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Abstract

This work presents the DeMeo taxonomy, an asteroid taxonomy with 24 classes based on
Principal Component Analysis of spectral data over the visible and near-infrared
wavelengths, specifically the 0.45 to 2.45 micron range. Principal Component Analysis
was used by both Tholen (1984) and Bus (1999) to create taxonomies on visible data.
There is no pre-existing taxonomic system for the entire suite of asteroid characteristics
because only in the current decade has spectral data collection become available in the
near-infrared for asteroids down to relatively faint (V= 17) limiting magnitudes. (Rayner
et al. 2003) With a larger data range, which includes important absorption features at one
and two microns suggesting the presence of minerals, there is a need for an extended
system to encompass this range of information. In this work we explain the process of
creating the taxonomy, the method for finding an object's taxonomic class under this
system, and present spectral types for the 365 objects that were used to create the system.
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1. Introduction

Classification is important to all branches of sciences. As soon as a large amount

of data are available, it is useful to group it into categories with similar characteristics for

organization, comparison, and better comprehension.

The first asteroid taxonomy was created by Chapman et al. (1975). The

taxonomy has grown and evolved over time to account for more and better data. Asteroid

scientists started by characterizing asteroids with a few colors, and then many colors as

technology improved. Some taxonomies incorporated albedo, and eventually they used

spectra. Taxonomies were created by Tholen (1984) and most recently by Bus (1999).

All current asteroid taxonomies are based on the visible wavelength range approximately

0.4 to 0.9 microns because data were most available over those wavelengths. Recently,

with the creation of the SpeX instrument on the IRTF a growing library has been created

of near-infrared spectral data. Gaffey et al. (1993) created an S-complex taxonomy based

on near-infrared data, but there is no pre-existing taxonomic system for the entire suite of

asteroid characteristics. From Figures 1 and 2 we can see examples of the need for a new

taxonomy because of the divergence in the near-infrared of a single well-constrained

visible class. A classification system that extends to the near-infrared is also important

because significant mineral absorption features are present at one and two microns

suggesting presence of pyroxene and olivine. Even though the taxonomy presented in

this work is not connected to mineralogy it is hoped that future work would allow

mineralogic interpretation of taxonomic classes.
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Figure 1: Bus Taxonomy A-Types. All spectra behave similarly in the visible and are
designated A-Types in the Bus system, but have very different behaviors in the near-
infrared.
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Figure 2: Bus Taxonomy L-Types. This plot shows L-types under the Bus classification
system. Notice how well they match in the visible range, but diverge in the near-infrared.
Some have stronger 1 micron absorptions, some have high slopes or even negative slopes
after one micron.

This work presents the DeMeo taxonomy, an asteroid taxonomy based on

Principal Component Analysis of spectral data over the visible and near-infrared

wavelengths, specifically the 0.45 to 2.45 micron range. The aim of this new taxonomy

is to have classification parameters for the entire wavelength range, but not to create an

entirely new system. Principal Component Analysis (PCA) is a technique for reducing

the dimensionality of a dataset to contain most of the information in a few principal

components. It is a set of linear transformations changing the coordinate system

according to the greatest variance. The greatest variance is along the dimension
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described by Principal Component 1 and the second greatest variance is Principal

Component 2. PCA is used widely in other applications such as data compression, but

was not applied to the field of asteroid taxonomy until Tholen (1984).

When creating this taxonomy there were seven possible outcomes for changes to

each taxonomic class under the Bus system. Two classes could be indistinguishable over

the entire wavelength range and merge into one class. One class could be degenerate and

branch off into two (or more) separate classes. A class may need to be created if spectra

exist that do not fit within the past framework. We found that one new class needed to be

created, the Sv class, comprised of two objects that represented an intermediate class

between S and V. The name of a class may need to be changed if the current notation

seems misleading. Some classes may need to be redefined. For example the names Sr

and Sa were conserved but the objects in those classes were largely redefined. There is

the possibility that one class may correlate directly as near-infrared data are included and

no change in that class occurs. Finally, it is possible that a class may remain the same,

but a notation is added. In this taxonomy a "w" notation was used to indicate high slope

and is explained in Section 4. Figure 3 is a diagram of the possible outcomes of

extending the classes. See Appendix A for the progression from the Bus to DeMeo

taxonomy.



Figure 3: Possible outcomes of extending taxonomic classification to the near-infrared. 1.
Two classes from the Bus system could merge to one class. 2. One class could diverge
into two distinct classes. 3. A class that did not previously exist may be created. 4. A
previously existing class may be relabeled with a different name. 5. A class may keep its
label but its definition may change. 6. One class could correlate directly from the Bus to
DeMeo taxonomies. 7. An additional notation to may be added within a class.

2. Observations and Data Reduction

Near-infrared spectral measurements from 0.8 to 2.5 microns were obtained using

the SpeX instrument on the 3 meter NASA Infrared Telescope Facility (IRTF) located on

Mauna Kea, Hawaii. As described in DeMeo and Binzel (2007), when possible, objects

and standard stars were observed near the meridian to minimize their differences in

airmass. Frames were taken so that the object was alternated between two different

positions (usually noted as the 'A' and 'B' positions) on a 0.8 x 15 arcsecond slit aligned

north-south. Solar-type standard stars were observed to divide the solar spectrum from

1. Merge: S S

2. Diverge: Ld L

D

3. Create: - Sv

4. Relabel: Sk Sq

5. Redefine: Sr - Sr

6. No Change: O 0O

7. Add a Notation: S -0 Sw



the asteroid spectra, with the result being reflectance spectra. Our primary solar analog

standard stars were 16 Cyg B and Hyades 64. Additional solar analog stars were utilized

around the sky, having comparable spectral characteristics. Two to three sets of eight

images per set were taken for each object, with individual image exposures typically

being 120 seconds. The total integration time for each of these objects therefore ranged

from 30 to 120 minutes.

Reduction was performed using a combination of routines within the Image

Reduction and Analysis Facility (IRAF), provided by the National Optical Astronomy

Observatories (NOAO) (Tody 1993), and Interactive Data Language (IDL). We use a

software tool called "autospex" to streamline reduction procedures outlined by S. J. Bus

(personal communication). Autospex writes macros containing a set of IRAF (or IDL)

command files that are then executed by the image processing package. Autospex

procedures operate on a single night at a time, with the opportunity for the user to inspect

and verify the results at each stage. Briefly, autospex writes macros that: trim the images

down to their useful area, create a 'bad pixel map' from flat field images, flat field correct

all images, perform the sky subtraction between AB image pairs, register the spectra in

both the wavelength and spatial dimensions, co-add the spectra for individual objects,

extract the 2-D spectra from co-added images, and then apply the final wavelength

calibration. Using IDL, an absorption coefficient is determined for each object and star

pair that best minimizes atmospheric water absorption effects for that pair. This

coefficient correction is most important near 1.4 and 2.0 microns, locations of major

absorption bands due to telluric H20. Because we operate in survey mode with our

observing time heavily weighted toward new objects rather than on standard stars, our



telluric corrections are not perfect. Users of these data therefore must exercise caution in

basing significant scientific conclusions on any unusual spectral features at these telluric

wavelengths, which may be the result of imperfect correction. The last IDL step averages

all the object and standard pairs to create the final reduced spectrum for each object.

All visible wavelength spectra (usually 0.4 to 0.9 microns) were taken from the

Small Main Belt Asteroid Spectroscopic Survey (SMASS II) data set (Bus & Binzel

2002). Our sample was comprised of 365 objects with both visible and near-IR data. For

a table of observations see Appendix B.

3. Background on Classification

3.1 Thoughts on Classification

Classification systems tend to emerge as soon as there are enough data to form

groups. It is a tool used to organize information making it easier to compare, find holes or

missing information, and makes it easier to communicate about data features.

Data on asteroids come from three sources: spacecraft missions, meteorites, and

telescope observations. Spacecraft missions provide the most detailed information about

asteroids, however, they only reach a limited number of targets. Meteorites provide a

great opportunity for detailed study in a laboratory, but their links to specific asteroids

and even general asteroid classes are nonexistent or weak. The only known connection

between a meteorite and its parent asteroid are the HED meteorites to Vesta

(Consolmagno & Drake 1977, Binzel & Xu 1993) Telescope observations provide data

including brightness, albedo, and spectral reflectance on a large number of asteroids

making it the best basis for classification of many objects.



The purpose of this classification system is to characterize the features present in

the spectrum. These features may represent mineralogy, grain size, weathering, or other

properties of or effects on an asteroid, however the taxonomy is not meant to suggest or

confirm anything more than the features visible in the spectrum.

3.2 Previous Classification Systems

Asteroid taxonomy has evolved significantly over the past few decades, as more

and higher quality data have become available. Starting in the 1950's UBV photometry

observations enabled the separation of asteroids into two groups noted by Wood and

Kuiper (1963) and Chapman et al. (1971). Using spectrophotometry and albedo

measurements Chapman et al. (1975) created the first letter-based asteroid taxonomy.

"C" represented carbonaceous, "S" was for stony, and "U" for unusual objects. Tholen

Taxonomy was the most widely used when created with eight classes of spectral types,

plus classes for three unusual objects. The Barucci Taxonomy, meant to expand on the

Tholen taxonomy was based on G-mode analysis. (Tholen & Barucci 1989, Barucci et

al. 1987). The most recent taxonomy was created by Bus using 1189 objects. It is

feature-based taxonomy also using PCA (Bus 1999, Bus & Binzel 2002). The Bus system

further separated the C, S, and X complexes.

Only in the current decade has spectral data collection become available in the

near-infrared for asteroids down to relatively faint (V= 17) limiting magnitudes. (Rayner

et al. 2003) With a larger data range, which includes important absorption features, there

is a need for an extended system to encompass this range of information. We chose not to



invent an entirely new system, but instead strove to stay as consistent as possible with

past visible taxonomies and notation.

3.3 Process To New Classification

3.3.1 PCA Preparation

Bus chose three prototype asteroids for each of his taxonomic classes that best

exemplify the characteristics of the class. The process of creating a new taxonomy began

with the evaluation of the Bus prototypes over the entire wavelength range. Some of

these prototypes had to be rearranged and redesignated. Asteroid 150, for example, was a

Cb under the Bus system, but looks much more like a C over the entire range. Asteroid

24 was aB and is now a C. 42 was an L and is now a K. 606 was a K and was

redesignated to L. 1904 and 5111 were R-types and are now V. Even though there were

many changes, most were within subclasses or closely related classes. This exercise was

mainly to observe how each class behaved in the near-infrared and which classes were

more or less well-defined. Because the new system has many more features present in the

near-infrared than the visible it is natural that some objects that looked similar in the

visible diverge in the near-infrared.

Next, to become more familiar with the data, we assigned a taxonomic type or

complex by visually assessing spectral features and plotting it against prototypes. This

was useful because when plotting objects in PCA space we could compare how objects

grouped when labeled under the Bus system with what we believed they looked like in

the visible and near-infrared range.



We then plotted all near-infrared data in a "splinefit" program which creates a list

of data points that follow the features of the spectrum. This step smoothes the spectra,

creating a good "best fit" curve to the data. This reduces the risk of noise or missing data

points influencing the PCA. We sampled the region 0.45 to 2.45 microns and recorded

points at increments of 0.05 resulting in 41 channels.

The "splined" data were then normalized at 0.55 microns and the slope was

removed from the data and recorded. With our normalized data we simply took a linear

regression line of each set of data. Because this is the most prominent feature of the

spectra we can remove it from the data before performing principal component analysis

thus making PCA more sensitive to other features, and therefore more effective. We

divide all the data points by the average slope. The remaining data are a horizontal

spectrum with residuals (including absorption features) above and below the horizontal.

We now have data with slope removed having 41 channels normalized at 0.55 microns.

Because each spectrum has a value of 1 at 0.55, that channel provides no new

information and so was removed from the data set to make PCA more effective. We

therefore input 40 channels per object into PCA

To verify that we could remove the slope before running PCA, we ran PCA on the

data without the slope removed. The first principal component (PC1) of PCA before

removing slope was compared to the slope we remove directly from the splined data. In

Figure 4, a plot of PC1 versus slope, it is clear that the two are linearly correlated, thus

PC1 corresponds to slope and we are justified in removing it first.
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Figure 4: Plot of PCi versus Slope. PCI is the first principal component from the data
set that did not have the slope removed. It is clear from the plot that PCI and slope are
linearly related and it is thus safe to remove the slope before running PCA to make PCA
more sensitive to other features.

Using MATLAB, we performed Principal Component Analysis (PCA) on the

splined files with slopes removed. PCA is a method of reducing the dimensionality of a

data set. PCA involves coordinate transformations to minimize the variance. The first

transformation rotates the data to maximize variance along the first axis, known as

Principal Component 1' (PC1'), the second axis is the second Principal Component

(PC2'). The first few principal components contain the majority of the information. For a

more thorough explanation of PCA and why it is useful for asteroid taxonomy refer to

Tholen (1984) and Bus (1999).
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3.3.2 What Principal Components Tell

By plotting the principal components against one another we can see how

different groups separate. PCA was used to create the Tholen and Bus taxonomies. We

chose to use covariance instead of correlation for the PCA. Bus (1999) suggested the use

of the covariance matrix of unscaled variances because they may be useful to distinguish

spectra. Principal Component Analysis tells information about specific parts of the

spectrum. It is difficult to determine what exact feature each principal component refers

to because so many features exist over the visible to near-infrared wavelength. However,

by looking at the eigenvectors we can determine over which wavelength range each

principal component is most sensitive. Figure 5 is a plot of sensitivity of the eigenvectors

throughout the range. This figure shows that PC4' and PC5' are more sensitive to

features at the ends of the spectrum, while the others are more sensitive to features in the

middle. See Appendix C for the eigenvectors. Wavelengths with higher magnitudes

dominate that principal component using positive or negative weights to separate in

opposite directions within that principal component space.
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Figure 5: Sensitivity of Principal Components over wavelength range. High positive or
negative values indicate that a principal component is more sensitive to information over
that region. This figure shows that PC4' and PC5' are more sensitive to features at the
ends of the spectrum, while the others are more sensitive to features in the middle.

3.3.3 Choosing the right number of Principal Components

Bus used slope plus three principal components to characterize his visible data.

Because data in the extended wavelength range have many more features we use slope

plus 5 principal components. We look at the amount of variance contained within each

principal component to determine how many to use. Greater variance means more

information is contained within that principal component.

Because 40 channels were put into PCA, 40 principal components were the

output. Since PCA puts the most information in the first dimensions, and decreases with

L

O 0.0

-0.4

-0.6-------- ----------~



each successive dimension, we only want to look at some of the principal components.

To decide how many principal components we want to use in our analysis we must look

at the variance contained within each. Table 1 shows percentage variance contained

within each principal component. Note that slope is not included in this calculation, so

this percentage represents the variance left over after the slope was removed. PC10'

through PC40' contribute essentially no new information so are therefore not included in

the table. Upon inspection we see that most of the variance exists in the first six principal

components. Figure 6 shows a scree plot of the variance. Scree is rubble rock at the

bottom of a mountain. On scree plot the point where the plot levels off after the drop

determines at which principal component to stop. (Jackson 1993) We see the chart level

off around PC5' and PC6'. We decided that since 99.2% of the variance was contained

within the first 5 principal components, they were sufficient. It is evident that PC5' does

not seem to contain a significant amount of information, however, we found it useful for

classifying C-complex objects. By running PCA with the slope included in the data we

found that slope accounts for 88.4% of all the variance within the data. All the other

principal components combined account for 11.6%. Slope plus the first five PC' account

for 99.9% of the variance. Table 2 shows the variances accounted for by the slope plus

the first five principal components.



Table 1 Variance Contained within Each Principal Component (not including slope)

We find 99.2% of the variance is accounted for by using PC1' through PC5'

Principal Variance
Component (% )
PC1' 63.1
PC2' 24.3
PC3' 8.9
PC4' 2.2
PC5' 0.6
PC6' 0.3
PC7' 0.2
PC8' 0.1
PC9' 0.1
PC10'-PC40' 0.1
Total: 100.0

Table 2 Variance Contained within Slope and Principal Components

PC Variance (%)
Slope 88.4
PC1' 7.3
PC2' 2.8
PC3' 1.0
PC4' 0.3
PC5' 0.1
Total: 99.9
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Figure 6: Scree Plot. This plot shows the amount of variance contained in each principal
component. The further down in principal component space, the less information is
contained in each principal component. PCI' through PC5' contain most of the variance
in the data set. Notice that PC5' lies just at the bottom of the downward slope indicating
it is a good place to stop using components. (Jackson 1993)

3.3.4 A Note on Notation: What is the difference between PC1' and PC1?

If the original, normalized and splined data without the slope removed were

analyzed with PCA the first transformation would be PC1. PC1 corresponds to slope.

However, we remove the slope and re-perform PCA. In this case, we denote the slope-

free PCA results as PCI', PC2', etc. We use the " ' " notation so as to recall that PC1' is

closely analogous to PC2 in the original (no slope removed) data set.



4. The Taxonomy

The most striking feature plotted from the principal components is the large gap

in PCI' versus PC2' space seen in Figures 7 and 8. It appears that this clear boundary

distinguishes between spectra that have a two micron absorption band and those that

don't. This gap is well represented by the line:

PCI' = -3.00PC2' - 0.28 (line a) (1)

All objects below and to the left of this line have no two micron absorption features and

include all featureless (C, X complex) spectra. Objects plotted to the right of and above

the line have two micron absorption features, and farther right signifies stronger

absorption. Moving right in the orthogonal direction to line ca also seems to signify

narrowing 1 micron bands. For example, V-types plot furthest to the right. The only

classes that cross this gap are the A and Sa classes. Interestingly the K-class, long

considered as an intermediate between S and C, falls most squarely in the gap. Figures 7

and 8 plot all objects in PC1' and PC2' space. Figure 7 shows the objects plotted with

original Bus labels, while Figure 8 shows the new DeMeo labels. An enlargement of the

gap present at line a is shown in Figure 9.



Ld - A

L A

LLLL R
Sr V

L
L

A q R V

Sq
R

Q

0 0

1

0

-1

-0.5 0.0 0.5 1.0
PC2'

Figure 7: Plot of PC1' versus PC2' for all objects. These objects are plotted with their
original labels under the Bus system. Objects that do not have Bus designations are
labeled as a ".".

Sr B

A
lI I u ss

_ · · _·



0

-1

-0.5 0.0 0.5 1.0 1.5
PC2'

Figure 8: Plot of PC2' versus PCI'. All objects plotted are labeled with their DeMeo
taxonomy classification. Notice the large gap between the S-complex and the C- and X-
complexes. Line a separates objects with and without 2 [tm absorption bands. The
direction orthogonal to line a indicates deeper 2 [tm and narrower 1 [m absorption
bands.
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Figure 9: Enlargement of gap in PCI' and PC2' space. This figure shows the clear
distinction between the S-Complex and end members with 2 pm absorption bands and
objects that are featureless or have only 1 pm absorption bands.

In defining classes for the taxonomy we created a flowchart (Appendix D)

containing steps to find the right combination of principal components ranges that result

in the correct class for each object. The order of the flow chart is significant because

some classes overlap in certain principal components but can be separated in others. For

all the new labels to the 365 objects in the dataset see Appendix E. We start by

separating the A and Sa classes because they cross over the large gap in PC1' and PC2'

space. The DeMeo Sa class was relabeled from the Bus system because the two Sa

objects in this system were both Sr-types in the Bus system. Since these objects prove to



be intermediate between S and A change the name of these two Sr-types. This is step 1

in the flow chart. Refer to Appendix C for the complete chart. Figure 10 shows the

progression from S to Sa to A type.

S, Sa, A Types

2.5

2

U 1.5

4J

0.5

0
0.5 1 1.5 2 2.5 3

Wavelength

Figure 10: Plot of S, Sa, and A. There is a clear progression from S with a shallow one
micron band and low slope to A with a deep one micron band and high slope. Sr seem to
to resemble A-type one micron band absorption very well, but are much less red than A-
types.

Step two starts by separating all objects by the divide (line a) in PCI' versus

PC2' space. Step two continues to create boundaries for objects with a two micron band

and step three addresses featureless objects (the C- and X-complexes) as well as K and L

classes which have no significant two micron band.

* Sa

AS



We started by looking at the end member classes in PCA space since they

separate more clearly making them the easiest to define. In Figure 10 you can see the data

of Figure 8 with lines separating S-complex and end member classes. The V class lies to

the right of the line parallel to line a noted as equation 2:

PC1' = -3.OPC2' + 1.5 (line 8) (2)

The R class lies to the left of line 8 but right of equation 3 and above equation 4:

PC1' = -3.OPC2' + 1.0 (line y) (3)

PC1' = 1/3PC2' -0.4 (line r) (4)

To see the lines labeled in PCA space refer to Figure 11. Note that there is only one R-

type object in our sample, 349 Demboska, for which the class was created. Also, there

are only two O-type objects among our data. Even though the class is separated in the

flow chart, more data on R-type and O-type objects may change the region boundaries

significantly. To see the differences between the end member classes V, R, Q, and O see

Figure 12.
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Figure 11: Plot of PC2' vs. PC1'. This plot shows the lines that divide the objects with
and without 2 micron absorption bands, as well as the V and R class boundaries.
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Figure 12: Plot of V, O, Q, R Types. This plot shows typical spectra in each end member
class. Note O has a very wide 1 micron band and V has a very narrow band. The V-types
with the deepest 2 micron bands plot farthest from line a.

The S-complex was by far the most difficult to define. Most classes seemed to

blend together or scatter randomly in all combinations of PCA components. Sa and Si

(named under the Bus taxonomy) were entirely indistinguishable so the S1 class was

combined. Sa objects were most easily distinguishable not by absorption features, but by

their greater slope (caused by slope increases in the 1 to 1.5 micron range.) The S, Sq,

and Sk objects were initially impossible to define clearly because the boundaries seemed

to blur and overlap. We performed a new principal component analysis to help guide us.



Because the main difference between the S-classes appears to be the width of the 1

micron absorption band we used the wavelength range 0.8 to 1.35 microns and did PCA

on only S-type objects. Sa types were scattered randomly supporting that their main

difference is slope. From this new PCA (sPCA) we found that sPC1 and sPC2 best

separated the classes. We relabeled objects based on sPCA and plotted the newly changed

labels back in the original PCA.

Once we used sPCA to guide our labels, we could use PC1' and PC2' to create

definitions within our original principal components. We continued to use boundaries

parallel and perpendicular to line a. Each class has its own box in PC1' and PC2' space.

Refer to Figure 13 to see the S-complex boxes labeled in PCA space. The S class was

right of line a (equation 1), to the left of equation 5 and above equation 6.

PCI' = -3.OPC2' + 0.35 (line P) (5)

PC1' = 1/3PC2' - 0.10 (line ý) (6)

Objects that reside below line ý (equation 6) appear similar to Q-types, but with more

shallow absorption bands. These are Sq-types transitioning between S and Q. They lie

right of line a, left of line P, below line t, which is the S-type boundary, but above line rl,

which is the boundary for Q-types. Sr-types transition between S and R classes. They

reside between lines P and y, and between lines r and a given in equation 7.

PCI' = 1/3PC2' + 0.55 (line s) (7)

The objects between P and y, but above line E were unique from Sr because they

exhibited very narrow 1 lim absorption bands. These two objects appear to transition

between S and V classes. They are not included in the Bus dataset, and Bus (1999) did



not report any cases of these objects. They are given the label Sv. The Sk type was non-

unique and was absorbed into the other S classes

-0.2 0.0 0.2
PC2'

Figure 13: PC2'
bounding it. All

versus PC1' plotted for the S-complex. Each class has its unique box
lines are perpendicular or parallel to line a.

Sa and Sl (labeled under the Bus system) objects were indistinguishable when

extending to the near-infrared. Their features were also indistinguishable from other S-

complex objects, and it seems that their slope was the major distinction. Because the Sa

and Sl designations did not indicate that these objects were intermediate classes between

r
o
nI



S and A or L we felt that the notation was misleading. We removed the Sa and S1

designations given by Bus and replaced them by designations of S, Sq, Sr, and Sv based

on PC1' and PC2' which represented absorption features. We felt, however, that even

though slope did not merit a class distinction, it was worth noting in the taxonomy.

The S, Sq, and Sr classes all had very widely varying slopes. High slopes are

indicative reddening by space weathering (Clark et al. 2002). Even though slope has no

mineralogical significance we thought it fitting to distinguish between objects that had

undergone significant space weathering from those who had not. We made a cutoff,

albeit an arbitrary one, at Slope = 0.25 dividing "high slope" objects from other objects.

These objects are not relabeled in a class of their own. Instead the S, Sk, and Sq objects

with high slopes get a notation of "w" added to their name to indicate a "weathered"

object. The high slope S objects are labeled Sw, Skw, and Sqw. There were also two V-

type objects and two Q-types with slopes greater than 0.25, which were labeled Vw and

Qw. To see the difference between a low and high slope object, S and Sw, refer to

Figure 14.
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Figure 14: Plot of S and Sw. The absorption features for both are very similar. Slope is
the most significant distinction between the two.

The choice of 0.25 for the slope cutoff was somewhat arbitrary. When plotting

Bus labeled S, Sa, and S1 objects, there was a mixing around the 0.23 to 0.27 slope range.

We wanted to keep the "w" notation more selective, but also didn't want to set the cutoff

too high where objects with unusual slope features (such as deeper UV dropoffs) were

preferentially selected rather than focusing on the significant slope range between one

and two microns for the S-Complex. See Figure 15 for the plot of Slope versus PC1' that

shows the line separating weathered objects from regular objects.
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Figure 15: Plot of Slope versus PCI' for the S-Complex. All objects with slopes greater
than 0.25, regardless of their subclass (S, Sq, Sk), get a "w" notation indicating
weathering. Note the two V and Q class objects labeled "Vw" and "Qw." Dembowska, as
the only R member, does not get a w.

Step three focused on objects below or to the left of line a (equation 1). We again

start by removing end members. D and T classes are easily separated by their high slopes

and PCI', PC2', and PC3' values. Next, we separate out L objects based on the PC2'

versus PCi' plot. When an object fits in the L component space it is necessary to check

for Xe type objects. Xe is a class defined in the Bus system that has a distinct hook at

0.49 microns. By visually inspecting the spectrum, one can notice the presence of a
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Sw SW
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feature at 0.49 and an absence of a slight feature around 1 micron and label the object an

Xe instead of an L. Refer to Figure 16 to see Slope versus PC1' which shows how D, L,

and L are fairly distinct. The K types can then be distinguished clearly in PC2' and PC3'

space. We found that all Ld type objects under the Bus system could be fit in either the L

or D classes when near-infrared data were added. Since it is not necessary for

distinguishing classes, it was removed from the DeMeo system. Figure 17 shows how

the K class is distinct.

HIope

Figure 16: Plot of Slope v. PC1'. Note how D, T, and L are fairly distinct in this
component space. K separates better in PC2' and PC3' space.
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Figure 17: Plot of PC3' v. PC2'. The K types are distinct in this component space.

This brings us to the X and C complexes. The B-types are easily distinguished by

their negative slope as well as negative PC1' and PC4' values. The X-class can then be

easily removed based on high slope values between 0.2 and 0.425. At this point Xk

objects may be in X-class PC' space. When visually inspecting the spectrum if there is a

feature present at 1 micron, the object is designated an Xk. Figure 18 shows a plot of the

C- and X- complexes.
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Figure 18: Plot of PC2' v. PCI' for the C- and X-Complex. These components help
separate the two complexes. Slope will also differentiate the two.

The Ch objects are defined well in PC1' and PC4' space, but a check must be

done to see if a strong 0.7 micron feature exists, making the object a Cgh. The C and Cb

types separate in PCi', PC4', and PC5'. See Figure 19 and 20 to see the C-complex

plotted in PCA space. After this the Cgh, Ch, Xk, Xc, and Xe types don't all separate

cleanly in component space and are heavily dependent on visually detecting features.
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Figure 19: Plot of PC4' v. PC5' for C-Complex. The classes are easily distinguishable in
this component space.
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of PC5' v. PC1'. A second plot demonstrating the separation among C-

We currently do not have a method for classifying spectra using only near-infrared

data because putting reflectance values into the eigenvectors from this work would be

meaningless since the entire range doesn't exist. In future work we hope to include a

method for using near-infrared only data to find a taxonomic classification. However
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note: certain classes evolve unchanged from the Bus taxonomy that are based on features

measured at visible wavelengths. Assignment to these classes (Cg, Cgh, Xc, Xe, Xk)

therefore requires visible wavelength data.

5. Conclusion

A new taxonomy with was created using Principal Component Analysis and

visible features to characterize visible and near-infrared wavelength spectral reflectance

values. The system, based on the Bus visible taxonomy from Bus (1999), has 24 classes

compared to 26 in the Bus system. The changes in classes are summarized in Appendix

A. We used all of the seven possible changes from the previous system to the new

highlighted in Figure 3. We eliminated three classes: Ld, S1, and Sk. All the S subclasses

(Sa, S1, Sk, Sq, Sr) had objects that merged back into the S class, although many Sq

objects remained Sq and two Sr objects were relabeled Sa. A new intermediate class, the

Sv class, was created to branch the S and V classes. High-sloped S, Sa, Sq, Sr, V and Q

objects were given a "w" notation to indicate weathering. Many of the classes that lie left

of line a are either featureless or exhibit only small features at visible wavelengths

identified by Bus (1999). It is still necessary to use these visible features to distinguish

the classes because there are no other distinguishing features at near-infrared

wavelengths. 365 objects were given types based on the DeMeo taxonomic system which

was created using 6 dimensions including Slope and PCI' through PC5' of Principal

Component Analysis.
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Appendix A: Bus-DeMeo class changes

DeMeo

B PI
C
Cb ,1
Cg
Cgh .•.
Ch a-
D -

Ld-
L 'c
K .
0O ---- *
Q -
R

Sq
Sr

---- V

-*---

Sa
S1 -,
Sk k

T --
T

B
C
Cb

Cg
Cgh
Ch
D

L
K
0
Q,Qw
R
Sr, Srw
Sq,Sqw
Sa

S,Sw
Sv
T

V ----- V,Vw
X - X
Xc - Xc
Xk----- Xk
Xe - Xe

Total: 26 24

Eliminated: Created:
Ld, Sk, SI Sv

w notation does not denote a distinct class.

Bus



Appendix B: Observation List

Object
1
2
3
4
5
7
8
10
11
13
14
15
16
17
18
19
20
21
22
24
25
26
27
28
29
30
32
33
34
37
38
39
40
41
42
43
48
49
50
51
52
55
56
57
58
61
63
64

Obs Date
19-May-05
29-Mar-01
17-Mar-03
9-Oct-00
20-Feb-04
20-Feb-04
1 6-Sep-02
19-Feb-04
13-Nov-05
19-May-05
17-May-01
17-Aug-02
21-Jan-07
15-Aug-01
22-Jun-01
29-Jan-06
22-Jun-01
22-Sep-04
25-Oct-06
8-Oct-05
30-Jan-01
24-Aug-01
1-Jun-02
13-Jan-02
29-Jan-01
8-Oct-00
30-Jan-01
6-Mar-02
20-Feb-04
1 5-Aug-01

5-Jul-03
14-Aug-01
16-Oct-04
15-Sep-04
21-Jun-01
22-Nov-05
8-Oct-05
2-Aug-03
5-Jul-03

1 5-Jun-04
28-Jun-06
29-Jan-06
22-Sep-04
1-Jun-02
2-Aug-03
8-Oct-00

30-Sep-03
30-Jan-01

Telescope
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m

KPNO 4m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m

Object
65
66
67
69
70
73
76
77
78
82
84
85
87
90
92
93
96
97
99
101
103
105
106
108
110
111
114
115
119
128
130
131
132
133
147
150
151
153
158
160
170
175
180
181
188
191
192
199

Obs Date
30-Sep-03
22-Nov-05
16-Jun-04
11-May-05
29-Sep-02
16-Oct-03
5-Sep-05
25-Oct-06
31-Oct-05
24-Aug-01
2-Aug-03
2-Aug-03
4-Sep-05
5-Sep-05
8-Oct-00

27-Apr-03
28-Jan-06
8-Oct-05

13-Nov-05
22-Dec-06
14-Aug-01
2-Aug-03
2-Aug-03

31-May-02
29-Jan-01
22-Sep-04
28-Jun-06
6-Mar-02
21-Jun-01
2-Aug-03
29-Mar-01
20-Jul-06
5-Sep-05
22-Jun-01
2-Aug-03
2-Aug-03
13-Nov-05
10-May-05
16-Mar-03
5-Jul-03

22-Jun-01
13-Nov-05
28-Sep-02
30-Sep-03
1 5-Apr-02
12-Apr-05
30-Apr-06
17-Mar-03

Telescope
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m



Object Obs Date Telescope Object Obs Date Telescope
201 19-Feb-04 IRTF 3m 596 1-Jun-02 IRTF 3m
205 2-Aug-03 IRTF 3m 599 19-Feb-01 IRTF 3m
210 13-Nov-05 IRTF 3m 606 29-Sep-02 IRTF 3m
221 8-Oct-00 IRTF 3m 625 20-Feb-01 IRTF 3m
236 01-May-06 IRTF 3m 631 29-Sep-02 IRTF 3m
237 15-Apr-02 IRTF 3m 653 17-Mar-03 IRTF 3m
243 1 7-Mar-03 IRTF 3m 661 1 6-Mar-03 IRTF 3m
244 29-Mar-01 IRTF 3m 670 29-Sep-02 IRTF 3m
246 9-Mar-05 IRTF 3m 673 21-Jun-01 IRTF 3m
250 1 6-Oct-03 IRTF 3m 675 15-Apr-02 IRTF 3m
258 24-Aug-01 IRTF 3m 679 19-Feb-01 IRTF 3m
264 19-May-05 IRTF 3m 688 28-Sep-02 IRTF 3m
266 5-Sep-05 IRTF 3m 699 8-Jan-05 IRTF 3m
267 2-Aug-03 IRTF 3m 706 30-Jan-06 IRTF 3m
269 11-May-05 IRTF 3m 716 24-Aug-01 IRTF 3m
278 31-May-02 IRTF 3m 719 23-Aug-01 IRTF 3m
279 8-Jan-05 IRTF 3m 720 9-Oct-00 IRTF 3m
288 29-Sep-02 IRTF 3m 729 14-Aug-01 IRTF 3m
289 29-Jan-01 IRTF 3m 739 28-Sep-02 IRTF 3m
295 28-Sep-02 IRTF 3m 742 1 6-Mar-03 IRTF 3m
308 18-Apr-05 IRTF 3m 773 22-Sep-04 IRTF 3m
322 29-Sep-02 IRTF 3m 776 1 2-Apr-05 IRTF 3m
337 28-Sep-02 IRTF 3m 782 22-Jun-01 IRTF 3m
345 8-Oct-05 IRTF 3m 785 11-May-05 IRTF 3m
346 31-May-02 IRTF 3m 789 17-Aug-02 IRTF 3m
349 22-Jun-01 IRTF 3m 793 28-Sep-02 IRTF 3m
352 22-Jun-01 IRTF 3m 808 14-Aug-01 IRTF 3m
354 15-Apr-02 IRTF 3m 824 14-Aug-01 IRTF 3m
359 30-Jan-01 IRTF 3m 832 5-Jul-03 IRTF 3m
371 14-Aug-01 IRTF 3m 832* 3-Mar-05 CFHT 3.6m
378 14-Apr-02 IRTF 3m 847 19-Feb-01 IRTF 3m
387 27-Apr-03 IRTF 3m 863 14-Jan-02 IRTF 3m
389 24-Aug-01 IRTF 3m 908 20-Jul-06 IRTF 3m
402 19-Feb-01 IRTF 3m 913 15-Aug-01 IRTF 3m
403 27-Apr-03 IRTF 3m 925 28-Sep-02 IRTF 3m
433 17-Aug-02 IRTF 3m 944 22-Sep-04 IRTF 3m
434 23-Aug-01 IRTF 3m 944 14-Jun-01 Magellan 6.5m
444 1 5-Aug-01 IRTF 3m 984 29-Sep-02 IRTF 3m
446 14-Aug-01 IRTF 3m 985 11-May-05 IRTF 3m
453 1 5-Aug-01 IRTF 3m 1011 1 2-Jan-02 IRTF 3m
456 17-Jun-02 IRTF 3m 1020 17-Mar-03 IRTF 3m
460 17-Jun-02 IRTF 3m 1036 28-Mar-01 IRTF 3m
485 6-Mar-02 IRTF 3m 1036 26-Jan-04 IRTF 3m
512 16-Oct-04 IRTF 3m 1036 9-Mar-05 IRTF 3m
513 29-Mar-01 IRTF 3m 1036 03-Jun-06 IRTF 3m
532 21-Jun-01 IRTF 3m 1065 8-Mar-05 IRTF 3m
570 20-Feb-04 IRTF 3m 1094 1 6-Mar-03 IRTF 3m
579 20-Feb-01 IRTF 3m 1126 20-Feb-01 IRTF 3m

*Data from Vernazza et al. (2006)



Object
1131
1131
1139
1139
1143
1147
1148
1198
1204
1228
1300
1329
1332
1350
1374
1433
1459
1471
1494
1508
1542
1565
1620
1640
1642
1658
1659
1660
1662
1667
1685
1751
1807
1839
1848
1858
1862
1862
1864
1866
1866
1903
1904
1916
1929
1943
1943
1980

Obs Date
19-Feb-04
11-May-05
16-Jun-04
5-Sep-05
10-Jun-05
15-Aug-01
29-Mar-01
28-Oct-02
19-Feb-04
1 6-Mar-03
25-Oct-06
17-Aug-02
10-Jun-05
21-Jun-01
20-Feb-04
17-Aug-02
20-Feb-01
8-Oct-05

25-Oct-06
19-Feb-04
18-Apr-05
3-Mar-05

29-Jan-01
8-Mar-05

15-Aug-01
30-Jan-01
1 5-Mar-02
8-Mar-05
17-Mar-03
28-Oct-02
9-Mar-05
22-Jun-01
1 5-Sep-04
29-Mar-01
15-Aug-01
14-Apr-02
13-Nov-05
22-Nov-05
29-Mar-01
6-Jan-94

21-Nov-06
17-Mar-03
4-Sep-00

14-Aug-01
19-Feb-01
12-Jan-02
6-Nov-99
25-Oct-06

Telescope
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m

MDM 2.4m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m

Palomar 5m
IRTF 3m

Object
2035
2042
2045
2063
2064
2074
2085
2099
2107
2157
2246
2335
2353
2354
2378
2386
2396
2401
2442
2448
2501
2504
2521
2566
2579
2715
2732
2851
2873
2875
2911
2912
2957
2965
2977
3028
3102
3103
3122
3155
3198
3199
3200
3248
3255
3317
3363
3395

Obs Date
28-Oct-02
23-Aug01?
14-Jan-02
19-May-05
29-Jun-06
30-Sep-03
14-Apr-02
8-Oct-05
29-Jan-06
1 6-Mar-03
17-Apr-05
30-Oct-05
31-May-02
17-Mar-03
11-May-05
17-Jun-02
15-Aug-01
17-Aug-02
15-Sep-02
1 6-Mar-03
12-Jan-02
27-Apr-03
1 3-Jan-02
16-Sep-02
10-Oct-00
1 5-Aug-01
1 5-Aug-01
24-Aug-01
13-Jan-02
1 6-Mar-02
17-Mar-03
20-Feb-01
1 6-Mar-03
10-May-05
28-Sep-02
16-Sep-02
9-Oct-00
21-Jun-01
26-Jan-04
22-Jun-01
10-May-05
3-Mar-05
10-Dec-04
1 8-Apr-05
16-Sep-02
01-May-06
15-Apr-02
1 9-Feb-01

Telescope
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m



Object
3402
3402
3430
3491
3511
3628
3635
3701
3734
3753
3788
3844
3858
3873
3903
3908
3910
3920
3949
4038
4055
4142
4179
4188
4197
4352
4407
4417
4451
4558
4570
4688
4713
4737
4995
5013
5111
5143
5230
5261
5261
5401
5407
5587
5604
5604
5641
5660

~
Obs Date
30-Sep-03
1-Sep-03
17-Jun-02
17-Jun-02
15-Apr-02
30-Apr-06
12-Nov-05
14-Aug-01
24-Aug-01
8-Oct-05
17-Mar-03
27-Apr-03
20-Feb-04
28-Oct-02
1 6-Sep-02
1 5-Sep-04
17-Aug-02
16-Sep-02
24-Aug-01
28-Oct-02
11-Apr-05
15-Apr-02
15-Sep-04
14-Aug-01
12-Oct-96
17-Jun-02
24-Aug-01
24-Aug-01
14-Jan-02
15-Jun-04
21-Jun-01
29-Jan-01
14-Apr-02
17-Jun-02
28-Oct-02
14-Jan-02
5-Sep-05

25-Oct-06
5-Sep-05

11-May-05
19-May-05
1 6-Mar-03
13-Jan-02
28-Mar-01
29-Mar-01
1-Mar-00
12-Apr-05
22-Aua-93

Telescope
IRTF 3m

KPNO 4m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m

MDM 2.4m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m

KPNO 4m
IRTF 3m

MDM 1.3m

Object
5685
5817
5840
6047
6239
6386
6411
6455
6585
7341
7763
8334
8444
17274
18736
19127
19356
19356
20786
20790
22771
24475
35107
36284
53435
53435
54690
54690
66146
86450
86819
89355
98943
98943
137062
1989 VA
1997 AE12
2000 GD2
2000 PG3
2000 XL44
2001 MQ3
2001 TX16
2001 XN254
2002 AA
2002 AV

Obs Date
29-Mar-01
22-Sep-04
24-Aug-01
8-Oct-05
26-Jan-04
3-Mar-05

20-Feb-04
28-Oct-02
25-Oct-06
16-Mar-02
1-Jun-02

17-Mar-03
30-Sep-03
10-Oct-00
30-Jan-01
30-Sep-03
30-Jan-01
10-Apr-97
1-Sep-03

29-Jan-01
16-Oct-03
29-Mar-01
27-Dec-02
16-Mar-02
25-Oct-06
12-Jan-00
28-Mar-01
17-May-01
1-Sep-03
29-Jan-01
9-Oct-00
16-Mar-02
24-Oct-04
24-Dec-01
27-Oct-02
27-Oct-02
16-Oct-03
15-Mar-02
4-Sep-00
29-Jan-01
14-Aug-01
1 5-Mar-02
14-Apr-02
13-Jan-02
13-Jan-02

Telescope
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m

KPNO 4m
IRTF 3m

KPNO 4m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m

MDM 2.4m
KPNO 4m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m

Palomar 5m
IRTF 3m

KPNO 4m
KPNO 4m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m

Palomar 5m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m
IRTF 3m

Y



Appendix C: Principal Component Eigenvectors

Wavelength Eigen Eigen Eigen Eigen Eigen
(microns) PC1' PC2' PC3' PC4' PC5'

0.45 -0.0766 -0.0643 -0.2724 0.3046 -0.5174
0.50 -0.0391 -0.0279 -0.1270 0.1525 -0.1876
0.60 0.0438 0.0176 0.1128 -0.1486 0.0593
0.65 0.0876 0.0343 0.2104 -0.2677 0.0754
0.70 0.1256 0.0471 0.2726 -0.3386 0.0523
0.75 0.1466 0.0096 0.2475 -0.3284 -0.0231
0.80 0.1271 -0.1186 0.1486 -0.2392 -0.1466
0.85 0.0888 -0.2673 0.0420 -0.1453 -0.2569
0.90 0.0680 -0.3645 -0.0385 -0.0921 -0.2293
0.95 0.0857 -0.3743 -0.1168 -0.0505 -0.0657
1.00 0.1371 -0.2899 -0.2083 -0.0289 0.1077
1.05 0.1921 -0.1527 -0.2809 -0.0277 0.1717
1.10 0.2322 -0.0381 -0.2747 -0.0160 0.1685
1.15 0.2566 0.0306 -0.2169 0.0077 0.1611
1.20 0.2704 0.0708 -0.1713 0.0304 0.1463
1.25 0.2787 0.1053 -0.1427 0.0450 0.1061
1.30 0.2849 0.1385 -0.1031 0.0608 0.0533
1.35 0.2852 0.1598 -0.0407 0.0842 0.0090
1.40 0.2782 0.1645 0.0243 0.1104 -0.0429
1.45 0.2641 0.1520 0.0930 0.1387 -0.0868
1.50 0.2427 0.1192 0.1562 0.1609 -0.1188
1.55 0.2154 0.0689 0.2021 0.1752 -0.1250
1.60 0.1841 0.0089 0.2231 0.1804 -0.1158
1.65 0.1531 -0.0514 0.2215 0.1714 -0.0940
1.70 0.1247 -0.1069 0.2043 0.1550 -0.0757
1.75 0.1002 -0.1532 0.1784 0.1421 -0.0525
1.80 0.0804 -0.1884 0.1508 0.1279 -0.0271
1.85 0.0665 -0.2136 0.1225 0.1095 0.0104
1.90 0.0570 -0.2283 0.0923 0.0868 0.0473
1.95 0.0513 -0.2317 0.0617 0.0610 0.0785
2.00 0.0502 -0.2233 0.0346 0.0358 0.1050
2.05 0.0538 -0.2023 0.0136 0.0103 0.1249
2.10 0.0607 -0.1706 -0.0038 -0.0162 0.1241
2.15 0.0690 -0.1302 -0.0229 -0.0476 0.0916
2.20 0.0778 -0.0852 -0.0447 -0.0838 0.0354
2.25 0.0859 -0.0406 -0.0678 -0.1225 -0.0327
2.30 0.0934 0.0023 -0.0911 -0.1644 -0.1126
2.35 0.0997 0.0438 -0.1153 -0.2068 -0.1993
2.40 0.1050 0.0832 -0.1389 -0.2445 -0.2884
2.45 0.1090 0.1177 -0.1580 -0.2708 -0.3767



Appendix D: Flow chart. It's as easy as 1, 2, 3...

Step 1

Does it satisfy:
PC > -0.44

no

Does it satisfy:
0.55 < Slope < 1.5

no

Does it satisfy:
0.44 < Slope < 0.55

I no

Indeterminate

yes StepStep 2

yes

yes ,

A-Type

Sa-Type



SStep 2

Where does it lie compared 1
to line (a? below

above

Does it lie above line 6? yes

no

Does it satisfy both: yes
0.04 < Slope < 0.07
-0.8 < PCl < -0.75

no

Does it satisfy both:
Lies below rl

0.07 < Slope < 0.44

no

Does it satisfy both:
Lies between lines y and 6

Lies above line r1

V-Type - Slope > 0.25 yes+ Add w notation
Vw

O-Type

yes d if yes
y-e- • Q-Type •-* Slope > 0.25 - Add w notation

Qw

yes R-Type

no

S Complex

IStep 3 !



EStep3 I
Does it satisfy both:
0.425< Slope < 1.25

-0.44 < PC1 < 0.4

Does it satisfy all:
0.25 < Slope < 0.5

-0.28 < PC2 < -0.20
-0.2 < PC3 < -0.12

no

Does it satisfy both:
0.07 < PC1 < 1.00
-0.5 < PC2 < -0.15

no

Does it satisfy both:
-0.075 < PC3< 0.14

-0.2 < PC2 < 0.1

no

yes

yes

yes
---- +

yes
-------- +

D-Type

T-Type

L-Type Check for Xe:
feature at 0.49 ptm.

K-Type

IC and X ComplexesMMMWMý



and X Complexes

Does it satisfy all:
-0.2 < Slope < 0.0

-1.2 < PCI < 0
PC4 < 0.0

no

Does it satisfy:
0.2< Slope < 0.425

no

Does it satisfy both:
0.01 < PC4 < 0.14

-0.75 < PC < -0.27

no

Does it satisfy both:
-0.04 < PC4 < 0.02
-0.07 < PC5 < -0.04

no

Does it satisfy both:
-0.85 < PC1 < -0.45
-0.06 < PC5 < 0.02

no

Does it satisfy both:
0.02 < PC5 < 0.1
-0.6 < PCI < -0.1

Does it satisfy both:
-0.45 < PC I< 0. 1

-0.06 < PC2 < 0.03

no

Does it satisfy both:
-0.1 < PCI< 0.3

-0.3 < PC2 < -0.2

no

Indeterminate

B-Type

X-Type

yes

yes-- =---

yes
i--+

yes
----- -

yes---y

Ch-Type

Check for Xk:
Feature at 1 prm.

Check for Cgh:
0.7 ttm feature
and UV dropoff

Cb-Type

C-Type

Cgh, Cg

Xk, Xc-Type

Xe-Type

Check for Cg:
no 0.7 tpm feature

Xk has 1 gm feature.
Xc is featureless.
Check for Xe:
feature at 0.49 ,tm.

Check for Xe:
feature at 0.49 rtm.

IC 0



S Complex I

Does it satisfy both:
Lies left of f3 and above t.

no
Does it satisfy all:

Lies between j3 and y
and between Ei and 1.

no

Does it satisfy all:
Lies between p and
and between E and i1.

no

Does it satisfy both:
Lies between 13 and

y and above F.

·no

Indeterminate

S-Type and if Slope > 0.25 y

yst Sq-Type an Slope > 0.25

yes
y--

yes

Sr-Typeand if yesSr-Tye N, Slope > 0.25

Add w notation
Sw

Add w notation
Sqw

Add w notation
Srw

Sv-Type Slope > 0 yes Add w notation
Svw

Checks* for Cg, Cgh, Xc, Xe, Xk
Cg: Strong UV absorption feature before 0.55 atm

Cgh: A Cg with a broad, shallow absorption feature at 0.7[tm.

Xc: Red and featureless with slight concave-down curvature.

Xe: Concave-up absorption feature before 0.55 Vm.

Xk: Red with a flat section around 0.75 ,m.

*These spectral features all exist in the visible and were
identified in the Bus system (Bus 1999)



Equations
PC1' = -3PC2' - 0.28 Line a

PC1' = -3PC2' + 0.35 Line p3
PC1' = -3PC2' + 1.00 Line y

PC1' = -3PC2' + 1.50 Line 8

PC1' = 1/3PC2' + 0.55 Line E

PC1' = 1/3PC2' - 0.10 Line t

PC1' = 1/3PC2' - 0.40 Line r1

m



Bus Class

C

B

Sk

V

S
S

~

Xe 0.1201 0.0463 -0.2407 -0.0967 -0.0392 -0.0059

Appendix E: New Labels to Data

~Object

1
2

3

4

5

7

8
10

11

13

14
15

16

17

18

19

20
21

22

24

25

26

27
28

29

30

32

33

34

37

38

39

40
41

42

43

48

49

50
51

52

55

56

57

58
61
63
64 Xe

DeMeo Class

C

B

Sq
V

S

Sq
Sw

C

Sq
Ch

S

Sq
X

S

S

Ch

S
Xk

X

C

S

S

S

S

S
S

Sw

S
Ch

S

Cgh
Sqw

S

Sq
K

Sq
Ch

Ch

Ch

Ch

C

X
Xk

S

Ch

S
S

Slope
0.0060

-0.0892
0.1775

0.0270
0.1074

0.1930

0.2902
0.1391

0.2127
0.0757
0.1706

0.1581

0.2810
0.2103

0.1636

0.1935

0.0811
0.0678
0.3008
0.0552
0.2062
0.1836

0.2268
0.1378
0.2008
0.2165

0.2623

0.0996
0.0717
0.1782

0.1219
0.2720
0.1209

0.1834

0.2132
0.1972

0.0207

0.0078
0.0460
0.1844

0.1779

0.2668
0.1499

0.1680

0.0167
0.1664
0.2382

PC1'

-0.5626
-0.5691
-0.1930
-0.0043
0.1467

-0.1141
0.2597

-0.7550
-0.3055
-0.4139
0.0743

-0.1553
-0.0253
0.4067

0.2243
-0.5654
0.0203

-0.0574
-0.3406
-0.8310
0.1640

-0.0214

0.0712
0.2968
0.1264
0.3434

0.0878
0.0297

-0.3325
0.2766

-0.2905
-0.1372
0.0628

-0.3458
-0.0639
-0.1731
-0.6803
-0.4755
-0.5934
-0.3110
-0.6801
-0.3587
-0.1423
0.2697

-0.4620
0.3411
0.3774

PC2'

-0.0669
-0.0640
0.0610

0.6020
-0.0250
-0.0240
-0.1399
0.0246
0.0236
-0.0506
-0.0488
-0.0189
-0.1749
-0.1167
-0.1079
-0.0102
0.0044

-0.1942
-0.1302
0.0332

-0.0107
0.0007

-0.0064
-0.0959
-0.1190
-0.1621
0.0323
0.0872

-0.0385
-0.0926
-0.0760

-0.0209
-0.0945
0.0588

-0.1695
0.0816
0.0187

-0.0095
0.0395

-0.0788
-0.0223
-0.0564
-0.1582
-0.0700
-0.0242
-0.0905
-0.1165

PC3'

-0.1351
-0.1550
-0.0033
-0.1556
-0.0161
0.0654
0.1139

-0.1519
-0.0003

-0.1363
-0.0363
0.0614

-0.1528
-0.0095
-0.0199

-0.1606
-0.0221
-0.1419
-0.1396
-0.2165
0.1429

0.1135
0.1212
0.0218

-0.0160
0.0467

-0.0068

-0.0577

-0.1890
0.0083

-0.1458
0.1027

0.0195
-0.1160
0.1133
0.0944

-0.1861
-0.1750
-0.2039
-0.0922
-0.1447
-0.1573
-0.1015

-0.0333

-0.1881
-0.0071
0.1057

PC4'

-0.0871
-0.0916
0.0218

0.0189
-0.0212
-0.0415
-0.0320
-0.0311

-0.0168
0.0849
0.0153

-0.0094

0.0054
0.0088

-0.0013

0.0874
-0.0411
0.0333

-0.0003

-0.0956
0.0144
0.0176
0.0233

-0.0149
0.0138

-0.0064

0.0417
0.0551
0.0935

-0.0177
0.0687
0.0434

-0.0615
0.1253

-0.0471
0.0660
0.0556
0.0830

0.0927
0.1159

-0.1142
0.0262

-0.0569
0.0198
0.0638

-0.0124
-0.0713

PC5'

-0.0256
-0.0458
0.0038

-0.0255

0.0158
-0.0042
-0.0538
-0.0107

-0.0016
0.0080
0.0095

-0.0116
-0.0013
0.0096

0.0195
0.0176

0.0071
-0.0317
0.0118

-0.0358
-0.0279
0.0070

-0.0026
0.0090
0.0041

-0.0149

0.0330
0.0353
0.0007
0.0127
0.0450

-0.0457

-0.0012
-0.0192
-0.0477
-0.0134

0.0005
0.0203
0.0079
0.0468
0.0066

-0.0015
0.0014
0.0065

0.0108
0.0126

-0.0184

C

Sk

Ch

S

S
X

SI

S
Ch

S
Xk

X

B

S

S

S

S
S

SI

S

Sq
Ch

S

Cgh
S

S
Ch

L

Sk

Ch

Ch

Ch

Ch

C

X
Xk

S
Ch

S
Sa



Object Bus Class DeMeo Class Slope PC1' PC2' PC3' PC4' PC5'

65

66

67

69
70

73

76

77

78

82

84

85

87

90

92

93
96

97

99

101
103
105

106
108
110
111

114
115
119
128
130
131

132
133
147
150
151
153
158
160
170
175
180
181
188
191
192
199

X

Xe

Ch

Sq

Ch
B

X

C

Xc

C
T

X

Xk

S

S

Ch

Cgh
SI
X

Ch

Xk

S
SI

C
Ch

Xc

Xe

S

C

Cb

SI

X

S

C
S

Cg
Sq
Xk

S

Cb

SI
X

Xk

Ch

S
X

Ch

S

X

Xe

Ch

S

Ch

C

X

C

Xk

C

T
Xc

Xk

S

S
Ch

Cgh
Sw

X
Ch

K

S

S
C

Ch

K

Xe

S

C

C
Sw

X

S

Ch

S

Cg
Sr

Xk

S

Cb
Sw

X

0.1823

0.1009

0.1534
0.2946
0.1214
0.2182
0.2479
0.1781

0.1192
0.0514
0.0764
0.1047
0.2873

0.1902

0.1604

0.0235
0.2672
0.0782

0.0906
0.1685

0.1399

0.0901
0.0460
0.2713
0.2413

-0.0038
0.2282
0.1408

0.2329
0.0909

0.0925
0.1741

0.1041

0.1715
0.1778

0.1558
0.3780
0.2534
0.2067
0.1421

0.1472

0.1176
0.1161
0.0317
0.1690

0.1738

0.3086
0.4045

-0.4111

-0.4739
0.1438

-0.3394
-0.2771
0.4242

-0.6309
-0.0892

-0.5045
0.0305

-0.4183

-0.7800
-0.3383
-0.7534

-0.2105
-0.5609
0.0024

-0.1431

-0.0986
0.1674

0.1377

-0.3221
-0.5045
0.2950

-0.2178
-0.3827
-0.2364

0.3346
0.2297

-0.4973

-0.5175
-0.5109
-0.3640
0.1898

-0.6347
-0.6658
0.3427

-0.4440
-0.0603
-0.3880
0.2552

-0.5537
0.1465

-0.0403
0.3672

-0.5579
0.2612

-0.1176

-0.0376
-0.0377
0.0272

-0.0517
-0.0617
-0.0500
-0.0148
-0.2235
-0.0302
0.0415

-0.0480
0.0348

-0.0866
0.0431

-0.0825
-0.0721
-0.2296
-0.2083
-0.1395
-0.0220
-0.0870
-0.0785
0.0048

-0.0596

-0.0643
-0.0731

-0.1662
-0.0679
-0.0735
-0.0827
0.0020

0.0313
-0.0944
-0.0812
-0.0061

-0.0221

-0.1232
-0.0551
0.0573

-0.0567
-0.0862
-0.0130
0.0934

-0.1862
-0.0820
-0.0200
-0.0848
-0.1249

-0.1855
-0.1799
0.0028

-0.1497
-0.1589
-0.0310

-0.1679
-0.1153
-0.1790

-0.0687
-0.1660
-0.1901
-0.1944
-0.1747
-0.1616
-0.1823

-0.1353
-0.1168

-0.1146
0.0347
0.0598

-0.1738
-0.1215
0.0671

-0.1567
-0.1973

-0.0634

0.0258
0.1495

-0.1416

-0.1308

-0.0507

-0.1157

0.1374
-0.1881
-0.1946
0.1094

-0.1702
0.0102
-0.1572
0.0138

-0.1130
-0.0583
-0.0815

0.0267
-0.1974
0.1100

-0.1555

-0.0464
0.0362

-0.0178
0.0216
0.1165
0.0453

-0.0355

-0.0244
0.0372
0.0479
0.0696

-0.0317

-0.0119

-0.0556

0.0231
-0.1202
0.0032

-0.0371

0.0174

-0.0371

-0.0932
0.0629
0.0594

-0.0020
0.0837
0.0372

-0.0363

-0.0233

-0.0176
-0.0643

0.0706

-0.0184
-0.0160

-0.0473

-0.0282
-0.0545

0.0687
0.0172
0.0080
0.0260

-0.0673
-0.0558
0.0595

-0.0389
0.0087

-0.0077
0.0020
0.0677

-0.0115
0.0071
0.0214
0.0060
0.0309
0.0243

-0.0054
-0.0141
0.0241

-0.0166
-0.0023
-0.0360
-0.0171
-0.0195

-0.0113
-0.0490
-0.0221
0.0035
0.0149
0.0377

-0.0041
-0.0017
0.0584
0.0111

0.0076
-0.0125
-0.0261
0.0095

-0.0105
-0.0133
0.0491

0.0174

0.0129
-0.0146
-0.0113
-0.0296
0.0251

-0.0073
0.0349
0.0052
0.0208
0.0288
0.0310

-0.0390
0.0322

-0.0406
-0.0166
-0.0176



Object Bus Class DeMeo Class Slope PC1' PC2' PC3' PC4' PC5'
201
205
210
221
236
237
243
244
246

250
258
264
266
267
269
278
279
288
289
295
308
322
337
345
346
349
352
354
359
371
378
387
389
402
403
433
434
444
446
453
456
460
485
512
513
532
570
579

X
Ch
Cb

K

L
Sr

S
Sw

A
Xk

S
S

Ch
D
D
S

D
S
A

Sw
T

X
Xk
Ch

S
R

Sw
A

Xk
S

S
L
S
L

S
Sw
Xe

C
A

Sw

S
L

S

Sqw
K

S
T

K

0.2004
0.0580
0.0904
0.0158
0.2144
0.1800
0.2191
0.3561
0.6036
0.2586
0.1388
0.2022
0.0988
0.4505

1.2478
0.2441
0.5886
0.1642
1.3827
0.2925
0.3187
0.4013
0.1473

0.1286
0.1786
0.3213
0.2949
0.7342
0.1163
0.1721
0.1637
0.1144
0.1184
0.0471
0.1814

0.2762
0.0919
0.1228

0.7809
0.2547
0.2361

-0.0050
0.1651

0.2918
0.0157
0.1781
0.4169
0.1296

-0.2912
-0.3641
-0.6191
-0.2598
0.2180
0.3735
0.0410
0.3378

-0.5975
-0.1308
0.2412
0.1715

-0.5608
0.2669
0.1062
0.1226

-0.4233
0.4438

-1.6620
0.0453
0.0562

-0.3421
-0.3521
-0.7064
-0.0587
-0.2178
-0.0003
-0.4539
-0.2590
0.3812
0.3610
0.5320
0.0829
0.1322

-0.0047
0.0787
0.0091

-0.6121
-0.7220
-0.0338
0.1184
0.4365
0.1581

-0.1499

-0.0649
0.0197
0.1411

-0.1851

-0.0816
-0.0512
-0.0086
-0.1234
-0.2586
0.0136
0.0275

-0.1351
-0.0238
-0.0905
0.0206

-0.0041
0.0061

-0.2875
-0.2237
0.0262

-0.0246
-0.1252
0.3082

-0.0111
-0.2577
-0.0455

-0.0320
0.0298
0.0521
0.4352

-0.0087
0.0124

-0.0821
-0.0676
-0.1108
-0.3402

-0.0296
-0.2091
-0.0166
-0.0135
-0.2038
0.0062
0.0743

-0.0309
-0.0210
-0.2682
0.0148
0.0803

-0.1890

-0.0408
-0.2291
-0.1318

-0.1636
-0.1768
-0.1561
-0.0137
-0.0019
-0.0128
-0.0348

0.0436
0.4431

-0.1378

0.0163
-0.0186
-0.1624
-0.1235
-0.1521
0.0702

-0.1842
0.0143
0.5455
0.1110

-0.1384
-0.1527

-0.1549
-0.1702
0.0566
0.1189
0.1840
0.2931

-0.1642
0.0057

-0.0042
-0.0064

-0.0267
-0.0456
0.0836
0.1850

-0.0462
-0.1916
0.6009
0.1606
0.1282

-0.0788
0.0029
0.2015
0.0288
0.0319

-0.1314
-0.0009

0.0088
0.0775

-0.0225
-0.1170
-0.0215
0.0081
0.0044
0.0821

-0.1020
0.0100

-0.0058
0.0359
0.0658
0.0750
0.0427

0.0545
0.1432

-0.0161
0.0231
0.0651

-0.0282
0.0614
0.0096
0.0548
0.0262

-0.0615
-0.0119
0.0412
0.0400
0.0058
0.0046

-0.0426
0.0057
0.0060
0.0227

-0.0179
-0.0941
-0.0750
0.0145

-0.0368
0.0166
0.0035
0.0520
0.0160

-0.1564

-0.0135
0.0819

-0.0100

-0.0039
0.0034

-0.0535
-0.0340
-0.0179
0.0446
0.0330

-0.0523
-0.0245
0.0049
0.0309
0.0132
0.0138

-0.0073
0.0112

-0.0071
-0.0294
0.0303
0.0879

-0.0231
-0.0111
-0.0023
-0.0020
0.0009

-0.0022
-0.0050

-0.0125
-0.0253
-0.0346
0.0286
0.0304

-0.0539
0.0146

-0.0371
-0.0060
-0.0148
0.0350

-0.0043

-0.0383
0.0078

-0.0141
-0.0065
0.0026
0.0016

-0.0340
-0.0177
0.0329

-0.0241



Object

596
599
606
625
631
653
661
670
673

675
679
688
699
706
716
719
720
729
739
742
773
776
782
785
789
793

808

824
832
847
863
908

913
925
929
944
984
985

1011
1020

1036
1065
1094
1126
1131
1139
1143
1147

Bus Class

T
K
K

Sa

S
K

K

S

S

S

K

C

Sq

Cgh
S

Sq
L

X

K
T

Cgh
SI

Cb

X

S

Sq
L

S

A

L

Sa

S
S

Sr

S

Sr
S

S
S

Xk
A

S

S

S

DeMeo Class

T

L

L

Sw
S

K

K

S
L

Sw

L

C

S

Cgh
S

S

Sq
L

Xc

K

T

Cgh
Sw

Cb
X

S

Sr
L

S

S

A

D
Sw

S
S

D

Sa

S

Sw
Sr

Sr
S

Xk

Sw

S
Sw

D

Sw

Slope

0.2836
0.1751

0.1701

0.4198
0.1695

0.1222

0.0910
0.0748
0.1012

0.2698
0.1343

0.1442

0.1172
0.1744

0.0861
0.1976

0.0856
0.2592
0.1825

0.1083
0.3027
0.1045

0.3368
0.1886

0.2191
0.1374

0.1693
0.0120
0.1270

0.2065
0.8746
0.6858
0.3593
0.1022

0.2074

0.6300
0.4377
0.1807

0.2929
0.1983

0.1217
0.2303
0.2185
0.3941
0.1480
0.3114
0.7547
0.2828

PC1'

0.0374
0.1626
0.2644
0.4090
0.1668

-0.1679
-0.0712
0.2028
0.4082

-0.0684
0.2956

-0.5997
-0.0720
-0.5633
0.4545
0.1490

-0.1298
0.2035

-0.2526

-0.2484
0.1142

-0.1868
0.0608

-0.5012
-0.3208
0.2352

0.0862
0.4266
0.0897
0.1657

-0.7688
-0.0216
0.2196

0.3738
0.1117
0.2156

-0.6705
-0.0410
-0.0775
0.2683

0.3906
0.0672
0.0318
0.2410
0.1474

-0.0401

0.0654
0.0410

PC2'

-0.2216
-0.1783
-0.2600
-0.1305
-0.0136
-0.1498
-0.1698
0.0193

-0.3053

-0.0132
-0.2743
-0.0120
0.0366
0.0475

-0.1267
-0.0287
0.0391
-0.2531
-0.1227
-0.1032
-0.2490
-0.1188
-0.0072

-0.0460
-0.0605
-0.0073

0.0915
-0.3690

-0.0428
0.0385
0.1836

-0.1444
-0.0639
-0.0883
-0.0501
-0.3083
0.1555

0.0211
0.0579
0.0304

-0.0041
-0.0003
-0.1897
-0.0503
-0.0673
0.0462

-0.2636
-0.0232

PC3'

-0.1808
-0.0262
-0.0666

0.2046
0.0322

-0.0035

-0.0149
-0.0003
-0.0949

0.0450
-0.0309
-0.1869
0.0116

-0.0812
-0.0224
0.0772

-0.0386
0.0273

-0.1680
-0.0032
-0.1274
-0.1460
0.1467

-0.2471
-0.1676
-0.0096

-0.0014
-0.0526
-0.0827
0.0531

0.5417
-0.0045
0.1825

-0.0133
0.1472

-0.1251
0.4003
0.1118
0.2634
0.0328

-0.0157
0.1669

-0.0990
0.2384
0.1983
0.2062

-0.0978
0.1653

PC4'

0.0021
0.0394
0.0145
0.0687

-0.0242
-0.0703

-0.0415
0.0244

-0.0627

0.0218
0.0426

-0.0725
0.0467
0.2141

-0.0032
0.0078

0.0036
-0.0633
-0.0181
-0.0390
0.0177
0.0264
0.0671

0.0059
0.0007

-0.0123

0.0518
-0.1061
0.0706
0.0338

0.0295
0.2364
0.0032
0.0133

-0.0539
-0.0059
-0.0513

-0.0973
-0.0301
0.0114

0.0087
-0.0086
0.0497
0.0130

-0.0362
0.0016
0.1332

-0.0255

PC5'

-0.0279
-0.0041
0.0114

-0.0098
0.0373

-0.0072

-0.0367
0.0141
0.0020
0.0048
0.0108

-0.0107
0.0081
0.0726
0.0232

-0.0304

0.0346
0.0190
0.0019

-0.0113
0.0032
0.0473

-0.0250
-0.0661
0.0072
0.0300

0.0239
-0.0267
-0.0251
0.0618

-0.0590
0.0957

-0.0164
0.0088

-0.0012
0.0008

-0.0021
-0.0536
0.0263
0.0402

0.0310
-0.0101
-0.0212
0.0301

-0.0050
-0.0152
-0.0107
0.0267



Object Bus Class DeMeo Class Slope PC1' PC2' PC3' PC4' PC5'

K1148

1198
1204
1228
1300
1329
1332
1350

1374

1433
1459
1471
1494
1508
1542

1565

1620
1640
1642
1658

1659
1660
1662

1667
1685
1751

1807
1839
1848
1858
1862
1864
1866
1903
1904
1916
1929

1943
1980
2035
2042
2045
2063
2064
2074
2085
2099
2107 S 0.2481 0.0580 -0.0705 0.0931 -0.0806 0.0095

K

Sw

Sw

Sr

Cg
Sqw

L
S

Sq

S
Vw

D

Sqw

B

D
S

S

S

S

S

S
S

Sr

Sw
S

S

Sqw
S

S
S

Q
Sq
Sw

K

V
Sw

V

Sw

Sw

Xe

Sr

V

Sq

Sqw

Sq
L

Ch

0.1189
0.3904
0.2876
0.2048
0.1054
0.3086
0.1529
0.2257
0.1482

0.1563
0.3246
0.7780
0.3476

-0.0249

0.7210
0.0735
0.1637

0.1595
0.0905
0.2413

0.1635
0.1779

0.1815

0.3046
0.0941
0.1143
0.3380
0.0519
0.1435
0.1504
0.1132
0.0528
0.3453
0.1249

0.1483
0.3902
0.2193
0.2732
0.4071
0.0876
0.0800
0.1814
0.0700
0.2569
0.4562
0.0454
0.1207

-0.2024
0.3122

-0.0614
0.2914

-0.2599
-0.1273

0.0813
0.3398

-0.3566
-0.0107
0.3316

-0.3535
-0.1320

-0.4553
0.1271

-0.0435

-0.0288
0.0811

0.4415
0.5240

0.3504
0.2259
0.4950

0.2717
-0.0566
0.3150

-0.2285
0.1526

0.2404
0.5822

-0.4924
-0.2706
0.0700

-0.0241

0.2755
-0.0124
1.0772

0.1740
-0.0144
0.1472

0.1890

0.7055
-0.3144
-0.1839
0.1019

0.4460
-0.5875

-0.1099
-0.1438
0.0101
0.0708

-0.0818
0.0168

-0.3061
-0.1171
0.1170

0.0712
1.3060

-0.0673
0.0756

-0.0766
-0.1903
0.0890
0.0273

-0.0334
-0.0859
-0.1647
-0.0797
-0.0131

-0.0014
-0.0619
0.0256
-0.1147
0.1384

0.0026
-0.0564
-0.2625
0.1862

0.1082

-0.0057
-0.1681

0.5257
0.0565
0.9150

-0.0746
0.0523
-0.2595

0.0736
0.8418
0.0660
0.0195
0.0440

-0.3548
0.0166

0.0499
-0.0191

0.1076
0.0311

-0.0837
0.1732

-0.1331
0.0641
0.1614

0.0725
-0.2959
-0.1656
0.2302

-0.1418
-0.1536
-0.1931
0.1421

0.0752
0.0300
0.0594

-0.0459
0.0062
0.0852
0.2316
0.1330

0.0020
0.0738
0.0323
0.0716
0.0029
0.2229
0.1794

0.0700
-0.0055

-0.0271
0.0945

-0.0068
0.0776
0.1891

-0.0942
-0.0102

-0.0965
0.1375

0.1767

0.1746

-0.0183

-0.1875

-0.0615
0.0827
0.0413
0.0319
0.0223

-0.0082
-0.3096
-0.1238
0.0002
0.0117

-0.2269
0.0479

-0.0403
-0.0690
0.1144

-0.1628
0.0505
0.0067

-0.0789

0.0760
0.0492
0.0255

-0.0094
0.0180

-0.0230
-0.0945
0.0275

-0.1107
-0.1098
0.0101

-0.0743
-0.0888
-0.0052
-0.0425

-0.0874
0.0145
0.0364
0.0524
0.0235

-0.0104
-0.0016

0.0756
-0.0653
0.0041
0.0269

-0.0488
0.0193

0.0004
-0.0193
-0.0186
0.0398
0.0834
0.0150

-0.0867
0.0803
0.0058
0.0271

-0.1211
0.0060
0.0252

-0.0088
0.0121
0.1260

-0.0231
-0.0353
0.0501

-0.1031
-0.0312
0.0337
0.0610
0.0174

-0.0037
-0.0117
-0.0119
-0.0174
0.0726
0.0387

-0.0133
0.0619
0.0510

-0.0199

-0.0654
-0.0035
-0.0233
0.0061
0.0373
0.0300
0.0046

-0.0684
0.0226
0.0066

-0.0534
-0.0129
-0.0002



Object Bus Class DeMeo Class Slope PC1' PC2' PC3' PC4' PC5'

2157
2246
2335

2353

2354
2378
2386

2396
2401

2442
2448
2501
2504
2521

2566
2579
2715

2732
2851
2873
2875
2911

2912
2957

2965
2977

3028
3102
3103
3122

3155
3198
3199
3200
3248

3255
3317

3363
3395
3402
3430

3491
3511
3628

3635
3701
3734
3753 Q 0.2115 -0.5643 0.2866 0.0835 0.0046 -0.0157

S

L

Cgh
S

Sa

S

L

A

Sq

S

V

V

A

A

V

Sq
S

S

V
K

S

K

Xe

S
V

S

Sq
B

D

S
T

Sq

Sr

Sq

Sq
S

O

S

S
Ld

S

D

S

S

L

Cgh
S

S

S

V

L

A

Sr

S

V

V

Sw

L

V

Sq
S

Sw

V
K

Sv

S

K

Sqw

Xe

Qw
V

Sqw
K

B

D

S

D

Sr

S

S

S

S

Srw

O

Srw
S
L

0.1897
0.5312

0.2315

0.0935

0.0775
0.0583
0.1774

0.1849
0.1744
0.1571
0.3125
0.8437
0.1126
0.0789

0.0441

0.0889

0.3118
0.2002

0.1538

0.1345

0.1293

0.2679
0.1982

0.1449

0.1904

0.1668

0.0103
0.2604

0.1303

0.3829
0.0533

0.3354

0.2273
-0.1626

0.4834
0.0995
0.5051

0.1822

0.1660

0.2381

0.0860

0.0196

0.3246
0.0572
0.2767
0.1225
0.0807

0.1990

0.2511

0.2507

0.3713

0.6610
-0.5495
0.2766

0.2953

0.2766
0.8876
0.4253

-0.6265
0.0951

0.0866

0.7136

0.3419

0.3235
0.7163
0.6727

-0.1752
0.2965
0.2209
0.6001
0.0173
0.6981

0.2776

-0.1513
-0.2280
0.2177

-0.3772

1.1248

-0.1666
-0.6353
-1.0224

0.3439
0.1948

-0.0303

-0.1342

0.1479

0.2431
0.2024

0.1475
0.0134

-0.7900
0.1795

0.2605
0.7779

-0.0655

-0.2110

-0.0416

-0.0718

-0.3559
0.0086

-0.0508

-0.1191

0.0200
0.9743

-0.3012
0.0916

0.0954
-0.0090

0.8479
0.8659

-0.1613
-0.3427

0.9608
0.1131

-0.0846
-0.0071
1.1117

-0.1566
0.0147

-0.0690

-0.1396
0.0881

-0.2795

0.1962

0.8416

0.0490
0.0481
0.1534

-0.2783
0.0432

-0.1559

0.1633

0.0625
-0.0662
0.0258

0.0507
0.1181
0.5696
0.1094

-0.0192

-0.4665

0.0722

-0.1341
0.0520

-0.0252

0.0723
-0.1693

0.0422
0.1750

-0.0249

-0.2123

-0.0427

0.6472

-0.0293
0.0278

-0.1093

0.2123

0.2232
0.1762

-0.1887

0.1473

0.0667
0.0910

-0.2085
-0.0374

-0.0233
0.0350

-0.0696

0.1889

-0.0829
0.2076

-0.3899

0.2175

0.1171
-0.2026

-0.1477

0.0164
-0.1150

0.0017

0.0421
0.1002

-0.0155

-0.0419
0.0887

0.3075

0.0258
-0.0132
0.0210

-0.0001

0.1233

-0.0771

0.0137

-0.0512
-0.0034
0.0113

-0.0343

-0.0367

-0.0100
0.0606
0.1271

0.0582

-0.0296

0.0515

0.0075

-0.0447
-0.1555

-0.2213
0.0673

-0.0463
0.0362

-0.0381

-0.0121
0.0985

-0.0031

-0.1012
-0.0515

-0.0694
0.0580

-0.1176

0.1583

0.0337

-0.1287
0.0552

0.0118
0.1130

0.0243
0.0495

-0.0218

0.0458
-0.0231
0.0018
0.1764

0.0407
-0.0652
-0.0144

0.0245

0.0023

0.0458

0.0303

0.0024
0.0288
0.0136

0.0169
-0.0399
-0.0243

0.0336
-0.0803
0.0279

-0.0044

-0.0638

-0.1497

-0.0086
0.0295
0.0734

-0.0298

0.0142
0.0121
0.0291

-0.0254
0.0146

0.0122

-0.0266
-0.0098

0.0452
-0.0115
0.1033

-0.0899
0.0088

-0.0123
0.0161
0.0365

-0.0036

0.0420
0.0724

-0.0368
0.0283

0.0199
0.0191

-0.1059
0.0055
0.0051

-0.0224



Object Bus Class DeMeo Class

3788 S S
3844 L L
3858 Sa Srw
3873 S Sw
3903 Sq S
3908 V
3910 S S

3920 Sa Sqw
3949 Sq Sq
4038 Vw
4055 V
4142 A L
4179 Sk Sq
4188 V V

4197 Sq Sq
4352 S S

4407 Sa Sqw
4417 S Sw
4451 Sv
4558 S Sr
4570 Sa S
4688 Q
4713 A Sw
4737 L L
4995 S S

5013 SI Sw
5111 R V

5143 O O

5230 S S

5261 Sr Sa
5401 S S

5407 Sk S
5587 Sq Sr
5604 V

5641 A Sw
5660 Q Q
5685 S S

5817 S Sr
5840 Ld L
6047 S S

6239 Sqw

6386 S S

6411 B
6455 S Srw
6585 Sk S
7341 Sq Q
7763 L L
8334 S S

Slope

0.2012
0.0026
0.2680
0.2665
0.0416

-0.0188
0.2282
0.3459
0.1761
0.2529
0.0288
0.1005
0.1562
0.1660
0.0768
0.1678

0.3786
0.2541
0.2420
0.1245

0.2440
0.2132
0.4111

0.0665
0.1258
0.3330
0.2066
0.0624
0.1724
0.4876
0.2466

0.0610
0.1093

-0.0059
0.4133
0.1684
0.1178

0.1528

0.0615
0.1583
0.2828
0.2317

-0.1275
0.3291
0.1147
0.0773
0.0369
0.1609

PC1'

0.2111

0.6056
-0.0163
0.0244

-0.0145
0.5903
0.1284

-0.1114
-0.3090

1.1441
0.3319
0.3651

-0.1430
0.4935

-0.0944
0.0187

-0.1573
-0.0185
0.5906
0.1072

0.2939
-0.8539
0.7832
0.7175
0.1929
0.0119
0.5694

-0.7842
0.0673

-0.9836

0.3363
0.1156

-0.0387
0.6429
0.2838

-0.7080
0.1648

0.2990
0.8321
0.1579

-0.3266
0.1362

-0.2972
0.4061
0.0539

-0.4510
0.5498
0.0801

PC2'

-0.0168
-0.3788
0.1400
0.0483
0.0422
1.3071

-0.0008
0.0720
0.1060
0.2926
1.1709

-0.4177
0.0974
0.8254
0.0891
0.0446

-0.0039
-0.0066
-0.0221
0.0897

-0.1158
0.3441

-0.2321
-0.3929
0.0414

-0.0680
0.5980
0.2619
0.0493
0.0731

-0.0713

0.0172
0.1404
0.8645

0.0066
0.2413

-0.0382
0.0282

-0.4394
0.0214
0.1338

-0.0010
-0.1149
0.1819

0.0586
0.1878

-0.3018
-0.0140

PC3'

0.0719
-0.0330
0.3209
0.0577

-0.0252
-0.3046
0.0866
0.2198
0.1596

-0.1791
-0.2645
0.0478
0.0408

-0.1066
-0.0621

0.1405

0.2266
0.1849

-0.0264
-0.0154

0.1608
0.1742

0.0805
-0.0188
-0.0337
0.2286

-0.1307
0.1289
0.0494
0.2496
0.0723

-0.0276
-0.0431
-0.1587

0.1999
0.2213
0.0419

0.0697
0.0799

-0.0754
0.1199

0.1592
-0.1956
0.2023
0.0118
0.1417

0.0234
0.0857

PC4'

0.0036
-0.0933
-0.1941
0.0638

-0.0171
0.0383

-0.0237
-0.0088
0.0215
0.1398

-0.1467
-0.3867
0.0416
0.1007

-0.0056

-0.0021
-0.0549
-0.0371
0.0122

-0.0412
-0.0636
-0.0777
-0.0750
-0.0332
-0.0116
0.0571

-0.0110
0.0385

-0.0373
-0.1272
0.0597
0.0713
0.0934

-0.0781
-0.0199
-0.1278
-0.0482

-0.0362
-0.1078
-0.1487
0.0834
0.0515

-0.0424
0.2276
0.0238

-0.0197
-0.0294
0.0747

PC5'

-0.0033
-0.0427
0.1521

-0.0090
0.0191
0.0846
0.0239
0.0215
0.0086

-0.0909
-0.0110
-0.0015
-0.0098
-0.0208
0.0326

-0.0004

0.0109
0.0033

-0.0038
0.0029
0.0075
0.0987
0.0388
0.0214

-0.0002
0.0177

0.0267
0.0105
0.0338
0.0817
0.0195
0.0066

-0.0007
0.0369

-0.0020
-0.0252
-0.0008
0.0398

-0.0157
-0.0642
-0.0296
-0.0416

0.0111
-0.0038
0.0360

-0.0155
-0.0188
0.0277



Object Bus Class DeMeo Class Slope PC1' PC2' PC3' PC4' PC5'

8444 S 0.1777 0.2300 -0.0559 0.1410 -0.0224 0.0044

17274 X 0.4237 -0.3824 -0.0526 -0.2156 -0.0445 -0.0349

18736 Sw 0.2492 0.0387 0.0908 0.0723 0.1699 -0.0230

19127 Qw 0.2832 -0.3785 0.2522 -0.0087 -0.1720 -0.1393

19356 S Sq 0.1229 -0.1385 0.1343 0.1090 -0.0537 0.0019

20786 Sq 0.0695 -0.3133 0.0392 -0.2523 -0.0629 -0.0224

20790 S 0.0486 0.2985 -0.0060 -0.0350 0.0465 -0.0096

22771 S 0.2264 0.6273 -0.1888 0.0128 0.0341 -0.0321

24475 Sw 0.2774 0.7547 -0.2018 0.1522 0.0178 -0.0313

35107 Sq 0.2409 -0.3046 0.1300 0.1665 0.0219 0.0273

36284 K 0.1107 -0.1968 -0.0413 0.0979 0.0223 -0.0324

53435 Srw 0.3577 0.3091 0.0856 -0.0179 0.0047 0.0077

54690 S 0.2020 0.5061 -0.2364 -0.0731 0.0468 0.0010

66146 Q 0.0858 -0.5855 0.1891 0.1026 -0.0367 -0.0099

86450 L 0.1180 0.3649 -0.2185 -0.0743 0.1205 -0.0517

86819 Sq 0.1680 -0.2950 0.1200 0.2179 -0.0268 -0.0452

89355 Sr 0.2111 0.2369 0.0799 0.0610 0.0568 0.0161

98943 Sw 0.3928 0.2022 -0.0203 0.0259 0.1419 -0.0436

137062 Sq Sr 0.1011 0.3418 0.2032 0.2097 0.2369 0.0584

1989VA Sq Sr 0.1541 -0.1192 0.2803 0.1263 0.1758 0.0530

1997AE12 Q 0.1561 -0.5143 0.2280 0.1113 -0.0834 -0.0288

2000GD2 Q 0.0732 -0.3689 0.1455 0.0965 0.0418 -0.0597

2000PG3 D 0.4300 0.3343 -0.2655 -0.2128 0.0289 -0.0332

2000XL44 S 0.2240 -0.0382 0.0331 0.1544 0.0537 -0.0624

2001MQ3 K 0.1459 0.0640 -0.1642 0.0521 -0.2369 0.0169

2001TX16 X 0.2436 -0.0120 -0.1664 -0.2179 0.0668 -0.0506

2001XN254 S 0.1939 0.3016 -0.0733 0.0756 -0.0163 -0.0943

2002AA S 0.0267 0.1247 0.0117 -0.0773 -0.0387 -0.0345

2002AV S 0.1646 -0.0534 -0.0110 -0.0969 -0.0110 -0.0641


