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ABSTRACT

CD8+ T cells are the main adaptive immune system cell type responding to intracellular
pathogens, particularly viruses, and tumor antigens. In the case of influenza, activated T cells
migrate from the mediastinal (draining) lymph nodes to the lung where they perform their
cytolytic function. After pathogen clearance, memory CD8+ T cells are generated, giving rise to
long-term protection from reinfection. However, these cells are no longer detectable in the lung
parenchyma six months post-infection, and cell-mediated immunity, and protection is lost.
Knock-out studies in mice show that interleukin 15 (IL-15) is essential for memory CD8+ T cell
proliferation. Fibroblasts, macrophages, dendritic cells and epithelial cells express IL-15 and its
receptor isoform a (IL-15Ra). Histological studies suggest that memory CD8+ T cells
preferentially reside in peribronchiolar and perivascular areas, the stroma, of the lung. We
hypothesize that memory CD8+ T cells preferentially reside in regions where molecules
necessary for their maintenance, for example, IL-15/R secreting cells, are located. In this study,
we have shown that antigen-specific 2C GFP effector memory CD8+ T cells are generated in B6
recipient mice 30-32 days after influenza virus infection, preferentially reside in peribronchiolar
areas. Both 2C and 2C GFP recipient mice have severe vasculitis and widely distributed
inflammatory infiltrates 7 days post-infection. Lower lung lobes appear to be more affected than
upper lobes at this time point. On day 30, most of the airways have been cleared and restored.
Although lymphoid-appearing nodules were detected in the lungs 31 dpi, no clusters of B cells
and T cells suggesting induced BALT were identified by immunofluorescence. Interestingly,
antigen-specific GFP cells preferentially remained in the lung tissue and were almost
undetectable in spleens, lymph nodes, and livers. This preference was not observed in 2C (non-
GFP) recipient mice. Immunofluorescence studies showed no colocalization between 2C GFP T
cells and dendritic cells that might suggest stable dendritic cell interactions contribute to antigen-
specific cells preferentially residing in the lung stroma. Further studies are necessary to
determine what other cell types might contribute to this phenomenon. These results provide
some insight into how structural elements in non-lymphoid tissue influence cell-mediated
immunity.
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I.INTRODUCTION

CD8+ T cells are the main adaptive immune system cell type responding to intracellular

pathogens, particularly viruses, and tumor antigens '16. In the case of influenza virus infection,

antigen is carried by antigen-presenting cells (APCs) to the mediastinal lymph nodes (MedLN)

where these cells present antigen to na've CD8+ T cells 2, 4, 7-14. Activated antigen-specific T

cells remain in the lymph nodes and proliferate during the first three-four days post-infection 2, 7-

15. Activated T cells then exit the lymph node through the efferent lymph vessel into peripheral

tissues, including the inflamed tissue of the lung 4, 7, 10, 16-22

Mononuclear infiltrates (lymphocytes, granulocytes and macrophages) are observed in

histological sections of the alveoli, bronchi, and upper airways of the lung, completely defacing

the lung morphology between days 5-8 23-25 When virus is cleared, usually in less than two

weeks post-infection, the lung pathology is often restored to 'normal' with mononuclear

infiltrates observed only in the lung airways, and peribronchiolar and perivascular areas of the

lung parenchyma 23, 2 6, 27

By day 30 post-infection, the T cells in the lung have acquired memory phenotypic

markers and persist in this tissue 28, 29. Memory CD8+ T cells are necessary for long-term

immunity to viral infections 30-33 Recall responses to subsequent infections by the same or

similar viral antigen is often rapid, leading to faster recovery from illness 1, 34-36. In the case of

influenza, however, the memory cells in the lung parenchyma decline in numbers over a period

of six months or less 27, 36, 37 and cell-mediated immunity to influenza virus is lost. The reason

for this decline is unknown.

Several studies have shown that cytokines, especially interleukin (IL)-7 and IL-15, are

necessary for survival and proliferation of memory T cells 38-42. IL-15 deficient (IL-15-/-) and



IL-15 receptor isoform a deficient (IL-1 5Ra-/-) mice have substantially lower numbers of nalve

and memory CD8+ T cells compared to wild-type mice 43-48. In inflammatory diseases that

affect the intestine or the lung, high levels of IL-15 have been correlated with persistent

lymphocyte populations 49, 50. This suggests IL-15 is essential for maintaining memory CD8+ T

cell numbers.

Memory CD8+ T cells persist in non-lymphoid tissue despite the absence of secondary

lymphoid organs 51, 52. These results suggest an important role for at least a subset of non-

lymphoid organs such as the lung in the survival of memory T cells. Most of these studies were

performed using tissues that have been processed for flow cytometry or biochemical studies, and

do not provide any information about the spatial distribution of memory cells in tissue. The

structural network in the lung might explain why memory CD8+ T cells are located in

peribronchiolar and perivascular areas of that organ 23, 27, 53. Identifying the structural elements

that control the location of memory T cells may shed more light on the differences that have

been observed between T cell maintenance in lymphoid versus non-lymphoid tissue 54. It may

also address the lack of persistence of lung resident memory cells following an immune

challenge.

No one has related the spatial distribution of memory CD8+ T cells to their maintenance

in non-lymphoid tissues. Hogan et al. 27 showed that CD8+ CD44+ T cells are found in the

peribronchiolar epithelial regions of the lung 60 days after influenza A/PR8 infection.

Hematoxylin-and-eosin (H&E) stained sections viewed at earlier time points, within days after

viral replication stops, also suggest that T cells preferentially reside around the bronchial

epithelium 23, 27, 53. The stroma is responsible for support; providing cytokines, adhesion

molecules, and nutrients to ensure cell survival. The lung stroma is comprised of collagen types



I, III, and VI 56-58. Fibroblasts are the main cell types that synthesize collagen; a major protein

component of the extracellular matrix. Epithelial cells can also synthesize collagen. Kim JK et

al. 59 showed that collagen type III has alpl (VLA-1) and a2P2 sites that are needed for

adhesion to human lung fibroblast cells. Also, Ray SJ et al. 60 showed that VLA-1 is needed for

recruitment and retention of memory T cells into the lung in an influenza mouse model. Since

collagen type III is most abundant in the peribronchiolar and perivascular regions 56, it is likely

that fibroblasts would interact closely with memory CD8+ T cells in the lung.

At peripheral tissue sites, fibroblast-like cells 61-63, dendritic cells 64, and macrophages 50,

65, are sources of IL-15 and IL-1 5Ra. The human respiratory epithelial cell line A549 expresses

IL-15Ra 66. Recently, it was shown that there is a cell-surface bound isoform of IL-1 5Ra, and

both IL-15 and IL-15Ra are produced by the same cells 67, suggesting that IL-15 is secreted in a

transpresentation model 68. That is, IL-15 secreting cells have both the ligand and the a subunit

of the receptor 68, 69. The target cells must have the IL-2Rp and common-y chain receptor

subunits in order to respond to IL-15 signals 69

Since IL-15 and IL-15Ra are produced by the same cells, and memory CD8+ T cells

require IL-15 to proliferate, I hypothesize that memory CD8+ T cells in the lung are maintained

in peribronchiolar and perivascular regions where cells expressing molecules such as IL-15 and

IL-15Ra that are necessary for their maintenance can be found. Recent studies suggest majority

of the IL-15Ra positive cells in homogenized lung tissue appear to be nonhematopoietic cells 70.

However which of these cells is important in memory cell maintenance remains to be elucidated.

Several groups have shown that CD8+ T cell interactions in tissue can be investigated

using microscopy 9, 12, 71. This approach allows one to visually determine the location of a cell

with respect to its neighbors. In our influenza mouse model, WSN-SIY, a mouse-specific



recombinant HIN1 influenza virus strain with the SIYRYYGL (SIY) epitope engineered into the

neuraminidase (NA) stalk is recognized by 2C TCR expressing cells when the epitope is

presented on Kb+ APCs or virus-infected target cells 72. This system allows controlled numbers

of 2C T cells responding to a defined epitope (SIY) to be introduced into a mouse by adoptive

transfer. 2C T cells are isolated from transgenic mice on a recombination activating gene-1

deficient (RAG1-/-) background (2C RAG-/-). These cells can be further engineered by

introducing other knockouts or transgenes onto the 2C RAG-/- background. In this project we

are able to study cell trafficking by introducing GFP 73 to allow individual cells to be easily

tracked by microscopy. This allows us greater versatility and flexibility in cell tracking to study

the location and potential interaction partners of memory CD8+ T cells in the lung than others

have previously done. Compared to organic fluorophores often used to perform antigen-specific

T cell interaction studies, our GFP system could be used to track antigen-specific cells long-term

(>7 days post-transfer).

In this thesis, we validate the ability of this model to study memory T cell response to

influenza infection, and determine where antigen-specific cells are located in lung tissue. In

addition, because of the ease of staining for dendritic cells and knowing that dendritic cells also

secrete IL-15 64, we investigated whether T cells are closely associated with resident dendritic

cells in the lung. These studies provide a basis for exploring the role of different cell types in

memory CD8+ T cell maintenance in the lung.



II.VALIDATING THE EXPERIMENTAL MODEL

A. Methods

Mice and Viruses: 2C TCR GFP-expressing and 2C TCR (without GFP) transgenic mice on

RAGl-/- and B6 background were maintained at the Massachusetts Institute of Technology

(MIT) Animal Care Facility. Recipient B6 mice, ages 8-14 weeks old, were either maintained

in the MIT facility or purchased from Taconic Farms, Inc. (Hudson, NY). Recombinant WSN

(H1N1) influenza virus with SIYRYYGL peptide engineered onto the neuraminidase stalk

originally constructed by plasmid-based reverse genetics 74 was grown on Madine-Darby Canine

Kidney (MDCK) cells.

Antibodies & Reagents: Biotinylated 1B2 monoclonal antibody was produced in-house. 1B2 is

a monoclonal antibody specific for the 2C TCR. Other anti-mouse monoclonal antibodies (anti-

mouse CD16/32, CD8a-APC, CD8a-PE, Streptavidin-APC, Streptavidin-FITC, CD44-PE,

CD62L-APC) for flow cytometry studies were purchased from either BioLegend (San Diego,

CA) or BD Biosciences (San Jose, CA). Propidium iodide P4170 (PI) was acquired from Sigma-

Aldrich (USA).

Lymphocyte Isolation (Lymph Nodes and Spleen): Lymph nodes (LNs) from 2C RAG-/- and

2C GFP RAG-/- mice were extracted, one mouse at a time, after carbon dioxide (CO2)

asphyxiation. The sacrificed animal's fur was sterilized with 70% ethanol. The LNs were

extracted by dissection and stored on ice in 4 ml of RPMI 1640 media supplemented with 5%

fetal bovine serum and 10 mM HEPES buffer solution (RPMI complete). After dissection, the

LNs were gently mashed between rough surfaces of two microscope slides immersed in RPMI



complete to release lymphocytes. Slides were rinsed with additional 1-2 ml of RPMI complete,

filtered through sterile gauze and transferred into 15-ml Falcon tubes. A similar procedure was

followed for cell isolation from the spleen. Splenocytes were further purified by a red blood cell

(RBC) lysis step after mashing.

Lymphocyte Extraction (Lung and Liver): To extract cells from the lungs and liver, each

specimen was ground through a cell strainer in 15 ml of RPMI complete. Then the suspension

was centrifuged and resuspended in 2 mg/ml Collagenase A (from Roche) in RPMI complete

solution. Lungs were digested in 2 ml of Collagenase A solution while liver specimens each

contained 3 ml of the solution. The tissue was digested for 1 hr in a 37 oC water bath. An equal

volume of 70% Percoll was added to the digest followed by centrifugation at -2000 rpm for 20

min. The tissue debris and supernatant was gently aspirated, and RBC lysis was undertaken.

Red blood cell (RBC) Lysis: Two milliliters of red blood cell lysis buffer (144 mM ammonium

chloride and 17 mM Tris-HCI pH7.4 in distilled deionized water) was added to the pellet and

kept on ice for 3-5 min. Ten millimeters of RPMI complete was added to stop the lysis. Cell

suspensions were centrifuged at -1220 rpm and resuspended in an appropriate buffer for further

analysis, filtered through a nylon mesh (Sefar) into appropriately labeled tubes and kept on ice.

Cell counting: The total number of viable cells for each tissue specimen was counted using a

hemacytometer and tryphan blue exclusion.



Flow Cytometry: Appropriate numbers of counted cells in suspension were transferred into

labeled Falcon® round-bottom tubes (FACS tubes), and centrifuged at -1210 rpm for 5 min. All

procedures were performed on ice. Antibodies of 1:100 dilutions in FACS buffer (1% BSA and

0.1% sodium azide in lx PBS) were used for staining. Purified anti-mouse CD16/32

(BioLegend), the Fc blocker, was added for 10 min prior to adding the primary antibody. Cells

were incubated with the primary antibody on ice for 30 min, washed and then incubated with the

secondary and fluorophore-conjugated antibodies for 15 min while covered with foil paper. The

cells were washed again, and resuspended in 0.2 tg/ml propidium iodide solution (1:500

dilution). Samples were sorted using a BD FACSCaliburTM flow cytometer (BD Biosciences).

Further data analysis was carried out using FlowJo software (Tree Star, Inc., Ashland, OR).

Cell Transfer & Influenza Infection: Cells were resuspended in Hank's Balanced Salt Solution

(serum-free media), filtered and kept on ice. Following approved animal care facility protocol,

recipient B6 mice were anesthetized with 2.5% Avertin, and injected retroorbitally with 2 x 106

total live cells suspended in 100 tl isolated from 2C or 2C GFP lymph nodes as described above.

This number corresponds to an average of about 4 x 105 naive 2C CD8+ T cells per mouse.

Under anesthesia, mice were intranasally infected, either immediately or in less than 24 hrs after

the cell transfer, with 100 pfu of WSN-SIY influenza virus suspended in 50 gl.

B.Results

Figure 1 shows an example plot of naive 2C and 2C GFP lymphocytes analyzed by flow

cytometry before the cells were transferred into B6 recipient mice. Generally, naive 2C GFP

cells are more than 60% of the isolated CD8+ population.
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Fig. 1. Nafve 2C GFP CD8+ cells are a distinct population identified by flow cytometry analysis. Plot shows
isolated cells from lymph nodes of 2C GFP RAGl-/- (top row) and 2C RAGI-/- (bottom row) mice. Both cell
populations were stained with biotinylated 1B2, Streptavidin-APC, and CD8a-PE antibodies. Propidium iodide (PI)
staining was used to identify dead cells. Cells were sorted using a BD FACSCaliburTM flow cytometer and the data
was analyzed with FlowJo software. Cells were gated on PI versus CD8a+ staining (left panel). Then, PIlow and
CD8a h" populations were selected and analyzed for 1B2 staining and GFP expression (right panel).

Seven days post-infection, GFP lymphocytes are 1B2+ and CD8+, and are present in both

lymphoid and non-lymphoid tissues (Fig. 2 and Table I). Greater than 90% of the GFP-

expressing cells in the lung are 1B2+ and CD8+ (Fig. 2a).
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Fig. 2. Distribution of antigen-specific 2C GFP Cells 7 days after 100 pfu of WSN-SIY Influenza infection.
(a)Representative plot showing the distribution of CD8a+ 1B2+ GFP cells in different tissues for one mouse. The
percentages are the ratios of CD8a+ 1B2+ GFP cells to total CD8a+ GFP cells. (b) Chart shows the total number of
1B2+ CD8a+ lymphocytes isolated per mouse. Each dot in (b) represents one mouse. There are 4 mice per group in
two independent experiments. Cells were isolated and stained with Biotinylated 1B2, Streptavidin-APC, and CD8a-
PE antibodies, as well as with PI for flow cytometry as described in the methods section. Analysis was performed
using FlowJo software. Cells were gated on PI versus CD8a expression. Then, PI"ow and CD8a'gh populations were
gated on Side versus Forward scatter plots to eliminate residual erythrocytes and granulocytes. The lymphocyte
population selected was analyzed further for 1B2 and GFP expression. LN stands for lymph nodes. MedLN
represents mediastinal draining lymph nodes. Lumbar LN is an example of a non-draining lymph node.

8O

O4

S0 *

to4 3 2

97.5%

to'

to 0

I 4 1 
1  

'02 1O1 to
1

ePl-• OeP-FRr
FLW GFP-MC FLtH: GFP*=



Table I. Average numbers of antigen-specific cells in 2C and 2C GFP recipient B6 mice 7 days after influenza
infection. Cells were isolated and stained with Biotinylated 1B2, Streptavidin-APC, and CD8a-PE antibodies, as
well as with PI for flow cytometry as described in the methods section. Analysis was performed using FlowJo
software and Microsoft Excel. The standard deviation is given for groups that have 4 mice per group. Others have
only 2 mice per group. LN represents lymph nodes. MedLN is an abbreviation for mediastinal draining lymph
nnc•s

5.4E+06

2.18E+06
1.3E+06
7.88E+07 ±
2. 1E+07

8.02E+07 ±

2.2E+07
1.85E+06

1.55E+06
9.23E+06
9.OE+06

8.90E+06
1.0E+07
1.58E+06

2.85E+06

2.5E+05

1.40E+05
4.6E+04
6.30E+06 ±
2.1E+06

6.29E+06 +
2.3E+06
6.23E+04

3.40E+04
6.18E+05 +
6.2E+05

8.67E+05 ±
1.2E+06
1.04E+05

1.55E+05

1.8E+05

5.88E+04
2.8E+04
1.29E+05 +
5.5E+04

1.29E+05 +
1. 1E+05
8.60E+03

4.87E+03
1.99E+04
2.3E+04

4.51E+04 +
5.8E+04
2.25E+02

2.83E+02

2C GFP cells remain in the lungs 30 dpi (Fig. 3a). These cells are CD8+ and CD44+

suggesting that they are memory T lymphocytes. Further analysis showed that they are also

CD62LlOw (Fig. 3b). Interestingly, 10-20 times more 2C GFP effector memory cells are found in

the lungs, compared to the spleen and lymph nodes (Table II). No GFP-expressing cells were

found in livers 30 dpi (Fig. 3b and Table II).
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Fig. 3. 2C GFP memory cells persist in lung tissue up to 30 days after Influenza infection. (a) Representative plot
showing GFP lymphocytes in lung tissue 30 dayspost 100 pfu WSN-SIY influenza infection. Cells were gated on
PI versus GFP expression. Then, PIow and GFPh"L populations were gated on Side versus Forward scatter plots to
eliminate residual erythrocytes and granulocytes. The lymphocyte population selected was analyzed for CD8a and
CD44 expression. (b) Plot showing distribution of memory cells in different tissues for one representative 2C GFP
recipient mouse infected with 100 pfu WSN-SIY influenza virus 30 days prior to flow cytometry analysis, as
described in the methods section. The top row shows the gating for the live GFP cells using FlowJo software, after
which CD44-PE and CD62L-APC populations were sorted (bottom row). Boundaries for the different populations
were determined by comparison to corresponding tissue isolate from a naYve 2C RAGl-/- mouse. LNs include
superficial cervical, mediastinal, mesenteric, inguinal and lumbar lymph nodes combined.
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Table II. Average number of antigen-specific memory cells present in different tissues 30 days after influenza
infection. All cells were isolated and stained with CD44-PE, CD62L-APC and PI for flow cytometry. In addition,
2C recipient mice cells were stained with Biotinylated 1B2 and Streptavidin-FITC. Analysis was performed using
FlowJo software and Microsoft Excel. The standard deviation is given for groups that have 3-5 mice per group.
Others have only 2 mice per group. LNs represents superficial cervical, mediastinal, mesenteric, inguinal and
lumbar lymph nodes combined.

1.15E+06 ± 9.0E+05
8.46E+07

7.78E+07 ± 1.6E+07
7.25E+05

3.34+06 ± 3.35E+06
1.90E+07

1.63E+07 ± 4.5E+06

1.47E+03 ± 2.6E+03
6.25E+05

89 ± 66
1.62E+03

37 ± 73
9.64E+04

19 ± 26

C.Discussion

Naive T cells freshly isolated from 2C GFP and 2C donor mice were analyzed by flow

cytometry before being transferred into B6 recipient mice. A distinct population of GFP-

expressing cells (as shown in Fig. 1), ranging from approximately 60% to 82% of the CD8+ cell

population were often observed. GFP-expression levels determined by the flow cytometer GFP

gating did not appear to change from one T cell development stage -- naive, effector (7 dpi) and

memory (30 dpi) - to another.

Figure 2 and Table I show that 104-106 2C (antigen-specific) GFP-expressing T cells are

found in the lung airways and parenchyma 7 days after WSN-SIY infection. This range is

similar to values reported in literature 9, 12, 71. Greater than 90% of these cells are both 1B2+ and

CD8+ lymphocytes (Fig. 2a). These results suggest that tracking the GFP-expressing cells

would be an appropriate model for identifying antigen-specific CD8+ T cells in lung tissue.
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170 ± 26
4.62E+05

19 ± 33
1.29E+03

0 ±1
4.26E+04

8 ± 14



Figure 2b shows there is variability in cell numbers from mouse to mouse, but no significant

difference was observed between 2C recipient and 2C GFP recipient mice 7 dpi. This variability

may be due to differences in how many viral droplets actually enter the mouse lung during the

intranasal infection process, and/or how many cells survive and actually enter the bloodstream

during adoptive cell transfer.

Numbers of GFP+ CD8+ CD44+ cells 30 dpi are <6200 per mouse and range from 187 to

6162 cells per mouse (Table II). In addition to those mentioned above, differences in the cell

numbers 30 dpi might reflect the variability in each mouse's immune response to intranasal

influenza virus. Similar ranges of, 104-105, CD8+ CD44+ lymphocytes were found in all the

tissues. However, 2C GFP memory cells predominantly resided in lung tissue, the primary site

for influenza infection and CD8+ T cell response (Fig. 3). Less than 20% of all the GFP+ cells

in the lung were CD8a ( CD44+. Since our donor GFP-expressing cells were derived from mice

in a RAGl-/- background, possibly the CD8a( ) CD44+ GFP-expressing cells are Natural Killer

(NK) cells. CD44 is an integrin expressed on leukocytes and erythrocytes 4. In the flow

cytometry protocol, erythrocytes are depleted from the tissue homogenate using a red blood cell

lysis buffer (see methods section). Also, this population is further removed during gating on the

forward and side scatter subset using FlowJo software, so it is unlikely that erythrocytes

contribute to this CD44+ population. Although future studies might warrant further

investigation, our interest focused on being able to identify antigen-specific memory cells by

fluorescence microscopy, and this group make up >80% of the GFP-expressing cell population.

Even though few 2C GFP memory cells were observed mainly in the lungs, both 2C and

2C GFP recipient mice appear to have similar numbers of CD8+ CD44+ memory lymphocytes in

all tissues. The number of GFP-expressing cells in the lung are only about 12% of the CD8+



CD44+ memory cell population. This result suggests that an immune rejection of GFP might be

occurring in the B6 recipient mice in synchrony with the response to influenza virus infection. It

is possible that the vast majority of the non-GFP memory cells might be endogenous CD8+ T

cells generated in response to antigenic GFP peptides 75. Further studies would need to be

performed to conclude if immune rejection against 2C GFP T cells occurs. Using GFP-tolerized

recipient mice might be a valid approach for future studies if immune rejection is proven to be a

conflicting issue. For the current purposes, these flow cytometry studies proved that effector

memory 2C GFP cells are generated in the lung and are still present at least 30 days after

influenza virus infection.

It is important to note that 2C GFP cells were found preferentially at the inflamed site --

the lungs -- of influenza infected mice. Lymphoid tissue such as spleens and lymph nodes had

non-detectable or 10 times less 2C GFP memory cells than the lung, a non-lymphoid tissue

(Table II). No 2C GFP cells were detected in the non-perfused liver, another non-lymphoid

tissue (Table II). The fact that the liver was not perfused to remove lymphocytes in the blood

before processing for flow cytometry, and that no 2C GFP cells were detected suggests that 2C

GFP memory T cells may also not be circulating in the blood. There was no preference for lung

tissue homing observed at day 7 after influenza infection (Fig. 2 and Table I) when cells are

probably identifying and eliminating the source of the infection. The preferential distribution

observed in the 30 dpi results strongly suggest that there are inherent differences in the ability of

lymphoid and non-lymphoid tissue to sustain antigen-specific GFP+ memory cells. These results

indicate that cellular interactions within non-lymphoid tissue may be important for cell-mediated

immunity.



III.ANTIGEN-SPECIFIC T CELL DISTRIBUTION

A.Methods

Antibodies & Reagents: Sakura Finetek( Tissue-Tek O.C.T.TM embedding medium was

purchased from VWR (USA). Biotinylated anti-CD31 (MEC13.3), biotinylated anti-CD11l c, and

anti-B220 conjugated to PE were purchased from BioLegend (San Diego, CA). Streptavidin

conjugated Alexa Fluor 647 and Hoechst 33342 dye were acquired from Invitrogen Molecular

Probes (USA).

Tissue Processing and Sectioning: Each tissue of interest was extracted from mice, one after

another, sacrificed by carbon dioxide (C0 2) asphyxiation followed by spraying with 70% ethanol

or quatricide. In the case of the lung, intratracheal inflation with 50% Tissue-Tek O.C.T.TM

embedding medium in lx PBS, was performed prior to removing the lungs. The extracted tissue

was immediately transferred into tubes containing RPMI complete on ice. Upon completion of

the harvesting process, each lung lobe or single organ was transferred into appropriately labeled

embedding molds. Tissue-Tek O.C.T.TM embedding medium was added to each mold containing

tissue. The molds were immediately kept on dry ice sprayed with 70% ethanol for rapid freezing

and kept on dry ice for at least 15 min. Embedded tissue blocks were stored at -800C until

cryosectioning (by the MIT CCR histology facility). Frozen sections were also stored at -800C

before immunostaining and microscopy analysis.

Immunofluorescence Staining: Frozen sections mounted on microscope slides were retrieved

from -80 oC and fixed on ice in a 4 oC cold room with cold acetone (Sigma-Aldrich) which had

been kept at -20 oC for 5-10 min. Then the tissue slides were rinsed lx with BSA-containing



Wash buffer (0.05% glycine and 0.75% BSA in lx PBS). BSA (Bovine serum albumin) helps to

reduce non-specific binding. A region around the tissue was marked using a Liquid Blocker

Super Pap Pen (Daido Sangyo Co. Ltd., Japan). Two hundred microliters each of FCS-Blocking

buffer (10% FCS and 0.1% sodium azide in lx PBS) was added to each tissue specimen and left

to incubate at room temperature (RT) for 1 hr in a humid chamber. Following incubation, non-

specific streptavidin binding was reduced by using a Streptavidin-Biotin blocking kit (Vector

Labs) according to the manufacturer's instructions. Then 200 jl per specimen of supernatant

from the centrifuged primary biotinylated antibody 1:100 dilution (-5 jig) in FCS-blocking

media was added. The incubation proceeded for 1 hr at RT in the humid chamber. Specimens

were washed twice, following incubation, with 200 pC each of the BSA-containing Wash buffer

for 5 min each time. Then 200 jl per specimen of supernatant from the centrifuged secondary

cocktail in FCS-blocking media was added. The secondary cocktail consisted of the secondary

antibody Streptavidin-Alexa Fluor 647 (Invitrogen, 1:100), Hoechst dye (Invitrogen, 1:1000),

and where indicated, B220-PE antibody (1:100) in FCS-blocking media. The tissue sections

were incubated for another hour at RT in a humid chamber covered with foil paper. After

incubation, each specimen was washed thrice with BSA-containing Wash buffer. Each wash

lasted 5 min. The slides were kept covered in foil during washes. Slides were "air-dried" for at

least 20 min in dry chambers, covered loosely with foil paper, to remove excess moisture before

adding pre-warmed ProLong Gold (Invitrogen), according to manufacturer's instructions. Slides

were viewed by fluorescence microscopy 24 hr after curing at RT wrapped up in foil paper.

Tissue Microscopy and Analysis: Tissue sections were viewed using a Zeiss Axiovert 200M

microscope equipped with an 84000 series quad filter set having single band pass excitation



filters for DAPI/FITC/TRITC/Cy5, and a Hamamatsu ORCA-AG camera. Images were

acquired using an A-Plan 10x/0.25 Phl and LD Plan Neofluar 40x/0.6 Ph objective lenses.

Further image analysis was performed using Imaris software.

B.Results

1. T Cell Distribution in Lung

Lymphocytes, polymorphonuclear cells and macrophages were observed in H&E lung

sections of mice that had been adoptively transferred with 2C or 2C GFP T cells and infected

with 100 pfu WSN-SIY influenza virus (Fig. 4a). Severe vasculitis and gross inflammatory

infiltrates in all areas of the lung were distinct hallmarks of infection. By fluorescence

microscopy, 2C GFP cells were found in vessels, bronchioles and alveolar spaces (Fig. 4b)

particularly in lower lung lobes.

In mice transferred with 2C GFP cells, GFP cells were observed in peribronchiolar and

stromal areas of the lung 31 dpi (Fig. 5). Less than 2 cells were identified per 120-150 ptm total

section of lung. More often, no GFP cells were observed in these blocks. There appeared to be

no preference for either lower or upper lung lobes.



Left Upper Lobe Right Middle Lobe

In Parenchyma In Alveolar Space

Fig. 4. 2C GFP recipient mice exhibit similar lung pathology to 2C recipient mice 7 days after influenza virus
infection. (a) A representative plot of Hematoxylin and Eosin stained frozen 10-tm lung sections. The left panel
shows more severe vasculitis in the left lower lobes compared to the right middle lobes. (b) 2C GFP cells found near
vessel (left), in lung parenchyma (middle) and in alveolar spaces (right) of cold acetone-fixed 10-jim Tissue-Tek
O.C.T. embedded frozen sections. Images were acquired using a Zeiss Axiovert 200M microscope and analyzed
with Imaris software as described in the methods section. Nuclei stained with Hoechst dye are pseudo-colored blue,2C GFP cells colored green, and anti-CD31 labeled endothelial vessels in red. Light images are in gray (bottom
panels).
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In Parenchyma In Bronchiole

Fig. 5. Distribution of antigen-specific memory T cells after influenza infection. (a) Representative Hematoxylin
and Eosin stained frozen lung sections from 2C GFP recipient mice infected with 100 pfu of WSN-SIY influenza
virus 31 days post-infection. The sections are 15-pm thick. Left image shows lymphoid-appearing nodule and right
image illustrates clear alveolar spaces typically observed in all lobes (b) 2C GFP-expressing cells (green) are found
in the lung parenchyma and peribronchiolar areas of cold-acetone fixed 15-jim frozen sections. Nuclei were stained
with Hoechst dye (blue). Images were acquired with a Zeiss Axiovert 200M and Hamamatsu ORCA-AG camera
using AxioVision software. Further processing was performed with Imaris software.

2. Investigation of T Cell - Dendritic Cell Interactions

Frozen lung tissue sections were stained with anti-CD 11 c to identify dendritic cells by

immunofluorescence. GFP T cells were rarely seen in the same view as dendritic cells. The

closest association between a GFP T cell and a dendritic cell is about 30-ltm apart (Fig. 6 lower

right image). No T or B cell clusters were observed.

30 m"Uj
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Fig. 6, 2C GFP memory T cells do not appear to colocalize with resident lung dendritic cells. Plot shows the closest
associations observed between 2C GFP memory cells (green) 31 days after 100 pfu WSN-SIY influenza infection.
15-jm lung froin sections were cold acetone-fixed, stained with biotinylated anti-CD! Ic, Streptavidin-Alexa Fluor
647 (red), anti.B220-PE, and Hoechst dye (blue), and mounted with ProLong Gold. Images were acquired with a
Zeiss Axiovert 200M and Hamamatsu ORCA-AG camera using AxioVision software. Further processing was
performed with Imaris software.

C.Discussion

Antigen-specific effector CD8+ T cells are found widely distributed in the lung airways

and vessels seven days after influenza infection. Hematoxylin and Eosin (H&E) stained slides

revealed that 2C GFP recipient mice have similar lung pathology to 2C recipient mice (Fig. 4a).

Inflammatory cells - lymphocytes, polymorphonuclear cells, and macrophages - can be found in

the alveolar spaces, vasculature and bronchioles (Fig. 4), completely defacing the lung

morphology. More severe vasculitis is observed in the lower lobes compared to upper and

middle lung lobes. These images are in agreement with previously published results 23-25

In frozen sections of lungs, 2C GFP effector cells were identified by their GFP signal

above the background fluorescence and a diameter of about 10-15 mun. Occasionally, GFP

nuclei-stained cells about 30-um diameter were seen. These cells had bleb-like structures that



suggest these were dying T cells (data not shown). It was determined from in vitro imaging of

isolated lymphocytes that dead cells do not express GFP (data not shown). Rough estimates

showed that only about 530 viable GFP cells would have been detected by fluorescence

microscopy in 7 dpi lung frozen sections. This is about 1% of the population of GFP cells

estimated by flow cytometry studies. It is possible that fluorescence signal from cells that

overlap with the yellow-green autofluorescence are missed, and might have been removed whilst

setting lower thresholds based on background fluorescence from 2C recipient and influenza

infected mice. Of note, yellow-green autofluorescence observed in the lung tissue was reduced

by the initial 5-10 min cold acetone fixation. Cold 2 or 4% paraformaldehyde fixation up to 1 hr

did not appear to reduce the yellow-green autofluorescence in lung specimens. Both methods of

fixation maintained the tissue architecture when compared to unfixed sections, and neither one

appeared to reduce orange-red autofluorescence.

Hematoxylin-and-eosin stained sections 31 dpi showed clearer alveolar spaces and

airways when compared to H&E sections from 7 dpi (see Fig 4a and 5a). This reduced numbers

of inflammatory infiltrates 31 dpi indicates that surviving mice had recovered from the infection.

Viral titers from studies by different groups have shown that influenza virus levels become non-

detectable by 15 days after acute infection in an immunocompetent model, and the lung

architecture is restored 23, 26, 27. In lung frozen sections, an estimate of thirty 2C GFP cells would

have been observed per mouse. Cells were seen in bronchioles and in the lung parenchyma 31

days after influenza infection sparsely distributed within upper and lower lung lobes. Based on

flow cytometry studies, these cells would be effector memory, CD8+ CD44+ CD62Llo w 2C TCR

cells.



At this low dose (100 pfu) of influenza virus infection, induced bronchus-associated

lymphoid tissue (iBALT) would not be expected. Although lymphoid-appearing nodules near

vessels and bronchioles were observed in most of the lung lobes, staining with anti-B220 did not

show any B cell clusters in close proximity to GFP-expressing T cells.

From these images, it appears that the lymphocytes enter the lungs via the vasculature.

The process might involve burrowing channels through vessels; similar to the process of

diapedesis described for high endothelial vessels in lymph nodes 17. This process might explain

the severe vasculitis observed in the lung lobes. As the virus is cleared, contraction of the

antigen-specific cells occurs and the airway passages are cleared 23, 26, 27. Memory T cells then

reside in stroma-rich areas for sustenance 23' 26, 27

Lung stroma cells consist of fibroblasts which may be a source of IL-15/Ra, a cytokine

proven to be necessary for memory CD8+ T cell proliferation and maintenance 43-48. The lung

also has epithelial cells and dendritic cells that have also been identified as sources of IL-15.

The closest association between a GFP T cell and a dendritic cell identified by CD11l c staining

was about 30-ptm apart. Dendritic cells are found in airways as well as in the lung parenchyma

76. Based on the number of CD 11 c stained cells (Fig. 6), there are about 5 x 106 dendritic cells

in the lung. This estimate is four times less than the number obtained from flow cytometry

studies 77. Although this number suggests dendritic cells are abundant in the lungs, most GFP T

cells in the lung parenchyma did not colocalize with dendritic cells. By inflating the lungs with

embedding media before the tissue is sectioned, it possible that associations in the airways were

disrupted. These studies focused on cells in the lung parenchyma which are not dislodged by

inflation 78. Amongst the high intensity GFP cells easily detected by microscopy, there was no

indication that antigen-specific T cells and dendritic cells routinely form stable contacts which



would have been detected by overlap in GFP and Alexa Fluor 647 signals. Further studies need

to be carried out in order to identify whether antigen-specific cells preferentially reside near

other known IL-15 secreting cell types in the lung.

IV.SUMMARY & CONCLUSION

In this study, we show that antigen-specific 2C GFP effector memory CD8+ T cells are

generated in B6 recipient mice 30-32 days after influenza virus infection. In agreement with

previously published studies 27, CD8+ memory T cells against influenza virus preferentially

reside in peribronchiolar areas. Both 2C and 2C GFP recipient mice gross inflammation and

severe vasculitis in lungs 7 days post-infection. Lower lung lobes appear to be more adversely

affected by the infection and immune response than upper lobes at this time point.

About 3-4 weeks later, the alveolar spaces appear to be completely restored. Some

regions showed lymphoid-appearing nodules 31 dpi. However, no B and T cell clusters

suggesting induced BALT were identified by immunofluorescence staining. Antigen-specific

GFP cells preferentially remained in the lung tissue and were almost in lymphoid and other non-

lymphoid tissues. This preference was not observed in the 2C non-GFP recipient mice. Further

analysis showed no colocalization between 2C GFP T cells and dendritic cells in the lung

parenchyma. More work is needed to determine what structural elements in non-lymphoid tissue

influence cell-mediated immunity.
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VI.ABBREVIATIONS LIST

2C 2C T Cell Receptor cells

2C GFP GFP-expressing 2C T Cell Receptor cells

APC allophycocyanin

BALT bronchus-associated lymphoid tissue

BSA bovine serum albumin

dpi days post-infection

FACS fluorescence-activated cell sorting

FCS fetal calf serum

FITC fluorescein isothiocyanate

GFP green fluorescent protein

H&E hematoxylin and eosin

HA hemagglutinin

LN lymph node

NA neuraminidase

NK natural killer (cells)

PBS phosphate buffered saline

PE phycoerythrin

PI propidium iodide

RAG recombination activating gene

SIY SIYRYYGL (Ser-Ile-Tyr-Arg-Tyr-Tyr-Gly-Leu) peptide sequence encoded onto
the WSN influenza virus neuraminidase stalk

TCR T cell receptor
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