
Real-Time State Estimation of Laboratory Flows

by

Scott Stransky

S.B., Mathematics with Computer Science (2005)

Massachusetts Institute of Technology

Submitted to the Department of Earth, Atmospheric, and Planetary Sciences
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Atmospheric Science

at the

Massachusetts Institute of Technology

June 2007

© Massachusetts Institute of Technology
All rights reserved

Signature of Author
Department of Earth, Atmospheric, and Planetary Sciences

_ / May 25, 2007

Certified by
John Marshall

Professor of Atmospheric and Oceanic Sciences
Thesis Advisor

Accepted by
Maria T. Zuber

E.A. Griswold Professor of Geophysics
Head, Department of Earth, Atmospheric, and Planetary Sciences

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

AUG 3 0 2007 ARCHVEI

LIBRARI E'

Real-Time State Estimation of Laboratory Flows

by

Scott Stransky

Submitted to the Department of Earth, Atmospheric, and Planetary Sciences
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Atmospheric Science

ABSTRACT

In this project, we use a real time computer model to simulate a differentially heated
laboratory annulus. The laboratory annulus allows us to study chaotic flows typical of
the atmosphere. Our objective is to bring the numerical model into close alignment with
the laboratory system. Parameter estimation and data assimilation of real time model
runs with the tank experiment can be used to improve numerical model fidelity, provided
the model operates in real time and the model parameters are in acceptable regimes. We
describe how to modify the default configuration of the MITgcm to tackle this new
problem. We also run laboratory experiments. Using an iterative process, we update the
model parameters (such as diffusion and viscosity), and observe that in at least some
regimes, there is excellent agreement between observations and simulations. Much of
this effort required the development of infrastructure, which is discussed in this
document. Finally, we create and test a complete, real-time system, with data sent across
the network from a parallel computer running the numerical model to the laboratory
computer, where data assimilation takes place. We further modify the model to allow it
to pause mid-run, and restart with the most recent state estimates of velocity and
temperature.

Thesis Advisor: John Marshall
Title: Professor of Atmospheric and Oceanic Sciences

APage 2

Table of Contents

ACKNOW LEDGEMENTS ... 5

1 INTRODUCTION 6

1.1 Project Goals .. 7

1.2 Background and M otivation ... 8

2 SETUP OF THE LABORATORY EXPERIMENT 10

2.1 Rotating Tank 10

2.2 Electronic Data Collection ... 11

2.3 Thermometer Calibration and Experiments 17
2.3.1 Experiments 18

3 NUMERICAL MODEL 19

3.1 Solving the Equations ... 19
3.1.1 Diffusion and Heat Flux... 19

3.2 M odel Grid .. 20

3.3 M odel Parameters ... 21

3.4 The Interface ... 22

3.5 M odel Output 22

3.6 M odel Output Analysis Scripts.. 23

3.7 Model Modification..................................... 23
3.7.1 Boundary Diffusion 23
3.7.2 Boundary Viscosity.. .. 24
3.7.3 Vertical Temperature Gradient 24
3.7.4 Random Perturbations... 25

4 EXPERIMENTS 26

4.1 Slow Rotation ... 26
4.1.1 Slow Rotation Experiment 1 30
4.1.2 Slow Rotation Experiment 2 .. 31

4.2 Fast Rotation 33
4.2.1 Fast Rotation Experiment 1 ... 33
4.2.2 Biharmonic Viscosity Experiment.. 35

Page 3

5 BUILDING A REAL TIME MODEL CONTROL SYSTEM 36

5.1 Introduction to the M odel Control System 36

5.2 M odifications to the Graphical Interface 37
5.2.1 Power System Control 37
5.2.2 Display of M odel Fields.. 37

5.3 Timing Data ... 37

5.4 Interpolation .. 38
5.4.1 Radial Basis Functions... 38
5.4.2 Pregeneration of W eights... 39
5.4.3 Model Interpolation 39
5.4.4 PIV Interpolation 39

5.5 M odel M odifications .. 40

5.6 Ensemble Generation and Runner ... 42
5.6.1 Ensemble Generator... .. 43
5.6.2 Ensemble Runner 43

5.7 Network Connection 43
5.7.1 Commands 43
5.7.2 Server ... 44
5.7.3 Client / GUI M odifications 45

5.8 Testing Procedures.. 46
5.8.1 Shared M emory Testing.. 46
5.8.2 Network Connection Testing .. 46
5.8.3 Interpolation Testing.. .. 46

6 DATA ASSIMILATION SYSTEM.. 47

7 CONCLUSION ... 48

REFERENCES 51

APPENDICES 52

Appendix A: The Thermal Wind Equation............... 52

Appendix B: The M odel Interface ... 53

Appendix C: The Complete Tank Setup... 59

Page 4

Acknowledgements

I am extremely grateful for the support, advice, and encouragement given to me by my
extraordinary advisor, Professor John Marshall. I would also like to give a huge thank
you to Dr. Sai Ravela, who guided me throughout the process.

The following people also deserve mention, for their assistance throughout this project:
Dr. Constantinos Evangelinos, Dr. Chris Hill, Andrew Wong, Ryan Abernathey, Dr. Ed
Hill, and Bud Brown.

This research was supported, in part, by the National Science Foundation (Grant CNS-
0540248).

Page 5

1 Introduction

Numerical models, in conjunction with data acquired from a limited number of
observation stations, are the main tools used in weather prediction. The models attempt
to predict the future state for the entire planet, even though the initial observations are
only in select areas. As it is running, the model receives updated observations about the
current conditions. It incorporates those into its state, allowing more accurate predictions
to be made.1 This project attempts to replicate this model/observation interaction on a
small scale, in real time - something that has never been attempted before.

Our goal is to model, in real time, rotating fluids in parallel with running actual
laboratory experiments. In the particular laboratory experiments detailed here, we use a
rotating water-filled cylinder with a metal can in the center, containing a chiller unit. The
chiller creates a radial temperature gradient across the rotating fluid, an analogue to the
pole/equator temperature gradient on Earth.

At fast rotation speeds, the flow in the tank becomes unstable and baroclinic eddies form
(Figure 1). These eddies are analogous to the cyclones and anticyclones that form in the
actual atmosphere. They are an efficient method of transporting heat inwards from the
outer part of the tank offsetting the cooling in the center. In the real atmosphere (Figure
2), storms transport cold air toward the equator and warm air toward the pole, affecting
meridional energy transport.

Figure 1, Rotating tank with eddies visualized using food coloring.

1 If the model were to run without these additional observations, it would quickly diverge from the real
world. See "Background and Motivation".

Page 6

060904
Figure 2, A synoptic map, showing eddies in the atmosphere, at the 500 millibar level (from

September 4, 2006, 18z)

1.1 Project Goals

The goals of this project are:

* To develop a real time analysis tool for laboratory experimentation.
* To produce state estimates of laboratory flows that are superior to either the

model or the tank alone.

We will perform data assimilation by running the model simulation in conjunction with
the tank experiment. Every few seconds throughout the experiment, we will adjust the
velocity and temperature fields of the model simulation to represent the current state of
the tank, slowly bringing it into alignment with the observations. To accomplish this, we
will need to allow the model to pause mid-run, and allow it to accept updated parameters
based on the tank data.

Additionally, we can use model "data" to identify specific areas of the laboratory
experiment on which to focus. For instance, if we do not have enough tank data near the
edge of an eddy, we can (in real time) begin collecting more data from that area. In this
way, we develop a closed-loop system: data from the tank will improve the model
projection, and the model run will help us analyze the tank in more detail. Moreover, it is
an analogue of procedures used in numerical weather prediction.

By running the two systems together, we will be able to improve the numerical model,
which has positive implications for the many applications to which MITgcm is being
deployed.

Page 7

The result will be a state estimate that represents the tank experiment in every variable:
velocity profiles, temperature profiles, wavenumber, and other quantitative information,
not just those that can be easily observed in the tank.

In order to proceed, we must bring the model into near-alignment with the tank data
before we can begin the data assimilation. The first part of this paper focuses on this
process. Not only do we modify the model's default parameters and parameterizations,
but we also add new ones to help improve the correlation between the model and the
tank. Additionally, we study the science behind the flow patterns we observe, namely
Hadley circulation and the thermal wind balance (see Appendix A).

It is important to note that once this model/laboratory system has been developed, we can
apply its hardware and software infrastructures to many other experiments; we are not
limited to a rotating cylinder with a chiller in the center. Thus, the groundwork described
here will lay the foundation for much future activity, experimentation, and discovery.

1.2 Background and Motivation

In our annulus experiment, we use a rotating cylinder filled with water and a small chiller
in the very center of the cylinder to introduce a lateral temperature gradient, simulating
the pole/equator gradient. At slow rotation speeds, we would expect a stable flow. The
flow is not turbulent, and the tank is in the Hadley regime. At higher rotation speeds, we
would expect an unstable flow, with the formation of eddies. The eddies in the tank are
the analogue of the baroclinic instabilities that form in the atmosphere.

Lorenz's chaos theory2 predicts that in a stable regime (with the tank spinning at a slow
rotation rate, the Hadley regime), a small perturbation to the initial state (or a small
model error, in our case), causes the parameters (such as temperature and velocity at each
point) to diverge from their unperturbed state, though the perturbation does not grow. In
an unstable regime (the fast rotation case), a small perturbation of a field will grow
exponentially in time. Figure 3 shows a field (this can be thought of as temperature at a
given point, for example) with a small perturbation at time "A". In the unstable case, the
perturbation causes the fields to diverge, while in the stable case, the fields remain close
together.

2 Lorenz (1963)

Page 8

Barodilnic
Instabiity UNSTABLE

Time -,..-•

Hadley STABLE
Regime

Figure 3, Evolution of a field with (red) and without (black) a small perturbation at time "A".
Upper: high rotation speed (baroclinic instability)- the red line departs rapidly from the black,

Lower: low rotation speed (Hadley regime) - the red line remains close to the black line. The real
atmosphere at mid latitudes is unstable, and is therefore most similar to the upper case.

In the fast rotation experiment, we expect errors in the initial conditions and model errors
to be amplified dramatically. Therefore, we will use real time model data assimilation to
compensate for these errors. Figure 4 shows how assimilation can correct these model
errors at each timestep, preventing them from growing exponentially.

A
Time ----- >

Figure 4, Constraining a parameter with assimilation. Red indicates the perturbed field, with the
green being the assimilative corrections.

In this particular project, we create the technology needed to perform these assimilative
steps. The system we create will need to be extensible, and able to accept various data
assimilation modules (allowing the efficacy of the various schemes to be explored and
tested). We test the system using one such assimilation method, developed by Dr. Sai
Ravela. In the future, the data assimilation scheme can be switched without requiring any
modification to the technology.

Page 9

2 Setup of the Laboratory Experiment

The setup for the experiment has two main components, the experiment itself, and the
data acquisition system.

2.1 Rotating Tank

The rotating apparatus is a cylindrical water-filled tank with a metal can in the center.
The tank is filled with room temperature distilled water, laser sensitive particles (for the
purpose of particle tracking), and enough salt to make the particles neutrally buoyant.
The particles must be mixed with photograph processing solution prior to being placed in
the tank, to avoid coagulation. The tank is placed on a rotating turntable, with the
rotation rate determined by the experimenter. After about twenty minutes, the tank
comes into solid body rotation. At this point, a chiller inserted in the central metal can is
activated, cooling the center of the tank. See Appendix C for the complete setup
information.

The physical system represents a complex set of interactions with its environment. To
make the physical system tractable, we make certain assumptions3 that we consider
reasonable. There are no slip conditions on the bottom of the tank, the inner can, and the
outer rim of the tank. This means that infinitesimally close to these surfaces, the velocity
of the fluid is 0. Through the outer rim of the tank, and the bottom of the tank, we
assume heat flux (H= - k V T= 0). We also assume an insulating boundary condition at
the air/water boundary. At the inner cylinder, we assume that the vertical temperature
profile is known, and fixed, as a function of height. The water in the tank has an initial
temperature profile. The temperature is approximately the room temperature (assuming
the tank has been sitting in the room for a number of hours). Due to random processes,
the initial temperature profile may vary slightly throughout the tank. The diffusion for
the water in the tank is 10-7 m2/s, and the viscosity is 10-6 m2/s at laboratory temperature
(23 degrees C). 4

3 This describes the physical assumptions we made about the tank setup. The model assumptions
are given later.
4 Marshall et. al. (2002)

Page 10

Figure 5 shows the complete tank setup, with the boundary conditions labeled.

_Ce

Figure 5, Schematic of the tank setup indicating initial boundary conditions.

In a real-world setting, the chiller in the can represents the cold pole, while the outside of
the tank represents the equator. Therefore, we would expect to see a westerly "jetstream"
develop in the tank as it does at mid latitudes on Earth.

To collect data from the experiment, we developed a high-tech system to collect velocity
data from the tank in real time.

2.2 Electronic Data Collection

The data collection system (shown as a schematic in Figure 6 and photographs in Figure
7, Figure 8, Figure 9, Figure 10, and Figure 11) is composed of a green laser, a movable
mirror, and a high-resolution digital camera. The particles that we add to the water are
highly visible in green laser light. We use a mirror to direct the laser light to form a sheet
at a single level of the tank, and photograph the illuminated layer from above with a
digital camera. The digital camera is in the rotating frame (supported by a set of steel
towers), so we use a fiber optic rotating joint (FORJ) to allow the data to cross into the
stationary frame (after using a PHOX device to convert the electrical signal of the camera
to a light signal that can be passed using fiber optics, and then a second PHOX device to
convert the signal back into the laboratory frame), grabbing up to fifteen 2048 by 2048
pixel images per second. Using a Particle Imaging Velocimetry (PIV)5 program, we can

5 In PIV, the recorded image is divided into small interrogation windows typically 64x64 pixels in size.
During the time interval dt between the laser shots the particles of each interrogation window have moved
by a displacement ds. The velocity is then simply given by the ratio ds/dt. The calculation of the particle

Page 11

" "

take two snapshots of each layer in succession yielding a velocity profile at that level6 .
After moving the mirror so the laser shines on a different level of the tank, we repeat the
process. In this manner, we can construct a three dimensional version of the current tank
velocities, which can then be analyzed and compared to model runs.

camera

I

movable
mirror

fixed
mirror

Figure 6, Diagram of the data collection system. The laser is directed at a pair of mirrors, one
movable, and one immobile. The movable mirror, controlled by the graphical interface, directs the
laser light to form an illuminated sheet in the tank. The camera sits above the tank, in the rotating

frame.

displacement ds is done by cross-correlating the two corresponding interrogation windows. For high-speed
calculation this is typically done via a Fast Fourier Transform using the Wiener-Kinchin
(http://www.cs.huji.ac.il/~randoms/WienerKinchin.pdf) theorem. (from http://www.piv.de/piv.pdf)
6The image is split in half and transmitted over the network to two PIV servers. Each server computes
velocity vectors in its half, and then the vectors are transmitted back to the data collection system.

Page 12

AWA........... II -.

I Ilaser I

Hler unit

11er probe

lulus

Steel tc

Figure 7, The lab apparatus, showing the steel towers (which support the camera and FORJ). In the
rear is the chiller unit, with its probes entering the metal can in the center of the inner tank. In the

foreground is the movable mirror.

PHOX

Power
strip

Wireless
device

Router

Laser

amplifier

Laser
power
supply

Figure 8, Devices mounted on the steel tower. Clockwise from the upper right: wireless device,
router, laser amplifier, laser power source (on table), computer controlled power strip, PHOX.

Page 13

P
Figure 9, The FORJ, held in place by bungee cords.

able
>r

Figure 10, The movable mirror, with the laser in operation.

Page 14

C~u

sheet

Figure 11. The tank, with the laser illuminating one layer of fluid.

We developed a graphical user interface, shown in Figure 12, to control these systems.
The movable mirror, camera, and PIV can be operated from the interface. (In addition,
we can switch on and off individual outlets on the power strip - see discussion on this
later. This allows us to also control the chiller and laser from within the interface.) We
tested the interface under various conditions.

Figure 12, Graphical interface.

Page 15

Figure 13 is an example of a picture that was taken by the camera. In this setup, there are
laser fluorescent particles in the water of the tank, and the laser is on, illuminating them.
The graphical interface displayed this image on the screen.

Figure 13, Graphical user interface's display of the laboratory tank. There are particles in the tank
which scatter the laser light - the small white dots in this image captured by the camera.

Page 16

In addition, we can use the interface to display the PIV vectors overlaid on top of the
camera's image. Displaying these vectors allows us to easily see where the flow is
strongest, and to see where the eddies have formed in the tank. Figure 14 shows the
display of the interface with the vectors activated.

Figure 14, PIV vectors overlaid on the tank image. The green arrows represent the flow computed
by PIV for this model run. A number of eddies of varying size can be observed.

2.3 Thermometer Calibration and Experiments

The hobo-thermometers used to determine the temperature of the water and chiller during
the experiment record data every half second. Collecting this data allowed us to set the
computer model initial conditions to more accurate values for temperature both in the
chiller and in the water. In addition, results of the experiments with these thermometers
made us realize that the vertical temperature structure near the chiller was a function of
height, and not constant, as we had originally assumed.

Page 17

2.3.1 Experiments

For the actual tank experiments, we used six thermometers.7 To determine the
temperature profile in the tank (to provide initial conditions for the model), we ran
several experiments with the thermometers placed at various points in the tank and
chiller. We measured the temperature at the top and bottom of the tank on the outside,
the top and bottom of the chiller, and the ambient temperature of the water in the tank.

Figure 15 shows a complete temperature profile for one experiment. The blue line is
measuring the temperature at the bottom of the inside of the can and the red line is
measuring the temperature at the top of the inside of the can. The ambient air
temperature of the room was 23 degrees C. Once the experiment is underway, the
temperatures remain relatively constant.

1.,'

13

12

111

JQ
4..

Top d tthe Ca

- BoSom of the can

1 55 109 163 217 2T7 325 379 433 487 54 541 5 649 703 757 811 865 919 973 1027r108

Tkme (12 secondf)

Figure 15, Tank experiment temperature data. The red line is the temperature near the top of the
center can containing the cooling device, while the blue line is the temperature near its base. Once the

experiment is underway, the temperatures remain relatively constant. The gentle undulations are
due to passing eddies.

We used these results to set our parameter file for many of the model runs. These
experiments made us realize that not only was the temperature outside the chiller
considerably higher than 0O C, but that there was also a substantial vertical temperature
gradient.

7 See Appendix B.

Page 18

- - ------ ---

3 Numerical Model

We can represent the fluid flow in the tank using a computer model. In this project, we
are using the MITgcm , a computational fluid dynamics code that can simulate flow in an
incompressible, baroclinic fluid, such as our tank. MITgcm is a discrete numerical solver
of the equations of fluid motion. The model is comprised of an executable file, created
from code written in the FORTRAN language, and a set of runtime parameter files.
These parameter files can be modified without having to recompile the entire model code.
In addition, we have developed a graphical user interface to easily create the runtime
parameter files. In this project, we also modified the FORTRAN source code to add a
number of scientifically beneficial features to the model that pertain to our setup.

3.1 Solving the Equations

The model uses a timestep loop to solve the equations for motion. The following is the
basic scheme of the model step:

For each timestep:
1. Maintain a state vector with fields such as u-velocity, v-velocity, temperature,

salinity, and pressure, together with the time derivatives of these.
2. Compute the new state vector at the timestep using a series of function

evaluations.
3. Repeat steps 1 and 2 for every model grid cell.

3.1.1 Diffusion and Heat Flux

To give an example of how the model calculates the heat flux out of the metal can at the
center of the tank (one of the many function evaluations performed at each timestep of
the model run), we will examine a small piece of the model source code from the file
external_forcing.F.

faceArea = drF(kLev)*dyG(i+1,j,bi,bj)
dFlux =

& -faceArea*kDiffCyl*(tCyl -
theta(i, j,kLev,bi,bj))

& *recip_dxC (i, j,bi,bj)

8 Marshall, et. al. (1997)

Page 19

These equations are evaluated at every model grid point on the outside of the can (as
denoted by the subscripts in the FORTRAN code). They perform the following actions:

* Determine the area of the grid cell on the can by multiplying the grid spacings
* Compute the flux as follows:

* Multiply the area by the diffusion coefficient of the cylinder, kDiffCyl
* Multiply by the difference in temperature between the cylinder at the current

grid point and the water just outside of the cylinder
* Divide by the grid spacing in the theta direction (the model considers the theta

direction to be x)

The following discrete formula represents the continuous equation for the heat flux,
H = -kVT, where VT is the temperature gradient:

H = - A(Tc -Tfluid

Ax

3.2 Model Grid

Although the fluid flow is itself continuous, the computer model solves discrete equations
on a grid. For the rotating tank of this project we used a grid with 15 vertical levels, 23
radial cells (we do not solve the equations of the model within the chiller), and 120 slices
at 3 degree intervals going around the tank. The length scales of each of these spacings is
set using the parameter file, as described in a later section. Figure 16 graphically
illustrates the model grid in its three dimensions. However, as shown in the figure, the
vertical levels are not evenly spaced. We wanted to get higher resolution near the bottom
of the tank, where frictional effects are greatest, and the boundary layer needed to be
better represented.

Page 20

-0.02

-0.04

-0.06

-0.08

-0.1

-0.12

-0.14

Figure 16, Two figures showing the model grid. Left: 23 radial cells and 120 slices in theta; Right: 15
vertical cells, with the diagram depicting their spacing within the model (the levels are closer
together at the bottom of the tank, where frictional boundary layers need to be represented).

3.3 Model Parameters

A parameter file is required to run the MITgcm. This file contains information about
such parameters as viscosity, diffusion, and rotation rate of the tank, as shown below:

Variable Data File Default Rotating Tank Model
Variable Name Value

Water temperature in the tank tRef All vertical levels, 20 degrees C

Viscosity of the tank water viscAh and 5.0* 10' m2/s
viscAz

Diffusion of heat in the tank diffKzT and 2.5*10-6 m2/s
diffKhT

Temperature of the inner can tCylIn 0 degrees C

Temperature of the outer rim tCylOut 20 degrees C

Page 21

1
-

3.4 The Interface

We have created a graphical user interface to create and modify the parameter files for
the model runs. The interface (Figure 17) is based on past work of Dr. Constantinos
Evangelinos. 9 In addition, the interface can execute the model with the click of a button.
See Appendix B for more information on this interface.

DescdpUAn Nams WTgcm dla

set Nam Type use
Equation Params Non hydrostatic scali... numeric] 1.00
Equation Params Oravity numeric O 9.81
Equation Params Barotropic accel of g... numeric 9.81
Equation Params Reference density (r... numeric W 999.8
Equation Params Thermal expansion ... numeric O 2E-4
Equation Params Haline contraction c... numeric E 7.4E-4
Equation Poramo Rof. Coriolio Parom ... numoric O 1.E 4
Equation Params dfdy (beta) numeric O 1.E-11
Equation Params Angular vel (omega) numeric 0
Equation Params rotationPeriod numeric 86400
Equation Params Visc coefffor mixing ... numeric 0.E3
Equation Params Visc coefffor mixing ... numeric E 0.E3
Equation Params Maxvisc coefffor mix.. numeric E 1.E21
Equation Params Non-dim grid depen... numeric O 0.E0
Equation Params Max harm visc coeff (... numeric 1.E21
Equation Params Min harm visc coeff(... numeric 0.E0
Equation Params viscC2leith numeric E 0.E0
Equation Params viscC41eith numeric El 0.E0
Equation Params useFullLeith string OEl . ,

..... .. I !1

I VLVII

Figure 17, Interface for controlling the model parameters.

3.5 Model Output

The model makes use of various output methods both to screen and files. At each
timestep in the model run, a line of output is displayed on the screen. In the parameter
file, the user can set how often more detailed statistics are displayed to the screen. These
detailed statistics show values such as the mean temperature in the tank at the current
timestep.

Files are also saved to disk at user-defined intervals (also set in the parameter file). Files
for the following parameters are saved: temperature, u-velocity, v-velocity, vertical
motion, and salinity.

l. Ieeol elpM

MITgcm data

9 Evangelinos, C. (2005)

Page 22

-- --- ---- - ----

D uWgankb d

3.6 Model Output Analysis Scripts

To visualize the model output in various manners, we wrote Matlab scripts that take the
model output files and create pictures and movies. There are three types of output
visualizations: color contour maps of horizontal sections at any level, velocity vector
plots of horizontal sections at any level, and color contour maps of vertical sections at
any of the slices around the tank. For any of these types of plots, we can analyze one
timestep and level as a single jpeg image, or create an avi movie that advances either
through time or space. Movies that advance through time can show any number of
timesteps with any space between frames. Movies that advance through space must be at
a given timestep and advance vertically for horizontal sections and around the tank for
vertical sections. Again, the spacing between frames of the movie is user defined.

3.7 Model Modification

To better represent the Hadley regime (slow rotation) in the model, we realized that the
actual GCM would have to be modified to accommodate additional parameters. We
added parameters to the model, which would allow for independent boundary values for
both diffusion and viscosity in the tank. We needed to be able to adjust the diffusion
coefficient to represent a flux of heat through the side of the metal cylinder containing the
chiller. We also had to allow for a vertical temperature gradient on the cylinder. Finally,
for the fast rotation experiments, we wanted to introduce random perturbations in the
initial temperature field to instigate baroclinic instabilities.

3.7.1 Boundary Diffusion

After running several experiments with the standard MITgcm rotating tank configuration,
it became clear that too much heat was being diffused within the main body of the tank,
while not enough cold temperature was being diffused out of the chiller's can. In fact, we
would prefer that the diffusion coefficient within the body of the tank was equal to that of
water, 10-7 m2/s.

Scientifically, we reasoned that adding a boundary diffusion layer would be a way to
represent the extremely small-scale processes that take place very close to the center can.
These small-scale effects transfer heat to and from the metal of the cylinder. The rapid
transport of heat near the can is due to both advection and diffusion. Because of the
granularity of the model grid, we did not believe that we could properly model the
advection close to the can. To compensate for this, we raised the diffusion in the grid
cells directly next to the can. To avoid a sharp gradient of diffusion, we discretized the
diffusion in the tank into three bands, beginning with a high value near the can. We used
a medium value for the second band, and a low value (the value of the diffusion of water)
further away from the center (this band contains the majority of the fluid in the tank).
Each band's diffusion coefficient can be independently set. This counterintuitive method

Page 23

allowed us to compensate for the lack of model grid resolution at the center of the tank,
as shown in Figure 18.

K

Figure 18, Schematic showing the diffusion values in the tank after our modification. We use the
diffusion coefficient of water for the value of Klid. The value of Kbound is slightly higher to simulate

the small-scale processes that occur right near the metal can in the center of the tank.

3.7.2 Boundary Viscosity

Similarly to the boundary diffusional layer, we felt that we could improve the model's
ability to simulate the tank by adding a boundary viscosity layer. In this case the
additional viscosity coefficient, viscAbound, acts only at the lowest grid cell within the
model tank. To change the viscosity at the very bottom of the tank, we used the
parameter bottomDragLinear, a linear coefficient of drag that acts between the bottom of
the tank and the lowest water filled grid cell by the following equation:

Tb= L i +2 p

3.7.3 Vertical Temperature Gradient

Based on our hobo-thermometer experiments, it was apparent that one single temperature
for the entire center can would not be realistic. We decided that it would be best to
change the model to be able to set a different temperature at each of the 15 vertical levels
in the model grid.

Page 24

3.7.4 Random Perturbations

In some model runs, even at high rotation speeds, the model did not go unstable and form
eddies. We assumed that this was due to the temperature profile in the tank being
perfectly symmetrical. In the actual laboratory configuration, this would be impossible to
achieve. To compensate for this, and to create the eddies that should exist in a physical
simulation, we added small random perturbations to the initial conditions of the model.
Originally, the model uses a vector called tRef to determine the temperature at each of the
vertical levels within the body of the tank, with the temperature being constant at each
level. In our current modification, we randomly add or subtract a very small number (a
small fraction of a degree) from each initial temperature in the model tank. This creates a
tank with the average temperature at each vertical level equal to that of the tRef values,
but with a minute variation from one point to the next on each level. These perturbations
create instabilities which then grow into the synoptic scale eddies that we observe in the
tank. Analogues of these random perturbations in the real life tank experiment could be a
slight temperature gradient in the tank to begin with or air currents in the laboratory
room.

Figure 19 shows the temperature field at the bottom level of the tank with the random
perturbations after 100 timesteps (or 10 seconds) of model time.

23.00

23.08

23.04

23.02

23

22.38

22.96

22.94

22.92

Figure 19, Random temperature perturbations after 100 timesteps (10 seconds). The scale is degrees
Celsius.

Page 25

4 Experiments

In this section, we describe the various experiments that we performed to determine the
optimal model parameters for simulating the tank in the two regimes: slow rotation and
fast rotation.

4.1 Slow Rotation

We began by running the model at slow rotation speeds and fine-tuning the parameters to
make the model match the tank experiment runs that we had performed. It was our hope
that if we properly tuned the model at slow speeds, it would scale to fast rotation without
changing any of the parameters.

For our slow rotation experiments, we used an f-value of 0.1, equivalent to a rotation
period of about two minutes. As expected, the Hadley regime is stable and has no eddies.
The flow has a general outward flow at the bottom of the tank and a general inward flow
at the top. Because of angular momentum conservation, the flow does not move in
straight lines; instead, it spirals outwards.

The following (Figure 20 and Figure 21) are two vector fields of the flow in the tank
experiment. The first one is at the bottom of the tank, while the second one is at the top
of the tank.

""
.-................'- ..

. j,~.*D D*. %.

.....,........,.

....... ~ ~~ .•t .o ,' • \ [Z .,· ·ri ! I" • ,.••-• •

..... .~~~~ ~~ ~~ ~~ ,,,% x ." .• . .
S , ,,

...... z- ,,

..... ,,.

.." •,,'• z.. ' . .• •., •: : . ..F i g u r 2 0 ,.a d.e.re g i m f l o a t.,, . .t h e b o t t o o f-- -- t h e . ; t a n . h i d at a fi l s f o P.. T e f o p e..-. -At .

...........~~~ ~~~ .. .••• ,z'

..~ ~ ~ ~ , . . ,.....
. , , o o ,

Figure 20, Hadley regime flow at the bottom of the tank. This data field is from PIV. The flow speed
is on the order of a few millimeters per second.

Page 26

Figure 21, Hadley regime flow at the top of the tank. This data field is also from PIV.

Figure 22 shows a vertical section of velocity (in the theta direction) in the tank, averaged
over 6 movable mirror passes (where the mirror allows data to be taken at 50 levels per
pass). Red colors indicate counterclockwise movement, while blue colors indicate
clockwise motion. The data is plotted in mm/s.

Figure 22, Vertical cross section of the azimuthal tank velocity (from PIV). Units are millimeters per
second. There is strong counterclockwise flow near the interior top, weaker clockwise flow near the

interior bottom, and little flow on the outside of the tank

Since we wanted to compare the vertical shear of the model to the vertical shear in the
tank, we computed du/dz. The data from the previous chart is messy, leading to an
unphysical shear profile, as shown in Figure 23:

Page 27

: : : :... • : :.........

•..

!l! ! '...........

......, ., .• p.,_

Figure 23, Vertical shear in the tank, without smoothing (s-)

Since the data in Figure 23 is relatively messy, we applied a smoothing algorithm. The
smoothing procedure was row-wise. For each row in the figure, we computed a weighted
average of that row and the 3 rows above and below it. The row we were computing was
weighted most, and the weights of the nearby rows decayed away as a Gaussian, yielding
the velocity field shown in Figure 24. Although this figure shows the same data as
Figure 22, the

Figure 24, Vertical cross section of the azimuthal velocity in the tank after processing with the
smoothing algorithm (mm/s)

Page 28

Finally, we took du/dz of the smoothed data, and plotted the shear in the tank (Figure 25),
which, by the thermal wind equation, we expect to be equal to the horizontal temperature
gradient (adjusted by constants):

0.08

0.06

0.04

0.02

0

-0.02

-004

-0.06

-008

Figure 25, Vertical shear in the tank, with smoothing (s 1)

Page 29

0.08

0.06

0.04

0.02

0

-0.02

-0,04

-0.06

-0.08

4.1.1 Slow Rotation Experiment 1

Figure 26 shows a comparison of the velocity profile in the model run and the velocity
profile in the tank experiment, prior to parameter adjustment. We noticed that these
profiles are very different in both the magnitude and direction of the velocity field. The
model run shows no evidence of a zero-crossing (a horizontal layer where there is no
velocity whatsoever), while the tank experiment shows this crossing.

Figure 26, Direct azimuthal velocity comparison of the model and the tank, prior to parameter
adjustment (mm/s)

Figure 27 analyzes the thermal wind balance in the model. The chart in the upper left
shows the model's horizontal temperature gradient, adjusted by the appropriate constants.
The upper right shows the vertical shear in the model. The lower chart shows the
difference of the two. If the model were in perfect thermal wind balance, the lower chart
would be zero everywhere except the frictional boundary layer, where thermal wind does
not apply.

Page 30

Figure 27, Upper left: horizontal temperature gradient in the model (multiplied by appropriate
constants from the thermal wind equation), upper right: vertical shear in the model, lower:

difference between the two upper charts.

4.1.2 Slow Rotation Experiment 2

After applying the various changes to the model (boundary diffusion, boundary viscosity,
center can temperature profile) and adjusting existing parameters (such as the value of
diffusion of the water in the can, viscosity parameters, slip conditions, usage of
hydrostatic balance, and others), we arrived at a model configuration that was able to
simulate the velocity profile of the tank experiment.

As above, we created a set of plots to analyze the thermal wind balance in this run. The
velocity profile in the model is also close to that of the tank experiment. We see a similar
zero-crossing in both cases. The magnitudes and directions of the velocity also match.
The thermal wind balance of this simulation is nearly perfect, as shown in Figure 28 and
Figure 29, suggesting that the Rossby number in the experiment was very small.

Page 31

4

2

0

-2

-4

Model Tank
Figure 28, Direct comparison of the model and the tank (azimuthal velocity, mm/s), after parameter

adjustment.

0.08

0.06

0.04

0.02

0

-0.0O

-0.04

-0.06

-0.08

08

06

04

OZ

0.02

0.04

0.06

0.08

Page 32

Figure 29, Upper left: horizontal temperature gradient in the model (multiplied by appropriate
constants from the thermal wind equation), upper right: vertical shear in the model, lower:

difference between the two upper charts.

::

: ::·,:i:!::::: - : : : :

:

4.2 Fast Rotation

In the fast rotation experiments, we used f-values of 1.0 and 2.0, equivalent to rotation
periods of twelve and six seconds respectively.

After turning the chiller on at fast rotation speeds, we observe several eddies forming
very quickly (on the order of 1 or 2 minutes). These eddies persist for the duration of the
experiment, though they progress around the tank slowly and do change shape over time.

The vector field in Figure 30 shows eddies observed in a high rotation speed tank
experiment. The upper center is in the can's shadow.

............ i Ii ·~ lr
Z

..

I, r , Z

r r

rlr

~-·r:-· · · ~r:

·

I ·
·· · ··r r~ ··

......... : 7~ff::
.

.

Figure 30, Velocity proflle of the ndddle level of the tank at a high rotation speed, from PIV data.
The region in the upper center is the shadow of the chiller can. The velocities are on the order of

nidlimeters per second.

4.2.1 Fast Rotation Experiment 1
Figure 31 shows the temperature field that the model produces in its default configuration
at high rotation speeds (in this case a 12 second rotation period, or f=l). It has five main
eddies at first. Unlike in the tank experiment, these eddies disappear as time progresses,
and are replaced by less distinct structures, as can be seen in Figure 32.

Page 33

Figure 31, Model temperature field in its default configuration, after about 30 rotation periods,
showing five eddies.

Figure 32, Lack of eddies later in the model run (after about 80 rotation periods).

Page 34

Figure 33 shows the velocity field at the bottom of the tank that the model produces after
about 80 rotation periods:

Figure 33, Model velocity field at the bottom of the tank in its default configuration after 80 rotation
periods.

4.2.2 Biharmonic Viscosity Experiment

We experimented with biharmonic viscosity instead of Laplacian viscosity. Biharmonic
viscosity acts on smaller scales than the standard default Laplacian viscosity. The
Laplacian form (viscAh) acts as follows:
au

= viscAhV 2u
at

while biharmonic viscosity (viscA4) takes the following form:

= -viscA4V 4 u
at

Using dimensional analysis, we can determine the approximate relative scale of viscA4
as opposed to viscAh. Values of viscA4 greater than about 10-9 m2/s cause the model to
crash, while values smaller than 10-11 m2/s cause the model to be extremely unstable with
turbulent flows, instead of stable eddies.

Judicious choices for the biharmonic frictional parameters enabled the model to capture
the large-scale baroclinic instability observed in the tank, whilst maintaining smooth
fields on the grid-scale (Figure 34).

Page 35

Figure 34, Model velocity field with biharmonic viscosity. This plot shows stable eddies after
approximately 80 rotation periods.

5 Building a Real Time Model Control System

5.1 Introduction to the Model Control System

The overall goal of the project is to have real time data assimilation of a multi-ensemble
model with real time tank observations. The MITgcm needed to be modified to allow it
to pause at user defined frequencies, and restart with new, analyzed assimilated model
fields.

The main purpose of this part of the project was building a Model Control System
(MCS), which would allow us to perform real time data assimilation of the model and the
tank experiment. Data assimilation and data display would be performed on our
laboratory computer, while the model ensembles would be running on an Altix
supercomputer. We needed to control the number of ensembles running at a given time,
to give complete flexibility to the experimenter. In addition, the MITgcm had no facility
to stop running and restart under new, user-provided, conditions. Therefore, numerous
modifications and additions to the MITgcm were required:

* Display the results visually in a graphical interface
* Interpolate tank observation fields to a polar coordinate system (which is required

by the data assimilation module) and store them in shared memory
* Pause model runs, to allow time for the data assimilation to take place
* Write model fields to shared memory at given intervals
* Read model fields from shared memory, and restart the model with these fields as

new "initial" conditions
* Create an ensemble generator, which will be used to generate random initial

conditions for numerous model runs

Page 36

* Utilize a network connection to transmit the model fields from our Altix
supercomputer to our lab computer, and vice versa

5.2 Modifications to the Graphical Interface

5.2.1 Power System Control

After installing a network ready APC power strip on the rotating table, we were able to
configure it to have a network IP address. We were then able to communicate with it
directly from our user interface. The code for this communication was written in the
Expect languagelo, a language that allows a user to telnet across a network in an
automated fashion. We implemented functions to switch individual power outlets on and
off, and to reset the entire strip. These functions allow us to reset an individual item on
the table if there is a failure during the experiment. For example, if our program realizes
that the camera is not being responsive, we have coded the power strip to automatically
reboot its power. In addition, we are able to remotely control the power to the laser and
chiller, creating a safer environment for the experimenter. This also allows experiments
to be controlled from any computer in the world with an Internet connection, assuming
the table apparatus is set up." To make these features as user friendly as possible, all one
needs to do to turn on an outlet of the strip, is type "start [outletnum]" in the GUI text
field. To turn an outlet off, type "kill [outletnum]".

5.2.2 Display of Model Fields

We modified the graphical user interface to display both the PIV vectors and model
vectors simultaneously (or independently, as it had operated previously). The PIV
vectors are displayed in green, and the model vectors are displayed in yellow. Their
scales can be adjusted independently. Both fields update as often as new data is
available. In addition, the interface places the observation fields in a shared memory,
enabling other modules (such as the data assimilation module) to access it.

5.3 Timing Data

After the experiment with the model on a single processor "slow" computer, we needed
to get accurate timing data for the model on various computers. Since the goal of this
project was real time data assimilation, the model would have to substantially outperform
real time, allowing the data assimilation module time to do its computations. Figure 35
shows the results of these tests. We ran a 200 timestep (20 second) model run on AO, a
single processor "slow" computer, and using one and four processors of a 16-processor
Altix supercomputer. We also experimented with two different vertical structures of the
grid: an unevenly spaced 15 level grid, and an evenly spaced 29 level grid.

10 http://expect.nist.gov/
1 We have a VNC server running on the computer. This allows the visual output of the experiment to be
viewed remotely, as well.

Page 37

Timing Comparison (20 second run)

()

29 vert 1-CPU
x 29 vert 1-CPU
x 29 vert 4-CPUs
x 15 vert 1-CPU
x 15 vert 4-CPUs

Total Time Dynamics Thermo 2D Solver Other

Figure 35, Model timing comparison. The dotted line shows real time. The total run time is the left
set of data. The various components of the model run are indicated, as well.

The only model runs that were faster than real time were the 15 level runs on the Altix
supercomputer. Therefore, that is the configuration we chose for the experiments.

5.4 Interpolation

The MITgcm outputs its data in polar coordinates, while the PIV software outputs its data
in a Cartesian grid. We needed to develop two inverse interpolation schemes: one to
convert model data to Cartesian data for display in our graphical user interface, and one
to convert PIV data to polar coordinates for data assimilation processing. In addition,
these interpolation routines needed to be extremely rapid, enabling the user to visualize
the model data on the screen in real time, and to perform the data assimilation in real
time.

5.4.1 Radial Basis Functions

We needed an interpolation scheme that would not only be fast, but would also preserve
the integrity of the small-scale flow features of our tank experiment. For example, near
the center of an eddy, the flow may reverse from one grid cell to the next (due to the
resolution of our PIV grid). Gaussian radial basis functions provided this speed and
accuracy.

In general, the equation for interpolating with radial basis functions is:

Page 38

I J
I(x, y) = Ew (ij)(XY)U (i, j)

i=1 j=1

where I(x,y) is the interpolated value, w is the weight function, and U(i,j) is the
uninterpolated value. In our Gaussian setup, the weight function was calculated as
follows:

(y-j)
2

+(x-i)
2

w(i,j)-(x,y) = e c , where c is a constant.
The weight function decays exponentially as the uninterpolated grid point gets further
from the interpolated grid point. As discussed below, we use that fact to improve the
speed of the interpolation, by eliminating negligible weights.

5.4.2 Pregeneration of Weights

Since our model and Cartesian grids remain constant, it saves time to generate the
weights in advance, storing them in compact files. We developed Matlab scripts to
pregenerate the weights for both directions of interpolation (the weights are specific to
our tank and model configurations, and can be regenerated if those configurations
change). The scripts compute the weight of each point in the initial grid for each grid
point in the interpolated grid. All weights above a certain, user defined, threshold are
stored in a file named aNbM, where (N,M) is the point in the interpolated grid. Keeping
only the weights above the threshold allows the files to be small, yet still accurate. The
Labsim user interface application loads these files into an object in memory each time it
is started. These weight objects (one for each direction of interpolation) contain all of the
information needed to interpolate any point in the grid. Using a get(int i, int j) method,
the specific weights for a given point can be accessed.

5.4.3 Model Interpolation

To allow the model to be smoothly interpolated at the boundaries of the tank, we pad the
model data with zeros, both on the inside (where the center can is located), and the
outside (where the outer rim is located). Prior to applying the weights, a transformation
matrix is applied to each velocity vector in the polar grid, converting the vectors from
polar space to Cartesian space. Then, a loop runs through each point in the Cartesian
grid, uses the weights and the formula above, and determines the velocity field. A similar
loop is used to interpolate the model's temperature field; however, a transformation
matrix is not needed.

5.4.4 PIV Interpolation

The interpolation process of the PIV vectors from Cartesian to polar spaces works in a
similar manner. It uses a separate set of weights, and the inverse transformation matrix
as in the opposite interpolation.

Page 39

5.5 Model Modifications

By default, the MITgcm writes its output to standard format data files, with one file for
each output variable (such as u velocity, v velocity, and temperature). However, reading
and writing files, especially on the Altix supercomputer, is very slow.

To get the most accurate results possible, we needed to run 100's of ensemble members.
Due to being limited by the 16 processors in the Altix supercomputer, we needed a
method to generate multiple ensembles per processor (and hence, per model run). To
accomplish this, we use the method of "snapshots". In this method, we take output from
one model run at various timesteps near the point in the integration we are considering.
We regard each of these realizations to be an individual ensemble member. In our
current configuration, we are taking nine time snapshots of the model prior to the output
of an "official" model state, giving us 10 ensembles per processor, or a total of up to 160
ensemble members (if we were to use all 16 of the Altix's processors).

We modified the model itself to allow writing of data fields to shared memory, which
allows rapid reading and writing of data. First, we added a new module to the model for
these shared memory reading and writing routines. We then developed an infrastructure
to control how the model writes to memory, how often it does so, when it pauses, how it
knows when to restart the time integration, and how it reads new data from the memory
when it restarts.

We added the following parameters to the model's parameter file:
* useShmem. A boolean flag that controls whether the model uses our new

infrastructure at all. When it is set to false, the model runs as it did prior to these
modifications.

* shmemKey. This is the key that identifies which shared memory this specific
model should use for writing and reading fields. If the user intends to run
ensembles of models (in addition to the snapshots), it is important to pick
different shared memory keys for each run.

* shmemWaitInit. This initializes the number of timesteps of the model that are run
before each snapshot is written to shared memory.

In addition, we hard coded the number of snapshots per model to be 10.

When the model is initialized, it computes an internal variable, called the "waitflag".
This variable is initially equal to the product of the number of snapshots and the value in
shmemWaitInit. The waitflag indicates how many timesteps remain before the model
pauses iterating to allow the data assimilation module to do its computations. In addition,
the model initializes the shared memory indicated by the shmemKey parameter. It places
the waitflag in the memory, and allocates storage for 10 snapshots of model parameters.

Once the model begins stepping forward, it performs a check after each timestep. If the
waitflag is greater than zero and the waitflag modulo the number of snapshots to be

Page 40

written between pauses (the waitflag modulo 10 in our current configuration) is non-zero,
the waitflag is decremented, and the model continues iterating. If the waitflag is greater
than zero, but the waitflag modulo the number of snapshots to be written is equal to zero,
then it performs a shared memory write. It writes the u velocity, v velocity, and
temperature fields of the model into the n-th12 slot of the shared memory in row major
form. After decrementing the waitflag, it continues iterating. If the waitflag is equal to
zero, the model suspends its iterations, and sets shmemWaitInit to zero. After writing its
fields to the final slot in the shared memory, it enters a passive mode. While it is paused,
other processes can read any of the snapshots of the model (for data assimilation), and
modify the fields located in the final slot of the shared memory13 . Every 50 milliseconds,
the model checks the shmemWaitInit flag in the shared memory. If that flag has been
changed to a positive value, it recomputes the waitflag (by multiplying by the number of
snapshots), reads the (possibly) updated fields from shared memory, and starts iterating
the model again with those new fields as initial conditions.

12 Where n = the waitflag divided by the number of snapshots
13 As discussed previously, the data assimilation tries to "nudge" the model towards the observations. The
data assimilation module has access to the observations, as well, allowing it to perform these computations.

Page 41

This set of processes is shown as a flowchart in Figure 36.

Figure 36, Flowchart of model, when run in shared memory mode. The chart indicates the model
enhancements discussed in the previous section, including the model pauses and shared memory

writes and reads.

5.6 Ensemble Generation and Runner

For the data assimilation routines to function properly and with high accuracy, we needed
to run many perturbed ensembles of the MITgcm. These ensembles needed to be quickly
and automatically generated and initialized. To accomplish this task, we wrote a pair of
scripts in Perl and Matlab. The first script generates the perturbed models, and the
second script automatically runs as many ensembles as the user chooses.

Page 42

5.6.1 Ensemble Generator

The ensemble generator script can generate an arbitrary number of perturbed initial states
for the MITgcm. The generator reads a file called "config.ens", which contains a list of
the shared memory keys for each ensemble member (the number of keys in the list
determines the number of ensembles generated). The ensemble generator takes a
template of the model parameter file and appends the shared memory key specified in the
configuration file. It then uses Matlab to take a standard temperature file (see the section
on the initial temperature perturbations in Part 1), and perturbs each grid point by a value
selected from a Gaussian probability distribution function, with a mean perturbation of
0.05 degrees Celsius.

5.6.2 Ensemble Runner

The ensemble runner can run one or more of the ensemble members created by the
ensemble generator. The script reads a configuration file name "config.ens.run", which
lists the ensemble numbers that it is supposed to run.

5.7 Network Connection

Given that we needed to run the model on the Altix supercomputer, and that the Ravela
data assimilation module and the graphical user interface were on Coetzee, a protocol
needed to be established for two-way communication of model data between these two
machines. We determined that the best implementation would be to have the Altix
function as a TCP/IP server, with Coetzee as the client. However, each machine would
need to be capable of both receiving and transmitting data. The client issues the
commands to the server, as described below.

5.7.1 Commands

All of the commands passed back and forth are character based. For example, when a
model field is to be sent over the network, it is converted into a stream of characters
before transmission. Every command is issued by Coetzee. The Altix interprets the
initial part of the command, and takes the appropriate action. This is discussed in more
detail in the following sections.

There are four main commands that are passed in this system, and various other
commands, as well. The four commands are:

* Check. This command returns the current wait flag for a given ensemble member
running on the Altix. Coetzee sends a command to the Altix in the form
"check#####", where the five digits represent the ensemble number that the Altix
is to check. Upon receiving this message, the Altix transmits the data back to
Coetzee.

Page 43

* Get. This command instructs the Altix to transmit the complete model state (all
ten snapshots) of a given ensemble member. Coetzee transmits the command in
the form "get#####", where the digits represent the ensemble number that is to be
returned. When the Altix receives a get message, it converts the model data,
reads from the shared memory associated with that ensemble to a character array
(9936016 bytes long), and transmits it across the network.

* Restart. The restart command tells the Altix to restart a given ensemble member
for a set number of timesteps between each shared memory write. This command
is transmitted in the form "restart#####%%%", where the pound signs indicate
the ensemble number that is to be restarted, and the percent signs indicate the
number of timesteps between each write to shared memory (given that there are
10 writes before the model pauses again, this number is 1/10 of the number of
timesteps that will be completed before the next pause). Allowing the timing
information to change mid-run is crucial to developing a real time system. The
data assimilation module can determine if it is running ahead or behind real time
when it establishes the new value for this parameter. When the Altix receives a
restart message, it places the new "time between" flag into the proper ensemble.
As discussed previously, updating this flag causes the model to automatically
begin iterating again.

* Send. This command tells the Altix to place a set of analyzed model fields (u
velocity, v velocity, and temperature) into the "read slot" of the shared memory
(the snapshot that is read when a model is restarted after pausing) of a given
ensemble member. The command sent by Coetzee is in two parts. The first
command is "send#####%%%%%", which instructs the Altix that it is about to
receive a set of model data of size indicated by the % signs, to be placed into the
ensemble member indicated by the # signs. The next transmission is the actual
model data fields. The Altix uses memcpy to copy the fields into the proper
shared memory.

Other commands that the system understands include:
* Quit. When Coetzee sends the text "quit", the Altix server stops.
* GetNumEns. When Coetzee sends the "getnumens" command, the Altix responds

by transmitting the number of ensembles listed in the config.ens.run file.

5.7.2 Server

The server resides on the Altix computer. It is automatically started by the ensemble
runner (discussed in the previous section). However, it also can be started manually. The
only parameter required to initialize the server is a port number that the Altix is to listen
on. The server has two modes: listen and command. In listen mode, it waits for an
incoming connection. When the server begins, it starts in listen mode. If a connection is
offered, the server goes into command mode. Command mode allows a connected
computer to pass one of the valid commands listed in the previous section, with the Altix
returning data, if applicable, to that command. If the connected computer should
disconnect from the server, it returns to listening mode, allowing the server to remain
active indefinitely, regardless of the connecting computer's state.

Page 44

5.7.3 Client / GUI Modifications

The client is built as a library on Coetzee, allowing its functions to be called from both
the graphical interface and the data assimilation module. When the client is initialized,
using the InitClient method, it attempts to connect to the server on the Altix. If the
connection is successful, the client awaits commands to send, such as those issued in the
interface or assimilation procedure. When the client is finished, it can disconnect from
the Altix. The graphical user interface has been modified to operate under the files
method or the new network connection method. If the network connection method is
chosen, the user can decide whether to be in assimilation mode (in which it does not issue
any network commands - as those would be controlled by the assimilation package), or
standard network mode (in which the interface controls the model).

When the client receives data from the Altix, it puts it into a shared memory dedicated to
assimilation. The assimilation routine can perform its operations on it. The graphical
interface can be configured to display model data from this shared memory.

Figure 37 shows the complete workings of this network connection, in schematic form:

Figure 37, Schematic of the network connections and commands

Page 45

5.8 Testing Procedures

We implemented various testing procedures to ensure that both the shared memory model
writing and the network connection were bug-free. In addition, we tested the
interpolation routines, both to and from polar coordinates.

5.8.1 Shared Memory Testing

To test that the proper model field was in the shared memory, we implemented the
following routine:

* Output the model's u velocity, v velocity, and temperature fields to files after
every 50 timesteps.

* Output the shared memory fields at the same timestep.
* Using a Matlab script, we compare the data in the files to the data in the shared

memory.
The data in the shared memory was identical to the data in the files.

5.8.2 Network Connection Testing

To test the functionality of the network connection we employed a number of tests. The
following explains how the four main commands were tested.

* Check. We tested the check method by displaying the model's wait flag on the
screen during the model run. We compared that value to the value received
across the network.

* Get. To analyze the efficacy of the get method, we ran the model with its
standard file output - as a control, comparing each timestep to a separate model
run (with identical parameters) using shared memory and the network connection.

* Restart. To test our restart method, we passed various wait flags back to the
model, and watched the output of the model, confirming that it was using the flags
properly.

* Send. Testing the send routine was accomplished by sending back the model
vectors (unchanged) to the Altix supercomputer prior to restarting the model. The
model produced the same results as when we did not send the vectors back,
confirming that the send procedure worked.

5.8.3 Interpolation Testing

In order to test our interpolation routines, we could not make use of the paradigm of the
above tests. In any interpolation process, there is smoothing of the data, so we would not
expect the interpolated fields to match the uninterpolated ones. In the qualitative tests of
our polar to Cartesian interpolator, we compared graphical model output from the polar
coordinates to the GUI's Cartesian display. For the Cartesian to polar tests, we compared

Page 46

the GUI's Cartesian display to the same data interpolated to polar and then back to
Cartesian.

6 Data Assimilation System

As a final test of the system, we connected Dr. Ravela's data assimilation module to the
infrastructure developed in this project. His module uses the commands provided by the
client that we built in this project to communicate with the Altix supercomputer running
ensembles of the MITgcm model. It also makes use of the shared memory and
interpolation schemes that we developed and tested, both for display purposes in the
interface, and to ensure that the data from the tank and the fields from the model were in
the same coordinate system.

Prior to initiating the model, we generated a set of fifteen perturbed ensemble members
using the ensemble generator. We ensured that the PIV servers were operational. After
switching the chiller unit on, we waited for stable eddies to form. We then ran the model
for a number of timesteps, until it formed eddies, as well.

After completing those setup steps, we ran the experiment in the laboratory tank, the
server on the Altix computer, and continued the numerical model (with pauses for the
assimilation). At each pause of the model, which we set to be every 100 timesteps (10
seconds of real time), Ravela's module assimilated the tank observation data (5 levels of
equally spaced tank PIV data, with the levels automatically controlled by the movable
mirror) and the model data it received over the network connection. Each assimilation
stage was equivalent to the green lines in Figure 4, and brings the model into a closer
alignment with the observations. After about fifty iterations, the state estimate of the
fields appeared as they do in Figure 38 (the yellow vector field). The location and
magnitude of the eddies in the state estimation match up very well to the observed eddies
(the green vector field).

Page 47

Figure 38, An example of a partially assimilated model field / state estimate (yellow), along with the
observation field (green). Note that the eddy locations in each field are similar (whereas in an

unassimilated run, they would not be in similar locations).

7 Conclusion

We have developed a robust system for performing real time data assimilation.

For the first time, a system has been created that allows a laboratory experiment to be run
in conjunction with a real time numerical model. It was designed in three stages. First,
we configured the parameters of the model to produce eddies of the approximate size,
shape, magnitude, and longevity that we observed in the tank experiment. Next, we
adjusted the code of the MIT General Circulation model, allowing it to pause in the
middle of its run. In addition, the code was modified to let the model, when it restarted,
use a new set of velocity and temperature fields (as output by the data assimilation

Page 48

module) as initial conditions. Finally, we created a TCP/IP client/server to quickly
transfer data over a network from the supercomputer where the model is processed to the
laboratory computer where we controlled the experiments. After building these systems,
we tested each component individually, and as a whole.

It is also important to note that we are not limited to the rotating annulus experiment, now
that this system has been created. Any tank configuration that can be placed on the
rotating table can be analyzed using the system.

The tools created in this project can also be used for teaching. The model is now
adjustable without knowledge of its inner workings, using the interface we developed. Its
parameters can easily be tweaked, allowing students to witness their impact on the
resultant flow. In addition, the Model Control System can be used to teach students
about various methods of data assimilation. Since the Model Control System is
independent of the assimilation module itself, the assimilation module can be swapped to
use a different scheme, without having to change anything else in the code.

Finally, as an example of a different experiment that benefited from the tools developed
during the course of this project, we show results from a plume evolution experiment. In
this experiment, there is no center can. A density stratification is established in the main
tank, with a density of 1.06 g/cm 3 at the bottom, and 1.00 g/cm3 at the top (giving an
average of 1.03 g/cm3, which is needed for the particles to operate properly). After the
tank reached solid body rotation, salt water containing the particles was injected into the
middle of the tank. We were able to use our system to capture the velocity vectors (using
PIV) of the induced anticyclone, as shown in Figure 39. We were also able to use the
movable mirror to determine the vertical extent of the anticyclone.

Page 49

Figure 39, Density stratification experiment showing a large anticyclone, as indicated by the green
vectors acquired using PIV.

Page 50

References

* Deterministic Chaos.
http://www.exploratorium.edu/complexity/CompLexicon/chaos.html

* Evangalinos, C. Web-enabled configuration and control of legacy codes: an
application to ocean modeling. Journal of Ocean Modeling. Volume 13/3-4,
pages 197-220. 2005.

* Expect. http://expect.nist.gov/
* LaVision. PIV. http://www.piv.de/index.htm.
* Lorenz, E.N. Deterministic Nonperiodic Flow. Journal of the Atmospheric

Sciences, Volume 20, pages 130-141. 1963.
* Marshall, J, et al. "A finite-volume, incompressible Navier Stokes model for

studies of the ocean of parallel computers." Journal of Geophysical Research.
102(C3), 5753-5766.

* Marshall, J., Plumb, A., and Illari, L. "Thermal wind." (12.307 notes).
http://paoc.mit.edu/12307/front/thermal%20wind/thermalwind.pdf. March 4,
2003.

* Marshall, J., et al. Journal of Physical Oceanography. "Can eddies set ocean
stratification?" Vol 32, No. 1, Jan 2002.

* Marshall, J., et al. Grant application for the Planet-in-a-Bottle DDDAS.
* MITgcm documentation. http://mitgcm.org.
* Read P. L., et al. "An Evaluation of Eulerian and Semi-Lagrangian Advection

Schemes in Simulations of Rotating Stratified Flows in the Laboratory."
Monthly Weather Review, page 2835, August 2000.

Page 51

Appendices

Appendix A: The Thermal Wind Equation

The thermal wind relation states that the vertical wind shear, du/dz, is proportional to the
horizontal temperature gradient, dT/dr. This is due to a relationship between geostrophic

R=
balance and hydrostatic balance. In our flow, the Rossby number is small, , ,
therefore we can assume geostrophic balance because the Coriolis force is balanced by
the pressure gradient force. Geostrophic balance is given by:

1
i, t x .f.

Next we assume that the density of the water varies as:

p =P)+6 p where < 1
Pc

We then use the hydrostatic balance
dpp+ g=0
d--

and the z partial derivative of the geostrophic flow equation giving us:
dug -g

- xVp
dz Pof

Finally, to convert this formula to one that expresses the relationship we desire, we
convert pressure to temperature using
tJ= p0A ý 1- 7 cT-T O - '1' .

where a is the thermal expansion coefficient of water at temperature To. Using this
equation and the previous one, we use the simplified equation of state:
--- g dT
d- f f dr

The vertical wind shear is hence equal to the thermal expansion coefficient of water
multiplied by the horizontal temperature gradient times gravity, all divided by f, which is
proportional to the rotation rate.

We take this as a given in the tank experiment, and hope to achieve this relationship in
the model. Not only do we wish to have thermal wind balance in the model, we would
like the velocity and temperature profiles of the tank to match the profiles of the model.

These equations apply to rotating fluids with a small Rossby number and minimal
frictional effects.

Page 52

Appendix B: The Model Interface

Introduction and Definitions

In this part of the project, I created a piece of computer code that will allow users with a
strong background in oceanic and atmospheric sciences, yet little knowledge of computer
programming, to set the runtime parameters for running the MIT circulation model,
MITgcm'4 , which is written in FORTRAN. This code will create a graphical interface
that will let users easily manipulate all of the variables in the model without knowing
anything about the source code of the model itself. My code is written in Java, as well as
a markup language called LCML1 , a type of XML'6 that can be understood by a Java
application called Legend". When the LCML code is loaded in Legend, an interface
appears that lets users adjust the values of all the variables in the problem (they are given
default values in the LCML code). Upon completion of any adjustment of parameters,
Legend can check their validity and output a FORTRAN readable file for input into the
model.

XML is a "markup" language for computer programming, similar in structure to HTML.
XML schemas Vprovide a set of rules for defining the structure, content, and semantics of
an XML code.
MITgcm employs several namelists for runtime parameterization. FORTRAN namelists
are parameter files for use in FORTRAN codes. They list all of the variables in a certain
code, and can be given default values.
LCML is a form of XML with certain rules and constraints described in a schema.
LCML files can form the description of FORTRAN namelists, and can be interpreted by
Legend.
Legend is a Java application that can interpret LCML descriptions and produce a data file
that contains values for the variables in a FORTRAN namelist.

Background Material

To learn about the Legend software and the LCML, I studied the thesis Legacy
Computing Markup Language (LCML) and LEGEND - LEGacy Encapsulation for
Network Distribution by Stephen Kurt Geiger. In addition, I learned about the XML
language, XML schemas, the Legend software, and the LCML markup language. I
studied sample LCML description files that were done for other projects. My final piece

14 Marshall, J, et al. A finite-volume, incompressible Navier Stokes model for studies of the ocean
of parallel computers. Journal of Geophysical Research. 102(C3), 5753-5766.
15 Geiger, S. Legacy Computing Markup Language (LCML) and LEGEND - LEGacy
Encapsulation for Network Distribution. Thesis.
16 Extensible Markup Language, www.w3.org/XML
17 Evangalinos, C. Web-enabled configuration and control of legacy codes: an application to ocean
modeling. Journal of Ocean Modeling. Volume 13/3-4, pages 197-220. 2005.
18 W3C XML Schema, www.w3.org/XMIJSchema

Page 53

of background material was learning about the actual FORTRAN namelists that I would
be using in this project.

Legend, LCML, and XML

The Legend program allows users to create parameter files for FORTRAN files without
any knowledge of FORTRAN.

The following is a basic description of the LCML language.

As in HTML (the standard language for building web pages), all information is
encapsulated with tags. The format of a first tag is "<tag>". This is followed by the
information that the tag refers to. The end tag is formatted as "</tag>".

The entire file is contained between <description> and </description> tags. The content
of the file is contained between <descriptionContent> tags.

The variable descriptions themselves, using the <var> tag, are divided into sets (using the
<set> tag), based on the source code itself; in this case, MITgcm.

This is an example of an extremely basic LCML skeleton:
<set>

<var>varl</var>
<var>var2</var>

</set>

In the above case, "varl" and "var2" would be replaced with items discussed below in the
variables section.

MITgcm

MITgcm has over 250 parameters that had to be described in XML. Creating this
description involved carefully gathering the list of variables from various FORTRAN
files, figuring out what each variable signified to the model (from other FORTRAN
files), and determining appropriate default values and types (numeric, string, boolean,
etc.) for each (from yet more FORTRAN files).

As discussed above, the variables to be described have to be divided into sets. For the
MITgcm description of the main runtime file (invariably called "data"), there are 5 such
sets: continuous equation parameters, elliptic solver parameters, time stepping
parameters, gridding parameters, and input files. Within each set, there can be one or
more variable descriptions, contained within <var> tags.

Page 54

Variables

Here is an example of the XML description of one of the diffusion variables in MITgcm:
<var>
<name>Laplacian diff coeff for heat mixing (diffKhT)</name>
<header>diffKhT = </header>
<trailer>,
</trailer>
<info>Laplacian diffusion coeff for mixing of heat laterally

(m^2/s)</info>
<type>numeric</type>
<precision>double</precision>
<range> [0,INFINITY)</range>
<value>0.E3</value>
<use>false</use>
<hidden>false</hidden>

</var>

The entire description for each variable is encapsulated within <var> and </var> tags.
The tags within the variable's description are as follows:
* Name: a descriptive name of the variable that will be displayed to the user in the

interface (in this case, a brief summary of what the variable is used for).
* Header: this field contains the text that will be output to the data file before the value

of the variable. Typically, this contains the actual name of the variable followed by
an equals sign.

* Trailer: this field contains the text that will be output to the data file following the
header and the value of the variable. Typically, this will be a comma followed by the
XML symbol for a new line:
.

* Info: a full description of the variable's use in MITgcm. These were taken directly
from the comments of the FORTRAN files of MITgcm.

* Units: an optional field, listing the units of the variable.
* Type: in this case a "numeric", though this field accepts "string" as well.
* Precision: for numeric fields, it could be integer, float, or double.
* Range: for numeric fields. The format of range uses standard algebraic notation with

"(" representing greater than, and "[" representing greater than or equal to.
* Value: the default value for the variable.
* Use: either true or false, determines whether Legend will output this variable to the

output data file.
* Hidden: either true or false, determines whether Legend will display this variable in

its interface.

Other tags not used in this example include the "enumeration", which is used for
variables that have a set of possible values (for instance, booleans). In the interface,
enumerations appear as drop down menus. An example of a non-boolean enumeration
from MITgcm is the buoyancy relation. The following snippet of code shows the
relevant section. In this case, there are three possible choices for the enumeration:
oceanic, atmospheric, and oceanicp.

<type>string</type>
<enumeration>'OCEANIC'; 'ATMOSPHERIC'; 'OCEANICP '</enumeration>
<value> 'OCEANIC' </value>

Page 55

It is also possible to use LCML to describe vectors, using something called a "data
structure". We create a "dummy" variable that the user can change to determine the
number of elements in the vector. The vector itself then refers to the value of the dummy
variable to set its length. By convention, the dummy variable will precede the structure
in the interface.

When creating the descriptions of the variables, it was important to not include any "<",
">" or "&" symbols in the text. XML interprets these characters as parts of tags and
escape codes (an example of an escape code is the symbol for newline, discussed above).

Progress and Screenshots

I have completed a working XML description for MITgcm in Legend.

Figure 40 is a screenshot of the interface produced by my code.

Figure 40, Legend interface.

Page 56

Eft tools 10e1p
Descrieton Name lTgcm data

set Numu T1o use vakV e
Equation Params Non hydrostatic scali... numeric 1.00
Equation Params Gravity numeric E 9.81
Equation Params Barotropic accel of q... numeric 9.81
Equation Params Reference density (r... numeric [] 999.8
Equation Params Thermal expansion ... numeric . 2E-4
Equation Params Haline contraction c... numeric [] 7.4E-4
Equation Params Ref. Coriolis Param ... numeric 1,E-4
Equation Params dfidy (beta) numeric 1.E-1 1
Equation Params Angular vel (omega) numeric L] 0
Equation Params rotationPeriod numeric [] 86400
Equation Params Vic coeff for mixing ... numeric El 0.E3
Equation Params Visc coeff for mixing ... numeric 0 0.E3
Equation Params Maxvisc coeff for mix.. numeric El 1.E21
Equation Params Non-dim grid depen... numeric 0.EO
Equation Params Max harm visc coeff (.. numeric O 1.E21
Equation Params Min harm visc coeff (... numeric 0.EO
Equation Params viscC2leith numeric D 0.EO
Equation Params viscC41eith numeric E 0.EO
Equation Params useFullLeith string L ase. .

~I WeFile -
MITgcm data

e ge (I , o It). xr I 7
.lil--.i Ii-iiillilii~l.l; il.j-i-i·_*il.·ili__i~....~- i-..i.^il 111I -Iil).. . .·i_:i. 1Y-. .--11_1~· I ~1~ _1 lil;.: .I·i. .II- .i-. I .;._ .i.:

This table can be sorted by any of its columns (name, type, value, etc.). The interface
allows the user to manipulate the data that will be used as input to the MITgcm run. For
instance, to change the value of gravity, the user just clicks the number in that field and
types a new number. When the user is finished changing values, he or she clicks the
"Write File..." button, which outputs the data file in a FORTRAN readable format. Not
all variables need to be output to the file. To select which ones to output, check the
"Use" box for each.

Figure 41 is a screenshot of the same code producing a different style of interface, the

Descrdpion Name: MITgcm data

Equation Params

Name: Non hydrostatic scaling (nhAm2)
Type: numeric
Precision: double
Range: [O,INFINITY)
Value: I1.00
L use:

Name: Gravity
Type: numeric
Precision: double
Range: [O,INFINITY)
Units: m/sA2
Value: 9.81

I Use:

Name: Barotropic accel of grav. (gBaro)
Type: numeric
Precision: double
Range: [0,1NFINlY)
Units: m/sA2

iM Me
Display Type: PANEL

Figure 41, Changing parameters

Figure 42 is an example of an enumeration drop down menu as discussed previously:

IOCENIc

SO CEANICP'

Figure 42, Enumerations

Page 57

Eft Loots "l

,, ,• i• • , ,•

----------- ;

Figure 43 is an example of editing a vector (you access this popup screen via the "Edit
Structure" button):

1971

sRef... 1971
1971 0.E11
1971 10

1971 10
1971

1971 21971
0

1971 1004.EO
1971 1971

0.EO

1971

Figure 43, A large array

Then we change the dummy variable
as shown in Figure 44.

(from 10 to 4), and the vector is a different length,

I U.I:J I

1971
1971 ... M MU; .

1971 2
2
0
1004.EO

LU 1971
[] O.EO

Figure 44, A smaller array

Modifications to the Legend Application

I have studied the Java source code of the Legend application itself. Dr. Evangelinos and
I figured what specifically needed to be updated and modified to best suit the project's
needs.

When I began using the Legend application, I realized that vectors were not being output
to the data file, nor was a "use" check box showing up for them. I have fixed this bug.

Other enhancements that I have made to the application include:

Page 58

1971
O.E11
10

7- idE Strcwttre

T

* Storing the working directory in memory, making it much easier to open
additional LCML files from one directory.

* Adding keyboard shortcuts to speed up usage.
* Changing the default display of the interface to table mode, as opposed to panel

mode.

Legend Usage Guide

To use the interface:
* Run Legend.jar
* Choose File/Open, and then pick the XML file for MITgcm
* Adjust values as needed
* Press the "Write File..." button
* The output file will be called "data" by default

Appendix C: The Complete Tank Setup

The following is the complete rotating tank setup procedure:
* Mount the steel tower (holding the camera, FORJ, wireless network device,

PHOX device - the unit that converts the signal from electronic to optic, and
power strip), and secure it to the rotating table with clamps.

* Connect bungee cords to the top of the steel tower, to secure it in place, and
prevent the FORJ from experiencing unnecessary torques.

* Connect the power cable and the data cable to PHOX on top.
* Plug in the power strip on the steel tower to the outlets on the table.
* Place a glass table with a black rubber mat onto the table. This will hold the

actual tank. It is important to have the black rubber to prevent the tank from
slipping, and to have a black background for higher quality digital images.

* Place a large wooden "table extender" onto the rotating table. This will allow the
table to have more room to place the chiller and moving mirror apparatus.

* Place the chiller and moving mirror on opposite sides of the wooden tray. Secure
them both (with bungee cords and clamps).

* Setup and align the laser.
* Place a large rectangular tank on the glass table. Place a cylindrical tank inside of

it. (Having a rectangular tank on the outside helps eliminate some of the optical
issues of having a light sheet pass through a round plastic surface.)

* Place the probe of the chiller in its aluminum casing along with the chiller's
temperature sensor, as shown in Figure 45. Place the aluminum casing in a metal
can, and place the can (centered) within the inner tank.

Page 59

Figure 45, The chiller can

* Measure the appropriate amount of salt, such that the inner cylinder's water will
have density 1.03 g/cm3 when it is filled with water. This is the density of the
laser fluorescent neutrally buoyant particles. For our standard setup, this amount
is approximately 590 grams of salt.

* Fill both the outer and inner tanks with water, ensuring that the salt is thoroughly
mixed and that there are no bubbles.

* Mix a small amount of the neutrally buoyant particles with photo fluid (to prevent
them from clumping). Slowly add salt water from the tank to the mixed solution.
Then place the entire mixture into the tank, and stir the tank.

* Plug in the laboratory frame PHOX, and then plug in the table's power.
* Spin the rotating table until the water is in solid body rotation.
* The experiment is now ready to be performed.

THE END

Page 60

