrix. This is because

damping properties are frequency dependent. Therefore, it is difficult, if not impossible, to

find a general damping matrix. For this reason, the damping matrix C is often constructed

using the mass matrix and stiffness matrix:

C= aM+P Rk (5.3)

and referred to as Rayleigh damping, where aR and fi are constants to be determined

from two given damping ratios that correspond to two unequal frequencies of vibration.

They represent the energy dissipation characteristic of the materials of interest; experimental

results are typically used to determine the amount of damping. In practice, Rayleigh

damping will result in considerably more damping out of higher modes than of lower

modes. Note that the p, is equivalent to creating visco-elastic behavior in which the

viscosity is proportional to the elasticity. As an initial trial only, the component related to

the mass (the first term in equation 5.3) is incorporated into the solid solver.

__ __ ~ _· _ ·
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5.3.1 New Equilibrium Equation

Incorporating Rayleigh damping results in an additional term to the left-hand-side of

equilibrium equation given by equation 2.27 such that we are now concerned with

M'+•Ut(k) +Ct+Atj(k) +('+AKL++AK NL)AU(k)=t+AtR-'+F (k-1) (5.4)

Expanding this equation using equations 2.26 (for '0t U) and 5.3, we have

(Mao+t+A'KL+t+AtKNL + Ca,)AU(k) =

k-1 (5.5)
t+A•R +(Ma2 3 +Ca 5)- 't+'tF(k-') + (Mao + Ca,)AU() (5.5)

q=1

where a0 =--l -,a ,a =  ,a3 =a -l,a 4 
=- -1, and as = ( .-1). These

coefficients again result from the Newmark time marching scheme. The key point to realize

is that both sides of equation 5.4 contain additional terms associated with the damping

effect compared to equation 2.32. Note that for 8 = 1/2 and cx = 1/4 (see section 2.3.3) and

given At, following condition holds: ao >> a,a, >> a4a,3 >> a5 . Since we are

considering the mass contribution of damping only, this means that introducing damping is

in some ways equivalent to adding inertia to the solid.

5.3.2 The Effect of Rayleigh Damping

The results are shown for the case of DR = 50 (shown in Figure 5.5) for which the

instability sets in as we march in time. Figure 5.6 shows the effect of introducing Rayleigh

damping into the simulation. With a R = 2, the effect of damping is evident. The
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amplitude is significantly reduced while the frequency stays the same. In all cases,

however, high frequency oscillations grow and cause the solution to go unstable in each

case at a time somewhat greater than 1.5 seconds. It appears that introducing a• alone

does not remove the high frequency noise that is present in the solution. With aR = 10,

damping overwhelms the physical solution and amplitude dies out completely. This is the

typical case when the system is exposed to over-damping. Without the possibility of

knowing exact values for Rayleigh damping coefficients, further pursuit of this issue

appears to be inappropriate.

0

0

0.5 10
x 10 -

-30
x 10

0

0
Time

Figure 5.6 The effect of Rayleigh damping coefficient a•. a) a• =
0, b) atR = 2, c) aR = 10.
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5.4 Parametric Study

Knowing that passive fluid situations work, general parametric studies were performed by

adding complexities to the fluid-structure interactions one at a time to pinpoint the possible

sources of the instability. Specifically, the effects of E, v, and At were closely examined

along with the DR limitation that was seen in passive fluid simulations.

5.4.1 Time Scales of the Two Domains

It was surprising to find that a reduction in At does not stabilize the system. In unsteady

analysis, the consideration of time scales is very important to have a stable and accurate

solution. The time scales associated with the fluid domain consist of convective and

viscous time scales. These scales can be thought of as the time required for information to

travel from one point to another in the fluid domain. For the fluid solver, the Courant (or

CFL) condition associated with the convective time scale is satisfied always. For the solid

domain, the associated time scales include different modes of vibration, both lateral and

longitudinal, and the wave speed that propagates in the solid domain. This is the speed at

which small pressure fluctuations propagate in an infinite solid. For slender elements, it is

given by :

c = (5.4)

In practice, the time scale associated with the solid domain is much smaller than the fluid.

For this reason, the implicit method is often employed in practice to avoid strict stability

requirements [5]. Since the implicit Newmark method is used, there should be no critical

time restriction associated with stability in the solid domain. Since the onset time of the
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instability is independent of At and dependent on the number of time steps, the problem

appears to be due to coupling at the interface, not the stability of the solid or fluid domains

by themselves.

5.4.2 Density Ratio Limitation

The first case examined was the 2-D collapsible channel used in the steady fluid-structure

simulations. The working fluid was air and wall motion was specified to be similar to that

in the passive fluid simulations. In this case, a DR of about 500 was required to run

stably. Again in this situation, the reduction of time step alone did not stabilize the system.

The instability was more consistent with the number of iterations taken between the two

domains.

Next, the Couette flow was simulated since with zero pressure gradient, this is

probably is the simplest "active" fluid situation possible . Then we turned to the exact

condition of the Luo and Pedley simulations [55] with parabolic velocity inflow such that

both shear and pressure forces exist. It was discovered here that if water is used as a

working fluid, the restriction on DR was even greater. A value of about DR = 1000 was

needed to run stably. The change in critical DR indicates that it must be function of Re.

In reality, the densities of most rubbers are about same as the density of water.

Most of the solid metals have densities about factor of ten greater than of water. This

means that we cannot simulate any realistic density simulations using water as the fluid.
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5.5 Air-Rubber Configuration

The next logical step to take is to compare with the experimental results that are currently

available from our laboratory. Several sets of experiments have been performed with

rubber and used air as a working fluid [1, 62]. The first check is to run cases that are

stable equilibrium points in the parameter space. This means that the steady solver can be

used to identify the stable solution and the unsteady runs should settle down to the new

equilibrium configuration. For these simulations, runs were performed in the configuration

that is used in steady flow limitation analysis. Table 5.3 shows the parameter values in

these simulations for an air-rubber system. Note that solid properties imitate rubber-like

material closely without being perfectly incompressible (i.e. v = 0.45). Figure 5.7 shows a

typical simulation at Re = 400 with Pe = -1.0 Pa. Due to the high Young's modulus, the

frequency is very high and rapidly approaches the steady equilibrium condition. The fluid

velocity clearly shows that as new equilibrium is reached, the velocity settles to zero.

Figure 5.8 shows the actual wall deflection comparing steady and unsteady simulations.

Since both cases settle to the same equilibrium configuration, the wall deflection lies on top

of each other. This is why it appears as a single curve. Figure 5.9 shows the actual time

evolution of the same case illustrating that the wall deflection remains essentially symmetric

throughout the stabilizing process.

Table 5.4 shows other representative cases, all with excellent agreement between

the steady solver and steady solution obtained from the unsteady solver. In all cases, it is

clear that unsteady simulations can effectively identify the stable equilibrium points as

expected. The key question to ask at this point is at what velocity flutter is expected.
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Table 5.3 The parameter values used in the air-rubber configuration.

x 10- s

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

X 10-3

0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time [sec]

0.4 0.450

Figure 5.7 The behavior of the air-rubber configuration at Re = 400,
Pe = -1.0 Pa. a) The vertical deflection of the solid at the centerline
interface, b) The vertical component of fluid velocity at the centerline
interface.
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Time Step 0.001 sec

Solid Density 1000 kg/m 3

Young's Modulus 2 x 107 Pa

Poisson's Ratio 0.45

Fluid Density 1.2 kg/m3

Fluid Viscosity 1.8 x 10-5 kg/m*sec
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Figure 5.8 The converged wall
unsteady simulations.
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Figure 5.9 The time evolution of the wall deflection for the air-
rubber configuration.
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Re Pe (Pa)] Disp (x 104 m) I Steady (x 104 m)

200 -9.3 -0.88843 -0.89093

400 -9.3 -0.87930 -0.87540

400 -1.0 -0.08433 -0.08456

200 -0.0 0.00596 0.00594

400 -0.0 0.01194 0.01187

Table 5.4 The comparison of midpoint wall deflection between
unsteady simulations and the corresponding results from the steady
solver.

5.5.1 Prediction of Flutter Speed

Grotberg and Reiss [34] predicted the critical velocity of flutter and it is useful tool to

identify the Re range that we would expect to see flutter for the channel just analyzed. We

can first simplify their analysis by recognizing that in our simulations, there is no solid

damping (if Rayleigh damping is ignored) and their externally-imposed elastance is zero

since we have no elastic springs that support the solid. In this situation, their equations

3.4b or 3.6 reduce to

I1/2ith Eu.A 3(1- v2)p,
(5.7)

Note that fluid density does not appear. For the air flowing through our rubber collapsible

channel, ucrit = 5.745 m/s which corresponds to (Re)crit of about 3830. Note that this lies

in the turbulent regime beyond the flow simulation capabilities.
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This can also be examined from the perspective of the dispersion analysis of

Chapter 4, but now including the effects of wall mass. In section 4.2, the wave speed

limitation was predicted based on steady plate equation as shown in equation 4.1. This is

appropriate only in the limit that the mass of the wall is negligible compared to the fluid

mass. Including wall mass, the plate equation contains an additional acceleration term such

that

d2y d2y E Y4P - Pe = M T 2 + El (5.8)
dt2  dX2  dx4

where M is the mass of the solid per unit width. We performed the same procedure as in

section 4.2 and the reader is encouraged to review the procedure explained in that section.

The result, equivalent to equation 4.11, is given by:

4Eh3y " 4 
- 4 r2 Tyo

c2 3(1- v2)p,4l r+ 277

1 4r 2p hyo1+ 77
(5.9)

2 + 2
CB + CT

+ 4r 2pshyo1+ 71

we now have a two component denominator which contains a term representing the effect

of wall acceleration in the plate equation. Note that this equation reduces to equation 4.11

as Ps/P -+ 0. For the 2-D collapsible channel of Figure 4.2, note that the key term is the

density ratio of the two domains. If the densities are same, the magnitude of the second

term is one order of magnitude smaller than one. The effect of the acceleration term is

minimal and the analysis of section 4.2 pertains, and relationship given by equation 4.11
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holds. If the solid density is much greater than the fluid, however, the second term cannot

be neglected. For example, if DR = 1000 (approximately the case for the air-rubber

system), then the second term in the denominator of equation 5.9 dominates and the wave

speed is given by:

2 Eh2ic2  T (5.10)
c +--

3(1- v 2)A2p ph

Note that the critical velocity predicted by equation 5.5. is identical to the above expression

if only the bending term is considered. Since Grotberg and Reiss did not include the initial

tension effects in their analysis, and therefore these equations are, in fact, identical,

indicating that the critical velocity for flutter is again simply the wave propagation speed.

The ratio 7 given by equation 4.12 does not change and therefore we can clearly identify the

two extremes as before.

In summary, the theoretical prediction by Grotberg and Reiss [34] and dispersion

analysis have shown that flutter can be seen only for the regime with Re > 3000 for a

rubber channel (of the dimensions given here) conveying air. The experiments in our

laboratory [1, 62] are consistent with this result. Consequently, some form of turbulent

model (such as k-e model) would be necessary to simulate the experimentally observed

flutter. One alternative is to vary the solid parameters to examine "hypothetical" materials

such that would ensure that the critical velocity for flutter lies in the Re region that can be

effectively handled by the fluid solver. The simplest way to accomplish this is to lower the

Young's modulus and thereby lowering the wave speed in the solid. Figure 5.10 shows

the effect of varying Young's modulus beginning with the modulus of the air-rubber

system. For Case B, Re < (Re)crit, but for Case C, Re > (Re)crit = 383. In Cases A and

B, it is clear that the initial perturbation is subsiding suggesting the absence of flutter. This
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situation is not as clear in Case C. Another point to note is that run terminated abruptly for

Case C (at later time for case B ). This behavior is puzzling since no inherent instability

was seen up to the last few steps where large fluctuation and rapid growth of fluid pressure

cause the code to crash.

Examining equation 5.7, it can be seen that another way to lower (Re)crit is to

increase the density of the solid. In these cases, similar results were encountered. Also, the

combinations of varying both Young's modulus and solid density are tried. Again the

same results are witnessed. In summary, analysis has shown that either: flutter is not

witnessed or numerical instability was encountered when "hypothetical" materials are

examined. Further study is needed to provide a definite result.

x 10

0 0.05 0.1 0.15 0.2 0.25
Time [sec]

Figure 5.10 The effect of varying Young's modulus at Re = 400 and
Pe = -1.0 Pa. A) E = 2 x 107 Pa [(Re)crit = 3830], B) E = 2 x 106 Pa
[(Re)crit = 1211], C) E = 2 x 105 Pa [(Re)crit = 383].
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In an attempt to delay or eliminate the numerical instability, the tolerance

requirement of the inner loop in SLDCONV (see section 3.2.2) was varied. In most of

simulations, note that a tolerance of 0.001 was adequate for steady simulations. This value

was lowered to have a better compatibility between two domains, but lowering to 0.0001

cannot overcome the strong instability associated with these simulations. Maximum

counter is reached (otherwise infinite inner looping would occur) and the time is marched

even without fully converged between two domains. Up to the point of instability, the

obvious difference in any of the parameter values were not witnessed. For other cases that

are doomed to crash from the beginning, the tightening the tolerance often resulted in earlier

crash and cannot overcome the inherent instabilities.

5.6 Assessment

The current status suggests that the segregated approach used in this study is unstable in

most simulations in which the wall motion is strongly influenced by the fluid. In no

situation was it possible to simulate the onset of flutter. The results have shown that the

new model offers a limited parameter space that can be used for unsteady simulations.

Specifically, the density ratio must be large to ensure that stable runs are possible. This

limitation leaves the question of whether the segregated approach that we adopted is

adequate to solve all types of unsteady fluid-structure interactions. In contrast, the steady

solver seems quite robust, at least in the range of conditions for which a steady solution is

anticipated.

In the previous chapter, we performed steady simulations and concluded with the

remark that unsteady simulations were required to identify whether the breakdown of
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steady solutions are numerical or physical. This in fact was the prime reason for the

creation of the unsteady solver. As a first check, we ran the last stable solution using a

unsteady code while reading in the latest geometry and stresses as initial conditions. This

is equivalent to performing "self-consistency" test because no change in geometry (i.e. no

displacements) should occur since we are already at an equilibrium. For tension-dominant

case, no change in displacements was seen for first three seconds of simulation. Then,

oscillation in displacements develops and start to deviate from the equilibrium in a static

divergence fashion. Starting about at the same time, deviation from the equilibrium values

are seen in fluid pressure and velocity components. It appears that once the numerical

instability is triggered, no mechanism exists to stabilize the system and inevitable growth of

numerical instability take place as we switch between two domains. This behavior was

also true for other steady equilibrium points. The unsteady solver is then used to check the

conditions that encountered numerical breakdown. In all cases, only the static divergence

type of instability was witnessed. Since "self-consistency" is never established, these

results are inconclusive.

The theoretical analysis of the coupled system may give us some insight into the

inherent problems associated with the segregated approach, but this is beyond the scope of

this thesis. This is why our approach was totally based on numerical experimentation.

Alternatively, the coupled coefficient matrix can be used and may result in a stable solution

(see section 2.4). This step requires a major coding effort, however, and may or may not

remove the limitations encountered with the segregated approach.
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Chapter 6

Conclusions

In this thesis, a new computational approach for the simulation of flows through compliant

channels has been developed. Specifically, this model, for the first time, utilizes a spectral

element method for both fluid and solid domains. Using a segregated approach, the

scheme iterates between the fluid and solid solvers to simulate both steady and unsteady

two-dimensional channel flows.

After going through verification stages for the solid alone and then for the steady

fluid-structure analysis, the results have shown that the present approach can effectively

handle these situations and compares well with a variety of published results. The code

was then used to examine flow limitation in a collapsible channel. The results indicate that

the limiting flow rate can be well predicted using the notion of wave speed flow limitation

along with the dispersion relationship of the channel if the wavelength is taken to be the

length of the collapsible region.

Further study is required to examine self-excited flow-induced oscillations. The

preliminary results obtained here indicate that passive fluid situations can be handled

effectively, but that numerical instabilities arise in attempting to simulate flutter, in which

the flow excites oscillations in the wall. Nevertheless, the code is capable of simulating

certain cases of unsteady channel flow corresponding to parameter values in the range of

interest. Unless a turbulent model is introduced, actual comparison with experimental



results for flutter are not possible. This work sets the groundwork and points to new

directions for simulations involving fluid-structure interactions.

6.1 Future Considerations

This work can be viewed as first step toward more realistic simulations of flutter since it

goes beyond the limitations of other investigators. It produces, for the first time, a

consistent spectral element approach that eliminates, at least for 2-D flow, most of the

approximations of previous studies. Although realistic coupling can be simulated, our

model is still subject to certain limitations. In this section, suggestions are made as to how

these limitations might be overcome.

The completed code is general and, in principle, capable of simulating all fluid-

structure situations including flutter in which the fluid moves a significant distance with

respect to the wall. This thesis emphasized flow through the collapsible channel since it

was the main motivation of the project. However, fluid-structure interactions arise in wide

variety of engineering situations, and therefore this code can be used for other purposes.

Specifically, the new code will provide a foundation for the simulation of many

physiological flows due to the passive wall motion capability. Examples might include the

movement of a deformable neutrophil through a distensible channel, or the deformation of

the arterial endothelium resulting from fluid dynamic stress.

It is always possible to include further complexities so that the situation mimics the

reality as much as possible. The extensions are numerous and main components of future

considerations are discussed here.
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6.1.1 Parameter Studies

There are several effects that can be explored with the current code. The first is the effect

of tapered wall on flow limitation and flutter. This effect can be easily studied in the

simulation by allowing wall to vary linearly in thickness. Experiments have shown that

tapering minimizes the end effects, and it would be interesting how the wall deflection

evolve in both steady and unsteady simulations. The second is the effect of variation in

initial wall tension. So far, only the constant initial wall tension was explored. Other

possibilities include the simulation of thinner channels, although that would require more

elements to retain a reasonable aspect ratio. For flow limitation, the critical Reynolds

numbers can be lowered simply by increasing fluid viscosity. This would also be a useful

avenue to pursue.

6.1.2 Axisymmetric Simulation

Axisymmetric capabilities are already formulated for NEKTON and most of the

modifications have already been implemented in the solid solver. The only reason that

axisymmetric case was abandoned is the lack of comparable verification cases.

Furthermore, the deformation seen in tube flutter are not axisymmetric and therefore it

seems more logical sense to pursue three-dimensional extensions. This would mean

significant increase in computational cost-even more so for unsteady simulations. The

coding is designed, however, so that extension to other dimensions require minimal

programming effort.
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6.1.3 Material Nonlinearity

Material nonlinearities can enter through the stress-strain relations, and therefore they are

separate from geometric nonlinearities. In this thesis, we did not explore the simulations

related to variations in stress-strain matrices. We assumed solid elements to be both linear

and elastic locally. Nonlinearity was solely due to the large displacement of the wall.

Many structures of practical importance are linear for loads below a maximum linear limit

and elastic for loads below the onset of yielding. In practice, though, there are many

different material laws that are employed in numerical simulations. This possibility can be

further explored to simulate a particular material behavior of interest if the material behavior

is known and can be modeled effectively. Great flexibility is allowed for many different

types of materials.

6.1.4 Incompressible Formulation

In this thesis, many tests were performed with solids that are fixed at both ends of the

domain. For this type of boundary condition, large lateral deflection will inevitably lead to

large strain in the solid. The current model is based on the assumption of large

displacement but small strain. In order to deal with large strain deformation, nonlinear

strain must be introduced to the program. In the regime of large strain, the linear elastic

constitutive relationship will not be valid. We need specialized hyper-elastic model, such

as the Mooney-Rivlin model required for rubber-like materials. In addition to more

complicated constitutive laws, these models are based on the incompressibility of the solid.

This means that we need a special formulation for the constraint parameter, which is

pressure in the fluid solver. This requires a whole new approach to the problem at hand,

and therefore this formulation was not pursued. It would be interesting to compare our
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formulation against the incompressible formulation if it were available. The comparison

would show the how much error is incurred by ignoring the large strain assumption.



Appendices

Appendix A: Surface Traction Forces

The surface forces that act on a solid are due to the viscous stresses and pressure forces at

the interface. This is how the fluid and solid domains are coupled. Traction forces are

given by:

fS = zin (A.1)

where stresses are represented in tensor form as

Tij = T Y - P  ry (A.2)

"lzx Tzy "zz - P

Thus, both pressure and viscous stresses are accounted for. Note that the body forces are

ignored in Eq. (A.1). For a Newtonian fluid, the viscous stresses are proportional to the

element strain rates and the coefficient of viscosity. This means that viscous stresses take

the following simple forms



t,x = 2 a-
ax
av

ryy = 2g y
ay
Jw

=T = 2g. -+

au av
yx y ax) (A.3)aw Du

"xz = zx X=  Z

av aw
xy = yx =  z y +

This means that if velocity components u, v, w, and pressure P are known, we can easily

calculate the components of traction forces that act on the solid surface.

Numerically, the calculation of surface traction forces is simple once the stresses

and pressures are known. Care must be given to the fact that the pressures are calculated at

the collocation points that are two orders smaller than the velocity field (i.e. N-2 instead of

N to eliminate the spurious modes). Therefore, proper mapping must be performed to

ensure summation with the stresses. Once these forces are known, they are introduced to

the solid solver as external forces.
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Appendix B: Stress-Strain Matrices

In 2-D analysis, two types of material modeling are used (see section 2.5). The differences

lie in the assumptions made in the simulation and in the material matrix C given here. For

plane stress,

E
C = - - vI 1 0 (B.1)

0The plane strain C is given by:
2

The plane strain C is given by:

E(1- v)
C =

(1 + v)(1 - 2 v)

1 0
1-v

1 0
1-v

1-2v
0 0

2(1- v)

where E is Young's modulus (modulus of elasticity) and represents the rate of change of

normal stress for a unit normal strain in a given material, and v is Poisson's ratio and is

the ratio of lateral shrinkage (expansion) to longitudinal expansion (shrinkage) of a bar of a

given material which has been placed under a uniform longitudinal tensile (compressive)

load. A good estimate for most engineering materials is v = 0.3. Poisson's ratio only

occasionally varies more than 20% from this value. The maximum theoretical value for an

isotropic material is v = 0.5. The minimum theoretical value is v = -1; however, in

reality, materials with negative v are unknown [13].

(B.2)



Appendix C: Coordinate Transformation

In a local coordinate system, we know that the longitudinal initial tension contribution is

always axial. Since large displacement is involved, we need to ensure the transfer of

stresses in the global coordinate system. In 2-D, this implies a rotation about z-axis as

shown in Figure C.1.

Figure C. 1 The coordinate transform between different coordinate
systems with respect to a common Z-axis.

Let (r, s) represent a local coordinate system and (x, y) the global. From Popov [65] the

stress components are related by

, = +x cos20 + r, sin20
2 2

2



Furthermore, we know that the sum of the normal stresses on any two mutually

perpendicular planes is invariant. Mathematically, this means:

ax+a = ar + = (C.2)

Since. we only have ar, the above analysis collapses to the following simple relationships in

the global coordinates:

a, cos 2

a, sin2

z, = rr sinecos 0

This means that at any equilibrium configuration, we can easily determine the stresses by

knowing the angle between two coordinate systems. In NEKTON, the angle (0) was

calculated from the local geometric derivatives. This means:

0 = tan' ydx / dr) (C.4)

Note that the same conclusion can be arrived with the tensor rotation. In this case,

(x,y) (r,s)
F cos 0 sine
P -sin0 cosel

where P is the rotation matrix used to represent rotation about the z-axis.

(C.5)
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